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Highlights 30 

 BS, NaTC and NaTDC, impact the rheological properties and gelation of MC. 31 

 NaTDC has a greater impact on the viscoelasticity of MC compared to NaTC. 32 

 NaTDC desorbs from a MC-stabilised interface at lower concentrations than NaTC. 33 

 Upon digestion, NaTDC destabilises more readily MC-stabilised emulsion droplets. 34 

 During MC-stabilised emulsion digestion, NaTDC generates less FFA than NaTC. 35 

Abstract 36 

Methylcellulose (MC) has a demonstrated capacity to reduce fat absorption, hypothetically 37 

through bile salt (BS) activity inhibition. We investigated MC cholesterol-lowering mechanism, 38 

and compared the influence of two BS, sodium taurocholate (NaTC) and sodium 39 

taurodeoxycholate (NaTDC), which differ slightly by their architecture and exhibit contrasting 40 

functions during lipolysis. 41 

BS/MC bulk interactions were investigated by rheology, and BS behaviour at the MC/water 42 

interface studied with surface pressure and ellipsometry measurements. In vitro lipolysis 43 

studies were performed to evaluate the effect of BS on MC-stabilised emulsion droplets 44 

microstructure, with confocal microscopy, and free fatty acids release, with the pH-stat 45 

method. 46 

Our results demonstrate that BS structure dictates their interactions with MC, which, in turn, 47 

impact lipolysis. Compared to NaTC, NaTDC alters MC viscoelasticity more significantly, which 48 

may correlate with its weaker ability to promote lipolysis, and desorbs from the interface at 49 

lower concentrations, which may explain its higher propensity to destabilise emulsions. 50 

Keywords 51 

Methylcellulose; bile salts; rheology; surface pressure measurements; in vitro duodenal 52 

lipolysis 53 
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Graphical abstract 55 
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1. Introduction 57 

Obesity and associated health risks (such as chronic cardiovascular diseases and type-58 

2-diabetes mellitus) have become increasingly prevalent worldwide. In 2016, 39% of the 59 

world’s adult population were classified as overweight, and 13% as obese (World Health 60 

Organization, 2019). Controlling the digestion of dietary lipids (fats) and optimising their 61 

absorption are therefore crucial to addressing this ongoing health crisis (McClements & Li, 62 

2010b; Mei, Lindqvist, Krabisch, Rehfeld, & Erlanson-Albertsson, 2006). With their 63 

demonstrated capability to reduce food intake and aid weight loss, dietary fibres have shown 64 

great potential against obesity (Slavin, 2005). Nonetheless, a better understanding of the 65 

processes responsible for their ability to regulate calorie uptake still needs to be provided. 66 

Due to its approved (Younes et al., 2018) and wide (The Dow Chemical Company, 2002) use in 67 

the food industry, as well as its proven capacity to diminish blood cholesterol levels (without 68 

inducing any adverse effect) (Agostoni et al., 2010), methylcellulose (MC) is an appropriate 69 

model of dietary fibre for elucidating the mechanism by which dietary fibres reduce 70 

hyperlipidaemia. 71 

MC is a non-ionic polysaccharide belonging to the large family of cellulose ethers and 72 

containing repeating anhydroglucose units, with methyl (hydrophobic) moieties substituting 73 

hydroxyl (hydrophilic) groups (Nasatto et al., 2015b) (Figure 1). The capacity of this dietary 74 

fibre to hinder lipolysis has been mainly attributed to its ability to induce loss of bile salts (BS) 75 

and cholesterol in faeces by (i) increasing the viscosity of the small intestine content (Christos 76 

Reppas, Meyer, Sirois, & Dressman, 1991), which slows down fat digestion and reduces 77 

nutrients absorption (Bartley et al., 2010; Carr, Gallaher, Yang, & Hassel, 1996; Maki et al., 78 

2009; C. Reppas, Swidan, Tobey, Turowski, & Dressman, 2009; van der Gronde, Hartog, van 79 

Hees, Pellikaan, & Pieters, 2016), and/or by (ii) trapping BS and/or cholesterol molecules in its 80 

network, via hydrophobic interactions occurring both in the bulk aqueous phase and at the 81 

fat droplet interface (Pilosof, 2017; Pizones Ruiz-Henestrosa, Bellesi, Camino, & Pilosof, 2017; 82 

Torcello-Gómez et al., 2015; Torcello-Gómez & Foster, 2014). BS are biosurfactants produced 83 

in the liver and released into the small intestine (duodenum) (Hofmann & Mysels, 1987), 84 

which play key roles in lipid digestion and absorption (Maldonado-Valderrama, Wilde, 85 

Macierzanka, & Mackie, 2011; Wilde & Chu, 2011): on the one hand, they facilitate enzyme 86 

adsorption to fat droplet interfaces, thus promoting enzyme-catalysed lipolysis (Borgström, 87 
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Erlanson-Albertsson, & Wieloch, 1979; Bourbon Freie, Ferrato, Carrière, & Lowe, 2006; 88 

Erlanson-Albertsson, 1983; Labourdenne, Brass, Ivanova, Cagna, & Verger, 1997); on the 89 

other, they remove the enzyme-inhibiting insoluble lipolysis products (diacylglycerols (DAG), 90 

monoacylglycerols (MAG) and free fatty acids (FFA)) present at the interface, carrying them 91 

to the gut mucosa for absorption (Hofmann & Mysels, 1987). In this work, we are focusing on 92 

the interactions between MC and BS, which have been hypothesised to explain (i) MC 93 

cholesterol-lowering effect, due to the reduction in BS re-absorption in the ileum and the 94 

subsequent increased production of BS by the liver from cholesterol, and (ii) the early 95 

signalling of satiation and lengthening of satiety feeling, by the accumulation of undigested 96 

materials in the duodenum, due to BS being entrapped and prevented from fulfilling their 97 

functions during lipolysis (Gunness & Gidley, 2010). Recent studies have demonstrated BS 98 

inhibitory effect on MC thermally-induced structuring using microcalorimetry and rheology 99 

(Torcello-Gómez et al., 2015; Torcello-Gómez & Foster, 2014), and the competition of BS with 100 

MC for adsorption at the lipid droplet/water interface with tensiometry (Torcello-Gómez & 101 

Foster, 2014). However, there is little structural evidence for the hypothesis of entrapment of 102 

BS by MC, and a mechanistic understanding of the competitive processes leading to enzyme 103 

inhibition, delayed fat digestion and the associated health benefits, is still lacking. Therefore, 104 

further studies are required to clarify how MC interacts with BS during lipid digestion and how 105 

this, in turn, correlates to BS molecular structure and their contrasting roles. 106 

The work presented here increases our understanding of the mechanisms underlying 107 

MC capacity to regulate fat digestion in the small intestine, with a particular focus on its ability 108 

to compete with BS for adsorption at the lipid droplet/water interface. More specifically, by 109 

combining bulk and interfacial experiments with in vitro lipolysis studies, we examined the 110 

interactions between MC and BS in bulk water, at the MC/water interface, and at the oil/water 111 

interface of fat droplets mimicking food colloids. It has been hypothesised that BS structural 112 

diversity is responsible for the different functions they carry out in fat digestion; to explore 113 

this postulate, two BS, sodium taurocholate (NaTC) and sodium taurodeoxycholate (NaTDC) 114 

(Figure 2), were selected, as they display contrasting adsorption/desorption dynamics, which 115 

are thought to reflect their different roles in the gut (Pabois et al., 2019; Parker, Rigby, Ridout, 116 

Gunning, & Wilde, 2014). Since BS are expected to interact with MC both in the bulk aqueous 117 

phase and at the surface of MC-stabilised emulsion droplets, we assessed the impact of BS on 118 

MC rheological properties, using oscillatory shear rheology, and BS/MC interfacial behaviour 119 
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at the air/water interface, through surface pressure measurements in a Langmuir trough set-120 

up and ellipsometry. We then investigated how these interactions affect the lipolysis of an 121 

MC-stabilised emulsion, by monitoring the structure of emulsion droplets after addition of BS 122 

and enzymes, with different optical microscopy techniques, and by measuring the amount of 123 

FFA released throughout in vitro lipid digestion, with the pH-stat method. 124 

  125 
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2. Experimental section 126 

2.1 Materials 127 

MethocelTM SG A7C (solution viscosity: 700 mPa.s at 2% w/w at 20°C; methoxyl degree of 128 

substitution: 1.8; molecular weight: 400 - 500 kDa) (Figure 1) was kindly supplied by Dow Wolff 129 

Cellulosics GmbH (Bomlitz, Germany). Chloroform (CHCl3) was purchased from Fisher 130 

Scientific (Loughborough, UK). NaTC (P97.0% TLC) (Figure 2A), NaTDC (P95.0% TLC) (Figure 131 

2B), paraffin oil, ethanol (EtOH, P99.8% GC), orlistat (P98.0%), Nile red, fluorescent brightener 132 

28 (calcofluor), dimethyl sulfoxide anhydrous (P99.9%), sunflower seed oil from Helianthus 133 

annuus, pancreatin from porcine pancreas (or pancreatic lipase/co-lipase; activity: 40 U/mg 134 

of solid, based on lipase activity using tributyrin as a substrate), sodium phosphate monobasic 135 

dihydrate (NaH2PO4, P99.0% T), sodium phosphate dibasic dihydrate (Na2HPO4, P99.0% T), 136 

sodium chloride (NaCl, P99.8%), calcium chloride dihydrate (CaCl2, P99.0%) and sodium 137 

hydroxide (NaOH, 0.1 M) were all obtained from Sigma-Aldrich (Gillingham, UK). Ultrapure 138 

water, or MilliQ-grade water (H2O, 18.2 MΩ·cm, Merck Millipore, Molsheim, France), was 139 

used in all experiments. Phosphate buffer (10 mM, pH = 7.04 at 21°C) was prepared by mixing 140 

0.01% wt NaH2PO4 with 0.01% wt Na2HPO4, in ultrapure water. All reagents were used as 141 

supplied. 142 

 143 

Figure 1: Structure of methylcellulose (MC) 144 

 145 

Figure 2: Structures of sodium taurocholate (NaTC) (A) and sodium taurodeoxycholate (NaTDC) (B) 146 

2.2 Methods 147 
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2.2.1 Bulk and interfacial studies 148 

  2.2.1.1 Preparation of MC and MC/BS aqueous solutions 149 

MC aqueous solution was prepared using the “hot/cold” method (The Dow Chemical 150 

Company, 2002, 2013). Solid MC was first dispersed into one third of the required mass of 151 

ultrapure water heated to 80°C (for around 15 minutes), until complete wetting of particles; 152 

then, the dispersion was transferred into an ice bath, and the remaining two thirds of cold 153 

ultrapure water (4°C) were added progressively into the stirred solution, which was finally left 154 

to stir overnight at 4°C, to ensure complete solubilisation. MC/BS solutions were prepared 155 

simply by mixing both components together at the required concentrations. 156 

  2.2.1.2 Rheology measurements 157 

Rheology experiments were performed with a strain-controlled rheometer (ARES, TA 158 

instruments, Inc, Borehamwood, UK), fitted with a 25 mm diameter titanium parallel plate 159 

and equipped with a temperature-controlled Peltier system (with a  0.1°C temperature 160 

stability at thermal equilibrium). Each sample was loaded onto the lower plate, and the upper 161 

plate was adjusted to a gap size of 0.8  0.3 mm. A thin layer of low viscosity paraffin oil was 162 

deposited around the edges of the sample exposed to air to prevent sample drying and 163 

evaporation throughout the measurement. 164 

Dynamic temperature sweeps were performed at a fixed angular frequency of 6.28 rad/s and 165 

strain of 1%, from 20°C to 80°C, with a heating rate of 2°C/min, to measure the evolution of 166 

the storage (G’) and loss (G’’) moduli as a function of temperature, in the absence and 167 

presence of BS. Dynamic frequency sweeps were performed over an angular frequency range 168 

of 0.1 - 100 rad/s, at a fixed strain of 1%, and a fixed temperature of 60°C (above MC transition 169 

temperature (Tt), which is the point where a break in the slope of G’ is detected in the dynamic 170 

temperature sweep curves). The strain of 1% was chosen within the linear viscoelastic regime, 171 

which was established by performing dynamic strain amplitude sweeps on MC and MC/BS 172 

solutions, over a strain range of 0.01 - 100%, at a constant angular frequency of 6.28 rad/s and 173 

a temperature of 60°C. Each test was repeated at least twice to confirm reproducibility; 174 

representative curves (rather than averages) are shown in the manuscript. 175 

2.2.1.3 Langmuir trough measurements 176 
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Interfacial tension measurements were performed in a 50 mm diameter perfluoroalkoxy Petri 177 

dish (19.6 cm2 surface area and 20 mL volume of subphase), to study the adsorption of MC 178 

and its interaction with BS at the air/water interface. All experiments were carried out under 179 

constant stirring, at a fixed area, and at a temperature of 23 ± 2°C (room temperature). The 180 

surface pressure (π) was measured by a Wilhelmy plate made of chromatographic paper 181 

(Whatman International Ltd, Maidstone, UK) of 2.3 x 1.0 cm (length x width) and attached to 182 

a calibrated Nima PS4 microbalance (Nima Technology Ltd, Coventry, UK). Prior to any 183 

measurement, the trough was thoroughly cleaned with EtOH and CHCl3 to remove organic 184 

impurities, and then filled with ultrapure water (subphase). Surface-active contaminants, dust 185 

and bubbles were all removed from the subphase by suction with a pump, and the subphase 186 

was considered as clean when changes in surface pressure did not exceed ± 0.2 mN/m over 187 

approximately two minutes. 188 

MC adsorption at the air/water interface. Using a 1 mL syringe (Becton Dickinson, Madrid, 189 

Spain) fitted with a 19 G x 1 ½ in. needle (Becton Dickinson, Madrid, Spain), a specific amount 190 

of pure MC solution in ultrapure water was injected into the subphase, under constant stirring. 191 

Surface pressure (π) was measured over time until it reached a plateau. Each experiment was 192 

repeated at least twice; either a representative curve or an average measurement is shown. 193 

BS interaction with a MC layer at the air/water interface. A MC layer was first formed at the 194 

air/water interface, by addition of a specific amount of MC aqueous solution into the clean 195 

and stirred water (πMC = 21 ± 1 mN/m with 0.5‰ w/w, and πMC = 18 ± 2 mN/m with 0.5×10-196 

2‰ w/w). After film equilibration (ca. 1-2 hours), a specific amount of pure BS aqueous 197 

solution was injected beneath the MC layer. The corresponding changes in surface pressure 198 

(π) were recorded over time. Each experiment was repeated at least twice; either a 199 

representative curve or the average measurement is shown. 200 

2.2.1.4 Ellipsometry 201 

MC adsorption and interaction with BS at the air/water interface was further investigated by 202 

ellipsometry (Beaglehole Instruments, Wellington, New Zealand). Time-dependent 203 

measurements were performed with a 632.8 nm-wavelength laser hitting the surface at an 204 

incident angle of 50°. In this configuration, changes in the polarisation of light reflected by the 205 
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interface are measured over the 1 mm² area and ~1 μm depth probed by the laser beam; 206 

these changes can be correlated to the amount of material adsorbed at this interface over 207 

time. The polarisation state of the incident light is composed of an s- and p-component (where 208 

the s-component is oscillating parallel to the sample surface, and the p-one parallel to the 209 

plane of incidence). The ratio of the reflectivity of these two components (rs for the s-210 

component and rp for the p-component) characterises the polarisation change and is 211 

expressed by the following equation: 212 

𝑟𝑝

𝑟𝑠
 = tan(Ψ). ei      (1) 213 

where Ψ is the amplitude change and Δ the phase shift. In the thin film limit at the air/water 214 

interface (i.e., film thickness << laser wavelength), Δ is found to be much more sensitive to 215 

changes in the amount adsorbed at the interface than Ψ (Motschmann & Teppner, 2001). 216 

Therefore, time-dependent changes in phase shift (ΔΔ) were measured, with ΔΔ(t) = Δ(t) - 217 

Δ(t0), where Δ(t0) is the phase shift at the beginning of a given experiment, namely, the phase 218 

shift of the bare air/water interface (Δ0) for MC adsorption and interaction with BS, at the 219 

air/water interface. Changes in the phase shift are directly proportional to the amount of 220 

material adsorbed at the interface (Motschmann & Teppner, 2001). In order to measure 221 

simultaneously the surface pressure and phase shift for the same surface, the instrument was 222 

mounted on top of the Petri dish, used as a Langmuir trough. Data were acquired at a rate of 223 

0.2 Hz, using the Igor Pro software. 224 

2.2.2 In vitro lipolysis studies 225 

2.2.2.1 Preparation of MC-stabilised emulsion 226 

MC (0.5% w/w) was dispersed into sunflower oil (15% w/w). Cold phosphate buffer (84.5% 227 

w/w, at T < Tdissolution = 10°C) was added to the oil phase and the mixture stirred for a few 228 

minutes. The dispersion was then pre-emulsified at 11,000 rpm for 1 minute, using a high-229 

shear mixer (T25 digital Ultra-Turrax, IKA®-Werke GmbH & Co. KG, Staufen, Germany). This 230 

pre-emulsion was transferred into a 10 mL volume beaker in an ice bath and was sonicated at 231 

a frequency of 20 kHz and amplitude of 70% for 5 minutes with a tip sonicator (SONOPULS HD 232 

3100 ultrasonic homogeniser, microtip model: MS 73, BANDELIN electronic GmbH & Co. KG, 233 

Berlin, Germany). 234 
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2.2.2.2 Simulation of the duodenal lipolysis environment 235 

For each in vitro lipolysis experiment, the following model (Grundy, Wilde, Butterworth, Gray, 236 

& Ellis, 2015) was employed to simulate the duodenum (small intestine) environment: 19 mL 237 

of MC-stabilised emulsion was added to a thermostatically-controlled and mechanically-238 

stirred reaction vessel at 37°C, followed by 15 mL of a BS aqueous solution (NaTC, NaTDC; 2.5, 239 

25, 125 mM, in phosphate buffer). Then, 1 mL of NaCl (4.9 M, in ultrapure water) and 1 mL of 240 

CaCl2 (0.37 M, in ultrapure water) were added to the mixture, under continuous stirring. 241 

Finally, 1.5 mL of either phosphate buffer (for the blank assay, used as a control) or freshly 242 

prepared pancreatic lipase/co-lipase suspension (17 mg/mL, in phosphate buffer) (for the 243 

lipolysis assay) were added. The final system was made up of 7.6% w/w lipid, 1, 10, or 50 mM 244 

BS, 130 mM NaCl, 10 mM CaCl2, and 0.68 mg/mL pancreatic lipase/co-lipase. 245 

2.2.2.3 Optical microscopy 246 

The structural changes induced on an MC-stabilised emulsion upon duodenal digestion, were 247 

monitored over time by brightfield optical (Olympus BX61 microscope, Olympus France S.A.S., 248 

Rungis, France) and confocal (Leica TCS SP2, DMIRE2 inverted, Leica Microsystems UK Ltd, 249 

Milton Keynes, UK) microscopy. Prior to in vitro lipolysis studies, the pure emulsion was 250 

characterised; then, the mixture modelling the duodenal environment was added to the 251 

emulsion and samples measured at different time points (t = 5, 15, 30 and 60 min), to analyse 252 

the evolution of emulsion droplet microstructure from the beginning to the end of duodenal 253 

lipolysis. The influence of each component (NaTC, NaTDC, NaCl and CaCl2) used individually 254 

and together was assessed to better understand their impact on duodenal lipolysis. A blank 255 

assay was also measured as a control to monitor changes over time in the absence of enzymes. 256 

For confocal microscopy, prior to visualisation, samples were mixed with 1 mg/mL orlistat 257 

(prepared in dimethyl sulfoxide) to stop lipolysis, and then stained with 10 μg/mL Nile red 258 

(prepared in dimethyl sulfoxide) and 20 μg/mL calcofluor (prepared in ultrapure water), to 259 

detect lipids (red fluorescence) and MC (blue fluorescence), respectively. Samples were 260 

excited at 488 nm (for Nile red) and 405 nm (for calcofluor), and the fluorescence emitted by 261 

the samples was detected between 510 - 650 nm (for Nile red) and 410 - 480 nm (for 262 

calcofluor). Images were captured using objective lenses of 10×, 20× or 63×, and micrographs 263 
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were compiled with the Olympus image analysis software (for optical microscopy, Olympus 264 

France S.A.S., Rungis, France) and Fiji software (“Fiji,” 2019) (for confocal microscopy).  265 

2.2.2.4 pH-stat measurements 266 

The rate and extent of lipolysis were evaluated by titrating the amount of FFA released from 267 

an MC-stabilised emulsion with 0.1 M NaOH, at 37°C and pH 7.0, in conditions mimicking the 268 

duodenal (small intestine) environment. Each assay was carried out over 1 hour of digestion, 269 

using a pH-stat titration unit (848 Titrino plus, Metrohm AG, Herisau, Switzerland). The blank 270 

experiment was performed as a control, to measure pH fluctuation in the absence of enzymes; 271 

the volume of NaOH released during this assay was then subtracted from the data recorded 272 

in the presence of pancreatic lipase/co-lipase (lipolysis assay). Each blank and lipolysis 273 

experiment was repeated at least six times. 274 

The volume of NaOH released during MC-stabilised emulsion digestion was converted into the 275 

percentage of FFA produced, using this equation: 276 

%FFA (t) = 100 × 
VNaOH (t) .  [NaOH] .  MLipid

2 .  mLipid
     (2) 277 

where VNaOH is the volume of NaOH required to neutralise the FFA produced over time, [NaOH] 278 

the concentration of the NaOH solution used, MLipid the molecular weight of the oil employed 279 

in this experiment (in our case, MSunflower oil = 876 g/mol (Sánchez, Maceiras, Cancela, & 280 

Rodríguez, 2012)), and mLipid the mass of triacylglycerol (TAG) initially present in the digestion 281 

vessel. This equation has been established considering the ideal case where the hydrolysis of 282 

one molecule of TAG leads to the formation of one molecule of MAG and two molecules of 283 

FFA. The results are shown as the proportion of FFA release as a function of time. 284 

The pH-stat data were analysed with the GraphPad Prism software (“GraphPad Prism,” 2019); 285 

statistical analysis was carried out using the two-way analysis of variance (ANOVA), followed 286 

by the Tukey post-test, with a 95% confidence level, meaning that differences were 287 

considered as statistically significant when P < 0.05.  288 
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3. Results 289 

3.1 BS interaction with MC in the bulk 290 

MC viscoelastic behaviour. The temperature-dependence of MC rheological properties was 291 

investigated by performing dynamic temperature sweep measurements on MC solutions 292 

prepared at concentrations ranging between 0.1 and 2.0% w/w (Figure S1). 293 

At all the MC concentrations studied, a relatively flat region is observed for the storage 294 

modulus (G’) in the lower temperature range (ca. 20 - 40C), followed by a steep increase 295 

beyond a transition temperature (Tt) and a final plateau at high temperatures. As MC 296 

concentration increases, the transition temperature from which G’ starts to level off shifts 297 

towards lower values (from 55°C at 0.1% w/w, to 37°C at 2.0% w/w). Below and above Tt, MC 298 

behaves as a predominantly solid-like material over the whole range of temperatures studied 299 

(G’ dominates over G’’ over the range of frequencies measured), and above Tt, both moduli 300 

increase and are still independent of frequency (data not shown) (Funami et al., 2007; L. Li et 301 

al., 2001; Lin Li, 2002); the transition temperature thereby corresponds to a weak-to-strong 302 

gel transition. The increase in MC concentration also induces a relatively weak change in MC 303 

elastic properties (G’) at low temperatures, and a much more significant one in the high 304 

temperature region, in agreement with previous studies (Nasatto et al., 2015a). 305 

The gelation of MC – whose chains are arranged as ‘bundles’ at room temperature (or packed 306 

‘strands’ held together by packing of unsubstituted regions and the hydrophobically-driven 307 

aggregation of methyl groups in regions of denser substitution) – has been postulated to 308 

follow two steps (Haque & Morris, 1993; Sarkar, 1995; Desbrières, Hirrien, & Rinaudo, 1998; 309 

Hirrien, Chevillard, Desbrières, Axelos, & Rinaudo, 1998; Kobayashi, Huang, & Lodge, 1999; L. 310 

Li et al., 2001, 2002; Lin Li, 2002; Lin Li, Wang, & Xu, 2003; Funami et al., 2007; Torcello-Gómez 311 

& Foster, 2014; Torcello-Gómez et al., 2015; Nasatto et al., 2015a; Isa Ziembowicz et al., 2019): 312 

upon heating, MC strands separate, allowing intermolecular associations to form between MC 313 

hydrophobic (methyl) groups, therefore inducing the formation of a strong, physical gel 314 

network; at low temperatures, these hydrophobic polymer-polymer interactions take place to 315 

a much lower extent because of water molecules surrounding MC methyl moieties (via 316 

hydrogen bonds), thus resulting in the swelling of ‘bundles’ and the formation of a softer, 317 

weaker gel. The effect of MC concentration on its rheological properties is therefore 318 
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attributed to the increase in the number of methyl groups in solution, resulting in a larger 319 

number of hydrophobic interactions from lower temperatures. 320 

Effect of BS on MC viscoelastic behaviour. The impact of the two BS on MC rheological 321 

properties was assessed by following the dynamic moduli (G’, G”) of a 1.0% w/w MC solution 322 

over a range of temperatures and frequencies (Figure 3). The evolution of the transition 323 

temperature (Tt , from which the increase in G’ becomes steeper) and of both dynamic moduli 324 

(G’, G”) are shown as a function of BS concentration in Figures 4A and 4B, respectively. 325 

 326 

Figure 3: (A, B) Temperature-dependent evolution of the storage modulus (G’) obtained from dynamic temperature 327 

sweeps, and (C, D) angular frequency-dependent evolution of the dynamic moduli: (●) G’, the storage modulus, (○) G’’, the 328 

loss modulus, obtained from dynamic frequency sweeps performed at a constant temperature of 60°C, on a 1.0% w/w MC 329 

aqueous solution containing increasing amounts (1, 10, 25, 50, 100, 200, 500 mmol/kg) of BS: (A, C) NaTC, (B, D) NaTDC. 330 

The curves obtained in the absence of BS are also shown for comparison. 331 
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 332 

Figure 4: Evolution of MC transition temperature (Tt) (A) and dynamic moduli: (●) G’, the storage modulus, (○) G’’, the loss 333 

modulus, obtained at an angular frequency of 1 rad/s (B), as a function of the concentration in BS: NaTC, NaTDC. The 334 

transition temperature (Tt) is the temperature from which G’ starts changing. These data are extracted from, respectively, 335 

(A) dynamic temperature sweeps performed over a temperature range of 20 - 80°C (Figures 3, A, B), and (B) dynamic 336 

frequency sweeps performed over an angular frequency range of 0.1 - 100 rad/s, at a constant temperature of 60°C (Figures 337 

3, C, D). 338 

In the presence of BS, the dynamic temperature sweeps of MC solutions show a similar profile 339 

as the pure MC solution, namely, a moderate increase in G’ followed by a sharp rise (Figures 340 

3, A, B). However, BS have a significant impact on MC rheological properties, leading to a 341 

notable, and gradual increase in the transition temperature from around 50°C, in the absence 342 

of BS, to 53°C with 500 mmol/kg NaTC and 58°C with 500 mmol/kg NaTDC (Figure 4A). In 343 

addition, both BS (from the lowest concentration studied of 1 mmol/kg) induce a drop in MC 344 

viscoelasticity (G’) at all temperatures studied, most visibly at high temperatures (Figures 3, 345 

A, B). At physiological temperature (37°C), a decrease from G’ = 10 Pa in the absence of BS, to 346 

G’ = 5 and 2 Pa in the presence of 1 mmol/kg of, respectively, NaTC and NaTDC, is observed. 347 

Dynamic frequency sweeps performed at 60°C, where MC forms a strong gel and changes 348 

caused by BS are most visible (Figures 3, C, D), reveal a 10-fold decrease in G’, from ca. 280 Pa 349 

in the absence of BS, to ca. 20 Pa with the highest concentration of BS studied, at a frequency 350 

of 1 rad/s (Figure 4B). In addition, G’ shows an increasing dependence on frequency with the 351 

addition of BS, more notably so with NaTDC. Overall therefore, the presence of the BS 352 

converts MC gel into a less solid-like material. Comparing the two BS, it is clear that NaTDC 353 

has a much stronger impact; for instance, only 10 mmol/kg of NaTDC are needed to 354 

significantly reduce the value of the storage modulus (G’) (Figures 3D and 4B), while 25 355 

mmol/kg of NaTC are required to induce the same effect (Figures 3C and 4B). Similar 356 

observations have been reported elsewhere (Torcello-Gómez et al., 2015). 357 
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Overall, over the whole temperature range studied, MC behaves as a gel whose strength 358 

increases with temperature. The addition of BS induces a transition to a softer material (lower 359 

elastic modulus (G’)), both above and below MC transition temperature (Tt); in addition, this 360 

transition occurs at lower concentrations of NaTDC, compared to NaTC. 361 

3.2 BS interfacial properties in the presence of MC 362 

MC adsorption dynamics at the air/water interface. MC behaviour at the bare air/water 363 

interface was studied using both a Langmuir trough and ellipsometer, by monitoring the time-364 

dependent evolution of the surface pressure (π) and phase shift (ΔΔ), respectively, upon 365 

injection into the water subphase of either successive quantities of MC (0.5×10-1, 0.25 and 366 

0.5‰ w/w (Figure S2); 0.5×10-2, 0.25×10-1 and 0.5×10-1‰ w/w (Figure S3)), or fixed amounts 367 

over a longer period of time (0.5×10-3, 0.5×10-2, 0.5×10-1 or 0.5‰ w/w) (Figure S4). 368 

Upon addition of 0.5×10-1‰ w/w MC into the aqueous subphase, the surface pressure 369 

increases until reaching a near-plateau at π = 19 ± 1 mN/m, which stays relatively constant 370 

with following injections (π = 19 ± 1 mN/m at 0.25‰ w/w, and π = 18 ± 3 mN/m at 0.5‰ w/w) 371 

(Figure S2A). With the same injection sequence, the ellipsometry phase shift, which is 372 

measured at the same time as the surface pressure and relates to the amount of material 373 

adsorbed at the interface (Motschmann & Teppner, 2001), exhibits the same trend as the 374 

surface pressure (Figure S2B): it reaches a value of ΔΔ = 0.033°, which then slightly increases 375 

to ΔΔ = 0.035° at 0.25‰ w/w and ΔΔ = 0.036 at 0.5‰ w/w. Both measurements thus show 376 

that MC adsorbs at the air/water interface up to a saturation point, independently of its 377 

concentration in the bulk. The two experiments differ, nevertheless, by the presence of peaks 378 

of surface pressure visible straight after MC injection, not detected in the phase shifts, which 379 

could be explained by an initial strong adsorption, followed by a relaxation process as the 380 

polymer rearranges at the air/water interface, changing conformation (Graham & Phillips, 381 

1979). These transient surface pressure peaks were also observed in a previous study with BS 382 

injected under the air/water interface (Pabois et al., 2019). The trends in surface pressure 383 

(Figure S3A) and phase shift (Figure S3B) are reproduced with lower amounts of MC (0.5×10-384 

2, 0.25×10-1, and 0.5×10-1‰ w/w) injected into water. 385 

In order to study the kinetics of adsorption of MC molecules at the air/water interface, surface 386 

pressure measurements were performed over longer periods of time (Figure S4). Results show 387 

that, above 0.5×10-2‰ w/w, the same equilibrium surface pressure (π = 17 ± 1 mN/m) is 388 
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always reached, irrespective of MC concentration, whereas a much lower value is obtained at 389 

the lowest concentration studied of 0.5×10-3‰ w/w (π = 10 ± 0.4 mN/m). Arboleya and Wilde 390 

(Arboleya & Wilde, 2005) also observed a saturation point from a similar MC concentration 391 

(i.e., 1×10-2‰ w/w), and obtained comparable interfacial tension values. Furthermore, as MC 392 

concentration decreases, the surface pressure rises at a slower rate: a change in surface 393 

pressure is immediately observed after injection of both 0.5×10-1 and 0.5‰ w/w, while a lag 394 

period of about 3 and 40 min is seen with solutions containing 0.5×10-2 and 0.5×10-3‰ w/w 395 

MC, respectively. The amount injected into the aqueous subphase thus affects MC adsorption 396 

rate and extent, such that the lower the concentration, the slower the adsorption process and 397 

the lower the quantity of material adsorbed, therefore indicating a diffusion-controlled 398 

adsorption mechanism, as already observed elsewhere with hydroxypropyl MC (Avranas & 399 

Tasopoulos, 2000; Camino, Pérez, Sanchez, Rodriguez Patino, & Pilosof, 2009; Pérez, Sánchez, 400 

Pilosof, & Rodríguez Patino, 2008; Wollenweber, Makievski, Miller, & Daniels, 2000). In the 401 

literature, MC adsorption has been suggested to occur in three stages: MC first slowly diffuses 402 

from the bulk phase to the sub-surface region and then adsorbs at the air/water interface, 403 

while undergoing conformational changes (Arboleya & Wilde, 2005). 404 

All these results are consistent with data reported elsewhere (Nasatto et al., 2014; Pizones 405 

Ruiz-Henestrosa et al., 2017). 406 

BS interaction with a MC layer at the air/water interface. The interfacial behaviour of the 407 

two selected BS (NaTC and NaTDC) in the presence of a MC film at the air/water interface was 408 

then evaluated, by injecting BS below the polysaccharide layer. Measurements were carried 409 

out either by adding increasing amounts of BS every hour (2, 4, 6, 8 and 10 mM) (Figures 5 410 

and S5) or by injecting fixed concentrations and measuring over longer times (1, 5 or 10 mM) 411 

(Figures 6 and S6). These BS concentrations were selected to be below, around, and above 412 

their critical micelle concentration (CMC), which is 4 – 7 mM for NaTC (gradual micellisation 413 

process) and 2 mM for NaTDC in ultrapure water (data not shown) (Matsuoka, Maeda, & 414 

Moroi, 2003). Prior to BS injection, a saturated film of MC at the interface was formed by 415 

injecting it into the water subphase, at either 0.5‰ w/w (Figures 5, 6 and S6) or 0.5.10-2‰ 416 

w/w (Figure S5). 417 
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 418 

Figure 5: Time-dependent evolution of (A, B) the surface pressure (π) measured in a Langmuir trough, and (C, D) phase 419 

shift (ΔΔ(t) = Δ(t) - Δ0) measured by ellipsometry, upon successive injections of either (A, C) NaTC or (B, D) NaTDC into the 420 

aqueous subphase (at 23 ± 2°C). The first increase in surface pressure corresponds to the adsorption of MC at the air/water 421 

interface, which was added into water at a concentration of 0.5‰ w/w (πMC = 21 ± 1 mN/m, ΔΔMC = 0.039 ± 0.005°). Each 422 

addition of BS is shown by an arrow, together with the corresponding BS concentration achieved in the subphase. Each 423 

experiment was reproduced twice, and a representative measurement was selected for each experiment. 424 

The evolution of the surface pressure is quite different for the two BS (Figures 5, A, B): while 425 

the successive injections of NaTC lead to a continuous increase in surface pressure (up to π = 426 

23 ± 0.5 mN/m at 10 mM) (Figure 5A), with NaTDC, a steep rise to π = 25 ± 1 mN/m (at 2 mM), 427 

followed by a gradual drop to π = 22 ± 1 mN/m (at 10 mM), is observed (Figure 5B). These 428 

trends are also obtained with a lower amount of MC at the air/water interface (Figure S5). The 429 

ellipsometry phase shift obtained in parallel follows the same trends (Figures 5, C, D): with 430 

NaTC, it gradually increases up to ΔΔ = 0.045 ± 0.003° upon successive additions of BS into the 431 

subphase (Figure 5C); instead, the injection of 2 mM NaTDC into the water induces a sharp 432 

increase to ΔΔ = 0.047 ± 0.003°, followed by a decrease to ΔΔ = 0.042 ± 0.001° from 4 mM 433 

(Figure 5D). As observed with successive injections of MC, temporary surface pressure peaks 434 

are also present after each addition of BS; here again, these peaks could be attributed to MC 435 
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film compression and subsequent relaxation, induced by BS adsorption (Graham & Phillips, 436 

1979). 437 

 438 

Figure 6: Evolution of the surface pressure (Δπ = πEquilibrium - πMC) as a function of BS concentration, measured in a Langmuir 439 

trough, upon injection of fixed concentrations (1, 5, 10 mM) of BS (NaTC, NaTDC) into the aqueous subphase (at 23 ± 2°C). 440 

0.5‰ w/w MC were injected into water to form a layer at the air/water interface, at πMC = 21 ± 1 mN/m. These data were 441 

extracted from individual BS injections measurements (Figure S6). Each experiment was reproduced at least twice, and the 442 

average measurement was selected for each BS at each concentration. 443 

Upon injection of fixed BS concentrations, the surface pressure increases sharply over time 444 

until reaching a plateau value, independently of the BS type and concentration (Figure S6). 445 

The surface pressure values achieved at equilibrium are summarised in Figure 6, showing Δπ 446 

= πEquilibrium - πMC, where πMC is the initial MC layer surface pressure (πMC = 21 ± 1 mN/m). The 447 

surface pressure changes induced by the two BS are relatively small, in agreement with 448 

previous studies performed on the interaction of a hydroxypropyl MC layer with bile extract 449 

(Pizones Ruiz-Henestrosa et al., 2017). At 1 and 5 mM, NaTDC induces a higher increase in 450 

surface pressure (Δπ = 5 ± 0.4 mN/m at 1 mM, and Δπ = 6 ± 0.2 mN/m at 5 mM), compared to 451 

NaTC (Δπ = 3 ± 0.3 mN/m at 1 mM, and Δπ = 4 ± 1 mN/m at 5 mM); at high BS concentration 452 

(10 mM), the opposite trend is observed (Δπ = 6 ± 0.4 mN/m for NaTC, and Δπ = 4 ± 0.3 mN/m 453 

for NaTDC). 454 
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A range of in vitro duodenal lipolysis studies was carried out on a sunflower oil emulsion 457 

stabilised by MC. Before reaching the small intestine, ingested fat droplets pass through 458 

simulated oral and gastric digestion, where their physicochemical and structural properties 459 

are significantly affected; however, because our main aim is to understand BS roles during 460 

lipolysis, the work performed here focuses on the duodenum part of the lipolysis process, 461 

where BS are acting. 462 

Evolution of emulsion droplets microstructure. The structure of the pure MC-stabilised 463 

emulsion droplets was first characterised using both optical and confocal microscopy (Figure 464 

S7). Optical microscopy demonstrates that emulsion droplets are uniformly dispersed with a 465 

size ranging between 2 and 5 μm, and with a small number of larger droplets around 10 μm 466 

(Figure S7A). Confocal microscopy highlights the presence of a MC network (stained in blue 467 

with calcofluor) in the bulk and at the interface of emulsion droplets (stained in red with Nile 468 

red) (Figure S7B). 469 

In vitro lipolysis studies were performed on the emulsion by adding the digestive medium and 470 

monitoring the structural changes of the emulsion droplets by microscopy (Figures 7, S8 and 471 

S9). Using brightfield optical microscopy, the influence of both BS type and concentration on 472 

the structure of MC-stabilised emulsion droplets was assessed in control assays (no enzyme), 473 

as well as the effect of enzymes (lipolysis assays) (Figure 7). In the absence of enzymes (blank 474 

assays), the emulsion droplets microstructure is affected by the digestive fluid, as revealed by 475 

the occurrence of droplets flocculation, and some – limited – coalescence, which is more 476 

visible with NaTDC, and particularly evident for both BS at high concentration (10 mM). Upon 477 

the addition of enzymes (lipolysis assays), flocculation occurs to a higher extent, and droplet 478 

coalescence (size increase) is observed in all samples, to a larger extent, again, with NaTDC. 479 

To further elucidate the mechanism of digestion of an MC-stabilised emulsion, the influence 480 

of the different components of the digestive fluid (NaCl, CaCl2 and BS) on droplet stability was 481 

also evaluated (Figures S8 and S9). Brightfield optical micrographs show that extensive 482 

flocculation occurs when both BS and salts are present, which suggests that the association of 483 

BS with the different salts (NaCl, CaCl2) is responsible for the droplet aggregation observed in 484 

Figure 7. 485 
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 486 

Figure 7: Time-dependent evolution of the microstructure of MC-stabilised emulsion droplets in the presence of BS: NaTC, 487 

NaTDC, used at 1 and 10 mM, under duodenal digestion conditions (at 37°C). MC-stabilised emulsion was made up of 0.5% 488 

MC and 15% sunflower oil. Both blank (without enzymes) and lipolysis (with enzymes) assays were performed to assess, 489 

respectively, the effect of BS type and concentration on the droplets stability, and of enzymes on the droplets 490 

microstructure. Microscopy observations were made at t = 5 and 60 minutes. The scale bar is 200 μm. 491 

This in vitro lipolysis study was complemented with micro-structural assessment of the 492 

emulsion droplets with confocal microscopy, to determine the localisation of MC throughout 493 

the emulsion and its evolution during lipid digestion (Figures 8 and 9). Based on our pH-stat 494 

results (see the following section), 50 mM BS was used here, as it shows the higher extent of 495 

FFA release. The images obtained suggest that the addition of digestive fluid not only breaks 496 

down the network of MC, but also displaces it from the lipid/water interface (Figure 8); 497 

interestingly, MC bulk network is disrupted to a higher extent in the presence of NaTDC, 498 

compared to NaTC. Additionally, the lipid droplets become non-spherical with “rough” 499 

surfaces, compared to the initial emulsion (Figures 8 and 9). This demonstrates coalescence 500 
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and may be an indication of fats being digested by enzymes; in particular, small oil droplets 501 

were seen to flocculate or coalesce onto the surface of larger droplets (Figure 9A) and areas 502 

with an undefined oil/water interface suggest the presence of digestion products (Figure 9B). 503 

 504 

Figure 8: Time-dependent evolution of the microstructure of MC-stabilised emulsion droplets in the presence of 50 mM 505 

BS: NaTC, NaTDC, under duodenal digestion conditions (at 37°C). MC-stabilised emulsion was made up of 0.5% MC and 506 

15% sunflower oil. The lipid droplets are stained in red (with Nile red), while MC is stained in blue (with calcofluor). 507 

Microscopy observations were made at t = 5, 15, 30 and 60 minutes, to compare the structural changes occurring during 508 

digestion; at each time point, orlistat was used to inhibit lipolysis. The scale bar is 150 μm. 509 

 510 

Figure 9: (A) Cross-section confocal image of MC-stabilised emulsion droplets in the presence of 50 mM NaTC, under 511 

duodenal digestion conditions (at 37°C). The microscopy observation was made at t = 15 minutes. (B) MC-stabilised 512 

emulsion droplets in the presence of 50 mM NaTDC, under duodenal digestion conditions (at 37°C). Insoluble lipolysis 513 

products seem to be presumably present at the fat droplet interface (see the arrow). MC-stabilised emulsion was made 514 

up of 0.5% MC and 15% sunflower oil. The lipid droplets are stained in red (with Nile red), while MC is stained in blue (with 515 

calcofluor). The scale bar is 10 μm. 516 
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Quantification of FFA release from the MC-stabilised emulsion. The ability of NaTC and 517 

NaTDC to promote or inhibit the duodenal digestion of an MC-stabilised emulsion was 518 

compared by monitoring the release of FFA (%FFA) over time with the pH-stat method (Y. Li, 519 

Hu, & McClements, 2011) (Figure 10). The effect of BS concentration on the rate of lipolysis 520 

and its extent was also evaluated using the two BS at both 10 and 50 mM. 521 

 522 

Figure 10: (A) Proportion of FFA released (%FFA) over time from an MC-stabilised emulsion, using two different BS: NaTC, 523 

NaTDC, at two different concentrations: () 10 and () 50 mM, under duodenal digestion conditions (at 37°C). (B) 524 

Proportion of FFA released (%FFA) after 1 hour of digestion of an MC-stabilised emulsion, using the two BS, at 10 and 50 525 

mM, under duodenal digestion conditions (at 37°C). Statistical significance was determined using the two-way ANOVA, 526 

followed by the Tukey post-test (**** indicates P < 0.0001, i.e., differences are extremely significant). MC-stabilised 527 

emulsion was made up of 0.5% MC and 15% sunflower oil. 528 

Independently of the BS type and concentration, the proportion of FFA generated during 529 

lipolysis increases steeply after the addition of enzymes (Figure 10A); this rapid initial rate of 530 

lipolysis, already observed elsewhere (Bellesi, Martinez, Pizones Ruiz-Henestrosa, & Pilosof, 531 

2016; McClements & Li, 2010a), can be attributed to the immediate adsorption of lipase/co-532 

lipase onto fat droplets surfaces, which then triggers TAG break-down and thus lipid digestion. 533 

After a certain time (t = 0.07 h with both BS at 10 mM, t = 0.18 h with 50 mM NaTDC and t = 534 

0.24 h with 50 mM NaTC), the release of FFA starts slowing down, until it reaches a near-535 

plateau. This decrease in the rate of lipolysis can be explained by the accumulation of lipolysis 536 

products at the oil/water interface during the process of fat digestion (Patton & Carey, 1979; 537 

P. Reis, Holmberg, Watzke, Leser, & Miller, 2009; P. Reis et al., 2008; P. M. Reis et al., 2008), 538 

which then leads to the inhibition of enzymes binding to the substrate, as previously 539 

demonstrated (Bellesi et al., 2016; Borel et al., 1994). Increasing BS concentration from 10 to 540 

50 mM leads to a significant increase in the percentage of FFA produced, for both BS (PNaTC < 541 
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0.0001 and PNaTDC < 0.0001) (Figure 10B): more specifically, a 14% and 9% increase is obtained 542 

with, respectively, NaTC and NaTDC. This can be attributed to the larger amount of BS 543 

micelles, which can solubilise a larger amount of FFA released, thereby preventing droplets 544 

surface saturation by these products (Wilde & Chu, 2011). While no significant differences are 545 

observed between the two BS at the lowest concentration (10 mM) (%FFA t = 1h = 6  1 % for 546 

both NaTC and NaTDC; P10 mM = 0.4), a significant difference is seen at high concentration (50 547 

mM), with NaTC inducing a higher extent of lipolysis (%FFA t = 1h = 20  1 % and 14  1 % for, 548 

respectively, NaTC and NaTDC; P50 mM < 0.0001).  549 
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4. Discussion 550 

The objective of this study was to investigate the interactions of MC with BS, in 551 

particular the ability of MC to inhibit BS activity, and thus to shed light on the mechanism of 552 

lipid digestion regulation by MC – a dietary fibre with a proven potential to lower cholesterol 553 

levels (Agostoni et al., 2010). Bulk (rheology) and interfacial (surface pressure measurements 554 

and ellipsometry) studies were carried out to characterise the interactions between these two 555 

components in the bulk and at the interface, while in vitro lipolysis (microscopy, pH-stat) 556 

experiments were performed to link these interactions to the lipid digestion of an MC-557 

stabilised emulsion. The two BS, which differ by the presence (NaTC) or absence (NaTDC) of a 558 

hydroxyl group on their steroid skeleton (Figure 2) and constitute 20% of human bile (Staggers, 559 

Hernell, Stafford, & Carey, 1990), were chosen for this study, as they have been reported to 560 

exhibit different interfacial behaviours, hypothesised to explain the contrasting roles they play 561 

during the process of lipolysis (Pabois et al., 2019; Parker et al., 2014). 562 

4.1 Interaction between MC and BS in the bulk and at the interface 563 

The impact of BS on MC rheological properties was investigated to explore the 564 

interaction of BS with MC in the bulk, where MC is present in excess. Increasing the amount 565 

of BS in solution led to a notable shift in the transition temperature (Tt) to higher values, as 566 

well as a gradual drop in viscoelastic properties, which were more substantial with NaTDC 567 

(Figures 3 and 4). In particular, MC – which presents predominantly solid-like properties in the 568 

absence of BS – turned into a softer gel above a threshold concentration of BS (25 mmol/kg 569 

for NaTC vs. 10 mmol/kg for NaTDC, at 60°C) (Figures 3, C, D and 4B). MC gelation occurs via 570 

the association of the hydrophobic (methyl) moieties (Haque & Morris, 1993; Sarkar, 1995; 571 

Desbrières, Hirrien, & Rinaudo, 1998; Hirrien, Chevillard, Desbrières, Axelos, & Rinaudo, 1998; 572 

Kobayashi, Huang, & Lodge, 1999; L. Li et al., 2001, 2002; Lin Li, 2002; Lin Li, Wang, & Xu, 2003; 573 

Funami et al., 2007; Torcello-Gómez & Foster, 2014; Torcello-Gómez et al., 2015; Nasatto et 574 

al., 2015a; Isa Ziembowicz et al., 2019). The presence of BS and its association with MC may 575 

thus prevent hydrophobic groups from assembling with each other, thus weakening the gels 576 

or hindering gelation altogether. The stronger effect observed with NaTDC may be attributed 577 

to its higher hydrophobicity (Armstrong & Carey, 1982), which may result in a more efficient 578 

connection between BS and MC hydrophobic regions (Torcello-Gómez et al., 2015). Overall, 579 
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these rheological measurements reveal the presence of strong interactions between BS and 580 

the dietary fibre, which have a substantial impact on MC viscosity; the presence (NaTC) or 581 

absence (NaTDC) of a hydroxyl group on BS steroid backbone impacts this behaviour 582 

considerably. 583 

The interfacial properties of BS in the presence of a MC layer formed at the air/water 584 

interface were then studied to determine the interactions occurring when a BS molecule 585 

approaches a fat droplet stabilised by MC. Studies with a Langmuir trough set-up (Figures 5, 586 

A, B, S5, 6 and S6) combined to ellipsometry (Figures 5, C, D) demonstrate that the two BS 587 

behave quite differently when injected beneath an almost-saturated MC film: NaTC was 588 

shown to gradually adsorb at the interface with increasing concentration, whereas NaTDC first 589 

adsorbed at low concentrations (up to 2 – 3 mM) and then desorbed above 4 – 5 mM. This 590 

contrasting interfacial behaviour correlates with their micellisation behaviour, which occurs 591 

over 4 – 7 mM for NaTC and at 2 mM for NaTDC. Similar differences have been observed when 592 

BS were injected below a phospholipid monolayer (Pabois et al., 2019). Nevertheless, BS were 593 

found to adsorb and/or desorb to a much lower extent in the presence of a MC film, compared 594 

to the phospholipid monolayer (surface pressures changes as high as 30 mN/m were 595 

monitored in the presence of the lipid film, whereas an increase of up to 10 mN/m was 596 

observed with the MC layer). This may in part be explained by the likely presence of MC excess 597 

in the bulk, which could interact with BS and therefore limit their adsorption at the interface.  598 

4.2 Impact of BS/MC interactions on fat digestion 599 

Next, we performed in vitro lipolysis studies by following the evolution of the structure 600 

of an MC-stabilised emulsion with optical and confocal microscopy, to compare the effect of 601 

the two BS on the droplets (Figures S7A and 7) and shed light on the behaviour of MC during 602 

emulsion digestion (Figures S7B, 8 and 9). The characterisation of the MC-stabilised emulsion 603 

by confocal microscopy clearly demonstrates that fat droplets are entrapped in a network of 604 

MC present in excess in the bulk, which may be responsible for the stabilisation of the 605 

emulsion against droplets flocculation or coalescence (Figure S7B). Optical microscopy images 606 

(Figure 7) demonstrate that, even in the absence of digestive enzymes, the presence of both 607 

BS destabilises the emulsion, inducing some flocculation; upon the addition of lipases, 608 

droplets destabilisation (namely, flocculation and coalescence) was found to occur to a large 609 
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extent, and more markedly with NaTDC, compared to NaTC. Confocal microscopy images 610 

(Figure 8) suggest that flocculation and coalescence observed during lipolysis are due to the 611 

MC network being broken down and removed from the lipid/water interface. The better 612 

ability of NaTDC to induce coalescence could therefore be explained by its higher capacity to 613 

disturb MC bulk network (as observed by confocal microscopy observations), which, in turn, 614 

could be attributed to its stronger interactions with MC (as seen from rheology 615 

measurements) and higher propensity to desorb from the interface at lower concentrations 616 

(as detected by interfacial measurements). While the displacement of MC from the interface 617 

by BS may facilitate the access of BS and enzymes to the lipid droplets surface, the network of 618 

MC remaining in the bulk may also trap BS (via hydrophobic interactions) and thus prevent 619 

them from removing insoluble lipolysis products, which could explain how MC hinders lipase 620 

activity. Emulsion droplets coalescence (and thus the decrease in droplets surface area), which 621 

occurs under duodenal digestion conditions, could also explain the slowing down of lipolysis. 622 

The capacity of the two BS to promote or inhibit MC-stabilised emulsion digestion was 623 

then explored with the pH-stat method; results revealed that NaTC favoured FFA release to a 624 

higher extent than NaTDC (at 50 mM) (Figure 10). The lower proportion of FFA release 625 

obtained with NaTDC can be explained by its higher efficiency at binding to MC network (as 626 

suggested by rheology measurements), which may result in this BS becoming trapped in the 627 

bulk and therefore not contributing to the lipolysis process.  628 
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5. Conclusion 629 

The demonstrated potential of MC, a dietary fibre, to regulate lipolysis is thought to 630 

be due to its ability to reduce BS activity by sequestration; the objective of this work was to 631 

compare the interactions of two structurally different BS, NaTC and NaTDC, with MC, and to 632 

determine their impact on the digestion of an emulsion stabilised by this polysaccharide. 633 

These findings are key to establishing a molecular-level, mechanistic understanding of the 634 

ability of MC to lower fat absorption. 635 

Both BS were found to decrease the elasticity of MC gels, and to shift the transition 636 

temperature (Tt) to stiffer gels to higher temperatures, to a higher extent with NaTDC. When 637 

injected below a MC film at the air/water interface, NaTC remained adsorbed at the interface 638 

over a wider concentration range, compared to NaTDC, which desorbed at a lower 639 

concentration, correlating with the onset of micellisation in the bulk (between 4 – 7 mM for 640 

NaTC and at 2 mM for NaTDC). The small difference in the two BS molecular structure, 641 

specifically their bile acid portion, is responsible for their contrasting behaviour, and explains 642 

the different results obtained during in vitro lipid digestion: (i) NaTDC has a higher propensity 643 

to disrupt MC network in the bulk and interfacial layer, and thus induces more extensive 644 

emulsion destabilisation (as seen from optical and confocal microscopy); (ii) the release of FFA 645 

is lower with NaTDC, which can be linked to its higher capacity to bind MC in the bulk, resulting 646 

in BS being unable to access the oil/water interface. Overall, it is clear that BS architectural 647 

diversity – whose importance is often neglected – plays a key role in their functionalities 648 

during fat digestion. 649 

This work is a first step towards unlocking the mechanism of lipid digestion regulation 650 

by MC. Additional structural studies, in particular with techniques such as small-angle neutron 651 

scattering and neutron reflectometry, should bring significant knowledge to the area, in 652 

particular to examine the structure of MC in the presence of BS and the evolution of the fat 653 

droplet interface during digestion; this is the focus of current work. Building upon these 654 

results, the next challenge will be to engineer MC-stabilised lipid emulsions with appetite-655 

suppressing or satiety-enhancing properties and evaluate their effect on cholesterol levels. 656 

 657 
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