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Abstract 

Weed control in field vegetables in the UK is becoming increasingly challenging due to 

the loss of herbicide actives and demands by policy makers and consumers for lower 

pesticide use. Research at University of Reading in conjunction with Concurrent 

Solutions LLC in the USA, is developing a robotic weeder for field vegetables using 

image analysis to locate weed leaves and a novel Drop-on-Demand (DoD) applicator to 

apply droplets of herbicides to these leaves. No chemical is applied to the crop and 

none directly to the soil. Leaf-specific application of herbicide droplets is an alternative 

to selective chemistry or biotechnology while potentially reducing herbicide use. 

Although targeted micro-rates of herbicides have been studied, little is known about 

the exact rates needed to control weeds when microdoses are applied as one droplet 

to a single leaf or plant. 

In glasshouse trials, individual weed seedlings were controlled by applying a 

single droplet of herbicide and dose-response relationships were quantified. As a 

general recommendation, weeds that are up to the 4-leaf stage can be controlled with 

a dose of 32 μg of glyphosate and 28 μg of glufosinate-ammonium when they are 

applied as a single droplet per seedling. In order to answer the question if the efficacy 

is reproducible in the field, manually applied droplets of glyphosate and glufosinate-

ammonium were made to the naturally occurring weed population in transplanted 

cabbage and leek crop. Droplet applications made on three and ten occasions after 

transplanting the cabbages and leeks, respectively reduced residual weed biomass at 

harvest by over 90% compared to the weedy control. Also, droplet treatments gave a 

crop yield, which did not differ significantly from the weed-free control. At the same 

time, the total amount of herbicide active ingredient applied was up to 82% and 94% 

lower than currents spraying methods for the leeks and cabbages, respectively. 

Because of the high value of the crop and the higher yields associated with ultra-

precise droplet application, it would appear to be economical to apply these droplets 

using a robotic weeder. The applicator which was developed by Concurrent Solutions 

LLC in the USA for Drop-on-Demand droplet applications was tested under indoor 

conditions. The effect of pressure, distance from the target, wind direction and motion 

of the applicator was tested on the targeting accuracy of the applicator. 

Recommendations for future field applications suggested that the applicator should 

operate at 138 kPa pressure and set at 15 cm height from weeds. 
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1 Chapter 1                  
Introduction 

Global population is rising rapidly at a rate of approximately 1.1% each year and is 

expected to reach 9.7 billion by 2050 (Alexandratos & Bruinsma, 2012). A year which 

is considered a landmark by government and industry bodies as the agricultural 

production will need to increase correspondingly, in order to meet the demands for 

more food, feed and fibre (Westwood et al., 2018). Today’s levels of crop production 

are not enough to feed the increasing population and meeting the expected demands 

is considered a major task. A situation which might get worse if one considers the 

challenges agriculture is facing, which involve the impact of climate change, lack of 

resources (i.e. water), human labour shortages, reductions in arable land, crop losses 

from pests, weeds and diseases and pressures from the public for more sustainable 

agricultural production (Bogue, 2016).  

According to FAO (2009), weeds should be considered by farmers as the No.1 

enemy, causing $95 billion losses per year in food production which can be even higher 

if the time and effort devoted to weed control is considered. Weeds are the most 

important among other pest groups accounting for the highest potential yield loss 

(34%) with other pests and pathogens being less important (18% and 16% yield 

losses, respectively) (Oerke, 2006). Depending on the infestation level, these unwanted 

plants can cause actual yield losses from 30% to 100% if weed control is not 

implemented (Singh et al., 2014). Several studies are quantifying yield losses as a result 

of weed competition. In a field study in the UK, Roberts et al. (1977) found that grass 

and broadleaf weeds at a density of 65 m-2 resulted in total loss of marketable lettuces. 

For the same crop, in three field studies in California, Shrefler et al. (1996) reported 

that competition from Amaranthus spinosus reduced lettuce head quality and weight. 

Hodgson (1968) found that two shoots m-2 of Cirsium arvense caused 15% reduction 

in wheat yield. In fields with seeded tomato, Monaco et al. (1981) observed yield losses 

up to 71% when 11 weed plants (Datura stramonium) m-2 were growing within the 

crop row.  

Some of the most common agricultural practices for controlling weeds include 

cultural, chemical, physical and biological methods with the use of herbicides being the 
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principal tool for weed control (Harker & O'Donovan, 2013). It is worth mentioning 

that herbicides account for the 45% of the total pesticide market (50% in the UK) 

(Zimdahl, 2013). Although herbicide-based weed control can be both highly efficacious 

and economical, there are situations where improper use can have adverse 

environmental impacts (Slaughter et al., 2008a). There is a need of critical importance 

to balance effective weed control, maintaining and increasing productivity while 

minimising the negative effects of herbicides (Power et al., 2013)   

 

1.1 Challenges of herbicide-based weed control  

In a world where agriculture must feed two billion more people in the next 30 years, 

the scale of crop losses due to weeds is not acceptable. Widespread use of herbicides 

as a tool of weed control is a common practice in most developed nations and even 

more in developing countries where they face shortages for labour-intensive tasks, like 

hand-weeding (Gianessi, 2013). 

Lack of new herbicide actives 

It was the loss of labour in agriculture that stimulated the introduction of 

herbicides in the 1940s and the 1950s which then led to the widely adoption of 

conventional herbicides during the 1960s and 1970s (Duke, 2012). A characteristic 

example of the herbicide revolution is that from the 1950s to 1980s, a new herbicide 

mode of action (MOA) was commercialised approximately every three years (Duke, 

2012). However, since 1990 no new modes of action have been discovered and from 

2010 to 2014 only four new herbicides were introduced in the market (Ru egg et al., 

2007). Today the 80% of the herbicide market is dominated by six MOAs (Jeschke, 

2016). Contributing to the lack of available herbicide actives, to develop a new crop 

protection product can cost up to $286 million and take up to 11 years (Duke, 2012). 

With only few big agrochemical companies left and the downward trend of introducing 

new herbicide chemistries, it is likely that will continue. A reason for that could also be 

that there are no new good sites in the metabolic pathway for a herbicide to target so 

that a new MOA can be discovered (Westwood et al., 2018). Looking at things from a 

pessimistic point of view the lack of new MOAs alongside with the problems caused by 
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herbicide resistance will make almost all existing herbicides unusable (Westwood et 

al., 2018). 

Legislations introducing reductions in herbicide use 

Typical weed control methods for field vegetables include use of pre-planting 

tillage followed by an application of a pre-emergence herbicide, spraying a post-

emergence selective herbicide (where available), inter-row cultivation and hand-

weeding (Slaughter et al., 2008). The most common method of herbicide application is 

with nozzles, mounted on a conventional boom sprayer at 50 cm from the soil surface 

or the crop canopy, spraying a uniform dose over an entire field. Although this method 

has been an effective weed control tool, it does not consider the variability and uneven 

distribution of weed species. Therefore, it can be wasteful and inefficient, especially in 

the case of foliar-acting herbicides (Jensen et al., 2013). If one considers that weed 

seedlings at an early growth stage may only cover a soil surface of 1 cm2 and with 

numbers of weeds ranging from 100 to 400 per m2 this corresponds to 1%-4% soil 

coverage by the weeds. So, if a foliar-acting herbicide is applied by broadcast spraying, 

96% or more will be applied directly to the soil surface or the crop, having potential 

environmental impact (Zijlstra et al., 2011). 

Trying to respond to concerns about pesticide use and potential effects on 

human health and adverse impacts on the environment, UK and EU legislation is 

promoting reductions in pesticide inputs (Hillocks, 2012). Legislations like the 

Regulation EC no. 1107/2009, the EU Water Framework Directive and the Sustainable 

Use of Pesticides (SUP) Directive along with UK’s National Action Plan for SUP have 

resulted in actual losses of approval for some herbicide actives and have decreased the 

likelihood of new compounds gaining approval (Baker & Knight, 2017). One example 

is that in 2008 the European Commission removed the approval of herbicides that 

contained the active ingredient propachlor, which, for cabbage growers, was their 

most effective herbicide (Utstumo et al., 2018). The herbicide was regarded as a risk 

to human health because it was contaminating ground water and the overall aquatic 

life. The challenges will only get worse for vegetable growers as they rely on a limited 

and old spectrum of available herbicide chemistries with the first commercialised 

during the 1960s and 1970s, which require a lot of effort and funding to keep them in 

the market (Fennimore et al., 2014). An example of an old herbicide is cycloate, an 
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active ingredient used for weed control in fresh spinach, which was first introduced 

approximately 50 years ago (Lati et al., 2015). 

The lack of available herbicide chemistry for vegetable growers and legislations 

from policy makers have resulted in more physical and mechanical weed control 

methods being used (Garthwaite et al., 2017), which can often be expensive and time 

consuming especially in some cases of vegetable crops which are known to be weak 

competitors against weeds (e.g. leeks, carrots). In Sweden and Denmark vegetable 

growers can spend up to 300 h ha-1 to hand-weed onions and carrots (Melander, 1998) 

and in particular, weedy infestations in direct-sown leek crops, hand-weeding times 

can go up to 450 h ha-1 (Melander & Rasmussen, 2001). In the USA, typical hand-

weeding times in broccoli and tomato are 50 and 94 h ha-1, respectively (Gianessi & 

Reigner, 2007). Currently the cost of manual labour in the UK is £10.16 h-1 (Redman, 

2017) therefore, based on the times mentioned earlier means that a leek and an onion 

grower might end up spending £3,048 and £4,572 ha-1 for hand-weeding, respectively 

which makes this method the most expensive weed control tool.  

Pressures from policy makers and lack of new herbicide actives call for a 

paradigm shift in weed control for vegetable crops. 

 

1.2 Potential paradigm shifts in weed control 

Herbicide-tolerant (HT) vegetable crops 

It has been proven that breeding vegetable crops to be herbicide resistant is feasible 

(Pinthus et al., 1972). Such an examples is the use of CRISPR/Cas technology to develop 

potato resistant to the herbicide imazamox (Butler et al., 2016). Also, results from field 

testing glyphosate-tolerant lettuce demonstrated complete weed control when 

glyphosate treatments were applied with no effects on lettuce (Fennimore & Umeda, 

2003). Regardless of the success of the glyphosate-tolerant lettuce, the horticultural 

industry was reluctant to adopt this technology because of fears that consumers will 

reject the crop and possibly even boycott products of the companies which will use this 

technology (Bradford & Alston, 2004). Furthermore, the vegetable seed market is small 

compared to broad-acre crops and it is very unlikely that adding a trait for herbicide 

resistance will be economically viable (Clark et al., 2004). Fennimore and Cutulle 
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(2019) suggest the use of CRISPR technology to edit plant genomes so that they emit 

spectral reflectance at a wavelength not found in weeds. Breeding a vegetable crop 

with these characteristics would facilitate crop and weed classification by a machine 

vision system for robotic weed control. It is also hypothesized since this approach does 

not involve breeding a crop for herbicide resistance, and it will be less cumbersome to 

develop. However, at the moment in the European Union, breeding crops using CRISPR 

technology, falls in the same category as with genetically modified organisms (GMOs) 

(Callaway, 2018). 

 Although the use of herbicide tolerant crops is a paradigm-shift to weed control, 

it may still involve spraying on a whole-field basis. An evaluation in the UK 

demonstrated that environmental impacts were not different between GM-HT and 

conventional crops (Hawes et al., 2003). So far, using CRISPR, genetic modification or 

conventional breeding does not have an impact on weed control programs for 

vegetable crops (Fennimore & Cutulle, 2019).  

 It is becoming evident that the challenges vegetable crop growers are currently 

facing is unlikely that they will be solved with registration of new herbicides or 

development of herbicide resistant cultivars. With limited time available, in order to 

develop successful weed management programmes, it is advocated in this thesis that 

research should focus on developing new ways of herbicide application, which will 

utilise existing chemistry while reducing inputs. Robotic platforms which will use real-

time weed recognition and targeted application of micro-rates of herbicides, holds 

great promise as a method of weed control.  

Automated systems for weed control 

The technologies that are required for an autonomous machine to perform real 

time weed control are: vision guidance system, weed detection and mapping which 

then passes the information to a decision algorithm that manages the micro-sprayer 

system (Slaughter et al., 2008b). Herbicide application is carried out using microlitre 

volume droplets which are directed to areas where weeds are located. This kind of 

application has been described as Drop-on-Demand (DoD) and delivery of the micro-

doses has been attempted with inkjet printer heads, arrangements of solenoid valves, 

pneumatic valves and needles (Utstumo et al., 2018). In order to be effective, these 

systems need accurate identification of weed and crop plants, high level of precision in 
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herbicide application and control of droplets deviating from the target (Fennimore et 

al., 2016). The concept of these systems is to avoid direct herbicide applications to the 

soil and the crop and therefore, the potential reductions in herbicide use can be over 

95% (Christensen et al., 2009). 

One of the first automated micro-spray systems was developed by Lee et al. 

(1999) and it was designed to identify and spray weeds between the rows of tomato 

crop. This prototype real-time, micro-spray system was equipped with eight 

independent solenoid valves (two series of four), which would deliver the herbicide to 

the spray ports and then to the weed leaf. Using an image analysis algorithm, the 

machine vision would distinguish the crop from the weeds and would divide each 

image into a grid consisting of eight rows and 18 columns, giving a cell size of 0.64 cm 

by 1.27 cm (0.81 cm2). A weed leaf corresponded to each cell for which the valves 

would operate for 10 ms delivering a flow rate of 0.98 L min-1 through each port. In 

field conditions when travelling at a speed of 0.8 km h-1 the droplets’ deviation from 

the centre of the target was 7 mm with a standard deviation of 5 mm. Although the 

concept of the system was that no spray mixture would be applied to the crop or the 

soil and applications would be made only to the weeds, when going through the field, 

it recognized correctly 76% of the tomato plants (the rest were sprayed) and spayed 

only 48% of the weeds, leaving many untreated. Trying to improve on the system’s 

plant recognition, Lamm et al. (2002) adopted the precision spraying system from Lee 

et al. (1999) and used it was for robotic weed control in cotton. When tested in 14 

cotton fields, the new machine vision technique resulted in 11% of the weeds 

untreated and 21% of the cotton plants sprayed, when travelling at 1.62 km h-1 speed. 

No herbicide was applied and evaluation of the system’s performance was conducted 

after spraying, based on the amount of blue dye deposited onto the plant’s surface.  

Giles et al. (2004) conducted a field trial to evaluate the biological performance 

of a micro-dosing system in processing tomatoes. The spraying system was the same 

as with the one described in the two previous studies and was spraying dose rates of 

37 μl per cell of 0.63 cm x 1.25 cm. Three concentrations of glyphosate were applied 

(0.25%, 0.375% and 0.5%) in conjunction with a surfactant (0.25%) and a 

polyethylene oxide polymer to reduce drift (0% and 0.03%). However, the system’s 

plant recognition was not tested and applications were carried out manually by 
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holding the spray tube 5 cm above the weed and pulsing the control valve for 6 ms per 

cell. Efficacy of weed control ranged from 80% to 100% while all glyphosate 

treatments achieved satisfactory yields. However, phytotoxic symptoms and crop 

damage were reported because of “micro-drift” (splash effect) when the polyethylene 

oxide polymer was not used (Giles et al., 2004). Trying to minimize the splashing effect 

from a micro-dosing applicator, Downey et al. (2004) carried out laboratory studies 

which highlighted the need for oxide polymers in formulations with glyphosate. From 

these studies it is becoming evident the need for a better crop/weed classification 

system and control of any droplets drifting which might end up damaging to the crop. 

The application rate and accuracy of a machine vision-controlled, micro-dosing 

system was investigated by Søgaard and Lund (2007). Under indoor conditions the 

micro-dosing system was able to target cells of 25 mm2 in a 110 mm2 circle (being the 

average size of a small weed seedling) delivering 2.5 μl per cell. Although four shots 

were fired per circle, on average one shot was off-target. When the same system was 

tested in field conditions with Brassica napus L. (oilseed rape) as a test weed, it sprayed 

82% of the plants with the precision of the system being insufficient when targeting 

weeds smaller than 100 mm2. On average, the micro dosing system was delivering 

droplet volumes of 11.3 μl per seedling which contained 22.6 μg of glyphosate. 

Although efficacy of weed control was only observed visually, it is reported that 22.6 

μg of glyphosate was enough to control individual seedlings in outdoor conditions 

(Søgaard et al., 2006). Assuming a weed density of 100 plants m-2, it was argued that 

weed control could be achieved with as little as 22.6 g glyphosate ha-1 which 

corresponds to a 96% reduction of the minimum label recommendation for broadcast 

application of glyphosate (540 g ha-1).  

A tractor-pulled, automated system for control of volunteer potatoes in sugar-

beet fields was tested by Nieuwenhuizen et al. (2010). Droplet application was carried 

out using five needles covering 20 cm width, fixed at 30 cm above the soil. The image 

analysis system was able to distinguish the volunteer potatoes from the sugar beet 

plants and divide each image into grid cells of 10 x 40 mm size. However, plants smaller 

than 1200 mm2 were rejected by the detection system. One droplet of 20 (±5) μl was 

applied per grid cell containing 5% of glyphosate (450 μg of glyphosate per droplet). 

This resulted in 77% of the volunteer potato plants being controlled and 1% of crop 
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plants dying when travelling at 2.9 km h-1. According to the authors, damage to the 

sugar beet plants was caused by satellite droplets drifting or by droplets which were 

correctly applied to nearby volunteer potatoes ending up on the leaves of the crop. 

Furthermore, the results from the targeting accuracy test reported droplets deviating 

on average from the target 7.5 mm perpendicular to and 14 mm in the direction of 

travel. Although based on the size of the grid cell this resulted droplets ending up very 

close to the border, however, no droplets were reported outside of the targets/cells 

(Nieuwenhuizen et al., 2010). Although results from these studies are encouraging, 

Fennimore et al. (2016) suspects that weeds with ground cover areas lower than 400 

mm2 (i.e. 10 x 40 mm) will need to be accurately targeted, if these systems are to be 

acceptable for weed control in commercial vegetable crops. 

Trying to improve on the weed control efficacy and the detection accuracy, the 

micro-sprayer developed by Midtiby et al. (2011) was able to control 94% of the weeds 

which were as small as 121 mm2 (11 x 11 mm) without damaging the crop (maize) 

plants. The inkjet printer heads were delivering droplets of 0.2 μl, containing 1 μg of 

glyphosate. However, all tests were carried out under indoor conditions with pots and 

with the system travelling at steady speed of 1.8 km h-1. Another limitation was that 

the vision system was ineffective against weeds smaller than 11 x 11 mm, an example 

being the 37% weed control achieved for small mayweed seedlings.  

Miller, Tillet, Hague & Lane (2011) developed and evaluated an automated 

system for spot herbicide application in horticultural row crops, to control volunteer 

potatoes. This engineering solution comprised a novel image analysis system that 

detected the position of the crop rows and weed plants and specialised nozzles 

(“Alternator” by Hypro EU Ltd). The system applied herbicide sprays targeted directly 

to individual detected weeds. When it was field-tested in onion, carrot and parsnip 

crops, using spot applications of glyphosate, the system achieved high levels of weed 

control (90-95%). Although some crop damage occurred, the yield penalty was 

deemed “commercially acceptable”. When it was tested in leeks, control of volunteer 

potatoes, mugwort and wild mint was 95% with no detectable residues found in crop 

plants adjacent to weeds treated (Miller, Tillet & Hague, 2013). 

In a more recent study, Utstumo et al. (2018) tested the efficacy of the DoD 

system developed by Urdal et al. (2014) which, was part of the Asterix robot (Adigo 
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AS) (Figure 1.1 (C)). A major advantage of this approach over that proposed by Miller 

et al. (2011, 2013) is the use of individual droplets of herbicide solution rather than a 

spray with the potential for collateral damage to the crop. In indoor conditions, it was 

demonstrated that Chenopodium album, Tripleurospermum inodorum, Poa annua and 

Stellaria media were controlled with 7.56 μg of glyphosate per seedling, applied as 

three droplets each with a volume of 1.16 μl. When tested in the field with a carrot 

crop, for intra-row weed control, weeds were controlled when droplets containing 5.3 

μg of glyphosate (2.1 μl) were used. However, the authors did not mention how many 

droplets were applied per plant. Furthermore, although a crop/weed detection system 

is described, when the robot was tested in the field it treated all weed and carrot plants. 

Also, it was calculated that the equivalent rate of 191 g of glyphosate ha-1 was applied 

in the field which represents reduction from 73% to 95% when compared with the 

range of recommended rates for spraying glyphosate. However, the authors assume 

that two to three treatments with the robot would be needed for the crop to remain 

weed-free which, will increase the total application rate over the growing season and 

reduce the herbicide savings compared to just one robotic treatment.  

An autonomous vehicle (HortiBot) was able to navigate itself using the crop 

rows as a guide and perform weeding operations (Sørensen et al., 2007). The team 

developing HortiBot has stated their intention of fitting a precision herbicide sprayer 

tool (e.g. cell sprayer) which will selectively spray weeds based on their leaf patterns 

(Graham-Rowe, 2007) (Figure 1.1 (A)). An autonomous robot for plant phenotyping of 

maize (BoniRob) was described by Ruckelshausen et al. (2009) and was fitted with an 

application module, consisting of eight nozzles for precision spraying (“Precision 

Spraying App”) of individual weeds growing inter-row, intra-row and close-to-crop 

(Scholz et al., 2014) (Figure 1.1 (B)). An autonomous robotic system (AgBot II) is 

described by Bawden et al. (2017) which can perform both mechanical weeding and 

precision herbicide application (Figure 1.1 (D)). Once the machine vision system has 

detected and classified the weeds, the most appropriate weed control tool is deployed 

based on particular species. The Australian Centre for Field Robotics at the University 

of Sydney developed an autonomous robotic platform (Ladybird) for real-time 

detection and precision spraying of fertilisers and herbicides for vegetable crops 

(Underwood et al., 2015). A smaller version of the Ladybird robot has also been 

developed for Intelligent Perception and Precision Application (RIPPA) which, like its 
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predecessor, is used for precision application of agrochemicals (Bogue, 2016) (Figure 

1.1 (E)). One of the most recent robotic weeders was developed by the Swiss company 

ecoRobotix Ltd (https://www.ecorobotix.com/en/) (Figure 1.1 (F)). The lightweight 

(~130 kg) ecoRobotix platform uses a camera system to distinguish the crop from the 

weed and two robotic arms carry out precision herbicide spraying. The company 

claims that the platform uses 20-times less herbicide when compared with broadcast 

spraying and that it can cover an area of three hectares per day on the basis that it 

takes one second to spray two weeds. However, since it is solar powered, usage of the 

platform is limited only during daytime with sunny weather.  

From the micro-dosing systems described earlier it is becoming evident that 

although targeted micro-rates of herbicides have been studied, little is known about 

the exact amounts needed to control weeds when doses are applied as one droplet to 

a single leaf or plant. According to Graglia (2004) and Young and Giles (2013) more 

research is needed is to test the susceptibility of individual weed species to micro-dose 

herbicide application. Only the study from Mathiassen et al. (2016) tested the efficacy 

of known amounts of glyphosate (from 0.22 to 7 μg per weed) applied as a single 

droplet to a single leaf of four weed species. However, there is no attempt in that study 

to link the six doses applied to the recommended rate for spraying as doses were 

applied irrespective of the size of the weeds and only glyphosate was tested.  

Furthermore, from the studies with the automated systems described earlier, 

although efficacy of weed control using micro-doses of herbicides is reported, there 

are no indications of how crop yield was affected and efficacy is not compared with 

current spraying methods. A reason could be that the main objective of these studies 

was to test the crop/weed classification system and the precision of the micro-dosing 

system. Even when efficacy of weed control is reported no actual percentages are given 

and words like “sufficient” (Søgaard et al., 2006) and “successful” (Utstumo et al., 

2018) are used. Although, Søgaard et al. (2006) reported efficacies of 82% this relates 

to the average percentage of plants treated assuming that the average dose of 22.6 μg 

of glyphosate per plant was controlling the test weed treated in outdoor conditions. 

Predictions on potential herbicide savings when weeds are treated leaf-

specifically ranges from 95% to 99% (Christensen et al., 2009; Zijlstra et al., 2011; 

Blackmore, 2014). In the studies described earlier, droplets emitted from the micro-

https://www.ecorobotix.com/en/
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dosing systems were not counted and therefore the equivalent application rate per 

unit land area was not calculated. Only in the study by Utstumo et al. (2018) the 

application rate was estimated (191 g of glyphosate ha-1) when the Asterix robotic 

platform was tested in field with a carrot crop. However according to the authors two 

to three treatments will be needed for effective weed control which increases the 

applications and reduces further the potential herbicide savings of 73% to 95%, based 

on conventional spraying of glyphosate. Furthermore, in other studies where doses 

applied per weed were estimated for weed control, to demonstrate the potential on 

herbicide savings, weed densities from 100 to 300 m-2 were assumed (Søgaard et al., 

2006; Mathiassen et al., 2016) 
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Figure 1.1. Examples of robotic platforms performing precision weed control. (A) HortiBot 

(Sørensen et al., 2007), (B) BoniRob (Ruckelshausen et al., 2009), (C) Asterix (Utstumo et al., 

2018), (D) AgBot II (Bawden et al., 2017), (E) RIPPA (Bogue, 2016) and (F) ecoRototix 

(https://www.ecorobotix.com/en/). 

 

1.3 Objectives 

The scope of the study presented in this thesis is to support the development of an 

autonomous platform for leaf-specific weed control in UK vegetable crops. The 

platform is being jointly developed by the University of Reading and Concurrent 

Solutions LLC in the USA. It will use a machine vision system to distinguish the crop 

from the weed and identify individual weed leaves as targets for herbicide droplets. A 

novel applicator module will then apply an appropriate dose as a single droplet to 

A B 

C 
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D 

https://www.ecorobotix.com/en/
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identified targets.  The PhD research which is part of the overall project has the 

following four main objectives: 

1. To test the efficacy of herbicide droplet application for leaf-specific weed control.  

2. To investigate alternatives to glyphosate for leaf-specific weed control in order 

to reduce the risks associated with dependence on a single herbicide. 

3. To compare yields, quality and profitability of cabbage and leek field crops where 

weeds are controlled (a) leaf-specifically, (b) with conventional herbicide sprays 

or (c) by hand. After the end of the project, further research will be needed to 

fulfil this objective from a commercial perspective.  

4. To assess the targeting accuracy of a prototype applicator system. 

In order to meet these objectives, the following hypotheses are tested:  

1.4 Hypotheses 

1. Leaf-specific applications of droplets of a systemic, translocated herbicide at the 

recommended dose for conventional spraying achieves at least 90% efficacy of 

weed control in both glasshouse and field. 

2. The yield, quality and economic value of cabbage and leek crops, where weeds 

are controlled leaf-specifically, are not significantly lower than for either 

conventional pre- and post-emergence herbicide treatment or for hand-weeding.   

3. In the field, herbicide inputs per unit land area are significantly lower when 

droplet applications are compared with spray applications of commercial 

herbicides and do not exceed the label recommendations for the products used. 

 

1.5 Thesis structure 

In order to fulfil the objectives and test the hypotheses a series of glasshouse and field 

experiments are reported in Chapters 2 and 3, respectively. In addition to the field 

experiments a preliminary economic analysis is carried out in Chapter 3. The targeting 

accuracy of a prototype applicator is then tested in Chapter 4. These three 

experimental chapters have been written up for publication as refereed journal 

articles. Each chapter, therefore, includes a brief literature review and discussion. 
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Literature cited in each of these chapters is listed at the end of the thesis. 

Supplementary information for each chapter is included at the end of each chapter. 

Although they could be included in an appendix, photographs of experimental 

materials have been included to facilitate better understanding of the research for 

readers of the thesis. They may not, however, be included in papers for publication. 
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2 Chapter 2                            
Dose-response relationships of herbicide 
droplet applications for the leaf-specific weed 
control 

 

2.1 Summary 

Leaf-specific application of herbicide droplets is an alternative to selective chemistry 

or biotechnology while potentially reducing herbicide use. Although targeted micro-

rates of herbicides have been studied, little is known about the exact rates needed to 

control weeds when microdoses are applied as one droplet to a single leaf or plant. In 

this study herbicides were applied as droplets (1-3 μl) with doses applied ranging from 

1/256th to six-times the recommended rates for spray applications. The 

recommended rates of the herbicides (L ha-1) were estimated in μg of a.i based on the 

mean ground cover of the seedlings and droplets were applied by a micropipette. 

Three weeks after application biomass data were recorded. Senevio vulagris was 

controlled with 0.24 μg of glyphosate per seedling making it the most susceptible, 

among the weeds tested, to glyphosate with the least being the perennial Rumex 

crispus. For 90% control of Chenopodium album the equivalent of 90 g ha-1 and 75 g ha-

1 were needed when glyphosate and glufosinate-ammonium were used, respectively. 

Red amaranth was more susceptible to glyphosate than glufosinate-ammonium. It was 

concluded that weeds can be controlled leaf-specifically by droplet application 

provided that a broad-spectrum, translocated herbicide is used. As a general 

recommendation, weeds that are up to the 4-leaf stage can be controlled with a dose 

of 32 μg of glyphosate and 28 μg of glufosinate-ammonium per seedling. Dose-

response trials in glasshouse conditions have, therefore, shown the efficacy of 

glyphosate, glufosinate-ammonium and 2,4-D droplet application to annual and 

perennial weeds. 
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2.2 Introduction 

Weeds are one of the major threats to crop yield and quality worldwide, accounting for 

highest potential loss (34%) with pathogens and pests being less important (16% and 

18% yield loss) (Oerke, 2006). These unwanted plants are farmers’ No.1 enemy as they 

can cause total yield loss if no weed control is applied (Singh et al., 2014). Herbicide-

based weed control remains today the most effective method in agriculture with 

herbicides accounting for the 45% of the total pesticide market (50% in the UK) 

(Zimdahl, 2013). However, applying herbicides as a uniform single dose by spraying 

the entire field, can be wasteful and inefficient, especially in the case of post-emergence 

herbicides (Jensen et al., 2013). It has also been argued that the over-reliance on some 

of these chemicals can (i) have an adverse effect on the ecosystem, (ii) lead to 

herbicide-resistant weeds, (iii) cause pollution of aquatic environments, including 

ground water, raising concerns about public health and safety (Power et al., 2013). 

Evidently chemical weed control is receiving a lot of negative attention while, there are 

pressures from policy makers and consumers to lower use of pesticides in general. 

Furthermore, UK and EU pesticide reviews have resulted in actual and potential losses 

of crop protection products. Such examples include actual losses of approvals under 

the Regulation (EC) No. 1107/2009, potential losses of herbicides under the directives 

related to water quality (Water Framework Directive (2000/60/EC) and Drinking 

Water Directive (1998/83/EC)), reduction of pesticide use under the Sustainable Use 

Directive (2009/128/EC) and the UK National Action Plan (NAP) (Hillocks, 2012; 

Baker & Knight, 2017). Therefore, there is a need to balance controlling weeds, 

maintaining and increasing productivity while minimising the negative effects of 

herbicides.   

As a result, from these pressures much research has been focused on new 

technologies, which aim to reduce herbicide use. Christensen et al. (2009) reviewed 

different application methods of herbicides using variable doses according to the weed 

species, distribution and density. These techniques range from spraying weed patches 

using broadcast application methods (Gutjahr & Gerhards, 2010; Berge et al., 2012), 

spot spraying weeds after they have been divided to cells of decimetre and centimetre-

size using image analysis (Lee et al., 1999; Lund et al., 2008)) to treating individual 

plants using microdoses of herbicides (Giles et al., 2004; Søgaard et al., 2006; 
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Nieuwenhuizen et al., 2010; Midtiby et al., 2011; Utstumo et al., 2018). The latter 

method has been also described as Drop-on-Demand (DoD) technology, which emits 

very low volume droplets (1-5 μl) of a translocated herbicide. Blackmore (2013) 

speculated that such methods could reduce herbicide inputs by up to 99%. Although 

some research has been carried out using targeted applications of herbicides, little is 

known about the exact dose rates needed to control weed seedlings. Therefore, there 

is a need to evaluate the efficacy of micro-rate applications when they are applied as 

droplets directly on leaves of weeds (Graglia, 2004; Young & Giles, 2013). 

Dose-response trials have been widely used in weed science to evaluate the 

efficacy of herbicides (Waite et al., 2013), for testing herbicide resistant weeds (Bell et 

al., 2013) and also for studying the absorption and translocation of herbicides (Goggin 

et al., 2016). Doses for all of these experiments are applied in g or kg per ha using 

sprayers with nozzles calibrated to deliver several L per ha. Therefore the actual 

amount of active ingredient applied per plant is not known and it can only be based on 

an average rate per unit land area or estimated using chemical analysis.  

The study from Graglia, (2004) tested the biological efficacy of manually applied 

droplets of glyphosate on leaves of Solanum nigrum L. (black nightshade) in outdoor 

conditions. The way the doses applied were calculated was by combining different 

concentrations of glyphosate (0.06 μg μL-1 to 1 μg μL-1), with volume of droplets (0.25 

to 4 μL) and number of droplets applied per plant (1, 2 and 4 per plant), which was 

irrespective of the ground cover of the seedlings (2-leaf stage). It is worth mentioning 

that in this study was found that a single droplet of 0.8 μg of glyphosate per plant can 

provide a 95% control of S. nigrum. However, no other growth stages, no other weed 

species and no other herbicides were tested. Also, the study from Mathiassen et al. 

(2016) tested the efficacy of known amounts of herbicide applied as a single droplet to 

a single leaf of Chenopodium album, Silene noctiflora, Echinochloa crus-galli and 

Brassica napus. However, the main purpose of this study was to test the effect of 

different adjuvants on the retention and efficacy of droplets generated by a DoD system 

described by Søgaard and Lund (2007). The six doses that were applied ranged from 

0.22 to 7 μg per weed seedling (0.27 to 8.75 g of glyphosate L-1) they were irrespective 

of the size of the seedlings and there is no evidence how they were calculated. In a more 

recent study by Utstumo et al. (2018) the efficacy of single herbicide droplets emmited 
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by a DoD system was tested. Glyphosate and iodosulfuron were applied to pot trials 

using C. album, Tripleurospermum inodorum, Poa annua and Stellaria media weed 

seedlings (2 to 5-leaf stage). Two doses of each herbicide were applied (high and low) 

as three droplets of 1.16 μL volume each and it was proven that 7.56 μg of glyphosate 

per plant controlled the four weeds. For all the above studies it is not mentioned how 

the doses applied relate to the recommended rate for spraying the commercial 

formulation and no other broad-spectrum herbicides than glyphosate were tested. 

The study presented in this paper is part of a project which is developing an 

automated system for herbicide droplet applications to weed leaves in field vegetables. 

The objective is to model dose-response relationships of herbicide droplet application 

for leaf-specific weed control for principal weeds of field vegetables (Roberts & Stokes, 

1966). In addition to weed testing, the susceptibility of a vegetable crop to droplet 

application will be tested. Also, in order to minimize the likelihood of herbicide 

resistance and alleviate concerns about the overreliance on a single herbicide active 

(i.e. glyphosate), mixtures of 2,4-D with glyphosate and 2,4-D with glufosinate-

ammonium need to be tested. The hypotheses tested in this study were that: (i) the 

dose-response model used to describe spray applications of herbicides would also be 

appropriate for droplet applications, (ii) the susceptibility of the weeds tested to 

droplet application would vary between species, (iii) application of the recommended 

doses of herbicides for conventional spraying as droplet to a single leaf would provide 

at least 90% efficacy, Glufosinate-ammonium could provide an alternative to 

glyphosate for droplet application, because of the acropetal movement and the limited 

translocation of glufosinate-ammonium (Pline et al., 1999) the herbicide will be less 

potent than glyphosate. 

 

2.3 Materials and Methods 

Dose-response trials were carried out in glasshouse conditions during summer months 

(July & August) at Reading UK (51°26'19.7" N, 0°56'05.4"W) (2015-2018) in order to 

test the efficacy of glyphosate, glufosinate-ammonium and 2,4-D droplet applications 

according to the ground cover of the weed and crop seedlings (Figure 2.1 (A)). 

Amaranthus cruentus was tested in Benton, Kentucky, USA (36°46'50.7"N, 

88°24'45.7"W) (2017) (Figure 2.1 (B)). Mean temperatures (day/night) during 
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summers of 2015, 2016 and 2018 were: 24/16 °C, 26/17 °C and 29/19 °C respectively. 

All trials were randomized complete blocks. Deionized water was used for the trials in 

Reading UK and distilled water for the trials in Benton USA, to prepare all the solutions.  

 

Figure 2.1. (A) Glasshouse in Reading UK where weeds and cabbages seedlings were grown 

during May 2016. (B) Glasshouse in Benton, Kentucky, USA where the dose response trial with 

A. cruentus took place, during July 2018 

 

2.3.1 Plant material 

Trials applying herbicide droplets were carried out in this study using the annual weed 

species: Chenopodium album L. (fat-hen), Urtica urens L. (small nettle), Stellaria media 

L. Vill. (common chickweed), Galium aparine L. (cleavers), Matricaria recutita L. 

(German chamomile), Poa annua L. (annual meadow grass), Senecio vulgaris L. 

(common groundsel) and A. cruentus L. (red amaranth) and the perennial weed Rumex 

crispus L. (curly dock). In addition to the weeds, herbicide droplets were applied to 

crop seedlings. Cabbages, savoy variety (Famosa F1), were provided from Hammond 

Produce (Hammond Produce Ltd, Nottingham, UK) and were transplanted into 

flowerpots (9 cm diameter) at BBCH 12-13 (Feller et al., 1995).  Seeds of C. album and 

R. crispus were collected by hand at the Reading University Farm in 1974 and 1988, 

respectively and stored at 2-4°C. Urtica urens, S. media, G. aparine, M. recutita, P. annua 

and S. vulgaris seeds were provided by Herbiseed Ltd. and were sown on the surface 

of J. Arthur Bowers multi-purpose compost in multi cell plastic trays. Seeds of A. 

cruentus were provided by the Two Willies Nursery (Lucedale, Mississippi, USA) and 

the Moisture Control Potting Mix from Miracle-Gro (The Scotts Company LLC, 

Marysville, Ohio, USA) was used as a potting soil. The trays used in this study consisted 

A B 
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of 84 cells with individual cell size being 35 mm x 35 mm and 45 mm deep. Five to 

seven weed seeds from each species were sown in each cell and after germination they 

were thinned to one seeding per cell. Temperature and humidity were recorded using 

loggers (Thermochron-Hygrochron, iButton®, iButtonLink, LLC.). All trials were 

carried out under natural sunlight. 

 

2.3.2 Ground cover assessment 

In order to estimate the amount (μg) of active ingredient, volume (μL) and number of  

droplets needed to apply the recommended rate of the herbicides (L ha-1) individual 

images of weed seedlings were taken using a Nikon D90 Digital SLR Camera with an 

18-105 mm VR Lens Kit, mounted on a tripod (ManFrotto Compact Action). Seedlings 

assessed (10-30 per trial) were selected randomly and came from a destructive 

treatment which was included in design of the trial. The images taken were analysed 

using the WinDIAS Leaf Image Analysis System (Delta-T Devices Ltd, Cambridge, UK) 

(Webb & Jenkins, 2000) and ground cover was estimated in cm2 by the proportion of 

green pixels in an image of known area (Table 2.2). Following that the exact amount of 

herbicide needed to apply the minimum label recommendation, was calculated using 

Equation 2.1: 

          A = gc*(rd/100)              2.1 

where A is the amount of herbicide in μg per seedling, gc is the mean ground cover of 

one seedling in cm2 and rd refers to the recommended dose of the herbicide in g of a.i. 

ha-1. 

 

2.3.3 Glyphosate, glufosinate-ammonium and 2,4-D dose-response trials 

In order to apply the herbicides’ label recommendations as single droplets of 1-2 μl 

(i.e. the volumes that will be applied by the automated system), the a.i. concentrations 

prepared ranged from 2.5% to 20%. However, when glyphosate was applied to U. urens 

and for both the dose-response trials of A. cruentus more than one droplet was applied 

and higher volumes had to be used due to large seedling size (Table 2.2). Herbicide 

dose rates ranged from 1/256 to 6x the minimum label recommendation. Control 
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treatments involved the use of droplets containing water, adjuvant with water (1%) 

and undiluted herbicide. For the dose-response curves the biomass data which 

corresponds to the 0 dose, includes the response of treatments containing only water. 

In addition to the herbicides described in Table 2.1 a combined treatment of 2,4-D and 

glufosinate-ammonium was also tested with P. annua, S. vulgaris and C. album 

seedlings. When droplets of 2,4-D were applied to P. annua seedlings the maximum 

label recommendation was used (3.3 L ha-1). All herbicide treatments included the 

adjuvant AS 500 SL (Z.P.H Agromix, Niepołomice, Poland) which comprises non-ionic 

surfactants, ammonium salts, organic acid, pH buffer and humectant and was applied 

at the rate of 1 L 100 L-1 water (Woznica et al., 2015). When droplets of glyphosate and 

glufosinate-ammonium were applied to A. cruentus seedlings, USA formulations of the 

herbicides were used (Table 2.1). When Liberty® 280 SL was applied, the adjuvant 

Verimax Ams Dry (ammonium sulfate, polyacrylamide, dimethylpolysiloxane, 100%, 

Innvictis Crop Care, LLC™) was used at 1% concentration for every solution of the 

herbicide.  

Two pipettes were used for the droplet application, one with a volume range 

from 0.1 to 2.5 μl (ErgoOne® Single-Channel, STARLAB (UK), Ltd) and one to apply 

droplets in the 2.5-10 μl range (Micropipette Single Channel, Scilogex llc). Droplets 

were applied to the adaxial side of the youngest fully expanded leaf and when two 

droplets of the same herbicide were needed to be used, they were applied on the same 

spot of the same leaf. In the case of the combined treatment of 2,4-D and glufosinate-

ammonium the two droplets of the different herbicides were applied on either side of 

the central vein of the same leaf. Twenty days after herbicide applications fresh and 

dry biomass data were recorded and treatments were scored using the European 

Weed Research Council (EWRC) scoring system (Ciba-Geigy, 1975). Dry weights were 

estimated after oven-drying fresh seedlings for 48h at 80°C using an analytical balance 

(weighing to the nearest 0.0001 g). 
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Table 2.1. Details of herbicides used for the dose-response trials. 

Commercial name Supplier Active 
ingredient 

Concentration 
(g L-1) 

Recommended 
dose (L ha-1) 

Roundup® Biactive GL Monsanto (UK) Ltd. glyphosate 360 1.5 

Harvest® Bayer CropScience Ltd. glu-amm 150 3 

Depitox® Nufarm (UK) Ltd. 2,4-D 500 1.4 

Kyleo® Nufarm (UK) Ltd. 
2,4-D & 
glyphosate 

160 & 240 3 

Envy™ Six Max* 
Innvictis Crop Care, 
LLC™ 

glyphosate 540 1.18 

Liberty® 280 SL* Bayer CropScience LP glu-amm 280 2.25 

glu-amm = glufosinate-ammonium 
*applied only to A. cruentus seedlings in the U.S.A 
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Table 2.2. Details of the leaf-specific herbicide application including the mean ground cover 

for each of the weed species and savoy cabbage tested with their respective growth stages, 

number and volume of droplets and concentration (% a.i.) and amount of active ingredient per 

seedling in order to apply the minimum label recommendation. Herbicide formulations are 

specified in Table 2.1. Trials with the same number were carried out simultaneously.  

     Application of recommended dose (1x) 

Trial 
No. 

Block 
No. 

Plant  
Species 

BBCH 
Growth 
Stage 

Ground 
cover (cm2) 

No. x Volume 
(μL) of droplets  

a.i. 
(%) 

Amount of 
a.i. (μg) 

  Roundup® Biactive GL (360 g L-1 glyphosate) 

1 30 (a) C. album 12-14 1.08 (0.44) 1 x 0.648 2.5 5.83 

2 10 (b) C. album 14-16 7.21 (1.07) 1 x 1.082 10 38.9 

3 11 (c) S. media 14-16 9.03 (3.63) 1 x 1.354 10 48.8 

4 17 (d) M. recutita 12-14 3.13 (1.26) 1 x 0.940 5 16.9 

5 15 (e) G. aparine 12-14 1.56 (0.42) 1 x 0.936 2.5 8.42 

6 15 (f) U. urens 16-18 25.4 (3.21) 2 x 1.905 10 137.2 

7 10 (g) P. annua 23-24 10.54 (1.65) 1 x 1.580 10 56.9 

8 10 (h) S. vulgaris 12-13 2.23 (0.31) 1 x 1.340 2.5 12.1 

9 25 (i) R. crispus 13-14 3.28 (0.90) 1 x 0.984 5 17.7 

10 29 (j) B. oleracea 14-15 20.8 (3.4) 2 x 1.560 10 112.2 

  Envy™ Six Max (540 g L-1 glyphosate) 

11 10 (k) A. cruentus 16-18 51.04 (13.2) 1 x 2.986 20 322.5 

  Harvest® (150 g L-1 glufosinate-ammonium) 

12 13 (l) C. album 14-16 4.84 (1.56) 1 x 1.452 10 21.8 

2 10 (m) C. album  14-16 7.21 (1.07) 1 x 2.163 10 32.5 

13 12 (n) U. urens 14-16 6.25 (2.11) 1 x 1.876 10 28.1 

8 10 (o) S. vulgaris 12-13 2.23 (0.31) 1 x 1.340 5 10.0 

7 10 (p) P. annua 23-24 10.54 (1.65) 1 x 1.580 20 47.5 

  Liberty® 280 SL (280 g L-1 glufosinate-ammonium) 

11 10 (q) A. cruentus 16-18 51.04 (13.2) 2 x 2.870 20 321.6 

  Kyleo® (160 g L-1 2,4-D and 240 g L-1 Glyphosate) 

2 10 (r) C. album 14-16 7.21 (1.07) 1 x 2.163 10 86.5 

8 10 (s) S. vulgaris 12-13 2.23 (0.31) 1 x 1.339 5 26.8 

7 10 (t) P. annua 23-24 10.54 (1.65) 1 x 1.580 20 126.5 

  2,4-D (500 g L-1) + Glufosinate-ammonium (150 g L-1) 

2 10 (u) C. album 14-16 7.21 (1.07) 1x1.01 + 1x2.163 10+10 50.5+32.4 

8 10 (v) S. vulgaris 12-13 2.23 (0.31) 1x1.25 + 1x1.340 2.5+5 15.6+10 

7 10 (w) P. annua 23-24 10.54 (1.65) 1x1.74 + 1x1.580 20+20 174+47.5 

  Depitox® (500 g L-1 2,4-D) 

2 10 (x) C. album 14-16 7.21 (1.07) 1 x 1.010 10 50.5 

8 10 (y) S. vulgaris 12-13 2.23 (0.31) 1 x 1.250 2.5 15.6 

7 10 (z) P. annua 23-24 10.54 (1.65) 1 x 1.74 20 174 
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2.3.4 Statistical analysis 

In order to generate the dose-response curves, dry weight data were analysed with 

non-linear regression analysis, using the four-parameter log-logistic model (Equation 

2.2) as described by Streibig (1988):  

                                         y = c + (d – c) / [1+exp(b(log(x) – log(ED50)))]                    2.2 

where y is the biomass, c and d are the lower and upper limits of y, respectively, b is 

the relative slope of the curve around ED50, x is the herbicide dose and ED50 is the dose 

corresponding to 50% reduction of y. Weed dry matter is the most common and most 

objective measurement for plotting herbicide dose-response curves and estimating 

effective doses (Streibig, 1993). However, for the glyphosate dose-response curve of R. 

crispus fresh weight data are provided because dry weight data did not give a 

satisfactory fit to the dose-response model. Additionally, in order to be able to compare 

results in this study with similar research in the literature, fresh biomass data of C. 

album were plotted against doses of glyphosate and glufosinate-ammonium. Analyses 

were carried out using the open source statistical software R, version 3.2.1 (R 

Development Core Team, 2014) and the add-on package “drc” (Ritz et al., 2015a). The 

effective dose (ED) which corresponds to 90% (ED90) reduction in biomass was 

calculated after data were fitted to the dose-response model (Ritz, 2010). Because 

treatments were replicated a lack-of-fit test was carried out using the modelFit() 

function which compares the residual sum of squares from fitting the equation 2.2 with 

the residual some of squares of the one-way ANOVA model (Ritz & Streibig, 2012). 

Where appropriate dry weight data were expressed as % reduction of growth and 

were transformed using the equation 2.3: 

% Reduction of growth = [1 – (Wt – W0) / (Wc – W0)] x 100           2.3 

where Wt corresponds to the dry weight at harvest, Wc is the dry weight of the water 

control treatment and W0 is the mean dry weight of the seedlings on the day of droplet 

application. To plot the % reduction of growth dose-response curves a three-

parameter model was used (in equation 2.2, parameter c = 0). Reduction of growth 

dose-response curves were plotted against the dose relative the recommended rate of 

spraying the herbicides (1x). Because of the difference in the concentration of 

glyphosate when it was applied alone (540 g ha-1) and as the mixture (720 g ha-1) with 

2,4-D, the two curves were plotted against the doses relative the recommended rate of 
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when the herbicide was applied alone (i.e. for mixture 1x=1.33x the recommended rate 

of 540 g ha-1) 

When fitting multiple dose-response curves the hypotheses that the curves are 

parallel (common b), that they have common upper and lower limits (parameters c and 

d) and that there is a common ED50 (parameter e) were tested (Seefeldt et al., 1995). 

Model comparison was carried out with ANOVA by an F-test based on the residual sum 

of squares of the dose-response curves with and without similar parameters using R. 

When comparing two dose-response curves it is important to take into account the 

biological exchange rate between the two herbicides, especially when developing new 

products or assessing the combined effect of mixtures (Streibig & Jensen, 2000). This 

can be performed by comparing the EDx values and is known as relative potency (R). 

In the case of similar regressions which are only different at the ED50 values, the 

relative potency is expressed as the displacement of the curve along the x-axis (Ritz et 

al., 2006). The built-in function in the drc package EDcomp() was used to obtain the 

relative potency (Ritz et al., 2015a). In order to assess the effect of the adjuvants used 

in this study, biomass data were subjected to one-way ANOVA using GenStat 16th 

Edition (VSN International Ltd, Hemel Hempstead, UK). 

 

2.4 Results 

In Reading, no significant effect was observed on weed biomass after the application 

of droplets containing the adjuvant AS 500 SL (1%) when compared to the treatments 

with droplets of water. Similarly, in the USA, no significant effect of the adjuvant 

Verimax Ams Dry occurred to A. cruentus seedlings (Supplementary table 2.1.). A lack-

of-fit test was significant only when droplets of glufosinate-ammonium were applied 

to P. annua seedlings (P=0.04), suggesting that for all the other dose-response curves, 

data can be described by Equation 2.2 (Supplementary table 2.2).  

After fitting the data to Equation 2.2, it was estimated that fresh weight of C. 

album can be reduced by 50% and 90% with 3.5 μg and 32 μg of glyphosate 

respectively. For the same effects, doses of 9.4 μg and 60 μg of glufosinate-ammonium 

were needed (Table 2.3). Increasing phytotoxic effects were observed with increase of 

dose to the Chenopodium album seedlings for trial number two when the 
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recommended rates of the herbicides used in this study were applied as a single 

droplet to a single leaf (Figure 2.2). Similar phytotoxic effects were observed for all the 

other species tested in this study (Supplementary figure 2.1). From the annual weed 

species tested in this study, which had 2 to 6 leaves, the most susceptible to glyphosate 

was S. vulgaris, a dose of 0.24 μg of glyphosate per seedling (~1/50 of the 

recommended) reducing weed dry weight by 90% (Table 2.4 (h)). Among the weed 

species treated with glufosinate-ammonium droplets, U. urens was the most 

susceptible with a dose which was close to 1/8th of the recommended needed for 90% 

weed control. For the savoy cabbage, 36 μg of glyphosate applied as a single droplet, 

reduced the biomass of the crop by 50% (Table 2.4 (j)) 

 

Table 2.3. Parameter estimates (±SE) of the log-logistic dose-response model (Eqn 2.2) and 

ED90 value for the fresh weight of C. album seedlings, size of 1.08 cm2 (Trial No.1) and 4.84 cm2 

(Trial No.12). Recommended doses per seedling were 5.83 μg of glyphosate and 21.8 μg of 

glufosinate-ammonium. 

Parameters Estimates (±SE) 

 Glyphosate Glufosinate-ammonium 

b (slope) 1.00 (0.24) 1.19 (0.43) 

c (lower limit) (g) 0.04 (0.01) 0.07 (0.04) 

d (upper limit) (g) 0.15 (0.01) 0.50 (0.03) 

e (ED50) (μg) 3.54 (1.01) 9.38 (3.03) 

ED90 (μg) 31.8 (18.6) 59.7 (47.7) 
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Figure 2.2. Chenopodium album seedlings (Trial No. 2) three weeks after application of 

droplets containing recommended amounts of active ingredients (Table 2.2). For the combined 

treatment (E), one droplet containing 50.5 μg 2,4-D and one with 32.5 μg of glufosinate-

ammonium were applied on the same leaf. For the control treatments, one droplet of deionized 

water (ConH2O) or containing 1% adjuvant (ConAdj) or with undiluted herbicide (Pure) was 

applied. To estimate the 50% reduction in the biomass of the seedlings (ED50) dry weight data 

were fitted to Equation 2.2. 

 

When herbicide droplets were applied to different sizes of C. album seedlings at 

different times (trial numbers 1, 2 and 12),  it was demonstrated that approximately 

1/6th of the recommended doses of the two herbicides (glyphosate and glufosinate-

ammonium) was required for a 50% reduction in the biomass with the ED90 value 

being 1.5-times the recommended rate (Table 2.5). Furthermore, little attrition was 

ED50 

ED50 

ED50 

ED50 

ED50 

ConH2O ConAdj  1/128 1/64    1/32   1/16  1/8 1/4 1/2    1x  2x   4x  Pure 
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observed when droplets of glyphosate were applied to the C. album seedlings 

measuring 1.08 cm2 (Trial No. 1) (Figure 2.4). A common dose-response curve was 

fitted when glufosinate-ammonium was applied to C. album with ground cover 4.84 

cm2 (trial no. 12) and 7.21 cm2 (trial no. 2). The model used to plot the curves of 

different size C. album seedlings, had a common slope, ED50 and ED90 values. The 

increase in the residual sum of squares was not statistically significant from the 

separate lines model (P=0.26) (Supplementary table 2.3), meaning that the model can 

be used to describe the effects of herbicide droplet application to C. album seedlings.  

A model with two separate dose-response curves was fitted when doses relative 

to the recommended rates of glyphosate and glufosinate-ammonium (1x) were plotted 

against the dry weights (% Control) of U. urens and A. cruentus (Figure 2.4). When the 

recommended rate of glufosinate-ammonium was applied to U. urens seedlings the 

weed was completely controlled whereas the ED90 value for glyphosate was 3-times 

the recommended rate (Table 2.5). For 90% control of A. cruentus, 1/10th of 

glyphosate’s recommended rate was needed while the same relative dose for 

glufosinate-ammonium reduced the dry weights of the seedlings by 50% (Table 2.5). 

When the herbicides tested in this study were applied for the same dose-

response trial to C. album seedlings it was demonstrated that the recommended rate 

of glyphosate and glufosinate-ammonium reduced the growth of the weed by 90% 

(Table 2.6). For the same effect, 1/4th of the recommended rate was needed when the 

proprietary mix of 2,4-D and glyphosate was applied as single droplet to a single leaf. 

The reduction of growth recorded from 2,4-D and the combined treatment of 2,4-D and 

glufosinate-ammonium was not significant for both of the effective doses (ED50 and 

ED90) (Table 2.6).  

Application of droplets containing recommended amounts of herbicides 

reduced the growth of S. vulgaris from 90% to 100% (Figure 2.5). Although no common 

parameters were fitted to the dose-response models of the weed, approximately the 

same levels of efficacy were observed when glyphosate and the mix of 2,4-D and 

glyphosate were applied to S. vulagris (Table 2.6).  

Common dose-response curves were fitted to plot the reduction of the growth 

of P. annua caused by glyphosate and glufosinate-ammonium and when they were 
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mixed with 2,4-D (Figure 2.5). There was no significant increase in the residual sum of 

squares from the model with four separate lines (P=0.33) (Supplementary table 2.4). 

A dose which was equivalent to 1.5-times the recommended dose of glyphosate and 

glufosinate-ammonium reduced the growth of P. annua by 50%. Higher doses than the 

label recommendations for both herbicides were needed for 90% weed control. Lower 

effective doses were recorded for both ED levels when the two herbicides were mixed 

with 2,4-D (Table 2.6). The recommended rates of the herbicide mixtures with 2,4-D 

reduced the growth of P. annua by approximately 70% (Figure 2.5).  

No complete weed control was recorded when droplets of glyphosate were 

applied to the perennial R. crispus and only when the control treatment of undiluted 

product was applied (20x the recommended) it caused a 90% reduction in the growth 

of the weed (Figure 2.5). Droplets of glyphosate containing the recommended rate of 

glyphosate reduced the growth of the annual weeds G. aparine, S. media and M. recutita 

by approximately 80% 100% and 120% respectively.  

When the dose-response curves of glyphosate and  its mixture with 2,4-D where 

plotted together against the doses relative to the 540 g ha-1 (1x), common slope and 

upper limit of the curves were fitted, allowing for the relative potency to be calculated 

(Table 2.7). Because of the commonality in the parameters (lower limit fixed at 0) the 

relative potency was independent of the response level. For C. album it was calculated 

that the relative potency (R=ED50(glyphosate)/ED50(mixture)) is 3.32 (±SE: 0.8) whereas for 

the S. vulagris is 0.53 (±SE: 0.06). For dose-response curves of P. annua a common line 

was fitted which did not differ significantly from the separate line model (P=0.07) 

(Table 2.7). 

 Increase in the dry weight of C. album, M. recutita, S. media, U. urens, P. annua 

and A. cruentus was observed from low doses of glyphosate ranging from 1/256 to 

1/32 of the recommended rate. Furthermore, doses up to 1/16th of the recommended 

dose of glyphosate appeared to be increasing the growth of P. annua seedlings (Figure 

2.4 and Figure 2.5). Application of low doses (from 1/256 to 1/64 of the 

recommended) appeared to be promoting the  growth of S. media, R. crispus and M. 

recutita (Figure 2.5). 
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Glyphosate dose-response curves 
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Glufosinate-ammonium dose-response curves 
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Figure 2.3. Dose-response curves after droplets of glyphosate were applied to C. album (a & 

b), S. media (c), M. recutita (d), G. aparine (e), U. urens (f), P. annua (g), S. vulgaris (h), R. crispus 

(i), B. oleracea var. sabauda (j) and A. cruentus (k) seedlings. Glufosinate-ammonium droplets 

were applied to C. album (l & m), U. urens (n), S. vulgaris (o), P. annua (p) and A. cruentus (q) 

seedlings. Droplets of the proprietary mixture of 2,4-D and glyphosate and the combined 

treatments of 2,4-D and glufosinate ammonium were applied to C. album (r & u), S. vulgaris (s 

& v) and P. annua (t & w). Droplets containing 2,4-D were applied to C. album (x), S. vulgaris 

(y) and P. annua (z). Biomass data were harvested 20 days after droplet application.  Equation 

2.2 was used to plot herbicide dose and biomass data. Parameter values are presented in Table 

2.4. Results from the lack-of-fit test for each of the curves are presented in Supplementary table 

2.2. 
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Table 2.4. Regression parameters (±SE) of the log-logistic dose-response model (Equation 

2.2) and glyphosate, glufosinate-ammonium, 2,4-D, 2,4-D + glyphosate and 2,4-D + glufosinate-

ammonium  doses (μg) which provided 90% reduction in weeds’ biomass (ED90) 20 days after 

droplet application, for each of the weed species tested. Application details and calculation of 

recommended doses applied (1x) is described in Table 2.2. Plotted dose-response curves are 

presented in Figure 2.3. 

                         Parameter estimates (±SE)  

Dose-
response 
curves 

b c (g)  d (g) ED50 (μg) ED90 (μg) 1x 
(μg) 

Glyphosate 

(a) C. album 1.01 (0.27) 0.02 (0.001) 0.03 (0.001) 1.39 (0.56) 12.1 (8.06) 5.83 

(b) C. album 3.54 (1.58) 0.09 (0.01) 0.26 (0.01) 6.27 (0.83) 11.7 (3.44) 38.9 

(c) S. media 3.00 (3.86) 0.08 (0.02) 0.23 (0.01) 3.04 (1.10) 6.33 (7.83) 48.8 

(d) M. recuita 1.17 (0.32) 0.006 (0.004) 0.06 (0.004) 2.07 (0.63) 13.6 (8.9) 16.9 

(e) G. aparine 1.61 (0.71)    0.01 (0.003) 0.03 (0.001) 6.89 (2.15) 27.1 (20.8) 8.44 

(f) U. urens 0.96 (0.28) 0.08 (0.01) 0.18 (0.01) 46.5 (15.9) 460 (389) 137.2 

(g) P. annua 1.41 (0.43) 0.08 (0.03) 0.29 (0.01) 87.4 (23.2) 413 (266) 56.9 

(h) S. vulgaris 3.39 (0.75) 0.007 (0.005) 0.22 (0.01) 0.13 (0.01) 0.24 (0.04) 12.1 

(i) R. crispus 0.58 (0.25) 0.13 (0.01) 0.20 (0.01) 3.70 (3.27) 168 (340) 17.7 

(j) B. oleracea 0.97 (0.17) 0.17 (0.03) 0.66 (0.02) 35.9 (7.99) 346 (171) 112.2 

(k) A. cruentus 1.95 (0.32) 0.33 (0.09) 4.30 (0.12) 10.9 (1.10) 33.5 (7.1) 322.5 

Glufosinate-ammonium 

(l) C. album 3.14 (2.61) 0.05 (0.01) 0.10 (0.01) 4.43 (1.21) 8.91 (5.93) 21.8 

(m) C. album 0.81 (0.22) 0.07 (0.02) 0.27 (0.01) 5.66 (2.39) 84.7 (89.6) 32.4 

(n) U. urens 3.01 (1.06) 0.02 (0.003) 0.09 (0.004) 1.25 (0.17) 2.60 (0.78) 28.1 

(o) S. vulgaris 1.45 (0.28) -0.01 (0.01) 0.22 (0.01) 2.9 (0.37) 13.2 (4.3) 10.0 

(p) P. annua 1.82 (0.61) 0.09 (0.03) 0.29 (0.01) 70.4 (24.7) 235 (166) 47.5 

(q) A. cruentus 0.60 (0.12) -0.25 (0.38) 4.15 (0.16) 37.5 (14.5) 1453 (1466) 321.6 

2,4-D + Glyphosate  

(r) C. album 1.09 (0.33 0.09 (0.01) 0.27 (0.01) 2.61 (0.68) 19.7 (14.8) 86.5 

(s) S. vulgaris 1.81 (0.34) 0.002 (0.005) 0.22 (0.01) 0.40 (0.04) 1.33 (0.30) 26.8 

(t) P. annua 3.01 (1.10) 0.09 (0.01) 0.28 (0.01) 86.7 (11.6) 180 (58.8) 126.5 

2,4-D + Glufosinate-ammonium 

(u) C. album 0.31 (0.07) 0.02 (0.04) 0.27 (0.01) 35 (40) 39209 (93409) 82.9 

(v) S. vulgaris 1.20 (0.20) -0.01 (0.01) 0.22 (0.01) 3.26 (0.46) 20.4 (7.15) 25.7 

(w) P. annua 4.83 (3.89) 0.09 (0.01) 0.28 (0.01) 222 (18.7) 349 (126) 221.4 

2,4-D 

(x) C. album 1.05 (0.41) 0.12 (0.01) 0.27 (0.01) 0.57 (0.19) 4.60 (3.68) 50.5 

(y) S. vulgaris 1.12 (0.23) 0.03 (0.01) 0.22 (0.01) 1.16 (0.19) 8.21 (3.71) 15.6 

(z) P. annua 3.56 (3.27) 0.24 (0.02) 0.28 (0.01) 329 (167) 610 (337) 174 
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Figure 2.4. Dose response curves of C. album U. urens and A. cruentus. Chenopodium album 

seedlings with ground cover of 1.08 cm2, 7.21 cm2 and 4.84 cm2 were tested at the trials with 

numbers 1, 2 and 12, respectively. Uritca urens seedlings with ground covers of 6.25 cm2 and 

25.4 cm2 were tested at the trials with numbers 6 and 13, respectively. Amaranthus cruentus 

seedlings were tested for the trial number 11. Dry weight data are expressed as % of control 

and were plotted against the doses relative to the recommended rate of glyphosate and 

glufosinate-ammonium.  The upper limit for all the curves was fixed at 100%. Model 

comparison between the fitted and the separate line models is presented in Supplementary 

table 2.3. The separate lines model for C. album is presented in Supplementary figure 2.2. 

Parameter estimates are presented in Table 2.5. 
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Table 2.5. Regression parameters (±SE) of the log-logistic model  for the Chenopodium album, 

Urtica urens and A. cruentus dose-response curves presented in Figure 2.4. The upper limit of 

the curves (parameter d) was fixed at 100%. Model using common parameter estimates for 

the C. album dose-response curves is based on non-significant differences in the residual sum 

of squares from the separate line model (P=0.26). Commonality between the parameters of the 

U. urens and A. cruentus dose-response models significantly increased the residual sum of 

squares (P<0.001) (Supplementary table 2.3). 

   Parameter Estimates (±SE) 

Species Herbicide Ground 

cover (cm2) 

b: c (%): e: ED50 ED90 

C. album 

glyphosate 
1.08  

 

    

  55.5 (3.21)  

 

 

 

7.21    

  

 glu-amm 
4.84 

7.21 

U. urens 
glyphosate 25.4 0.99 (0.25) 44.5 (6.1) 0.37 (0.12) 3.40 (2.69) 

glu-amm 6.25 2.75 (0.81) 24.5 (2.42) 0.04 (0.005) 0.09 (0.03) 

A. cruentus 

glyphosate 

51.04 
2.03 (0.31) 7.97 (2.28) 0.03 (0.003) 0.10 (0.02) 

glu-amm 0.60 (0.09) -5.04 (7.61) 0.10 (0.03) 4.04 (3.42) 

glu-amm=glufosinate-ammonium 

 

 

 

 

 

 

0.16 

(0.03) 31.8 (3.61) 
1.55 

(0.74) 

0.98 (0.16) 
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Chenopodium album 

Poa annua 

Chenopodium album 
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Senecio vulgaris 

Senecio vulgaris 

M. recutita, G. aparine, R. crispus, S. media 

M. recutita 
G. aparine 
R. crispus 
S. media 
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Figure 2.5. Dose-response curves of C. album, P. annua and S. vulagris after droplets of 2,4-D, 

glyphosate, glufosinate-ammonium, a mixture of glyphosate and 2,4-D and a combined 

treatment of 2,4-D and glufosinate-ammonium were applied during summer 2018. Droplets of 

glyphosate were applied only to M. recutita, G. aparine, R. crispus and S. media during summer 

2015. Dry weight data were transformed to % Reduction of growth using equation 2.3 and 

were plotted against the doses relative to the minimum label recommendations (1x) using the 

three-parameter log-logistic model (Equation 2.2 with parameter c=0). Parameters of the 

fitted models are presented in Table 2.6. Dose-response curves of the separate lines model is 

presented in  Supplementary figure 2.3. 

Table 2.6. Parameter estimates for the regressions of reduction of growth as a function of dose 

of different herbicides (Figure 2.5). For C. album, P. annua, M. recutita, G. aparine, R. crispus and 

S. media analyses to fit common parameter estimates are presented in Supplementary table 

2.4. Parameter c was fixed at 0 in Equation 2.2. 

  Parameters Estimates (±SE) 

Weed 

species 

Herbicides b d (%) ED50 ED90 

C. album 

2,4-D -0.34 (0.10) 

        

0.01 (0.01) 9.43 (15.7) 

glyphosate     

 

 

        glu-amm 

2,4-D + glyphosate -1.04 (0.28)   0.03 (0.007) 0.26 (0.17) 

2,4-D + glu-amm -0.43 (0.08) 0.06 (0.03) 11.2 (10.5) 

S. vulgaris 

2,4-D -1.12 (0.20) 90.8 (3.66) 0.07 (0.01) 0.51 (0.22) 

glyphosate -3.40 (0.75) 99.9 (2.07) 0.01 (0.001) 0.02 (0.003) 

glu-amm -1.24 (0.19) 108.2 (4.37) 0.26 (0.03) 1.54 (0.51) 

2,4-D + glyphosate -1.78 (0.32) 102.6 (2.32) 0.02 (0.001) 0.05 (0.01) 

2,4-D + glu-amm -1.17 (0.17) 106.4 (3.87) 0.12 (0.02) 0.80 (0.26) 

P. annua 

glyphosate           

glu-amm 

2,4-D + glyphosate 

 

 

2,4-D + glu-amm 

M. recutita 

glyphosate 

 

 

      

136.5 (11) 0.16 (0.05) 1.48 (1.05) 

G. aparine 144.7 (15) 0.81 (0.28) 7.66 (5.34) 

R. crispus 65 (16.5) 0.32 (0.39) 3.02 (4.75) 

S. media 100 (9.7) 0.03 (0.01) 0.29 (0.21) 

glu-amm = glufosinate-ammonium 

-1.05 (0.19) 

120 (5.98) 

4.68 (1.14) 

-1.97 (0.30) 

1.53 (0.19) 

0.84 

-0.98 (0.21) 

0.14 (0.02) 1.11 (0.5) 

2.56 (0.60) 

(0.60) 

89.1 (3.31) 
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Table 2.7. Parameter estimates of dose-response curves after (%) reduction of growth data 

were fitted against the doses relative to recommended rate of glyphosate (1x = 540 g ha-1). 

Increase in the residual sum of squares from the common parameter model was not 

statistically significant from the separate line model for the C. album (P=0.62), S. vulagris 

(P=0.08) and P. annua (P=0.07). Dose-response curves are presented in Supplementary figure 

2.4. 

  Parameters Estimates (±SE) 

Weed 

species 

Herbicides b d (%) ED50 ED90 

C. album 
glyphosate  

 
0.13 (0.02) 0.71 (0.28) 

2,4-D + glyphosate 0.04 (0.01) 0.21 (0.1) 

S. vulgaris 
glyphosate  

 
0.01 (0.001) 0.03 (0.004) 

2,4-D + glyphosate 0.02 (0.002) 0.05 (0.01) 

P. annua 
glyphosate  

   
2,4-D + glyphosate 

 

2.5 Discussion  

Results presented in this paper demonstrate the efficacy of weed control using 

herbicide droplets which are applied leaf specifically in glasshouse conditions. All 

herbicide droplets contained 1% concentration of the adjuvant AS 500 SL. Although 

other adjuvants could have been used, this was not an objective of this study and the 

AS 500 SL proved to be effective. A different adjuvant was used for the trials which 

took place in the USA (Verimax Ams Dry) in order to simulate glufosinate-ammonium 

spraying practices. It has been well documented that absorption and translocation of 

glyphosate is influenced by herbicide concentration and droplet size ((Liu et al., 1996; 

Dill et al., 2010). Although a range of concentrations (2.5% to 20%) and droplet 

volumes (0.7 μl to 3 μl) were used, the absorption and translocation were not studied 

as this was not an objective of this study. 

The log-logistic model, which is normally used to describe effects of herbicide 

spray applications, fitted the biomass data reported in this study, so the hypothesis of 

the model’s adequacy for droplet treatments was accepted for most datasets. Although, 

in the case of modelling the effect of glufosinate-ammonium droplet application to P. 

-1.29 (0.27) 86.7 (3.17) 

-2.27 (0.34) 101 (1.48) 

-1.77 (0.37) 120 (8.03) 1.15 (0.17) 4 (1.40) 
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annua the test for lack of fit was significant however, according to Ritz et al. (2015b) 

and Streibig and Green (2017) when the relative slope of the curve (parameter b) 

exceeds 8 is an indication that the data may not fit the dose-response model 

(parameter b here is 1.82 (±0.61)). With regards to the glyphosate dose-response trials 

the values of the slope observed (1 to 3.5) were similar with those of Streibig & Green 

(2017) who in their studies with the dose-response model, are finding that the relative 

slope of biomass data for conventionally-sprayed glyphosate ranged between 2 and 4. 

For 50% control of S. media, 1/16 of the recommended dose of the Roundup® 

Biactive GL formulation was needed. When the same formulation of the herbicide was 

used for dose-response studies in the glasshouse, the most susceptible species when it 

was compared to G. aparine (Madsen & Jensen, 1995) and C. album (Madsen & Streibig, 

2000) was S. media, with similar ED50 values observed for all three weed species. The 

perennial weed R. crispus was the least susceptible among the species tested, requiring 

a dose almost 10-times the glyphosate recommended rate. Findings from a glasshouse 

study reported that a dose of 7200 g of glyphosate ha-1 was having an effect before 

100% mortality of R. crispus seedlings (Boutin et al., 2004). From all the above it 

becomes evident the difference in the susceptibility of the weeds to herbicide droplet 

application between species thus accepting the second hypothesis in this paper.  

The hypothesis that when the recommended doses of herbicides for 

conventional spraying are applied as droplet to a single leaf would provide at least 90% 

efficacy was accepted for C. album, S. vulgaris, S. media, M. recutita, U. urens 

(glufosinate-ammonium only) and A. cruentus (glyphosate only). The doses to achieve 

a 90% level of weed control for P. annua exceeded (4.7-times) the label 

recommendations for spraying glyphosate and glufosinate-ammonium and therefore, 

rejecting the hypothesis. The recommended rates of both glyphosate and glufosinate-

ammonium achieved the same level of weed control (90%) when applied to the same 

size C. album seedlings. The ED50 values were 1/6th of the 540 g ha-1 and 450 g ha-1 

recommended rates for glyphosate and glufosinate-ammonium, respectively (90 g 

glyphosate ha-1 and 75 g glufosinate-ammonium ha-1) suggesting that the weed is more 

susceptible to glufosinate-ammonium than glyphosate at the 4 to 6-leaf stage. These 

results agree with those of Tharp et al. (1999) who, in their glasshouse dose-response 

studies with C. album reported that the weed was more sensitive to glufosinate than 
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glyphosate when sprayed at the 4 to 6-leaf stage (ED50 Glufosinate = 69 g ha-1 and ED50 

Glyphosate = 120 g ha-1). However, for larger weeds (8 to 10-leaf stage) the same ED50 

values were observed (200 g ha-1). Furthermore, Tharp et al. 1999 observed no 

significant differences among the ED50 values when doses of glyphosate were sprayed 

to three different growth stages of C. album. The same is reported here when 

glyphosate is applied as droplets to two different growth stages of the weed. 

Regardless of the size of C. album, 1.5-times (810 g ha-1) the minimum label 

recommendation of glyphosate was required to control the weed. In previous studies 

recommended rates of 840 g ha-1 have been proven to control the weed in the field and 

in greenhouse trials with the ED50 values of biotypes sensitive to glyphosate ranging 

from 100 to 430 g ha-1 (the equivalent of 90 g ha-1 is reported here) (Lich et al., 1997; 

Westhoven et al., 2008; Schafer et al., 2012; DeGreeff et al., 2018).  

In greenhouse dose-response studies P. annua is controlled with 780 g of 

glyphosate ha-1 (Binkholder et al., 2011) whereas half of the recommended dose of 

glufosinate-ammonium is needed for 50% control (Riemens et al., 2008). Droplet 

application was carried out at the growing point of the weed which can explain the 

reduced efficacy reported here as a result from the limited translocation of the 

herbicides. To test that hypothesis the trial needs to be repeated alongside with a dose-

response trial where the same doses of the herbicides are applied as an overall spray.  

Also, similar to the efficacy when spraying the herbicides with that of droplet 

application reported here, hormetic effects were observed when sublethal doses of 

glyphosate were applied. Although the increase in the growth of some weeds when low 

doses were applied can be an experimental variability. However, the equivalent doses 

of glyphosate which appeared to be causing hormetic effect range from 2 to 17 g ha-1, 

literature suggests that low doses of glyphosate ranging from 1.8 to 36 g ha-1 can 

stimulate the growth of plant and weed species (Velini et al., 2008; Brito et al., 2018). 

Especially in the case of C. album (2 to 4 leaves) where doses of glyphosate in the range 

of 16 - 32 g ha-1 appeared to be causing hormetic effects (Nadeem et al., 2017). When 

droplets of glyphosate were applied to the same growth stage of the weed an increase 

in the dry weight of the weed was observed for doses up to 17 g ha-1. However, no such 

effects were observed for bigger growth stages of C. album. 
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The hypothesis of glyphosate being more potent than glufosinate-ammonium 

was accepted for groundsel and the red amaranth. Groundsel was controlled with ED90 

being 1/50th (0.24 μg of glyphosate) of the recommended whereas for glufosinate-

ammonium a higher dose was required (1.5x the recommended). Also, the 1/32 

relative dose of glyphosate, controlled A. cruentus whereas the same dose for 

glufosinate-ammonium reduced the growth of the seedlings by 50%. Although no work 

has been reported with relation to dose-response spray applications of glyphosate for 

A. cruentus, efficacy achieved here is similar to what was reported with wild types of 

Amaranthus tuberculatus species which have never been exposed to glyphosate 

(ED50=24 g ha-1) (Zelaya & Owen, 2005). However, when droplets of the two herbicides 

were applied to U. urens seedlings the weed was more susceptible to glufosinate-

ammonium than to glyphosate and therefore, rejecting the hypothesis mentioned 

earlier. Droplets containing 2.6 μg of glufosinate-ammonium were needed for weed 

control, a dose which was 1/10th of the recommended. For glyphosate, although it was 

imprecisely estimated, approximately 3-times the label recommendation was needed 

for 90% control. This matches the recommendation of Roundup® Biactive GL which 

suggests doses from 1080 to 1800 g ha-1 for the control of nettle weeds. However, this 

hypothesis needs to be tested for the same growth stage weed seedlings where dose-

response trials of the two herbicides will be carried out simultaneously.   

The specific objective of this study to model the effects of 2,4-D mixtures with 

glyphosate and glufosinate-ammonium, when doses are applied as single droplets, was 

fulfilled for C. album, S. vulgaris and P. annua. When glyphosate and the proprietary 

mix of 2,4-D and glyphosate were tested, it was proven that for C. album the mixture 

was 3.3-times more potent than glyphosate. However, for S. vulgaris glyphosate was 

approximately two times (1/0.53) potent than the mixture, whereas for P. annua there 

were no significant differences between the two. Antagonism has been reported when 

glyphosate is mixed with synthetic auxin herbicides like 2,4-D (Flint & Barrett, 1989) 

and dicamba (Meyer et al., 2015) when applied to Sorghum halepense and Echinochloa 

crus-galli weeds, respectively. However, this antagonism, especially in the case of 

glyphosate and 2,4-D is dependent upon dose rates (O'Donovan & O'Sullivan, 1982). 

Loss in herbicidal activity was observed when lower rates of 2,4-D (280 g ha-1) were 

mixed with glyphosate (560 g ha-1) however, no antagonism was observed for higher 

doses (Flint & Barrett, 1989). Similar effects were observed here especially at low 
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doses (1/64) whereas there were no differences when doses of 1/8th of the 

recommended and higher were used for the control of S. vulgaris. It is also worth 

mentioning that antagonism is only observed when the herbicides are mixed and not 

when commercially available pre-packed mixtures are used (Flint & Barrett, 1989). 

Although there is limited research testing the efficacy of auxin herbicides when mixed 

with glufosinate, an increased control of C. album is reported when 2,4-D is mixed with 

glufosinate (Chahal & Johnson, 2012; Merchant et al., 2013). However no such claim 

can be made here cause of the impresicely estimates for both of the effective doses 

when the combined treatment of the two herbicides was applied to C. album. Also 

higher levels of grass weeds control are reported when 2,4-D is sprayed with 

glufosinate compared to glufosinate alone in field with soybean (Craigmyle et al., 

2013). Similar to this finding, control of P. annua was enhanced with the application of 

the combined treatment of 2,4-D and glufosinate-ammonium.  

 With regards to the amount of active ingredient required to control individual 

seedlings using droplets of glyphosate, the same ED50 values were observed with 

Mathiassen et al. (2016), who reported that 3.7 μg of glyphosate per seedling reduced 

the fresh weight of C. album seedlings (2-leaf stage) by 50% (3.5 μg of glyphosate 

achieved here). Although no dose-response trial was carried out, Utstumo et al. 2018 

demonstrated that C. album and P. annua were controlled in glasshouse conditions 

with doses per plant of 7.56 μg of glyphosate. However, this is a level of uncertainty 

because when the trial was replicated the same doses did not control the weeds.  

 In conclusion it became evident that weeds can be controlled leaf-specifically 

by droplet application to one leaf providing that non-selective and broad-spectrum 

herbicides like glyphosate and glufosinate-ammonium were used. The efficacy of weed 

control reported here is, if not better, at least as good as what is expected if the 

herbicides were applied using a conventional spray. Moreover, a major improvement 

in application technology is that the amount of herbicide applied to each plant is known 

whereas, when spraying, only the average per unit land area is known. Also, the 

detrimental effect of accidentally misplacing glyphosate droplets on leaves of a 

cabbage crop is equally evident. Applying herbicides as a single droplet per weed has 

the potential of herbicide savings when compared to broadcast spraying over an entire 

field. When Søgaard et al. 2006 tested an automatic micro-spray system in field 
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conditions they achieved 82% control of Brassica napus with averagely 22.6 μg of 

glyphosate per plant at the 2-leaf stage. Assuming a weed density of 100 seedlings per 

m2 the system is applying 96% less glyphosate than the label recommendation of 540 

g ha-1. Herbicide savings from 73% to 95% were achieved when droplets of glyphosate 

were applied using a robotic weeder in a field with carrot crop (Utstumo et al., 2018). 

The ED90 values observed here for weeds at the two to four-leaf stage ranged from 0.24 

to 32 μg of glyphosate. Assuming the 100 weeds density if they were applied from 

robotic applicator, they would achieve herbicide reductions ranging from 94% to 99%. 
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2.6 Supplementary material 

 

 

ConH2O  ConAdj   1/128  1/64       1/32     1/16 1/8      1/4     1/2     1x        2x      Pure 

  

ConH2O ConAdj  1/128    1/64  1/32   1/16     1/8       1/4        1/2    1x        2x  4x     Pure 

  

ConH2O ConAdj  1/64   1/32      1/16    1/8      1/4      3/8    1/2     3/4      1x   2x    4x Pure 

 

ConH2O ConAdj   1/256    1/128     1/64       1/32    1/16  1/8  1/4   1/2  1x  2x  4x Pure  

 

ConH2O ConAdj  1/64  1/32      1/16 1/8    1/4    1/2       1x      2x      4x         Pure 

 

(a) Chenopodium album 

c) Stellaria media 

e) Galium aparine 

f) Urtica urens 

i) Rumex crispus 

Glyphosate 
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ConH2O ConAdj 1/128  1/64    1/32    1/16       1/8       1/4       1/2        1x         2x         4x     Pure 

2,4-D 

Glyphosate 

Glu-amm 

2,4-D + Glyphosate 

2,4-D + Glu-amm 

Poa annua 

ConH2O ConAdj 1/128 1/64   1/32     1/16     1/8        1/4    1/2         1x    2x    4x       Pure 

2,4-D 

Glyphosate 

Glu-amm 

2,4-D+Glyphosate 

2,4-D+Glu-amm 

Senecio 
vulgaris 
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Supplementary figure 2.1. Seedlings of weed species tested in this study, three weeks after 

applying droplets containing different concentrations of 2,4-D, glyphosate, glufosinate-

ammonium, 2,4-D plus glyphosate and 2,4-D plus glufosinate-ammonium. For the trials 1, 3, 5, 

6 and 9 droplets of glyphosate were applied to C. album, S. media, G. aparine, U. urens and R. 

crispus seedlings, respectively. Trials 7, 8 and 11 were carried out to P. annua, S. vulgaris and 

A. cruentus seedlings. For the trials 12 and 13 droplets containing glufosinate-ammonium were 

applied to C. album and U. urens, respectively. Pictures of seedlings from the trials 4 and 10 are 

not available.  

ConH2O      1/256        1/128     1/64      1/32       1/16   1/8        1/4   1/2    1x   2x    4x  Pure 

 

Glyphosate 

Glu-amm Amaranthu
s cruentus 

ConH2O ConAdj 1/128      1/64       1/32    1/16     1/8    1/4    1/2     1x       2x          4x      6x    Pure   

 

ConH2O    ConAdj     1/128     1/64            1/32       1/16      1/8    1/4      1/2    1x     2x   4x   6x Pure 

 

Glufosinate-
ammonium 

l) Chenopodium album 

n) Urtica urens 
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Supplementary table 2.1. Mean values of biomass data 20 days after application of droplets 

containing 1% of the adjuvant AS 500 SL and droplets containing only distilled water for all 

the weed species tested. When glufosinate-ammonium was applied to A.cruentus seedlings, the 

adjuvant Verimax Ams Dry was used whereas no adjuvant was used when glyphosate was 

applied to the same seedlings. 

Weed Species Adjuvant (1%) Water LSD P-value 

Glyphosate 

Chenopodium album 0.17 0.15 0.02 0.09 

Rumex crispus 0.23 0.20 0.04 0.11 

Galium aparine 0.04 0.03 0.01 0.36 

Matricaria recutita 0.06 0.06 0.02 0.76 

Stellaria media 0.17 0.22 0.07 0.17 

Urtica urens 0.19 0.18 0.03 0.24 

Senecio vulgaris 0.22 0.22 0.02 0.63 

Poa annua 0.28 0.29 0.02 0.47 

Brassica oleracea 0.68 0.63 0.01 0.31 

Glufosinate-ammonium 

Amaranthus cruentus 4.16 4.10 0.57 0.81 

 

Supplementary table 2.2. The lack-of-fit test after using the modelFit() function in R which 

compares the residual sum of squares from the non-linear regression analysis (DRM model) 

with the residual some of squares of the one-way ANOVA. Dose-response curves are presented 

in Figure 2.3. 

 Sum of Squares   

Dose response curves ANOVA DRC model df P-value 

Glyphosate 

(a) Chenopodium album 0.04 0.04 7 0.12 

(b) Chenopodium album 0.42 0.46 8 0.17 

(c) Stellaria media 1.09 1.13 9 0.81 

(d) Matricaria recutita 0.10 0.10 8 0.39 

(e) Galium aparine 0.02 0.02 7 0.65 

(f) Urtica urens 0.18 0.19 9 0.14 

(g) Poa annua 0.53 0.56 8 0.57 

(h) Senecio vulgaris 0.11 0.11 8 0.88 

(i) Rumex crispus 1.07 1.11 7 0.25 

(j) Brassica oleracea 9.66 9.93 9 0.32 

(k) Amaranthus cruentus 24.6 27.9 9 0.39 

Supplementary table 2.2 continued overleaf 
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 Sum of Squares   

Dose response curves ANOVA DRC model df P-value 

Glufosinate-ammonium 

(l) Chenopodium album 0.25 0.26 9 0.42 

(m) Chenopodium album 0.53 0.54 8 0.90 

(n) Urtica urens 0.08 0.08 9 0.59 

(o) Senecio vulgaris 0.23 0.25 8 0.09 

(p) Poa annua 0.42 0.47 8 0.04 

(q) Amaranthus cruentus 19.2 24.4 9 0.07 

2,4-D + Glyphosate 

(r) Chenopodium album 0.35 0.38 8 0.07 

(s)  Senecio vulgaris 0.28 0.30 8 0.15 

(t) Poa annua 0.43 0.46 8 0.48 

2,4-D + Glufosinate-ammonium 

(u) Chenopodium album 0.56 0.60 8 0.31 

(v)  Senecio vulgaris 0.29 0.32 8 0.08 

(w) Poa annua 0.39 0.41 8 0.49 

2,4-D 

(x) Chenopodium album 0.44 0.45 8 0.94 

(y) Senecio vulgaris 0.19 0.21 8 0.08 

(z) Poa annua 0.63 0.67 8 0.27 

 

 

 

Supplementary figure 2.2. Dose-response curves of the C. album separate lines model 

presented in Figure 2.4. 

 

Supplementary table 2.2 continued 
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Supplementary table 2.3. Results from testing for similarity of parameters between the 

separate line model and common line or the fitted model for the dose-response curves 

presented in Figure 2.4.  

Species Models Sum of Squares d.f. P-value 

C. album 

common line 1283570   

separate lines 796744 9 <0.001 

common slope & ED50 (fitted) 805813   

separate lines 796744 8 0.26 

U. urens 

common ED50 171352   

separate lines 154513 1 <0.001 

common line 251391   

separate line 154513 2 <0.001 

A. cruentus 

common ED50 33701   

separate line 30797 1  

common lower limit 31610   

separate line 30797 1 0.04 

common line 40943   

separate line 30797 3 <0.001 

 

Supplementary table 2.4. Results from testing for similarity of parameters between the 

separate line model and common line or the fitted model for the dose-response curves 

presented in Figure 2.5. 

Species Models Sum of Squares d.f. P-value 

C. album 

fitted 547147   
separate line 539409 6 0.09 
common line 599094   
separate line 539409 7 <0.001 

P. annua 

fitted 698840   
separate line 688502 8 0.33 
common line 722669   
separate line 688502 9 <0.001 

S. vulgaris 

common ED50 309559   
separate line 246446 4 <0.001 
common upper limit 250181   
separate line 246446 4 0.03 
common slope 252582   
separate line 246446 4 0.001 

M. recutita 

G. aparine 

R. crispus 

S. media 

common slope (fitted) 2558416   

separate line 2538739 3 0.13 

common ED50 2610887   

separate line 2538739 3 <0.001 
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Supplementary figure 2.3. Dose-response curves of the C. album and P. annua separate lines 

model presented in Figure 2.5.  
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Supplementary figure 2.4. Dose-response curves of the reduction of growth (%) data when 

plotted against the doses relative to the recommended rate of glyphosate (540 g ha-1) for the 

C. album, S. vulagris and P. annua trials. Dose-response models of C. album and S. vulagris have 

common slopes and upper limits and were not significantly different from the separate lines 

model (P=0.62 and P=0.08 respectively). A common line was fitted to plot the glyphosate and 

2,4-D + glyphosate dose-response curves of P. annua which was not significantly different from 

the separate lines model (P=0.07). Lower limit of the curves was fixed at 0 (three-parameter 

model). 
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3 Chapter 3                       
Leaf-specific weed control in cabbage and leek 
fields 

 

3.1 Abstract 

A major challenge for vegetable growers in the UK is achieving effective weed control 

while complying with regulations regarding pesticide use. This difficulty has been 

exacerbated by losses of approval for herbicide actives and the increasing difficulty of 

gaining approvals for new compounds. To address these problems, the concept of leaf-

specific weed control was tested in field experiments. Droplets of glyphosate and 

glufosinate-ammonium were applied manually to leaves of the natural weed 

infestation in transplanted cabbages (2016 & 2017) and leeks (2017 & 2018). Droplet 

applications of glyphosate were made on three occasions in the growing season of 

cabbages and controlled 92% of the weeds. There was a consistent lower trend of 

lower cabbage yields which was not significant than the weed-free controls (2016: 

50.5 t ha-1 & 2017: 93.5 t ha-1) while herbicide inputs were at least 91% lower 

compared to conventional pre and post-emergence spraying. In leeks, weekly 

applications of glyphosate and glufosinate-ammonium droplets were needed to 

control weeds without a significant yield penalty. Reductions in herbicide use in leeks 

ranged from 71% to 82%. Economic analysis demonstrated that droplet applications 

could increase profits by over £11,000 and £1,500 ha-1 per year for leeks and cabbages, 

respectively. 
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3.2 Introduction 

Herbicide-based weed control for most vegetable growers in the UK is of the essence, 

with herbicides accounting for 40% of the total amount of pesticides applied while less 

fungicides and insecticides being used (31% and 24% respectively) (Garthwaite et al., 

2017). Weed control, apart from being important to maintain vegetable yield and 

quality, is becoming increasingly challenging because of UK and EU pesticide reviews 

and also because pesticide manufacturers are hesitant to seek to register herbicides 

for a market which is relatively small (Hillocks, 2012). Additionally, vegetable growers 

rely in a limited and old range of herbicides (first released in 60’s and 70’s) which 

require a lot of funding and effort in order to keep them in the market (Fennimore et 

al., 2014). Legislation like the Regulation EC no. 1107/2009, the EU Water Framework 

Directive and the Sustainable Use of Pesticides (SUP) Directive along with UK’s 

National Action Plan for SUP have resulted in actual losses of approval for some 

herbicide actives and have decreased the likelihood of new compounds gaining 

approval (Baker & Knight, 2017). In order to compensate for the lack of available 

herbicides, there has been an increase in physical and mechanical weed control 

methods which are often more expensive than spraying herbicides (Garthwaite et al., 

2017). These pressures act as a driver towards a paradigm shift in approaches to weed 

control which will balance the need to meet demand for sustainable vegetable 

production while maintaining and increasing productivity.    

 Although some support banning pesticides completely, that ignores the fact that 

food security is linked to the availability of adequate supplies of good quality food at 

affordable prices. Ignoring price, it is well-established that organically grown crops 

consistently yield less than conventionally-grown ones (Seufert et al., 2012; Ponisio et 

al., 2015). While the use of genetically-modified, herbicide-tolerant crops (GM-HT) is a 

paradigm shift in weed control, it would still require spraying herbicides on a whole-

field basis, using broadcast application methods. Furthermore, no great differences 

were found in environmental impacts in the UK farm-scale between GM-HT and 

conventional crops (Hawes et al., 2003). Because it is unlikely that weed control 

problems will be solved with new herbicides registrations or with the use of GM-HT 

crops, automated technologies which use precision weed management systems is the 

way forward (Fennimore et al., 2014). The approach of leaf-specific weed control, in 
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which herbicide is not applied to the crop and not directly to the soil, holds great 

promise in reducing herbicide inputs while ticking all the policy boxes mentioned here. 

This study explores an engineering solution to the problem of weed control in field 

vegetables as an alternative to selective chemistry or biotechnology by using droplets 

of broad-spectrum herbicides which are applied leaf-specifically. 

Detecting single weed leaves and treating them using micro-rates of foliar-

applied, translocated herbicides is the ultimate in precision weed management. A 

study on four arable crops measured losses of pesticides up to 99% (sugar beet) to the 

soil surface when they are applied using broadcast spraying methods (Jensen & Spliid, 

2003). Assuming that a weed seedling covers a soil surface of 1 cm2 with numbers 

ranging between 100 and 400 weeds m-2, this corresponds to 1%-4% weed ground 

cover. To put it more simply, if a foliar-acting herbicide is applied by broadcast 

spraying, 96% will be lost in the soil surface or the crop, having potential 

environmental impact. Keeping this figure in mind, identifying and treating single 

weed plants has the potential of huge reductions in herbicide use (Zijlstra et al., 2011). 

Blackmore (2014) predicted that with the use of a microdot system which sprays 

chemicals only on the leaf-area of the weed, should result in 99% reduction in 

herbicide inputs. The robotic weeder being developed by University of Reading and 

Concurrent Solutions llc. in the USA, uses an alternative method of herbicide 

application from spot spraying or microdot technology. Actively targeted droplets of 

broad-spectrum herbicides are applied to individual weed leaves and dosage rates are 

controlled to ensure the most effective control based on the weed’s growth stage. 

Lee et al. (1999) developed one of the first systems for real-time, intra-row 

weed control in tomato fields. Although the objective of the system was that no 

herbicides were applied to the crop but only to the weeds, it only recognized 76% of 

the tomato plants correctly and sprayed only 48% of the weeds. Lamm et al. (2002) 

improved on that precision system and although it sprayed correctly 89% of the 

weeds, it also treated with the blue dye mixture, 21% of the cotton plants. Giles et al. 

(2004) tested the biological performance of a micro-dosing system which was based 

on the ones developed by Lee et al. (1999) and Lamm et al. (2002). Although high levels 

of weed control were achieved, the equivalent application rate of the mixture 

(glyphosate & adjuvant) emitted from the micro-dosing system was relatively high 
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(4700 L ha-1 or 46 μL cm-2). The micro-dosing system developed by Søgaard and Lund 

(2007) was able to deliver doses of 2.5 μl (containing 1 μg of glyphosate) as a spray to 

cells of 25 mm2 by firing four shots, which was sufficient when treating individual weed 

seedlings. When it was tested in field conditions with Brassica napus L. (oilseed rape) 

as a test weed, the plant surface area played a major role in the system’s performance. 

Targetting was acceptable when leaf area was greater than 100 mm2 (86% of the 

weeds were treated). The average dose applied per plant was 22.6 μg of glyphosate 

(Søgaard et al., 2006). Assuming a weed density of 100 plants m-2, weed control can be 

achieved with as little as 22.6 g ha-1 which corresponds to 96% reduction of the label 

recommendation for glyphosate (540 g ha-1). Nieuwenhuizen et al. (2010) described a 

microsprayer system for volunteer potato control in sugar beet fields. The system 

emitted single droplets (20 ± 5 μl) using 5% glyphosate solution (Roundup Max, 450 g 

L-1) and achieved 83% volunteer potato control while spraying approximately 1% of 

the sugar beet plants. A real-time micro-sprayer, which used an inkjet printer head as 

a spray system was developed by Midtiby et al. (2011) and was tested under indoor 

conditions. Droplets of 0.2 μl which contained 1 μg of glyphosate were used to control 

two weed species at speeds of 0.5 m s-1. Although the system provided a 94% control 

of oilseed rape which had the largest leaf area, against the smaller Tripleurospermum 

inodorum L. (scentless mayweed) it only managed to control 37% of the weed. More 

recently the Australian Centre for Field Robotics at the University of Sydney developed 

an autonomous robotic platform (Ladybird) for real-time detection and precision 

spraying of fertilizers and herbicides for vegetable crops (Underwood et al., 2015). A 

smaller version of the Ladybird robot has also been developed for Intelligent 

Perception and Precision Application (RIPPA) which, like its predecessor, is used for 

precision application of agrochemicals (Bogue, 2016). Lee et al. (2014) proposed an 

algorithm to improve the efficacy of spray applications of the Ladybird and RIPPA 

robots. Although some research has focused on using targeted applications of 

herbicides, little is known about the exact dose rates needed to control individual weed 

seedlings (Young & Giles, 2013). Likewise, little is known about the effect on crops 

when they are exposed to micro-doses of herbicides because of drift. Giles et al. (2004) 

observed phytotoxic effects to tomato plants which resulted in reduced crop yield by 

glyphosate “micro-drift” from a micro-dosing system. 
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 Closer to the approach adopted here, Christensen et al. (2009) mentioned the 

use of Drop-on-Demand (DoD) technologies which apply low volume rates 

(approximately 1 μL) of glyphosate as a single droplet to weed leaves and have the 

potential of achieving herbicide savings higher than 95% when compared with 

broadcast application methods. The kind of DοD applicators that have been developed, 

utilize glyphosate and their efficacy has been studied in conjunction with surfactants 

and adjuvants (Basi et al., 2013; Urdal et al., 2014; Mathiassen et al., 2016). The robotic 

DoD system described by Utstumo et al. (2018) demostrated intra-row weed control 

in carrots using droplets of glyphosate (2.1 μl). However, the robotic applicator was 

treating with droplets all plants (weeds and carrots), no other herbicides than 

glyphosate were applied (either as droplets or overall spray) and no other vegetable 

crops were tested. Also, no yield data were recorded and it is envisaged that the robotic 

system would be used in conjunction with mechanical inter-row weed control.  

In order to validate the concept of weed control by leaf-specific herbicide 

application, field trials were carried out, using manual droplet application of 

glyphosate and glufosinate-ammonium to the natural weed infestation in fields with 

cabbages and leeks. Efficacy of weed control and crop yield were estimated for 

herbicide droplet applications and were compared with weed-free, weedy and current 

herbicide spray applications. The hypotheses tested in this study were: 

i. Efficacy of weed control by leaf-specific droplet application and crop yield are 

not significantly different than hand-weeding or current spraying methods of 

herbicides.  

ii. Herbicide inputs will be significantly lower when droplet applications of 

herbicides are compared with spray applications of commercial herbicides.  

iii. Multiple treatments will be required so that late-emerging seedlings are 

controlled and any failure of weed control is addressed during the critical weed-

free period of the crop (Nieto et al., 1968).  

iv. Fewer droplet applications will be needed in cabbages than in leeks. Leeks are 

known to be weak competitors against weeds (Baumann et al., 2001) however, 

for cabbages, there is not a critical period for weed control and only a single 

weed control treatment is needed (Roberts et al. 1976; Weaver, 1984). A further 

hypothesis is, however, that more than one application of droplet treatments 

will be needed for cabbages. 
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3.3 Materials and Methods 

3.3.1 Field experiments 

Four field experiments were carried out at two fields in Sonning Farm, near Reading, 

two with cabbages (Brassica oleracea var. capitata) during summer 2016 and 2017 and 

two with leeks (Allium porrum L.) during summer 2017 and 2018 (Figure 3.1 (A)) 

(Table 3.1). The soil of the site for the 2016 trial was sand with 91.5% sand, 5.7% clay, 

2.9% silt and 0.9% stone content and soil of the site for the 2017 and 2018 trial was 

loamy sand with 87.1% sand, 6.4% clay, 5.3% silt and 12.9% stone content. For the 

2016 trial, savoy cabbage seeds, were provided from Elsoms Seeds (Elsoms Seeds Ltd, 

Lincolnshire, UK) and were sown under glasshouse conditions on Seed & Modular 

compost (Clover Peat, Dungannon, N. Ireland). Six weeks after sowing, cabbage 

seedlings were transplanted at the 3 to 4 leaf stage. For the 2017 trial white cabbage 

and leek seedlings were provided from the Westhorpe nursery (Westhorpe Plants Ltd, 

Boston, UK) and were transplanted in the field at the 3 to 4 leaf stage. For the 2018 

trial leek seedlings were purchased from Farringtons (Farringtons Ltd, Preston, UK) 

and were transplanted at the 2 to 3 leaf stage.  

For all trials, fertilizer was applied on the day of transplanting using sulfur (SO3) 

and nitrogen (N) at the rates of 50 kg ha-1 and 100 kg ha-1 respectively. Plants were 

watered individually twice per day for 30 min, using an automated drip irrigation 

system. Weed control by manual droplet application took place in a central area of 

plots (treated area) between the two middle crop rows (Figure 3.1 (B)). An area 

between the plots remained unplanted which was 80 cm long for the leeks and 60 cm 

for the cabbages.  

 

3.3.2 Herbicide treatments 

The experimental design was a randomized complete block for all trials. Four 

replications of eight treatments were applied for 2016 and ten treatments for the 2017 

trial with cabbages (Table 3.2). For the leeks nine and ten treatments were applied for 

the 2017 and 2018 trials, respectively, which were replicated three times for both 

years (Table 3.3). For all of the trials, control treatments consisted of weedy and weed-

free plots which remained untreated and hand-weeded respectively. The commercial 
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products Roundup® Biactive GL (360 g a.i. L-1, SL, Monsanto (UK) Ltd.) and Harvest® 

(150 g a.i. L-1, SL, Bayer CropScience Ltd) were used for the glyphosate (gly) and 

glufosinate-ammonium (glu-amm) applications respectively. For the inter-row spray 

of glyphosate for the 2016 trial, a spray shield (38 cm) was used to ensure that no 

herbicide was applied to the crop.  For the pre-emergence spray pendimethalin (Stomp 

Aqua®, 455 g a.i. L-1, CS, BASF plc) was applied whereas, for the post-emergence 

applications metazachlor (Sultan® 50 SC, 500 g a.i. L-1, SC, Adama Agricultural 

Solutions UK Ltd) was used for the cabbages and bromoxynil (Buctril®, 225 g a.i. L-1, 

EC, Bayer CropScience Ltd) for the leeks (Table 3.2, Table 3.3). Herbicide spray 

applications were carried out using an electric knapsack sprayer (CP 15 Electric, 

Cooper-Pegler, Villefranche-sur-Saone, France), equipped with a deflector nozzle 

(green colour 372021, Cooper-Pegler, Villefranche-sur-Saone, France) which was 

calibrated to deliver 1.310 L min-1 using a spray volume of 200 L ha-1. 

All droplets had a volume of 2 μl and were applied manually, using a pipette 

with a volume range from 0.1 to 2.5 μl (ErgoOne® Single-Channel, Starlab Ltd, Milton 

Keynes, UK) (Figure 3.1 (B)). When a single herbicide droplet per weed was applied, 

this involved the use of 36 μg of glyphosate and 60 μg of glufosinate-ammonium. The 

latter was applied for the 2017 trial only (Table 3.2, Table 3.3). Weeds growing in an 

area larger than 1 cm from the edge of the crop were treated. This was done to reduce 

the risk of accidental crop damage and also because a commercial system would have 

a 1 cm no-treated zone to avoid a direct hit on the crop. 

Multiple droplet application was carried out according to the size of the weed 

or the size of individual leaves (Drop gly or glu-amm (adj)). For the 2016 trial droplets 

containing 9 μg of glyphosate were applied to a single leaf if the leaf area of the seedling 

was less than 1 cm2 and if higher two droplets were applied to different leaves (Drop 

x3 gly (adj)) (Table 3.2). However, for 2017 and 2018 trials, 9 μg of glyphosate were 

applied to every visible leaf with area bigger than 1 cm2. When dose of glufosinate-

ammonium was adjusted, 7.5 μg were applied to leaves with area bigger than 1 cm2 

(Table 3.2, Table 3.3). 

For the application of 36 μg and 9 μg of glyphosate 5% and 1.25% solutions of 

Roundup® Biactive GL were prepared, respectively. When droplets containing 60 μg 

and 7.5 μg of glufosinate-ammonium were applied the solutions of Harvest® used 
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were 20% and 2.5% respectively. All droplet treatments contained 1% of the adjuvant 

AS 500 SL. Doses applied are based on ED50 and ED90 values which were needed to 

reduce the fresh weights of the C. album seedlings in dose-response studies (Chapter 

2, Table 2.3). Numbers of droplets applied per plot was counted allowing the 

equivalent application rate per hectare to be calculated. For the 2017 trial with 

cabbages the last droplet application was carried out at six weeks after planting 

instead of seven. This is because of the white cabbage canopy closure was not allowing 

enough space for weed control.  

 

3.3.3 Crop and weed measurements 

Crops and weeds were harvested from the area of the plots treated with droplets. After 

cutting and weighing the above ground biomass, cabbages and leeks were trimmed 

and weighed as for commercial sale and dry biomass of the weeds was estimated after 

oven-drying fresh seedlings for 48h at 80 °C. Cabbages were harvested once when the 

majority had reached maturity (first cabbage head splitting) and ten to twelve outer 

leaves were removed in order to be left with a trimmed head. Marketable yield of savoy 

and white cabbage is based on number of trimmed heads weighing more than 500 g 

and 1000 g respectively (A. Blair harvesting manager TH Clements, pers. comm., 5 

March 2018) although some supermarkets sell savoy cabbages weighing 400 g per 

head (e.g. Aldi, UK). For the savoy cabbages the cut-off weight was set at 300 g per 

head, because of heads were heavily trimmed. 

Leeks were trimmed at 34 cm and the diameter of the stalk was measured at 10 

cm from the root of the crop using digital callipers. Leek trimmed yield was classified 

into three marketable categories according to the diameter of the stalk (<25 mm, 25-

35 mm and >35 mm). Leeks measuring less than 25 mm are likely to be sold for 

processing, whereas for the 25-35 mm and more than 35 mm categories are referred 

to as class 1 product yields and they are sold as pre-packed and loose produce 

respectively (T. Casey chairman of the Leek Growers Association, pers comm., 22 

August 2018). 
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Figure 3.1. (A) Cabbage and leek experiments at Sonning Farm in 2017. The pipe in the 

foreground fed the irrigation system. (B) Manual application of droplets containing 

glufosinate-ammonium with a pipette in field with cabbages, at five weeks after planting the 

crop, for the 2017 trial. Blue hoops were placed so that the area could be cover with nets for 

bird protection. 
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Table 3.1. Field information and activities for the trials with cabbages (2016 & 2017) and leeks (2017 & 2018). See Tables 3.2 and 3.3 for herbicide 

treatments. 

Activity 2016 2017 2017 2018 

Field geo-reference 51°28'55"N, 0°53'51"W 51°28'24"N, 0°54'07"W 

Crop Cabbage Cabbage Leek Leek 

Previous crop Grass Wheat Wheat Cabbage 

Crop variety Savoy, Famosa F1 White, Surprise F1 Krypton F1 Duraton F1 

Crop planted 3 June 27 April 27 April 19 April 

Crop harvested 3 October 24 July 21 August 09 August 

Plants harvested per plot (number) 8 6 8 10 

Plants planted per plot (number) 28 32 

Inter-row spacing (cm) 50 40 

Intra-row spacing (cm) 30 20 

Plot size (m2) 5.25 3.2 

Plot arrangement 4 single rows 

Harvest/Droplet treated area (m2) 1.2 0.9 0.64 0.80 

Treatments applied (number) 8 10 9 10 

Blocks (number) 4 3 

Insecticide  10 August: 1 kg ha-1 DiPel® DF 13 June: 1 kg ha-1 DiPel® DF 13 June: 1 kg ha-1 DiPel® DF 8 & 20 June: 0.8 L ha1 Conserve® 

Fungicide N.A. 7 July: 1 L ha-1 Amistar®   N.A. N.A. 

Weed species (at harvest) SENVU, CHEAL, SPRAR, MATRE, 

and CAPBP 

SENVU, MATRE, CHEAL, POAAN, POLPE, CAPBP, TRZAX, ACHMI, 

GERMO, POLAR, TAROF and TRFDU. 

SENVU, MATRE, CHEAL, POAAN, 

CAPBP, SOLNI, TAROF and ACHMI. 

SENVU: Senecio vulgaris, CHEAL: Chenopodium album, SPRAR: Spergula arvensis, MATRE: Matricaria recutita, POAAN: Poa annua, CAPBP: Capsella bursa-pastoris, 
POLPE: Polygonum persicaria,  SOLNI: Solanum nigrum, TRZAX: Triticum aestivum, ACHMI: Achillea millefolium, GERMO: Geranium molle, TAROF: Taraxacum 
officinale, POLAR: Polygonum arenastrum, TRFDU: Trifolium dubium
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Table 3.2. Treatments applied with their respective doses and timing of application for the 

2016 and 2017 trials with cabbages. All droplet treatments contained 1% of the adjuvant AS 

500 SL. 

Treatments Dose Weeks After Planting 

2016 

Drop x1 gly 36 μg of glyphosate/seedling 3  

Drop x3 gly 36 μg of glyphosate/seedling 
 

Drop x3 gly (adj) 9 or 18 μg of glyphosate/seedling 

Inter-row spray 1.5 L ha-1 Roundup® Biactive GL 3 

Inter-row spray + 
Drop x1 gly 

1.5 L ha-1 Roundup® Biactive GL +  
36 μg of glyphosate/seedling 

3 (Inter-row spray) and  
5 (Droplet x1 gly) 

Pre-emergence 2.9 L ha-1 Stomp Aqua® One week before planting 

2017 

Drop x1 gly 36 μg of glyphosate/seedling 3 

Drop x2 gly 36 μg of glyphosate/seedling 3 and 5 

Drop x3 gly 36 μg of glyphosate/seedling 
 

Drop x3 gly (adj) 9 μg of glyphosate/leaf 

Drop x3 glu-amm 60 μg of glufosinate -ammonium/seedling 

Drop x3 glu-amm (adj) 7.5 μg of glufosinate-ammonium/leaf 

Post-emergence 1.5 L ha-1 Sultan® 50 SC 4 

Pre-emergence  2.9 L ha-1, Stomp Aqua® Five days before planting 

 

 

 

 

 

3, 5 and 6 

3, 5 and 7 
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Table 3.3. Treatments applied with their respective doses and timing of application for the 

2016 and 2017 trials with leeks. All droplet treatments contained 1% of the adjuvant AS 500 

SL. 

Treatments Dose Weeks After Planting 

2017 

Drop x5 gly 36 μg of glyphosate/seedling 2, 6, 8, 10 and 12 

Drop x10 gly 36 μg of glyphosate/seedling 

 

Drop x10 gly (adj) 9 μg of glyphosate/leaf 

Drop x10 glu-amm 60 μg of glufosinate -
ammonium/seedling 

Drop x10 glu-amm (adj) 7.5 μg of glufosinate-
ammonium/leaf 

Post-emergence 1.5 L ha-1, Buctril®           4 and 7 

Pre-emergence 2.9 L ha-1, Stomp Aqua® Five days before planting 

2018 

Drop x5 gly 36 μg of glyphosate/seedling 
 

Drop x5 gly (adj) 9 μg of glyphosate/leaf 

Drop x10 gly 36 μg of glyphosate/seedling  

Drop x10 gly (adj) 9 μg of glyphosate/leaf 

Drop x10 glu-amm (adj) 7.5 μg of glufosinate-
ammonium/leaf 

Post-emergence 1.5 L ha-1, Buctril®           4 

Pre-emergence  2.9 L ha-1, Stomp Aqua® Two days before planting 

Pre + Post-emergence 2.9 L ha-1 Stomp Aqua® +   1.5 
L ha-1 Buctril® 

Two days before planting (Pre) + 
4 (Post-emergence) 

 

 

 

 

2, 4, 5, 6, 7, 8, 9, 10, 11 
and 12 

3, 4, 5, 6, 7, 8, 9, 10, 11 
and 12 

3, 5, 7, 9 and  11 
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3.3.4 Economic analysis 

Preliminary economic analysis was carried out in order to determine the profit or loss 

likely to be associated with use of an automated platform when compared with pre and 

post-emergence sprays or with hand-weeding. The yield and the economic value of the 

weed-free plots is assumed to be the same with commercial hand-weeding cabbages 

and leeks. The gross margins of droplet treatments (GMd), conventional spraying (GMs) 

and hand-weeding (GMh) were calculated as follows: 

GMd = Vd - Hd - Md 

GMs = Vs - Hs - As and  

GMh = Vh - Lh 

where V is the crop value (£ ha-1), H is the herbicide cost (£ ha-1), Md is the machine 

cost (£ ha-1), As is the contractor charge (£ ha-1) and Lh is the labour charge (£ ha-1). The 

net benefit is given by the difference in the gross margins. The economic assumptions 

about the value of the crop and the cost for hand-weeding are presented in Table 3.4. 

A single hand-weeding is assumed for cabbages as the crop does not have a critical 

period for weed control and a single weed control treatment is needed to avoid yield 

loss (Weaver, 1984). Three hand-weeding treatments were assumed for leeks (after 

planting, in the middle of the critical period and close to harvest) because of the crop’s 

long critical period of weed control (1 to 12 weeks after planting) and its low 

competitive ability against weeds (Melander & Rasmussen, 2001; Tursun et al., 2007). 

Assumptions about the material cost of herbicides are presented in Table 3.5. Other 

costings related to growing and harvesting the crops were not taken into account as 

they would be similar in both cases of weed control (automated platform or 

conventional spraying) although, higher yielding crop would cost more to harvest. 

Further assumptions regarding the automated platform were: 

i. The platform would treat an area of 4 ha per day (8 h) and would retreat the same 

area every 14 days for both cabbages and leeks or every week for leeks only,  

ii. To allow for adverse weather and machine downtime, various costs have been 

assessed, assuming that the platform could operate 1, 3.5, 5 and 7 days per week, 

which means it could treat 4, 14, 20 and 28 ha per week, respectively 

iii. Based on the actual treatments applied in the field experiment and in the case of 

leeks, the known critical period for weed control (as described above), crops 
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would need to be treated: 

➢ three times at 14-day intervals for cabbages 

➢ five times at 14-day intervals for the leeks in the case of fortnightly 

treatment or ten times in the case of weekly application, 

iv. The cost of the platform including a maintenance contract is assumed to be not 

less than £25,000 and not more than £100,000. It is further assumed that this cost 

is depreciated over a period of five years giving an annual cost of £5,000, 10,000, 

15,000 and 20,000 per year assuming platform costs of £25,000, £50,000, 

£75,000 and £100,000, respectively. The platform costs per hectare per year are 

presented in Table 3.6. 

Each platform could be used for a maximum of 140 ha of cabbages or for 56 or 28 

ha when applying droplets fortnightly or weekly to leeks, respectively in the unlikely 

event that it was operating seven days per week. To examine how the variability in the 

platform’s cost and the operating days affect the gross margin, a sensitivity analysis 

was carried out using assumptions (ii) and (iv) above. 

 

Table 3.4. Economic assumptions for hand-weeding and crop value for cabbages (2016 & 

2017) and leeks (2017 & 2018). Time for each hand-weeding derived from the actual time 

spent over the growing season (leeks: 75 sec m-2 and cabbages: 46 sec m-2).  

 Leeks Cabbages 

Manual labour 
cost (£ h-1) * 

10.16 10.16 

No. of hand-
weeding 

3 1 

Time per hand-
weeding (h ha-1) 

208 h ha-1 126 h ha-1 

Total cost of hand-
weeding (£ ha-1) 

6,340 1,280 

Crop value†           
(£ kg-1)  

Stalk 
diameter 

2017 2018  2016 
(savoy) 

2017 
(white) 

<25mm 0.50 0.60 

=25-35mm 1.00 1.22 £ head-1 0.42 — 

>35mm 0.82 1.00 £ kg-1 0.84 0.34 

*Minimum manual labour cost (Redman, 2017); † Leeks (T. Casey. pers comm., 22 August 2018), Value 
for cabbages is the average wholesale market prices for 2016 and 2017 (Brigham, 2017). 
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Table 3.5. Material costs of the chemicals (herbicides and adjuvant) used for the 2017 and 

2018 trials with leeks. Costings were obtained from personal communication in November 

2018. Spraying application cost was 12.50 £ ha-1 (Redman, 2017). The material cost for 

spraying glyphosate based on the label recommendation ranges from 8 to 32 £ ha-1 and for 

glufosinate-ammonium costs between 6 and 10 £ ha-1. The material cost of spraying 

pendimethalin is £20.3 ha-1 and for bromoxynil is £28 ha-1. 

Chemicals Cost (£ L-1) Reference 

Roundup® Biactive GL 5.30 R. Casebow (Manager of Crops Research Unit, Sonning 

Farm) 

Harvest® 2.00 I. Ford (Business Development Manager, BASF 

Agricultural Solutions) 

AS 500 SL (adjuvant) 2.59 Prof. Zenon Woznica (Poznan University of Life Sciences) 

Stomp Aqua® 7.00 P. Liley (Crop Production Director, Hammond Produce 

Ltd.) 

Buctril® 19.0 Gordon Anderson-Taylor (Dr.) (Development Manager, 

Bayer CropScience Ltd.) 

 

Table 3.6. Annual platform costs (£ ha-1 year-1) when operating for 1 to 7 days per week and 

covering areas from 4 to 28 ha per week. When it is used on a fortnightly basis the platform 

could cover areas ranging from 8, to 56 ha. Platform costs assume the total cost is spread over 

five years. 

   Annual platform cost, £ ha-1 year-1 

Crop Treatments 
Platform cost, 

£/year 

Operating days/week 

1 3.5 5 7 

Cabbages 
Droplet x3 

(Fortnightly) 

£5,000 £250 £71 £50 £36 

£10,000 £500 £143 £100 £71 

£15,000 £750 £214 £150 £107 

£20,000 £1,000 £286 £200 £143 

Leeks 

Droplet x10 
(Weekly) 

£5,000 £1,250 £357 £250 £179 

£10,000 £2,500 £714 £500 £357 

£15,000 £3,750 £1,071 £750 £536 

£20,000 £5,000 £1,429 £1,000 £714 

Droplet x5 
(Fortnightly) 

£5,000 £625 £179 £125 £89 

£10,000 £1,250 £357 £250 £179 

£15,000 £1,875 £536 £375 £268 

£20,000 £2,500 £714 £500 £357 
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3.3.5 Statistical analysis 

Crop and weed biomass data, harvest index, economic value and amounts of herbicide 

applied were analysed with one-way analysis of variance as a randomized complete 

blocks design. All analyses were performed using Genstat 16th Edition (Payne et al., 

2002). Weed biomass data were expressed as per cent biomass reduction using Eqn 1: 

           (%) Reduction of biomass = (1 - Ti / T0) x 100                                                 (1) 

where, Ti is the sum of the weeds’ dry weights of each treatment and T0 is the total 

weeds’ dry weights of the weedy control treatment. Yield and biomass data of the crops 

were expressed as a per cent relative to the weed-free control. Harvest index (HI) is 

the ratio of the trimmed marketable yield divided by the untrimmed biomass. 

 

3.4 Results 

The efficacy of weed control in cabbages varied between weed control treatments in 

both 2016 and 2017 (P<0.001, Figure 3.2). When single droplets of glyphosate were 

applied per weed, on three occasions (Drop x3 gly) weed control efficacies were 92% 

for 2016 and 93% for 2017 (Figure 3.2). Furthermore, weeds were satisfactorily 

controlled when droplet application of glyphosate was adjusted according to the size 

of weed seedlings for the 2016 trial (89% control) and according to the area of 

individual leaves of the weeds for the 2017 trial (91% control) (Drop x3 gly (adj)). 

However, treating the crop on one occasion only (Drop x1 gly) gave the worst weed 

control in both years, but when droplets of glyphosate were applied on two occasions 

(Drop x2 gly) for the 2017 trial, weed control was much improved (72% control) 

(Figure 3.2). The pre-emergence spray treatment with pendimethalin was 

unsatisfactory in 2016 (62% control) whereas in 2017, it controlled 88% of the weeds. 

A single post-emergence spray of metazachlor in 2017 only controlled 68% of the 

weeds (Figure 3.2). 
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Figure 3.2. Efficacy of weed control expressed as percent dry weight reduction relative to 

weedy control (2016: 244 g/m2 and 2017: 393 g/m2) for the 2016 (SED: 11.6, d.f.: 21) and 

2017 (SED: 15.9, d.f.: 27) trials. Adjusted treatment for 2016 received 9 or 18 μg if the leaf area 

of the weed was less or more than 1 cm2 respectively. For the 2017 trial adjusted treatments 

received 9 μg of glyphosate (gly (adj)) or 7.5 μg of glufosinate-ammonium (glu-amm (adj)) to 

each leaf with an area bigger than 1 cm2 (Table 3.2). Analysis of variance is shown in 

Supplementary table 3.1. 
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Figure 3.3. Pictures of the plots’ area where cabbages and weeds were harvested, for the 

Weedy, Weed-free, Pre-emergence and Drop x3 gly treatments, at seven weeks after planting 

the savoy cabbages and nine weeks after planting the white cabbages for the 2016 and 2017 

trials, respectively. The same area was treated with droplets for the Drop x3 gly treatment. 

 

Significant differences were observed among the treatments applied at the 

2016 trial for the trimmed (Figure 3.4) and marketable yield and harvest index of the 

savoy cabbages (P≤0.01) (Supplementary table 3.1). The trimmed and marketable 

yields from the single and multiple droplet treatments and the combined inter-row 

spray plus single droplet treatment (Drop x3 gly; Drop x3 gly (adj); Inter-row spray + 

Drop x1 gly) for the 2016 trial, were lower than the 50.5 t ha-1 achieved in the hand-

weeded plots however, this trend was not significant (Figure 3.5). The trimmed yield 

of cabbages produced from the single droplet application of glyphosate (Drop x1 gly), 

for the 2016 trial was only half that of that of the weed-free control. Overall 36% of the 

harvested savoy heads were characterised as unmarketable (head weight < 300 g) 

whereas for the 2017 trial the overall rejection rate of unmarketable white cabbages 

was 11% (Supplementary figure 3.1). Marketable yields from the pre-emergence spray 

of pendimethalin and inter-row spray of glyphosate for the 2016 trial were not 

2016 Trial 
Weed-free Pre-emergence Drop x3 gly Weedy 

2017 Trial 
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significantly different than the hand-weeded control (Figure 3.5). No significant 

differences occurred for trimmed yield (P=0.26), marketable yield (P=0.24) and 

harvest index (P=0.08) for the 2017 trial (Supplementary table 3.1). However, the 

lowest yield measurements and the highest rejection rate of unmarketable produce 

were observed when droplets of glyphosate were applied on one occasion (Figure 3.5) 

(Supplementary figure 3.1).  

When dose was adjusted according to the size of the leaves for the 2017 trial 

more glufosinate-ammonium droplets were applied than glyphosate at 5 and 6 weeks 

after planting. Furthermore, 100 more droplets were applied at the starting point of 

droplet application for the 2016 single droplet treatments (Figure 3.6). The optimal 

glyphosate droplet treatments (Drop x3 gly and Drop x3 gly (adj)) which achieved high 

levels of weed control and no significant yield penalties, reduced the use of herbicide 

actives relative to pendimethalin spray by at least 91% and 96% for the 2016 and 2017 

trials respectively (Table 3.7). When the dose of glufosinate-ammonium was adjusted 

for the 2017 trial it reduced herbicide use by 95% and 97% relative to the post-

emergence spray of metazachlor and the pre-emergence spray respectively. 

 

 

Figure 3.4. Trimmed savoy and white cabbage heads at harvest of the 2016 and 2017 trial, 

respectively for the treatments used each year. Head of weed-free for the 2016 trial is not a 

representative size of the heads harvested from this treatment.  

      Weed-free      Weedy       Pre-em        Inter-row        Inter-row +     Drop x1 gly     Drop x3 gly      Drop x3 gly 
           spray                Drop x1 gly               (adj) 

 

Weed-free    Weedy       Pre-em         Post-em      Drop x1    Drop x2       Drop x3    Drop x3        Drop x3     Drop x3 
     gly   gly                 gly          gly (adj)       glu              glu (adj) 

2016 Trial 

2017 Trial 
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Figure 3.5. Yield of trimmed cabbages expressed as per cent relative to the yield of weed-free 

plots (mean ± SEM) for the 2016 (Weed-free: 50.5 t ha-1, SED: 16.7, d.f.: 21 and 2017(Weed-

free: 93.5 t ha-1, SED: 11.8. d.f.: 27) trials. Marketable yield was determined on number of 

trimmed heads weighing more than 300 g and 1000 g for the 2016 (Weed-free: 50.5 t ha-1, SED: 

21.6, d.f.: 21) and 2017 (Weed-free: 88.5 t ha-1, SED: 19.1, d.f.: 27) trials respectively. Rejection 

rate of unmarketable cabbage heads is presented in Supplementary figure 3.2. Harvest index 

is the ratio of the trimmed marketable yield divided by the untrimmed biomass (2016: SED: 

10.5, d.f.: 21), 2017: SED: 7.7, d.f.: 27)).  
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Figure 3.6. Mean number of droplets (±SEM) applied per m2 for the 2016 and 2017 trials with 

cabbages. For the 2017 trial, the number of droplets for the single droplet application 

treatments at 3 weeks after planting is the mean number of the Drop x1 gly, Drop x2 gly, Drop 

x3 gly and the Drop x3 glu-amm. For the droplets applied at 5 weeks the number represents 

the mean from the Drop x2 gly and Drop x3 gly treatments. For the 2017 adjusted treatments 

the number of droplets applied at 3 weeks is the mean number of the Drop x3 gly (adj) and 

Drop x3 glu-amm (adj). For the single droplet treatment of the 2016 trial, the droplets applied 

at 3 weeks is the mean number of the Drop x1 gly and Drop x3 gly. Final droplet application 

was carried out at 7 and 6 weeks after planting for the 2016 and 2017 trials respectively. 
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Table 3.7. Average of total amounts (±SEM) of herbicide applied (g of a.i. ha-1) for the droplet 

treatments and reductions relative to the pre-emergence and post-emergence spray 

treatments. Label recommendation for pre-emergence spray of pendimethalin is 1320 g ha-1. 

For spraying glyphosate, the label recommendations range from 540 to 1800 g ha-1 and for 

glufosinate-ammonium range from 450 to 750 g ha-1 with a maximum of 1500 g ha-1 per year 

if two treatments are applied. 

           % Reduction relative to 
Treatments Total amount of 

herbicide  
(g of a.i. ha-1) 

Pre-
emergence 

Post-emergence 

2016 
Inter-row spray  
(glyphosate, 540 g ha-1) 

Drop x1 gly 53.9 (7.4) 95.9 (0.6) 90.0 (1.4) 

Drop x3 gly 83.3 (11.7) 93.7 (0.9) 84.6 (2.2) 

Drop x3 gly (adj) 119.3 (29.3) 91.0 (2.2) 77.9 (5.4) 

Inter-row spray +   
Drop x1 gly 

562.1 (3.2) 57.4 (0.2) - 4.1 (0.6) 

SED (d.f.) 17.7 (9) 1.3 (9) 3.3 (9) 

2017 
Broadcast spray 
(metazachlor, 750 g ha-1) 

Drop x1 gly 16.4 (5.3) 98.8 (0.4) 97.8 (0.7) 

Drop x2 gly 41.0 (13.4) 96.9 (1.1) 94.5 (1.8) 

Drop x3 gly 55.2 (17.9) 95.8 (1.4) 92.6 (2.4) 

Drop x3 gly (adj) 28.1 (9.9) 97.9 (0.7) 96.3 (1.3) 

Drop x3 glu-amm 104.6 (42.3) 92.1 (3.2) 86.1 (5.6) 

Drop x3 glu-amm 
(adj) 

40.2 (17.6) 97.0 (1.3) 94.6 (2.4) 

SED (d.f.) 24.2 (15) 1.8 (15) 3.2 (15) 

 

Weed control of 97% and higher was achieved when glyphosate was applied as 

single droplet (9 μg) to every leaf with area bigger than 1 cm2 (gly (adj)) and as a single 

droplet per weed, on a weekly basis (10 times over 12 weeks) in fields with leeks for 

the 2017 and 2018 trials (Figure 3.7). Same levels of weed control were achieved when 

the adjusted glyphosate treatment was applied fortnightly (5 times) in 2018 (Figure 

3.8). When the single droplet per weed treatment was applied 5 times (2, 6, 8, 10 and 

12 weeks after planting) it controlled 85% of weeds for the 2017 trial. When dose of 

glufosinate-ammonium (7.5 μg) was adjusted according to the size of individual leaves 

(glu-amm (adj)) it reduced the weed dry biomass by 91% and 99% for the 2017 and 
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2018 trials respectively (Figure 3.8). Efficacy of weed control from the spray 

applications of pre and post-emergence herbicides was significantly lower (P<0.001) 

than then hand-weeded controls for both years (Supplementary table 3.2). 

 Yields of trimmed leeks produced from the weekly glyphosate droplet-to-every-

leaf treatment, were the highest among the plots treated with herbicides (either as 

droplets or overall spray). Although there was a consistent trend of lower yields 

compared to hand-weeded controls of the 2017 (42 t ha-1) and 2018 (39 t ha-1) trials, 

this was not significant. Similarly, the yield for the weekly application of the adjusted 

glufosinate-ammonium droplets (glu-amm (adj)) was 87% of the yield from the weed-

free control for the 2018 trial (Figure 3.9). However, yield and efficacy of weed control 

achieved from the single droplet of glufosinate-ammonium per weed treatment were 

significantly lower than the weed-free controls and therefore it was not repeated in 

the 2018 trial (Figure 3.8, Figure 3.9). Yields achieved from all the other herbicide 

treatments applied as droplets or overall spray were significantly lower than the weed-

free controls for both years (P<0.001, Supplementary table 3.2). Optimal treatments 

which achieved high levels of weed control (> 97% efficacy) and high yields produced 

more leeks with stalks measuring more than 25 mm (class 1 marketable yield). The 

mean harvest indices were 65% and 72% in 2017 and 2018, respectively and no 

significant differences occurred between treatments in either year (2017: P=0.9, 2018: 

P=0.7)) 

 Droplet application was initiated at two and three weeks after planting the 

leeks for the 2017 and 2018 trials, respectively. Overall more herbicide droplets were 

applied for every droplet treatment for 2017 compared to the 2018 trial . Within the 

year, for the weekly droplet application of the adjusted treatments, more glufosinate-

ammonium droplets were applied compared to glyphosate for both years. Droplet 

application of the weekly treatments for both herbicides started to reduce at seven 

weeks after planting during the 2018 trial (Figure 3.10). Regarding the amounts of 

herbicide applied, the weekly droplet treatment of glyphosate received the equivalent 

of 340 and 299 g of glyphosate ha-1 which was 74% and 77% lower than spraying the 

recommended rate of pendimethalin (1320 g ha-1) for the 2017 and 2018 trials 

respectively and 82% lower than spraying both pre and post-emergence herbicides. 

The fortnightly application of glyphosate droplets, in 2018 reduced the herbicide 
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inputs by 71% and 77% relative to pre-emergence and the pre+post-emergence 

sprays, respectively. Weekly application of glufosinate-ammonium droplets reduced 

herbicide a.i. amounts by 51% and 74% in 2017 and 2018 trials, respectively (Table 

3.8). When glufosinate-ammonium was applied as a single droplet per weed for the 

2017 trial the maximum label recommendation of 1500 g ha-1 was exceeded (2120 g 

ha-1). With this exception, the amounts of a.i. applied per unit land area never exceeded 

label recommendations for conventional spraying.  

 

Figure 3.7. Pictures of the plots’ area where weeds and leeks were harvested and weeds were 

treated with droplets, for the Weedy, Weed-free, Pre-emergence and Drop x10 gly treatments, 

at eleven weeks after planting the crop for the 2017 trial. 

 

 

 

Weed-free Pre-emergence Drop x10 gly Weedy 
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Figure 3.8. Efficacy of weed control expressed as percent dry weight reduction relative to 

weedy control for the 2017 (SED: 8.69, d.f.:16) and 2018 (SED: 15.5, d.f.: 18) trials. Dry weights 

of weeds in the weedy controls were 537 g/m2, and 547 g/m2 in 2017 and 2018, respectively. 

Adjusted treatments received 9 μg of glyphosate (gly (adj)) or 7.5 μg of glufosinate-ammonium 

(glu-amm (adj)) to each leaf with area bigger than 1 cm2 (Table 3.3). 
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Figure 3.9. Trimmed marketable yield of leeks expressed as % relative to the yield of the 

weed-free (mean ±SEM) for the 2017 (Weed-free yield: 42.2 t ha-1, SED: 11, d.f.:16) and 2018 

(Weed-free yield: 39 t ha-1, SED: 10.5, d.f.:18) trials. Marketable yield (t ha-1) was classified into 

three categories according to stalk diameter (<25mm, 25-35mm and >35 mm). Harvest index 

is the ratio of the trimmed marketable yield divided by the untrimmed biomass (2017: (SED: 

4.88, d.f.:16), 2018: (SED 4.53, d.f.:18)). 
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Figure 3.10. Mean number of droplets applied per m2 for the droplet treatments: Drop x 10 

gly (adj) (A &B), Drop x10 gly (C & D), Drop x10 glu-amm (adj) (E & F), Drop x5 gly (G & H) and 

Drop x5 gly (adj) (I) from the day of planting up to 12 weeks after planting the leeks for the 

2017 and 2018 trials. Number on the right corner of each graph represents the total number 

of droplets applied per m2 for each treatment. Description of droplet treatment for the leek 

trials is presented in Table 3.3. 
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Table 3.8. Total amounts of herbicide applied (g a.i. ha-1) for the droplet treatments and 

reductions relative to the pre-emergence (1319.5 g ha-1 pendimethalin) and post-emergence 

(337.5 g ha-1 bromoxynil) spray and the combined treatment of the two herbicides. For the 

2017, trial no combined treatment was applied and two spray applications of the post-

emergence treatment were carried out (675 g ha-1 bromoxynil). For spraying glyphosate, the 

label recommendations range from 540 to 1800 g ha-1 and for glufosinate-ammonium range 

from 450 to 750 g ha-1 with a maximum of 1500 g ha-1 per year if two treatments are applied. 

Figures are means (±SEM). 

  %Reduction relative to 

Treatments Total amount of 
herbicide (g of a.i. ha-1) 

Pre-
emergence 

Post-
emergence 

Pre + Post-
emergence 

2017 
Drop x5 gly 699.9 (139.3) 47.0 (10.6) -3.69 (20.6) N.A. 

Drop x10 gly 930.1 (34.8) 29.5 (2.64) -37.8 (5.16) N.A. 

Drop x10 gly (adj) 340.3 (26.2) 74.2 (1.99) 49.6 (3.9) N.A. 

Drop x10 glu-amm 2120.5 (139.9) -60.7 (10.6) -214 (20.7) N.A. 

Drop x10 glu-amm 
(adj) 

646.1 (122.6) 51.0 (9.29) 4.29 (18.2) N.A. 

SED (d.f.) 125.6 (8) 9.52 (8) 18.6 (8) N.A. 

2018 
Drop x5 gly 572.5 (26.4) 56.6 (2) -69.6 (7.83) 65.5 (1.59) 

Drop x5 gly (adj) 376.8 (24) 71.4 (1.82) -11.6 (7.12) 77.3 (1.45) 

Drop x10 gly 807 (11.6) 38.8 (8.46) -139.1 (33.1) 51.3 (6.74) 

Drop x10 gly (adj) 299.2 (47.4) 77.3 (3.56) 11.3 (14.1) 81.9 (2.86) 

Drop x10 glu-amm 
(adj) 

425.7 (18.8) 67.7 (1.42) -26.1 (5.56) 74.3 (1.13) 

SED (d.f.) 66.4 (8) 5.03 (8) 19.7 (8) 4.01 (8) 

N.A.: Not Applicable 

The £32,166 ha-1 value achieved from the treatments where glyphosate 

droplets were applied on three occasions (Drop x3 gly) and from the combined 

treatments of inter-row spray and droplet application was not  significantly different 

to that of the weed-free (£42,441 ha-1) for the savoy cabbages. The values of all other 

treatments in 2016 were, however, significantly lower (Figure 3.12). In 2017, no 

significant differences were observed for the economic value among the treatments 
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applied for the 2017 trial with white cabbages (P=0.13). Although higher leek yields 

were produced for the 2017 trial, because of the differences in pricing between years 

the value of the crop was higher for the 2018 trial. The value of the crop when droplets 

of glyphosate were applied either as a single droplet or multiple droplets per weed, on 

a weekly basis did not differ significantly than that of the weed-free for both trials 

(2017: £34,602 ha-1 and 2018: £43,187 ha-1) (Figure 3.9). Because of the high value of 

the crops and low cost of weed control the gross margins over weed control costs 

differed little from the economic values (Supplementary figure 3.2). 

 With one exception, reductions in gross margins when using glyphosate and 

glufosinate-ammonium droplets, associated with an increase in the cost of the platform 

from £25,000 to £100,000 and a decrease in the operating days from seven to one day 

per week, were less than 0.7% and 4.8% for cabbages and leeks, respectively (Figure 

3.11, Supplementary table 3.3). The exception was when the platform was operating 

one day per week, a larger decrease in the gross margins (2.3% and 18% for cabbages 

and leeks) was observed with increased cost of the platform (Figure 3.11, (A), (B), (F) 

and (G), Supplementary table 3.3).  

Preliminary economic analysis suggested that if the platform’s cost is £25,000 

and droplet treatments are carried out 5 days per week, the system would have been 

less profitable than hand-weeding the leek crop. On this basis, only when droplets of 

glyphosate were applied on ten occasions for the 2017 trial was the droplet treatment 

more profitable than hand-weeding. Gross margins of weekly applications of 

glyphosate droplets greatly exceeded those of conventional pre-emergence spraying, 

by £12,980 ha-1 and £22,255 ha-1 in 2017 and 2018, respectively (Table 3.9). Similarly, 

high values of additional profit were observed when applying droplets of glufosinate-

ammonium compared with pre-emergence spray (up to £20,617 ha-1). For cabbages 

just one droplet treatment (Drop x3 gly (adj)) was more profitable when compared 

with spray applications of pendimethalin in both years (2016: £4,521 ha-1 and 2017: 

£1,489 ha-1) (Table 3.9). Droplet treatments appeared to be more profitable only for 

2017 trial when compared to hand-weeding the cabbages. Based on the material cost 

of the glyphosate when using droplet applications, savings of up to £13 ha-1 and £19 

ha-1 in herbicide costs were achieved when compared with spraying the pre-

emergence pendimethalin for leeks and cabbages respectively (Table 3.9). 
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Figure 3.11. Figure legend on page 83 
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Figure 3.11. Mean gross margin (1000s ha-1) plotted against different prices of an autonomous 

platform performing leaf-specific weed control when operating at 1, 3.5 and 7 days per week. 

For cabbages glyphosate and glufosinate-ammonium droplets were applied in three occasions 

every two weeks, whereas in leeks droplets of both herbicides were applied every week in ten 

occasions. Conventional treatment was a pre-emergence spray of pendimethalin and only for 

leeks 2018 a pre-emergence and a post-emergence spray of bromoxynil were applied. Gross 

margin values are presented in Supplementary table 3.3. 
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Figure 3.12. Economic values of cabbages (A) and leeks (B) for the 2016, 2017 and 2018 trials. 

Marketability of cabbages was calculated based on minimum marketable weights of 300 and 

1000 g/head for savoy and white cabbages, respectively. Value of leeks was estimated 

according to the crop’s stalk diameter and a different value was given for the three categories 

each year. Economic values for cabbages and leeks are presented in Table 3.4. SED (d.f.) were 

6,825 (21) and 3,284 (27) for cabbages in 2016 and 2017 and 4,269 (16) and 7,854 (18) for 

leeks in 2017 and 2018, respectively.
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Table 3.9. Gross margin and material cost of the herbicides for the droplet treatments applied in the trials with cabbages (2016 & 2017) and leeks 

(2017 & 2018) and net profit or loss (in red) relative to pre-emergence spray, pre+post-emergence spray and hand-weeding (weed-free) 

treatments. Gross margins were calculated on the basis that the applicator would cost £25,000 and could operate five days per week. Pre + Post-

emergence spray was not applied to cabbages. Material costs of herbicides are based on the assumptions presented in Table 3.5. Gross margins are 

presented in Supplementary figure 3.2. 

 Gross Margin (£ ha-1) Material cost (£ ha-1) Difference in gross margin (£ ha-1) of droplet treatments compared 
to  

Treatments   Pre-emergence Hand-weeding Pre+Post-

emergence 

(A) Leeks 2017 2018 2017 2018 2017 2018 2017 2018 2018 

Drop x5 gly 22,628 15,885 11 9.2 5,478 5,744 -5,759 -20,961 1,572 

Drop x5 gly (adj) N.A.  27,116 N.A.  7.7 N.A. 16,974 N.A. -9,731 12,802 

Drop x10 gly 28,273 29,308 15 13 10,998 19,166 -240 -7,539 14,869 

Drop x10 gly (adj) 30,255 32,396 7 6.1 12,980 22,255 1,743 -4,451 17957 

Drop x10 glu-amm 22,602 N.A. 25 N.A. 5,327 N.A. -5,911 N.A. N.A. 

Drop x10 glu-amm 
(adj) 

22,586 30,758 13 8.6 5,311 20,617 -5,926 -6,089 16,319 

SED (d.f.) 4,270 (16) 7,854 (18) 3.6 (8) 1.1 (8) 3,394 (8) 9,628 (8) 3,394 (8) 9,628 (8) 9,628 (8) 

(B) Cabbages 2016 2017 2016 2017 2016 2017 2016 2017  

Drop x1 gly 12,680 26,975 0.9 0.3 -9,197 -7,987 -28,481 -3,599  

Drop x2 gly N.A. 32,074 N.A. 0.7 N.A. -2,748 N.A 1,550  

Drop x3 gly 32,065 31,795 1.4 0.9 10,188 -3,027 -9,097 1,271  

Drop x3 gly (adj) 26,398 36,311 2.1 0.6 4,521 1,489 -14,764 5,787  

Drop x3 glu-amm N.A. 31,235 N.A. 1.5 N.A. -3,586 N.A. 712  

Drop x3 glu-amm (adj) N.A. 32,407 N.A. 0.8 N.A. -2,415 N.A. 1,883  

SED (d.f.) 6,825 (21) 3,430 (24) 0.3 (6) 0.4 (15) 7,444 (6) 3,387 (15) 7,444 (6) 3,387 (15)  

          N.A. Not Applicable
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3.5 Discussion 

Results presented in this paper validate the concept of weed control by applying micro-

doses of herbicides using droplets applied leaf-specifically in fields with cabbages and 

leeks. The primary hypothesis was accepted for both crops since the efficacy of weed 

control and the yield produced from the droplet treatments were not statistically 

significantly lower than the weed-free controls and were higher than current spraying 

methods.  

For cabbages when micro-doses of glyphosate were applied either as a single 

or multiple droplets per weed on three occasions, they achieved over 90% weed 

control without any significant yield penalty. The hypothesis that multiple treatments 

would be needed was accepted since a single treatment using glyphosate droplets gave 

poorer levels of weed control and yielded even lower than the weedy controls for both 

years. However, according to Weaver (1984) a single weed control treatment between 

three and five weeks after planting was enough to avoid yield loss, and Roberts et al. 

(1976) similarly found that, for summer seeded cabbage in the UK, a single weeding 

three weeks after crop emergence was sufficient. Both authors agreed that there is not 

a critical period of weed control for the cabbage crop. In a more recent Danish study, 

which tested two types of mechanical intra-row weeding in transplanted white 

cabbage, a single weeding method (either as a post-emergence spray or mechanical 

weeding) at two weeks (in 2012) and three weeks (in 2013) after planting produced 

yields which were not significantly different from the manual weeding controls 

(Melander et al. 2015). It is also worth mentioning that the yield of white cabbage from 

the hand-weeded control in this study for 2013 was the same as with the weed-free 

trimmed yield produced here (93.5 t ha-1). 

Why then, may more than one droplet treatment be necessary? All the above 

studies utilize physical, mechanical or chemical weed control methods and total weed 

control is achieved when they are applied. However, a single leaf-specific application 

of herbicides as tested in this study may not achieve 100% efficacy for two reasons. 

First, the aim of applying droplets to weed leaves is that no herbicide will end up on 

the crop either directly or by run-off after rain. Weeds growing in an area less than 1 

cm from the edge of the crop were therefore deemed unsafe to treat due to a risk of 

collateral damage. Secondly, to avoid accidental direct applications to soil, very small 
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seedlings (leaf area <1 cm2) were also left untreated on the basis that they might not 

be targeted accurately enough by an automated system. Therefore, multiple 

treatments were required to control weeds that were omitted on the first visit. A third 

reason was to ensure effective weed control if weeds were poorly controlled or 

emerged after previous applications. So even though cabbages do not have a critical 

period for weed control, it is recommended that herbicide droplets should be applied 

on three occasions between 3 and 7 weeks after planting as demonstrated here.  

Unlike cabbages, leeks have a clear critical weed-free period and in order to 

avoid yield losses of over 5% in leeks, the crop needs to remain weed-free during the 

critical weed-free period from 1 to 12 weeks after planting (Tursun et al. 2007). Not 

surprisingly therefore, multiple treatments using droplets of glyphosate and 

glufosinate-ammonium were found necessary to keep the crop largely weed-free. For 

both years, weekly applications of glyphosate droplets applied to every leaf starting 

from 3 up to 12 weeks after planting, achieved at least 91% weed control efficacy 

without significantly lower yields. Also, a fortnightly application of the same treatment 

for 2018 controlled 100% of the weeds however, it yielded significantly lower than the 

hand-weeded controls. A possible reason for that could be an infestation with leek 

miner which resulted in overall lower leek yields for the 2018 trial. Efficacy of weed 

control also appeared satisfactory by applying a single glyphosate droplet per weed 

(36 μg) on a weekly basis however yields for both years were significantly lower.   

The amounts of herbicide a.i. applied in the optimal droplet treatments for 

cabbages (Drop x3 gly and Drop x3 gly (adj)) were 91% to 98% lower than for the 

conventional pre-emergence spray of pendimethalin. For leeks, applications of 

droplets containing glyphosate or glufosinate-ammonium demonstrated that 

herbicide inputs can be reduced by up to 82% and 74% respectively. So, the hypothesis 

that targetted droplet applications would significantly reduce herbicide inputs was 

accepted. From a regulatory perspective, the amounts of glyphosate applied in 

cabbages over the growing season (28.1 g ha-1 and 83.3 g ha1) were from 85% to 98% 

lower than the minimum label recommendation for spraying the herbicide (540 g ha-

1). When a DoD system (Asterix robot) was used for intra-row weed control in fields 

with carrots applying 2.1 μl droplets of glyphosate , the equivalent of 191 g glyphosate 

ha-1 was applied, which is 73 to 91% lower than the minimum and the maximum label 
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recommendations (540 g ha-1 to 2,160 g ha-1) (Utstumo et al., 2018). In this study, for 

glufosinate-ammonium the amount applied (40.2 g a.i. ha-1) was also much lower than 

the recommended rates of 450 to 750 g ha-1. Although more droplets were applied to 

the fields with leeks, the amounts of herbicides remained within the range of 

recommended doses, if not lower. Only in the case of the single droplet per weed of 

glufosinate-ammonium for the 2017 trial with leeks the amounts applied (2120.5 g ha-

1) exceeded the maximum recommendation of 1500 g ha-1 (two applications of 750 g 

ha-1).  

The doses of glyphosate applied here (36 μg per weed or 9 μg per leaf) are 

similar to those applied by a robotic application system described by Søgaard et al. 

(2006).  In field conditions, the test weed Brassica napus on average received 22.6 μg 

of glyphosate per plant, which was applied as droplets of 2.5 μl containing 5 μg of 

glyphosate to leaves with area of approximately 1 cm2. Also, the Asterix robot achieved 

total weed control using droplets of 2.1 μl volume which contained 5.3 μg of glyphosate 

(Utstumo et al., 2018). 

Franco et al. (2017) predicted that the potential savings in herbicides using a 

micro-spraying system would be 11-22 £ ha-1. This study supports this prediction: 

compared to spraying the full dose of a commercial herbicide, weed control by droplet 

application demonstrated savings in herbicide costs of up to £19 ha-1 for cabbages and 

£13 ha-1 for leeks. To answer the question if the reductions in costs and amount of 

herbicides applied would justify the investment in an automated platform, the 

preliminary economic analysis presented here predicted a very high increase in crop 

profitability associated with droplet applications of both glyphosate (£22,255 ha-1) and 

glufosinate-ammonium (£20,617 ha-1) compared with spraying commercial herbicides 

(pre-emergence). These differences are due to the high value of leeks and the lower 

yields with pre-emergence herbicides. For cabbages however, only the adjusted 

glyphosate treatment appeared to be profitable for both years when compared with 

pre-emergence spraying. When compared with hand-weeding, controlling weeds by 

leaf-specific droplet application was, however, less profitable for leeks and savoy 

cabbages, assuming it would take 208 h ha-1 and cost £6,340 ha-1 to hand-weed a leek 

field three times. For the white cabbages (2017 trial) the optimum droplet treatments 

appeared to be more profitable than hand-weeding and that was because these 
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treatments achieved higher yields than the weed-free control. These comparisons are, 

however, based on the assumption that yield of a commercial hand-weeded crop can 

be equated with the hand-weeded, weed-free controls in these experiments. The latter 

were hand-weeded on more than three occasions.  

The sensitivity analyses of the foregoing economic analysis was particularly 

encouraging. The gross margins were relatively insensitive to changes in platform 

costs to values much higher than anticipated. For example, Miller et al.’s (2011, 2013) 

spot spraying system costs approximately £45,000 and the applicator envisaged here 

is likely to be priced similarly. Concerns about the number of operational days were 

also addressed and provided the machine could operate for more than one day per 

week, profitability is not likely to be seriously compromised. 

In conclusion, manually applied droplets of glyphosate achieved satisfactory weed 

control without a significant yield penalty and reduced amounts of herbicide active 

ingredients applied to field grown cabbages by up to 94%. In leek crops, a sequence of 

applications of glyphosate or glufosinate-ammonium achieved high levels of weed 

control, no yield penalty and reduced herbicide applications by over 70% compared to 

conventional pre- and post-emergence sprays. Because of the high value of both crops, 

droplet applications could increase profits by over £11,000 ha-1 and £1,500 ha-1 per 

year for leeks and cabbages, respectively.  
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3.6 Supplementary material 

Supplementary table 3.1. One-way ANOVA analysis of trimmed and marketable yield, 

harvest index, reduction of weed biomass and rejection rate of unmarketable savoy cabbage 

heads for the 2016 and white cabbage heads for the 2017 trials. 

Year Variate Source of variation d.f. Sum of 
Squares 

Mean Sum 
of Squares 

P-value 

2
0

1
6

 

Trimmed yield      
(% Weed-free) 

Blocks 3 5365 1788.3   

Treatments 7 15565 2223.5 0.006 

Residual 21 11680 556.2   

Marketable yield   
(% Weed free) 

Blocks 3 9293.1 3097.7   

Treatments 7 24016.1 3430.9 0.01 

Residual 21 19561 931.5   

Economic value 
(£/ha) 

Blocks 3 659,200,000 219,700,00
0 

 

Treatments 7 4,090,000,000 584,300,00
0 

<0.001 

Residual 21 1,956,000,000 93,160,000  

Harvest index 

Blocks 3 1000.9 333.6   

Treatments 7 6428.9 918.4 0.014 

Residual 21 5671.4 270.1   

Reduction of 
weeds’ biomass 
relative to weedy 
control, (%) 

Blocks 3 1097.5 365.8   

Treatments 7 37386.8 5341.0 <0.001 

Residual 21 5616.0 267.4   

Cabbage heads 
rejection rate, 
(%) 

Blocks 3 483.4 161.1   

Treatments 7 19917 2845.3 <0.001 

Residual 21 10336.9 492.2  

2
0

1
7

 

Trimmed yield 
(% Weed-free) 

Blocks 3 5767.2 1922.4   

Treatments 9 3329.9 370.0 0.265 

Residual 27 7476.3 276.9  

Marketable yield   
(% Weed free) 

Blocks 3 14369.1 4789.7   

Treatments 9 9164.3 1018.3 0.242 

Residual 27 19793.3 733.1  

Economic value 
(£/ha) 

Blocks 3 321,800,000 107,300,00
0 

 

Treatments 9 336,500,000 37,390,000 0.13 

Residual 27 582,500,000 21,570,000  

Harvest index 

Blocks 3 1078.4 359.5   

Treatments 9 2114.2 234.9 0.082 
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Year Variate Source of variation d.f. Sum of 
Squares 

Mean Sum 
of Squares 

P-value 

Residual 27 3204.9 118.7  

2
0

1
7

 

Reduction of 
weeds’ biomass 
relative to weedy 
control, (%) 

Blocks 3 2444.7 814.9   

Treatments 9 35820.3 3980.0 <0.001 

Residual 27 13632.7 504.9  

Cabbage heads 
rejection rate, 
(%) 

Blocks 3 1909.7 636.6  

Treatments 9 4590.3 510 0.09 

Residual 27 7048.6 261.1  

 

 

 

Supplementary figure 3.1. (%) Average rejection rate (±SEM) of unmarketable savoy and 

white cabbage heads for the 2016 (SED:15.7, d.f.:21) and 2017 (SED: 23.4, d.f.:27) trials. The 

overall rejection rates were 36.3% and 11.3% of the savoy (2016 Trial) and white cabbages 

(2017 Trial) respectively. 
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Supplementary table 3.2. One-way ANOVA analysis of trimmed marketable yield (% Weed-

free), harvest index, economic value and reduction of weed biomass for the 2017 and 2018 

trials with leeks. 

Year Variate Source of 
variation 

d.f. Sum of 
Squares 

Mean Sum of 
Squares 

P-value 

2
0

1
7

 

Trimmed 
marketable 
yield (% Weed-
free) 

Blocks 2 4828.4 2414.2   

Treatments 8 13673.2 1709.1 <0.001 

Residual 16 2900.3 181.3  

Harvest index 

Blocks 2 137.09  68.55   

Treatments 8 134.38 16.80 0.860 

Residual 16 572.34 35.77   

Economic value 
(£/ha) 

Blocks 2 530,900,000 265,400,000  

Treatments 8 1,918,000,000 239,700,000 <0.001 

Residual 16 437,400,000 27,340,000  

Reduction of 
weeds’ biomass 
relative to 
weedy control, 
(%) 

Blocks 2 178.8 89.4   

Treatments 8 37602.7 4700.3 <0.001 

Residual 16 1813.9 113.4   

2
0

1
8

 

Trimmed 
marketable 
yield (% Weed-
free) 

Blocks 2 752.6 376.3   

Treatments 9 23126.1 2569.6 <0.001 

Residual 18 2966.3 164.8   

Harvest index 

Blocks 2 22.77 11.38   

Treatments 9 184.44 20.49  0.73 

Residual 18 554.33 30.80   

Economic value 
(£/ha) 

Blocks 2 63,760,000 31,880,000  

Treatments 9 4,264,000,000 473,800,000 0.002 

Residual 18 1,666,000,000 92,530,000  

Reduction of 
weeds’ biomass 
relative to 
weedy control, 
(%) 

Blocks 2 1500.6 750.3   

Treatments 9 30507.9 3389.8 <0.001 

Residual 18 6452.8 358.5   
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Supplementary figure 3.2. Mean gross margins (±SD) (£ ha-1) of cabbages (A) and leeks (B) 

for the 2016, 2017 and 2018 trials. SED (d.f.) in 2016 and 2017, respectively were 6,825 (21) 

and 3,430 (24) for cabbages and 4,269 (16) and 7,854 (18) for leeks in 2017 and 2018.  
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Supplementary table 3.3. Gross margins (£ ha-1) of the glyphosate and glufosinate-

ammonium droplet treatments used for the sensitivity analysis. Gross margins of conventional 

spraying treatments were £21,877 and £31,061 for the cabbages 2016 and 2017, respectively 

and £17,025 and £14,189 for the leeks 2017 and 2018, respectively. Glufosinate-ammonium 

was not applied in the 2016 trial with cabbages. 

   Gross margin, £ ha-1  

   Treatments 

Crop 
Platform 

cost, £/year 

Operating 
days/week 

Glyphosate 
droplets 

Glufosinate-
ammonium 

droplets 

Cabbage 
2016 

5,000 

1 

31,815 

N.A. 

10,000 31,565 

15,000 31,315 

20,000 31,065 

5,000 

3.5 

31,994 

10,000 31,922 

15,000 31,851 

20,000 31,779 

5,000 

5 

32,015 

10,000 31,965 

15,000 31,915 

20,000 31,865 

5,000 

7 

32,029 

10,000 31,994 

15,000 31,958 

20,000 31,922 

Cabbage 
2017 

5,000 

1 

36,061 32,156 

10,000 35,811 31,906 

15,000 35,561 31,656 

20,000 35,311 31,406 

5,000 

3.5 

36,240 32,335 

10,000 36,168 32,263 

15,000 36,097 32,192 

20,000 36,025 32,120 

5,000 

5 

36,261 32,356 

10,000 36,211 32,306 

15,000 36,161 32,256 

20,000 36,111 32,206 

5,000 

7 

36,275 32,370 

10,000 36,240 32,335 

15,000 36,204 32,299 

20,000 36,168 32,263 
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   Gross margin, £ ha-1  

   Treatments 

Crop 
Platform 

cost, £/year 

Operating 
days/week 

Glyphosate 
droplets 

Glufosinate-
ammonium 

droplets 

Leek 
2017 

5,000 

1 

29,005 21,336 

10,000 27,755 20,086 

15,000 26,505 18,836 

20,000 25,255 17,586 

5,000 

3.5 

29,898 22,229 

10,000 29,541 21,872 

15,000 29,184 21,515 

20,000 28,826 21,157 

5,000 

5 

30,005 22,336 

10,000 29,755 22,086 

15,000 29,505 21,836 

20,000 29,255 21,586 

5,000 

7 

30,076 22,407 

10,000 29,898 22,229 

15,000 29,719 22,050 

20,000 29,541 21,872 

Leek 
2018 

5,000 

1 

31,396 29,758 

10,000 30,146 28,508 

15,000 28,896 27,258 

20,000 27,646 26,008 

5,000 

3.5 

32,289 30,651 

10,000 31,932 30,294 

15,000 31,575 29,937 

20,000 31,217 29,579 

5,000 

5 

32,396 30,758 

10,000 32,146 30,508 

15,000 31,896 30,258 

20,000 31,646 30,008 

5,000 

7 

32,467 30,829 

10,000 32,289 30,651 

15,000 32,110 30,472 

20,000 31,932 30,294 

N.A. Not Applied 
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4 Chapter 4                  
Targeting accuracy of a DoD applicator for the 
leaf-specific weed control 

 

4.1 Summary 

Using broadcast spraying over an entire field as a method of herbicide application can 

have potential impacts on the environment and human health. Pressures from policy 

makers and consumers to lower pesticide use have resulted into researching new 

methods for precision weed management. One technology is Drop-on-Demand (DoD) 

systems where herbicide application is carried out using individual droplets. This 

method of weed control targets only the weeds and therefore, avoiding the soil and the 

crop. Although, several studies have researched the effect of a DoD applicator on 

droplet formation and the biological efficacy, there is limited work on the targeting 

accuracy and the displacement of droplets. The applicator which was developed by 

Concurrent Solutions LLC in the USA was tested under indoor conditions. A calibration 

test indicated that at 138 kPa pressure the applicator needed 4 ms to dispense a 

droplet of 1 μl. The effect of pressure, distance from the target, wind direction and 

motion of the applicator was tested on the targeting accuracy of the applicator. Droplet 

disintegration was observed when the applicator was operating at 207 and 276 kPa 

pressures. The highest droplet displacement (19 mm) was observed at 69 kPa 

pressure. Droplets were displaced from 1.9 up to 3.2 mm from a target set at 15 cm 

distance, for both motions of the applicator (moving & static) and when a 10 km h1 was 

coming from three directions (head, tail & cross). Recommendations for future field 

applications suggested that the applicator should operate at 138 kPa pressure and set 

at 15 cm height from weeds. 
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4.2 Introduction 

The most common method of herbicide application is using nozzles mounted on a 

conventional boom sprayer delivering a uniform dose over an entire field. However, a 

patchy distribution of weeds can make this method inefficient and wasteful, 

particularly in the case of post-emergence herbicide applications (Jensen et al., 2013). 

Furthermore, the use of herbicides is receiving a lot of negative attention because of 

potential adverse effects on human health (e.g. due to residues on fruit and vegetables) 

and the environment (e.g. ground water contamination) (Young, 2012). In order to 

address these and other concerns, strict regulations have resulted in losses of approval 

of herbicide actives and have decreased the likelihood of new products gaining 

approval (Baker & Knight, 2017). These pressures from consumers and regulations 

from policy makers signal the need for a paradigm shift from spraying whole fields as 

a method of weed control.  

 As a result, a lot of research has focused on precision spray applications of 

herbicides. One example is the use of Drop-on-Demand (DoD) weed control systems 

where herbicide application is carried out using low volume single droplets directly to 

the target and therefore, avoiding application to the crop and the soil. Furthermore 

when using these systems, the potential reductions in herbicide use could be over 95% 

(Christensen et al., 2009). The systems that have already been described for DoD 

herbicide application, in order to form droplets, they use an arrangement of solenoid 

valves (Giles et al., 2004; Urdal et al., 2014), needles (Nieuwenhuizen et al., 2010) and 

inkjet printer heads (Lund & Mathiassen, 2010; Midtiby et al., 2011). Also, the use of 

pneumatic valve was described by Basi et al. (2012) for generating single droplets of 1 

μl.  

One of the first automated systems for precision DoD was developed by Lee et 

al. (1999) for weed control in a tomato crop. The system was comprised of a machine 

vision system for crop and weed recognition and a precision sprayer with eight 

solenoid valves. After the images have been divided into grid cells of 0.81 cm2 (1.27 cm 

x 0.64 cm), it took 10 ms to spray each cell. When travelling at a speed of 0.8 km h-1 the 

displacement of the spray droplets from the target ranged from 1.7 mm to 11.5 mm 

with an average of 6.6 mm. However, the system was unsuccessful, as at this speed it 

recognized 73% of the crop and sprayed correctly only 48% of the weeds. Trying to 
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improve on that precision, Lamm et al. (2002) used the prototype system described by 

Lee et al. (1999) to develop a machine for precision weeding in cotton. When it was 

tested in the field at constant travelling speed of 1.62 km h-1, the system correctly 

recognized 89% of the weeds. However, it also sprayed 21% of the crop.  

Søgaard et al. (2006) developed and tested an autnomous robotic micro-dosing 

system. In indoor conditions, it was demonstrated that areas of 110 mm2 were treated 

with an average of four droplets, 2.5 μl (5 μg of glyphosate) each (10 ms shot at 40 kPa 

pressure). Although, one out of four droplets fired was off-target, the droplets that 

were hitting the target were assumed to be enough for weed control. When the same 

system was tested in the field trying to control Brassica napus (test weed), the targeting 

performance was acceptable, with 86% of plants with 100 mm2 leaf area being treated. 

However, when treating plants with leaf areas of 75 mm2 and lower, the targeting 

performance was reduced significantly.  

The tractor-pulled, automated system developed by Nieuwenhuizen et al. 

(2010), was designed for control of volunteer potatoes in sugar-beet fields. The 

algorithm used was able to create 10 mm x 40 mm grids in which the crop was 

distinguished from the volunteer potato. The latter was then treated with 20 ± 5 μl 

droplets containing glyphosate. Tests in indoor conditions showed that the 

displacement of droplets in the direction of travel was 4 mm with a standard deviation 

of 12 mm and at an angle of 90° to the direction of travel the displacement was 5.4 with 

a standard deviation of 6 mm. The system’s targeting accuracy was deemed acceptable 

as the minimum leaf area of a single plant was 1200 mm2 and so the droplet 

displacement would not affect targeting. To achieve satisfactory weed control, 

Fennimore et al. (2016) suggested that for most vegetable crops, the system needs to 

target weeds with leaf area smaller 400 mm2 (i.e. 10 x 40 mm).  

The micro-sprayer system developed by Midtiby et al. (2011) was able to detect 

and control weeds larger than 11 mm x 11 mm, when travelling at a constant speed of 

1.8 km h-1. Therefore, from these studies it is becoming clear that neither of the systems 

described earlier will be appropriate for weed control early in the growing season 

when weeds leaf area can be smaller than 100 mm2.  
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When using conventical sprayers as a method of pesticide application 

meteorological factors like wind speed and direction are important as they can 

influence the spray drift (Carlsen et al., 2006). Sprayer settings such as nozzle type and 

spray pressure affect the number of drops that are likely to be carried away by the 

wind (Southcombe et al., 1997; Van De Zande et al., 2008). The use of much larger 

single droplets of herbicides as a method of pesticide application is expected to 

minimize drift and therefore, deposition of the chemicals to off-target locations 

(Zijlstra et al., 2011). Although the studies on DoD application mentioned earlier are 

important in order to decide the growth stage at which a weed can be accurately 

detected and treated, experiments were carried out under ideal conditions and the 

effect of wind on the targeting accuracy of the system is not demonstrated. Slaughter 

et al. (2008) highlights the need for more robust and accurate methods of plant 

recognition and herbicide application which will suit real field conditions and 

therefore, meet the need for commercializing a robotic weed control system.  

Similar to the applicator setup used in this study, Urdal et al. (2014) designed a 

DoD system for application of herbicide droplets 1 μl, which comprised of a solenoid 

valve and a nozzle. The tests were mainly carried out to study the effect of the 

applicator on droplet formation. The objectives of this paper are to estimate the 

volume of droplets emitted by a prototype DoD applicator as a function of hydraulic 

pressure and to study the effects of wind, pressure and distance from the target on the 

displacement of droplets. The hypotheses tested in this study were: 

i. The solenoid valve open times of the prototype system in order to achieve 

droplet volumes appropriate for DoD application (1 to 5 μl) will not exceed 

10 ms (based on Urdal et al., 2014).  

ii. The higher the hydraulic pressure: 

a. the larger the volume of droplets and  

b. the smallest and displacement of droplets 

iii. The greater the distance of the applicator from the target: 

a. the lower accuracy of droplet targeting and  

b. the greater the likelihood of split droplets. 

iv. When the applicator is moving, a tail wind (coming in the direction of travel) 

will cause a greater displacement than a head wind (against the direction of 

travel). 
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4.3 Materials and Methods 

A calibration test and a targeting accuracy test were carried out using a prototype 

Drop-on-Demand applicator system built by Concurrent Solutions llc, for bench-scale 

testing in indoor conditions (Figure 4.1). For both experiments distilled water was 

used which was coloured with blue food dye (McCormick® Assorted Food Colors & 

Egg Dye, McCormick & Company, Inc., Maryland, USA). 

 

4.3.1 Drop on Demand system  

The prototype consisted of two subsystems: a pneumatically-driven fluid application 

system and an electronic control system operated via a graphical user interface (GUI) 

on a personal computer.  The subsystems were mounted on a miniature gantry, 1 m 

tall and 0.5 m wide, which included a motor and linear actuator which moved the 

applicator from right to left (Figure 4.1). The test rig allowed the operator to vary 

different pneumatic pressures, dispensing times as well as the lateral speed of the 

mini-gantry. 

 The volume and initial velocity of dispensed droplets were affected by three 

variables:  fluid pressure, dispensing duration and the shape and size of the nozzle 

orifice.  The nozzle was a constant for these experiments, meaning fluid pressure and 

dispensing duration determined droplet volume and initial velocity. The nozzle 

geometry is not described here, as this part of the system was built by Concurrent 

Solutions llc and is proprietary information. Fluid pressure was controlled manually 

by adjusting the air pressure within the system (Figure 4.1 pressure regulator (2)) and 

it could varied from 0 to 60 psi. Dispensing was regulated by the opening and closing 

of a solenoid valve mounted before the nozzle and the duration for which the valve was 

open was controlled electronically by the operator via the GUI. The solenoid valve 

could be opened for a minimum of 1 ms, enabling very fast cycling of the system. The 

solenoid used here had a smaller internal liquid capacity and could operate at speeds 

100-times faster than those used for broadcast spraying.  This performance would be 

critical to the accurate small dosing and timing needed for precise droplet application 

to leaves of small weed seedlings.  As with the nozzle, the solenoid valve was purpose-

built for the applicator and details are proprietary to Concurrent Solutions llc.  
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Figure 4.1. Gantry system mounted on an aluminium frame comprising an air pressure shut 

off valve (1), pressure regulator (2), pressure gauge (3), pressure release valve (4), liquid 

reservoir (5), flexible tubing (6), controller box (7), motor (8), linear actuator (9), ejector 

tubing (10), manifold (11), ejector nozzle (12), drain valve (13), liquid drain (14) and a laser 

pointer (15). Pressure was delivered using a Husky 8G 150 PSI Hotdog portable Air 

Compressor. The overall gantry is shown in (A) and the detail of the applicator in (B). Note that 

(B) is viewed along the direction of movement and is not the front view shown in (A).  

 

4.3.2 Calibration test  

In order to estimate the time needed for the applicator to dispense a single droplet of 

1 μl under different pressures, a calibration test was carried out. The pressures tested 

were 69 kPa (10 psi), 138 kPa (20 psi), 207 kPa (30 psi) and 276 kPa (40 psi) and the 

time that the ejector nozzle/applicator operated ranged from 1 to 10 ms. Overall 40 

treatments of pressure x time were tested, which were replicated four times. The 

average volume of each droplet was estimated by dispensing 1000 droplets of distilled 

water into an empty 1.5 ml Eppendorf® microtube. The weight of the collected water 

was measured using a using an analytical balance (weighing to the nearest 0.001 g) 
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4.3.3 Targeting accuracy test 

The effect of pressure and distance from the target were tested on the targeting 

accuracy of the applicator when wind was applied. Tests were performed when the 

applicator was moving and when it was static. The target was an A4 uncoated paper 

attached to a wooden board. The level of the surface was checked with a spirit level 

each time the height of the board was adjusted. Wind was applied using an 12" floor 

fan and it was measured using a digital anemometer (HP-866B, HoldPeak®, Yongtian 

Road, ZHUHAI, China) at three places: at the nozzle outlet, halfway between the nozzle 

and the target and at the level of the target. A plastic honeycomb structure was used as 

an air flow straightener to minimize the turbulence of the air generated by the fan. 

Twelve treatments applied comprising of three distances from the target (15 

cm, 30 cm and 50 cm), at each four pressures (69 kPa, 138 kPa, 207 kPa and 276 kPa). 

A constant wind speed of 10 km h-1 was applied with the wind coming from four 

directions when the applicator was static and three directions when it was moving. 

Wind directions were defined relative to the direction of travel of the applicator, that 

is   head (0°), cross (90°) and tail (180°). Control treatments involved the use of 

pressure and distance at zero speed and were applied first before any wind was 

introduced. The factorial experimental design became unbalanced because 

displacement could not be measured for the 69 kPa pressure and 50 cm from the 

target, treatments. For that treatment combination, emitted droplets fragmented were 

scattered with no clear indication of the point of application was even at 0 km h-1 wind 

speed (Supplementary figure 4.1). Overall 55 and 44 treatments were applied when 

the applicator was static and moving, respectively and the experiment was replicated 

four times. For each treatment ten and five droplets were applied when the applicator 

was static and when it was moving, respectively. When the applicator was moving 

droplets were emitted every 3.9 cm over a distance of 19.2 cm. Displacement of 

droplets was not measured at the first and last point of application because the 

applicator was speeding and slowing down at these places, respectively (Figure 4.2). 

After allowing some time for the blue dye to dry on the A4 paper, a circle was drawn 

using a plastic geometric designer. A digital calliper (iGaging®, Granada Hills CA, U.S.A) 

was used to measure the distance between the outer sides of the circles containing 
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droplets applied with the zero wind, with those when different directions of wind were 

applied. Results were expressed as displacement (mm) relative to zero wind.  

 

Figure 4.2. Droplets of 1 μl coloured with blue dye emitted from a moving applicator after 

traversing one time. Target was an A4 sheet of uncoated paper which was placed 15 cm from 

the applicator. The applicator was operating at 138 kPa and droplets were applied with 0 km 

h-1 wind. Droplet displacement was not measured at points 1 and 6 of application. No spatter 

was observed. Experimental setup is described in Figure 4.1.  

 

4.3.4 Statistical analysis 

Results from the calibration test were analysed with linear regression using R version 

3.2.1 (R Development Core Team, 2014). Unbalanced ANOVA was carried out using 

GenStat (17th Version) (VSN International Ltd., Hemel Hempstead, UK) to analyse the 

effects of pressure, distance from the target, wind direction and motion of the 

applicator on the displacement of droplets. 

 

4.4 Results 

Results from the calibration test showed that the mean weight of the water when 1000 

droplets were applied was 1 g, when the applicator was operating for 6 ms, 4 ms, 3 ms 

and 2.5 ms at 69 kPa, 138 kPa, 207 kPa and 276 kPa pressure, respectively (Figure 4.3). 

Therefore, the average volume of the droplets coming from this pressure and time 

combinations was 1 μl. Furthermore, linear models were fitted to each pressure in 

order to be able to predict the time needed to apply droplets of different volumes 

(Figure 4.3). Also, it was proven that there was significant effect of time and pressure 

interaction to the weight of distilled water for the calibration test (P<0.001) 

(Supplementary table 4.2). To be able to predict other operating times and pressures 

of the applicator to apply a droplet of 1 μl, a logarithmic model was fitted when the 
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time was plotted against the pressure required (Figure 4.4). Also, for each operating 

time of the applicator, the higher the pressure applied it increased the volume of the 

droplets (Figure 4.3). 

 

Figure 4.3. Mean values and fitted linear models of the mean weight of water after dispensing 

1000 droplets plotted against the time it took the applicator to dispense a single droplet for 

the four different pressures. Coefficients (±SE) of the linear models are presented in 

Supplementary table 4.1. 

 

Figure 4.4. Mean values and fitted logarithmic model for the pressure and time it took the 

applicator to dispense 1 μl droplets. Coefficients (±SE) of the logarithmic model are presented 

in Supplementary table 4.3. 
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For the moving and the static applicator, the main effect of time, pressure and 

wind direction on the displacement of the droplets was significant (P<0.001) 

(Supplementary table 4.4). However, motion of the applicator (moving or static) did 

not have a significant effect on droplet displacement (P=0.38). The interaction of 

distance from the target and operating pressure of the applicator on the displacement 

of the droplets was, however significant (P<0.001). The smallest droplet displacement 

which, ranged from 1.8 to 4 mm and was observed when the applicator was operating 

at 15 cm above the target (Figure 4.5, Figure 4.6 (A)). Also, for this distance the 

displacements associated with pressures of 138, 207 and 276 kPa were not 

significantly different (Figure 4.5). Furthermore, when the applicator was operating at 

higher pressures, lower relative displacement of droplets was observed. Although, 

displacement was significantly smaller for the 276 kPa when compared with 138 kPa, 

split droplets were observed for the 276 kPa and the 207 kPa pressure (Supplementary 

figure 4.2). Moreover, the higher the distance from the target, the droplets tended to 

displace further. However, the largest displacement was observed when droplets were 

applied at 30 cm from the target and using 69 kPa pressure (Figure 4.5 (A)).  

The interaction of wind direction and distance from the target on the 

displacement of droplets was significant (P<0.001). A tail wind caused a 12.5 mm 

displacement of droplets emitted 30 cm from the target which was significantly higher 

than the displacement caused by head and cross winds for that distance. When the 

target was 50 cm from the nozzle, the displacement was not significantly different 

between tail and head winds (Figure 4.5 (B)). A significant interaction was observed 

between the wind direction, distance from the target and motion of the applicator on 

the displacement of droplets (P<0.001). The droplets were not displaced significantly 

between the three wind directions and the two motions of the applicator, when the 

system was operating at 15 cm distance from the target (Figure 4.6 (A)). At 30 cm 

distance from the target however, a tail wind resulted in a significantly higher droplet 

displacement compared to a head wind for both the moving and the static applicator 

(Figure 4.6 (B)). However, when emitting droplets 50 cm from the target there were 

no significant differences between the displacements caused by a head and a tail wind, 

for the moving and the static applicator (Figure 4.6 (C)). 
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Figure 4.5. Effect of distance from target (15, 30 and 50 cm) on the relative displacement of 

droplets relative to the zero-wind control, as a result of application of (A) four pressures (69, 

138, 207 and 276 kPa) and (B) three wind directions (0°, 90° and 180°) regardless of the 

motion of the applicator. Maximum l.s.d. was 0.99 and 0.97 for A and B respectively (P=0.05).  
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Figure 4.6. Effect of 10 km h-1 wind speed when wind was applied from three different 

directions of 0° (head), 90° (cross) and 180° (tail) and distance from the target at (A) 15 cm, 

(B) 30 cm and (C) 50 cm  to the displacement of the droplets when applicator was static and 

moving across the four pressures. Maximum l.s.d. is 1.41 (P=0.05).  
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 When the applicator was operating at 138 kPa, the interactions of motion and 

wind direction (P=0.047) and motion and distance from the target (P<0.001), had a 

significant effect on the displacement of droplets (Supplementary table 4.5). The 

displacement caused by the three wind directions did not differ significantly when the 

applicator was moving. However, when it was static the 7.3 mm mean displacement 

caused by a 180° (tail wind) was significantly higher than the 6.04 mm displacement 

caused by the wind coming from the 0° (head wind) (P<0.05, Figure 4.7 (A)). When the 

applicator was operating at 138 kPa and applying droplets at 15 cm from target there 

were no significant differences on the displacements associated with the moving and 

static applicator. For both motions of the applicator, at 138 kPa pressure, the droplets 

were displaced significantly further from the 0 km h-1 control, for higher distances 

from the target (30 and 50 cm) (Figure 4.7 (B)) 

 

 

Figure 4.7. Effect of (A) wind direction and (B) distance from the target on the displacement 

droplets from the no wind control, when applicator is operating at 138 kPa. Maximum l.s.d was 

1.07 and 1.11 for (A) and (B), respectively.  
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4.5 Discussion 

Results presented in this paper estimated the time taken for the prototype applicator 

to dispense droplets of the size required for a DoD application system. The hypothesis 

that the time would not exceed 10 ms was accepted for the four operating pressures 

tested. The time taken to dispense a droplet of 1 μl ranged from 2.5 to 6 ms. Similar 

times (10 ms) were reported for the micro-spray systems of Lee et al. (1999) and 

Lamm et al. (2002). Also, Søgaard and Lund (2007) etsimated that to apply a droplet 

of 2.5 μl at 40 kPa, the time needed was 10 ms. Giles et al. (2004) however, used pulse 

durations ranging from 6 to 10 ms to apply dose rates of 37 μl. Furthermore, the 

hypothesis that when higher pressures will be used this will increase the volume of the 

droplets was also accepted and this may partly account for the higher volumes 

achieved by Giles et al. (2004), although nozzle aperture is also an important factor in 

relation to droplet sizes and flow rates. 

The hypothesis that when the applicator operates at higher pressures the 

displacement of droplets will tend to be smaller, was accepted. The lowest operating 

pressure of 69 kPa could not be recommended for the nozzle tested as that was when 

the droplets were displaced further from the target. Higher pressures of 207 and 276 

kPa were also unsatisfactory despite their potential for smaller displacements because 

the droplets were splitting into smaller ones which were deviating from the target 

especially at 30 cm and 50 cm distances. As it described by Vadillo et al. (2010), the 

main parts of a droplet generated by a DoD inkjet system are the tail, the filament and 

the main drop (Figure 4.8). When the droplet is falling, the tail and filament may be 

absorbed into the main droplet or, the filament can break up and create a separate 

droplet or multiple satellite droplets, if the Plateau–Rayleigh instability occurs (Vadillo 

et al., 2010). Without the effect of wind or any other disturbance which can 

compromise the stability of the system, satellites and main droplets should reach the 

same target and coalesce to become as a single droplet (Dong et al., 2006). Although, 

Dong and Vardillo’s studies describe the droplets generated by DoD inkjet printers, 

which are much smaller than those used in this study, Castrejo n-Pita et al. (2008) 

confirmed that the same principle applies to larger droplets as well. Interesting, in this 

study droplets disintegrated into smaller satellites even when no wind treatments 

were applied with a static applicator at 207 and 276 kPa pressure and further work to 
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optimize nozzle aperture is recommended. Satellite droplets also occurred in the 

micro-sprayer system developed by Nieuwenhuizen et al. (2010). When it was tested 

in the field for control of volunteer potato, 1% of crop plants showed herbicide damage 

which may have been caused by these satellite droplets. It is important that droplets 

do not disintegrate, especially when they are travelling long distances. Therefore, for 

future usage of the applicator system presented here, in order to avoid formation of 

satellite droplets which might end up damaging the crop it is concluded and 

recommended that the operating pressure should be set at 138 kPa, since no satellites 

occurred and the system operated satisfactorily at this pressure. 

 

 

Figure 4.8. Parts of a droplet as they were described by Vadillo et al. (2010) and generated by 

a DoD inkjet. 

 

The hypothesis that the displacement of droplets increases with distance from 

the applicator, was accepted and the smallest droplet displacement was observed 

when application was carried out at 15 cm distance from the target (the closest 

distance tested). Similar results were observed by Nieuwenhuizen et al. (2010) when 

evaluating the precision of an automated micro-spraying system. Although larger 

droplets were applied in that study (20 μl) the deviation of droplets was higher at 30 

cm height when compared to 10 cm for both, the longitudinal and transverse deviation 

relative to the direction of the micro-spray system. Therefore, based on the present 

and Nieuwenhuizen’s results, it is recommended that the nozzle outlet should be at 15 

cm from the target, especially for small seedlings (leaf area=100 mm2). If there is a 
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need for the applicator to be higher above the crop (e.g. leek seedlings at planting are 

approximately 20 cm tall), then larger areas than 100 mm2 could be targeted to 

account for increase in the displacement of droplets.  

When the applicator was moving in a tail wind of 10 km h-1, the droplets tended 

to be displaced further compared with the effect of a head wind, for the same wind 

speed. However, that was observed for 15 and 30 cm distance from the target only. 

When droplets were emitted at a height of 50 cm, the displacement caused by a tail 

wind was either smaller than what was caused by a head wind or not significantly 

different (latter observed at 138 kPa pressure). Therefore, the hypothesis regarding 

the displacement caused by the two wind directions for the moving applicator was 

accepted only for 15 and 30 cm distance from target. Also, from the tests with the static 

applicator, when the wind was coming at 180° (same as tail wind when moving) 

droplets were displaced further when compared with a 90° (head wind). This suggests 

that there might be an issue in the design of the gantry system or a wind turbulence 

causing the droplets to displace further, with a tail wind. With regards to the droplet 

displacement at 50 cm from the target, there is a certain level of uncertainty especially 

in the cases of 207 and 276 kPa pressures, because of the amount of satellite droplets 

not hitting the target. Although the number of split droplets was not quantified for 

these pressures at 50 cm distance, estimating where they would have landed and their 

deviation from the zero-wind control was trivial.  

Based on these results it is recommended that for safe use of the applicator in 

field conditions, with minimal droplet displacement, the operating pressure should be 

set at 138 kPa and the distance from the weeds should be fixed at 15 cm. Although, 

there may be an increased risk of droplets hitting the ground and/or the crop if a 30 

cm nozzle height is required, the effect of wind might be minimized with the use of 

wind baffles. 
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4.6 Supplementary material 

 

 

Supplementary figure 4.1. Droplets applied from the moving applicator when operating at 

69 kPa at 15 and 50 cm from the target with 0 km h-1 wind speed. Applicator traversed five 

times. Satellite droplets are evident in the 50 cm distance. Apparent spattering in the 15 cm 

and 50 cm is because gantry traversed five times over a short period of time and applied to the 

wet surface before previous application had dried. No spattering is observed from a single 

traverse of the gantry (Figure 4.2). 

 

Supplementary table 4.1. Coefficients (±SE) of the linear models fitted to the time and weight 

of water data for each pressure for the calibration test. 

Pressure (kPa) Coefficients Estimate Standard error P-value 

69 

Intercept -0.2704 0.024 <0.001 

Time 0.2279 0.004 <0.001 

138 

Intercept -0.3943 0.03 <0.001 

Time 0.3873 0.005 <0.001 

207 

Intercept -0.4014 0.02 <0.001 

Time 0.4937 0.003 <0.001 

276 

Intercept -0.3839 0.01 <0.001 

Time 0.5880 0.003 <0.001 
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Supplementary table 4.2. ANOVA table of the linear models fitted to the time and pressure 

data for the calibration test. Model coefficients are presented in  

Source of variation d.f. Sum of Squares Mean Sum of Squares P-value 

Time 1 216.024 216.024 <0.001 

Pressure 1 58.523 58.523 <0.001 

Time.Pressure 1 21.141 21.141 <0.001 

Residuals 156 1.377 0.009  

 

 

Supplementary table 4.3. Coefficients (±SE) of the logarithmic model fitted to the pressure 

and time data presented in Figure 4.4 for the calibration test. 

Coefficients Estimate Standard error P-value 

Intercept 16.773 0.81 0.002 

log(Pressure) -2.565 0.16 0.004 
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Supplementary table 4.4. Unbalanced ANOVA of the relative displacement of droplets due to 

effects of distance from the target, pressure, wind direction and motion of the applicator. 

Design was unbalanced because displacement could not be measured for the combination of 

pressure of 69 kPa and 50 cm distance from the target. Overall factorial design is for three 

treatments x four pressures x three wind directions x 2 motions with four repetitions. 

Source of variation d.f. Sum of 
Squares 

Mean Sum of 
Squares 

P-value 

Replication 3 19.714 6.571 0.04 

Distance 2 3721.49 1860.74 <0.001 

Pressure 3 1592.65 530.882 <0.001 

Wind Direction 2 230.866 115.433 <0.001 

Motion 1 1.791 1.791 0.38 

Distance.Pressure 5 806.937 161.387 <0.001 

Distance.Wind Direction 4 259.085 64.771 <0.001 

Pressure.Wind Direction 6 161.368 26.895 <0.001 

Distance.Motion 2 33.866 16.933 <0.001 

Pressure.Motion 3 33.981 11.327 0.003 

Wind Direction.Motion 2 22.196 11.098 0.01 

Distance.Pressure.Wind Direction 10 143.456 14.346 <0.001 

Distance.Pressure.Motion 5 72.065 14.413 <0.001 

Distance.Wind Direction.Motion 4 92.699 23.175 <0.001 

Pressure.Wind Direction.Motion 6 26.737 4.456 0.08 

Distance.Pressure.Wind Direction.Motion 10 45.319 4.532 0.04 

Residual 180 414.915 2.305 
 

Total 248 7679.13 30.964 
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Supplementary figure 4.2. Results from moving applicator operating at 138, 207 and 276 kPa 

dispensing droplets from 30 and 50 cm from the target. Area marked with a circle indicates 

where five droplets were applied. Arrows points the displacement of the droplets when wind 

blowing at 10 km h-1. Apparent spattering is because gantry traversed five times over a short 

period of time and applied to a wet surface before previous application had dried.  
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Supplementary table 4.5. Anova table of the relative displacement of droplets due to effects 

of the distance from the target, wind direction and motion of the applicator. The applicator was 

operating at 138 kPa pressure. 

Source of variation d.f. Sum of 
Squares 

Mean Sum of 
Squares 

P-value 

Replication 3 2.869 0.956 0.612 

Distance 2 961.333 480.667 <0.001 

Wind Direction 2 6.107 3.054 0.154 

Motion 1 1.499 1.499 0.333 

Distance.Wind Direction 4 3.235 0.809 0.725 

Distance.Motion 2 41.519 20.76 <0.001 

Wind Direction.Motion 2 10.213 5.107 0.047 

Distance.Wind Direction.Motion 4 5.816 1.454 0.457 

Residual 48 75.362 1.57   

Total 68 1107.954 16.293 
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5 Chapter 5              
Discussion and conclusions 

 

Throughout the thesis the main objective was to evaluate the efficacy of leaf-specific 

weed control for field vegetables in the UK. Work presented here is part of a project 

developing a robotic weeder for vegetable crops. The robotic platform will use an 

image analysis system to distinguish the crop from the weed and then a novel 

applicator will apply a dose as a single droplet.  

Efficacy of herbicide droplet application for the leaf-specific weed control was 

tested in the glasshouse and the field. Amounts of glyphosate and glufosinate-

ammonium, needed to control individual weed species at different growth stages, were 

quantified in the glasshouse (Chapter 2). Also, efficacy of weed control using droplets 

of 2,4-D, alone and mixed with glyphosate and glufosinate-ammonium was 

demonstrated. The efficacy of weed control was also replicated in the fields with 

cabbages and leeks, using manual droplet application. Application of droplets 

containing known amounts of herbicides was carried out on a per plant and individual 

leaf basis (Chapter 3). Cabbage and leek yield and quality was compared with current 

spraying methods and hand-weeding. Based on the yields produced, preliminary 

economic analysis was carried out in order to determine the profit or loss likely to be 

associated with the use of an automated platform when compared with pre and post-

emergence sprays or with hand-weeding (Chapter 3). Finally, droplets appropriate for 

Drop-on-Demand herbicide application were applied using a prototype applicator and 

the displacement of droplets was estimated. Recommendations for future applications 

in the field were made.  

Hypothesis 1: Leaf-specific applications of droplets of a systemic, translocated 

herbicide at the recommended dose for conventional spraying achieves at least 

90% efficacy of weed control in both glasshouse and field. 

There is evidence in the literature that weeds can be controlled using micro-doses of 

herbicides when they are applied as single droplets per weed, with DoD applicators 

(Giles et al., 2004; Graglia, 2004; Lund et al., 2006; Søgaard et al., 2006; Nieuwenhuizen 
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et al., 2010; Basi et al., 2012; Mathiassen et al., 2016; Utstumo et al., 2018). The volume 

of droplets applied in these studies ranged from 0.8 μl to 37 μl with respective amounts 

of herbicide in the range of 1 μg to 450 μg of active ingredient per plant. Although 

efficacy of weed control of 80% and higher is reported, there is no indication how these 

dose rates relate to the label recommendation if the herbicide was sprayed. 

Furthermore, no other broad-spectrum herbicide than glyphosate was tested.  

 To test the hypothesis glasshouse and field experiments were conducted. In the 

glasshouse, dose-response trials were carried out using commercial herbicides 

containing glyphosate, glufosinate-ammonium and 2,4-D. Doses applied were relative 

to the minimum label recommendations of the herbicides and were calculated based 

on the mean ground cover of the seedlings, for each trial. This resulted in application 

of specific amounts of herbicide (μg) as a single droplet to a leaf. In the field, known 

amounts of glyphosate (9 or 36 μg) and glufosinate-ammonium (7.5 or 60 μg) were 

applied as single droplets per plant of per leaf. The hypothesis was accepted for both 

the glasshouse and field trials. In the glasshouse application of the minimum label 

recommendation controlled most of the weed species as described in Chapter 2. 

However, in the cases of Poa annua and the perennial Rumex crispus higher doses were 

needed. For R. crispus the ED90 dose was equivalent to 10-times the recommended rate 

of 540 g of glyphosate ha-1. Although the ED90 the value was imprecisely estimated and 

not significant, when the weed was tested in a glasshouse study, a dose of 7200 g of 

glyphosate ha-1 was having an effect before 100% mortality (Boutin et al., 2004). For 

P. annua however, lower doses than those reported here are needed for effective weed 

control when glyphosate (Binkholder et al., 2011) and glufosinate-ammonium 

(Riemens et al., 2008) are applied as a broadcast spray to the weed. The approximately 

five-times the recommended rate of glyphosate and glufosinate-ammonium dose 

needed for 90% control of P. annua could be a result of limited translocation of the 

herbicides. The herbicide droplets were applied at the growing point of the weed, 

which sometimes was not clear. 

Efficacy of weed control from herbicide droplets applied to a single leaf was if 

not better, at least as good as what is expected if the herbicides were applied using a 

conventional spray. Mixtures of glyphosate or glufosinate-ammonium with 2,4-D have 

also been identified as potential alternatives for droplet applications but this 
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conclusion needs to be tested in the field. A major improvement in application 

technology is that the amount of herbicide applied to each plant is known whereas, 

when spraying, only the average per unit land area is known. In the glasshouse, annual 

weeds that were up to the 4-leaf stage were controlled with a dose of 32 μg of 

glyphosate and 28 μg of glufosinate-ammonium per seedling.  

In the field a dose of 36 μg of glyphosate applied as a single droplet per weed 

and a dose of 9 μg applied as multiple droplets per weed based on the size of individual 

leaves, provided over 90% levels of weed control. Application of glufosinate-

ammonium in the field, as a single droplet per weed with a dose of 60 μg failed to 

provide a good level of weed control (~ 80%). Phytotoxic effects were observed after 

the application of a single droplet of glufosinate-ammonium. The 20% concentration 

used to apply the 60 μg dose appeared to be causing necrotic spots on the leaves, which 

might have limited the uptake of the herbicide by the plant. However, when the lower 

dose of 7.5 μg of glufosinate-ammonium applied on a per leaf basis caused high levels 

of weed control. Although some small phytotoxic effects were observed, the lower 

herbicide concentration used (2.5%) and applications of droplets to more than one 

leaf, might have resulted to better uptake and translocation of the herbicide, which 

resulted to plant death.   

Hypothesis 2: The yield, quality and economic value of cabbage and leek crops, 

where weeds are controlled leaf-specifically, are not significantly lower than for 

either conventional pre- and post-emergence herbicide treatments or for hand-

weeding.  

The automated systems for weed control already described in the literature, the 

research reports are limited to assessing the efficacy of weed control (Giles et al., 2004; 

Søgaard et al., 2006; Nieuwenhuizen et al., 2010; Utstumo et al., 2018); impacts on crop 

yield and profitability were not estimated. Furthermore, these studies were limited to 

single weeding treatments and do not make compare efficacy with current spraying 

methods of conventional herbicides. 

The main hypothesis presented in Chapter 3 was accepted for both cabbages 

and leeks, since the efficacy of weed control and the yield produced and economic 

value of the crops achieved from the droplet treatments were not statistically 
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significantly lower than the weed-free controls and current spraying methods. Efficacy 

of weed control from the pre and post-emergence sprays of commercial herbicides 

ranged at the low levels of 30% to 50% when they were applied in fields with leeks. 

Probable explanations for the low efficacy are that these treatments were applied early 

in the growing season and the soil seed bank appears to have contained several weed 

species (~10) which are not common in fields where vegetables are grown and they 

occurred in high numbers (~ 400 to 500 weeds m-2). The pre-emergence herbicide 

pendimethalin, which was applied five days before planting, is a selective herbicide 

controlling most annual grass weeds and a limited number of broad-leaf weeds (Pal et 

al., 1991). According to the label of Stomp Aqua® weeds like groundsel (S. vulgaris), 

black nightshade (S. nigrum) and common yarrow (A. millefolium) are not controlled 

and mayweed (M. recutita) and shepherd’s purse (Capsella bursa-pastoris) are only 

moderately susceptible to pre-emergence applications of pendimethalin. All these 

species were, however, abundant in plots where the pre-emergence spray was applied 

which probably accounts for the poor levels of weed control and significant yield losses 

from that treatment. For the post-emergence spray in leeks bromoxynil was used 

(Buctril®), which is a selective herbicide not used for control of grass weeds 

(Culpepper et al., 1999, Corbett et al., 2004). Although broad-leaf weeds were 

controlled, grass weeds were not affected and indeed spread in the plots where 

bromoxynil was applied. Furthermore, the mandatory eight-week interval from the 

post-emergence spray to harvest was sufficient to allow re-growth of some broad-leaf 

weeds, which were observed during harvest. Because of failure to control the weeds, 

growers would have been well-advised to combine the pre- and post-emergence 

sprays with at least one intra-row cultivation and/or inter-row hand weeding.  

 Trimmed yield and marketable yield of cabbages produced from the droplet 

treatments were not significantly different than the weed-free controls for both years. 

What was observed when harvesting cabbages was the big variation in head size, 

especially for the savoy during the 2016 trial. In this study both cabbage varieties were 

harvested once, when the majority of heads had reached maturity. However, when 

harvesting cabbages, the common agricultural practice is harvesting the crop in 

different times to ensure that all heads have reached a marketable size (e.g. savoy: 500 

g per head) (Stoffella & Fleming, 1990). The primary focus of the field trials here was 

the effect of herbicide treatments on the efficacy of weed control so that residual weed 
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infestations at crop harvest had to be assessed at the same time. Harvesting cabbage 

at different times according to size and postponing weed harvesting until all the 

cabbages in a plot had been harvested, would have allowed differential weed regrowth 

until all heads had been harvested and the relative effect of droplet treatments to 

weeds would have been confounded with the time of harvesting the cabbages. 

Going forward, a critical question is: would the reductions in amounts of 

herbicides applied justify the investment in an automated platform? A preliminary 

economic analysis was based on the yields produced from the field trials.  For leeks, a 

very high increase in crop profitability associated with droplet applications of both 

glyphosate (£22,255 ha-1) and glufosinate-ammonium (£20,617 ha-1) compared with 

spraying commercial herbicides (pre-emergence). For cabbages however, only the 

adjusted glyphosate treatment appeared to be profitable for both years when 

compared with pre-emergence spraying. Making the questionable assumption that the 

hand-weeded, weed-free treatment in the field experiments was equivalent to a 

commercially hand-weeded crop, controlling weeds by leaf-specific droplet 

application would be less profitable than hand-weeding for leeks and savoy cabbages. 

It is of course, recognized that commercial hand-weeding would not need to achieve a 

weed-free condition and it is also highly unlikely that sufficient labour would be 

available especially given the expected immigration controls after Brexit. 

Hypothesis 3: In the field, herbicide inputs per unit land area are significantly 

lower when droplet applications are compared with spray applications of 

commercial herbicides and do not exceed the label recommendations for the 

products used. 

When weeds are treated leaf-specifically, the predictions on potential herbicide 

savings are expected to be at least 94% (Christensen et al., 2009; Zijlstra et al., 2011; 

Blackmore, 2014). The studies from Søgaard et al. (2006) and Mathiassen et al. (2016) 

have quantified the amounts of glyphosate needed for weed control and in order to 

demonstrate herbicide savings, weed densities from 100 m-2 to 300 m-2 were assumed. 

Only in the study by Utstumo et al. (2018) the application rate was estimated (191 g of 

glyphosate ha-1) when the Asterix robotic platform was tested in field with a carrot 

crop. However according to the authors two to three treatments will be needed for 

effective weed control which reduces further the potential herbicide savings. Also, 
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reductions in herbicide use were expressed relative to broadcast spraying of 

glyphosate only and not to any other commercial herbicides. In this study droplets 

applied per plot were counted for the individual droplet treatments, throughout the 

growing season of the crops and therefore, allowing the overall application rate to be 

calculated.  

 The hypothesis regarding significant reductions in herbicide use was accepted. 

In cabbages the reductions in herbicide inputs when glyphosate droplets were used in 

three occasions, were from 91% to 98% when compared to the conventional pre-

emergence spray of pendimethalin. The amounts of 119 and 28 g of glyphosate ha-1 

applied for the 2016 and 2017 trials, respectively is also lower than the label 

recommendation for spraying glyphosate (540 - 2160 g ha-1). Leeks are known to be 

weak competitors against weeds (Baumann et al., 2001) and because of the long 

critical period for weed cotnrol (Tursun et al., 2007) more droplet treatments were 

needed, to achieve a ‘satisfactory’ (say over 95%) level of weed control. Applications 

of droplets containing glyphosate or glufosinate-ammonium demonstrated that 

herbicide inputs can be reduced by up to 82% and 74% respectively in leeks when 

compared with the combined treatment of a pre and a post-emergence spray. Although 

more droplets were applied to the leek trials, amounts of herbicide actives were within 

the label recommendations, if not lower. Even in the very weedy field of the 2017 trial, 

label recommendations for a single treatment with glyphosate were not even exceeded 

when droplets were applied on a weekly basis. 

The critical period for weed control, is the period during the crop growth when 

weeds must be controlled to prevent yield losses (Nieto et al., 1968). Studies with 

cabbages have demonstrated that the crop does not have a critical period for weed 

control, and a single weeding treatment between three and five weeks after planting is 

all that is needed to avoid yield loss (Weaver, 1984; Roberts et al., 1976). However in 

this study three droplet treatments were needed to produce yields with no signifncalt 

yield penalty and a single treatment gave poor levels of weed control and significantly 

lower yields. The reasons why more than one droplet treatment was needed were that 

during the first visit to the field very small seedlings (leaf area <1 cm2) were left 

untreated to avoid accidental applications to soil, on the basis that they might not be 

targeted accurately enough by an automated system. Also, since the aim of applying 
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droplets to weed leaves is that no herbicide will end up on the crop, some weeds very 

close to the crop were deemed unsafe to treat due to the risk of collateral damage – the 

intention being that if such weeds were allowed to grow larger, some individual leaves 

could be targeted without risking crop damage. A third reason was to ensure effective 

weed control if weeds were poorly controlled or emerged after previous applications. 

 Unlike cabbages, leeks have a clear critical weed-free period and in order to 

avoid yield losses of over 5% in leeks, the crop needs to remain weed-free from 1 to 12 

weeks after planting (Tursun et al. 2007). Consistent with Tursun et al.’s research, 

multiple treatments using droplets of glyphosate and glufosinate-ammonium were 

found necessary to keep the crop largely weed-free. Leek yields, produced from the 

weekly applications (10-times) of glyphosate droplet starting from 3 up to 12 weeks 

after planting, produced yields which were not significantly lower than the weed-free 

controls. Although fortnightly (5-times) glyphosate droplet applications achieved high 

levels of weed control when glyphosate was applied to each leaf (over 100 mm2), it 

yielded significantly lower than the hand-weeded controls. A possible reason for that 

could be an infestation with leek miner which resulted in overall lower leek yields for 

the 2018 trial. For weed control in leeks using an automated platform, it is envisaged 

that fortnightly treatments will be needed.  

The prototype DoD applicator developed by Concurrent Solutions LLC was tested 

under indoor conditions to study the effect of wind, hydraulic pressure and distance 

from the target on the displacement of droplets. The time taken for the applicator to 

dispense a droplet of 1 μl ranged from 2.5 to 6 ms, with similar times (up to 10 ms) 

reported in the literature when micro-dosing systems were tested (Lee et al., 1999: 

Lamm et al., 2002; Søgaard & Lund, 2007; Giles et al., 2004; Urdal et al., 2014). The 

hypothesis regarding the effects hydraulic pressure, distance from the target and wind 

speed was accepted.  

Although with the use of higher pressures of 207 and 276 kPa the displacement of 

droplets was smaller, satellite droplets were observed which deviated unacceptably 

from the target especially when the nozzle was 30 or 50 cm above the target. Since this 

effect of a single droplet splitting into smaller ones was observed when no wind was 

applied, it is recommended that the operating pressure should be set at 138 kPa as at 

that pressure droplets did not disintegrate. When the applicator was operating at 
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138kPa, the largest droplet displacement (12 mm) was observed when a constant wind 

of 10 km h-1 was applied and droplets were emitted from a 50 cm height above the 

target. The smallest droplet displacement, which ranged from 1.8 to 4 mm was 

observed when the applicator was operating at 15 cm above the target with similar 

results reported by Nieuwenhuizen et al. (2010). Therefore, it is recommended that 

the nozzle outlet should be at 15 cm from the target, especially for small seedlings (leaf 

area ≤100 mm2). If there is a need for the applicator to be higher above the crop (e.g. a 

leek seedling at planting is approximately 20 cm tall), then larger areas than 100 mm2 

could be targeted to account for increase in the displacement of droplets.  

 

5.1 Automated platform recommendations 

Based on the results presented in Chapters 2, 3 and 4 recommendations regarding the 

use of an automated platform in field conditions are made. Provided that the onboard 

machine vision system would be able to identify and target weed leaves of 

approximately 100 mm2, droplets containing 9 μg of glyphosate or 7.5 μg of 

glufosinate-ammonium are recommended. If the crop/weed classification system 

would be able to identify individual weeds, then a single droplet containing 36 μg of 

glyphosate would be appropriate for weed control. Because of the herbicide’s limited 

translocation, glufosinate-ammonium is not recommended to be applied as a single 

droplet per weed.  

 In fields with transplanted cabbages, for effective weed control droplets 

containing glyphosate should be applied on three occasions starting at approximately 

three weeks after planting (or with weed emergence) with the last application carried 

out at five or six weeks after planting. For the last droplet application, crop canopy 

closure must be taken into consideration to allow for the platform to navigate through 

the field without damaging the crop. Furthermore, since the detrimental effect of 

accidental droplet application has been demonstrated, weeds very close to the crop 

should be avoided. Although there is a level of uncertainty regarding the profitability 

associated with the use of an automated platform for cabbages however, there are 

environmental benefits associated with high reductions in herbicide use. For robotic 

weed control in leeks, weekly applications using glyphosate or glufosinate-ammonium 

droplets, is recommended.  
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 Regarding the safe use of the applicator it is recommended that the operating 

pressure should be set at 138 kPa and the distance from the weeds should be fixed at 

15 cm. Although, there may be an increased risk of droplets hitting the ground and/or 

the crop if a 30 cm nozzle height is required, the effect of wind might be minimized 

with the use of wind baffles. 

 

5.2 Recommendations for further research  

From the dose-response studies in the glasshouse, the potential of using mixtures of 

glyphosate or glufosinate-ammonium with 2,4-D was demonstrated. However, the 

efficacies of the mixtures for weed control need to be tested in the field. Since only one 

adjuvant was used further work is needed to test different compounds which are 

commercially available in the UK and are used for spraying glyphosate (e.g. Silwet L-

77). Furthermore, higher concentrated glyphosate formulations which contain wetting 

agents (e.g. Roundup® Flex and Roundup® Ultimate), could be tested for leaf-specific 

droplet applications. To be able to compare efficacy of weed control by droplet 

application to that achieved by broadcast spraying the herbicide, a dose-response trial 

is suggested where doses relative to recommend rates for spraying are applied to the 

same species, both as single droplets per plant and overall spraying. This will test the 

hypothesis regarding the potential of better weed control by droplet application. Apart 

from comparing the efficacy of weed control, an experiment like that can compare the 

translocation and absorption of herbicide between the two methods application if, for 

example, a C14-labelled herbicide is used. A detailed protocol is described by Nandula 

and Vencill (2015).  

Furthermore, since the only perennial weed tested in this study was not 

effectively controlled, dose-response trials using other perennial weed species are 

suggested. Also, an experiment where droplets are applied under different 

environmental conditions is recommended. Drought and heat stresses are known to 

make post-emergence herbicides less effective, because they reduce the absorption, 

translocation and metabolism (Zhou et al., 2007). 

Over the last 20 years, a lot of research has focused on different machine vision 

techniques in order to improve the weed/crop classification (Lee et al., 1999, Utstumo 
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et al., 2018). The classification accuracies ranged from 65% to 95% however, most 

have been conducted under ideal conditions and are not suited for real field conditions. 

Challenges such as occlusion between crop and weed plants, leaves overlapping, 

varying lighting conditions and different growth stages of the plants need to be 

overcome for a robust automated weeding machine (Wang et al., 2019). Although it 

was not an objective of this thesis, the machine vision which is developed by 

Concurrent Solutions LLC needs to be tested under field conditions with vegetable 

crops.  Before any herbicide applications are carried out in the field, the applicator 

needs to be tested under indoor conditions. An experiment is recommeded to test the 

retention and efficacy of droplets containing the suggested doses of 9 μg of glyphosate 

and 7.5 μg glufosinate-ammonium, with easy-to-wet species like Stellaria media or 

Solanum nigrum and difficult-to-wet species like Chenopodium album. An overall final 

experiment of the robotic platform in field conditions with cabbages and leeks, should 

test the crop/weed recognition system, the targeting accuracy and the biological 

efficacy of droplet application with different speeds of the plaform.  

 

5.3 Concluding remarks 

Weed control is one of the most important factors in agricultural and horticultural 

production. Broadcast spraying of herbicides has been one of the major tools for 

effective weed control. Vegetable crops represent a small market compared to other 

major agronomic crops, which does not make them a priority for herbicide 

development from the agrochemical industry. With no new herbicide mode of action 

in over 30 years and legislations from policy makers that limit the use of pesticides, 

herbicide-based weed control is becoming increasingly challenging. Meanwhile, 

shortages in farm labour and higher costs associated with manual weeding has left 

vegetable farmers with only few weed control options available. 

 These pressures have resulted in a significant amount of research, developing 

new methods for weed control. One example is the use of automated platforms which 

merge traditional herbicide chemistry with robotics. These robotic weeders are a 

promising new tool for weed control for vegetable crops as they can be cheaper to 

develop and safety concerns and environmental impacts are much less than for 

herbicides.   



 

127 

 

Work presented in this thesis was designed to contribute to the development of 

an automated platform for robotic weed control in vegetable crops. The essence of the 

platform is to detect the weeds and then apply droplets of herbicides on the leaves. 

Efficacy of weed control using leaf-specific droplet application of broad-spectrum 

herbicides has been demonstrated in the glasshouse and replicated in fields with 

cabbages and leeks. Efficacy of weed control and crop yield and value did not differ 

significantly from hand-weeded controls and current spraying methods. Over 90% and 

75% reductions in herbicide inputs have been achieved for cabbages and leeks 

respectively when droplet treatments were compared with commercial herbicide 

spraying. Engineering-related work with a prototype applicator demonstrated that 

droplets appropriate for leaf-specific application were emitted at 138kPa pressure and 

15 cm distance from target with minimal displacement when constant wind of 10 km 

h-1 was applied.  

These results prove the concept of leaf-specific weed control which represents 

a paradigm shift to current spraying methods and when commercialized, will provide 

an alternative approach to weed management for vegetable growers.   
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Summary 

 

  As a prelude to leaf-specific weed control using droplets targeted by a robotic 

weeder, amounts of herbicide required to control individual weed seedlings were 

estimated. Roundup Biactive was applied at doses equivalent to 1/128th to four times 

the recommended rate in addition to undiluted Roundup and water controls. Based 

on the mean ground cover of the seedlings, the recommended dose (1.5 l ha-1) was 

estimated and droplets were applied to individual plants by micropipette. All 

treatments contained 1% AS 500 SL, Agromix (adjuvant). Three weeks after 

application dry weights (DW) of each seedling was recorded. DW reductions of 

50% were achieved in the five species tested at less than the recommended rate 

whereas only in one species was a 90% reduction obtained at that rate. In Galium 

aparine for example, 19.3 μg of glyphosate reduced DW per plant by 90% compared 

to the recommended dose of 8.4 μg.  

   

Key words: leaf-specific weed control, droplet application, dose-response, 

glyphosate, vegetables 
 

 

Introduction 

Weeds pose a major threat to agriculture and can severely impair crop yield and/or quality. 

They can cause 30 – 45% yield losses among the major crops worldwide, and 100% loss 

occurs in extreme cases due to the inability to achieve effective control (Christensen et al., 

2009; Singh et al., 2014). Weed control is therefore vital for achieving high yields and good 

quality crops. But with fewer herbicide active ingredients available, increasing resistance to 

herbicides and the risk of water contamination, new approaches to weed control are needed. 

  While it might be nice to ban the use of pesticides, food security is linked to the availability 

of adequate supplies of good quality food at affordable prices. Ignoring price, it is well-

established that organically grown crops consistently yield less (by 5-34%) than 

conventionally-grown ones (Seufert et al., 2012). Another policy issue is that the use of 

genetically-modified, herbicide-tolerant crops (GM-HT) is not currently permitted in the 

UK. This paper therefore relates to an engineering solution to the problem of weed control 

as an alternative to either selective chemistry or GM-HT crops.  

  Miller et al. (2010) developed an image analysis-based weed detection and spot spraying 

system which achieved 90% control of volunteer potatoes in carrots and onions. However, 
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some collateral damage to the crop is inevitable with this system. Christensen et al. (2009) 

mentioned “drop on demand technology" which is a leaf-specific herbicide application 

system using gravity-fed droplets is mounted on the BoniRob field robot. Bonirob was 

developed for phenotyping crop varieties in field trials by Ruckelshausen (2009) and a 

smaller version of that, "Weedy" (Klose et al., 2008) was described for plant specific weed 

control using directed sprays. Blackmore (2013) predicted that such systems might reduce 

herbicide inputs by up to 99.9%.The study reported in this paper is part of a project 

developing a system for herbicide droplet applications to individual leaves of weeds in field 

vegetables. The objectives of the research were (1) to estimate the amount of herbicide 

needed to control individual weed seedlings using leaf-specific droplet applications and (2) 

to assess the consequences of accidental damage to the crop. Experiments have been carried 

out on four weeds and on Savoy cabbage as a crop. Detailed results are presented here for 

Galium aparine and the cabbage. 

 

 

Materials & Methods 

 

  Glasshouse trials were carried out at Reading during summer 2015 in order to quantify the 

volume and number of herbicide droplets required to control the annual weeds Galium 

aparine, Chenopodium album, Matricaria recutita, the perennial weed Rumex crispus and 

also to Savoy cabbage seedlings (Brassica oleracea var. sabauda). Dose-response 

relationships were analyzed to estimate the amount of herbicide required to reduce biomass 

by 50 and 90% (the ED50 and ED90 values respectively). 

  G. aparine and M. recutita seeds were provided by the Herbiseed Ltd and C. album and R. 

crispus by the University of Reading. The cabbage seedlings were supplied by Hammond 

Produce. The seeds were sown on the surface of J. Arthur Bower’s multi-purpose compost 

in multicell plastic trays. After the seeds had germinated they were thinned to one seedling 

per cell. 180 seedlings of G. aparine were treated at the 4-leaf stage. The cabbage seedlings 

were transplanted at the 2-leaf stage into individual pots (9 cm diameter) and left to grow 

until they reached the 4-leaf stage when they were treated. Treatments were complete 

randomized blocks with 15-30 replications according to the number of seedlings available. 

  Roundup Biactive (Monsanto, 360 g l-1 glyphosate) was used at different rates related to 

the recommended dose rate of 1.5 l ha-1. Based on visual inspection, all treatments, except 

for the pure water controls included 1% of the adjuvant AS 500 SL, Agromix (Woznica et 

al., 2015) (Fig. 1). Based on the mean leaf area of plants, the recommended dose was 

estimated in μg of glyphosate per plant. Leaf area as viewed from above was estimated using 

photographs which were analysed using the WinDias software (Fig. 2). The recommended 

rates applied were 8.44 μg and 112.32 μg of glyphosate per seedling for G. aparine and 

cabbage, respectively.  
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Fig. 1. Images show 1 μl droplets of water with different concentrations of AS 500 SL 

applied to Chenopodium album leaves with a micropipette. 

 

 

 
Fig. 2. Images of savoy cabbage seedlings before (left) and after (right) image analysis to 

assess ground cover using Windias software 

 

  Two droplets of 1.56 μl were applied to one leaf on the cabbage seedlings and one droplet 

of 1 μl was applied to the G. aparine. The rates used ranged from 1/128 to four times the 

recommended dose in addition to undiluted Roundup Biactive, water and adjuvant controls. 

Dilutions were prepared with deionized water. Three weeks after the application fresh and 

dry weights of the seedlings were assessed using an analytical balance (weighing to the 

nearest 0.0001 g). To produce the dose response curves the biomass data were fitted to the 

four parameter logistic model using R software as described by Ritz & Streibig (2007): 

 
f (x,(b,c,d,e)) = c + (d − c) / ( 1 + exp{b(log(x) − log(e))}) 

 

  Where b is the relative slope around parameter e, c is the lower limit of dose response 

curve, d is the upper limit of dose response curve and e is the ED50. 

  The ED90 value was calculated as follows (Knezevic et al., 2007): 

 

ED90 = e(90 / (100 − 90)) (1/ b). 

 

Results 

 

  For G. aparine the recommended dose was estimated at 8.44 μg per plant and reduced the 

biomass of the seedlings by 43% (Fig. 3). Similarly in the case of the cabbage seedlings, the 

biomass data were able to fit in a dose response curve with all of the parameters being 

statistically significant (Fig 5, Table 1). The cabbage crop was susceptible to the herbicide 

because of the ED50 value was less than half of the recommended dose (Table 1). DW 

reductions of 50% were achieved in the five species tested at less than the recommended 

rate whereas only in M. recutita was a 90% reduction obtained at that rate (Table 2). 
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Table 1. Parameters (±se) of the logistic dose-response model and ED90 value for the dry 

weight data of the Galium aparine (df: 161) and cabbage (df: 386) seedlings. 

 Galium aparine Brassica oleracea var. sabauda 

Parameters Estimate P-value Estimate P-value 

b 1.8710 ± 0.8001 0.0207 0.9702 ± 0.1664 <0.0001 

c (g) 0.0088 ± 0.0024 0.0003 0.1681 ± 0.0308 <0.0001 

d (g) 0.0315 ± 0.0013 <0.0001 0.6650 ± 0.0179 <0.0001 

e (ED50) (μg) 5.9526 ± 1.5439 0.0002 35.9184 ± 7.9870 <0.0001 

ED90 (μg) 19.26 ± 11.78 NA 345.83 ± 171.37 NA 

  NA: not applicable 

 

Table 2. Recommended dose rates and estimated doses to reduce dry weight by 50% (ED50) 

and 90% (ED90) in μg of glyphosate per seedling (± se) for each species tested. 

Species Recommended 

dose* (μg) 

ED90 (μg) ED50 (μg) 

Brassica oleracea var. sabauda 112 346 ± 171 35.9 ± 8.0 

Galium aparine 8.44 19.3 ± 11.8 5.95 ± 1.5 

Matricaria recutita 16.9 10.2 ± 6.5 2.22 ± 0.7 

Chenopodium album 5.83 31.8 ± 18.6    3.54 ± 1.0 

Rumex crispus 17.7 322 ± 639    5.30 ± 4.9 

 * based on seedling ground cover and recommended rate of 1.5 litres Roundup Biactive per 

ha 

 

 

 

 
Figure 3. Dry weight of Galium aparine as a function of the dose of glyphosate applied per 

seedling. Parameters of the fitted line are presented in Table 1. 

 

Recommended dose 
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Figure 4. Galium aparine seedlings, three weeks after application of different concentrations 

of glyphosate relative to the recommended dose (1x). The controls were one droplet of water 

and one droplet of 1% adjuvant (ConAdj). Seedlings were treated at the four-leaf stage. 

 

 

 
Figure 5. Dry weight of Savoy cabbage as a function of the dose of glyphosate applied per 

seedling. Parameters of the fitted line are presented in Table 1. 

 

 

Discussion  

 

  The ED90 values showed that if 19.3 μg of glyphosate were applied to a seedling of the 

weed G. aparine this amount would effectively control the weed however, if this amount of 

herbicide was accidentally applied on the seedling of a vegetable crop it would reduce its 

biomass by 27%. A good targeting system is therefore essential in order to avoid crop 

damage. The results presented here are compatible with a field test with Solanum nigrum 

seedlings where an efficacy of 82% was achieved with 22.6 μg of glyphosate applied per 

Recommended dose 
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plant using 2.5 μl droplets using a drop on demand system (Lund et al., 2006; Urdal et al., 

2014). These results are of general interest in terms of dose-response relationships. Most 

studies report effects of plot spraying where the actual doses received per plant are not 

known or are estimated by chemical analysis. In this study the amount of herbicide applied 

to individual leaves of plants is known precisely and shows an interesting variability in 

responsiveness of weed species to a broad-spectrum herbicide like glyphosate. Among the 

weed species tested Matricaria recutita was the most susceptible and Rumex crispus was 

the least. For the latter the high variability in the ED50 and ED90 values is currently being 

investigated further (Table 2). 

  It is clear that weeds can be controlled leaf-specifically by droplet application to one leaf 

providing a non-selective, systemic, broad spectrum herbicide like glyphosate is used. The 

detrimental effect of accidentally misplacing droplets on leaves of a vegetable crop is also 

equally evident. Research is in progress developing a robotic applicator for autonomous use. 
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Summary 

 

  Weed control in field vegetables in the UK is increasingly challenging due 

to the loss of herbicide actives and demands by policy makers and consumers 

for lower pesticide use. Research at Reading in conjunction with Concurrent 

Solutions LLC in the USA, is developing a robotic weeder for field vegetables 

in the UK using image analysis to locate weed leaves and a novel applicator 

to apply droplets of herbicides to these leaves. No chemical is applied to the 

crop and none directly to the soil. 

  In glasshouse trials, efficacy of applying one droplet of herbicide per weed 

was determined. Dose-response relationships for control of Stellaria media L. 

Vill. with glyphosate and of Chenopodium album L. with glufosinate-

ammonium showed  ED50s of 3.0 and 4.4 μg per seedling compared to the 

calculated manufacturers’ recommended doses of 48.8 and 21.9 μg, 

respectively, for weed seedlings of the sizes treated. The question remains: is 

this efficacy reproducible in the field? 

  Manually applied droplets of glyphosate were made to the naturally 

occurring weed population in a transplanted cabbage crop in summer 2016. 

Efficacy of droplet applications to control weeds and to prevent crop yield 

loss were assessed in comparison to weed-free (hand-weeded), and weedy 

controls. Reductions in herbicide were compared with use of the pre-

emergence herbicide, pendimethalin, and inter-row glyphosate sprays.  

  Droplet applications 3, 5 and 7 weeks after transplanting reduced residual 

weed biomass at harvest by 92% compared to the weedy control and gave a 

crop yield, which did not differ significantly from the weed-free control. At 

the same time, the total amount of herbicide active ingredient applied was 

94% lower than the recommended rate for pendimethalin. 

 

Key words: Leaf-specific weed control, cabbage, herbicide dose-response, 

critical weed-free period, glyphosate, glufosinate-ammonium, EC 

Regulations 
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Introduction 

 

  Weed control in field vegetables in the UK is increasingly challenging due to the loss of 

herbicide actives and demands by policy makers and consumers for lower pesticide use. 

Examples include potential and actual losses of approval for some herbicide actives and the 

increasing difficulty of gaining approvals for new compounds under Regulation (EC) No 

1107/2009, potential losses under the EU Water Framework Directive (2000/60/EC), 

potential restrictions on pesticide use under the EU Directive on sustainable use of pesticides 

(2009/128/EC) and the UK National Action Plan together with the need for EAMUs. 

  Current spraying technology also constrains the Maximum Residue Levels (MRLs) under 

EC Regulation 396/2005. While MRLs are not safety limits, they reflect "the largest amount 

of pesticide which the regulatory body setting the MRL would expect to find in that crop 

when it has been treated in line with good agricultural practice". Leaf-specific weed control, 

in which herbicide is never deliberately applied to the crop is clearly expected to lower 

herbicide residues achievable "by good agricultural practice". Similar benefits could accrue 

in run-off water to satisfy the Water Framework Directive. 

  These pressures act as a driver towards a paradigm shift in approaches to weed control. 

Genetically-modified, herbicide-tolerant (GM-HT) crops are a paradigm shift for weed 

control but may still involve spraying whole fields on several occasions. Environmental 

impacts were not greatly different in the UK farm-scale evaluations between GM-HT and 

conventional crops (Hawes et al., 2003). So while the biotechnological solution may have a 

place, it may not solve the underlying policy issues already highlighted and GM-HT crops 

are not currently permitted in the UK. Moreover, even if GM crops are ultimately approved, 

GM-HT vegetable crops will not be the first choice for development by seed companies as 

the market will be small compared to broad-acre crops. 

  This paper explores an engineering solution to the problem of weed control as an alternative 

to either selective chemistry or biotechnology. If successful, it is likely to tick all the policy 

boxes mentioned here; it also reduces the risk of the evolution of weeds tolerant to 

glyphosate, which is in an increasing problem in the USA, and at the same time offers a 

potential reduction in herbicide inputs per hectare compared to GM-HT and selective 

chemistry options.  

  Miller et al. (2010) developed an engineering solution comprising a novel image analysis-

based weed detection and spot spraying system which achieved 90% control of volunteer 

potatoes in carrots and onions and further research is in progress to assess its use in legumes 

(Scrimshaw, 2014). Some crop damage occurred due to the use of sprays, but any yield 

losses were deemed "acceptable" and the system is commercially available. Closer to the 

approach adopted here, Christensen et al. (2009) mentioned “drop on demand technology" 

using gravity-fed droplets. Ruckelshausen (2009) stated an intention to apply chemicals 

using ink-jet printer technology, which would apply microdots of pesticide directly to the 

leaves of weeds (Crow, 2012). No successful systems have been developed although 

Blackmore (2013) predicted a microdot system could reduce herbicide inputs by up to 

99.9%.  

  The robotic weeder being developed by Reading and Concurrent Solutions LLC in the USA 

uses an alternative method of herbicide application from spot spraying or microdot 

technology, using actively-targetted droplets. Individual weed leaves are located and dosage 

rates are controlled to ensure the most effective control based on weed type and its growth 

stage. In this paper we present results of glasshouse studies exploring dose-response 

relationships for leaf-specific droplet applications and carry out a proof of the concept in the 

field by manually applying droplets to the weeds in a cabbage crop.  
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  The underlying hypothesis of the research in this paper is that herbicide inputs may be over 

90% lower using targetted droplets. Simplistically, if there is 10% weed ground cover, 90% 

of a correctly applied herbicide could be causing collateral damage and is certainly off-

target. Even if this hypothesis is accepted, it is unlikely to be of commercial interest unless 

two further hypotheses are accepted, namely, that the weed control efficacy and crop yield 

achieved are not significantly lower than that achieved either by hand-weeding or current 

methods. A further technical hypothesis is that, because non-residual herbicides are used 

and weed seedlings are controlled individually post-emergence, multiple treatments may be 

required so that late-emerging weeds are controlled during the critical weed-free period for 

the crop (Nieto et al. 1968). Finally, to alleviate concerns that the approach overly depends 

on glyphosate, a glasshouse trial using glufosinate-ammonium is also reported. 

 

Materials and Methods 

 

  Glasshouse trials were carried out with glyphosate (Roundup® Biactive GL, 360 g/L, SL, 

Monsanto (UK) Ltd.) and glufosinate-ammonium (Harvest®, 150 g /L, SL, Bayer 

CropScience Ltd.) on seedlings of Stellaria media and Chenopodium album, respectively. 

The adjuvant, AS 500 SL (Z.P.H Agromix, Niepołomice, Poland), was included in all 

herbicide treatments. All trials were randomized complete blocks with a range of herbicide 

doses and 11 or 13 replicates for S. media and C. album, respectively. There were three 

controls: water only, water with adjuvant (1%) and undiluted product. All solutions were 

prepared with deionised water. One droplet was applied to a single leaf of each seedling. 

Dilution series were prepared so that one droplet could be applied to achieve the correct 

amount of product per seedling. Droplets were applied when seedlings had a mean ground 

covers of 9 cm2 (6-8 leaves) and 4.8 cm2 (4-6 leaves) for S. media and C. album, 

respectively. 

  Fresh and dry weights of the weed seedlings were estimated three weeks after droplet 

application. The dry weights were estimated after oven-drying fresh seedlings for 48h at 80 

°C.  

  To fit the dose-response curves, biomass data were analysed using the open source 

statistical software R, version 3.2.1 and the add-on package DRC (Ritz et al., 2015). A four-

parameter log-logistic model was fitted by non-linear regression: 

           𝑦 =
𝑐 + (𝑑−𝑐)

[1+exp[𝑏 (log x−log ED50)]
            (1) 

where y is the biomass, c and d are the lower and upper limits of y, respectively, b is the 

relative slope, x is herbicide dose and ED50 is the dose for a 50% reduction of y. The dose 

reducing biomass by 90% (ED90) was estimated from the model. 

  For the field experiment, seedlings of Savoy cabbage (Brassica oleracea var. capitata) 

were transplanted to the field at Sonning Farm, Reading, at the 3 to 4 leaf stage with 50 cm 

row spacing and 30 cm between plants within the rows. Fertilizer application was carried 

out one week after transplanting using sulfur (SO3) and nitrogen (N) at the rates of 50 kg/ha 

and 100 kg/ha respectively. Plants were individually watered using an automated drip 

irrigation system. The natural weed infestation comprised Chenopodium album, Senecio 

vulgaris, Matricaria recutita, Spergula arvensis and Poa annua. Equisetum also occurred 

but was removed by hand as this is not a typical weed of field vegetables. The experimental 

design was a randomized complete block with four replications of eight treatments (Table 

1), including weedy and weed-free (hand-weeded) controls. Other controls were either an 

overall spray of pre-emergence (pre-planting) herbicide (2.9 l/ha, Stomp Aqua®, 455 g/l 

pendimethalin) or an inter-row post-emergence spray (1.5 l/ha, Roundup® Biactive, 360 g/l 

glyphosate, three weeks after planting). Droplets containing 36 μg of glyphosate were 
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applied using a micropipette and the number of droplets applied per unit area was counted 

allowing the equivalent application rate per hectare to be calculated. Droplets were either 

applied three weeks after planting as a single treatment or after 3, 5 and 7 weeks for a triple 

treatment. The latter was included to catch late emerging weeds or those which were 

inadequately controlled in earlier treatments. Cabbages and weeds were harvested from the 

treated area of the plots, 18 weeks after transplanting. Cabbages were trimmed and weighed 

as for commercial sale and the dry biomass of weeds was determined as above. Data were 

analysed by ANOVA using GenStat 16th Edition. 

 

 

Results 

 

  For S. media, the quarter rate dose, in which 12.6 μg of glyphosate was applied as a single 

droplet to each seedling, controlled the weeds satisfactorily (Fig. 1A). The recommended 

rate of glufosinate-ammonium appeared to be needed to kill the C. album seedlings (Fig. 

1B).  

  As fitted by Eqn (1), dry weights of untreated seedlings were 0.23 g (±0.01, SE) for S. 

media and 0.10 g (±0.005, SE) for the smaller C. album plants. No herbicide effects appeared 

to occur until treatments exceeded c. 1.5 μg of glyphosate (a.i.) per seedling (the 1/32 

treatment in Fig. 1A was 1.52 μg per seedling) or 1.4 μg of glufosinate-ammonium (a.i.) per 

seedling (the 1/16 treatment in Fig. 1B was 1.36 μg per seedling). Above these levels, 

efficacy increased rapidly with ED50s of 3.04 μg (±1.1, SE) and 4.43 μg (±1.22, SE) and 

ED90s of 6.3 μg (±7.8, SE) and 8.9 μg (±6.1, SE), respectively. Note that the ED90s are 

very imprecisely estimated, the standard errors being similar to the parameter estimates, so 

considerable uncertainty exists in that parameter. 

 

Fig. 1. Seedlings of A) Stellaria media three weeks after glyphosate treatment and B) 

Chenopodium album two weeks after glufosinate-ammonium treatment. Chemicals were 

applied as droplets to one leaf per seedling. Droplets contained different concentrations of 

a.i. relative to the recommended dose (1x). The recommended amounts of a.i. per seedling 

were (A) 48.8 μg for S.media seedlings (6 to 8-leaf stage; mean ground cover: 9 cm2) and 

 CON ADJ 1/256 1/128 1/64 1/32 1/16 1/8 1/4 1/2 1x 2x 4x UP 

 

   Dose of herbicide relative to recommended rate. 

A) Stellaria media 
Glyphosate 

B) Chenopodium album 
Glufosinate 

ammonium 
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(B) 21.8 μg for C. album seedlings (4 to 6-leaf stage; mean ground cover: 4.8 cm2). Control 

treatments were treated with purified water (CON) or with 1% adjuvant (ADJ) or with 

undiluted formulated products (UP), Roundup Biactive (A) and Harvest® (B). The 1/256 

treatment was not applied in (B). 

 

  In the field, the treatment where droplets containing 36 μg glyphosate were applied to each 

surviving weed 3, 5 and 7 weeks after transplanting reduced dry weed biomass by 92%, and 

produced the highest yield among herbicide treated plots. Moreover, the yield in this 

treatment was not significantly lower than the 241 t/ha fresh weight achieved in hand-

weeded, weed-free plots. A single droplet application was, however, inadequate to achieve 

a satisfactory level of control and the yield was only half that of the weed-free control (data 

not shown). Weed control in the pre-emergence treatment was also significantly lower with 

dry weed biomass only reduced by about 60% compared to the weedy plots (P=0.05, LSD 

20%). Pre-emergence and inter-row spray treatments also yielded significantly less than the 

weed-free plots. 

  With respect to the total amounts of herbicide applied, the triple droplet treatment received 

the equivalent of 83.3 g glyphosate ha-1 compared to the manufacturers’ recommended rates 

of 1320 and 540 g ha-1 for pendimethalin and glyphosate in the pre-emergence and inter-

row spray treatments, respectively. The droplet treatment therefore reduced herbicide a.i. 

applications per hectare by 94% and 85%, respectively. 

  

Discussion 

 

  In the glasshouse studies, when droplets of both herbicides were applied to one leaf of each 

weed seedling, the efficacy of weed control was as good if not better than what would be 

expected were the same doses of herbicide applied using a conventional spray. One 

difference is that it is known that all plants were treated as is the exact dose of herbicide 

applied to each individual plant. When spraying, only the average per unit land area is 

known. Encouragingly, the efficacy of glyphosate droplets seen in the glasshouse was 

repeated in the field trials where cabbages were grown and harvested under conditions 

designed to replicate typical UK commercial practice. The field trials reported here were 

limited to Savoy cabbages and the application of glyphosate. Clearly relying on a single 

herbicide a.i. is unsustainable due to risks of loss of approval and herbicide resistance. The 

glasshouse trial reported here with glufosinate-ammonium achieved satisfactory efficacy 

even though the product has only limited systemic action particularly in C.album (Pline et 

al., 1999). More extensive field trials were carried out in the 2017 growing season and 

including both glyphosate and glufosinate-ammonium and leeks in addition to cabbages. 

The 2017 trials are showing similarly promising results for both crops (data not shown). 

  The hypothesis that multiple treatments with a herbicide lacking residual activity like 

glyphosate would be necessary was accepted since a single glyphosate treatment gave a very 

poor weed control and returned the lowest yield of all weed control treatments. Multiple 

treatments were needed to keep the crop largely weed free and to achieve a yield which did 

not differ significantly from the weed-free control. For cabbages however, the literature 

suggests that a single weed control treatment should have been sufficient. For example, 

Weaver (1984) found a single inter-row spray treatment after 3-5 weeks was sufficient in 

Canada, while for drilled summer cabbage in the UK, Roberts et al. (1976) also found a 

single weeding three weeks after 50% crop emergence was adequate and there was no 

critical weed-free period. UK organic farmers are similarly advised to carry out a single 

“thorough weeding 3-8 weeks after planting” (Bond and Grundy, 2001), but these authors 

also cite French studies where several inter-row tine operations were employed. If there is 
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indeed no critical weed free period, the triple droplet treatment could be argued to be 

“overkill”, but results in this experiment showed that the triple treatment was required to 

ensure weeds caused no significant reduction in crop yield and achieved satisfactory weed 

control. In reconciling the results, it is relevant to highlight Bond and Grundy’s (2001) use 

of the word “thorough”. Leaf-specific applications are, by definition, not designed to be 

“thorough”. Since a broad-spectrum, non-selective herbicide is being applied, some plants 

may be left untreated on the first treatment if they are deemed too close to the crop to treat 

without risk of collateral crop damage. Moreover, since the aim is not to apply herbicide to 

the soil, very small weed seedlings were left if their leaf area might be too small (<1 cm2) to 

target accurately by an automated system on the basis that if such weeds were growing, they 

would be larger and could be treated safely on a later visit to the field. Multiple treatments 

are also an insurance against poor weed control – failure of control for whatever reason 

during a first application could be remedied on a subsequent occasion. So, even if a crop 

such as cabbage does not have a critical weed-free period, more than one treatment is likely 

to be necessary as demonstrated here. 

  In conclusion, droplet applications with glyphosate achieved satisfactory weed control 

without a significant yield penalty and reduced amounts of herbicide active ingredients 

applied to field grown cabbages by 94% compared to a pre-planting spray with 

pendimethalin and by 85% compared to an inter-row post-emergence spray with glyphosate. 

Glufosinate-ammonium has also been identified as a potential alternative to glyphosate for 

droplet applications but this conclusion needs to be tested in the field. 
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Abstract 

 

Weed control in UK field vegetables faces the problem of producing and maintaining high 

yields while herbicide active ingredients (a.i.) and amounts applied are reducing. These 

problems, which are unlikely to be solved with new herbicides or the use of GM crops, call 

for a paradigm shift in weed control. In this study, the concept of leaf-specific weed control 

was tested. Individual weed seedlings were controlled in the glasshouse by applying a single 

droplet of herbicide and dose-response relationships were quantified. In the field, manually-

applied droplets achieved high levels of weed control in leeks, prevented yield loss and 

reduced herbicide inputs by up to 77%. Because of the high value of the crop and the higher 

yields associated with ultra-precise droplet application, it would appear to be economical to 

apply these droplets using a robotic weeder.  

 

Keywords: glyphosate; glufosinate-ammonium; 2,4-D; droplet application; leaf-specific 

weed control. 

 

Introduction 

 

Weeds and their control is one of the most important factors in maintaining yields and 

quality of field vegetable crops. Typical weed control methods for field vegetables include 

use of pre-planting tillage followed by pre-emergence herbicide and one or more of post-

emergence selective herbicide, inter-row cultivation and hand-weeding (Slaughter et al, 

2008). Herbicides are an efficient and economic method of weed control. However, 

improper or inappropriate use of herbicides, when they are applied as an overall spray, risks 

adverse effects on human health and the environment. These impacts along with pressures 

from consumers and policy makers to lower pesticide inputs, have resulted in strict 

regulation including the EC Regulation No. 1107/2009, the Water Framework Directive 

(2000/60/EC) and the Sustainable Use Directive (2009/128/EC). As a result, several 

herbicides have been withdrawn and it is much more difficult for new chemicals to gain 

approval (Hillocks, 2012). The predicament is worse for vegetable growers because they 

rely on a limited and old range of herbicides that require a lot of funding and effort in order 

to keep them in the market (Fennimore et al., 2014). 

Weed control of vegetables, therefore, needs a paradigm shift from conventional spraying. 

Efficacy needs to be maintained or improved while reducing herbicide usage. Genetically-

modified, herbicide-tolerant crops (GM-HT) may offer an alternative, but whole fields still 

need to be sprayed. Moreover, growing GM-HT crops is not currently permitted in the UK 

and, even if it were, seed companies would focus on broad-acre crops rather than vegetables 

because of the relatively small market for vegetable seeds. Other approaches include site-

specific weed control for example by spraying weed patches or, plant-specific weed control 

for example by identifying individual weed plants in the field and then spot-spraying them 

using precisely targeted applications (Christensen et al., 2009). Drop-On-Demand (DOD) 



 

153 

 

application to individual weed plants is close to the leaf-specific approach to weed control 

described here. Although no DOD systems are commercially available, efficacy of weed 

control by DOD treatment with glyphosate in research trials in fields of carrots, was 73% - 

95% (Utstumo et al., 2018). 

The study presented in this paper is part of a project which explores an engineering solution 

to weed control as an alternative to spraying whole fields with selective herbicides, spot-

spraying or using GM crops. The system, which is under development by Reading 

University, UK and Concurrent Solutions LLC in the USA, is designed to apply single 

herbicide droplets (1-2 μl) at an appropriate concentration to the leaves of unwanted plants 

(Pilgrim & Murdoch, 2008). The concept is that a machine vision system locates individual 

green leaves, classifies each leaf as being crop or weed. Individual weed leaves are then 

targeted and treated with a single droplet of a broad-spectrum, translocated herbicide (e.g. 

glyphosate). No herbicide should, therefore, directly hit the soil and none should be applied 

to the crop. The use of much larger droplets than for conventional spraying avoids the risk 

of drift and appropriate formulation should minimise spatter.  

In this paper, dose-response studies are reported in which doses relative to commercial rates 

were applied as single droplets to weed leaves. For proof of concept in the field, herbicide 

droplets were applied manually to weed leaves in a field growing leeks. The hypothesis 

tested for is that the recommended rate of herbicide applied as a single droplet will reduce 

weed biomass by over 90%. In the field, the hypotheses tested were that (i) the efficacy of 

leaf-specific weed control by herbicide droplets is not significantly lower than that achieved 

from the hand-weeding or current herbicide spraying methods, (ii) crop yield is not 

significantly less than for handweeding, (iii) leaf-specific weed control reduces the amount 

of herbicide applied by around 80% and (iv) a sequence of droplet applications is required 

over the growing season to control late emerging weeds to ensure that the crop remains 

weed-free during the critical period for weed control.  

 

Materials and methods 

 

Glasshouse trials 

Dose-response trials were carried out under glasshouse conditions at the facilities of the 

Crop and Environment Laboratory at Reading University during summer 2018. Droplets 

containing glyphosate, glufosinate-ammonium or 2,4-D were applied to seedlings of 

Chenopodium album, Senecio vulgaris and Poa annua. In addition to the herbicides 

described in Table 1, a combined treatment of 2,4-D and glufosinate-ammonium was applied 

as two droplets on the same leaf. For the other herbicides, one droplet (1-2 μl) was applied 

to a single leaf except in the case of P. annua where droplets were applied at the growing 

point of the weed. The volume of droplets and amount of herbicide was calculated according 

to the ground cover of the seedlings and the minimum label recommendation for spray 

application. The adjuvant AS 500 SL (Z.P.H Agromix, Niepołomice, Poland), was included 

in all treatments at 1% concentration. All trials were randomized complete blocks with ten 

replicates and herbicide doses ranged from 1/128 to 4-times the recommended rates. 

Application of the three control treatments included the use of droplets containing water 

only, water with adjuvant (1%) and undiluted product. Deionised water was used to prepare 

all solutions. Serial dilutions were prepared so that the correct amount of herbicide per 

seedling could be applied. 
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Table 0.1. Details of herbicides used for the dose-response trials. The ‘recommended’ dose 

is for a targeted droplet application to a C. album seedling with 721 mm2 ground cover. 

Active 

ingredient 

(a.i.) 

Product A.i. 

concentration in 

product (g l-1) 

Recommended 

product dose (l ha-1) 

‘Recommended’ dose 

(μg a.i. seedling-1) 

glyphosate 

Roundup® 

Biactive 

GL 
360 1.5 38.9 

glufosinate-

ammonium 
Harvest® 150 3 32.5 

2,4-D Depitox® 500 1.4 50.5 

2,4-D & 

glyphosate 
Kyleo® 

160 & 

240 
3 86.5 

 

Seedling mean ground covers when treated were 721 mm2 (4-6 leaves), 223 mm2 (2-3 

leaves) and 1054 mm2 (2-3 tillers visible) for C. album, S. vulgaris and P. annua, 

respectively. Fresh and dry weights of the weed seedlings were estimated three weeks after 

droplet application. In order to estimate dry weights, fresh seedlings were oven-dried for 

48h at 80°C. Biomass data were fitted to the four-parameter log-logistic model which can 

be specified as a non-linear function given by: 

𝑦 =
𝑐+(𝑑−𝑐)

[1+exp[𝑏 (𝑙𝑜𝑔𝑥−𝑙𝑜𝑔𝑒)]]
                                            (1) 

where y is the biomass, b is the relative slope around parameter e, e is the ED50 which 

corresponds to the dose causing 50% reduction of biomass and c and d are the lower and 

upper limits of the curve respectively. Analyses were carried out using the open source 

statistical software R, version 3.3.2 and the add-on package ‘drc’ (Ritz et al, 2015).  

 

Field trials 

Field experiments were carried out with leeks during spring/summer of 2017 and 2018 at 

Sonning Farm near Reading, UK. Leek seedlings were transplanted to the field at the three-

leaf stage with 0.4 m between rows and 0.2 m between plants within the row. Fertilizer was 

applied on the day of transplanting using sulfur (SO3) and nitrogen (N) at the rates of 50 

kg ha-1 and 100 kg ha-1 respectively. An automated drip irrigation system was used in order 

to water plants individually. The natural weed infestation comprised Senecio vulgaris, 

Matricaria recutita, Chenopodium album, Poa annua, Capsella bursa-pastoris and Solanum 

nigrum. The experimental design was a randomised complete block with three replications 

of nine treatments for the 2017 trial and ten treatments in 2018. In addition to weedy 

(unweeded) and weed-free (hand-weeded) control plots, other controls included a broadcast 

spray of a pre-emergence herbicide (Stomp Aqua®, 455 g l-1, pendimethalin) at a rate of 2.9 

l ha-1 or a post-emergence herbicide (Buctril®, 255 g l-1, bromoxynil) at 1.5 l ha-1. The pre-

emergence treatment was applied five days before planting and the post-emergence four 

weeks after planting the crop. In 2018, a further treatment received both pre- and post-

emergence herbicides. Droplets containing 9 μg of glyphosate or 7.5 μg of glufosinate-

ammonium were applied manually to every weed leaf bigger than 100 mm2, using a pipette. 

Droplet applications commenced 2 and 3 weeks after planting the leeks for the 2017 and 

2018 trials, respectively, with the last application taking place 12 weeks after planting. 

Droplet treatments were applied either five or ten times over the 12-week period. 

Glufosinate-ammonium droplets were only applied weekly because of the herbicide’s 
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limited translocation. Leeks and weeds were harvested from the treated central area of the 

plots 14 weeks after planting. Leeks were trimmed to a height of 0.34 m and then weighed 

as for commercial sale. Weed dry weights (above ground fresh biomass only) was 

determined as above. Yield and weed control data were analysed by ANOVA using GenStat 

17th Edition. 

Preliminary economic analysis was carried out in which the value of the crop and the cost 

of weed control (material + application cost) were estimated for each herbicide treatment 

for both years. The economic value of the crop was based on the average wholesale market 

prices for 2018 (Brigham, 2018). Information regarding the material cost of herbicides came 

from personal communications with industry representatives. Application cost for spraying 

herbicides was assumed to be £12.50 ha-1 (Redman, 2018). The gross margin was estimated 

by subtracting the weed control cost from the crop value. Further assumptions were: (i) the 

cost of an applicator platform including a maintenance contract would be £25,000 over five 

years, costed at £5,000 per year (S. Sanford, personal communication, 13 December 2018), 

(ii) an area of 4 ha could be treated per day and would need to be retreated every 14 days, 

(iii) a platform could operate for 10 days every fortnight and a platform could, therefore, 

treat a maximum of 40 ha over 14 days, and, to build in a safety margin, (iv) the platform is 

only used for 40 ha per year. The platform cost per hectare was, therefore, assumed to be 

£125 ha-1 year-1 (i.e. £5000/40 ha).  

 

Results 

 

In the glasshouse, C. album seedlings were effectively controlled when the recommended 

rates of the herbicides used in this study were applied as a single droplet to a single leaf, 

producing increasingly phytotoxic effects with increase of dose (Fig. 1). These effects were 

quantified by fitting Eq. 1 to the dry weight data to produce dose-response curves as 

exemplified for C. album (Fig. 2). Interestingly, the same relative levels of efficacy were 

observed for both glyphosate and glufosinate-ammonium, the ED50 values for each herbicide 

corresponding to 1/6th of their respective recommended doses (Fig. 1B, C). A dose of 36.6 

μg (±19.9, SE) per seedling was needed to achieve a 90% level of control (ED90) for both 

herbicides (Fig. 2). A slightly lower ED50 was observed when the mixture of 2,4-D and 

glyphosate was applied in comparison compared to the application of glyphosate on its own 

(Fig. 1D). Glyphosate was more potent than the other herbicides when applied to seedlings 

of Senecio vulgaris (ground cover: 223 mm2) with an ED90 of 0.24 μg (±0.04, SE). The 

second-best efficacy was achieved from the mixture of 2,4-D and glyphosate with a dose of 

only 1.33 μg (±0.30, SE; 1/20th of the recommended dose) being required to achieve 90% 

control of S. vulgaris. The larger P. annua seedlings needed higher doses than S. vulgaris 

and C. album to achieve the same efficacy. Efficacies of glyphosate and glufosinate-

ammonium were also the same for P. annua, a dose of 79.9 μg (±15.5, SE) being needed to 

reduce weed biomass by 50%.  

In the field in both years, the treatment where droplets containing 9 μg of glyphosate were 

applied approximately weekly (i.e. ten times over 12 weeks) reduced weed dry biomass by 

99%. The same levels of weed control were achieved when this treatment was applied 

fortnightly (i.e. only 5 times) in 2018. Yields achieved from the weekly glyphosate droplet 

treatment were the highest among the plots treated with herbicides (either as droplets or 

overall spray) and were not significantly lower than the yields from the hand- weeded 

controls. However, yields for the fortnightly application of glyphosate droplets were 

significantly lower than the yield from the weed-free control (63% of weed-free). 
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Figure 0.1. Chenopodium album seedlings three weeks after applying droplets containing 

different concentrations of A) 2,4-D, B) glyphosate, C) glufosinate-ammonium, D) 2,4-D 

plus glyphosate and E) 2,4-D with glufosinate-ammonium. Doses of a.i. are expressed 

relative to the recommended (1x) rate (Table 1). In (E), separate droplets of the two products 

were applied to the same leaf. For the controls, droplets of deionized water (ConH2O), 1% 

adjuvant (ConAdj) or undiluted herbicide (Pure) were applied. Concentrations giving 50% 

reduction in dry biomass (ED50) are shown. 

The weekly glufosinate-ammonium droplet treatment reduced weed biomass by 91% or 

more in both years. Trimmed leek yields from these glufosinate-ammonium treated plots 

were not significantly lower than the 39 t ha-1 in the hand-weeded control in 2018. In 2017, 

however, yields in this treatment were only 65% of the 42.2 t ha-1 hand-weeded control yield. 

A pre-emergence spray of pendimethalin reduced weed dry biomass by 42% and 47% in the 

2017 and 2018 trials, respectively and crop yields were significantly lower in both years. 

When both pre and post-emergence herbicides were applied in 2018, the efficacy of weed 

control was still only 64%.  

ED5

ED5

ED5

ED5

ED5

ConH
2
O ConAdj 1/128 1/64 1/32 1/16 1/8 1/4 1/2  1x  2x  4x  Pure 
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Figure 0.2. Dry weight of C. album seedlings as a function of herbicide dose, applied as one 

droplet per seedling. Recommended rates (1x) were 38.9 μg for glyphosate and 32.5 μg for 

glufosinate-ammonium. Parameters of lines fitted by Eq. 1 are in Table 2. 

 

Table 2. Parameters of herbicide dose-response curves (Eq. 1) for C. album in Fig. 2. 

Herbicide active Parameter (±SE) 

 b (slope) c (lower limit) d (upper limit) e (ED50) 

Glyphosate 3.54 (±1.59) 0.09 (±0.01) 0.26 (±0.01) 6.29 (±0.85) 

Glufosinate-ammonium 0.81 (±0.23) 0.07 (±0.02) 0.27 (±0.01) 5.66 (±2.41) 

 

Regarding the amounts of herbicide applied over the whole growing season, the weekly 

glyphosate droplet treatment was the equivalent of 340 g and 299 g glyphosate ha-1 in 2017 

and 2018, respectively, approximately 75% less in weight than spraying with pendimethalin 

(1320 g ha-1). The fortnightly application of glyphosate droplets in 2018 reduced the 

herbicide inputs by 71% and 77% relative to pre-emergence and the pre+post-emergence 

sprays, respectively. Weekly application of glufosinate-ammonium droplets reduced total 

herbicide usage by 51 and 68% in 2017 and 2018 trials, respectively. 

The preliminary economic analysis suggested that the droplet treatments could be highly 

profitable. The average gross margin of the fortnightly droplet treatments was estimated at 

£30,246 ha-1, much more than the combined pre+post-emergence treatment (£18,502 ha-1). 

Allowing for the platform cost of £125 ha-1 y-1 for the platform, then the estimated additional 

profit of the droplet treatments above that for the combined pre- and post-emergence 

treatment would be £11,619 ha-1 for the 2018 trial. 

 

Discussion 

 

In this study, the concept of weed control by applying a single droplet of herbicide to weed 

leaves was proven in the glasshouse and in the field in a leek crop. Dose-response studies 

have quantified the amount of herbicides needed to control C. album, S. vulgaris and P. 

annua seedlings. The relative efficacy of control of C. album (4-6 leaves) when droplets of 

either glyphosate or glufosinate-ammonium were applied was the same, the ED50 for both 

being about 1/6th of the recommended dose, equivalent to 90 and 75 g a.i. ha-1, respectively. 



 

158 

 

In glasshouse spraying trials with C. album plants about twice the size of those here (i.e. 

8-10 leaves), Tharp et al. (1999) found the same ED50 for glyphosate and glufosinate 

although slightly over twice as much was needed (200 g ha-1). As regards, the amount 

required for each plant for droplet applications, Mathiassen et al. (2016) reported that 3.7 μg 

of glyphosate per seedling reduced the fresh weight of C. album seedlings (2-leaf stage) by 

50%, which compares well with the 5.1 μg here at the ED50.The efficacy of weed control 

reported here is, therefore, at least as good as that expected if the same doses were applied 

using a conventional spray. Moreover, a major improvement in application technology is 

that the amount of herbicide applied to each plant is known whereas, when spraying, only 

the average per unit land area is known.  

In the field, the crop must be kept weed-free during the critical period for weed control, 

which, for transplanted leeks, is from 1 to 12 weeks after planting (Tursun et al., 2007). Not 

surprisingly, therefore, a sequence of droplet applications was needed to keep the crop free 

of weeds and achieve yields that did not differ significantly from the hand-weeded controls. 

Multiple treatments are desirable to control weeds which emerge later in the season, but 

especially for any larger weeds which might not be controlled satisfactorily by droplets. 

Moreover, since one aim is to avoid applying herbicide to soil, seedlings too small to target 

accurately (say <100 mm2) could be treated on a subsequent visit to the field. In this study, 

it was found that fortnightly applications during the critical period achieved high levels of 

weed control provided a systemic herbicide like glyphosate is used and if one droplet is 

applied to each leaf over 100 mm2. This overall concept has also been shown to be successful 

in fields with cabbages (Murdoch et al., 2017) although because cabbage is a more weed 

suppressive crop without a clear critical period only three treatments were needed to achieve 

high yields and approximately 95% control of weeds.  

The reductions in herbicides used per unit area are an important environmental consideration 

and the droplet treatments reduced the a.i. required by 68-82% ha-1 compared with pre-

emergence and combined pre- and post-emergence sprays. Although much lower amounts 

of herbicides are being applied per hectare, the amounts applied to individual weeds were 

within the range of label recommendations. Concerns about individual plants surviving low 

doses and herbicide resistance are not, therefore, relevant. 

The preliminary economic analysis calculated the net profitability of an automated droplet 

applicator platform for weed control in leeks. The very high profitability (£11,619 ha-1) 

compared with spray applications using commercial herbicides derives from the high value 

of the crop. In this study, a single value of the crop has been used (£1.22 kg-1). However, 

leek prices change seasonally and are categorized according to stem diameter and then sold 

as pre-packed, loose product or discarded as non-marketable. 

Finally, development of software and hardware (including a prototype applicator) have been 

in progress for several years and are funded in the UK by AHDB (Murdoch, 2018). 

 

Conclusions 

 

Dose-response studies in the glasshouse proved that single droplet application on to small 

seedlings was a highly efficient method of weed control. Droplets containing 36.6 μg of 

glyphosate or glufosinate-ammonium controlled C. album seedlings. In leek crops, a 

sequence of applications of glyphosate or glufosinate-ammonium achieved high levels of 

weed control, no yield penalty and reduced herbicide applications by over 70% compared to 

conventional pre- and post-emergence sprays. Economic analysis demonstrated that because 

of the high crop value, droplet applications could increase profits by over £11,000 ha-1 per 

year, even after allowing £5000 per year for the cost of the application system. 
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