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ATOMIC DECOMPOSITIONS, TWO STARS THEOREMS, AND DISTANCES
FOR THE BOURGAIN–BREZIS–MIRONESCU SPACE AND OTHER BIG

SPACES

LUIGI D’ONOFRIO, LUIGI GRECO, KARL-MIKAEL PERFEKT, CARLO SBORDONE,
AND ROBERTA SCHIATTARELLA

Abstract. Given a Banach space E with a supremum-type norm induced by a collection
of operators, we prove that E is a dual space and provide an atomic decomposition of its
predual. We apply this result, and some results obtained previously by one of the authors,
to the function space B introduced recently by Bourgain, Brezis, and Mironescu. This
yields an atomic decomposition of the predual B∗, the biduality result that B∗0 = B∗ and
B∗∗ = B, and a formula for the distance from an element f ∈ B to B0.

1. Introduction

Suppose that a Banach space E is defined and normed by the fact that x ∈ E if and only
if supL∈L ‖Lx‖Y < ∞, where L is a collection of operators L : X → Y , X and Y Banach
spaces. Spaces of this kind include the space of bounded mean oscillation (BMO), Hölder
spaces, the space of bounded variation (BV), Marcinkiewicz spaces, and various spaces of
holomorphic functions of weighted or Möbius invariant type.

Most of these spaces are known to have a predual E∗ whose elements can be defined in
terms of a decomposition into designated “atoms”. See for instance [4, 6] for two recent
examples related to what will be our main application. While the general line of argument
to obtain such atomic decompositions has appeared frequently and repeatedly, the main
purpose of this note is to provide a completely functional analytic proof, independent of
any special structure of L. In particular, our approach can be used to recover some of
the results from [4, 6], as well as many other examples of atomic decompositions in the
literature.

Another typical result, in the cases where it is possible to define a sufficiently rich “van-
ishing” subspace E0 ⊂ E, is the “two stars theorem”. Namely, that E∗0 = E∗. Furthermore,
the distance from an element f ∈ E to E0 is usually given by an appropriate limit of the
defining functionals. The pair (BMO(T),VMO(T)) provides a familiar example. These
phenomena were formalized by one of the authors in [13, 14], and they were proven to
hold in a fairly general context (without giving any description of E∗). See also [5] for a
survey.

Our second purpose is to demonstrate the application of these results to the new function
space B introduced by Bourgain, Brezis, and Mironescu [3]. Recent work related to this
space can also be found in [1, 2, 7, 8, 9]. For d ≥ 1, f ∈ L1((0, 1)d), and a cube Qε ⊂ (0, 1)d

with sides of length ε and parallel to the co-ordinate axes, let fQε
denote the average of f

on Qε. Define the norm (modulo constants)

(1) ‖ f ‖B := sup
0<ε≤1

[ f ]ε,
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where
[ f ]ε = εd−1 sup

Fε

∑
Qε∈Fε

1
|Qε|

∫
Qε

∣∣∣ f (x) − fQε

∣∣∣ dx .

Here Fε denotes a collection of mutually disjoint ε-cubes Qε ⊂ (0, 1)d such that the car-
dinality |Fε| ≤ ε1−d, and the supremum is taken over all such collections. The space B is
then defined as

B = { f ∈ L1((0, 1)d) : ‖ f ‖B < ∞}.
When d = 1, B = BMO. For d ≥ 2, the B-norm is strictly weaker than the BMO-norm. In
fact, both BMO and BV are continuously contained in B (see [3]).

The separable vanishing subspace B0 consists of those f ∈ B such that

lim
ε→0

[ f ]ε = 0.

VMO and W1,1 are continuously contained in B0.
For the space B, our result yields the following.

Theorem 1. B has an (isometric) predual B∗. Every ϕ ∈ B∗ is of the form

(2) ϕ =

∞∑
n=1

λngn,

where (λn) ∈ `1 and each atom gn is associated with an ε = εn and a collection of disjoint
ε-cubes Fε such that |Fε| ≤ ε1−d and

• supp gn ⊂ ∪Fε,
• |gn|χQε

≤ εd−1 1
|Qε |

for every Qε ∈ Fε,
•

∫
Qε

gn dx = 0 for every Qε ∈ Fε.

The action of f ∈ B on ϕ is given by

f (ϕ) =

∞∑
n=1

λn

∫
(0,1)d

f gn dx

and is independent of the choice of representation of ϕ. Furthermore,

1
2

inf
∞∑

n=1

|λn| ≤ ‖ϕ‖B∗ ≤ inf
∞∑

n=1

|λn|,

where the infimum is taken over all representations of ϕ.

Remark. As expected, the result shows that B∗ is continuously contained in the atomic
Hardy space H1((0, 1)d). In particular, the convergence of the series (2) can be understood
in H1, and thus in L1.

As mentioned before, we will also show the following biduality and distance result.
The meaning of the duality relations will be made more precise in Section 3. Let UC ⊂ B0
denote the space of uniformly continuous functions on (0, 1)d (modulo constants). Note
that UC is dense in B0, by the remark after Lemma 7.

Theorem 2. We have that B∗0 = B∗ and B∗∗0 = B∗∗ = B, isometrically via the L2((0, 1)d)-
pairing. For any f ∈ B it holds that

(3) dist( f ,B0) = dist( f ,UC) = min
g∈B0
‖ f − g‖B = lim

ε→0
[ f ]ε.

Remark. The result of [14] implies thatB0 is an M-ideal inB. Thus, by M-structure theory
[11], the minimizer of (3) exists but is never unique, unless f ∈ B0.
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Remark. If the constraint on the cardinality, |Fε| ≤ ε1−d, is removed from the definition of
B, we find the familiar space BV of functions of bounded variation on (0, 1)d. Indeed, it
can easily be shown that f ∈ BV if and only if

sup
0<ε≤1

εd−1 sup
Gε

∑
Qε∈Gε

1
|Qε|

∫
Qε

∣∣∣ f (x) − fQε

∣∣∣ dx < ∞,

where the supremum now runs over all families Gε of pairwise disjoint ε-cubes contained
in (0, 1)d. Actually, this is a particular case of [7, Corollary 4.2], see also [9, 4]. More-
over, the above quantity is equivalent to the total variation |D f |((0, 1)d). In this case, the
corresponding “vanishing subspace” is trivial:

lim
ε→0

εd−1 sup
Gε

∑
Qε∈Gε

1
|Qε|

∫
Qε

∣∣∣ f (x) − fQε

∣∣∣ dx = 0

if and only if f is constant.

Acknowledgments. We are grateful to the anonymous referee for several helpful sug-
gestions. K.-M. Perfekt was partially supported by EPSRC grant EP/S029486/1. The
research of R.Schiattarella has been funded by PRIN Project 2017JFFHSH.

L. D’Onofrio, L. Greco, C. Sbordone and R. Schiattarella are members of the Gruppo
Nazionale per l’Analisi Matematica, la Probabilità e le loro Applicazioni (GNAMPA) of
the Istituto Nazionale di Alta Matematica (INdAM).

2. Atomic decompositions

We will suppose that X is reflexive, while letting Y be any Banach space. In this section,
let (Ln)∞n=1 be a given sequence of bounded operators Ln : X → Y , and define

E = {x ∈ X : sup
n
‖Lnx‖Y < ∞}.

We suppose that this defines a Banach space E under the norm

‖x‖E = sup
n
‖Lnx‖Y ,

and that E is continuously contained in X. We will not attempt to give a general condition
under which these two hypotheses hold. We also suppose that E is dense in X in the
X-norm, for otherwise we may replace X by the closure of E in X.

We thus have an isometric embedding

V : E → `∞(Y), V x(n) = Lnx.

The dual of E can therefore be represented as

E∗ ' ba(N,Y∗)/VE⊥,

where ba(N,Y∗) denotes the space of finitely additive Y∗-valued set functions on N of
bounded variation [12], and VE⊥ is its subspace of elements annihilating VE. Note that
`1(Y∗) is naturally understood as the subspace of ba(N,Y∗) consisting of the countably
additive measures.

Theorem 3. E has an isometric predual E∗,

E∗ = `1(Y∗)/P,
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where P = VE⊥ ∩ `1(Y∗). That is, every x ∈ E corresponds to a functional on `1(Y∗)/P
given by

(4) x((y∗n)) =

∞∑
n=1

y∗n(Lnx) =

∞∑
n=1

L∗ny∗n(x), (y∗n) ∈ `1(Y∗),

and conversely every bounded functional on `1(Y∗)/P is given by a unique x ∈ E according
to (4). The norm of x as a functional is equal to its norm as an element of E.

Proof. Through the canonical embedding ι : Y → Y∗∗, we may instead consider the em-
bedding

W : E → `∞(Y∗∗), Wx(n) = ι(V x(n)).
Note that `∞(Y∗∗) = `1(Y∗)∗ [12]. To see that E is a dual space we simply have to verify
that WE is weak-star closed in `∞(Y∗∗). By the Krein-Smulian theorem, it is enough to
check that WE ∩ D1 is weak-star closed, where D1 is the closed unit ball with centre 0 in
`∞(Y∗∗).

Suppose therefore that (xα) is a net in the unit ball of E such that (Lnxα)→ (y∗∗n ) weak-
star, where (y∗∗n ) ∈ `∞(Y∗∗). Since E is continuously contained in X and X is reflexive,
there is a subnet (xα′ ) such that xα′ → x weakly in X, for some x ∈ X. For every fixed n,
Ln : X → Y is continuous, and thus Lnxα′ → Lnx weakly in Y . Since closed balls of Y are
weakly closed, we conclude that x belongs to the unit ball of E. Of course, for every fixed
n we also know by hypothesis that Lnxα′ → y∗∗n weak-star in Y∗∗. Then, for every y∗ ∈ Y∗,

y∗∗n (y∗) = lim
α′

y∗(Lnxα′ ) = y∗(Lnx).

Hence (y∗∗n ) = (Lnx), demonstrating that WE ∩ D1 is weak-star closed.
We have shown that E ' WE is a dual space, with predual given by

(WE)∗ = `1(Y∗)/⊥WE = `1(Y∗)/P. �

Remark. If Y is a dual space with predual Y∗, a similar argument shows that

E∗ = `1(Y∗)/⊥VE.

To understand Theorem 3, note that finite sums e∗ =
∑

L∗ny∗n belong both to E∗ and
X∗ = X∗, and the action of elements x ∈ E on e∗ is identical,

x((y∗n)) = e∗(x).

Clearly, such finite sums are dense in E∗. In fact, by restricting the action of x∗ ∈ X∗ from
X to E, all of X∗ is continuously contained (and thus dense) in E∗.

Theorem 4. X∗ is continuously contained in E∗. Thus, for any x∗ ∈ X∗ there is a sequence
(y∗n) ∈ `1(Y∗) such that ‖(y∗n)‖`1(Y∗) ≤ C‖x∗‖X∗ and

x∗(x) =

∞∑
n=1

L∗ny∗n(x), x ∈ E.

Here C > 0 is an absolute constant. In particular, if X is separable, then E∗ is separable.

Proof. Note first that it is clear that every x∗ ∈ X∗ induces an element x∗ ∈ E∗, since
E is continuously contained in X, and the implied map is injective. To see that in fact
x∗ ∈ E∗, we need to verify that x∗ is weak-star continuous on E. That is, we need to verify
that E ∩ ker x∗ is weak-star closed in E. By the Krein-Smulian theorem, it is sufficient to
consider D1 ∩ E ∩ ker x∗, where D1 is the closed unit ball with centre 0 in E. Let (xα)
be a net in this intersection such that xα → x weak-star in E. Since E is continuously
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contained in X, there is a subnet (xα′ ) such that xα′ → x0 weakly in X for some x0 ∈ X. By
the same argument as in the proof of Theorem 3, we then have that x0 ∈ D1 ∩ E ∩ ker x∗.
Furthermore, for every n and y∗ ∈ Y∗, we find that

y∗(Lnx0) = lim
α′

y∗(Lnxα′ ) = y∗(Lnx).

Hence Lnx0 = Lnx for every n, and thus x0 = x (by the assumption that the norm of E is
indeed a norm). �

3. Biduality and distance formulas

In this section we will recall the framework and results of [13, 14], imposing additional
structure on E. We now suppose that X is separable, in addition to being reflexive. Y is
still an arbitrary Banach space. We assume that E is normed by a collection L of operators
L : X → Y , equipped with a topology that is σ-compact, locally compact, Hausdorff, and
such thatL 3 L→ Lx ∈ Y is continuous for every fixed x ∈ X. To reconcile this framework
with that of Section 2, we additionally assume that the topology is separable.

Let
E = {x ∈ X : sup

L∈L
‖Lx‖Y < ∞},

and
E0 = {x ∈ E : lim

L3L→∞
‖Lx‖Y = 0}.

Here L → ∞ is understood in the usual sense of escaping all compacts. As before, we
assume that E is a Banach space under the norm ‖x‖E = supL∈L ‖Lx‖Y , and that E is
continuously contained and dense in X.

Additionally, we have to assume an approximation property.

(AP) For every x ∈ E there is a sequence (xn) ⊂ E0 such that ‖xn‖E ≤ ‖x‖E and xn → x in
X.

Since closed balls of E0 may be viewed as bounded convex subsets of X, an equivalent
reformulation of (AP) is obtained by replacing the strong convergence of xn → x by weak
convergence in X.

The following theorem was proven in [13, 14] by considering the natural embedding
of E into the space Cb(L,Y) of bounded continuous Y-valued functions on L, and the
corresponding embedding of E0 into the space C0(L,Y) of such functions vanishing at ∞.
We refer the interested reader to [10] for the notion of an M-ideal. Let ι : E0 → E∗∗0 denote
the canonical embedding.

Theorem 5 ([13, 14]). Suppose that (AP) holds. Then

• E∗∗0 ' E isometrically via the X-X∗-pairing. More precisely, let I : E0 → X denote
the inclusion operator, and let U = I∗∗. Then U(E∗∗0 ) = E and, considered as an
operator U : E∗∗0 → E, U is the unique isometric isomorphism such that Uιx = x
for all x ∈ E0.

• E0 is an M-ideal in E.
• For every x ∈ E it holds that

min
x0∈E0
‖x − x0‖E = lim

L→∞
‖Lx‖Y .
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The uniqueness of U has not been explicitly stated before, but follows as in [15, Theo-
rem 2].

Choosing a dense sequence of operators (Ln) in L , we have by continuity that

‖x‖E = sup
n
‖Lnx‖Y ,

allowing us to apply the results of Section 2. Theorems 3 and 4 yield an isometric isomor-
phism J : E → E∗∗ such that Jx(x∗) = x∗(x) for x∗ ∈ X∗ ⊂ E∗ and x ∈ E. Since E0 is an
M-ideal in E∗∗0 , E∗0 is a strongly unique predual, implying that the isometry JU : E∗∗0 → E∗∗
must arise as the adjoint JU = K∗ of an isometric isomorphism K : E∗ → E∗0. Note, for
x∗ ∈ X∗ ⊂ E∗ and x ∈ E0, that

Kx∗(x) = JUιx(x∗) = x∗(x).

Theorem 6. Suppose that (AP) holds. Then the identity map, K(x∗) = x∗, x∗ ∈ X∗, extends
to an isometric isomorphism K : E∗ → E∗0.

Less formally, we might simply say that E∗0 = E∗ and that E∗∗ = E, isometrically via the
X-X∗-pairing.

4. The Bourgain–Brezis–Mironescu space

We restrict the discussion to d ≥ 2. If d = 1, then B = BMO and the results are
already known. If d ≥ 2, [3, Theorem 2] states that B is continuously contained in the
Marcinkiewicz space Ld/(d−1),∞ (modulo constants). Therefore, as our choice of separable
reflexive space containing B, we may take X = Lp((0, 1)d)/C, where 1 < p < d/(d − 1).
Let Y = L1((0, 1)d).

As before, let Fε denote a collection of disjoint open ε-cubes such that |Fε| ≤ ε1−d.
Thus Fε = (Qε(a j))m

j=1, where Qε(a j) ⊂ (0, 1)d is an ε-cube centered at a j ∈ (0, 1)d, and
m ≤ ε1−d. To each such collection Fε, associate the operator LFε : Lp/C→ L1 given by

LFε f = εd−1 1
|Qε|

|Fε |∑
j=1

χQε(a j)( f − fQε(a j)).

Since the cubes are disjoint, we then have that

‖LFε f ‖L1 = εd−1 1
|Qε|

|Fε |∑
j=1

∫
Qε(a j)

| f − fQε(a j)| dx,

and thus that
B = { f ∈ Lp/C : sup

0<ε≤1
sup
Fε

‖LFε f ‖L1 < ∞}.

To place ourselves in the framework of Section 3, we have to construct an appropriate
topology on the set of collections Fε. Each collection is uniquely determined by ε and the
centres a1, . . . , am of the cubes (0, 1)d ⊃ Qε(a j) ∈ Fε. We thus write Fε = F (ε, a1, . . . , am).
For each m ∈ N, let

Lm = {Fε = F (ε, a1, . . . , am) : |Fε| = m},

with the topology induced by the parametrization (ε, a1, . . . , am) ∈ (0, 1] × (0, 1)md. Con-
sider the map πm : Lm → (0,m−1/(d−1)] given by πm(Fε) = ε. Since the cubes Qε(a j)
are open, the map πm is proper. That is, π−1

m ([δ,m−1/(d−1)]) is compact for every 0 < δ ≤
m−1/(d−1). By the dominated convergence theorem, the map Lm 3 Fε 7→ LFε f ∈ L1 is
continuous for every fixed f ∈ Lp and m.
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We endow the full collection L = {Fε} with the disjoint union topology,

L =

∞∐
m=1

Lm.

By the corresponding properties of Lm, L is σ-compact, locally compact, Hausdorff, sep-
arable, and L 3 Fε 7→ LFε f ∈ L1 is continuous for every f ∈ Lp. Furthermore, the
map

π =

∞∐
m=1

πm : L → (0, 1], π(Fε) = ε,

is proper, since πm is proper, and for every δ > 0 there is an N such that π−1([δ, 1]) ⊂∐
m≤N Lm. That is, π−1([ε, 1]) is compact for every 0 < ε ≤ 1, and, by continuity, for every

compact set K ⊂ L there is an ε > 0 such that K ⊂ π−1([ε, 1]). For a continuous function
F : L → R, we therefore have that

lim
L3Fε→∞

F(Fε) = lim
ε→0

sup
Fε

F(Fε).

Hence the Bourgain–Brezis–Mironescu space B and its vanishing counterpart B0 form an
instance of the pair (E, E0), as described in Section 3,

B0 = { f ∈ B : lim
ε→0

sup
Fε

‖LFε f ‖L1 = 0}.

Before applying our results, we must prove that (AP) holds.

Lemma 7. For every f ∈ B, there is a sequence ( fn) ⊂ B0 such that ‖ fn‖B0 ≤ ‖ f ‖B and
fn → f in Lp, 1 < p < d/(d − 1).

Proof. For 0 < ϑ < 1
2 , set ϑ = (ϑ, . . . , ϑ) ∈ Rd, and let

g(x) = f ((1 − 2ϑ)x + ϑ), x ∈ (0, 1)d .

Note that g(x) is actually defined for all points x ∈ (−ϑ, 1 + ϑ)d. Choose a function ψ ∈
Cc(Rd) such that ψ ≥ 0, suppψ ⊂ (−1, 1)d, and

∫
ψ(y) dy = 1. Fix ϑ and let ϕ(y) = ϕϑ(y) =

ϑ−dψ(y/ϑ). Throughout the proof, integration with respect to y will be understood to be
taken over suppϕ ⊂ (−ϑ, ϑ)d. Let

h(x) = hϑ(x) = ϕ ∗ g(x) =

∫
ϕ(y) g(x − y) dy .

For cubes Qε ⊂ (0, 1)d , we use the notation

M( f ,Qε) =
1
|Qε|

∫
Qε

| f − fQε
| dx.

Note that

h(x) − hQε
= h(x) −

1
|Qε|

∫
Qε

(∫
ϕ(y) g(z − y) dy

)
dz

=

∫
ϕ(y)

(
g(x − y) − gQε−y

)
dy,

and thus

(5) M(h,Qε) ≤
∫

ϕ(y) M(g,Qε − y) dy.
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Furthermore,

M(g,Qε − y) =
1

|Qε(y, ϑ)|

∫
Qε(y,ϑ)

∣∣∣∣∣∣ f (u) −
1

|Qε(y, ϑ)|

∫
Qε(y,ϑ)

f (v) dv

∣∣∣∣∣∣ du

= M( f ,Qε(y, ϑ))

where Qε(y, ϑ) = {(1− 2ϑ)x + ϑ : x ∈ Qε − y}. Note that Qε(y, ϑ) ⊂ (0, 1)d is an (1− 2ϑ)ε-
cube, for every y.

Now consider a collection Fε of disjoint ε-cubes such that |Fε| ≤ ε1−d. For each y ∈
suppϕ,

Fε(y, ϑ) = {Qε(y, ϑ) : Qε ∈ Fε}

forms a collection of disjoint (1 − 2ϑ)ε-cubes, with

|Fε(y, ϑ)| = |Fε| ≤ ((1 − 2ϑ) ε)1−d.

Hence by (5),

(6)
εd−1

∑
Qε∈Fε

M(h,Qε) ≤
1

(1 − 2ϑ)d−1

∫
ϕ(y) ((1 − 2ϑ)ε)d−1

∑
Fε(y,ϑ)

M( f ,Qε(y, ϑ)) dy

≤
1

(1 − 2ϑ)d−1 ‖ f ‖B.

Therefore

‖h‖B ≤
1

(1 − 2ϑ)d−1 ‖ f ‖B .

To conclude, choose a sequence (ϑn) such that ϑn → 0, and let

fn = (1 − 2ϑn)d−1hϑn .

Then ( fn) ⊂ B0, ‖ fn‖B0 ≤ ‖ f ‖B, and fn → f in Lp. �

Remark. Note that if f ∈ B0, then the sequence ( fn) constructed in the proof of Lemma 7
converges to f in B. Hence the space UC of uniformly continuous functions on (0, 1)d is
dense in B0.

Indeed, the inequality (6) shows that

[ fn]ε ≤ [ f ](1−2ϑ)ε, 0 < ε ≤ 1.

Since f ∈ B0, there is for every σ > 0 an εσ ∈ (0, 1) such that for 0 < ε < εσ we have that

[ f ]ε < σ.

Thus, for such ε,
[ f − fn]ε ≤ [ f ]ε + [ fn]ε < 2σ.

On the other hand, for any family Fε of disjoint ε-cubes we have the trivial estimate

εd−1
∑

Qe∈Fε

M( f − fn,Qε) ≤ 2ε−1‖ f − fn‖L1((0,1)d).

Hence
lim

n
sup

εσ≤ε<1
[ f − fn]ε = 0,

since fn → f in L1((0, 1)d). It follows that fn → f in B, since σ was arbitrary.
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To prove Theorem 1, choose a dense sequence (F n
εn

) ⊂ L. Then Theorem 3 yields
that for every ϕ ∈ B∗ and δ > 0, there is a sequence (y∗n) ∈ `1(L∞((0, 1)d)) such that∑
‖y∗n‖L∞ < ‖ϕ‖B∗ + δ and

ϕ =

∞∑
n=1

L∗
F n
εn

y∗n =

∞∑
n=1

LF n
εn

y∗n.

Then λn = 2‖y∗n‖L∞ and gn = LF n
εn

y∗n/(2‖y
∗
n‖L∞ ) satisfy the desired properties, ϕ =

∑
n λngn,

and
∞∑

n=1

|λn| < 2‖ϕ‖B∗ + 2δ.

Conversely, suppose that we are given a functional ϕ =
∑

n λngn of the form in the theorem.
Let F n

εn
denote the collection of cubes associated with gn. If necessary we may complete

(F n
εn

) to a dense sequence. Theorem 3 then shows that ϕ is weak-star continuous on B, and
it is immediate that

‖ϕ‖B∗ ≤

∞∑
n=1

|λn|.

Remark. As Theorem 3 shows, one obtains an isometric description of B∗ by considering
atoms of the form g̃n = LF n

εn
y∗n, normalized by the fact that ‖y∗n‖L∞ = 1.

Theorem 2 follows directly from Theorems 5 and 6.
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“Federico II”, Via Claudio 21, 80125 Napoli, Italy

Email address: luigreco@unina.it

Department ofMathematics and Statistics, University of Reading, Reading RG6 6AX, United Kingdom
Email address: k.perfekt@reading.ac.uk

Dipartimento diMatematica e Applicazioni “R. Caccioppoli", Università degli Studi di Napoli “Federico II",
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