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Asymptotics of entire functions and a problem of Hayman1

Titus Hilberdink
Department of Mathematics, University of Reading, Whiteknights,

PO Box 220, Reading RG6 6AX, UK; t.w.hilberdink@reading.ac.uk

Abstract

In this paper we study entire functions whose maximum on a disc of radius r grows like
eh(log r) for some function h(·). We show that this is impossible if h′′(r) tends to a limit as
r →∞, thereby solving a problem of Hayman from 1966. On the other hand we show that
entire functions can, under some mild smoothness conditions, grow like eh(log r) if h′′(r)→∞.
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§1. Introduction
It is well known that entire functions cannot exhibit any possible growth rate at infinity. For
example, if f is entire and f(z)� |z|A for |z| > 1 for some A > 0, then f must be a polynomial.
Thus |f(z)| ∼ c|z|α as |z| → ∞ is impossible for α not an integer, as is say, |f(z)| ∼ |z| log |z|.
Perhaps less well known is the fact that if g is a sufficiently smooth function growing faster than
any polynomial but slower than eε(log x)

2
for every ε > 0, then there is no entire function f with

M(x) := max
|z|=x

|f(z)| ∼ g(x) (1.1)

(see [7])2. Indeed, they show that even a growth rate of g(x)1+ε(x) is impossible for functions
ε(x) tending to zero at a certain rate. For example,

M(x) = ec(log x)
λ+o((log x)2−λ) (1.2)

is impossible for 1 < λ < 2 and c > 0. On the other hand, they show that if “o” is replaced
by “O”, then it is possible to find an entire function with such growth. For larger functions, it
is known that for sufficiently nice g(x) ≥ ec(log x)

2
for some c > 0, it is possible to find entire

f such that M(x) � g(x) (see [3]). Whether one can obtain M(x) ∼ g(x) was left open. (See
also [8], where the authors are asking for M(x) � V (x) for some prescribed V (x) rather than
M(x) ∼ V (x).) That we need g sufficiently nice for (1.1) to hold is clear; for example, if

f(z) =

∞∑
n=0

anz
n

with coefficients an all real and non-negative, then f is infinitely differentiable and each of its
derivatives in increasing. So, for example, we cannot have g(x) = ex+2 sinx. For if

f(x) ∼ ex+2 sinx,

1To appear in the Quarterly Journal of Mathematics
2The symbols ∼ and � are defined as usual: f(x) ∼ g(x) if limx→∞

f(x)
g(x)

= 1 and f(x) � g(x) if there exist

a, b > 0 such that a ≤ f(x)
g(x)

≤ b for all x sufficiently large.
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then for n ∈ N,

1 ≥
f(2nπ + π

2 )

f(2nπ + π)
∼ e2nπ+

π
2
+2

e2nπ+π
= e2−

π
2 ,

as n→∞ — a contradiction.

The peculiar phenomenon that occurs around ec(log x)
2

can be seen when we take an = e−αn
2
:

∞∑
n=0

e−αn
2
xn =

√
π

α
e

1
4α

(log x)2
(

1 + 2

∞∑
n=1

e−
π2n2

α2 cos
(πn log x

α

))
+O

(1

x

)
.

(This easily follows from the identity
∑

n∈Z e
−αn2+βn =

√
π
αe

β2

4α
∑

n∈Z e
−π

2n2

α
− iπβn

α .) In partic-

ular, the series on the left is not asymptotically equal to λe
1
4α

(log x)2 for any λ, even though it is
� e

1
4α

(log x)2 . This suggests what we ask for is impossible, at least for g(x) = ec(log x)
2
.

A problem of Hayman
With f and M as above, let b(r) denote the function

b(r) =
(
r
d

dr

)2
logM(r) =

( d

d log r

)2
logM(r).

Alternatively, writing M(ex) = eK(x), we have b(x) = K ′′(x). We note that b(r) exists for all r
except possibly at isolated points, and that b(r) is continuous away from these points. In any
case, b(r± 0) does exist and these are both non-negative – a result that follows from Hadamard
convexity. Much research has been devoted to studying this function (see for example [1], [4],
[6]).

The results in [7] were in part inspired by a paper of Hayman [4] where he showed that if f
is transcendental entire, then lim supr→∞ b(r) ≥ A0, some absolute constant and A0 ≥ 0.18. He
ended his paper by asking if it is possible to have b(r) → c as r → ∞ for some c ≥ 0 (indeed
one must have c ≥ A0). Note that, implicitly, this assumes b(r) exists for all r sufficiently large.
This natural question appears never to have been answered. With the help of Theorem 1 below,
we now have a solution.

Theorem 1
Let k : (a,∞)→ R be twice continuously differentiable and such that (i) k′′(x) > 0 for all x ≥ a
and k′′(x)→ c for some c ≥ 0, and (ii) k′(x)→∞ as x→∞. Then there is no entire function
f for which

M(r) ∼ ek(log r) as r →∞.

Corollary 2 (Hayman’s problem [4])
Let f(z) be entire and transcendental with M(r) and b(r) as before. Then limr→∞ b(r) does not
exist.

Proof. Suppose the limit does exist and equals, say, c. Define k(x) via k′′(x) = b(x) (exists and
is continuous for all x large. By extending k to [0,∞) if necessary, we see that k satisfies the
conditions of Theorem 1. But then M(ex) ∼ ek(x), and we have a contradiction.

�
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On the other hand, for larger g, we can find entire functions satisfying (1.1). For this we shall
require the notion of regularly varying functions (see [2]). A measurable function φ : (a,∞) →
(0,∞) is regularly varying of index ρ if

φ(λx) ∼ λρφ(x) as x→∞ for all λ > 0.

Note that, as such, φ(x) = xρ+o(1) and φ(x+ o(x)) ∼ φ(x).
First we prove the following result, which is closely reminiscent of a result of Hayman [5]

giving the asymptotic behaviour of the coefficients of a power series. Here though, we obtain
the asymptotic behaviour of the function given information of the coefficients rather than the
other way round.

Theorem 3
Let k : [0,∞)→ R be twice continuously differentiable and such that k, k′, k′′ > 0 on (0,∞) with
k(0) = k′(0) = 0 and k′′(x) → ∞ as x → ∞. Let ` = (k′)−1 and suppose that `′ is regularly
varying of index −α with α ∈ [0, 1]. Put L(x) =

∫ x
0 `. Then

∞∑
n=0

e−L(n)+ny ∼
√

2πk′′(y) ek(y) as y →∞.

Based on this, we obtain:

Theorem 4
Let h : (a,∞)→ R be a C4-function such that h′′(x)→∞ as x→∞, and

h′′′ = o((h′′)3/2), h(4) = o((h′′)2). (1.3)

Further assume that m := (h′)−1 is such that m′ is regularly varying of index −α with α ∈ [0, 1].
Then there is a sequence (an)n≥0 with an ≥ 0 for which

∞∑
n=0

anx
n ∼ eh(log x) as x→∞.

Remark. The conditions in (1.3) do not seriously restrict the size of h. Typically for large
(nice) functions F one has F ′ = (F )1+o(1), so one would expect h′′′, h(4) = (h′)1+o(1) and (1.3)
holds. For small (nice) h (with h′′ →∞) we typically expect h′′′, h(4) = o(h′) so (1.3) holds again.

§2. Proofs
The main result (Theorem 1) concerns c > 0 but we can deal with c = 0 at the same time, so we
include it. Note that this case is much simpler. Essentially, we prove (1.2) is also impossible for
λ = 2. As noted, this case was excluded from [7] and indeed our methods are rather different,
using a sequence of nested sequences.

Proof of Theorem 1. Without loss of generality we may extend k to a C2-function defined on
[0,∞) such that k′ is strictly increasing. Suppose we can find an entire function

f(z) =

∞∑
n=0

anz
n

3



for which M(r) ∼ ek(log r) as r →∞. By Cauchy’s inequality, we have

|an| ≤M(ey)e−ny ∼ ek(y)−ny

for all y ≥ 0. The optimal value is to choose y such that k′(y) = n. This is uniquely given, say
y = yn, as k′ is strictly increasing and continuous. Hence, we may write

an = bne
k(yn)−nyn where |bn| . 1.

Now the assumption on M implies that

∞∑
n=0

bne
−wn(y) → 1 as y →∞, (2.1)

where

wn(y) = k(y)− k(yn)− n(y − yn) =

∫ y

yn

k′(t)− ndt =

∫ y

yn

∫ t

yn

k′′(u) du dt. (2.2)

Since k′′ > 0, we have wn(y) ≥ 0 with equality if and only if yn = y; i.e. if and only if n = k′(y).
Define ` (on a neighbourhood of infinity) to be the inverse of k′; i.e. k′(`(x)) = x and

yn = `(n). By differentiating we see that, as x→∞,

`′(x)→
{

1
c if c > 0
∞ if c = 0

.

From (2.2) we have, with t = `(v)

wn(y) =

∫ k′(y)

n
(v − n)`′(v) dv.

Thus in either case we have wn(y) ≥ a(n− k′(y))2 for some a > 0 for all n, y sufficiently large.
Put y = `(N + λ) where N ∈ N and λ ∈ [0, 1]. Then the inequality becomes

wN+n(`(N + λ)) ≥ a(n− λ)2

for some a > 0 and all N sufficiently large such that n ≥ −N + n0, while (2.1) becomes

∞∑
n=−N

bN+ne
−wN+n(`(N+λ)) → 1 as N →∞, uniformly for λ ∈ [0, 1].

Furthermore, ∑
−
√
N≤n≤

√
N

bN+ne
−wN+n(`(N+λ)) → 1 as N →∞, uniformly for λ ∈ [0, 1]. (2.3)

(Indeed, instead of
√
N we could take any function ϕ(N) tending to infinity with N such that

ϕ(N) = o(N).) Also, we shall see shortly that wN+n(`(N + λ)) → (n−λ)2
2c as N → ∞, in case

c > 0.
The idea is now to construct a sequence (cn)n∈Z from the limit points of the bn such that

(2.3) is turned into ∑
n∈Z

cne
− (n−λ)2

2c = 1 ∀λ ∈ [0, 1]. (2.4)
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Let B denote the set of limit points of (bn). Note that B is contained in the closed unit disc.
We define the cn inductively, first for c0, then c±1, c±2 etc. as follows. Let c0 be any limit

point of (bn), which exists, as it is bounded; i.e. c0 ∈ B. Thus there is a sequence of Ns such
that bN → c0. Now suppose we have defined cn for |n| ≤ k, for some k ≥ 0 and that

bN+n → cn for |n| ≤ k as N →∞ through some sequence.

We define c±(k+1) as follows. The sequence bN+k+1 (with N taking values in the particular
subset of N as above), being bounded, has a convergent subsequence. Call the limit ck+1. Since
subsequences of a sequence converge to the same limit as the sequence, we now have

bN+n → cn for |n| ≤ k and n = k + 1 as N →∞ through some sequence in N.

Now do the same for bN−(k+1) by taking a further subsequence. This defines cn for |n| ≤ k + 1
and, by induction, we obtain a sequence (cn)n∈Z in B. More precisely, the above says that, given
ε > 0 and k ∈ N, there exists an Nk ∈ N and Sk, an unbounded subset of N, such that for all
|n| ≤ k,

|bN+n − cn| < ε for N ∈ Sk with N ≥ Nk. (2.5)

Note that Sm ⊂ Sm−1 for every m ∈ N.
Now for the case when c > 0, so that `′ → 1/c, we have, uniformly for λ ∈ [0, 1],

wN+n(`(N +λ)) =

∫ N+λ

N+n
(v−N −n)`′(v) dv =

∫ λ−n

0
t`′(N +n+ t) dt→ (n− λ)2

2c
as N →∞.

Thus, in this case, given ε > 0 and k ∈ N, there exists a Nk ∈ N and Sk, an unbounded subset
of N, such that for all |n| ≤ k and all λ ∈ [0, 1],

|bN+ne
(n−λ)2

2c
−wN+n(`(N+λ)) − cn| < ε for N ∈ Sk with N ≥ Nk. (2.6)

Now we show that (2.4) holds. We have∣∣∣∣∑
n∈Z

cne
− (n−λ)2

2c − 1

∣∣∣∣ =

∣∣∣∣∑
|n|>k

cne
− (n−λ)2

2c +
∑
|n|≤k

(cne
− (n−λ)2

2c − bN+ne
−wN+n(`(N+λ)))

−
∑

k<|n|≤
√
N

bN+ne
−wN+n(`(N+λ)) +

∑
|n|≤
√
N

bN+ne
−wN+n(`(N+λ)) − 1

∣∣∣∣
≤ E1 + E2 + E3 + E4,

where

E1 =
∑
|n|>k

|cn|e−
(n−λ)2

2c , E2 =
∑
|n|≤k

|bN+ne
−wN+n(`(N+λ)) − cne−

(n−λ)2
2c |

E3 =
∑

k<|n|≤
√
N

|bN+n|e−wN+n(`(N+λ)), E4 =

∣∣∣∣ ∑
|n|≤
√
N

bN+ne
−wN+n(`(N+λ)) − 1

∣∣∣∣.
Let ε > 0. Since bn and cn are bounded we have (for some constant C),

E1, E3 < C
∑
|n|>k

e−
(n−λ)2

2c ≤ 2C
∑
n≥k

e−
n2

2c < ε,
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for k ≥ k0 (dependent on ε only) and all λ ∈ [0, 1]. Next, there exists N ′ such that for N ≥ N ′,

E4 < ε ∀λ ∈ [0, 1].

Next, by (2.6) we have for N ∈ Sk with N ≥ Nk,

E2 ≤ ε
∑
|n|≤k

e−
(n−λ)2

2c < 2ε
∞∑
n=0

e−
n2

2c = C ′ε

for some constant C ′. Hence for N ∈ Sk0 with N ≥ max{N ′, Nk0}, we have∣∣∣∣∑
n∈Z

cne
− (n−λ)2

2c − 1

∣∣∣∣ ≤ E1 + E2 + E3 + E4 < (3 + C ′)ε.

This establishes (2.4). But the function

g(z) =
∑
n∈Z

cne
− (n−z)2

2c

is entire, being a locally uniformly convergent series of holomorphic functions on C. As it is 1
on the interval [0, 1] it must be identically 1. Thus for x real

e−
c
2
x2 = e−

c
2
x2g(cix) = e−

c
2
x2
∑
n∈Z

cne
− (n−icx)2

2c =
∑
n∈Z

cne
−n

2

2c enix.

The RHS is periodic while the LHS tends to 0 at infinity but is non-zero. This is a contradiction.

It remains to prove the case c = 0 is also impossible. For this case take λ = 1
2 in (2.3). Now

wN+n

(
`
(
N +

1

2

))
=

∫ 1
2
−n

0
t`′(N + n+ t) dt→∞,

as N →∞ for each n ∈ N. Thus (2.3) cannot hold and we have a contradiction.
�

Proof of Theorem 3. Regarding n as a real variable, we have ∂
∂n(ny − L(n)) = y − `(n) = 0

when `(n) = y; i.e. n = k′(y). Thus eny−L(n) is largest when n = k′(y) in which case eny−L(n) =
eyk
′(y)−L(k′(y)). Note that(

yk′(y)− L(k′(y))
)′

= k′(y) + yk′′(y)− `(k′(y))k′′(y) = k′(y).

Thus yk′(y) − L(k′(y)) = k(y). We show that the main contribution to the series comes from
the range |n − k′(y)| �

√
k′′(y). First we find the contribution from this range. Let n =

k′(y) + t
√
k′′(y). Then

ny − L(n) = yk′(y) + ty
√
k′′(y)− L(k′(y) + t

√
k′′(y))

= k(y)−
∫ t
√
k′′(y)

0
`(k′(y) + u)− `(k′(y)) du (2.7)
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using `(k′(y)) = y. The integral on the right of (2.7) is

√
k′′(y)

∫ t

0
`(k′(y) + v

√
k′′(y))− `(k′(y)) dv =

∫ t

0
v
`′(k′(y) + wv,y

√
k′′(y))

`′(k′(y))
dv

for some wv,y lying between 0 and t by the Mean Value Theorem and using the fact that
`′(k′(y))k′′(y) = 1. Since `′ is monotonic and

√
k′′(y) = o(k′(y)), the integrand is asymptotic to

v and the integral is ∼ t2

2 . Thus from (2.7) we have (with n = k′(y) + t
√
k′′(y))

e−L(n)+ny ∼ ek(y)−
t2

2

locally uniformly for t ∈ R. Let ε > 0. Write n = [k′(y)] +m, where m ∈ Z and [x] denotes the
integer part of x. Then m = t

√
k′′(y) +O(1), so that

∑
|n−k′(y)|≤A

√
k′′(y)

e−L(n)+ny ∼ ek(y)
∑

|m|≤A
√
k′′(y)

e
− (m+O(1))2

2k′′(y) ∼ ek(y)
∑

|m|≤A
√
k′′(y)

e
− m2

2k′′(y) ,

since m = o(k′′(y)). The sum on the right is asymptotic to∫ A
√
k′′(y)

−A
√
k′′(y)

e
− x2

2k′′(y) dx =
√
k′′(y)

∫ A

−A
e−

x2

2 dx =
√

2πk′′(y)(1− η), (2.8)

where 0 < η < ε for A sufficiently large.
Next consider n < k′(y). Write t = −T , where T > 0 and use `(x)−`(x−u) =

∫ x
x−u `

′ ≥ u`′(x)
for u > 0. We have∫ t

√
k′′(y)

0
`(k′(y) + u)− `(k′(y)) du =

∫ T
√
k′′(y)

0
`(k′(y))− `(k′(y)− u) du

≥ `′(k′(y))

∫ T
√
k′′(y)

0
u du =

T 2

2
.

Hence (2.7) implies e−L(n)+ny ≤ ek(y) · e−
T2

2 . It follows that, for A > 0, writing n = [k′(y)]−m
(so that m ≤ T

√
k′′(y))

∑
n≤k′(y)−A

√
k′′(y)

e−L(n)+ny ≤ ek(y)
∑

m≥A
√
k′′(y)

e
− m2

2k′′(y) � ek(y)
∫ ∞
A

e
− x2

2k′′(y) dx

< εek(y)
√
k′′(y) (2.9)

for A sufficiently large.
For n > k′(y), use `(k′(y) + u)− `(k′(y)) ≥ u`′(k′(y) + u) ≥ u`′(n) in (2.7) to get

e−L(n)+ny ≤ ek(y) · exp

{
−
∫ n−k′(y)

0
u`′(n) du

}
= ek(y) · exp

{
−(n− k′(y))2`′(n)

2

}
.

Thus ∑
n≥k′(y)+A

√
k′′(y)

e−L(n)+ny ≤ ek(y)
∑

m≥A
√
k′′(y)

e−
m2`′(m+k′(y))

2 (2.10)

7



Split the sum into the ranges A
√
k′′(y) ≤ m ≤ k′(y)] and m > k′(y). On the former use

`′(m+ k′(y)) ≥ `′(2k′(y))� `′(k′(y)) = 1/k′′(y). On the latter use, `′(m+ k′(y)) ≥ `′(2m). As
such, the sum in (2.10) is at most∑
A
√
k′′(y)≤m≤k′(y)

e
− am2

k′′(y) +
∑

m>k′(y)

e−
m2`′(2m)

2 <
√
k′′(y)

∫ ∞
A

e−ax
2
dx+O(1) < ε

√
k′′(y) (2.11)

for A sufficiently large (since `′(2m)m2 �
√
m). Combining (2.8), (2.9) and (2.11) gives the

result.
�

Proof of Theorem 4. The idea is to find an appropriate function k which satisfies the conditions
of Theorem 3 and is such that√

2πk′′(y) ek(y) ∼ eh(y) as y →∞.

Then, with ` and L as defined in Theorem 3, we have

∞∑
n=0

e−L(n)+ny ∼ eh(y)

and, with an = e−L(n), the result follows.
We choose k to be the function

k(y) = h(y)− log
√

2πh′′(y).

As such k′ = h′ − h′′′

2h′′ and k′′ = h′′ − h(4)

2h′′ + (h′′′)2

2(h′′)2 . The conditions on h imply that k′′ ∼ h′′.
Hence √

2πk′′(y) ek(y) =
√

2πk′′(y)
eh(y)√
2πh′′(y)

∼ eh(y).

Now h′′ = (h′)α+o(1) so h′′′ = o((h′′)3/2) = o(h′′h′). Hence k′ ∼ h′ also holds. Thus

m′(h′(y)) =
1

h′′(y)
∼ 1

k′′(y)
= `′(k′(y)).

As m′(h′(y)) ∼ m′(k′(y)), it follows that `′(x) ∼ m′(x) and so `′ is regularly varying of index
−α. The conditions of Theorem 3 are therefore satisfied, at least for k, k′, k′′ on (a,∞). But we
can clearly extend k such that k, k′, k′′ > 0 on (0, a) and k(0) = k′(0) = 0. The result follows.

�
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