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K1  
Brain networks, adolescence and schizophrenia
Ed Bullmore
University of Cambridge, Department of Psychiatry, Cambridge, United 
Kingdom
Correspondence: Ed Bullmore (etb23@cam.ac.uk)  
BMC Neuroscience 2019, 20(Suppl 1):K1

The adolescent transition from childhood to young adulthood is an 
important phase of human brain development and a period of increased 
risk for incidence of psychotic disorders. I will review some of the recent 
neuroimaging discoveries concerning adolescent development, focus-
ing on an accelerated longitudinal study of ~ 300 healthy young people 
(aged 14–25 years) each scanned twice using MRI. Structural MRI, includ-
ing putative markers of myelination, indicates changes in local anatomy 
and connectivity of association cortical network hubs during adoles-
cence. Functional MRI indicates strengthening of initially weak connec-
tivity of subcortical nuclei and association cortex. I will also discuss the 
relationships between intra-cortical myelination, brain networks and 
anatomical patterns of expression of risk genes for schizophrenia.

K2  
Neural circuits for mental simulation
Kenji Doya
Okinawa Institute of Science and Technology, Neural Computation Unit, 
Okinawa, Japan
Correspondence: Kenji Doya (doya@oist.jp)  
BMC Neuroscience 2019, 20(Suppl 1):K2

The basic process of decision making is often explained by learning of 
values of possible actions by reinforcement learning. In our daily life, 
however, we rarely rely on pure trial-and-error and utilize any prior 
knowledge about the world to imagine what situation will happen 
before taking an action. How such “mental simulation” is implemented 
by neural circuits and how they are regulated to avoid delusion are excit-
ing new topics of neuroscience. Here I report our works with functional 
MRI in humans and two-photon imaging in mice to clarify how action-
dependent state transition models are learned and utilized in the brain.

K3  
One network, many states: varying the excitability of the cerebral 
cortex
Maria V. Sanchez‑Vives
IDIBAPS and ICREA, Systems Neuroscience, Barcelona, Spain
Correspondence: Maria V. Sanchez‑Vives (msanche3@clinic.cat)  
BMC Neuroscience 2019, 20(Suppl 1):K3

In the transition from deep sleep, anesthesia or coma states to wakeful-
ness, there are profound changes in cortical interactions both in the tem-
poral and the spatial domains. In a state of low excitability, the cortical 

network, both in vivo and in vitro, expresses it “default activity pattern”, 
slow oscillations [1], a state of low complexity and high synchronization. 
Understanding the multiscale mechanisms that enable the emergence 
of complex brain dynamics associated with wakefulness and cognition 
while departing from low-complexity, highly synchronized states such as 
sleep, is key to the development of reliable monitors of brain state tran-
sitions and consciousness levels during physiological and pathological 
states. In this presentation I will discuss different experimental and com-
putational approaches aimed at unraveling how the complexity of activity 
patterns emerges in the cortical network as it transitions across different 
brain states. Strategies such as varying anesthesia levels or sleep/awake 
transitions in vivo, or progressive variations in excitability by variable ionic 
levels, GABAergic antagonists, potassium blockers or electric fields in vitro, 
reveal some of the common features of these different cortical states, 
the gradual or abrupt transitions between them, and the emergence of 
dynamical richness, providing hints as to the underlying mechanisms.

Reference
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K4  
Neural circuits for flexible memory and navigation
Ila Fiete
Massachusetts Institute of Technology, McGovern Institute, Cambridge, 
United States of America
Correspondence: Ila Fiete (fiete@mit.edu)  
BMC Neuroscience 2019, 20(Suppl 1):K4

I will discuss the problems of memory and navigation from a com-
putational and functional perspective: What is difficult about these 
problems, which features of the neural circuit architecture and dynam-
ics enable their solutions, and how the neural solutions are uniquely 
robust, flexible, and efficient.

F1 
The geometry of abstraction in hippocampus and pre‑frontal 
cortex
Silvia  Bernardi1, Marcus K.  Benna2, Mattia  Rigotti3, Jérôme  Munuera4, 
Stefano  Fusi1, C. Daniel  Salzman1
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Scientifique (CNRS), École Normale Supérieure, Paris, France
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Abstraction can be defined as a cognitive process that finds a common 
feature—an abstract variable, or concept—shared by a number of 
examples. Knowledge of an abstract variable enables generalization to 
new examples based upon old ones. Neuronal ensembles could rep-
resent abstract variables by discarding all information about specific 
examples, but this allows for representation of only one variable. Here 
we show how to construct neural representations that encode multi-
ple abstract variables simultaneously, and we characterize their geom-
etry. Representations conforming to this geometry were observed 
in dorsolateral pre-frontal cortex, anterior cingulate cortex, and the 
hippocampus in monkeys performing a serial reversal-learning task. 
These neural representations allow for generalization, a signature of 
abstraction, and similar representations are observed in a simulated 
multi-layer neural network trained with back-propagation. These find-
ings provide a novel framework for characterizing how different brain 
areas represent abstract variables, which is critical for flexible concep-
tual generalization and deductive reasoning.

F2 
Signatures of network structure in timescales of spontaneous 
activity
Roxana  Zeraati1, Nicholas  Steinmetz2, Tirin  Moore3, Tatiana  Engel4, Anna 
 Levina5

1University of Tübingen, International Max Planck Research School 
for Cognitive and System Neuroscience, Tübingen, Germany; 2University 
of Washington, Department of Biological Structure, Seattle, United States 
of America; 3Stanford University, Department of Neurobiology, Stanford, 
California, United States of America; 4Cold Spring Harbor Laboratory, Cold 
Spring Harbor, NY, United States of America; 5University of Tübingen, 
Tübingen, Germany
Correspondence: Roxana Zeraati (roxana.zeraati@tuebingen.mpg.de)  
BMC Neuroscience 2019, 20(Suppl 1):F2

Cortical networks are spontaneously active. Timescales of these intrin-
sic fluctuations were suggested to reflect the network’s specialization 
for task-relevant computations. However, how these timescales arise 
from the spatial network structure is unknown. Spontaneous cortical 
activity unfolds across different spatial scales. On a local scale of indi-
vidual columns, ongoing activity spontaneously transitions between 
episodes of vigorous (On) and faint (Off) spiking, synchronously 
across cortical layers. On a wider spatial scale, activity propagates as 
cascades of elevated firing across many columns, characterized by the 
branching ratio defined as the average number of units activated by 
each active unit. We asked, to what extent the timescales of spontane-
ous activity reflect the dynamics on these two spatial scales and the 
underlying network structure. To this end, we developed a branching 
network model capable of capturing both the local On-Off dynamics 

and the global activity propagation. Each unit in the model represents 
a cortical column, which has spatially structured connections to other 
columns (Fig. 1A). The columns stochastically transition between On 
and Off states. Transitions to On-state are driven by stochastic external 
inputs and by excitatory inputs from the neighboring columns (hori-
zontal recurrent input). An On state can persist due to a self-excitation 
representing strong recurrent connections within one column (verti-
cal recurrent input). On and Off episode durations in our model follow 
exponential distributions, similar to the On-Off dynamics observed in 
single cortical columns (Fig. 1B). We fixed the statistics of On-Off tran-
sitions and the global propagation, and studied the dependence of 
intrinsic timescales on the network spatial structure.
We found that the timescales of local dynamics reflect the spatial net-
work structure. In the model, activity of single columns exhibits two 
distinct timescales: one induced by the recurrent excitation within 
the column and another induced by interactions between the col-
umns (Fig. 1C). The first timescale dominates dynamics in networks 
with more dispersed connectivity (Fig. 1A, non-local; Fig. 1D), whereas 
the second timescale is prominent in networks with more local con-
nectivity (Fig. 1A, local; Fig. 1D). Since neighboring columns share 
many of their recurrent inputs, the second timescale is also evident in 
cross-correlations (CC) between columns, and it becomes longer with 
increasing distance between columns.
To test the model predictions, we analyzed 16-channel microelectrode 
array recordings of spiking activity from single columns in the primate 
area V4. During spontaneous activity, we observed two distinct time-
scales in columnar On-Off fluctuations (Fig. 1E). Two timescales were 
also present in CCs of neural activity on different channels within the 
same column. To examine how timescales depend on horizontal cor-
tical distance, we leveraged the fact that columnar recordings gener-
ally exhibit slight horizontal shifts due to variability in the penetration 
angle. As a surrogate for horizontal displacements between pairs of 
channels, we used distances between centers of their receptive fields 
(RF). As predicted by the model, the second timescale in CCs became 
longer with increasing RF-center distance. Our results suggest that 
timescales of local On-Off fluctuations in single cortical columns pro-
vide information about the underlying spatial network structure of the 
cortex.

F3 
Internal bias controls phasic but not delay‑period dopamine 
activity in a parametric working memory task
Néstor  Parga1, Stefania  Sarno1, Manuel  Beiran2, José  Vergara3, Román 
Rossi‑Pool3, Ranulfo  Romo3

1Universidad Autónoma Madrid, Madrid, Spain; 2Ecole Normale 
Supérieure, Department of Cognitive Studies, Paris, France; 3Universidad 
Nacional Autónoma México, Instituto de Fisiología Celular, México DF, 
Mexico
Correspondence: Néstor Parga (nestor.parga@uam.es)  
BMC Neuroscience 2019, 20(Suppl 1):F3

Dopamine (DA) has been implied in coding reward prediction errors 
(RPEs) and in several other phenomena such as working memory 
and motivation to work for reward. Under uncertain stimulation 
conditions DA phasic responses to relevant task cues reflect cortical 
perceptual decision-making processes, such as the certainty about 
stimulus detection and evidence accumulation, in a way compat-
ible with the RPE hypothesis [1, 2]. This suggests that the midbrain 
DA system receives information from cortical circuits about deci-
sion formation and transforms it into an RPE signal. However, it is 
not clear how DA neurons behave when making a decision involves 
more demanding cognitive features, such as working memory and 
internal biases, or how they reflect motivation under uncertain con-
ditions. To advance knowledge on these issues we have recorded 
and analyzed the firing activity of putatively midbrain DA neurons, 
while monkeys discriminated the frequencies of two vibrotactile 
stimuli delivered to one fingertip. This two-interval forced choice 
task, in which both stimuli were selected randomly in each trial, has 
been widely used to investigate perception, working memory and 
decision-making in sensory and frontal areas [3]; the current study 
adds to this scenario possible roles of midbrain DA neurons.

Fig. 1 a Schematic representation of the model local and non‑local 
connectivity. b Distributions of On‑Off episode duration in V4 data 
and model. c Representation of different timescales in single columns 
AC. d Average AC of individual columns and the population activity 
(inset, with the same axes) for different network structures. e V4 data 
AC averaged over all recordings, and an example recording
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We found that the DA responses to the stimuli were not monotoni-
cally tuned to their frequency values. Instead they were controlled 
by an internally generated bias (contraction bias). This bias induced 
a subjective difficulty that modulated those responses as well as 
the accuracy and the response times (RTs). A Bayesian model for 
the choice explained the bias and gave a measure of the animal’s 
decision confidence, which also appeared modulated by the bias. 
We also found that the DA activity was above baseline throughout 
the delay (working memory) period. Interestingly, this activity was 
neither tuned to the first frequency nor controlled by the inter-
nal bias. While the phasic responses to the task events could be 
described by a reinforcement learning model based on belief states, 
the ramping behavior exhibited during the delay period could not 
be explained by standard models. Finally, the DA responses to the 
stimuli in short-RT trials and long-RTs trials were significantly dif-
ferent; interpreting the RTs as a measure of motivation, our analysis 
indicated that motivation affected strongly the responses to the task 
events but had only a weak influence on the DA activity during the 
delay interval. To summarize, our results show for the first time that 
an internal phenomenon (the bias) can control the DA phasic activ-
ity similar to the way physical differences in external stimuli do. We 
also encountered a ramping DA activity during the working memory 
period, independent of the memorized frequency value. Overall, 
our study supports the notion that delay and phasic DA activities 
accomplish quite different functions.
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O1 
Representations of dissociated shape and category in deep 
Convolutional Neural Networks and human visual cortex
Astrid Zeman, J Brendan Ritchie, Stefania Bracci, Hans Op de Beeck
KULeuven, Brain and Cognition, Leuven, Belgium
Correspondence: Astrid Zeman (astrid.zeman@kuleuven.be)  
BMC Neuroscience 2019, 20(Suppl 1):O1

Deep Convolutional Neural Networks (CNNs) excel at object recogni-
tion and classification, with accuracy levels that now exceed humans 
[1]. In addition, CNNs also represent clusters of object similarity, such 
as the animate-inanimate division that is evident in object-selec-
tive areas of human visual cortex [2]. CNNs are trained using natural 
images, which contain shape and category information that is often 
highly correlated [3]. Due to this potential confound, it is therefore 
possible that CNNs rely upon shape information, rather than category, 
to classify objects. We investigate this possibility by quantifying the 
representational correlations of shape and category along the layers of 
multiple CNNs, with human behavioural ratings of these two factors, 
using two datasets that explicitly orthogonalize shape from category 
[3, 4] (Fig. 1a, b, c). We analyse shape and category representations 
along the human ventral pathway areas using fMRI (Fig. 1d) and meas-
ure correlations between artificial with biological representations by 
comparing the output from CNN layers with fMRI activation in ventral 
areas (Fig. 1e).
First, we find that CNNs encode object category independently from 
shape, which peaks at the final fully connected layer for all network 
architectures. At the initial layer of all CNNs, shape is represented 
significantly above chance in the majority of cases (94%), whereas 
category is not. Category information only increases above the signifi-
cance level in the final few layers of all networks, reaching a maximum 
at the final layer after remaining low for the majority of layers. Second, 
by using fMRI to analyse shape and category representations along 
the ventral pathway, we find that shape information decreases from 

early visual cortex (V1) to the anterior portion of ventral temporal cor-
tex (VTC). Conversely, category information increases from low to high 
from V1 to anterior VTC. This two-way interaction is significant for both 
datasets, demonstrating that this effect is evident for both low-level 
(orientation dependent) and high-level (low vs high aspect ratio) defi-
nitions of shape. Third, comparing CNNs with brain areas, the highest 
correlation with anterior VTC occurs at the final layer of all networks. 
V1 correlations reach a maximum prior to fully connected layers, at 
early, mid or late layers, depending upon network depth. In all CNNs, 
the order of maximum correlations with neural data corresponds well 
with the flow of visual information along the visual pathway. Over-
all, our results suggest that CNNs represent category information 
independently from shape, similarly to human object recognition 
processing.
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O2 
Discovering the building blocks of hearing: a data‑driven, 
neuro‑inspired approach
Lotte  Weerts1, Claudia  Clopath2, Dan  Goodman1

1Imperial College London, Electrical and Electronic Engineering, 
London, United Kingdom; 2Imperial College London, Department 
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Correspondence: Dan Goodman (d.goodman@imperial.ac.uk)  
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Our understanding of hearing and speech recognition rests on con-
trolled experiments requiring simple stimuli. However, these stimuli 
often lack the variability and complexity characteristic of complex 
sounds such as speech. We propose an approach that combines neural 
modelling with data-driven machine learning to determine auditory 
features that are both theoretically powerful and can be extracted by 

Fig. 1 Shape and category models in CNNs vs the brain. a Exam‑
ple stimuli b Design and behavioral models c Shape (orange) and 
category (blue) correlations in CNNs. Behavioral (darker) and design 
(lighter) models. Only one CNN shown. d Shape (orange) and cat‑
egory (blue) correlations in ventral brain regions. e V1 (blue), posterior 
(yellow) and anterior (green) VTC correlated with CNN layers

https://doi.org/10.1101/496539
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networks that are compatible with known auditory physiology. Our 
approach bridges the gap between detailed neuronal models that 
capture specific auditory responses, and research on the statistics of 
real-world speech data and its relationship to speech recognition. 
Importantly, our model can capture a wide variety of well studied fea-
tures using specific parameter choices, and allows us to unify several 
concepts from different areas of hearing research.
We introduce a feature detection model with a modest number of 
parameters that is compatible with auditory physiology. We show 
that this model is capable of detecting a range of features such as 
amplitude modulations (AMs) and onsets. In order to objectively 
determine relevant feature detectors within our model parameter 
space, we use a simple classifier that approximates the information 
bottleneck, a principle grounded in information theory that can be 
used to define which features are “useful”. By analysing the perfor-
mance in a classification task, our framework allows us to determine 
the best model parameters and their neurophysiological implica-
tions and relate those to psychoacoustic findings.
We analyse the performance of a range of model variants in a pho-
neme classification task (Fig. 1). Some variants improve accuracy 
compared to using the original signal, indicating that our feature 
detection model extracts useful information. By analysing the prop-
erties of high performing variants, we rediscover several proposed 
mechanisms for robust speech processing. Firstly, our result sug-
gest that model variants that can detect and distinguish between 
formants are important for phoneme recognition. Secondly, we 
rediscover the importance of AM sensitivity for consonant recogni-
tion, which is in line with several experimental studies that show 
that consonant recognition is degraded when certain amplitude 
modulations are removed. Besides confirming well-known mecha-
nisms, our analysis hints at other less-established ideas, such as the 
importance of onset suppression. Our results indicate that onset 
suppression can improve phoneme recognition, which is in line 
with the hypothesis that the suppression of onset noise (or “spectral 
splatter”), as observed in the mammalian auditory brainstem, can 
improve the clarity of a neural harmonic representation. We also dis-
cover model variants that are responsive to more complex features, 
such as combined onset and AM sensitivity. Finally, we show how 
our approach lends itself to be extended to more complex environ-
ments, by distorting the clean speech signal with noise.
Our approach has various potential applications. Firstly, it could lead 
to new, testable experimental hypotheses for understanding hear-
ing. Moreover, promising features could be directly applied as a new 
acoustic front-end for speech recognition systems.

Acknowledgments: This work was partly supported by a Titan 
Xp donated by the NVIDIA Corporation, The Royal Society grant 
RG170298 and the Engineering and Physical Sciences Research 
Council (grant number EP/L016737/1).
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BMC Neuroscience 2019, 20(Suppl 1):O3

Individualized large-scale computational modeling of the dynamics 
associated with the brain pathologies [1] is an emerging approach in 
the clinical applications, which gets validation through animal models. 
A good candidate for confirmation of brain network causality is stroke 
and the subsequent recovery, which alter brain’s structural connectiv-
ity, and this is then reflected on functional and behavioral level. In this 
study we use large-scale brain network model (BNM) to computation-
ally validate the structural changes due to stroke and recovery in mice, 
and their impact on the resting state functional connectivity (FC), as 
captured by wide-field calcium imaging.
We built our BNM based on the detailed Allen Mouse (AM) connec-
tome that is implemented in The Virtual Mouse Brain [2]. It dictates 
the strength of the couplings between distant brain regions based 
on tracer data. The homogeneous local connectivity is absorbed into 
the neuronal mass model that is generally derived from mean activity 
of populations of spiking neurons, Fig. 1, and is here represented by 
the Kuramoto oscillators [3], as canonical model for network synchro-
nization due to weak interactions. The photothrombotic focal stroke 
affects the right primary motor cortex (rM1). The injured forelimb is 
daily trained on a custom designed robotic device (M-Platform, [4, 5]) 
from 5 days after the stroke for a total of 4 weeks. The stroke is mod-
eled by different levels of damage of the links connecting rM1, while 
the recovery is represented by reinforcing of alternative connections 
of the nodes initially linked to it [6]. We systematically simulate vari-
ous impacts of stroke and recovery, to find the best match with the 
coactivation patterns in the data, where the FC is characterized with 
the phase coherence calculated for the phases of Hilbert transformed 
delta frequency activity of pixels within separate regions [6]. Statisti-
cally significant changes within the FC of 5 animals are obtained 
for transitions between the three conditions: healthy, stroke and 

Fig. 1 a Between‑group confusion matrix for best parameters. b 
distribution of within‑group accuracies and between‑group accuracy 
correlations. c Within‑group accuracy and correlation of model out‑
put and spectral peaks. d, e Accuracy achieved with model variants, 
the original filtered signal, and ensemble models on a vowel (d) and 
consonant (e) task. f Within‑group accuracy versus onset strength

Fig. 1 The equation of the mouse BNM shows that the spatiotempo‑
ral dynamics is shaped by the connectivity. The brain network (right) 
is reconstructed from the AMA, showing the centers of sub cortical 
(small black dots) and cortical (colored circles) regions. On the left, 
the field of view during the recordings is overlayed on the recon‑
structed brain, and different colors represent the cortical regions



Page 5 of 190BMC Neurosci 2019, 20(Suppl 1):56

rehabilitation after 4 weeks of training, and these are compared with 
the best fits for each condition of the model in the parameter’s space 
of the global coupling strength and stroke impact and rewiring.
This approach uncovers recovery paths in the parameter space of the 
dynamical system that can be related to neurophysiological quantities 
such as the white matter tracts. This can lead to better strategies for 
rehabilitation, such as stimulation or inhibition of certain regions and 
links that have a critical role on the dynamics of the recovery.

References
1. Olmi S, Petkoski S, Guye M, Bartolomei F, Jirsa V. Controlling seizure propa‑

gation in large‑scale brain networks. PLoS Comp Biol. [in press]
2. Melozzi F, Woodman MM, Jirsa VK, Bernard C. The Virtual Mouse Brain: A 

computational neuroinformatics platform to study whole mouse brain 
dynamics. eNeuro 0111‑17. 2017.

3. Petkoski S, Palva JM, Jirsa VK. Phase‑lags in large scale brain synchroniza‑
tion: Methodological considerations and in‑silico analysis. PLoS Comp Biol, 
14(7), 1–30. 2018.

4. Spalletti C, et al. A robotic system for quantitative assessment and 
poststroke training of forelimb retraction in mice. Neurorehabilitation and 
neural repair 28, 188–196. 2014.

5. Allegra Mascaro, A et al. Rehabilitation promotes the recovery of distinct 
functional and structural features of healthy neuronal networks after 
stroke. [under review].

6. Petkoski S, et al. Large‑scale brain network model for stroke and rehabili‑
tation in mice. [in prep].

O4 
Self‑consistent correlations of randomly coupled rotators 
in the asynchronous state
Alexander van  Meegen1, Benjamin  Lindner2

1Jülich Research Centre, Institute of Neuroscience and Medicine 
(INM‑6) and Institute for Advanced Simulation (IAS‑6), Jülich, Germany; 
2Humboldt University Berlin, Physics Department, Berlin, Germany
Correspondence: Alexander van Meegen (a.van.meegen@fz‑juelich.de)  
BMC Neuroscience 2019, 20(Suppl 1):O4

Spiking activity of cortical neurons in behaving animals is highly irregu-
lar and asynchronous. The quasi stochastic activity (the network noise) 
does not seem to root in the comparatively weak intrinsic noise sources 
but is most likely due to the nonlinear chaotic interactions in the net-
work. Consequently, simple models of spiking neurons display similar 
states, the theoretical description of which has turned out to be noto-
riously difficult. In particular, calculating the neuron’s correlation func-
tion is still an open problem. One classical approach pioneered in the 
seminal work of Sompolinsky et al. [1] used analytically tractable rate 
units to obtain a self-consistent theory of the network fluctuations and 
the correlation function of the single unit in the asynchronous irregular 
state. Recently, the original model attracted renewed interest, leading 
to substantial extensions and a wide range of novel results [2–5].
Here, we develop a theory for a heterogeneous random network of 
unidirectionally coupled phase oscillators [6]. Similar to Sompolinsky’s 
rate-unit model, the system can attain an asynchronous state with 
pronounced temporal autocorrelations of the units. The model can 
be examined analytically and even allows for closed-form solutions in 
simple cases. Furthermore, with a small extension, it can mimic mean-
driven networks of spiking neurons and the theory can be extended to 
this case accordingly.
Specifically, we derived a differential equation for the self-consistent 
autocorrelation function of the network noise and of the single oscil-
lators. Its numerical solution has been confirmed by simulations of 
sparsely connected networks (Fig. 1). Explicit expressions for correla-
tion functions and power spectra for the case of a homogeneous net-
work (identical oscillators) can be obtained in the limits of weak or 
strong coupling strength. To apply the model to networks of sparsely 
coupled excitatory and inhibitory exponential integrate-and-fire (IF) 
neurons, we extended the coupling function and derived a second dif-
ferential equation for the self-consistent autocorrelations. Deep in the 
mean-driven regime of the spiking network, our theory is in excellent 
agreement with simulations results of the sparse network.

This work paves the way for more detailed studies of how the statistics 
of connection strength, the heterogeneity of network parameters, and 
the form of the interaction function shape the network noise and the 
autocorrelations of the single element in asynchronous irregular state.
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Phase response curves (PRCs) have been defined to quantify how a 
weak stimulus shift the next spike timing in regular firing neurons. 
However, the biophysical mechanisms that shape the PRC profiles 
are poorly understood. The PRCs in Purkinje cells (PCs) show firing 
rate (FR) adaptation. At low FRs, the responses are small and phase 
independent. At high FRs, the responses become phase dependent 
at later phases, with their onset phases gradually left-shifted and 
peaks gradually increased, due to an unknown mechanism [1, 2].
Using our recently developed compartment-based PC model [3], we 
reproduced the FR-dependence of PRCs and identified the depolar-
ized interspike membrane potential as the mechanism underlying 
the transition from phase-independent responses at low FRs to the 
gradually left-shifted phase-dependent responses at high FRs. We 

Fig. 1 Sketch of a random network of phase oscillators. a Self‑con‑
sistent power spectra of network noise and single units (b–d), upper 
and lower plots respectively) obtained from simulations (colored 
symbols) compared with the theory (black lines): Heterogeneous 
b and homogeneous c networks of phase oscillators, and sparsely 
coupled IF networks (d). Panels b–d adapted and modified from [6]
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also demonstrated this mechanism plays a general role in shaping 
PRC profiles in other neurons.
PC axon collaterals have been proposed to correlate temporal spik-
ing in PC ensembles [4, 5], but whether and how they interact with 
the FR-dependent PRCs to regulate PC output remains unexplored. 
We built a recurrent inhibitory PC-to-PC network model to examine 
how FR-dependent PRCs regulate the synchrony of high frequency 
(~ 160 Hz) oscillations observed in vivo [4]. We find the synchrony of 
these oscillations increases with FR due to larger and broader PRCs 
at high FRs. This increased synchrony still holds when the network 
incorporates dynamically and heterogeneously changing cellu-
lar FRs. Our work implies that FR-dependent PRCs may be a critical 
property of the cerebellar cortex in combining rate- and synchrony-
coding to dynamically organize its temporal output.

References
1. Phoka E., et al., A new approach for determining phase response curves 

reveals that Purkinje cells can act as perfect integrators. PLoS Comput. 
Biol 2010. 6(4): p. e1000768.

2. Couto J., et al., On the firing rate dependency of the phase response 
curve of rat Purkinje neurons in vitro. PLoS Comput. Biol 2015. 11(3): p. 
e1004112.

3. Zang Y, Dieudonne S, De Schutter E. Voltage‑ and Branch‑Specific Climb‑
ing Fiber Responses in Purkinje Cells. Cell Rep 2018. 24(6): p. 1536‑1549.

4. de Solages C., et al., High‑frequency organization and synchrony of 
activity in the purkinje cell layer of the cerebellum. Neuron 2008. 58(5): p. 
775‑88.

5. Witter L., et al., Purkinje Cell Collaterals Enable Output Signals from the 
Cerebellar Cortex to Feed Back to Purkinje Cells and Interneurons. Neuron 
2016. 91(2): p. 312‑9.

O6 
Computational modeling of brainstem‑spinal circuits controlling 
locomotor speed and gait
Ilya Rybak, Jessica Ausborn, Simon Danner, Natalia Shevtsova
Drexel University College of Medicine, Department of Neurobiology 
and Anatomy, Philadelphia, PA, United States of America
Correspondence: Ilya Rybak (rybak@drexel.edu)  
BMC Neuroscience 2019, 20(Suppl 1):O6

Locomotion is an essential motor activity allowing animals to sur-
vive in complex environments. Depending on the environmental 
context and current needs quadruped animals can switch locomo-
tor behavior from slow left-right alternating gaits, such as walk and 
trot (typical for exploration), to higher-speed synchronous gaits, 
such as gallop and bound (specific for escape behavior). At the 
spinal cord level,the locomotor gait is controlled by interactions 
between four central rhythm generators (RGs) located on the left 
and right sides of the lumbar and cervical enlargements of the cord, 
each producing rhythmic activity controlling one limb. The activities 
of the RGs are coordinated by commissural interneurons (CINs), pro-
jecting across the midline to the contralateral side of the cord, and 
long propriospinal neurons (LPNs), connecting the cervical and lum-
bar circuits. At the brainstem level, locomotor behavior and gaitsare 
controlled by two majorbrainstem nuclei: the cuneiform (CnF) and 
the pedunculopontine (PPN) nuclei [1]. Glutamatergic neurons in 
both nuclei contribute to the control of slow alternating-gait move-
ments, whereas only activation of CnF can elicit high-speed syn-
chronous-gait locomotion. Neurons from both regions project to 
the spinal cord via descendingreticulospinal tracts from thelateral 
paragigantocellular nuclei (LPGi) [2].
To investigate the brainstem control of spinal circuits involved in the 
slow exploratory and fast escape locomotion, we built a computa-
tional model ofthe brainstem-spinal circuits controlling these locomo-
tor behaviors. The spinal cord circuits in the modelincluded four RGs 
(one per limb) interacting via cervical and lumbar CINs and LPNs. The 
brainstem model incorporated bilaterally interacting CnF and PPN 
circuits projecting to the LPGi nuclei that mediated the descending 

pathways to the spinal cord.These pathways provided excitation of all 
RGs to control locomotor frequency and inhibited selected CINs and 
LPNs, which allowed the model to reproduce the speed-dependent 
gait transitions observed in intact mice and the loss of particular gaits 
in mutants lacking some genetically identified CINs [3].The proposed 
structure of synaptic inputs of the descending (LPGi) pathways to the 
spinal CINs and LPNs allowed the model to reproduce the experimen-
tally observed effects of stimulation of excitatory and inhibitory neu-
rons within CnF, PPN, and LPGi. The suggests explanations for (a) the 
speed-dependent expression of different locomotor gaits and the role 
of different CINs and LPNs in gait transitions, (b) the involvement of 
the CnF and PPN nuclei in the control of low-speed alternating-gait 
locomotion and the specific role of the CnF in the control of high-
speed synchronous-gait locomotion, and (c) the role of inhibitory 
neurons in these areas in slowing down and stopping locomotion. 
The model provides important insights into the brainstem-spinal cord 
interactions and the brainstem control of locomotor speed and gaits.
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In the mature visual cortex, local tuning properties are linked through 
distributed network interactions with a remarkable degree of speci-
ficity [1]. However, it remains unknown whether the tight linkage 
between functional tuning and network structure is an intrinsic fea-
ture of cortical circuits, or instead gradually emerges in development. 
Combining virally-mediated expression of GCAMP6s in pyramidal neu-
rons with wide-field epifluorescence imaging in ferret visual cortex, we 
longitudinally monitored the spontaneous activity correlation struc-
ture—our proxy for intrinsic network interactions- and the emergence 
of orientation tuning around eye-opening.
We find that prior to eye-opening, the layout of emerging iso-orien-
tation domains is only weakly similar to the spontaneous correlation 
structure. Nonetheless within one week of visual experience, the lay-
out of iso-orientation domains and the spontaneous correlation struc-
ture become rapidly matched. Motivated by these observations, we 
developed dynamical equations to describe how tuning and network 
correlations co-refine to become matched with age. Here we propose 
an objective function capturing the degree of consistency between 
orientation tuning and network correlations. Then by gradient descent 
of this objective function, we derive dynamical equations that pre-
dict an interdependent refinement of orientation tuning and network 
correlations. To first approximation, these equations predict that cor-
related neurons become more similar in orientation tuning over time, 
while network correlations follow a relaxation process increasing the 
degree of self-consistency in their link to tuning properties.
Empirically, we indeed observe a refinement with age in both orienta-
tion tuning and spontaneous correlations. Furthermore, we find that 
this framework can utilize early measurements of orientation tuning 
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and correlation structure to predict aspects of the future refinement 
in orientation tuning and spontaneous correlations. We conclude that 
visual response properties and network interactions show a consider-
able degree of coordinated and interdependent refinement towards a 
self-consistent configuration in the developing visual cortex.
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The responses of border ownership-selective cells (BOCs) have been 
reported to signal the direction of figure (DOF) along the contours in 
natural images with a variety of shapes and textures [1]. We examined 
the spatial structure of the optimal stimuli for BOCs in monkey visual 
cortical area V2 to determine the structure of the receptive field. We 
computed the spike triggered average (STA) from responses of the 
BOCs to natural images (JHU archive, http://dx.doi.org/10.7281/T1C82 
76W). To estimate the STA in response to figure-ground organization 
of natural images, we tagged figure regions with luminance contrast. 
The left panel in Fig 1 illustrates the procedure for STA computation. 
We first aligned all images to a given cell’s preferred orientation and 
preferred direction of figure. We then grouped the images based on 
the luminance contrast of their figure regions with respect to their 
ground regions, and averaged them separately for each group. By 
averaging the bright-figure stimuli with weights based on each cell’s 
spike count, we were able to observe the optimal figure and ground 
sub-regions as brighter and darker regions, respectively. By averaging 
the dark-figure stimuli, we obtained the reverse. We then generated 
the STA by subtracting the average of the dark-figure stimuli from that 
of the bright-figure stimuli. This subtraction canceled out the depend-
ence of response to contrast. We compensated for the bias due to the 
non-uniformity of luminance in the natural images by subtracting the 
simple ensemble average of the stimuli (equivalent to weight = 1 for 
all stimuli) from the weighted average. The mean STA across 22 BOCs 
showed facilitated and suppressed sub-regions in response to the fig-
ure towards the preferred and non-preferred DOFs, respectively (Fig. 1, 
the right panel). The structure was shown more clearly when figure 
and ground were replaced by a binary mask. The result demonstrates, 
for the first time, the antagonistic spatial structure in the receptive 
field of BOCs in response to figure-ground organization.
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Spatial organization of orientation tuning in the primary visual cor-
tex (V1) is arranged in different forms across mammalian species. 
In some species (e.g. monkeys or cats), the preferred orientation 
continuously changes across the cortical surface (columnar orien-
tation map), while other species (e.g. mice or rats) have a random-
like distribution of orientation preference, termed salt-and-pepper 
organization. However, it still remains unclear why the organization 
of the cortical circuit develops differently across species. Previously, 
it was suggested that each type of circuit might be a result of wir-
ing optimization under different conditions of evolution [1], but the 
developmental mechanism of each organization of orientation tun-
ing still remains unclear. In this study, we propose that the structural 
variations between cortical circuits across species simply arise from 
the differences in physical constraints of the visual system—the size 
of the retina and V1 (see Fig. 1). By expanding the statistical wir-
ing model proposing that the orientation tuning of a V1 neuron is 
restricted by the local arrangement of ON and OFF retinal ganglion 
cells (RGCs) [2, 3], we suggest that the number of V1 neurons sam-
pling a given RGC (sampling ratio) is a crucial factor in determining 
the continuity of orientation tuning in V1. Our simulation results 
show that as the sampling ratio increases, neighboring V1 neu-
rons receive similar retinal inputs, resulting in continuous changes 
in orientation tuning. To validate our prediction, we estimated the 
sampling ratio of each species from the physical size of the retina 
and V1 [5] and compared with the organization of orientation tun-
ing. As predicted, this ratio could successfully distinguish diverse 
mammalian species into two groups according to the organization 
of orientation tuning, even though the organization has not been 
clearly predicted by considering only a single factor in the visual sys-
tem (e.g. V1 size or visual acuity; [4]). Our results suggest a common 
retinal origin of orientation preference across diverse mammalian 

Fig. 1 (Left) We tagged figure regions with luminance contrast to 
compute the STA in response to figure‑ground organization. Natural 
images with bright foreground were weighted by the cell’s spike 
counts and summed. The analogue was computed for scenes with 
dark foregrounds and the difference taken. (Right) The computed STA 
across 22 cells revealed antagonistic sub‑regions

Fig. 1 Organization of orientation tuning in a species could be 
predicted by V1/retinal size
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species, while its spatial organization can vary depending on the 
physical constraints of the visual system.
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Frequency modulation (FM) is a basic constituent of vocalisa-
tion. FM-sweeps in the frequency range and modulation rates of 
speech have been shown to elicit a pitch percept that consist-
ently deviates from the sweep average frequency [1]. Here, we use 
this perceptual effect to inform a model characterising the neural 
encoding of FM.
First, we performed a perceptual experiment where participants were 
asked to match the pitch of 30 sweeps with probe sinusoids of the 
same duration. The elicited pitch systematically deviated from the 
average frequency of the sweep by an amount that depended linearly 
on the modulation slope. Previous studies [2] have proposed that the 
deviance might be due to a fixed-sized-window integration process 
that fosters frequencies present at the end of the stimulus. To test 
this hypothesis, we conducted a second perceptual experiment con-
sidering the pitch elicited by continuous trains of five concatenated 
sweeps. As before, participants were asked to match the pitch of the 
sweep trains with probe sinusoids. Our results showed that the pitch 
deviance from the mean observed in sweeps was severely reduced in 
the train stimuli, in direct contradiction with the fixed-sized-integra-
tion-window hypothesis.
The perceptual effects may also stem from unexpected interactions 
between the frequencies spanned in the stimuli during pitch pro-
cessing. We studied this posibility in two well-established families of 
mechanistic models of pitch. First, we considered a general spectral 
model that computes pitch as the expected value of the activity distri-
bution across the cochlear decomposition. Due to adaptation effects, 
this model fostered the spectral range present at the beginning of the 
sweep: the exact opposite of what we observed in the experimental 
data. Second, we considered the predictions of the summary autocor-
relation function (SACF) [3], a prototypical model of temporal pitch 
processing that considers the temporal structure of the auditory nerve 
activity. The SACF was unable to integrate temporal pitch information 
quickly enough to keep track of the modulation rate, yielding incon-
sistent pitch predictions that deviated stochastically from the average 
frequency.
Here, we introduce an alternative hypothesis based on top-down 
facilitation. Top-down efferents constitute an important fraction of the 
fibres in the auditory nerve; moreover, top-down predictive facilitation 
may reduce the metabolic cost and increase the speed of the neural 
encoding of expected inputs. Our model incorporates a second layer 
of neurons encoding FM direction that, after detecting that the incom-
ing inputs are consistent with a rising (falling) sweep, anticipate that 
neurons encoding immediately higher (lower) frequencies will activate 
next. This prediction is propagated downwards to neurons encoding 

such frequencies, increasing their readiness and effectively inflating 
their weight during pitch temporal integration.
The described mechanism fully reproduces our and previously pub-
lished experimental results (Fig. 1). We conclude that top-down pre-
dictive modulation plays an important role in the neural encoding of 
frequency modulation even at early stages of the processing hierarchy.

References
1. d’Alessandro C, Castellengo M. The pitch of short‐duration vibrato tones. 

The Journal of the Acoustical Society of America 1994 Mar;95(3):1617‑30.
2. Brady PT, House AS, Stevens KN. Perception of sounds characterized by a 

rapidly changing resonant frequency. The Journal of the Acoustical Society 
of America 1961 Oct;33(10):1357‑62.

3. Meddis R, O’Mard LP. Virtual pitch in a computational physi‑
ological model. The Journal of the Acoustical Society of America 2006 
Dec;120(6):3861‑9.

O11 
Effects of anesthesia on coordinated neuronal activity 
and information processing in rat primary visual cortex
Heonsoo Lee, Shiyong Wang, Anthony Hudetz
University of Michigan, Anesthesiology, Ann Arbor, MI, United States 
of America
Correspondence: Heonsoo Lee (heonslee@umich.edu)  
BMC Neuroscience 2019, 20(Suppl 1):O11

Introduction: Understanding of how anesthesia affects neural activ-
ity is important to reveal the mechanism of loss and recovery of con-
sciousness. Despite numerous studies during the past decade, how 
anesthesia alters spiking activity of different types of neurons and 
information processing within an intact neural network is not fully 
understood. Based on prior in vitro studies we hypothesized that excit-
atory and inhibitory neurons in neocortex are differentially affected by 
anesthetic. We also predicted that individual neurons are constrained 
to population activity, leading to impaired information processing 
within a neural network.
Methods: We implanted sixty-four-contact microelectrode arrays in 
primary visual cortex (layer 5/6, contacts spanning 800 µm depth and 
1600 µm width) for recording of extracellular unit activity at three 
steady-state levels of anesthesia (6, 4 and 2% desflurane) and wake-
fulness (number of rats = 8). Single unit activities were extracted and 
putative excitatory and inhibitory neurons were identified based on 
their spike waveforms and autocorrelogram characteristics (number 
of neurons = 210). Neuronal features such as firing rate, interspike 
interval (ISI), bimodality, and monosynaptic spike transmission proba-
bilities were investigated. Normalized mutual information and transfer 
entropy were also applied to investigate the interaction between spike 
trains and population activity (local field potential; LFP).
Results: First, anesthesia significantly altered characteristics of indi-
vidual neurons. Firing rate of most neurons was reduced; this effect was 
more pronounced in inhibitory neurons. Excitatory neurons showed 
enhanced bursting activity (ISI<9 ms) and silent periods (hundreds 
of milliseconds) (Fig. 1A). Second, anesthesia disrupted information 

Fig. 1 Heatmaps show the distribution of the activation across 
channels (y‑axis) for different sweep frequency gaps (x‑axis). Squares 
printed over the distributions mark the expected value with respect 
to the distribution. Solid error bars are estimations of the experimen‑
tal results in the channel space
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processing within a neural network. Neurons shared the silent peri-
ods, resulting in synchronous population activity (neural oscillations), 
despite of the suppressed monosynaptic connectivity (Fig. 1B). The pop-
ulation activity (LFP) showed reduced information content (entropy), 
and was easily predicted by individual neurons; that is, shared infor-
mation between individual neurons and population activity was sig-
nificantly increased (Fig. 1C). Transfer entropy analysis revealed a strong 
directional influence from LFP to individual neurons, suggesting that 
neuronal activity is constrained to the synchronous population activity.
Conclusions: This study reveals how excitatory and inhibitory neurons 
are differentially affected by anesthetic, leading to synchronous popu-
lation activity and impaired information processing. These findings 
provide an integrated understanding of anesthetic effects on neuronal 
activity and information processing. Further study of stimulus evoked 
activity and computational modeling will provide a more detailed 
mechanism of how anesthesia alters neural activity and disrupts infor-
mation processing.
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We emulate a model of active vision which aims at finding a visual 
target whose position and identity are unknown. This generic visual 
search problem is of broad interest to machine learning, computer 
vision and robotics, but also to neuroscience, as it speaks to the mech-
anisms underlying foveation and more generally to low-level atten-
tion mechanisms. From a computer vision perspective, the problem 
is generally addressed by processing the different hypothesis (catego-
ries) at all possible spatial configuration through dedicated parallel 

hardware. The human visual system, however, seems to employ a dif-
ferent strategy, through a combination of a foveated sensor with the 
capacity of rapidly moving the center of fixation using saccades. Vis-
ual processing is done through fast and specialized pathways, one of 
which mainly conveying information about target position and speed 
in the peripheral space (the “where” pathway), the other mainly con-
veying information about the identity of the target (the “what” path-
way). The combination of the two pathways is expected to provide 
most of the useful knowledge about the external visual scene. Still, it 
is unknown why such a separation exists. Active vision methods pro-
vide the ground principles of saccadic exploration, assuming the exist-
ence of a generative model from which both the target position and 
identity can be inferred through active sampling. Taking for granted 
that (i) the position and category of objects are independent and (ii) 
the visual sensor is foveated, we consider how to minimize the over-
all computational cost of finding a target. This justifies the design of 
two complementary processing pathways: first a classical image clas-
sifier, assuming that the gaze is on the object, and second a periph-
eral processing pathway learning to identify the position of a target in 
retinotopic coordinates. This framework was tested on a simple task of 
finding digits in a large, cluttered image (see Fig. 1). Results demon-
strate the benefit of specifically learning where to look, and this before 
actually identifying the target category (with cluttered noise ensuring 
the category is not readable in the periphery). In the “what” pathway, 
the accuracy drops to the baseline at mere 5 pixels away from the 
center of fixation, while issuing a saccade is beneficial in up to 26 pixels 
around, allowing a much wider covering of the image. The difference 
between the two distributions forms an “accuracy gain”, that quantifies 
the benefit of issuing a saccade with respect to a central prior. Until 
the central classifier is confident, the system should thus perform a 
saccade to the most likely target position. The different accuracy pre-
dictions, such as the ones done in the “what” and the “where” pathway, 
may also explain more elaborate decision making, such as the inhibi-
tion of return. The approach is also energy-efficient as it includes the 
strong compression rate performed by retina and V1 encoding, which 
is preserved up to the action selection level. The computational cost of 
this active inference strategy may thus be way less than that of a brute 
force framework. This provides evidence of the importance of identify-
ing “putative interesting targets” first and we highlight some possible 
extensions of our model both in computer vision and modeling.
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Fig. 1 a Auto‑correlograms (ACG) of putative excitatory (pE) and 
putative inhibitory (pI) units. b Examples of LFP and spiking activity. 
c Normalized mutual information (NMI) between individual spiking 
activity and LFP

Fig. 1 Simulated active vision agent: a Example retinotopic input. b 
Example network output (’Predicted’) compared with ground truth 
(’True’). c Accuracy estimation after saccade decision. d Orange bars: 
accuracy of a central classifier w.r.t target eccentricity; Blue bars: clas‑
sification rate after one saccade (1000 trials average per eccentricity 
scale)
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Biophysical neuron modelling has become widespread in neurosci-
ence research, with the combination of diverse ion channel kinetics 
and morphologies being used to explain various single-neuron prop-
erties. However, there is no standard by which ion channel models 
are constructed, making it very difficult to relate models to each other 
and to experimental data. The complexity and scale of these models 
also makes them especially susceptible to problems with reproduc-
ibility and reusability, especially when translating between different 
simulators. To address these issues, we revive the idea of a standard-
ised model for ion channels based on a thermodynamic interpretation 
of the Hodgkin-Huxley formalism, and apply it to a recently curated 
database of approximately 2500 published ion channel models (ICGe-
nealogy). We show that a standard formulation fits the steady-state 
and time-constant curves of nearly all voltage-gated models found in 
the database, and reproduces responses to voltage-clamp protocols 
with high fidelity, thus serving as a functional translation of the origi-
nal models. We further test the correspondence of the standardised 
models in a realistic physiological setting by simulating the complex 
spiking behaviour of multi-compartmental single-neuron models in 
which one or several of the ion channel models are replaced by the 
corresponding best-fit standardised model. These simulations result 
in qualitatively similar behaviour, often nearly identical to the original 
models. Notably, when differences do arise, they likely reflect the fact 
that many of the models are very finely tuned. Overall, this standard 
formulation facilitates be er understanding and comparisons among 
ion channel models, as well as reusability of models through easy 
functional translation between simulation languages. Additionally, our 
analysis allows for a direct comparison of models based on parameter 
settings, and can be used to make new observations about the space 
of ion channel kinetics across different ion channel subtypes, neuron 
types and species.
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Synapses are highly stochastic transmission units. A classical model 
describing this transmission is called the binomial model [1], which 
assumes that there are N independent release sites, each having the 
same release probability p; and that each vesicle release gives rise to a 
quantal current q. The parameters of the binomial model (N, p, q, and 
the recording noise) can be estimated from postsynaptic responses, 
either by following a maximum-likelihood approach [2] or by comput-
ing the posterior distribution over the parameters [3].
But these estimates might be subject to parameter identifiability 
issues. This uncertainty of the parameter estimates is usually assessed 
a posteriori from recorded data, for instance by using re-sampling pro-
cedure such as parametric bootstrap.
Here, we propose a methodology for a priori quantifying the struc-
tural identifiability of the parameters. A lower bound on the error of 
parameter estimates can be obtained analytically using the Cramer-
Rao bound. Instead of simply assessing a posteriori the validity of their 
parameter estimates, it is thus possible for experimentalists to select 
a priori a lower bound on the standard deviation of the estimates 
and to select the number of data points and to tune the level of noise 
accordingly.
Besides parameter identifiability, another critical issue is the so-
called model identifiability, i.e. the possibility, given a certain num-
ber of data points T and a certain level of measurement noise, to find 
the model of synapse that fits our data the best. For instance, when 
observing discrete peaks on the histogram of post-synaptic cur-
rents, one might be tempted to conclude that the binomial model 
(“multi-quantal hypothesis”) is the best one to fit the data. However, 
these peaks might actually be artifacts due to noisy or scarce data 
points, and data might be best explained by a simpler Gaussian dis-
tribution (“uni-quantal hypothesis”).

Model selection tools are classically used to determine a posteriori 
which model is the best one to fit a data set, but little is known on 
the a priori possibility (in terms of number of data points or record-
ing noise) to discriminate the binomial model against a simpler 
distribution.
We compute an analytical identifiability domain for which the bino-
mial model is correctly identified (Fig. 1), and we verify it by simu-
lations. Our proposed methodology can be further extended and 
applied to other models of synaptic transmission, allowing to define 
and quantitatively assess a priori the experimental conditions to 
reliably fit the model parameters as well as to test hypotheses on 
the desired model compared to simpler versions.
In conclusion, our approach aims at providing experimentalists 
objectives for experimental design on the required number of 
data points and on the maximally acceptable recording noise. This 
approach allows to optimize experimental design, draw more robust 
conclusions on the validity of the parameter estimates, and correctly 
validate hypotheses on the binomial model.
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Most input signals received by neurons in the brain impinge on 
their dendritic trees. Before being transmitted downstream as 
action potential (AP) output, the dendritic tree performs a variety of 
computations on these signals that are vital to normal behavioural 
function [3, 8]. In most modelling studies however, dendrites are 
omitted due the cost associated with simulating them. Biophysical 
neuron models can contain thousands of compartments, rendering 

Fig. 1 Published estimates of binomial parameters (dots), and 
corresponding identifiability domains (solid lines: the model is iden‑
tifiable if, for a given release probability p, the recording noise does 
not exceed sigma). Applying our analysis to fitted parameters of the 
binomial model found in previous studies, we find that none of them 
are in the parameter range that would make the model identifiable
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it infeasible to employ these models in meaningful computational 
tasks. Thus, to understand the role of dendritic computations in 
networks of neurons, it is necessary to simplify biophysical neuron 
models. Previous work has either explored advanced mathematical 
reduction techniques [6, 10] or has relied on ad-hoc simplifications 
to reduce compartment numbers [11]. Both of these approaches 
have inherent difficulties that prevent widespread adoption: 
advanced mathematical techniques cannot be implemented with 
standard simulation tools such as NEURON [2] or BRIAN [4], whereas 
ad-hoc methods are tailored to the problem at hand and generalize 
poorly. Here, we present an approach that overcomes both of these 
hurdles: First, our method simply outputs standard compartmental 
models (Fig 1A). The models can thus be simulated with standard 
tools. Second, our method is systematic, as the parameters of the 
reduced compartmental models are optimized with a linear least 
square fitting procedure to reproduce the impedance matrix of the 
biophysical model (Fig 1B). This matrix relates input current to volt-
age, and thus determines the response properties of the neuron [9]. 
By fitting a reduced model to this matrix, we obtain the response 
properties of the full model at a vastly reduced computational cost. 
Furthermore, since we are solving a linear least squares problem, the 
fitting procedure is well-defined—as there is a single minimum to 
the error function—and computationally efficient. Our method is 
not constrained to passive neuron models. By linearizing ion chan-
nels around wisely chosen sets of expansion points, we can extend 
the fitting procedure to yield appropriately rescaled maximal con-
ductances for these ion channels (Fig 1C). With these conductances, 
voltage and spike output can be predicted accurately (Fig 1D, E). 
Since our reduced models reproduce the response properties of the 
biophysical models, non-linear synaptic currents, such as NMDA, 
are also integrated correctly. Our models thus reproduce dendritic 
NMDA spikes (Fig 1F). Our method is also flexible, as any dendritic 
computation (that can be implemented in a biophysical model) can 
be reproduced by choosing an appropriate set of locations on the 
morphology at which to fit the impedance matrix. Direction selectiv-
ity [1] for instance, can be implemented by fitting a reduced model 
to a set of locations distributed on a linear branch, whereas inde-
pendent subunits [5] can be implemented by choosing locations on 
separate dendritic subtrees. In conclusion, we have created a flex-
ible linear fitting method to reduce non-linear biophysical models. 
To streamline the process of obtaining these reduced compartmen-
tal models, work is underway on a toolbox (https ://githu b.com/Wille 
mWybo /NEAT) that automatizes the impedance matrix calculation 
and fitting process.
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Chemical and electrical synapses shape the collective dynamics of 
neuronal networks. Numerous theoretical studies have investigated 
how, separately, each of these types of synapses contributes to the 
generation of neuronal oscillations, but their combined effect is less 
understood. In part this is due to the impossibility of traditional neu-
ronal firing rate models to include electrical synapses.
Here we perform a comparative analysis of the dynamics of hetero-
geneous populations of integrate-and-fire neurons with chemical, 
electrical, and both chemical and electrical coupling. In the thermo-
dynamic limit, we show that the population’s mean-field dynamics is 
exactly described by a system of two ordinary differential equations 
for the center and the width of the distribution of membrane poten-
tials —or, equivalently, for the population-mean membrane potential 
and firing rate. These firing rate equations exactly describe, in a unified 
framework, the collective dynamics of the ensemble of spiking neu-
rons, and reveal that both chemical and electrical coupling are medi-
ated by the population firing rate. Moreover, while chemical coupling 
shifts the center of the distribution of membrane potentials, electrical 
coupling tends to reduce the width of this distribution promoting the 
emergence of synchronization.
The firing rate equations are highly amenable to analysis, and allow 
us to obtain exact formulas for all the fixed points and their bifurca-
tions. We find that the phase diagram for networks with instantane-
ous chemical synapses are characterized by a codimension-two Cusp 
point, and by the presence of persistent states for strong excitatory 
coupling. In contrast, phase diagrams for electrically coupled networks 
is determined by a Takens-Bogdanov codimension-two point, which 
entails the presence of oscillations and greatly reduces the presence of 
persistent states. Oscillations arise either via a Saddle-Node-Invariant-
Circle bifurcation, or through a supercritical Hopf bifurcation. Near the 
Hopf bifurcation the frequency of the emerging oscillations coincides 
with the most likely firing frequency of the network. Only the pres-
ence of chemical coupling allows to shift (increase for excitation, and 
decrease for inhibition) the frequency of these oscillations. Finally, we 
show that the Takens-Bogdanov bifurcation scenario is generically pre-
sent in networks with both chemical and electrical coupling.

Fig. 1 a Reduction of branch of stellate cell with compartments at 
4 locations. b Biophysical (left) and reduced (middle) impedance 
matrices and error (right) at two holding potentials (top–bottom). c 
Somatic conductances. d Somatic voltage. e Spike coincidence factor 
between both models (1: perfect coincidence, 0: no coincidence—4 
ms window). F res. g Same as d, but for green resp. blue site
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Optical calcium imaging is a versatile imaging modality that per-
mits the recording of neural activity, including single dendrites and 
spines, deep neural populations using two-photon microscopy, and 
wide-field recordings of entire cortical surfaces. To utilize calcium 
imaging, the temporal fluorescence fluctuations of each component 
(e.g., spines, neurons or brain regions) must be extracted from the 
full video. Traditional segmentation methods used spatial informa-
tion to extract regions of interest (ROIs), and then projected the data 
onto the ROIs to calculate the time-traces [1]. Current methods typi-
cally use a combination of both a-priori spatial and temporal sta-
tistics to isolate each fluorescing source in the data, along with the 
corresponding time-traces [2, 3]. Such methods often rely on strong 
spatial regularization and temporal priors that can bias time-trace 
estimation and that do not translate well across imaging scales.
We propose to instead model how the time-traces generate 
the data, using only weak spatial information to relate per-pixel 

generative models across a field-of-view. Our method, based on 
spatially-filtered Laplacian-scale mixture models [4,5], introduces a 
novel non-local spatial smoothing and additional regularization to 
the dictionary learning framework, where the learned dictionary 
consists of the fluorescing components’ time-traces.
We demonstrate on synthetic and real calcium imaging data at dif-
ferent scales that our solution has advantages regarding initializa-
tion, implicitly inferring number of neurons and simultaneously 
detecting different neuronal types (Fig. 1). For population data, 
we compare our method to a current state-of-the-art algorithm, 
Suite2p, on the publicly available Neurofinder dataset (Fig. 1C). The 
lack of strong spatial contiguity constraints allows our model to iso-
late both disconnected portions of the same neuron, as well as small 
components that would otherwise be over-shadowed by larger 
components. In the latter case, this is important as such configura-
tions can easily cause false transients which can be scientifically mis-
leading. On dendritic data our method isolates spines and dendritic 
firing modes (Fig. 1D). Finally, our method can partition widefield 
data [6] in to a small number of components that capture the scien-
tifically relevant neural activity (Fig. 1E-F).
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Extracellular electrophysiology records a mixture of neural population 
activity at a single spike resolution. In order to resolve individual cellular 
activities, a spike-sorting operation groups together similar spike wave-
forms distributed at a subset of electrodes adjacent to each neuron. 
Penetrating micro-electrode arrays are widely used to measure the spik-
ing activities from behaving animals, but silicon probes can be drifted 
in the brain due to animal movements or tissue relaxation following a 
probe penetration. The probe drift issue results in errors in conventional 
spike sorting operations that assumes stationarity in spike waveforms 
and amplitudes. Some of the latest silicon probes [1] offer a whole-
shank coverage of closely-spaced electrode arrays, which can continu-
ally capture the spikes generated by neurons moving along the probe 
axis. We introduce a drift-resistant spike sorting algorithm for high chan-
nel-count, high-density silicon probe, which is designed to handle grad-
ual and rapid random probe movements. IronClust takes advantage of 
the fact that a drifting probe revisits the same anatomical locations at 
various times. We apply a density-based clustering by grouping a tem-
poral subset of the spiking events where the probe occupied similar 
anatomical locations. Anatomical similarities between a disjoint set of 
time bins are determined by calculating the activity histograms, which 
capture the spatial structures in the spike amplitude distribution based 
on the peak spike amplitudes on each electrode. For each spiking event, 

Fig. 1 a Our method uses a per‑pixel generative model with non‑
local spatially correlated coefficients. b Temporal DL finds subtle 
features in the Neurofinder dataset. For example, shown here is an 
apical dendrite (blue) significantly overlapping with a soma (green) 
was isolated. Manually labeled soma (yellow) and Suite2p (red) do 
not account for the apical, resulting in contaminated time‑traces. c 
Applications to dendritic data extracts both dendrite and spine activ‑
ity (bottom), as seen by the spatial maps where each component is 
colored differently (top). d In widefield imaging, the reconstructed 
movie recapitulates the behaviorally‑triggered dynamics [6], demon‑
strating that it captures the scientifically‑relevant activity
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the clustering algorithm (DPCLUS [2]) computes the distances to a sub-
set of its neighbors selected by their peak channel locations and the 
anatomical similarity. Based on the k-nearest neighbors [3], the cluster-
ing algorithm finds the density peaks based on the local density values 
and the nearest distances to the higher-density neighbors, and recur-
sively propagates the cluster memberships toward a decreasing density 
gradient, The accuracy of our algorithm was evaluated using validation 
datasets generated using a biophysically detailed neural network simu-
lator (BioNet [4]), which generated three scenarios including stationary, 
slow monotonic drift, and fast random drift cases. IronClust achieved 
~8% error on the stationary dataset, and ~10% error on the gradual or 
random drift datasets, which significantly outperformed existing algo-
rithms (Fig. 1). We also found that additional columns of electrodes 
improve the sorting accuracy in all cases. IronClust achieved over 11x of 
the real-time speed using GPU, and over twice faster than other lead-
ing algorithm. In conclusion, we realized an accurate and scalable spike 
sorting operation resistant to probe drift by taking advantage of an ana-
tomically-aware clustering and parallel computing.
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The FAIR data principles were established as a general framework to 
facilitate knowledge discovery in research. Since the FAIR data princi-
ples are only guidelines, it is up to each domain to establish the stand-
ards and best practices (SBPs) that fulfill the principles. Thus, INCF is 
working with the community to develop, endorse, and adopt SBPs in 
neuroscience.
Develop: Connecting communities to support FAIR(er) practices
INCF provides 3 forums in which community members can come 
together to develop SBPs: Special Interest Groups (SIGs), Working 
Groups (WGs), and the INCF Assembly. SIGs are composed of a group 

of community members with the same interest, who gather and self-
organize around tools, data, and community needs in a specific area. 
The SIGs will also serve as the focus for getting agreement and com-
munity buy-in on the use of these standards and best practices. INCF 
WGs are extensions of SIGs that receive funding from INCF to develop 
or extend existing SBPs, for example to support additional data types, 
or the development of a new SBP. The WG plan must include a plan 
for gathering appropriate input from the membership and the com-
munity. for example to support additional data types, or the develop-
ment of a new SBP.
Endorse: Formalized standards endorsement process
The endorsement process is a continuous loop of feedback from the 
committee and the community to the developer(s) of the SBPs (e.g. 
PyNN and NeuroML [1,2]). Developers submit their SBPs for endorse-
ment to the INCF SBP Committee who in turn vets the merit of the 
SBPs and publishes a report on the proposed standard covering open-
ness, FAIRness, testing and implementation, governance, adoption 
and use, stability, and support. Then community is invited to comment 
during a 60-day period before the committee takes the final decision. 
Endorsed SBPs are then made available on incf.org and promoted to 
the community, to journals, and to funders through INCF’s training 
and outreach efforts.
Promote Adoption: Outreach and training
To promote adoption, INCF offers the yearly INCF Assembly where 
SIGs and WGs can present their work and engage the wider commu-
nity. Training materials are also integrated into the INCF TrainingSpace, 
a platform linking world-class neuroinformatics training resources, 
developed by INCF in collaboration with its partners, and existing 
community resources. In addition to outreach and training, INCF also 
developed KnowledgeSpace, a community-based encyclopedia for 
neuroscience that links brain research concepts to the data, models, 
and literature that supports them, demonstrating how SBPs can facili-
tate linking brain research concepts with data, models and literature 
from around the world. It is an open project and welcomes participa-
tion and contributions from members of the global research commu-
nity. KS is the result of recommendations from a community workshop 
held by the INCF Program on Ontologies of Neural Structures in 2012.
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Head direction (HD) cells have been demonstrated in the post subic-
ulum [1, 2] of the hippocampal formation of the brain. Ensembles of 
the HD cells provide information about heading direction during spa-
tial navigation. An Attractor Dynamic model [3] has been proposed to 
explain the unique firing patterns of the head direction cells. Here, we 
present a novel Ring Integrator model of the HD cells. This model is 
an improvement over the Attractor Dynamic model as it achieves the 
same functionality with fewer neurons and explains how the HD cells 
align to orienting cues.
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Fig. 1 a Probe drift causes coherent shifts in the spike positions pre‑
serving the anatomical structure. b Principal probe movement occurs 
along the probe axis. c Three drift scenarios and the anatomical 
similarity matrices between time bins. d Clustering errors for various 
drift scenarios and electrode layouts. e Accuracy comparison. f Speed 
comparison between multiple sorters
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Although distractor filtering has been long identified as a funda-
mental mechanism to achieve an efficient management of working 
memory, there are not many tasks where distractors are parametri-
cally modulated both in the temporal and the similarity domain 
simultaneously. Here, 21 subjects participated in a visuospatial work-
ing memory task (vsWM) where distractors could be presented pro-
spectively or retrospectively at two different delay times (200 and 
7000 ms). Moreover, distractors were presented close or far away from 
the target. As expected, changes in the temporal and the similar-
ity domain induced different distraction behaviours. In the similarity 
domain, we observed that close-by distractors induced an attractive 
bias while far distractors induced a repulsive one. Interestingly, this 
pattern of biases occurred both for prospective and retrospective 
distractors, suggesting common mechanisms of interference with 
the behaviorally relevant target. This result is in line with a previ-
ously validated bump-attractor model where diffusing bumps of 
neural activity attract or repel each other in the delay period [1]. In 
the temporal domain, we found a stronger effect for prospective 
distractors and short delays (200ms). Intriguingly, we observed that 
a retrospective distractor at 7000 ms also affected behavior, suggest-
ing that irrelevant distractor memory traces can last longer than pre-
viously considered in computational models. One possibility is that 
persistent-activity based mechanisms underpin target storage while 
synaptic-based mechanisms underlie distractor memory traces. To 
gather support for this idea, we ran the same experiment with a 3T 
fMRI in 6 participants. Based on previous studies where sensory areas 
were not resistant to distractors [2], we hypothesized that sensory 
areas would represent all visual stimuli while associative areas like IPS 
would subserve memory-for-target function. Importantly, the synap-
tic hypothesis for distractor storage would predict that despite the 
behavioral evidence for retrospective distractor memory in this task, 
retrospective distractors would not be represented in the activity of 
either area, despite strong representations of the target. To test this, 
we will map parametric behavioral outputs into physiological activity 
readouts [3] for the different distractor conditions and we will explore 
the biological mechanism of distractor storage in working memory by 
comparing distractor storage in the retrospective 7000 ms condition 
with target storage in the absence of distractors. All together, these 
results open the door to an integrative model of working memory 
where different neural mechanisms and multiple brain regions are 
taken into account.
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In [1], Ferrari et al. introduced a continuous time model for network 
of spiking neurons with binary membrane potential. It consists in 
an infinite system of interacting point processes. Each neuron in the 
one-dimensional lattice Z has two post-synaptic neurons, which are 
its two immediate neighbors. There is only two possible states for a 
given neuron, which are “active” or “quiescent” (1 or 0), and the neuron 
goes from “active” to “quiescent” either when it spikes, either when it 
is affected by the leakage effect, it goes from 0 to 1 when one of its 
presynaptic neurons spikes. For a given neuron the spikes are modeled 
as the events of a Poisson process of parameter 1, while the leakage 
events are modeled as the events of a Poisson process of some posi-
tive parameter gamma γ, all the processes being mutually independ-
ents. It was shown that this model presents a phase transition with 
respect to the parameter γ. This means that there exists a critical value 
for the parameter γ, denoted γc, such that, when γ>γc all neurons will 
once for all end up in the “quiescent” state with probability one; and 
when γ<γc there is a positive probability that the neurons will come 
back to the “active” state infinitely often.
However, when modeling the brain, it is usual to work with a necessar-
ily finite number of neurons. Thus, we consider a finite version of the 
infinite system: instead of a process defined on entire lattice Z, we con-
sider a version of the process defined on the finite window {−N, −N 
+ 1, …, N − 1 N} (the number of neurons is therefore 2N + 1). When 
the number of neurons is finite we know by elementary results about 
Markov chains that the absorbent state, where all neurons are “quies-
cent”, will necessarily be reached in some finite time for any value of γ. 
The time t spent to reach the absorbent state depends on the network 
number of neuron 2N + 1 and the arbitrary parameter γ. For exam-
ple, around  107 random numbers were picked up until the network 
reached the absorbent state for N = 100 and γ = 0.375, but around  109 
random numbers were required when N was increased to 500 (Fig. 1).
So, we conjecture that, for a γ less than the critical gamma γc, the finite 
model presents a dynamical phase transition, as first defined in [2]. By 
this we mean that for a finite number of neurons, the distribution of 
the time of extinction (T(N,γ)) re-normalized (divided by its expecta-
tion) converges in distribution to an exponential random variable of 
parameter 1 when the number of neurons grows (N→∞). To back up 
our conjecture we build up the present model in python and run it 
10,000 turns for N = (10, 50, 100, 500, 1000), J = (0.40, 0.35, 0.30) and 
plot the normalized histogram. The Fig. 1d shows the normalized his-
togram of the time of extinction for N = 50 (101 neurons) and J = 0.35 
for 10,000 simulations and the function e-t in red.

Fig. 1 The activity of network with (a and b) N = 100 or c N = 500 
and γ = 0.375. Around  107 (a and b and  109) c random numbers were 
required until the network reaches the absorbent state. d Histogram 
normalized of the time t of extinction for N = 50 and gamma = 0.35 
for 10,000 turns compared with the function exp(−t) in red
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Layer V pyramidal cells (L5PCs) extend their apical dendrites through-
out the cortical thickness of the neocortex and integrate information 
from local and distant sources [1]. Alterations in the L5PC excitability 
and its ability to process context- and sensory drive-dependent inputs 
have been proposed to be a cause for hallucinations and other impair-
ments of sensory perceptions related to mental disease [2]. In line with 
this hypothesis, genetic variants in voltage-gated ion channel-encoding 
genes and their altered expression have been associated with the risk of 
mental disorders [4]. In this work, we use computational models of L5PCs 
to systematically study the impact of small-effect variants on L5PC excit-
ability and phenotypes associated with schizophrenia (SCZ).
An important aid in SCZ research is the set of biomarkers and endophe-
notypes that reflect the impaired neurophysiology and—unlike most of 
the symptoms of the disorder—are translatable to animal models. The 
deficit in prepulse inhibition (PPI) is one of the most robust endopheno-
types. Although statistical genetics and genome-wide association stud-
ies (GWASs) have helped to make associations between gene variants 
and disease phenotypes, the mechanisms of PPI deficits and other circuit 
dysfunctions related to SCZ are incompletely understood at the cellular 
level. Following our previous work [3], we here study the effects ofSCZ-
associated genes on PPI in a single neuron.
In this work, we aim at bridging the gap of knowledge between SCZ 
genetics and disease phenotypes by using biophysically detailed models 
to uncover the influence of SCZ-associated genes on integration of infor-
mation in L5PCs. L5PC population displays a wide diversity of morpho-
logical and electrophysiological behaviours, which has been overlooked 
in most modeling studies. To capture this variability, we use two sepa-
rate models for thick-tufted L5PCs with partly overlapping ion-channel 
mechanisms and modes of input-output relationships. Furthermore, we 
generate alternative models that capture a continuum of firing proper-
ties between those attained by the two models. We show that most of 
the effects of SCZ-associated variants reported in [3] are robust across 
different types of L5PCs. Further, to generalize the results to in vivo-like 
conditions, we show that the effects of these model variants on single-
L5PC excitability and integration of inputs persist when the model neu-
ron is stimulated with noisy inputs. We also show that the model variants 
alter the way L5PCs code the input information both in terms of output 
action potentials and intracellular [Ca2+], which could contribute to 
both altered activity in the downstream neurons and synaptic long-term 
potentiation. Taken together, our results show a wide diversity in how 
SCZ-associated voltage-gated ion channel-encoding genes affect input-
output relationships in L5PCs, and our framework helps to predict how 

these relationships are correlated with each other. These findings indi-
cate that SCZ-associated variants may alter the interaction between peri-
somatic and apical dendritic regions.
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Cognitive therapy for posttraumatic stress disorder (CT-PTSD) is one 
of the evidence-based psychological treatments. However, there are 
currently no fMRI studies investigating the temporal dynamics of brain 
network activation associated with successful cognitive therapy for 
PTSD. In this study, we used a newly developed data-driven approach 
to investigate the dynamics of brain function [1] underlying PTSD 
recovery with CT-PTSD [2].
Participants (43 PTSD, 30 remitted (14 pre & post CT-PTSD, 16 only 
post CT-PTSD), 8 waiting list and 15 healthy controls) underwent an 
fMRI protocol on a 1.5T Siemens Scanner using an echoplanar proto-
col (TR/TE 2400/40). The task consisted of trauma-related or neutral 
pictures presented in a semi-randomised block design. Data was pre-
processed using FSL and FIX and nonlinearly registered to MNI space. 
Mean BOLD timeseries were estimated using the Shen functional atlas 
[3]. A Hidden Markov Model [1] was applied to estimate 7 states, each 
defined by a certain pattern of activation. The amount of total time 
spent in each network state (i.e., fractional occupancy) was computed 
separately for each of the two conditions: neutral and trauma-related 
pictures.
The states can be described as patterns of above- and below-average 
activation overlapping with functional (e.g., visual ventral stream) or 
resting-state networks (e.g., default mode network (DMN)). Results 
show that two DMN-related states, anatomically involving the medial 
temporal and the dorsomedial prefrontal DMN subsystems [4], had 
decreased fractional occupancies in PTSD in contrast to both healthy 
controls and remitted PTSD. No other states showed significant dif-
ferences between groups. Importantly, there were no differences 
between PTSD before and after a waiting list condition (Fig 1). Fur-
thermore, flashback qualities of intrusive memories were negatively 
related to the time spent in the medial temporal DMN as well as 
positively correlated with the time spent in ventral visual and salience 
states.
Recent work suggests that two subcomponents of the DMN, the 
medial temporal DMN and the dorsomedial prefrontal DMN, appear 
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to be related to memory contextualisation and mentalizing about self 
and others, respectively [e.g. 4]. Our results show that the brains of 
participants with PTSD spend less time in states related to these two 
subcomponents before but not after successful therapy. This fits well 
with the cognitive theory suggested by [5], according to which PTSD 
results from: 1) disturbance of autobiographical memory character-
ised by poor contextualisation 2) excessively negative and threaten-
ing interpretations of one’s own and other people’s reactions to the 
trauma.
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Experiments have shown that application of glutamate near basal 
dendrites of cortical pyramidal neurons activates AMPA and NMDA 
receptors, which can result in dendritic plateau potentials: long-lasting 
depolarizations which spread into the soma, reducing the membrane 
time constant and bringing the cell closer to the spiking threshold. Uti-
lizing a morphologically-detailed reconstruction of a Layer 5 pyrami-
dal cell from prefrontal cortex, a Hodgkin-Huxley compartmental 

model was developed in NEURON. Synaptic AMPA/NMDA and extra-
synaptic NMDA receptor models were placed on basal dendrites to 
explore plateau potentials. The properties of the model were tuned to 
match plateau potentials recorded by voltage-sensitive dye imaging in 
dendrites and whole-cell patch measurements in somata of prefrontal 
cortex pyramidal neurons from rat brain slices. The model was capa-
ble of reproducing experimental observations: a threshold for activa-
tion of the plateau, saturation of plateau amplitude with increasing 
glutamate application, depolarization of the soma by approximately 
20 mV, and back-propagating action potential amplitude attenuation 
and time delay. The model predicted that membrane time constant 
is shortened during the plateau, that synaptic inputs are more effec-
tive during the plateau due to both depolarization and time constant 
change, the plateau durations are longer when activated by more dis-
tal dendritic segments, and that plateau initiation location can be pre-
dicted from somatic plateau amplitude. Dendritic plateaus induced by 
strong basilar dendrite stimulation can increase population synchrony 
produced by weak coherent stimulation in apical dendrites. The mor-
phologically-detailed cell model was simplified while maintaining the 
observed plateau behavior and then utilized in cortical network mod-
els along with a previously-published inhibitory interneuron model. 
The network model simulations showed increased synchrony between 
cells during induced dendritic plateaus. These results support our 
hypothesis that dendritic plateaus provide a 200-500 ms time window 
during which a neuron is particularly excitable. At the network level, 
this predicts that sets of cells with simultaneous plateaus would pro-
vide an activated ensemble of responsive cells with increased firing. 
Synchronously spiking subsets of these cells would then create an 
embedded ensemble. This embedded ensemble would demonstrate a 
temporal code, at the same time as the activated (embedded) ensem-
ble showed rate coding.
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Developing biophysically and anatomically detailed data-driven com-
putational models of the different neuronal cell types and running 
simulations on them is becoming a more and more popular method 
in the neuroscience community to investigate the behaviour and to 
understand or predict the function of these neurons in the brain. Sev-
eral computational and software tools have been developed to build 
detailed neuronal models, and there is an increasing body of experi-
mental data from electrophysiological measurements that describe 
the behavior of real cell neurons and thus constrain the parameters of 
detailed neuronal models. As a result, there are now a large number of 
different models of many cell types available in the literature.
These published models were usually built to capture some important 
or interesting properties of the given neuron type, i.e., to reproduce 
the results of a few selected experiments, and it is often unknown, 
even by their developers, how they would behave in other situations, 
outside their original context. Nevertheless, for data-driven models to 
be predictive, it is important that they are able to generalize beyond 
their original scope. Furthermore, investigating and developing dif-
ferent hippocampal CA1 pyramidal cell models we experienced that 
tuning the model parameters so that the model reproduces a specific 
behaviour often significantly changes previously adjusted behaviours, 
which can easily remain unrecognized by the modeler. This limits the 
reusability of these models for different scientific purposes. Therefore, 
it would be important to test and evaluate the models under different 

Fig. 1 a, b Participants with PTSD spend less time visiting two DMN‑
related states in contrast to healthy controls and/or remitted PTSD, 
but no significant differences were found between visit1 and visit 2 
of participants assigned to the waiting list condition. c No significant 
differences were found between groups for any of the other states. 
*pval < 0.05; **p 0.05 < after FDR
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conditions, to explore the changes in model behaviour when its 
parameters are tuned.
To make it easier for the modeling community to explore the changes 
in model behavior during parameter tuning, and to systematically 
compare models of rat hippocampal CA1 pyramidal cells that were 
developed using different methods and for different purposes, we 
have developed an automated Python test suite called HippoUnit. 
HippoUnit is based on the SciUnit framework [1] which was developed 
for the validation of scientific models against experimental data. The 
tests of HippoUnit automatically run simulations on CA1 pyramidal 
cell models built in the NEURON simulator [2] that mimic the electro-
physiological protocol from which the target experimental data were 
derived. Then the behavior of the model is evaluated and quantita-
tively compared to the experimental data using various feature-based 
error functions. Current validation tests cover somatic behavior and 
signal propagation and integration in apical dendrites of rat hip-
pocampal CA1 pyramidal single cell models. The package is open 
source, available on GitHub (https ://githu b.com/KaliL ab/hippo unit) 
and it has been integrated into the Validation Framework developed 
within the Human Brain Project.
Here we present how we applied HippoUnit to test and compare the 
behavior of several different hippocampal CA1 pyramidal cell models 
available on ModelDB [4], against electrophysiological data available 
in the literature. By providing the software tools and examples on how 
to validate these models, we hope to encourage the modeling com-
munity to use more systematic testing during model development, 
in order to create neural models that generalize better, and make the 
process of model building more reproducible and transparent.
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Data collection efforts in neuroscience are growing at an unprec-
edented pace, providing a constantly widening stream of highly 
complex information about circuit architectures and neural activ-
ity patterns. We leverage these data collection efforts to develop 
data-driven, biologically realistic models of the mouse primary 
visual cortex at two levels of granularity. The first model uses bio-
physically detailed neuron models with morphological reconstruc-
tions fit to experimental data. The second uses Generalized Leaky 
Integrate and Fire point neuron models fit to the same experimental 

recordings. Both models were developed using the Brain Modeling 
ToolKit (BMTK) and will be made freely available upon publication. 
We demonstrate how in the process of building these models, spe-
cific predictions about structure-function relationships in the mouse 
visual cortex emerge. We discuss three such predictions regarding 
connectivity between excitatory and non-parvalbumin express-
ing interneurons; functional specialization of connections between 
excitatory neurons; and the impact of the cortical retinotopic map 
on neuronal properties and connections.
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Many hyperscanning studies have shown that activities of the two 
brains often synchronize during social interaction (e.g., [1]). This syn-
chronization occurs in various frequency bands and brain regions 
[1]. Further, Dumas et al. [2] constructed a two-brain model in which 
Kuramoto oscillators, as brain regions, are connected according to 
an anatomically realistic human connectome. They showed that 
the model with the realistic brain structure exhibits stronger inter-
brain synchronization than the network with a randomly shuffled 
structure. However, it remains unclear what properties in the brain 
anatomical structure contribute to the inter-brain synchroniza-
tion. Furthermore, since Kuramoto oscillators tend to converge to 
a specific frequency, the model cannot explain the synchronous 
activities in different frequency bands which were observed in the 
hyperscanning studies. In the current study, we propose a two-
brain model based on small-world networks proposed by Watts and 
Strogatz method (WS method) [3] to systematically investigate the 
relationship between the small-world structure and the degree of 
inter-brain synchronization. WS method can control the clustering 
coefficient and shortest path length without changing the number 
of connections by rewiring probability p (p = 0.0: regular network, 
p = 0.1: small-world network, and p = 1.0: random network). We 
hypothesize that the small-world network, which has high clus-
tering coefficient and low shortest path length, is responsible for 
the inter-brain synchronization owing to its efficient information 

Fig. 1 PLVs between the networks in gamma band (31–48Hz), where 
a higher value indicates stronger synchronization. X‑axis indicates 
the combinations of values of rewiring probability p (p = 0.0: regular 
network, p = 0.1: small‑world network, and p = 1.0: random network). 
Black lines and red broken lines indicate the mean and the median of 
the PLVs, respectively

https://github.com/KaliLab/hippounit
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transmission. The model consists of two networks, each of which 
network consists of 100 neuron groups composed by 1000 spiking 
neurons (800 excitatory and 200 inhibitory neurons). The neuron 
groups in a network are connected according to WS method. Some 
groups in the two networks are directly connected as inter-brain 
connectivity, which is in the same manner as the previous model 
[2]. We evaluated the inter-brain synchronization between neuron 
groups using Phase Locking Value (PLV). Fig. 1 shows PLVs in each 
combination of networks with different rewiring probabilities in the 
gamma band (31-48Hz). The mean PLV of the combination of small-
world networks was higher than those of the other combinations.
The result implies that the small-world structure in the brains may be 
a key factor of the inter-brain synchronization. As a future direction, 
we plan to impose an interaction task on the current model instead 
of the direct connections to aim to understand the relationship 
between the social interaction and structure properties of the brains.
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Spatial navigation is a crucial part of survival, allowing an agent to 
effectively explore environments and obtain necessary resources. It 
has been theorized that this is achieved by learning an internal repre-
sentation of space, known as a cognitive map. Multiple types of spe-
cialized neurons in the hippocampal formation and entorhinal cortex 
are believed to contribute to the formation of this cognitive map, 
particularly place cells and grid cells. These cells exhibit unique spa-
tial firing fields that change in response to changes in environmental 
conditions. In particular, place cells display remapping of their spatial 
firing fields across different environments and grid cell display a phase 
shift in their spatial firing fields. If these cell types are indeed impor-
tant for spatial navigation, we want to be able to explain the mecha-
nism behind how the firing fields of these cell types change between 
environments. However, there are currently no suggested models or 
mechanisms for how this remapping and phase shift occur. Building off 
of previous work using continuous attractor network (CAN) models of 
grid cells, we propose a CAN model that incorporates place cell input 
to grid cells. By allowing for Hebbian learning between place cells and 
grid cells associated with two distinct environments, our model is able 
to replicate the phase shifts between environments observed in grid 
cells. Our model posits the first potential mechanism by which the cog-
nitive map changes between environments, and will hopefully inspire 
new research into this phenomenon and spatial navigation as a whole.
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Intracranial electroencephalography is a standard tool in clinical evalu-
ation of patients with focal epilepsy. Various early electrographic sei-
zure patterns differing in frequency, amplitude, and waveform of the 
oscillations are observed in intracranial recordings. The pattern most 
common in the areas of seizure propagation is the so-called theta-
alpha activity (TAA), whose defining features are oscillations in the 
theta-alpha range and gradually increasing amplitude. A deeper under-
standing of the mechanism underlying the generation of the TAA pat-
tern is however lacking. We show by means of numerical simulation 
that the features of the TAA pattern observed on an implanted depth 
electrode in a specific epileptic patient can be plausibly explained by 
the seizure propagation across an individual folded cortical surface.
In order to demonstrate this, we employ following pipeline: First, the 
structural model of the brain is reconstructed from the T1-weighted 
images, and the position of the electrode contact are determined using 
the CT scan with implanted electrodes. Next, the patch of cortical sur-
face in the vicinity of the electrode of interest is extracted. On this sur-
face, the simulation of the seizure spread is performed using The Virtual 
Brain framework. As a mathematical model a field version of the Epilep-
tor model is employed. The simulated source activity is then projected 
to the sensors using the dipole model, and this simulated stereo-elec-
troencephalographic signal is compared with the recorded one.
The results show that the simulation on the patient-specific cortical 
surface gives a better fit between the recorded and simulated sig-
nals than the simulation on generic surrogate surfaces. Furthermore, 
the results indicate that the spectral content and dynamical features 
might differ in the source space of the cortical gray matter activity and 
among the intracranial sensors, questioning the previous approaches 
to classification of seizure onset patterns done in the sensor space, 
both based on spectral content and on dynamical features.
In conclusion, we demonstrate that the investigation of the seizure 
dynamics on the level of cortical surface can provide deeper insight 
into the large scale spatiotemporal organization of the seizure. At the 
same time, it highlights the need for a robust technique for inversion 
of the observed activity from sensor to source space that would take 
into account the complex geometry of the cortical sources and the 
position of the intracranial sensors.
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Excessively high, neural synchronisation has been associated with epilep-
tic seizures, one of the most common brain diseases worldwide. Previous 
researchers have argued which epileptic and normal neuronal activity 
are support by the same physiological structure. However, to understand 
how neuronal systems transit between these regimes is a wide question 
to be answered. In this work, we study neuronal synchronisation in a ran-
dom network where nodes are neurons with excitatory and inhibitory 
synapses, and neural activity for each node is provided by the adaptive 
exponential integrate-and-fire model. In this framework, we verify that 
the decrease in the influence of inhibition can generate synchronisation 
originating from a pattern of desynchronised spikes. The transition from 
desynchronous spikes to synchronous bursts of activity, induced by vary-
ing the synaptic coupling, emerges in a hysteresis loop due to bistability 
where abnormal (excessively high synchronous) regimes exist. We verify 
that, for parameters in the bistability regime, a square current pulse can 
trigger excessively high (abnormal) synchronisation, a process that can 
reproduce features of epileptic seizures. Then, we show that it is possible 
to suppress such abnormal synchronisation by applying a small-ampli-
tude external current on less than 10% of the neurons in the network. 
Our results demonstrate that external electrical stimulation not only can 
trigger synchronous behaviour, but more importantly, it can be used as 
a means to reduce abnormal synchronisation and thus, control or treat 
effectively epileptic seizures.
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Previously encoded memories can be damaged by encoding of new 
memories, especially when they are relevant to the new data and 
hence can be disrupted by new training—a phenomenon called “cata-
strophic forgetting”. Human and animal brains are capable of continual 
learning, allowing them to learn from past experience and to inte-
grate newly acquired information with previously stored memories. A 
range of empirical data suggest important role of sleep in consolida-
tion of recent memories and protection of the past knowledge from 
catastrophic forgetting. To explore potential mechanisms of how sleep 
can enable continual learning in neuronal networks, we developed a 
biophysically-realistic thalamocortical network model where we could 
train multiple memories with different degree of interference. We 
found that in a wake-like state of the model, training of a “new” mem-
ory that overlaps with previously stored “old” memory results in degra-
dation of the old memory. Simulating NREM sleep state immediately 
after new learning led to replay of both old and new memories—this 
protected old memory from forgetting and ultimately enhanced both 
memories. The effect of sleep was similar to the interleaved training of 
the old and new memories. The study revealed that the network slow-
wave oscillatory activity during simulated deep sleep leads to a com-
plex reorganization of the synaptic connectivity matrix that maximizes 
separation between groups of synapses responsible for conflicting 
memories in the overlapping population of neurons. The study pre-
dicts that sleep may play a protective role against catastrophic forget-
ting and enables brain networks to undergo continual learning.
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Neuronal activity arises from the concerted activity of different ionic 
currents that are distributed in varying densities across different 
neuronal compartments, including the axon, soma, and dendrite. 
One major challenge in understanding neuronal excitability remains 
understanding precisely how different ionic currents are distributed 
in neurons. Biophysically detailed neuronal compartmental models 
allow us to distribute the channels along the morphology of a neuron 
and simulate resultant voltage responses. One can then use optimi-
zation algorithms that fit model’s responses to the neuronal record-
ings to predict the channels distributions for the model. The quality 
of predictions generated from such models depends critically on the 
biophysical accuracy of the model. Depending on how optimization 
is implemented—both mathematically and experimentally—one can 
arrive at several solutions that all reasonably fit empirical datasets. 
However, to generate predictions that can be validated in experiments 
we need to reach a unique solution that predicts the neuronal activity 
for a rich repertoire of experimental conditions. As we increase the size 
of an empirical dataset, the number of model solutions that can accu-
rately account for these empirical observations decreases, theoretically 
arriving at one unique solution. Here we present a novel approach 
designed to identify this unique solution in a multi-compartmental 
model by fitting models to data obtained from a somatic neuronal 
recording and post-hoc morphological reconstruction. To validate this 
approach, we began by reverse engineering a classic model of a neo-
cortical pyramidal cell developed by [1], which contains 12 free param-
eters describing ion channels distributed across dendritic, somatic, 
and axonal compartments. First, we used the original values of these 
free parameters (e.g., the target data) to create a dataset of voltage 
responses that represents a ground truth. Given this target dataset, 
our goal was to determine whether we could use optimization to 
arrive at similar parameter values when these values were unknown. 
We tested over 350 different stimulation protocols and 15 score func-
tions, which compare the simulated data to the ground truth dataset, 
to determine which combination of stimulation and score functions 
creates datasets that reliably constrain the model. Then we checked 
how sensitive each parameter was to different score functions. We 
found that five of the twelve parameters were sensitive to many dif-
ferent score functions. While these five could be constrained, the other 
seven parameters were sensitive only to a small set of score functions. 
We therefore divided the remaining optimization process to several 
steps, iteratively constraining a subset of the parameters that were 
sensitive to the same stimulation protocols and score functions. With 
this approach, were able to constrain 11/12 of the parameters of the 
model and recover the original values. This suggests that iterative, sen-
sitivity analysis-based optimization could allow for more accurate fit-
ting of model parameters to empirical data. We are currently testing 
whether similar methods can be used on more recently developed 
models with more free parameters. Ultimately, our goal is to apply this 
method to empirical recordings of neurons in acute slice and in vivo 
conditions.
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The dendrites of cortical pyramidal cells bear spines which receive 
most of the excitatory synaptic input, act as separate electrical and 
biochemical compartments, and play important roles in signal integra-
tion and plasticity. In this study, we aimed to develop fully active mod-
els of hippocampal pyramidal neurons including spines to analyze 
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the contributions of nonlinear processes in spines and dendrites to 
signal integration and synaptic plasticity. We also investigated ways 
to reduce the computational complexity of models of spiny neurons 
without altering their functional properties.
As a first step, we built anatomically and biophysically detailed mod-
els of CA1 pyramidal neurons without explicitly including dendritic 
spines. The models took into account multiple attributes of the cell 
determined by experiments, including the biophysics and distribution 
of ion channels, as well as the different electrophysiological charac-
teristics of the soma and the dendrites. For systematic model devel-
opment, we used two software tools developed in our lab: Optimizer 
[2] for automated parameter fitting, and the HippoUnit package, 
based on SciUnit [3] modules, to validate these results. We gradu-
ally increased the complexity of our model, mainly by adding further 
types of ion channels, and monitored the ability of the model to cap-
ture both optimized and non-optimized features and behaviors. This 
method allowed us to determine the minimal set of mechanisms 
required to replicate particular neuronal behaviors and resulted in a 
new model of CA1 pyramidal neurons whose characteristics match a 
wide range of experimental results.
Next, starting from a model which matched the available data on non-
linear dendritic integration [5], we added dendritic spines and moved 
excitatory synapses to the spine head. Simply adding the spines to 
the original model significantly changed the propagation of signals 
in dendrites, the properties of dendritic spikes and the overall charac-
teristics of synaptic integration. This was due mainly to the effective 
change in membrane capacitance and the density of voltage-gated 
and leak conductances, and could be compensated by appropriate 
changes in these parameters. The resulting model showed the correct 
behavior for nonlinear dendritic integration while explicitly imple-
menting all dendritic spines.
As the effects of spines on dendritic spikes and signal propagation 
could be largely explained by their effect on the membrane capaci-
tance and conductance, we also developed a simplified version of 
the model where only those dendritic spines which received synaptic 
input were explicitly modeled, while the rest of the spines were implic-
itly taken into account by appropriate changes in the membrane prop-
erties. This model behaved very similarly to the one where all spines 
were explicitly modeled, but ran significantly faster. Our approach 
generalizes the F-factor method of [4] to active models.
Finally, our models which show realistic electrical behavior in their 
dendrites and spines allow us to examine Ca dynamics in dendritic 
spines in response to any combination of synaptic inputs and somatic 
action potentials. In combination with models of the critical molecu-
lar signaling pathways [1], this approach enables a comprehensive 
computational investigation of the mechanisms underlying activity-
dependent synaptic plasticity in hippocampal pyramidal neurons.
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Deep brain stimulation is commonly used in different pathologi-
cal conditions, such as Parkinson’s disease, epilepsy, and depression. 
However, there is scant knowledge regarding the way of stimulating 
the brain to cause a predictable and beneficial effect. In particular, the 
choice of the area to stimulate and the stimulation settings (ampli-
tude, frequency, duration) remain empirical [1].
To approach these questions in a theoretical framework, an under-
standing of how stimulation propagates and influences the global 
brain dynamics is of primary importance.
A precise stimulation (activation/inactivation) of specific cell-types 
in brain regions of interest can be obtained using optogenetic meth-
ods. Such stimulation will act in a short-range domain i.e., local in the 
brain region, as well as on a large-scale network. Both these effects 
are important to understand the final outcome of the stimulation [2]. 
Therefore, a whole brain approach is required.
In our work we use The Virtual Brain platform to model an optogenetic 
stimulus and to study its global effects on a “virtual” mouse brain [3]. 
The parameters of our model can be gauged in order to account for 
the intensity of the stimulus, which is generally controllable during 
experimental tests.
The functional activity of the mouse brain model can be compared to 
experimental evidences coming from in vivo optogenetic fMRI (ofMRI) 
[4]. In silico exploration of the parameter space allows then to fit the 
results of an ofMRI dataset as well as to make predictions on the out-
come of a stimulus depending not only by its anatomical location and 
cell-type, but also by the connection topology.
The theoretical study of the network dynamics emerging from such 
adjustable and traceable stimuli, provides a step forward in the under-
standing of the causal relation between structural and functional 
connectomes.
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According to the concept of the ‘tripartite synapse’ [1], information pro-
cessing in the brain results from dynamic communication between pre- 
and post- synaptic neurons and astrocytes. Astrocyte excitability results 
from transients of cytosolic calcium concentration. Local calcium signals 
are observed both spontaneously and in response to neuronal activity 
within fine astrocyte ramifications [2, 3], that are in close contact with 
synapses [4]. Those fine processes, that belong to the so-called spongi-
form structure of astrocytes, are too fine to be resolved spatially with 
conventional light microscopy [5, 6]. However, calcium dynamics in these 
structures can be investigated by computational modeling. In this study, 
we investigate the roles of the spatial properties of astrocytic processes 
on their calcium dynamics. Because of the low volumes and low number 
of molecules at stake, we use our stochastic spatially-explicit individual-
based model of astrocytic calcium signals in 3D [7], implemented with 
STEPS [8]. We validate our model by reproducing key parameters of cal-
cium signals that we have recorded with high-resolution calcium imag-
ing in organotypic brain slices. Our simulations reveal the importance of 
the spatial organization of the implicated molecular actors for calcium 
dynamics. Particularly, we predict that different spatial organizations can 
lead to very different types of calcium signals, even for two processes 
displaying the exact same calcium channels, with the same densities. 
We also investigate the impact of process geometry at the nanoscale 
on calcium signal propagation. By modeling realistic astrocyte geom-
etry at the nanoscale, this study thus proposes plausible mechanisms 
for information processing within astrocytes as well as neuron-astrocyte 
communication.
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As a prominent feature of Rapid Eye Movement (REM) sleep and the 
transitional stage from Slow Wave Sleep to REM sleep (the pre-REM 
stage), Ponto-Geniculo-Occipital (PGO) waves are hypothesized 
to play a critical role in dreaming and memory consolidation [1]. 
During pre-REM and REM stages, PGO waves appear in two sub-
types differing in number, amplitude and frequency. However, the 
mechanisms underlying their generation and propagation across 
multiple brain structures, as well as their functions, remains largely 

unexplored. In particular, contrary to the multiple phasic events 
occurring during non-REM sleep (slow waves, spindles and sharp-
wave ripples), computational modeling of PGO waves has to the 
best of our knowledge not yet been investigated.
Based on experimental evidence in cats, the species were most 
extensively studied, we elaborated an existing thalamocortical 
model operating in the pre-REM stage [2], and constructed a ponto-
thalamo-cortical neural mass model consisting of 6 rate-coded neu-
ronal populations interconnected via biologically-verified synapses 
(Fig. 1A). Transient PGO-related activities are elicited by a single or 
multiple brief pulses, modelling the input bursts that PGO-trigger-
ing neurons send to cholinergic neurons in the pedunculopontine 
tegmentum nucleus (PPT). The effect of acetylcholine (ACh), as the 
primarily-affecting neuromodulator during the SWS-to-REM transi-
tion, was also modelled by tuning several critical parameters with 
tonically-varying ACh concentration.
Our simulations are able to reproduce deflections in local field 
potentials (LFPs), as well as other electrophysiological characteristics 
consistent in many respects with classical electrophysiological stud-
ies (Fig. 1B). For example, the duration of both subtypes of thalamic 
PGO waves matches that of the PGO recordings with a similar wave-
form comprised of a sharp negative peak and a slower positive peak. 
The bursting duration of TC and RT neurons (10ms, 25ms) falls in the 
range reported by experimental papers (7-15ms, 20-40ms). Con-
sistent with experimental findings, the simulated PGO waves block 
spindle oscillations that occur during pre-REM stage. By incorporat-
ing tonic cholinergic neuromodulation to mimic the SWS-to-REM 
transition, we were also able to replicate the electrophysiological 
differences between the two PGO subtypes with an ACh-tuned leaky 
potassium conductance in TC and RT neurons (Fig. 1C).
These results help clarify the cellular mechanisms underlying tha-
lamic PGO wave generation, e.g., the nicotinic depolarization of LGin 
neurons, whose role used to be under debate, is shown to be critical 
for the generation of the negative peak. The model elucidates how 
ACh modulates state transitions throughout the wake-sleep cycle, 
and how this modulation leads to a recently-reported difference of 
transient change in the thalamic multi-unit activities. The simulated 
PGO waves also provides us a biologically-plausible framework to 
investigate how they take part in the multifaceted brain-wide net-
work phenomena occurring during sleep and the enduring effects 
they may induce through plasticity.

Fig. 1 a Model structure. TC: thalamocortical neurons. RT: reticular 
thalamic neurons. Pyr: pyramidal neurons. In: inhibitory neurons. LGin: 
thalamic interneurons. PPT: PGO‑transferring neurons. b Typical wave‑
forms of two subtypes of thalamic PGO waves. c Example traces of 
thalamic and cortical LFPs modulated by a cholinergic tone. Unscaled 
bar: 2 mV for red, 2 mS for dashed red, and 0.01 mS for others



Page 22 of 190BMC Neurosci 2019, 20(Suppl 1):56

References
1. Gott JA, Liley DT, Hobson JA. Towards a functional understanding of PGO 

waves. Frontiers in human Neuroscience 2017 Mar 3;11:89.
2. Costa MS, Weigenand A, Ngo HV, et al. A thalamocortical neural mass 

model of the EEG during NREM Sleep and its response to auditory stimu‑
lation. PLoS computational biology 2016 Sep 1;12(9):e1005022.

P20 
Oscillations in working memory and neural binding: a mechanism 
for multiple memories and their interactions
Jason  Pina1, G. Bard  Ermentrout2, Mark  Bodner3

1York University, Physicsand Astronomy, Toronto, Canada; 2University 
of Pittsburgh, Department of Mathematics, Pittsburgh, PA, United States 
of America; 3Mind Research Institute, Irvine, United States of America
Correspondence: Jason Pina (jay.e.pina@gmail.com)  
BMC Neuroscience 2019, 20(Suppl 1):P20

Working memory is a form of short term memory that seems to be 
limited in capacity to 3–5 items. It is well known that neurons increase 
their firing rates from a low baseline state while information is being 
retained during working memory tasks. However, there is evidence 
of oscillatory firing rates in the active states, both in individual and 
in aggregate (for example, LFP and EEG) dynamics. Additionally, each 
memory may be composed of several different items, such as shape, 
color, and location. The neural correlate of the association of several 
items, or neural binding, is not well understood, but may be the syn-
chronous firing of populations of neurons. Thus, the phase informa-
tion of such oscillatory ensemble activity is a natural candidate to 
distinguish between bound (synchronous oscillations) and distinct 
(out-of-phase oscillations) items held actively in working memory.
Here, we explore a population firing rate model that exhibits bista-
bility between a low baseline firing rate and a high, oscillatory firing 
rate. Coupling several of these populations together to form a firing 
rate network allows for competitive oscillatory dynamics, whereby 
different populations may be pairwise synchronous or out-of-phase, 
corresponding to bound or distinct items in memory, respectively. 
We find that up to 3 populations may oscillate out-of-phase with 
plausible modelconnectivitiesand parameter values, a result that 
is consistent with working memory capacity. The formulation of 
the model allows us to better examine from a dynamical systems 
perspective how these states arise as bifurcations of steady states 
and periodic orbits. In particular, we look at the ranges of coupling 
strengths and synaptic time scales that allow for synchronous and 
out-of-phase attracting states. We also explore how varying patterns 
of selective stimuli can produce and switch between rich sets of 
dynamics that may be relevant to working memory states and their 
transitions.
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Neural systems develop and self-organize into complex networks 
which can generate stimulus-specific responses. Neurons grow into 
various morphologies, which influences their activity and the struc-
ture of the resulting network. Different network topologies can then 
display very different behaviors, which suggests that neuronal struc-
ture and network connectivity strongly influence the set of func-
tions that can be sustained by a set of neurons. To investigate this, I 
developed a new simulation platform, DeNSE, aimed at studying the 
morphogenesis of neurons and networks, and enabling to test how 
interactions between neurons and their surroundings can shape the 
emergence of specific properties.
The goal of this new simulator is to serve as a general framework to 
study the dynamics of neuronal morphogenesis, providing predictive 

tools to investigate how neuronal structures emerge in complex spa-
tial environments. The software generalizes models present in previ-
ous simulators [1, 2], gives access to new mechanisms, and accounts 
for spatial constraints and neuron-neuron interactions. It has been 
primarily applied on two main lines of research: a) neuronal cultures 
or devices, their structures being still poorly defined and strongly 
influenced by interactions or spatial constraints [3], b) morphologi-
cal determinants of neuronal disorders, analyzing how changes at the 
cellular scale affect the properties of the whole network [4].
I illustrate how DeNSE enables to investigate neuronal morphology at 
different scales, from single cell to network level, notably through cell-
cell and cell-surroundings interactions (Fig. 1). At the cellular level, I 
show how branching mechanisms affect neuronal morphology, intro-
ducing new models to account for interstitial branching and the influ-
ence of the environment. At intermediate levels, I show how DeNSE can 
reproduce interactions between neurites and how these contribute to 
the final morphology and introduce correlations in the network struc-
ture. At the network level, I stress how networks obtained through a 
growth process differ from both simple generative models and more 
complex network models where the connectivity comes from overlaps 
of real cell morphologies. Eventually, I demonstrate how DeNSE can 
provide biologically relevant structures to study spatio-temporal activ-
ity patterns in neuronal cultures and devices. In these structures, where 
the morphologies of the neurons and the network are not well defined 
but have been shown to play a significant role, DeNSE successfully 
reproduces experimental setups, predicts the influence of spatial con-
straints, and enables to predict their electrical activities. Such a tool can 
therefore be extremely useful to test structures and hypotheses prior to 
actual experiments, thus saving time and resources.
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Fig. 1 Structures generated with DeNSE; axons are in red, dendrites 
in blue, and cell bodies in black; scale bars are 50 microns. a Multipo‑
lar cell. b Neuronal growth in a structured neuronal device (light blue 
background) with a central chamber and small peripheric chambers; 
interactions between neurites can be seen notably through the pres‑
ence of some fasciculated axon bundles. c Purkinje cell
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Calcium signaling in astrocytes is crucial for the nervous system 
function. Earlier we proposed a 2Dastrocytemodelof calcium waves 
dynamics [1], where waves were driven by local stochastic surges of 
glutamate which simulated the synaptic activity. The main idea of 
the model was in reproducing the spatially segregated mechanisms, 
belonging to regions with different dynamics: (i) the core with calcium 
exchange mainly with endoplasmic reticulum (ER) and (ii) peripheral 
compartment with currents through a plasma membrane (PM) with 
dominating Ca dynamics.
Real astrocytes are obviously not binary. There is a graded transition 
from thick branches to branchlets and to leaflets, primarily determined 
via the surface-to-volume ratio (SVR). Moreover, leaflet regions of the 
template contain not only astrocyte itself, but also the neuropil. We 
encode the astrocyte structural features by means of its color repre-
sentation. Let the black color corresponds to astrocyte-free region, and 
the blue channel color indicate the presence of an astrocyte. Instead of 
binary leaflet-branch segregation, we introduce the astrocyte volume 
fraction (AVF) parameter, which indicates how much of the 2D cell vol-
ume is occupied by the astrocyte in real 3D effigy (the rest part is neu-
ropil). AVF is encoded by the red channel intensity (Fig. 1A). The soma 
and thick branches region contain only the astrocyte (AVF = 1). The 
non-astro content increases from the soma to edges of an astrocyte 
through the leaflets, so AVF parameter should decrease and the red 
channel tends to its minimum value equal to 0.1 on the astrocyte bor-
der. To describe the relative effect of the exchange through PM and ER, 
we introduce the SVR parameter, which depends on AVF as a reverse 
sigmoid form. The SVR value is maximal at the edges of the leaflets 
and minimal in the soma.
The implementation of AVF and SVR effects is based on the follow-
ing reasoning: larger AVF (correspondingly, smaller SVR) reflects Ca 
dynamics dominated by ER exchange (IP3R-mediated) and less input 
from PM mechanisms (IP3 synthesis and PM-mediated Ca currents). 
Larger SVR in turn reflects underlying tortuosity of the astrocyte cyto-
plasm volume by attenuating apparent diffusion coefficients for IP3 
and Ca. Finally, small concentration changes in areas with high AVF will 
cause larger changes in concentration in the neighboring areas with 
low AVF due to unequal volumes taken up by astrocytic cytoplasm.
Simulations of the proposed model show the formation of calcium 
waves (Fig. 1B), which propagate throughout the astrocyte template 
from the borders towards the center. In contrast to the previous binary 
segmentation model, calcium elevation response in the proposed 
biophysically more realistic sponge model is greater, i.e. the intensity 

of the formed waves is higher, but the basal calcium level is lower 
(Fig. 1C). At the same time, the threshold of stable wave existence 
grows because increasing AVF works like a blocking barrier for a small 
glutamate release reducing the number of wave sources. Neverthe-
less, large enough glutamate release leads to a wide-area wave quickly 
occupying the leaflets moving to the astrocyte soma.
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Previously we proposed two models of astrocytic calcium dynamics 
modulated by local synaptic activity. The first one [1] is based on the 
inositol trisphosphate-dependent exchange with the intracellular cal-
cium storage taking into account specific topological features, namely 
different properties of thick branches and soma with thin branches. 
The second local model for a separate segment of an astrocyte [2] con-
siders the sodium-calcium exchanger (NCX) and Na+ response to the 
synaptic glutamate. In this work we combine these two models and 
proceed to a spatially distributed astrocyte network. Our main goal is 
to study the process of the cytoplasmic calcium wave initiation and its 
motion through the astrocyte network.
The astrocyte cell is represented in the model by a 2D projection of a 
real cell microphotograph and indicated by a blue colour. The intensity 
of a red channel in each pixel shows the cytoplasm/ neuropil volume 
ratio. We introduce this volume characteristic to describe the differ-
ences in diffusion rates and the contribution of ion currents through 
endoplasmic reticulum membrane and plasma membrane in soma, 
branches and leaflets. We further connect various astrocyte cell tem-
plates into a network (Fig. 1A).
The proposed mathematical model includes 7 variables: calcium con-
centrations in cytosol andendoplasmic reticulum, inositol trisphos-
phate and sodium concentrations incytosol, extracellular glutamate 
concentration, inositol trisphosphatereceptor and NCX inactivation 
gating variables h and g. Synaptic glutamate activity is described by a 
quantal release triggered by a spike train drawn from a homogeneous 
Poisson process. A detailed description of the model equations and 
parameters including its biophysical meaning is provided in [1, 2].
The results of the unified model numerical solution confirm the emer-
gence of calcium waves, which occur due to the synaptic activity and 
spread over the astrocyte network (Fig. 1B). Depending on the exci-
tation level and the network topology, the combination of two pos-
sible scenarios is forming: calcium excitation wave captures the entire 
astrocyte network, along with local waves, which exist only within one 
cell and terminate beyond its borders. The first scenario includes the 
regime when one of the cells acts as a pacemaker, i.e. the source of 
periodic calcium waves (Fig. 1C). The statistics on area and duration of 
calcium excitation events in the case of the presence and absence of 
NCX regulations was obtained using complementary cumulative dis-
tribution functions (CCDF). The presence of NCX leads to a decrease 
in the average areas that are affected by a global calcium wave dur-
ing excitation, while the number of events with equal duration time 
is the same on average for both models (Fig. 1D). However, the Na/Ca-
exchanger stimulates calcium waves, making possible the formation 
of more long-lived waves.

Fig. 1 a AVR representation of 2D image template obtained as 
maximum intensity projection of experimentally 3D astrocyte image, 
numbers from 1 to 6 indicate regions of interest (ROI). b Calcium 
waves in a local astrocyte. c The average calcium concentration in the 
model with binary geometry (red line) and in the proposed model 
(blue line)
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The mammalian visual system has been the focus of countless experi-
mental and theoretical studies designed to elucidate principles of sen-
sory coding. Most theoretical work has focused on networks intended 
to reflect developing or mature neural circuitry, in both health and 
disease. Few computational studies have attempted to model changes 
that occur in neural circuitry as an organism ages non-pathologically. 
In this work we begin to close this gap, studying how physiological 
changes correlated with advanced age impact the computational per-
formance of a spiking network model of primary visual cortex (V1).
Senescent brain tissue has been found to show increased excitability 
[1], decreased GABAergic inhibition [2], and decreased selectivity to 
the orientation of grating stimuli [1]. While the underlying processes 
driving these changes with age are far from clear, we find that these 
observations can be replicated by a straightforward, biologically-inter-
pretable modification to a spiking network model of V1 trained on nat-
ural image inputs using local synaptic plasticity rules [3]. Specifically, 
if we assume the homeostatically-maintained excitatory firing rate 
increases with “age” (duration of training), a corresponding decrease in 
network inhibition follows naturally due to the synaptic plasticity rules 
that shape network architecture during training. The resulting aged 
network also exhibits a loss in orientation selectivity (Fig. 1).

In addition to qualitatively replicating previously observed changes, 
our trained model allows us to probe how the network properties 
evolve during aging. For example, we statistically characterize how 
the receptive fields of model neurons change with age: we find that 
31% of young model neuron receptive fields are well-characterized as 
Gabor-like; this drops to 6.5% in the aged network. Only 1.5% of neu-
rons were Gabor-like in both youth and old age, while 5% of neurons 
that were not classified as Gabor-like in youth were in old age. As one 
might intuit, these changes are tied to the decrease in orientation 
selectivity: by remapping the distribution of strengths of the young 
receptive fields to match the strength distribution of the old receptive 
fields, while otherwise maintaining the receptive field structure, we 
can show that orientation selectivity is improved at every age.
Our results demonstrate that deterioration of homeostatic regulation 
of excitatory firing, coupled with long-term synaptic plasticity, is a 
sufficient mechanism to reproduce features of observed biogeronto-
logical data, specifically declines in selectivity and inhibition. This sug-
gests a potential causality between dysregulation of neuron firing and 
age-induced changes in brain physiology and performance. While this 
does not rule out deeper underlying causes or other mechanisms that 
could give rise to these changes, our approach opens new avenues for 
exploring these underlying mechanisms in greater depth and making 
predictions for future experiments.
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Understanding how the brain processes sensory input and per-
forms computations necessarily demands we understand the collec-
tive behavior of networks of neurons. The tools of statistical physics 
are well-suited to this task, but neural populations present several 

Fig. 1 a Astrocyte network simulation template, the numbered 
circles indicate some regions of interest (ROI). b The example of 
spreading calcium wave. c Calcium dynamics in ROIs illustrates the 
quasi‑pacemaker behavior. d CCDF for areas and durations of calcium 
excitation for the models with and without (blue and red lines cor‑
respondingly) NCX regulation

Fig. 1 a Model schematic (see [3]). b Cumulative distribution of 
experimental [1] and model orientation selectivities. Model “ages” 
correspond to training loops as target firing increases. Thin dashed 
(solid) lines correspond to early (late) stages of aging. c An example 
neuron’s young (top) vs. old (bottom) receptive field. d Young vs. old 
distributions of input and lateral weights
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challenges: neurons are organized in a complicated web of connec-
tions–rather than crystalline arrangements statistical physics tools 
were developed for, neural dynamics are often far from equilibrium, 
and neurons communicate not by gradual changes in their mem-
brane potential but by all-or-nothing spikes. These all-or-nothing spike 
dynamics render it difficult to treat neuronal network models using 
field theoretic techniques, though recently Ocker et al. [1] formulated 
such a representation for a stochastic spiking model and derived dia-
grammatic rules to calculate perturbative corrections to the mean 
field approximation. In this work we use an alternate representation 
of this model that is amenable to the methods of the non-perturba-
tive renormalization group (NPRG), which has successfully elucidated 
the different phases of collective behavior in several non-equilibrium 
models in statistical physics. In particular, we use the NPRG to calculate 
how stochastic fluctuations modify the nonlinear transfer function of 
the network, which determines the mean neural firing rates as a func-
tion of input, and how these changes depend on network structure. 
Specifically, the mean field approximation of the neural firing rates r 
receiving current input I and synaptic connections J is r = f(I+J ∗ r), 
where f(x) is the nonlinear firing rate of a neuron conditioned on its 
input x. We show exactly that the true mean, accounting for statistical 
fluctuations, follows the same form of equation, r = U(I+J ∗ r), where 
U(x) is an effective nonlinearity to be calculated using NPRG approxi-
mation methods.
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Humans and other animals can identify objects by active touch—
coordinated exploratory motion and tactile sensation. Rodents, and 
in particular mice, scan objects by active whisking, which allows them 
to form an internal representation of the physical properties of the 
object. In order to elucidate the behavioral and neural mechanisms 
underlying this ability, we developed a novel curvature discrimination 
task for head-fixed mice that challenges the mice to discriminate con-
cave from convex shapes (Fig. 1a). On each trial, a curved shape was 
presented into the range of the mouse’s whiskers and they were asked 
to lick left for concave and right for convex shapes. Whisking and con-
tacts were monitored with high-speed video. Mice learned the task 
well and their performance plateaued at 75.7% correct on average 
(chance 50% correct).
Because most previous work has relied on mice detecting the pres-
ence or location of a simple object with a single whisker, it is a priori 
unclear what sensorimotor features are important for more complex 
tasks such as curvature discrimination. To characterize them, we 
trained a classifier to identify either the stimulus identity or the 
mouse’s choice on each trial using the entire suite of sensorimo-
tor variables (whisker position, contact timing and position, contact 
kinematics, etc.) that could potentially drive behavior, as well as task 
related variables that could also affect behavior (Fig. 1b). By increasing 
the complexity and richness of the set of features used to perform the 
classification of stimulus and choice, we identified what features were 
most informative to perform the task and what features were driving 
animal’s decision, respectively. We found that the cumulative number 

of contacts per trial for each whisker independently was informative 
about the stimulus and choice identity. Surprisingly, precise contact 
timings within a trial for the different whiskers was not an important 
feature in either case. Additionally, the exact angular position of each 
whisker during contacts was highly predictive of the stimulus identity, 
suggesting that the mice’s behavior was not fully optimal, since this 
same feature could not predict mice’s choice accurately on a trial-by-
trial basis.
In order to identify how barrel cortex contributes to transforming fine-
scale representations of sensory events into high-level representations 
of object identity, we recorded neural populations in mice performing 
this task. We fit a generalized linear model (GLM) to each neuron’s fir-
ing rate as a function of both sensorimotor (e.g., whisker motion and 
touch) and cognitive (e.g., reward history) variables (Fig. 1c). Neurons 
responded strongly to whisker touch and, perhaps more surprisingly 
for a sensory area, to whisker motion. We also observed widespread 
and unexpected encoding of reward history and choice.
In conclusion, these results show that mice recognize objects by 
integrating sensory information gathered by active sampling across 
whiskers. Moreover, we find that the barrel cortex encodes a myriad 
of sensory and task related variables, like contacts, motor exploration, 
and reward and choice history, challenging the classical view of barrel 
cortex as a purely sensory area.

Fig. 1 a Mice were trained to perform a curvature discrimination 
task. The identity and position of each whisker was monitored with 
high‑speed video. b By increasing the complexity of the regressors 
used to predict stimulus and choice, we identified the most informa‑
tive features and the features driving behavior. c Neurons in the barrel 
cortex encode a myriad of sensory and task related variables
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Most locomotor behaviours require the brain to instantaneously coordi-
nate a continuous flow of sensory and motor information. As opposed 
to the conventional open-loop approach in the realm of neuroscience, 
it has been proposed that the brain is better idealised as a closed-loop 
controller which regulates dynamical motor actions. Studying brain 
function on these assumptions remains largely unexplored until the 
recent emergence of imaging techniques, such as the SPIM, which allow 
brain-wide neural recording at cellular resolution and high speed during 
active behaviours. Concurrently, larval zebrafish is becoming a powerful 
model organism in neuroscience due to their great optical accessibility 
and robust sensorimotor behaviours. Here, we apply control theory in 
engineering to investigate the neurobiological basis of the optomotor 
response (OMR), a body reflex to stabilise optic flow in the presence of 
whole-field visual motion, in larval zebrafish.
Our group recently developed a collection of OMR models based on vari-
ations of proportional-integral controllers. Whilst the proportional term 
allows rapid response to disturbance, the integral term eliminates the 
steady-state error over time. We will begin by characterising OMR adap-
tion with respect to different speeds and heights, in both free-swimming 
and head-restrained environments. Data collected will be used to deter-
mine which model best captures zebrafish behaviour. Next, we will con-
duct functional imaging of fictively behaving animals under a SPIM that 
our group constructed, in an effort to examine how the control mecha-
nism underpinning OMR is implemented and distributed in the neural 
circuitry of larval zebrafish. This research project will involve evaluating 
and validating biological plausible models inspired by control theory, as 
well as quantifying and analysing large behavioural and calcium imag-
ing data sets. Understanding the dynamical nature of brain function for 
successful OMR control in larval zebrafish can provide unique insight into 
the neuropathology of diseases with impaired movement and/or offer 
potential design solutions for sophisticated prosthetics.
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Time cells were recently discovered in the hippocampus and they 
seem to ramp-up their firing when the subject is at a specific tempo-
ral marker in a behavioral test. At cellular level, the spread of the firing 
interval, i.e. the width of the Gaussian-like activity, for each time cell 
is proportional to the time of the peak activity. Such a linear relation-
ship is well-known at behavioral level and is called scalar property of 
interval timing.
We proposed a novel mathematical model for interval timing starting 
with a population of hippocampal time cells and a dynamic learning 
rule. We hypothesized that during the reinforcement trials the subject 
learns the boundaries of the temporal duration. Subsequently, a pop-
ulation of time cells is recruited and coverers the entire to-be-timed 
duration. At this stage, the population of time cells simply produces a 
uniform average time field since all time cells contribute equally to the 
average. We hypothesized that dopamine could modulate the activity 

of time cells during reinforcement trials by enhancing/depressed their 
activity. Our numerical simulations of the model agree with behavioral 
experiments.
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There are two distinct classes of cells in the visual cortex: simple 
cells and complex cells. One defining feature of complex cells is their 
phase invariance, namely that they respond strongly to oriented bar 
stimuli with a preferred orientation but with a wide range of phases. 
A classical model of complex cells is the energy model, in which the 
responses are the sum of the squared outputs of two linear phase-
shifted filters. Although the energy model can capture the observed 
phase invariance of complex cells, a recent study has shown that com-
plex cells have a great diversity and only a subset can be character-
ized by the energy model [1]. From the perspective of a hierarchical 
structure, it is still unclear how a complex cell pools input from simple 
cells, which simple cells should be pooled, and how strong the pooling 
weights should be. Most existing models overlook many biologically 
important details, e.g., some models assume a quadratic nonlinearity 
of the linear filtered simple cell activity, use pre-determined weights 
between simple and complex cells, or use artificial learning rules. 
Hosoya&Hyvarinen [2] applied strong dimension reduction in pool-
ing simple cell receptive fields trained using independent component 
analysis. Their approach involves pooling simple cells, but the weights 
connecting simple and complex cells are not learned and thus it is 
unclear how this can be biophysically implemented.
We propose a biologically plausible learning model for complex cells 
that pools inputs from simple cells. The model is a 3-layer network 
with rate-based neurons that describes the activities of LGN cells (layer 
1), V1 simple cells (layer 2), and V1 complex cells (layer 3). The first two 
layers implement a recently proposed simple cell model that is biolog-
ically plausible and accounts for many experimental phenomena [3]. 
The dynamics of the complex cells involves the linear summation of 
responses of simple cells that are connected to complex cells, taken 
in our model to be excitatory. Connections between LGN and simple 
cells are learned based on Hebbian and anti-Hebbian plasticity, similar 
to that in our previous work [3]. For connections between simple and 
complex cells that are learned using natural images as input, a modi-
fied version of the Bienenstock, Cooper, and Munro (BCM) rule [4] is 
investigated.
Our results indicate that the learning rule can describe a diversity of 
individual complex cells, similar to that observed experimentally, 
that pool inputs from simple cells with similar orientation but differ-
ing phases. Preliminary results support the hypothesis that normal-
ized BCM [5] can lead to competition between complex cells and they 
thereby pool inputs from different groups of simple cells. In summary, 
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this study provides a plausible explanation for how complex cells can 
be learned using biologically plasticity mechanisms.
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Central Pattern Generators produce robust bursting activity to control 
vital rhythmic functions like breathing and leech heart beating under 
variable environmental and physiological conditions. Their functional 
operation under different physiological parameters yields distinct 
dynamic mechanisms based on the dominance of interactions within 
different subsets of inward and outward currents. Recent studies pro-
vide evidence that the Na+/K+ pump contributes to the dynamics of 
neurons and is a target of neuromodulation [1, 2]. Recently, we have 
described a complex interaction of the pump current and h-current 
that plays a role in the dynamics of rhythmic neurons in the leech 
heartbeat CPG, where the basic building blocks are half-center oscil-
lators (HCOs): pairs of mutually inhibitory HN interneurons producing 
alternating bursting activity. In the presence of h-current, application 
of the H+/Na+ antiporter monensin, which stimulates the pump by 
diffusively increasing the intracellular Na+ concentration [3], dramati-
cally decreases the period of a leech heartbeat HCO by decreasing 
both the burst duration (BD) and interburst interval (IBI). If h-current 
is blocked then monensin decreases BD but lengthens IBI so that there 
is no net change of period with respect to control. This mechanism 
shows how each phase of bursting, BD and IBI, can be independently 
controlled by interaction of the pump and h-currents.
We implemented our model [3] into a hybrid system. We investigated 
a potential role played by the persistent Na+ current (IP), sodium 
current which does not inactivate. Our hybrid-system allowed us to 
upregulate or downregulate the Na+/K+ pump and key ionic cur-
rents in real-time models and living neurons. We were able to tune the 
real time model to support functional-like bursting. We investigated 
how the variation of the basic physiological parameters like conduct-
ance and voltage of half-activation of IP and strength of the Na+/K+ 
pump affect bursting characteristics in single neurons and HCO. We 
show that interaction of IP and Ipump constitutes a mechanism which 
is sufficient to support endogenous bursting activity. We show that 
this mechanism can reinstate robust bursting regime in HN interneu-
rons recorded intracellularly in ganglion 7. Due to interaction of IPand 
Ipump, the increase of the maximal conductance of IP can shorten the 
burst duration and expand the interburst interval. Our data also sug-
gest that the functional alternating bursting regime of the HCO net-
work requires the neurons to be in the parametric vicinity of or in the 
state of the endogenous bursting. We investigated underlying interac-
tion of the IP and Ipump in a simple 2D model describing dynamics of 

the membrane potential and intracellular Na+ concentration through 
instantaneous IP and IPump.
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The thalamus receives information about the external world from the 
peripheral nervous system and conveys it to the cortex. This is not a 
passive process: the thalamus gates and selects sensory streams 
through an interplay with its internal activity, and the inputs from 
the thalamus, in turn, interact in a non-linear way with the functional 
architecture of the primary sensory cortex. Here we address the net-
work mechanisms by which the thalamus selectively transmits inform-
ative frequency bands to the cortex. In particular, spindle oscillations 
(about 10 Hz) dominate thalamic activity during sleep but are present 
in the thalamus also during wake [1, 2], and in the awake state are 
actively filtered out by thalamocortical transmission [3].
To reproduce and understand the filtering mechanism underlying the 
lack of thalamocortical transmission of spindle oscillations we devel-
oped an integrated adaptive exponential integrate-and-fire model of 
the thalamocortical network. The network is composed by 500 neu-
rons for the thalamus and 5000 neurons for the cortex, with a 1:1 and 
1:4 inhibitory to excitatory ratio respectively. We generated the local 
field potential (LFP) associated to the two networks to compare our 
simulation with experimental results [3].
Weobserve, in agreement withexperimental data, both delta and theta 
oscillations in the cortex, but while the cortical delta band is phase 
locked to thethalamic delta band [4]– even when we take into account 
the presence of strong colored cortical noise -, the cortical theta fluc-
tuations are not entrained by thalamocortical spindles. Our simula-
tions show that the spindleLFPoscillationsobserved in experimental 
recordings are way more pronounced in reticular cells than in thalam-
ocortical relays, thus reducing their potential impact on the cortex. 
More interestingly, we found that the resonance dynamics in the 
corticalgamma band, generated by the fast interplay between excita-
tion and inhibition, selectively dampens frequencies in the range of 
spindle oscillations. Finally, by parametrically varying the properties 
of thalamocortical connections, we found that the transmission of 
informative frequency bands depends on the balance of the strength 
of thalamocortical connections toward excitatory and inhibitory neu-
rons in the cortex, coherently with experimental results [5]. Our results 
pave the way toward an integrated view of the processing of sensory 
streams from the periphery system to the cortex, and toward in silico 
design of thalamic neural stimulation.
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At inhibitory synapses, GABAergic signaling controls dendritic integra-
tion, neural excitability, circuit reorganization and fine tuning of net-
work activity. Among different players, the tubulin-binding protein 
gephyrin plays a key role in anchoring GABAA receptors to synaptic 
membranes.
For its properties gephyrin is instrumental in establishing and main-
taining a proper excitatory (E)/inhibitory (I) balance necessary for the 
correct functioning of neuronal networks. A disruption of the E/I bal-
ance is thought to be at the origin of several neuropsychiatric disor-
ders including epilepsy, schizophrenia, autism.
In previous studies, the functional role of gephyrin on GABAergic sign-
aling has been studied at post-translational level, using recombinant 
gephyrin-specific single chain antibody fragments (scFv-gephyrin) 
containing a nuclear localization signal able to remove endogenous 
gephyrin from GABAA receptor clusters retargeting it to the nucleus 
[2]. The reduced accumulation of gephyrin at synapses led to a sig-
nificant reduction in amplitude and frequency of spontaneous and 
miniature inhibitory postsynaptic currents (sIPSCs and mIPSCs). This 
reduction is associated with a decrease in VGAT (the vesicular GABA 
transporter) and in neuroligin 2 (NLG2), a protein that ensures the 
cross-talk between the post- and presynaptic sites. Over-expressing 
NLG2 in gephyrin deprived neurons rescued GABAergic but not glu-
tamatergic innervation, suggesting that the observed changes in the 
latter were not due to a homeostatic compensatory mechanism. These 
results suggest a key role of gephyrin in regulating trans-synaptic sign-
aling at inhibitory synapses.
Here, the effects of two different intrabodies against gephyrin have 
been tested on spontaneous and miniature GABAA-mediated events 
obtained from cultured hippocampal and cortical neurons. Experi-
mental findings have been used to develop a computational model 
describing the key role of gephyrin in regulating transynaptic signalin-
gat inhibitory synapses. This represents a further application of a gen-
eral procedure to study subcellular models of transsynaptic signaling 
at inhibitory synapses [1]. In this poster we will discuss the statistically 
significant differences found between the model parameters under 
control or gephyrin block condition. All computational procedures 
were carried out using an integrated NEURON and Python parallel 
code on different systems (JURECA machines, Julich, Germany; MAR-
CONI machine, Cineca, Italy and Neuroscience Gateway, San Diego, 
USA). The model can be downloaded from the model catalog avail-
able on the Collaboratory Portal of Human Brain Project (HBP) (https ://
colla b.human brain proje ct.eu/#/colla b/1655/nav/75901 ?state  = model 
.9f89b bcd-e045-4f1c-97e9-3da58 47356 c2). The jupyter notebooks 
used to configure and run the jobs on the HPC machines can be 
accessed from the Brain Simulation Platform of the HBP (https ://colla 
b.human brain proje ct.eu/#/colla b/1655/nav/66850 ).
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The muscle synergy hypothesis of motor control posits that simple 
common patterns of muscle behaviour are combined together to pro-
duce complex limb movements. How proprioception influences this 
process is not clear. EMG recordings were taken of the upper leg mus-
cles during an isometric knee extension task (n = 17, male; 9, female; 
8). The internal knee angle was held at 0°, 20°, 60° or 90°. Non-nega-
tive matrix factorisation (NMF) was performed on the EMG traces and 
two synergy patterns were identified accounting for over 90% of the 
variation across participants. The first synergy indicated the expected 
increase in activity across all muscles which was also visible in the raw 
EMG. The second synergy showed a significant difference between 
coefficients of the knee flexors and extensors, highlighting their ago-
nist/antagonist relationship. As the leg was straightened, the flexor-
extensor difference in the second synergy became more pronounced 
indicating a change in passive insufficiency of the hamstring muscles. 
Changing hip position and reducing the level of passive insufficiency 
resulted in delayed onset of the second synergy pattern. An additional 
observation of bias in the Rectus Femoris and Semitendinosus coeffi-
cients of the second synergy was made, perhaps indicating the biar-
ticular behaviour of these muscles.
Having demonstrated that static proprioceptive feedback influences 
muscle synergy recruitment we then reproduced this pattern of activ-
ity in a neural population model. We used the MIIND neural simula-
tion platform to build a network of populations of motor neurons and 
spinal interneurons with a simple Integrate and Fire neuron model. 
MIIND provides an intuitive system for developing such networks and 
simulating with an appropriate and well-defined amount of noise. The 
simulator can handle large, quick changes in activity with plausible 
postsynaptic potentials. Two mutually inhibiting populations of both 
excitatory and inhibitory interneurons were connected to five motor 
neuron populations, each with a balanced descending input. A single 
excitatory input to the extensor interneuron pool was used to indicate 
the level of afferent activity due to the static knee angle. By applying 
the same NMF step to the activity of the motor neuron populations, 
the same muscle synergies were observed, with increasing levels of 
afferent activity resulting in changes to agonist/antagonist recruit-
ment. When the trend in afferent activity is taken further such that it 
is introduced to the flexor interneuron population, extensor synergy 
coefficients and vectors increase, leaving the flexor coefficients at 
zero. This shift from afferent feedback in the agonists to antagonists is 
predicted by the model but has yet to be confirmed with joint angles 
beyond 90 degrees.
With the introduction of excitatory connections from the flexor 
interneuron pool to the Rectus Femoris motor neuron population, 
the biarticular synergy association, which is proportional to the knee 
angle, was also reproduced in the model. Even with this addition, 
there is no need to provide a cortical bias to any individual motor neu-
ron population. The synergies arise naturally from the connectivity of 
the network and afferent input. This suggests muscle synergies could 
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be generated at the level of spinal interneurons wherein propriocep-
tive feedback is directly integrated into motor control.
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Interception of a target (e.g. a human catching a ball or an animal 
catching prey) is a common behavior solved by many animals. How-
ever, the underlying strategies used by animals are poorly under-
stood. For example, dragonflies are widely recognized as highly 
successful hunters, with reports of up to 97% success rates [1], yet a 
full description of their interception strategy, whether it be to head 
directly at its target (a strategy commonly referred to as pursuit) or 
instead to maintain a constant bearing-angle relative to the target 
(sometimes referred to as proportional or parallel navigation) still 
has yet to be fully developed (see [2]). While parallel navigation is 
the logical strategy for calculating the shortest time-to-intercept, we 
find that there are certain conditions (for example if the prey is capa-
ble of relatively quick maneuvers) in which parallel navigation is not 
the optimal strategy for success. Moreover, recent work [2] observed 
that dragonflies only adopt a parallel-navigation strategy for a short 
period of time shortly before prey-capture. We propose that alternate 
strategies, hybrid between pursuit and parallel navigation lead to 
more successful interception, and describe what constraints (e.g. prey 
maneuvering) determine which interception strategy is optimal for 
the dragonfly. Moreover, we compare dragonfly interception strategy 
to those that might be employed by other animals, for example other 
predatory insects that may not be capable of flying speeds similar to 
those of the dragonfly. Finally, we discuss neural circuit mechanisms 
by which interception strategy, as well as intercept-maneuvers, may be 
calculated based on prey-image slippage on the dragonfly retina.
This paper describes objective technical results and analysis. Any sub-
jective views or opinions that might be expressed in the paper do not 
necessarily represent the views of the U.S. Department of Energy or 
the United States Government.
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Behavioral studies have shown impairment in performance during spa-
tial working memory (WM) tasks with aging in several animal species, 
including humans. Persistent activity (PA) during delay periods of spatial 

WM tasks is thought to be the main mechanism underlying spatial WM, 
since the selective firing of pyramidal neurons in the dorsolateral pre-
frontal cortex (dlPFC) to different spatial locations seems to encode the 
memory of the stimulus. This firing activity is generated by recurrent 
connections between layer 3 pyramidal neurons in the dlPFC, which, 
as many in vitro studies have shown, undergo significant structural 
and functional changes with aging. However, the extent to which these 
changes affect the neural mechanisms underlying spatial WM, and thus 
cognition, is not known. Here we present the first empirical evidence 
that spatial WM in the rhesus monkey is impaired in some middle-aged 
subjects, and show that spatial WM performance is negatively corre-
lated with hyperexcitability (increased action potential firing rates) of 
layer 3 pyramidal neurons. We used the bump attractor network model 
to explore the effects on spatial WM of two age-related changes to the 
properties of individual pyramidal neurons: the increased excitability 
observed here and previously [1, 2], and a 10-30% loss of both excitatory 
and inhibitory synapses in middle-aged and aged monkeys [3]. In par-
ticular, we simulated the widely used (Oculomotor) Delayed Response 
Task (DRT) and introduced a simplified model of the Delayed Recogni-
tion Span Task-spatial condition (DRST-s) which was administered to the 
monkeys in this study. The DRST-s task is much more complex than the 
DRT, requiring simultaneous encoding of multiple stimuli which succes-
sively increase in number. Simulations predicted that PA—and in turn 
WM performance—in both tasks was severely impaired by the increased 
excitability of individual neurons, but not by the loss of synapses alone. 
This is consistent with the finding in [3], where no correlations were 
seen between synapse loss and DRST-s impairment. Simulations also 
showed that pyramidal neuron hyperexcitability and synapse loss might 
compensate each other partially: the level of impairment in the DRST-s 
model with these simultaneous changes was similar to that seen in the 
DRST-s data from young vs. aged monkeys. The models also predict an 
age-related reduction in total synaptic input current to pyramidal neu-
rons alongside changes to their f-I curves, showing that the increased 
excitability of pyramidal neurons we have seen in vitro is consistent with 
lower firing rates seen during DRT testing of middle-aged and aged 
monkeys in vivo [4]. Finally, in addition to PA, this study suggests that 
short-term synaptic facilitation plays an important (if often unappreci-
ated) role in spatial WM.
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The study of correlations between brain regions in functional mag-
netic resonance imaging (fMRI) is an important chapter of the analysis 
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of large-scale brain spatiotemporal dynamics. The burst of research 
exploring momentary patterns of blood oxygen level-dependent 
(BOLD) coactivations, referred to as dynamic functional connectivity, 
has brought prospects of novel insights into brain function and dys-
function. It has been, however, closely followed by inquiries into pit-
falls the new methods hold [1], and only recently by their systematic 
evaluation [2].
From among such recent measures, we scrutinize a metric dubbed 
“Multiplication of Temporal Derivatives” (MTD) [3] which is based on 
the temporal derivative of each time series. We compare it with the 
sliding window Pearson correlation of the raw time series in several 
stationary and non-stationary set-ups, including: simulated autore-
gressive models with a step change in their coupling, surrogate data 
[4] with realistic spectral and covariance properties and a step change 
in their cross- and autocovariance (see, Fig. 1, right panels), and a real-
istic stationary network detection (with the use of gold standard simu-
lated data; [5]).
The formal comparison of the MTD formula with the Pearson correla-
tion of the derivatives reveals only minor differences, which we find 
negligible in practice. The numerical comparison reveals lower sensi-
tivity of derivatives to low frequency drifts and to autocorrelations but 
also lower signal-to-noise ratio. It does not indicate any evident math-
ematical advantages of the MTD metric over commonly used correla-
tion methods.
Along the way we discover that cross-correlations between fMRI 
time series of brain regions are tied to their autocorrelations (see, 
Fig. 1, left panel). We solve simple autoregressive models to provide 
mathematical grounds for that behaviour. This observation is rele-
vant to the occurrence of false positives in real networks and might 
be an unexpected consequence of current preprocessing tech-
niques. This fact remains troubling, since similar autocorrelations 
of any two brain regions do not necessarily result from their actual 
structural connectivity or functional correlation.
The study has been recently published [6].
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The rapid advance in neuroscience research and the related techno-
logical improvements have led to an exponential increase in the ability 
to collect high-density neurophysiological signals from extracellular 
field potentials generated by neurons. While the specific processing of 
these signals is dependent upon the nature of the system under con-
sideration, many studies seek to relate these signals to behavioral or 
sensory stimuli and typically follow a similar workflow. In this context 
we felt the need for a tool that facilitates tracking and organizing data 
across experiments and experimental groups during the processing 
steps. Moreover, we sought to unify different resources into a single 
hub that could offer standardization and interoperability between dif-
ferent platforms, boosting productivity and fostering the open 
exchange of experimental data between collaborating groups.
To achieve this, we built an end-to-end signal analysis package based 
on MATLAB, with a strong focus on collaboration, organization and 
data sharing . Inspired by the FAIR data policy [1], we propose a hier-
archical data organization with copious amount of metadata, to help 
keep everything organized, easily shareable and traceable. The result 
is the neuroscience integrated general electrophysiology lab, or nigeLab, 
a unified package for tracking and analyzing electrophysiological and 
behavioral endpoints in neuroscientific experiments. The pipeline has 
a lot to offer: data extraction to a standard hierarchical format, filtering 
algorithms with local field potential (LFP) extraction, spike detection 
and spike sorting, point process analysis, frequency content analysis, 
graph theory and connectivity analysis both in the spike domain and 
in the LFP as well as many data visualizations tools and interfaces.
The source code is freely available and developed to be easily expand-
able and adaptable to different setups and paradigms. Importantly, 
nigeLab focuses on ease-of-use through an intuitive interface. We 
aimed to design an easily deployable toolkit for scientists with a non-
technical background, while still offering powerful tools for electro-
physiological pre-processing, analysis, and metadata tracking. The 
whole pipeline is lightweight and optimized to be scalable and paral-
lelizable and can be run on a laptop as well as on a cluster.

Fig. 1 (Left) Cross‑correlation of pairs of blood oxygen level‑depend‑
ent (BOLD) signals and their derivatives versus their common auto‑
correlation; red markers show binned averages. (Right) a simulated 
step change in cross‑ and/or auto‑ correlations and the effect it has 
on dynamic functional correlation measures (Pearson sliding window 
and “multiplication of temporal derivatives”)
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Frequency modulation is a ubiquitous phenomenon in sensory pro-
cessing and cortical communication. Although multiple neural mech-
anisms are known to operate at cortical and subcortical levels of the 
auditory hierarchy to encode fast FM-modulation, the neural encoding 
of low-rate FM-modulation are still poorly understood. In this work, 
we introduce a potential neural mechanism for low-rate FM selectiv-
ity based on a simplified model of a cortical microcolumn following 
Wilson-Cowan dynamics.
Previous studies have used Wilson-Cowan microcircuits with one 
excitatory and one inhibitory population to build a system respond-
ing selectively to certain rhythms [1]. The excitatory ensemble is con-
nected to the circuit’s input, that usually consists of a sinusoid or a 
similarly periodic input. The system incorporates synaptic depression 
through adaptation variables that reduce the effective connectivity 
weights between the neural populations [2]. By carefully tuning the 
system parameters, May and Tiitinen showed that this system shows 
resonant behaviour to a narrow range of frequencies of the oscillatory 
input, effectively acting as a periodicity detector [1].
Here, we first provide for an approximate analytical expression of the 
resonance frequency of the system with the system parameters. First, 
we subdivide the Wilson-Cowan dynamics in two dynamical systems 
operating at two different temporal scales: the fast system, that oper-
ates at the timescale of the cell membrane time constants (tau ~ 
10-20ms [3]), and the slow system, that operates at the timescale of 
the adaptation time constant (tau = 500ms [2]). In the timescale of the 
fast system, the adaptation dynamics are quasistatic and the connec-
tivity weights can be regarded as locally constant. Under these condi-
tions, we show that the Wilson-Cowan microcircuit behaves as a driven 
damped harmonic oscillator whose damping factor and resonant fre-
quency depend on the connectivity weights between the populations. 
We validate the analytical predictions with numerical simulations of 
the non-approximated system with different sinusoidal inputs and 
show that our analytical predictions explain the previous results from 
May and Tiitinen [1].
In the timescale of the slow system, fast oscillations in the firing rate 
of the excitatory and inhibitory populations are smoothed down by 
the effective low-pass filtering exerted by the much slower adaptation 
dynamics. Under these conditions, the connectivity weights decay 
slowly at a constant rate that depends on the average firing rates 
of the neural populations and the adaptation strengths. However, 
since the nominal resonance frequency depends on the connectivity 
weights, the decay of the latter results in a modulation of the former. 
We exploit this property to build a series of architectures that poten-
tially show direction selectivity to rising or falling frequency modu-
lated sinusoids. Our analytical predictions are validated by numerical 
simulations of the non-approximated system, driven by frequency 
modulated sinusoidal inputs.
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Sleep architecture carries important information about brain health 
but mechanisms at the cortical scale remain incompletely understood. 
This is particularly so in infants, where there are two main sleep states: 
active sleep and quiet sleep, precursors to the adult REM and NREM. 
Here we show that active compared to quiet sleep in infants heralds 
a marked change from long- to short-range functional connectivity 
across broad-frequency neural activity. This change in cortical con-
nectivity is attenuated following preterm birth and predicts visual per-
formance at two years. Using eigenmodes of brain activity [1] derived 
from neural field theory [2], we show that active sleep primarily exhib-
its reduced energy in a large-scale, uniform mode of neural activity 
and slightly increased energy in two non-uniform anteroposterior 
modes. This energy redistribution leads to the emergence of more 
complex connectivity patterns in active sleep compared to quiet sleep. 
Preterm-born infants show an attenuation in this sleep-related reor-
ganization of connectivity that carries novel prognostic information. 
We thus provide a mechanism for the observed changes in functional 
connectivity between sleep states, with potential clinical relevance.
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Reliable information processing in the brain requires precise transmis-
sion of signals across large neuron populations that is reproducible 
and stable over time. Exactly how this is achieved remains an open 
question but a large body of experimental data has pointed to the 
importance of synchronised firing patterns of cell assemblies in medi-
ating precise sequential patterns of activity. Synfire chains provide an 
appealing theoretical framework to account for reliable transmission 
of information through a network, with potential for robustness to 
noise and synaptic degradation. Here, we use self-assembled synfire 
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chain models to test the interplay between encoding capacity, robust-
ness to noise and flexibility to learning new patterns. We first model 
synfire chain development as a self-assembly process from a randomly 
connected network of leaky integrate-and-fire (LIF) neurons subject to 
a variant of the spike-timing-dependent plasticity (STDP) learning rule 
(adapted from [1]). We show conditions for these networks to form 
chains (in some conditions even without external input) and charac-
terise the encoding capacity of the network by presenting different 
input patterns that result in distinguishable chains of activation. We 
show that these networks develop different, often overlapping chains 
in response to different inputs. We further demonstrate the impor-
tance of inhibition for the long-term stability of the chains and test the 
robustness of our network to various degrees of neuronal and synap-
tic death. Finally, we explore the ability for the network to increase its 
encoding capacity by dynamically learning new inputs.
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Acetylcholine is one of the most widely characterized neuromodula-
tory systems involved in the regulation of cortical activity. Cholinergic 
release from the basal forebrain controls neocortical network activity 
and shapes behavioral states such as learning and memory. However, 
a precise understanding of how acetylcholine regulates local cellular 
physiology and synaptic transmission that reconfigure global brain 
states remains poorly understood. To fill this knowledge gap, we ana-
lyzed whole-cell patch-clamp recordings from connected pairs of neo-
cortical neurons to investigate how acetylcholine release modulates 
membrane properties and synaptic transmission. We found that bath-
application of 10 µM carbachol differentially redistributes the available 
synaptic efficacy and the short-term dynamics of excitatory and inhibi-
tory connections. We propose that redistribution of synaptic efficacy 
by acetylcholine is a potential means to alter content, rather than the 
gain of information transfer of synaptic connections between specific 
cell-types types in the neocortex. Additionally, we provide a dataset 
that can serve as reference to build data-driven computational models 
on the role of ACh in governing brain states.
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It is becoming increasingly popular in systems neuroscience to train 
Artificial Neural Networks (ANNs) to investigate the neural mecha-
nisms that allow animals to display complex behavior. Important 
aspects of brain function such as perception or working memory [2, 
4] have been investigated using this approach, which has yielded new 
hypotheses about the computational strategies used by brain circuits 
to solve different behavioral tasks.
While ANNs are usually tuned for a small set of closely related tasks, 
the ultimate goal when training neural networks must be to find a 
model that can explain a wide range of experimental results collected 

across many different tasks. A necessary step towards that goal is to 
develop a large, standardized set of neuroscience tasks on which dif-
ferent models can be trained. Indeed, there is a large body of experi-
mental work that hinges on a number of canonical behavioral tasks 
that have become a reference in the field (e.g. [2,4]) and that makes 
it possible to develop a general framework encompassing many rel-
evant tasks on which neural networks can be trained.
Here we propose a comprehensive toolkit, NeuroGym, that allows 
training any network model on many established neuroscience tasks 
using Reinforcement Learning techniques. NeuroGym currently con-
tains more than ten classical behavioral tasks including, working 
memory tasks (e.g. [4]), value-based decision tasks (e.g. [3]) and con-
text-dependent perceptual categorization tasks (e.g. [2]). In providing 
this toolbox our aim is twofold: (1) to facilitate the evaluation of any 
network model on many tasks and thus evaluate its capacity to gener-
alize to and explain different experimental datasets; (2) to standardize 
the way computational neuroscientists implement behavioral tasks, in 
order to promote benchmarking and replication.
Inheriting all functionalities from the machine learning toolkit Gym 
(OpenAI), NeuroGym allows a wide range of well-established machine 
learning algorithms to be easily trained on behavioral paradigms rel-
evant for the neuroscience community. NeuroGym also incorporates 
several properties and functions (e.g. realistic time step or separa-
tion of training into trials) that are specific to the protocols used in 
neuroscience.
Furthermore, the toolkit includes various modifier functions that 
greatly expand the space of available tasks. For instance, users can 
introduce trial-to-trial correlations onto any task [1]. Also, tasks can be 
combined so as to test the capacity of a given model to perform two 
tasks simultaneously (e.g. to study interference between two tasks [5]).
In summary, NeuroGym constitutes an easy-to-use toolkit that con-
siderably facilitates the evaluation of a network model that has been 
tuned for a particular task on more than 50 tasks with no additional 
work, and proposes a framework to which computational neurosci-
ence practitioners can contribute by adding tasks of their interest, 
using a straightforward template.
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Continuity of mnemonic contents in time contributes to forming 
coherent memory representations. Recently, attractive response 
biases towards previously memorized features in delayed-response 
tasks have been reported as evidence for the continuous integra-
tion of working memory (WM) contents between trials [1]. In turn, 
brain disorders with reported executive and memory dysfunc-
tion may be characterized by reduced WM serial bias [2], revealing 
reduced temporal coherence of memory representations. To gain 
mechanistic insight into this effect, we tested a unique popula-
tion of patients recovering from anti-NMDAR encephalitis patients, 
an immune-mediated brain disease causing a drastic reduction of 
NMDARs, accompanied by WM deficits even as receptors return to 
normal levels [3]. We hypothesized that potential changes in serial 
biases found in anti-NMDAR encephalitis should be qualitatively 
similar to changes in schizophrenia, a disorder associated with 
hypofunctional NMDARs. We collected behavioral data from anti-
NMDAR encephalitis patients, schizophrenic patients, and healthy 
controls performing a visuospatial WM task. While healthy controls’ 
responses were significantly biased towards previously remembered 
locations in the presence of WM requirements (delays of several 
seconds), attractive serial biases were reduced in encephalitis, and 
absent in schizophrenic patients. We modeled these findings using 
a recurrent spiking network with synaptic short-term facilitation in 
excitatory connections. In this model, memory-sustaining bumps 
of persistent activity decay after the memory delay but leave stim-
ulus-specific, facilitated synaptic ‘traces’ that affect neural dynamics 
in the next trial. We systematically explored parameters of synaptic 
transmission and short-term plasticity to determine the mecha-
nism that could reduce attractive serial bias. By altering the param-
eters of short-term facilitation, we reproduced reduced and absent 
attractive biases in patient groups, while maintaining WM precision 
at a constant level across groups, an intriguing finding from our 
behavioral analyses. This manipulation of short-term facilitation is 
in accordance with studies in cortical slices from mouse models of 
schizophrenia [4]. We thus propose that serial biases in visuospatial 
WM provide a behavioral readout of short-term facilitation dysfunc-
tion in anti-NMDAR encephalitis and schizophrenia.
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In previous large-scale models of neural systems, neurons of the same 
class are typically identical. By contrast, real systems exhibit significant 
cell-to-cell diversity at different levels, from morphology to intrin-
sic cell properties [1] to synaptic properties [2]. This heterogeneity 
may affect neural information processing by, for example, helping to 
integrate diverse inputs to the network [1], or by positively contrib-
uting to the stability of the network activity [3]. However, the exact 
role of neural heterogeneity in large-scale neural systems is not fully 
understood.
We examine the impact of neural heterogeneity in large-scale neural 
models. We use an adaptation of the Traub’s single-column thalamo-
cortical network model [4], adapted to the PGENESIS parallel simu-
lation environment [5]. The model is tuned to eliminate intrinsic 
neuronal activity and is randomly driven with independent Poisson-
distributed excitatory postsynaptic noise potentials with an average 
firing rate between 1-10 Hz.
Network activity is assessed by calculating the mean local field poten-
tial (LFP) and analyzing the neuronal spiking activity. We explored 
changes in network parameters, including local connectivity prob-
ability; the parameters of the noise inputs; and the relative strength 
of synaptic weights. Observed LFPs can generally be classified into 
two patterns: an aperiodic low-activity state and a high-activity state 
involving persistent oscillations associated with periodic neuronal fir-
ing. At a broad range of the connectivity probabilities, the network 
stays in low-activity state until a “threshold” level of connectivity is 
reached. Further increase in connectivity moves model behavior into 
high-activity regimes and alters the frequency spectrum. Changes in 
parameters of noise inputs (frequency range, weight, and percentage 
of neurons receiving noise) elicit similar threshold-like behavior, as 
do changes in the ratio of excitatory-to-inhibitory synaptic weights, 
with high-activity states observed in networks with weak inhibition. 
We introduce heterogeneity in the intrinsic biophysical parameters by 
randomizing the values of the anomalous rectifier (AR) channels’ con-
ductance in the model’s pyramidal neurons. Preliminary results from 
effects of heterogeneity on network activity will be shown. In addition, 
network responses to pulse train stimuli input to the pyramidal cells at 
different locations in the column will be studied.

References
1. Adams NE, et al. Heterogeneity in neuronal intrinsic properties: a possible 

mechanism for hub‑like properties of the rat anterior cingulate cortex 
during network activity. eNeuro 2017, 0313–16

2. Thomson AM, et al, Single axon IPSPs elicited in pyramidal cells by three 
classes of interneurons in slices of rat neocortex. Journal of Physiology 
1996, 496:81–102

3. Mejias JF, Longtin A, Differential effects of excitatory and inhibitory 
heterogeneity on the gain and asynchronous state of sparse cortical 
networks. Frontiers in Computational Neuroscience 2014, 8:107

4. Traub RD, et al, Single column thalamocortical network model exhibiting 
gamma oscillations, sleep spindles and epileptic bursts. Journal of Neuro-
physiology 2005, 93(4):2194–232

5. Boothe, et al, Impact of neuronal membrane damage on a local field 
potential in a large‑scale simulation of the neuronal cortex. Frontiers in 
Neurology 2017, 8:236

P45 
Structure–function multi‑scale connectomics reveals a major role 
of the fronto‑striato‑thalamic circuit in brain aging
Paolo  Bonifazi1, Asier  Erramuzpe1, Ibai  Diez1, Iñigo  Gabilondo1, Matthieu 
 Boisgontier2, Lisa  Pauwels2, Sebastiano  Stramaglia3, Stephan  Swinnen2, 
Jesus  Cortes1

1Biocruces Health Research Institute, Computational Neuroimaging, 
Barakaldo, Spain; 2Katholieke Universiteit Leuven, Department 
of Movement Sciences, Leuven, Belgium; 3University of Bari, Physics, Bari, 
Italy
Correspondence: Paolo Bonifazi (paol.bonifazi@gmail.com)  
BMC Neuroscience 2019, 20(Suppl 1):P45

Physiological aging affects brain structure and function impacting 
morphology, connectivity, and performance. However, whether some 
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brain connectivity metrics might reflect the age of an individual is still 
unclear. Here, we collected brain images from healthy participants 
(N = 155) ranging from 10 to 80 years to build functional (resting state) 
and structural (tractography) connectivity matrices, both data sets 
combined to obtain different connectivity features. We then calculated 
the brain connectome age—an age estimator resulting from a multi-
scale methodology applied to the structure–function connectome, 
and compared it to the chronological age (ChA). Our results were 
twofold. First, we found that aging widely affects the connectivity of 
multiple structures, such as anterior cingulate and medial prefron-
tal cortices, basal ganglia, thalamus, insula, cingulum, hippocampus, 
parahippocampus, occipital cortex, fusiform, precuneus, and temporal 
pole. Second, we found that the connectivity between basal ganglia 
and thalamus to frontal areas, also known as the fronto-striato-tha-
lamic (FST) circuit, makes the major contribution to age estimation. In 
conclusion, our results highlight the key role played by the FST circuit 
in the process of healthy aging. Notably, the same methodology can 
be generally applied to identify the structural–functional connectivity 
patterns correlating to other biomarkers than ChA.

P46 
Studying evoked potentials in large cortical networks 
with PGENESIS 2.4
David  Beeman1, Alfred  Yu2, Joshua  Crone3

1University of Colorado, Department of Electrical, Computer and Energy 
Engineering, Boulder, CO, United States of America; 2U.S. Army Research 
Laboratory, Human Research and Engineering Directorate, Aberdeen 
Proving Ground, MD, MD, United States of America; 3U.S. Army Research 
Laboratory, Computational and Information Sciences Directorate, 
Aberdeen Proving Ground, MD, MD, United States of America
Correspondence: David Beeman (dbeeman@colorado.edu)  
BMC Neuroscience 2019, 20(Suppl 1):P46

Modern neural simulators have been developed for large scale network 
models of single-compartment integrate-and-fire neurons that effi-
ciently model millions of neurons. However, accurate modeling of neural 
activity, including evoked potentials (EPs) recorded from scalp or corti-
cal surface electrodes, requires multicompartmental neuron models with 
enough realism in the dendritic morphology and location of synapses to 
account for the major sinks and sources of currents in the extracellular 
medium. The GENESIS simulator (http://genes is-sim.org) and its parallel 
computer version PGENESIS were developed over 30 years ago for struc-
turally realistic modeling of large cortical networks. Today, GENESIS con-
tinues to be updated with new features and used for implementing such 
models. Recently Kudela, et al. [1] used a large GENESIS network model 
to study effects of short-term synaptic plasticity on adaptation of EPs in 
auditory cortex. Our plans are to increase the size and cell density, extend 
the model to other cortical layers, and to run simulations on supercom-
puters such as those available through NSG (the Neuroscience Gateway 
portal, https ://www.nsgpo rtal.org) [2]. Crone, et al. [3] have modified the 
2006 release of GENESIS and PGENESIS 2.3 to allow simulations of net-
works of up to 9 million neurons. Their modifications addressed memory 
management, reproducibility, and other issues that limited model scal-
ability on high performance computing resources. These improvements 
are now merged with the current GENESIS/PGENESIS 2.4 development 
versions. This official release of PGENESIS 2.4 and GENESIS 2.4 are avail-
able from the Repository for Continued Development of the GENESIS 
2.4 Neural Simulator (https ://githu b.com/genes is-sim/genes is-2.4). We 
used the new PGENESIS to simulate EPs measured 2 mm above a patch 
of layer 2/3 primary auditory cortex (Fig. 1), as in [1]. The network was 
divided into 24 slices simulated in parallel. This model uses 17-compart-
ment pyramidal cells (PCs) based on human cortical PC reconstructions. 
Inhibition is provided from model basket cells (BCs). Short tone pulses 
produce excitation to PC distal basal dendrites. Subsequently, PC-PC 
excitation occurs at oblique apical dendrites. It was shown in [1] that 
these two excitatory currents produce oppositely oriented electric dipo-
lar charges that are responsible for the initial vertex-positive P1 peak and 
the following vertex-negative N1 peak in the EP. These results show the 
effect of varying the strength of the inhibition at the PC proximal api-
cal dendrite from BCs. This occurs later in the N1 peak, and produces a 

dipole that is oriented oppositely to the one that causes the N1 peak. 
Therefore, increased inhibition narrows the peak. With PGENESIS avail-
able on NSG and other supercomputer resources, we can foster collabo-
rations for using realistic network models to understand human cortical 
activity.
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Computational models are an indispensable tool for understand-
ing the nervous system. However, describing, sharing, and re-using 
models with diverse components at many scales represents a major 
challenge in neuroscience. We have contributed to the development 
of the NeuroML model description standard [2] and the model shar-
ing platform NeuroML-DB [1] to promote reproducibility and the 
re-use of data driven neuroscience models. We also have developed 
the SciDash framework for validating such models against experi-
mental data [4] and sharing the validation outcomes for further sci-
entific discovery at dash.scidash.org, increasing transparency and 
rigor in the field.
This infrastructure also supports automated pipelines for running 
large numbers of models shared in the NeuroML format at NeuroML-
DB and characterization of these model neurons using simulated 
“experiments”. These experiments are based on the electrophysiol-
ogy protocols used by the Allen Cell Type Database [3], which include 
square, long square, pink noise, ramp, short square and short square 
triple protocols, and are also the basis for model validation tests. 
Results are shared in interactive plots at NeuroML-DB. We have char-
acterized over 1000 published cortical neuron models and used the 
electrophysiological properties of these cortical neuron models to 
cluster their dynamic behaviors and identify the biophysical properties 
of models that underlie these clusters. These properties are compared 
to similar results for experimentally-derived cortical neuron data, 

Fig. 1 Trial‑averaged EPs for the parallel network model, with varying 
PC maximal inhibitory conductances gmax

http://genesis-sim.org
https://www.nsgportal.org
https://github.com/genesis-sim/genesis-2.4
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Page 35 of 190BMC Neurosci 2019, 20(Suppl 1):56

providing an overview of how well data-driven models represent the 
landscape of cortical neuron electrophysiology.
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Cellular and molecular sources of variability in the electrical activity 
of nerve cells are not fully understood. An improved understanding 
of this variability is the key to predict the response of nerve tissue to 
pathological changes. We have previously created a robust data-driven 
compartmental model of the hippocampal granule cell comprising 
16 different ion channels and variable dendritic morphologies. Here, 
we show that it is possible to drastically reduce ion channel diversity 
while preserving the characteristic spiking behavior of real granule 
cells. In order to better understand the variability in spiking activity 
we generated large populations of validated granule cell models with 
different numbers of ion channels. Unreduced or less reduced models 
with a higher number of ion channels covered larger and more widely 
spread regions of the parameter landscape. Moreover, unreduced or 
less reduced models with a higher number of ion channels were more 
stable in the face of parameter perturbations. This suggests that ion 
channel diversity allows for increased robustness and higher flexibil-
ity of finding a solution in the complex parameter space. In addition 
to increasing our understanding of cell-to-cell variability, our models 
might be of practical relevance. Instead of a one-size-fits-all approach 
where a computer model simulates average experimental values, the 
population-based approach reflects the variability of experimental 
data and therefore might enable pharmacological studies in silico.
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Among different species of animals, the layout of the central nervous 
system varies extensively from individual clusters of neurons (ganglia) 
in invertebrates such as worms to solid brains found in mammals that 
typically exhibit increased folding the larger the animal. Such varia-
tions in layout may point to elemental differences in organization of 
circuitry and connectivity. However, many studies suggest that fold-
ing of the brain is a consequence of the restricted volume of the skull 
exerting mechanical forces on the cortex, which in turn folds to fit a 
larger surface area into such a confined cavity. In our study we con-
sider a computational model that uses dimension reduction methods 
to ensure optimal placement of neurons, placing them according to 
connectivity needs, rather than modelling the forces exerted on the 
cortex. We assume a simple connectivity that features strong local but 
weak global (long-range) connections, which mimics the connectiv-
ity found in mammalian brains. The predictions made by our model 
cover all different phenotypes of brains found in animals, ranging 
from individual ganglia through smooth brains with no gyrification, 
to extremely convoluted brains for increasing cortical size. Many prop-
erties of the cortical morphology found in animals are reproduced by 
the model, which includes metrics such as the folding index and the 
fractal dimension. Our model presents a way to combine microscopic 
inter cellular connectivity with macroscopic morphologies into large-
scale brain models that feature its neural network requirements.
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Categorization is the fundamental ability to treat distinct stimuli simi-
larly; categorization applied to auditory stimuli is crucial for speech 
perception. For example, phonemes like “t” and “d” are categories that 
generalize across speakers and contexts. A fundamental question asks 
what mechanisms form the foundation for auditory category learn-
ing. We propose a dynamic neural network framework that combines 
plausible biological mechanisms and the theory of dynamic neural 
fields to model this process. The network models a task designed to 
emulate first language acquisition—a period of unsupervised learn-
ing followed by supervised learning. In the unsupervised phase the 
listener is presented with a sequence of pairs of tones; each pair cor-
responds to one of four categories defined by their frequencies. Dur-
ing this time the subject engages in a non-distracting task. Then the 
subject engages in a supervised task and is instructed to associate 
each tone-pair with a physical object representing one of the four 
auditory categories. Corrective feedback is given to the subject during 
the supervised learning. The mathematical model is used to manipu-
late mechanisms through which hypotheses can be made about the 
category learning process. We present preliminary results from model 
simulations of the experiment and compare them with implementa-
tions of the experiment on human subjects.
Network Description and Results. We propose a dynamic neural field 
composed of multiple layers allowing for the manipulation and test-
ing of multiple locations of plasticity involved in the learning process. 
First, incoming sounds stimulate a one-dimensional tonotopically 
organized feature space composed of neural units that interact 
through local excitation with lateral inhibition. Units along this space 
are associated with sub-cortical auditory fields and respond to spe-
cific frequencies in order to capture physical properties of the stimuli. 
Activity in the feature space feeds forward through excitatory connec-
tions, which undergo depression with prolonged stimuli encounters, 
to regions of primary and secondary auditory cortex. Activity in these 
regions provide input to the category layer of the network composed 
of 4 neural units corresponding to the 4 categories defined in the 
task. These nodes are hypothesized to represent regions in auditory-
related temporal cortical regions such as superior temporal gyrus [2] 
and the inferior frontal gyrus in humans, or the prefrontal cortex in rats 
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[1]. In the theoretical network, the four category nodes are coupled 
through mutual inhibition and compete in a winner take all setting. 
Above threshold activation peaks in the category layer are interpreted 
as experimentally detectable responses. In the supervised portion 
of the task, synapses between auditory cortex nodes and category 
layer nodes are updated with via Hebbian processes with a reward/
punishment parameter that serves as corrective feedback to the net-
work. Parameters within the model are tuned so that responses in the 
category layer closely match behavioral results obtained from imple-
mentations of the experiment on human subjects that varied stimuli 
distributions, category prototypes, and category boundaries. The 
model predicts category learning at rates consistent with those found 
experimentally.
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Noxious cold temperature can cause tissue damage and triggers pro-
tective behaviors of animals. Cellular mechanisms of noxious cold 
temperature coding are not well understood. We focus on Drosoph-
ila larval cold nociception capitalizing on a diverse array of approaches 
spanning genetics and animal behavior to electrophysiology and com-
putational models. Larva responds to noxious cold by a well-charac-
terized full-body contraction. Notably, this response is only triggered 
by a sufficiently fast temperature change. Class III (CIII) multidendritic 
sensory neurons and specific TRP channels are implicated in noxious 
cold temperature coding [1]. Based on Ca2+ imaging, specialized roles 
of Trpm and Pkd2 currents were established and our model explained 
an apparent paradox of these data [1, 2].
We performed electrophysiological recordings and Ca2+ imaging of 
CIII neurons along with behavioral analyses. We compared responses 
of wild type to slow and fast temperature changes from 24oC down 
to the 10oC. Cold-evoked contraction behavior was potentiated under 
fast ramping conditions relative to slow. Spiking and [Ca2+]i response 
at noxious cold were consistent with behavioral data. The CIII neu-
rons exhibited a pronounced peak of spiking rate when the tempera-
ture was rapidly decreased and turned silent as the temperature was 
increased back to 24oC. The response was different when temperature 
changed slowly: the spiking rate was much smaller during the tem-
perature decrease.
These results suggest that CIII neurons encode rate of temperature 
decrease. We hypothesize that inactivation processes of certain TRP 
channels could explain these differences. We focused on compari-
son of the roles of Pkd2 and Trpm currents as temperature sensors. 
Our computational model showed that the Ca2+-dependence of the 
Pkd2 inactivation constant could provide a mechanism of observed 
rate coding. This mechanism, implemented in the model, allowed us 
to reproduce recorded electrical activity data—high peak of firing 
rate in response to the rapid temperature change from 24oC to 10oC 
and silence during temperature return back to ambient levels. When 
the noxious cold temperature was held constant after fast ramp, Pkd2 
channels inactivated, and low-frequency firing rate was supported 
through Trpm, responsible for coding temperature. This is consistent 

with behavioral data as well. In addition, the model shows that 
increased firing rate at fast temperature decline was accompanied by 
high [Ca2+]i level, whereas slow ramp resulted in significantly lower 
Ca2+. We conclude that certain TRP channels, such as Pkd2, could 
be responsible for high peak of firing rate at rapid temperature fall, 
whereas Trpm channels could encode the magnitude of temperature.
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CPGs are oscillatory neuronal circuits controlling rhythmic movements 
across vertebrates and invertebrates [1]. The Na/K pump contributes 
to the dynamics of bursting activity in variety of CPGs seen across 
species such as leech, tadpole, and mouse [2, 3, 4, 5, 6]. Movements 
like locomotion and heartbeat must be continually regulated for an 
animal to meet environmental and behavioral demands [3]. In verte-
brate CPGs, dopamine has been shown to induce a range of subtle to 
pronounced effects on locomotory and other motor rhythms. Dopa-
mine neuromodulation affects Na/K Pump, GIRK2-, A-, and h-currents 
through D1 and D2 receptors [7, 8]; this contributes to stabilization 
of CPG rhythmic activity. We developed a half-center oscillator (HCO) 
model of a spinal locomotor CPG, which comprises of four popula-
tions, two inhibitory and two excitatory. Under a certain parameter 
regime, the neurons are intrinsically bursting, utilizing a persistent-
sodium current mechanism. We investigated activity regimes of single 
endogenously bursting neurons and HCO. In a range of high modula-
tion level, we found stable periodic bursting, while within some range 
of low dopamine modulation levels, pronounced intermittent intrinsic 
patterns. We investigated the hypothesis that dopamine affects the 
network through activation of inward rectifying potassium currents, 
IGIRK and IA, and opposing changes of h-current all while interacting 
with pump current. The reduction in modulatory level of dopamine in 
the spinal locomotor CPG causes the model to transition from normal 
periodic bursting into intermittent bursting and then to silence. Our 
locomotor CPG model highlights the role of the pump and its co-mod-
ulation along with GIRK2-, A-, and h-currents in production of robust 
rhythmic output.
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Neonatal hypoxic‑ischemic injury is a risk factor for necrotizing entero-
colitis (NEC), an inflammatory bowel disease that is often associated 
with failures of gastrointestinal motility. This motility is driven by a 
pacemaker action of the interstitial cells of Cajal (ICCs) on intestinal 
smooth muscle cells (SMCs). The ICC pacemaker activity is determined 
by interplay of Ca2+channels, pumps, and exchangers present in the 
endoplasmic reticulum (ER), mitochondria and plasma membrane to 
form a characteristic Ca2+-handling mechanism. Ca2+-ATPase pumps 
in ICC are potential targets for injuring action of hypoxia as they oper-
ate by consuming energy stored in ATP due to oxidative phosphoryla-
tion in mitochondria. In an ICC model, we mimicked effects of hypoxia 
by reduction of the mitochondrial bulk membrane potential (ΔΨ*) 
or maximal rates of Ca2+-ATPase pumps in the plasmalemma or ER 
(PMCA or SERCA, respectively). ICC pacemaker activity (oscillations of 
the plasma membrane potential Emand intracellular calcium concen-
tration [Ca2+]i) ceased by individual suppression of ΔΨ*, or PMCA, 
or SERCA and the cessation scenarios were case-specific. Since natu-
rally hypoxia simultaneously affects all these actors, in this study, we 
explored scenarios of cessation of ICC pacemaker activity depending 
on combined suppression of ΔΨ*, PMCA, and SERCA. At fixed normal 
ΔΨ*, equal joint suppression of PMCA and SERCA dramatically reduced 
amplitude of [Ca2+]iand Emoscillations to “downstate” levels near 
their basal/rest values. This was similar to the effect of individual sup-
pression of SERCA and dissimilar to that of PMCA, which was charac-
terized by very low-amplitude oscillations about “upstate” levels of 
depolarized Emand elevated [Ca2+]i. In each case, changes in oscil-
lations frequency were insignificant. Same suppression of PMCA and 
SERCA accompanied by that of ΔΨ*ceased the ICC pacemaker activ-
ity according to scenario observed during isolated reduction of ΔΨ*: 
the oscillations frequency reduced, duration of oscillatory plateaus of 
Emand [Ca2+]iextended and, at certain critically low ΔΨ*, the oscil-
lations totally ceased and “downstate” basal [Ca2+]iand rest Emwere 
established.
Hence, hypoxic suppression of the above considered energy-pro-
ducing and energy-consuming mechanisms in any combination led 
the cessation of ICC pacemaker activity and establishment of [Ca2+]
iand Em“downstates” near their basal/rest levels without any or with 
very small oscillations. For the cessation scenario, the main governing 
factor was suppression of ΔΨ*, and among the Ca2+-ATPase pumps 
SERCA dominated over PMCA. The observed effects may have crucial 
pathological consequences for ICC-driven periodic contractions of 
electrically coupled SMCs manifested as gastrointestinal dysmotility 
and development of NEC. Since similar Ca2+-handling mechanisms 
operate in other type excitable cells, particularly in neurons, our model 
and protocols of computational experiments can be adapted for sim-
ulation studies of cellular mechanisms functional consequences of 
hypoxic injuries of the brain and spinal cord.
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Computational models allow propagating microscopic phenomena 
into large-scale networks and inferencing causal relationships across 
scales. Here we reconstruct the cerebellar circuit by bottom-up mod-
eling, reproducing the peculiar properties of this structure, which 
shows a quasi-crystalline geometrical organization well defined by 
convergence/divergence ratios of neuronal connections and by the 
anisotropic 3D orientation of dendritic and axonal processes [1].
Therefore, a cerebellum scaffold model has been developed and 
tested. It maintains scalability and can be flexibly handled to incorpo-
rate neuronal properties on multiple scales of complexity. The cerebel-
lar scaffold includes the canonical neuron types: Granular cell, Golgi 
cell, Purkinje cell, Stellate and Basket cells, Deep Cerebellar Nuclei cell. 
Placement was based on density and encumbrance values, connec-
tivity on specific geometry of dendritic and axonal fields, and on dis-
tance-based probability.
In the first release, spiking point-neuron models based on Integrate & 
Fire dynamics with exponential synapses were used. The network was 
run in the neural simulator pyNEST. Complex spatiotemporal patterns 
of activity, similar to those observed in vivo, emerged [2].
For a second release of the microcircuit model, an extension of the 
generalized Leaky Integrate & Fire model has been developed, opti-
mized for each cerebellar neuron type and inserted into the built scaf-
fold [3]. It could reproduce a rich variety of electroresponsive patterns 
with a single set of optimal parameters.
Complex single neuron dynamics and local connectome are key ele-
ments for cerebellar functioning.
Then, point-neurons have been replaced by detailed 3D multi-com-
partment neuron models. The network was run in the neural simulator 
pyNEURON. Further properties emerged, strictly linked to the mor-
phology and the specific properties of each compartment.
This multiscale tool with different levels of realism has the poten-
tial to summarize in a comprehensive way the electrophysiological 
intrinsic neural properties that drive network dynamics and high-level 
behaviors.
The model, equipped with ad-hoc plasticity rules, has been embedded 
in a sensorimotor loop of EyeBlink Classical Conditioning. The network 
output evolved along repetitions of the task, therefore letting emerge 
three fundamental operations ascribed to the cerebellum: prediction, 
timing and learning of motor commands.
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The cerebellum is the second largest cortical structure of the brain 
and contains about half of all brain neurons. Its modeling brings issues 
reflecting the peculiar properties of the circuit, which has a quasi-crys-
talline geometrical organization defined by convergence/divergence 
ratios of neuronal connections and by the anisotropic 3D orientation 
of dendritic and axonal processes [1]. A data-driven scaffold [2] com-
prising the granular (GrL), Purkinje (PL), molecular (ML) and Deep Cer-
ebellar Nuclei (DCN) layers has been developed for testing network 
models with different complexities.
Its reconstruction follows sequential steps. Firstly, cells are placed in 
the simulation volume through an ad-hoc procedure: the GrL contains 
glomeruli (glom), granule cells (GrC) and Golgi cells (GoC); somata of 
Purkinje cells (PC) are in the PL while their dendritic trees are in the 
ML; here molecular layer interneurons (MLI)—stellate (SC) and basket 
cells (BC)—are placed whereas the DCN contains only the glutamater-
gic cells (DCNC).
The connectome stores the IDs of pre- and post-synaptic neurons. 
Parameters and morphological features derived from physiological 
experiments and literature data are the basis for its reconstruction, 
built on geometrical and probability-based rules. When using detailed 
neuronal morphologies, such rules have been improved to determine 
dendrites connected also through a touch detection algorithm.
The most typical behaviors of this microcircuit have been tested for 
both kinds of networks (pyNEST for the point-neuron version and 
pyNEURON when all detailed morphologies were available). Neuronal 
discharge of the different neuron populations in response to a mossy 
fiber burst have been evaluated, showing very similar results between 
the two simulators. In particular, GoC, SC and BC generate inhibitory 
bursts that contribute to terminate the GrC and PC bursts and to pro-
duce the burst-pause PC response.
Another important behavior regards the PC activation and sensitivity 
to molecular layer connectivity. The pattern of activity is determined 
by the various connection properties: particularly, PC inhibition is 
achieved through a differential orientation between SC and BC axons, 
while PC excitation depends on both ascending axons (aa) and pf syn-
apses with specific origin from GrC. Their spatial extension reflects the 
propagation of activity through the MLI network.
The additional details introduced in pyNEURON simulations high-
light more complex and physiologically relevant results that cannot 
be explained with a simplified model without dendrites. Moreover, 
the integration of the Inferior Olive completes the closed loop of the 
microcircuit, allowing to embed functional plasticity able to simulate 
learning processes.
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The cerebellar granule cells (GrCs) are the most common neuron type 
in the central nervous system. Their highly packed distribution and 
misleading simple cytoarchitecture, generated the idea of a limited 
spike generation mechanism. The regular spikes discharge, recorded 
for short periods of time (<800ms), was the cornerstone for the simula-
tion of realistic [1, 2]. We show that GrCs are capable of diverse pat-
terns response when subjected to prolonged current inject (2s). The 
somato-dendritic sections were taken from [3], extend with a single 
section Hillock, an Axon Initial Segment (AIS), an ascending axon and 
two thin 1mm long parallel fibers. The ionic channels were taken from 
[1, 2, 4]. The Nav1.6 sodium channel was improved with FHF14 and 
located in the Hillock and AIS [5]. The calcium buffer was reworked 
to contain only Calretinin. The models, were automatically fitted with 
BluePyOpt/NEURON [6]. After 0.8-1s of regular firing, the models pre-
dicted three possible outcomes: 1) regular firing, 2) mild adaptation 
and 3) strong adaptation of firing. Patch-clamp experimental record-
ings (current-clamp configuration, parasagittal slices obtained from 
p18-24 Wistar rats) confirmed the modelling predictions on firing 
adaptation. In a subset of experiments GrCs showed firing acceleration 
that was not found by the optimization technique. To simulate these 
GrCs, a TRPM4 channel, known to mediate slow depolarizing currents, 
was linked to Calmodulin (Cam2C) concentration. This mechanism 
allowed to reach the accelerated state. These different firing proper-
ties impacted on synaptic excitation when the mossy fiber bundle was 
stimulated at different frequencies (1-100 Hz). Interestingly, a range of 
different filtering properties emerged, with some cells showing one-
to-one responses while others responding faster or slower than the 
input. This modelling and experimental effort described GrCs proper-
ties that show the richness of their encoding capabilities.

Acknowledgements: This project has received funding from the Hori-
zon 2020 Framework Programme for Research and Innovation under 
the Specific Grant Agreement No. 785907 (Human Brain Project SGA2).

References
1. D’Angelo E, Nieus T, Maffei A, et al. Theta‑frequency bursting and 

resonance in cerebellar granule cells: experimental evidence and 
modeling of a slow k+‑dependent mechanism. Journal of Neuroscience 
2001;21:759–70.

2. Diwakar S, Magistretti J, Goldfarb M, Naldi G, D’Angelo E. Axonal Na+ 
channels ensure fast spike activation and back‑propagation in cerebellar 
granule cells. Journal of Neurophysiology 2009;101:519–32.

3. Masoli S, Rizza MF, Sgritta M, Van Geit W, Schürmann F, D’Angelo E. Single 
Neuron Optimization as a Basis for Accurate Biophysical Modeling: 
The Case of Cerebellar Granule Cells. Frontiers in cellular neuroscience 
2017;11:1–14.

4. Masoli S, Solinas S, D’Angelo E. Action potential processing in a detailed 
Purkinje cell model reveals a critical role for axonal compartmentalization. 
Frontiers in cellular neuroscience 2015;9:1–22.

5. Dover K, Marra C, Solinas S, et al. FHF‑independent conduction of action 
potentials along the leak‑resistant cerebellar granule cell axon. Nature 
Communications 2016;7:12895.

6. Van Geit W, Gevaert M, Chindemi G, et al. BluePyOpt: Leveraging Open 
Source Software and Cloud Infrastructure to Optimise Model Parameters 
in Neuroscience. Frontiers in Neuroinformatics 2016;10:1–30.



Page 39 of 190BMC Neurosci 2019, 20(Suppl 1):56

P57 
Spatial distribution of Golgi cells inhibition and the dynamic 
geometry of Cerebellum granular layer activity: a computational 
study
Stefano  Casali1, Marialuisa  Tognolina1, Elisa  Marenzi1, Chaitanya  Medini1, 
Stefano  Masoli1, Martina Francesca  Rizza1, Claudia  Casellato2, Egidio 
D’Angelo1

1University of Pavia, Department of Brain and Behavioural Sciences, Pavia, 
Italy; 2University of Pavia, Department of Brain and Behavioural Sciences ‑ 
Unit of Neurophysiology, Pavia, Italy
Correspondence: Stefano Masoli (stefano.masoli@unipv.it)  
BMC Neuroscience 2019, 20(Suppl 1):P57

The cerebellum granular layer (GL) has been considered for a 
long time as a fine-grained spatio-temporal filter, characterized 
by its main role of delivering the right amount of information at 
the proper timing to the above molecular layer (ML) [1] While this 
general tenet remains, recent experimental and theoretical works 
suggest that the GL is endowed with a rich and complex variety of 
spatio-temporal dynamics, empowering the GL itself to exert a qual-
itatively strong influence upon the nature of the signal conveyed to 
the ML.
In the present work, a large-scale computational reconstruction 
of the GL network has been developed, exploiting previously pub-
lished detailed single cell models of granule cells (GrCs, [2]) and 
Golgi cells [3]. The peculiar structure of synaptic connections has 
been observed and reproduced by means of geometrical-statistical 
connectivity rules derived from experimental data, when available 
[4]. One of the main features of GL connectivity, the anisotropic 
organization of GoCs axonal plexus, which is orthogonal to the par-
allel fibers (pfs, coronal axis) and runs along the parasagittal axis, 
plays a key role in shaping the spatio-temporal dynamics of GL activ-
ity. Excitatory / inhibitory ratio of GrCs response to external stimuli 
is organized in a center-surround structure, with excitation prevail-
ing in the core and inhibition in the surround area [5] Simulations 
results show that Golgi cells inhibition is stronger along the par-
asagittal axis; these computational predictions have been confirmed 
by a set of experiments in acute slices in vitro with high resolution 
two-photon microscopy. This preferential path for Golgi cells inhibi-
tion can also affect how two simultaneously activated distant spots 
interact: simulations show that spots placed at a 100 or 200mm dis-
tance along the parasagittal axis can significantly inhibit each other; 
on the contrary, when the spots are positioned along the coronal 
axis, in line with the pfs, almost no interaction occurs. Specific syn-
apses modulate the strength of this phenomenon; specifically, when 
the ascending axon (aa) synapses from GrCs to GoCs are switched-
off, inhibitory interaction along the parasagittal axis decreases.

Acknowledgements: The research was supported by the EU Hori-
zon 2020 under the Specific Grant Agreements No. 720270 (HBP 
SGA1) and 785907 (HBP SGA2).

References
1. Rössert C, Dean P, Porril J. At the Edge of Chaos: How Cerebellar Granular 

Layer Network Dynamics Can Provide the Basis for Temporal Filters. PLoS 
Computational Biology 2015. 11(10). 1–28

2. D’Angelo E, Nieus T, Maffei A, et al. Theta‑frequency bursting and reso‑
nance in cerebellar granule cells: experimental evidence and modeling 
of a slow K+‑dependent mechanism. Journal of Neuroscience 2001. 21. 
759–770

3. Solinas S, Forti L, Cesana E, et al. Fast‑reset of pacemaking and theta‑
frequency resonance patterns in cerebellar Golgi cells: simulations of 
their impact in vivo. Frontiers in Cellular Neuroscience 2007. 1. 1–9

4. Korbo L, Andresen BB, Ladefoged O, et al. Total numbers of various cell 
types in rat cerebellar cortex estimated using an unbiased stereological 
method. Brain Research 1993. 609. 262–268

5. Mapelli J, D’Angelo E. The Spatial Organization of Long‑Term Synaptic 
Plasticity at the Input Stage of Cerebellum. Journal of Neuroscience 2007. 
27. 1285–1296

P58 
Reconstruction and simulation of cerebellum granular layer 
functional dynamics with detailed mathematical models
Chaitanya  Medini1, Elisa  Marenzi1, Stefano  Casali1, Stefano  Masoli1, 
Claudia  Casellato2, Egidio D’Angelo2

1University of Pavia, Department of Brain and Behavioural Sciences, Pavia, 
Italy; 2University of Pavia, Dept. of Brain and Behavioral Sciences ‑ Unit 
of Neurophysiology, Pavia, Italy
Correspondence: Elisa Marenzi (elisa.marenzi@unipv.it)  
BMC Neuroscience 2019, 20(Suppl 1):P58

Cerebellum has been widely known to be involved in several cognitive 
activities, however an elaborate investigation is required to validate 
known hypotheses and propose new theories. A detailed large-scale 
scaffold cerebellar circuit was developed with experimental connec-
tivity rules on python NEURON with MPI configuration. An adaptable 
version of the cerebellar scaffold model [1] is developed on pyNEST 
and pyNEURON using morphologically-driven cell positions and func-
tional connectivity, inspired from convergence/divergence geometry 
rules [2]. The reconstruction methodologies used for scaffold network 
improvises on the existing connectivity literature with Bounded Self-
Avoiding Random Walk Algorithm. The simulations revealed a close 
correspondence to experimental results validating the network recon-
struction. Simulations in pyNEURON gave results like those obtained 
with pyNEST. This is an important validation to ensure that the con-
nectivity generates identical functional dynamics irrespective of the 
simulator platform. In the current study, pyNEURON scaffold cerebel-
lar model has been extended from point neuron model network to 
detailed biophysical model network with similar connectome and 
positions. Detailed multicompartmental models of granule [3], Golgi, 
Purkinje [4], Stellate and Basket neurons (to be published) are being 
used for the study. As a first test case, the detailed neuron morpholo-
gies are connected using simpleneuronal connectivity rules represent-
ing spatially confined convergence/divergence rules. The number of 
synapses were evenly distributed along the dendritic length of these 
neuron models to compensate for the absence of computed distance 
probability between pre and post synaptic neurons. In the second 
case, a touch-detector based algorithm [5], was used to generate syn-
aptic connectivity in the molecular layer (including Molecular Layer 
Interneurons and Purkinje Neurons). The network implementation is 
scalable and flexible to include new types of cell models or to replace 
the current version with updated models.
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The interaction of different brain regions is supported by transient 
synchronization between neural oscillations at different frequen-
cies. Different measures based on synchronization theory are used to 
assess the strength of the interactions from experimental data, e.g. the 
phase-locking index, phase-locking value, phase-amplitude coupling, 
and cross-frequency coupling. Another approach measuring connec-
tivity based on the reconstruction of the dynamics of phase interac-
tions from experimental data was suggested by [3]. On the basis of this 
method and the theory of weakly coupled phase oscillators, [2] pre-
sented a variant of Dynamic Causal Modelling (DCM) for the analysis of 
phase-coupled data, where a Bayesian model selection and inversion 
framework is used to identify the structure and directed connectivity 
among brain regions from measured time series.
Most of the research on phase analysis relies on the direct association 
of the phases of the signals with the phases used in the theoretical 
description of weakly coupled oscillators. However, [1] showed that 
the phases of the signals measured in experiments are not uniquely 
defined and an asymmetric distribution of the measured phases (e.g. 
non-sine form of the signals) could result in a false estimation of the 
effective connectivity between the network nodes. Furthermore, [1] 
suggested a solution for this problem by introducing a transforma-
tion from an arbitrarily measured phase to a uniquely defined phase 
variable.
In this work we merge the ideas from the Dynamical Causal Model-
ling by [2] with the phase dynamics reconstruction by [1] and present 
a new modelling part that we implemented into DCM for phase cou-
pling. In particular, we extended it with a distortion (a transforma-
tion) function that accommodates departures from purely sinusoidal 
oscillations.
By numerically analysing synthetic data sets with an asymmetric phase 
distribution, generated from models of coupled stochastic phase 
oscillators and coupled neural mass models, we demonstrate that the 
extended DCM for phase coupling with the additional modelling com-
ponent correctly estimates the coupling functions that do not depend 
on the distribution of the observables.
The new proposed extension of DCM for phase coupling allows for 
different intrinsic frequencies among coupled neuronal populations, 
thereby making it possible to analyse effective connectivity between 
brain regions within and between different frequency bands, to char-
acterize m:n phase coupling, and to unravel underlying mechanisms 
of the transient synchronization.
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The vast majority of motor actions, including their preparation and 
execution, is the result of a complex interplay of various brain regions. 
Novel methods in computational neuroscience allow us to assess 
interregional interactions from time series acquired with in-vivo tech-
niques like electro-encephalography (EEG). However, our knowledge 
of the functional changes in neural networks during non-pathological 
aging is relatively poor.
To advance our knowledge on this topic, we recorded EEG (64 chan-
nels) from 18 right-handed healthy younger subjects (YS, 22–35 years) 
and 24 right-handed healthy older subjects (OS, 60–79 years) during a 
simple motor task. The participants had to execute visually-cued low 
frequency left or right index finger tapping movements. Here, we used 
the relative phase-locking value (rPLV) [1] to examine whether there is 
an increase in functional coupling of brain regions during this simple 
motor task. We analyzed the connectivity for 42 electrodes focusing 
on connections between electrodes lying above the ipsi- and con-
tralateral premotor and sensorimotor areas and the supplementary 
motor area.
Widely used approaches for network definition are based on certain 
functional connectivity measures (e.g. similarity in BOLD time series, 
phase locking, coherence). These methods typically focus on con-
structing a single network representation over a fixed time period. 
However, this approach cannot make use of the high temporal resolu-
tion of EEG data and is not able to shed light on the understanding of 
temporal network dynamics. Here we used graph theory-based met-
rics that were developed in the last several years that can deal with the 
analysis of temporally evolving network structures [2].
Our rPLV network analysis revealed four major results: An underly-
ing coupling structure around movement onset in the low frequen-
cies (2–7 Hz) that is present in YS and OS. The network in OS involved 
several additional connections and showed an overall increased cou-
pling structure (Fig. 1). While the motor related networks of YS mainly 
involved ipsilateral frontal, contralateral frontal and central electrodes 
and interhemispheric pairs of electrodes connecting frontal ipsilat-
eral with central contralateral ones, the networks of OS showed espe-
cially an increased interhemispheric connectivity. The analysis of hub 
nodes and communities showed a strong involvement of occipital, 
parietal, sensorimotor and central regions in YS. While the networks 
of OS involved similar hub nodes, the first occurrence of sensorimo-
tor regions was clearly delayed and central electrodes played a more 
important role in the network (Fig. 1). Moreover, the motor related 
node degrees were significantly increased in OS.
In addition to previously published results [3, 4], we were able to 
unravel the time-development of specific age-related dynamic 

Fig. 1 Aggregated networks for younger (left) and older subjects 
(right) summarizing the network connectivity over the whole time 
interval. Edges lying above the motor cortex are highlighted in blue 
(ipsilateral), green (contralateral) and orange (interhemispheric). Hub 
nodes are marked in the order of first appearance scaled by their 
frequency
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network structures that seem to be a necessary prerequisite for the 
execution of a motor act. The increased interhemispheric connectivity 
of frontal electrodes fits very well to previous fMRI literature reporting 
an overactivation in frontal regions in older subjects. Our results also 
hint at a loss of lateralization via increased connectivity in both hemi-
spheres as well as interhemispheric connections.
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At rest, BOLD fMRI and MEG recordings have revealed the existence 
of functional connectivity (FC) [1] and of scale-invariant neural ava-
lanches [2], respectively. Under stimulation, neural activity is known to 
propagate on the brain network and, across trials, firing variability is 
found to be generically reduced [3]. Understanding the properties of 
the spontaneous state emerging on the brain network, together with 
its modifications during stimulation is a fundamental problem in neu-
roscience, still largely untouched.
A large-scale modeling approach, where the brain network is modeled 
by local neuronal networks connected through the large-scale con-
nectome, has been previously used. Assuming that the whole brain is 
in an asynchronous state, the noisy fluctuations reverberating on the 
network have been found to be responsible for BOLD FC. However, 
in this fluctuation scenario, stimulation-induced activity is strongly 
damped while propagating on the network, even when trying to cor-
rect for this limitation [4].
We show that low spontaneous firing prevents neural activity to prop-
agate in the fluctuation scenario. Adding neural adaptation, a local 
node can have two dynamical states, allowing the network dynam-
ics to escape from the fluctuation regime, through brief excursions 
of individual nodes towards the higher activity state, allowing neural 
activity to effectively propagate on the network.
In the spontaneous state, the model exhibits neural avalanches, whose 
size distribution is scale-invariant for some global coupling strength 
value. BOLD FC is found to originate from the avalanches, therefore 
from nonlinear dynamics. The best agreement with empirical BOLD FC 
is found for scale-invariant avalanches.
Stimulation tends to entrain some nodes towards the high activ-
ity state, eliciting a reproducible propagation on the network, which 
simultaneously leads to a decrease of neural variability compared to 
the spontaneous state where more fluctuations occur, attributing a 
global origin to this phenomenon. Finally, neural activity is found to 
propagate optimally in the scale-invariant avalanche regime.
In conclusion, this study demonstrates that, beyond the brain connec-
tome, a spontaneous state in the scale-invariant avalanche regime is 
crucial to reproduce the hallmarks of spontaneous and stimulation-
induced activity. Neural variability decreases wherever activity propa-
gates reliably, going beyond experimental results [3] and previously 
proposed mechanisms. Overall, the present work proposes a unified 
theory of the large-scale brain dynamics for a wide range of experi-
mental findings.
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In the last two decades, it has become appreciated that glial cells play 
a critical role in brain degenerative diseases (BDDs). The symptoms of 
BDDs arise from pathological changes to neuro-glia interactions, lead-
ing to neuronal cell death, disrupted neuro-glia communication, and 
impaired cell function, all of which affect global dynamics of brain cir-
cuitry. Astrocytes, a particular glial cell type, play key roles in regulat-
ing pathophysiology of neuronal functions. In this work, we tested the 
hypothesis that neuronal circuit dynamics were impacted as a conse-
quence of disrupted neuron-astrocyte physiology in a mouse model of 
the BDD that results from a deficiency in the ATM protein. The gene 
encoding ATM is mutated in the human genetic diseaseAtaxia-Telan-
giectasia (A-T). One of the most devastating symptoms of A-T is the 
cerebellar ataxia, with significant loss of Purkinje and granule neurons 
in the cerebellum, that leads progressively to general motor dysfunc-
tion. We used primary cerebellar cultures grown from postnatal wild-
type (WT) and Atm −/− mice to study how ATM deficiency influences 
the structure and dynamics of cerebellar neuronal-astrocyte circuits. 
We hypothesized that ATMdeficiency impairs the neuronal-astrocytic 
interactions underlying spontaneous neuronal synchronizations, a 
hallmark activity pattern of the developing nervous system.
We report that the absence of Atm in neurons and astrocytes severely 
alters astrocyte morphology and the number of pre- and post-synap-
tic puncta, disrupting the topology and dynamics of cerebellar net-
works. Functionally, Atm −/− networks showed a reduced number of 
global synchronizations (GSs) which recruited the whole imaged neu-
ronal population, in favor of an increased number of sparse synchro-
nizations (SSs), where only a small subset of neurons of the network 
fired in together. Structurally, higher numbers of synaptic puncta in 
Atm−/−networks relative to numbers in wild-type cultures were asso-
ciated with lower levels of autophagy. These reported structural and 
functional anomalies were all rescued in chimeric neuronal networks 
composed of Atm−/−neurons and WT astrocytes. In contrast, cultures 
of WT neurons with Atm−/−astrocytes led to significant neuronal cell 
death. Characterizations of adult Atm−/−cerebella similarly showed 
disrupted astrocyte morphology, upregulated GABAergic markers, and 
dysregulated mTOR-mediated signaling and autophagy.
The apparent contradiction between a larger number of synapses in 
the Atm−/−circuits and lower occurrence of network synchroniza-
tions could result from the presence of non-functional connections 
(aborted functional connectivity hypothesis) or from the homeostatic 
downscaling of synaptic weights between neurons (aborted effective 
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connectivity hypothesis). We explore the latter hypothesis extrapolat-
ing on its possible consequences on in-vivo cerebellar dynamics. With 
this regard we presenta spiking neural network model for the above 
described in-vitro experiments, where increase in connectivity in par-
allel withscaling of synaptic weightscan account for the increase of SSs 
in the KO model. Next, we consider the same increase in connectivity 
yet in relation to GABAergic transmission in a simplified model of cer-
ebellar circuits and we show that an increase of inhibitory connections 
results in a reduction of functional connections in evoked excitatory 
activity, suggesting disrupted sensory and motor processing cascade 
in ataxia.

P63 
Pybrep: Efficient and extensible software to construct 
an anatomical basis for a physiologically realistic neural network 
model
Ines  Wichert1, Sanghun  Jee2, Sungho  Hong3, Erik De  Schutter3

1Champalimaud Center for the Unknown, Champalimaud 
Research, Lisbon, Portugal; 2Korea University, College of Life Science 
and Biotechnology, Seoul, South Korea; 3Okinawa Institute of Science 
and Technology, Computational Neuroscience Unit, Okinawa, Japan
Correspondence: Sungho Hong (shhong@oist.jp)  
BMC Neuroscience 2019, 20(Suppl 1):P63

In building a physiologically realistic model of a neural network, one 
of the first challenges is to determine the positions of neurons and 
their mutual connectivity based on their anatomic features. Recent 
studies have shown that cell locations are often distributed in non-
random spatial patterns [1–3]. Also, synaptic and gap junction-medi-
ated connectivity is constrained by the spatial geometry of axonal 
and dendritic arbors. These features have to be taken into account 
for realistic modeling since they determine convergence/divergence 
of the input/output of the neurons, respectively, and fundamentally 
impact their spatiotemporal activity patterns [4,5].
Here we present pybrep, an easily usable and extendable Python 
tool, designed for efficient generation of cell positions and con-
nectivity based on anatomical data in large neuronal networks, and 
demonstrate its successful application to our previously published 
network model of the cerebellar cortex [5] and its extension. In a 
first step, pybrep generates cell positions by the Poisson disk sam-
pling algorithm [6]: By sampling quasi-random points in a space 
with a constraint on their mutual distances, it simulates tight pack-
ing of spherical cells with given radii. We adapted this to generate 
multiple cell types sequentially and apply coordinate transforma-
tions to compensate for anisotropic geometry. Based on those 
locations, it generates point clouds representing specified axonal 
and dendritic morphologies. Using an efficient nearest neighbor 
search algorithm, it then identifies candidate connections by finding 
points that satisfy a distance condition. This can be done in 3D, or in 
some cases even more efficiently with a 2D projection method that 
exploits morphological regularities such as the long parallel fibers in 
the cerebellar network.
In the setup process for the cerebellar cortex model, pybrep effi-
ciently produced the positions of more than a million cellular 
structures, including granule and Golgi cells as well as mossy fiber 
glomeruli, based on existing data about densities, volume ratios, 
etc. [7] Notably, applying a physiologically plausible, distance-based 
connection rule to the generated positions reproduced the well-
known 4-to-1 connectivity between glomeruli and granule cells [7]. 
Pybrep also generated synaptic connectivity, particularly between 
the granule and Golgi cells, by an order of magnitude faster com-
pared to our previous software for the same task [5]. Finally, the 
modular structure of pybrep allowed for an easy extension of 
the existing model by adding a new cell type, the molecular layer 
interneuron.
Pybrep depends only on a few external packages, but can easily be 
combined with existing Python tools, such as those for paralleliza-
tion and scaling-up. These features will make pybrep a useful tool 
for constructing diverse network models in various sizes.
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The cerebellum regulates motor movements through the function of its 
Purkinje neurons. Purkinje neurons generate electrophysiological activ-
ity in the form of firing simple (fast) and complex (slow) spikes differing 
in the number of spikes, amplitude and duration. The interest in studying 
the complex spike bursts is based on their role in controlling and learn-
ing human body movements.
This study describes a new version of the recently published spatial sin-
gle Purkinje cell model implemented in the NEURON simulation software 
by [1]. This model uses a variety of ionic mechanisms to generate sim-
ple and complex spike activity. We analyze the difference in modeling 
results between the NEURON [2] and the Stochastic Engine for Pathway 
Simulation (STEPS) [3] simulation environments. The NEURON modeling 
approach idealizes the complex 3D morphology as cylinders (>10 µm 
scale) with uniform membrane properties and considers only 1D mem-
brane potential propagation, while STEPS treats the neuron morphol-
ogy in the form of a more detailed (<1 µm scale) tetrahedral 3D mesh 
[3]. These differences affect channel properties and calcium dynamics 
in the Purkinje cell model. Additionally, the need of detailed neuronal 
modeling leverages the increase of using electron microscopy to provide 
super resolution neuronal reconstructions.
The results of this study will detail our understanding of intrinsic prop-
erties and functioning of neurons at the nanoscale. Possible differ-
ences between the two software tools may require us to reconsider our 
approaches to computational modelling of the neuronal activity in the 
brain [4].
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Vesicles play a central role in many fundamental neuronal cellular 
processes. For example, pre-synaptic vesicles package, transport and 
release neurotransmitter, and post-synaptic AMPAR trafficking is con-
trolled by the vesicular-endosomal pathway. Therefore, vesicle traffick-
ing underlies crucial brain features such as the dynamics and strength 
of chemical synapses, yet vesicles have only received limited attention 
in computational neuronal modelling to now.
Molecular simulation software STEPS (steps.sourceforge.net) applies 
reaction-diffusion kinetics on realistic tetrahedral mesh structures by 
tracking the molecular population within tetrahedrons and modelling 
their local interactions stochastically. STEPS is usually applied to sub-
cellular models such as synaptic plasticity pathways and so is a natural 
choice for extension to vesicle processes. However, combining vesi-
cle modelling with mesh-based reaction-diffusion modelling poses a 
number of challenges.
The fundamental issue to solve is the interaction between spherical 
vesicle objects and the tetrahedral mesh. We apply an overlap library 
and track local vesicle-tetrahedron overlap, which allows us to modify 
local diffusion rates and model interactions between vesicular surface 
proteins and molecules in the tetrahedral mesh such as cytosolic and 
plasma membrane proteins as the vesicles sweep through the mesh. 
These interactions open up many modelling applications such as ves-
icle-endosome interaction, membrane-docking, priming and neuro-
transmitter release, all solved to a high level of spatial and biochemical 
detail.
This hybrid modelling, that includes dynamic vesicle processes and 
dependencies, presents challenges in ensuring accuracy whilst main-
taining efficiency of the software, and this is an important focus of 
our work. Where possible we validate the accuracy of our modelling 
processes, for example by validating diffusion and binding rates. Opti-
misation efforts are ongoing but we have had some successes, for 
example by applying local updates to the dynamic vesicle processes.
We apply this new modelling technology to the post-synaptic AMPAR 
trafficking pathway. AMPA receptors undergo clatherin-dependent 
endocytosis and are trafficked to the endosome where they are sorted 
for either degradation or returned to the membrane via recycling vesi-
cles. Rab GTPases coordinate sorting through the endosomal system.
Due to our new hybrid modelling technology it is possible to simulate 
this pathway, as well as potentially other areas of cell biology where 
vesicle trafficking and function play an important role, to high spatial 
detail. We hope that our current efforts and future additions open up 
new avenues of modelling research in neuroscience.
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Although the relationship between motivation and behaviour has 
been extensively studied, the specifics of how motivation relates 
to movement and how effort is considered to select specific move-
ments remains largely controversial. Indeed, moving towards valuable 
states implies investing a certain amount of effort and coming up with 
appropriate motor strategies. How are these principles modulated by 
social pressure?
To investigate whether and how motor parameters and decisions 
between movements were influenced by differentially induced 
motivated states, we performed a decision-making paradigm 
where healthy human participants made choices between reaching 

movements under different conditions. Their goal was to accumu-
late reward by selecting one of two reaching movements of opposite 
motor cost, and to perform the selected reaching movement. Reward 
was contingent upon target arrival precision. All trials had fixed dura-
tion to prevent the participants from maximizing reward by minimiz-
ing temporal discount.
We manipulated the participants’ motivated state via social pressure. 
Each experimental session was composed of six blocks, during which 
subjects could either play alone or accompanied by a simulated co-
player. Within this illusion, the amount of reward obtained by the 
participant and by their companion was reported at the end of each 
trial. The previous ten trial ranking for the two players was shown 
briefly every nine trials. However, no specific mention to competition 
was ever made to the subjects in the instruction, and any such men-
tion reported by the participant was immediately rejected by the 
experimenter.
The results show that participants increased precision alongside the 
skill of their co-actor, implying that the participants cared about their 
own performance. The main behavioural result was an increase of the 
movement duration between baseline (playing alone) and any other 
condition (with any co-actor), and a modulation of amplitude as the 
skill of the co-actor became unattainable. As to provide a quantitative 
account of the dynamics of social motivation, we developed a gen-
erative computational model of decision-making and motor control, 
based on the optimization of the trade-off between the benefits and 
costs associated to a movement. Its predictions show that this opti-
mization depends on the motivational context where the movements 
and the choices between them are performed. Although further 
research remains to be performed to understand the specific intrica-
cies of this relationship between motor control theory and motivated 
states, this suggests that this inter-relation between internal physi-
ological dynamics and motor behaviour is more than a simple modu-
lation of the vigour of movement.
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Fig. 1 Average Receiver Operating Characteristic (ROC) curves for 
each functional inference method. The average is computed from 46 
ROC curves from as many simulations. The width corresponds to the 
standard deviation. The red‑dotted diagonal corresponds to random 
guesses
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Fast extraction of connectomes from whole-brain functional imaging 
is computationally challenging. Despite the development of new algo-
rithms that efficiently segment the neurons in calcium imaging data, 
the detection of individual synapses in whole-brain images remains 
intractable. Instead, connections between neurons are inferred using 
time series that describe the evolution of neurons’ activity. We com-
pare classical methods of functional inference such as Granger Causal-
ity (GC) and Transfer Entropy (TE) to deep learning approaches such as 
Convolutional Neural Networks (CNN) and Long Short-Term Memory 
(LSTM).
Since ground truth is required to compare the methods, synthetic time 
series are generated from the C. Elegans’ connectome using the leaky-
integrate and fire neuron model. Noise, inhibition and adaptation are 
added to the model to promote richer neuron activity. To mimic typi-
cal calcium-imaging data, the time series are down-sampled from 10 
kHz to 30 Hz and filtered with calcium and fluorescence dynamics. 
Additionally, we produce multiple simulations by varying brain and 
stimulation parameters to test each inference methods on different 
types of brain activity.
By comparing the mean ROC curves of each method (see Fig. 1) we 
find that the CNN outperforms all other methods up to a false posi-
tive rate of 0.7, while GC has the weakest performance, being on aver-
age slightly above random guesses. TE performs better than LSTM for 
low false positive rates, but these performances are inverted for false 
positive rates higher than 0.5. Although the CNN has the highest mean 
curve, it also has the largest width, meaning the CNN is the most vari-
able and therefore least consistent inference method. TE’s mean ROC 
curve’s width is significantly narrower than other methods for low false 
positive rates and slowly grows when it meets other curves. The choice 
of an inference method is therefore dependant on one’s tolerance to 
false positives and variability.
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The brain contains many “point-to-point” projections that originate 
in known anatomical locations, form distinct fascicles or tracts, and 
terminate in well-defined destination sites. This “deterministic brain” 
coexists with the “stochastic brain,” the axons of which disperse in 
meandering trajectories, creating meshworks in virtually all brain 
nuclei and laminae. The cell bodies of this system are typically located 
in the brainstem, as a component of the ascending reticular activat-
ing system (ARAS). ARAS axons (fibers) release serotonin, dopamine, 
norepinephrine, acetylcholine, and other neurotransmitters that regu-
late perception, cognition, and affective states. They also play major 
roles in human mental disorders (e.g., Major Depressive Disorder and 
Autism Spectrum Disorder).
Our interdisciplinary program [1, 2] seeks to understand at a rigor-
ous level how the behavior of individual ARAS fibers determines their 
equilibrium densities in brain regions. These densities are commonly 
used in fundamental and applied neuroscience and can be thought 
to represent a macroscopic measure that has a strong spatial depend-
ence (conceptually similar to temperature in thermodynamics). This 

measure provides essential information about the environment neu-
ronal ensembles operate in, since ARAS fibers are present in virtually 
all brain regions and achieve extremely high densities in many of 
them.
A major focus of our research is the identification of the stochastic pro-
cess that drives individual ARAS trajectories. Fundamentally, it bridges 
the stochastic paths of single fibers and the essentially determinis-
tic fiber densities in the adult brain. Building upon state-of-the-art 
microscopic analyses and theoretical models, the project investigates 
whether the observed fiber densities are the result of self-organiza-
tion, with no active guidance by other cells. Specifically, we hypoth-
esize that the knowledge of the geometry of the brain, including the 
spatial distribution of physical “obstacles” in the brain parenchyma, 
provides key information that can be used to predict regional fiber 
densities.
In this presentation, we focus on serotonergic fibers. We demonstrate 
that a step-wise random walk, based on the von Mises-Fisher (direc-
tional) probability distribution, can provide a realistic and mathemati-
cally concise description of their trajectories in fixed tissue. Based 
on the trajectories of serotonergic fibers in 3D-confocal microscopy 
images, we present estimates of the concentration parameter (κ) in 
several brain regions with different fiber densities. These estimates 
are then used to produce computational simulations that are consist-
ent with experimental results. We also propose that other stochastic 
models, such as the superdiffusion regime of the Fractional Brownian 
Motion (FBM), may lead to a biologically accurate and analytically rich 
description of ARAS fibers, including their temporal dynamics.
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The primary visual cortex is one of the most complex parts of the brain 
offering significant modeling challenges. With the ongoing develop-
ment of neuromorphic hardware, simulation of biologically realistic 
neuronal networks seems viable. According to [1], Generalized Leaky 
Integrate and Fire Models (GLIFs) are capable of reproducing cellular 
data under standardized physiological conditions. The linearity of the 
dynamical equations of the GLIFs also work to our advantage. In an 
ongoing work, we proposed the implementation of five variants of 
the GLIF model [1], incorporating different phenomenological mech-
anisms, into Intel’s latest neuromorphic hardware, Loihi. Owing to its 
architecture that supports hierarchical connectivity, dendritic com-
partments and synaptic delays, the current LIF hardware abstraction 
in Loihi is a good match to the GLIF models. In spite of that, precise 
detection of spikes and the fixed-point arithmetic on Loihi pose chal-
lenges. We use the experimental data and the classical simulation of 
GLIF as references for the neuromorphic implementation. Following 
the benchmark in [2], we use various statistical measures on different 
levels of the network to validate and verify the neuromorphic network 
implementation. In addition, variance among the models and within 
the data based on spike times are compared to further support the 
network’s validity [1, 3]. Based on our preliminary results, viz., imple-
mentation of the first GLIF model followed by a full-fledged network in 
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the Loihi architecture, we believe it is highly probable that a success-
ful implementation of a network of different GLIF models could lay the 
foundation for replicating the complete primary visual cortex.
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Information theoretic approaches have shed light on the brain’s abil-
ity to efficiently propagate information along the cortical hierarchy, as 
well as exposed limitations in this process. One common measure of 
coding capacity, linear Fisher Information (FI), has also been used to 
study the neural code within a given cortical region. In particular, we 
recently used this approach to study the effects of an attention-like 
modulation on a cortical population model [1]. Previous studies have 
been largely agnostic as to the class of neuron that encodes a particu-
lar sensory variable, assuming little more than stimulus tuning proper-
ties. While it is widely accepted that local cortical dynamics involve an 
interplay between excitatory and inhibitory neurons, there are a large 
number of anatomical studies showing that excitatory neurons are the 
dominant projection neurons from one cortical area to the next. This 
suggests that, rather than maximizing the FI across the full excitatory 
and inhibitory network, to improve down-stream readout of neural 
codes the goal of top-down modulation may instead be to modulate 
the information carried only within the excitatory population, denoted 
FI-E [1]. In this study we explore this hypothesis using a combined 
numerical and analytic analysis of population coding in simplified 
model cortical networks.
We first study this effect in a recurrently coupled, excitatory (E)/inhibi-
tory (I) population pair coding for a scalar stimulus variable (Fig. 1, 
A). We demonstrate that while the FI of the full E/I network does not 
change with a top-down modulation (Fig. 1, C; dashed colored lines), 
FI-E can nevertheless increase (Fig. 1, C; solid colored lines). We derive 
intuition for this key difference between FI and FI-E by considering 
the combined influence of input correlation and recurrent connec-
tivity (captured by the ratio a in Fig. 1, C, middle plots. Light points 
show the ratio a before modulation; dark points, after modulation. 
Green and purple correspond to two different sets of network param-
eters. Fig. 1, Ci corresponds to input correlations = 0.9; Cii, to input 
correlations = 0.5).
Finally, we will further extend these ideas to a distributed population 
code by considering a framework with multiple E/I populations encod-
ing a periodic stimulus variable [2]. In total, our results develop a new 
framework in which to understand how top-down modulation may 
exert a positive effect on cortical population codes.
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Perceptual decision making often involves making categorical judg-
ments based on estimations of continuous stimulus features. It has 
recently been shown that committing to a categorical choice biases a 
subsequent report of the stimulus estimate by selectively increasing 
the weighting of choice-consistent evidence [1]. This phenomenon, 
known as confirmation bias, commonly results in a suboptimal perfor-
mance in people’s perceptual decisions. The underlying neural mecha-
nisms that give rise to this phenomenon are still poorly understood.
Here we develop a computational network model that can integrate 
a continuous stimulus feature such as motion direction and can also 
account for a subsequent categorical choice. The model, a ring attrac-
tor network, represents the estimate of the integrated stimulus direc-
tion in the phase of an activity bump. A categorical choice can then 
be achieved by applying a decision signal at the end of the trial forc-
ing the activity bump to move to one of two opposite positions. We 
reduced the network dynamics to a two-dimensional equation for the 
amplitude and the phase of the bump which allows for studying evi-
dence integration analytically. The model can account for qualitatively 
distinct decision behaviors, depending on the relative strength of sen-
sory stimuli compared to the amplitude of the bump attractor. When 
sensory inputs dominate over the intrinsic network dynamics, later 
parts of the stimulus have a higher impact on the final phase and the 
categorical choice than earlier parts (“recency” regime). On the other 
hand, when the internal dynamics are stronger, the temporal weight-
ing of stimulus information is uniform. The corresponding psycho-
physical kernels are consistent with experimental observations [2]. We 
then simulated how stimulus estimation is affected by an intermittent 
categorical choice [1] by applying the decision signal after the first half 
of the stimulus. We found that this biases the resulting stimulus esti-
mate at the end of the trial towards larger values for stimuli that are 
consistent with the categorical choice and towards smaller values for 

Fig. 1 a Network schematic. b (i, ii) Distribution of firing rates for E 
and I before (blue) and after (orange) modulation at a given contrast 
c (light ellipse) and c+dc (dark ellipse) where dc is a small perturba‑
tion in the input. (iii) Calculated overlap of the rate distributions for 
E and E/I (Total). c The effects of modulation depend on the input 
correlations and recurrent connectivity
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stimuli that are inconsistent, resembling the experimentally observed 
confirmation bias.
Our work suggests bump attractor dynamics as a potential underlying 
mechanism of stimulus integration and perceptual categorization.
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Functional brain networks are often constructed by quantifying cor-
relations between time series of activity of brain regions. Their 
topological structure includes nodes, edges, triangles and even 
higher-dimensional objects. Topological data analysis (TDA) is the 
emerging framework to process datasets under this perspective. In 
parallel, topology has proven essential for understanding fundamen-
tal questions in physics. Here we report the discovery of topological 
phase transitions in functional brain networks by merging concepts 
from TDA, topology, geometry, physics, and network theory. We show 
that topological phase transitions occur when the Euler entropy 
has a singularity, which remarkably coincides with the emergence 
of multidimensional topological holes in the brain network, as illus-
trated in Fig. 1. The geometric nature of the transitions can be inter-
preted, under certain hypotheses, as an extension of percolation to 

high-dimensional objects. Due to the universal character of phase 
transitions and noise robustness of TDA, our findings open perspec-
tives towards establishing reliable topological and geometrical mark-
ers for group and possibly individual differences in functional brain 
network organization.
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The neural circuit linking the basal ganglia, the cerebellum and the 
cortex through the thalamus plays an essential role in motor and cog-
nitive functions. However, how such functions are realized by multiple 
loop circuits with neurons of multiple types is still unknown. In order 
to investigate the dynamic nature of the whole-brain network, we 
built biologically constrained spiking neural network models of the 
basal ganglia [1, 2, 3], cerebellum, thalamus, and the cortex [4, 5] and 
ran an integrated simulation on K supercomputer [8] using NEST 2.16.0 
[6, 7, 9].
We replicated resting state activities of 1 biological second of time in 
models with increasing scales, from  1x1mm2 to  9x9mm2 of cortical 
surface, the latter of which includes 35 million neurons and 66 billion 
synapses in total. Simulations using a hybrid parallelization approach 
showed a good weak scaling performance in simulation time last-
ing between 15–30 minutes, but identified a problem of long time 
(between 6–9 hours) required for network building.
We also evaluated the properties of action selection with realistic top-
ographic connections in the basal ganglia circuit in 2-D target reach-
ing task and observed selective activation and inhibition of neurons in 
preferred directions in every nucleus leading to the output. Moreover, 
we performed tests of reinforcement learning based on dopamine-
dependent spike-timing dependent synaptic plasticity.
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Since the discovery of place and grid cells, the hippocampus has been 
attributed a particular sensitivity to the spatial-contextual features of 
memory and learning. A crucial area in these processes is the dorsal 
CA1 hippocampus region (dCA1), where both pyramidal cells and 
interneurons are found. The former are excitatory cells that display 
tuning to spatial location (place fields), whilst the latter regulate the 
network with inhibitory inputs. Graph theory gives us powerful tools 
for studying such complex systems by representing, analyzing and 
modelling the dynamics of hundreds of components (neurons) inter-
acting together. Graph theory-based methods are employed by net-
work neuroscience to yield insightful descriptions of neural networks 
dynamics [1].
Here, we propose a graph theory-based analysis of the dCA1 network, 
recorded from mice engaged in a condition place preference task. In 
this protocol the animals first explore a familiar environment (fam). 
Afterwards, it is introduced to two novel arenas (pre/post), which are 
later individually associated with different reward dispensers. We 
analyse electro-physiological data from 2 animals, 7 recording days 
combined, for a total of 617 putative pyramidal cells and 38 putative 
interneurons. To investigate the dynamics of the recorded network, 
we apply directed weighted graphs using a directional biophysically-
inspired measure of the functional connectivity between each neuron.
As of now, we have limited our analysis to the dynamics of putative 
pyramidal cells in the network. As the task progresses and the ani-
mal learns the reward associations, we observe an overall increase 
in the average strength (S) of the network (S_pre = 0.41±0.08 / S_
post = 0.78±0.09, mean ± s.e.m. normalized units). The average fir-
ing rate (FR), instead, peaks only during the first exploration of the 
novel environment and decreases thereafter—(FR_fam = 0.78±0.02 / 
FR_pre = 0.95±0.02 / FR_post = 0.82±0.02). Together with S, an overall 
decrease in the shortest path length (PL) in the network suggests that 
the system shifts towards a more small-world structure (PL_fam = 1±0 
/ PL_pre = 0.76±0.09 / PL_post = 0.61±0.10). This topology has been 
described to be more adaptive and efficient, thus fit to encode new 
information [2]. The evolution of the network during learning is also 
indicated by its Riemannian distance from the activity patterns evoked 
in fam. This measure increases from the exposition to pre (0.88±0.02) 
to the end of learning (0.98±0.01), decreases in post (0.91±0.02) and 
is at its minimum when fam is recalled (0.78±0.06). These results sug-
gest that the evoked patterns in pre and post are similar, as they rep-
resent the same environment, even if they display different network 
activity measures (S, FR, PL). We hypothesize that these metrics might 
indicate the learning-related dynamics that favor the encoding of new 
information.
We are to integrate these findings with information measures at the 
individual neuron level. The finer structure of the network may be 
investigated: from changes in pyramidal cells’ spatial tuning, to diverse 
regulatory action of the interneuron population. Together, these anal-
yses will provide us with an insightful picture of the dCA1 network 
dynamics during learning.
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Background: In CNS, the relationship between axon diameter and 
myelin thickness is more complex than in peripheral nerve. Stand-
ard segmentation of high-contrast electron micrographs (EM) seg-
ments the myelin accurately, but even in studies of regular, parallel 
fibers, this does not translate easily into measurements of individual 
axons and their myelin sheaths, Quantitative morphology of myeli-
nated axons requires measuring the diameters of thousands of 
axons and the thickness of each axon’s myelin sheath. We describe 
here a procedure for automated refinement of segmentation and 
measurement of each myelinated axon and its sheath in EMs (11 
nm/pixel) of arbitrarily oriented prefrontal white matter (WM) from 
human autopsies (Fig. 1A).
New methods: Preliminary segmentation of myelin, axons and 
background in the original images, using ML techniques based on 
manually selected filters (Fig. 1B), are postprocessed for correcting 
of typical, systematic errors in the preliminary-segmentation. Final, 

Fig. 1 (Upper) a Fragment of original EM image has gone through 
automated pre‑segmentation and automated post‑processing 
producing Interim image b used as DNN input. c Fully corrected and 
annotated version used as “ground truth”. d DNN segmented frag‑
ment, with green pixels marking pixel errors compared to c. (lower) 
Histogram of myelin thickness measurements of a same dataset
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refined and corrected segmentation is achieved by deep neural net-
works (DNN) which classify the central pixel of an input fragment 
(Fig. 1D). We use two DNN architectures: (i) Denoising auto-encoder 
using convolutional neural network (CNN) layers for initialization of 
weights to the first receptive layer of the main DNN, which is built 
in (ii) classical multilayer CNN architecture Automated routine gives 
radial measurements of each putative axon and its myelin sheath, 
after it rejects measures encountering predefined artifacts and 
excludes fibers that fail to satisfy certain predefined conditions. The 
ML processing, after a working dataset of 30 images, 2048x2048 
pixel is preprocessed, takes ~ 1h 40min. for complete pixel-based 
segmentation of ~ 8,000 ÷ 9,000 fiber ROIs per set, on a commercial 
PC equipped with a single GTX-1080 class GPU.
Results: This routine improved segmentation of three sets of 30 anno-
tated images (sets 1 and 2 from prefrontal white matter, while set 3 
was from optic nerve), with DNN trained only with a subset of set 1 
images. Total number of myelinated axons identified by the DNN dif-
fered from the human segmentation by 0.2%, 2.9%, and − 5.1% for 
sets 1–3, respectively. G-ratios differed by 2.96%, 0.74% and 2.83%. 
Myelin thickness measurements were even closer, Fig. 1E. Intraclass 
correlation coefficients between DNN and annotated segmentation, 
were mostly>0.9, indicating nearly interchangeable performance.
Comparison with existing method(s): Measurement-oriented stud-
ies of arbitrarily oriented fibers (appearing in single images) from 
human frontal white matter are rare. Published studies of spinal cord 
white matter or peripheral nerve typically measure aggregated area 
of myelin sheaths, allowing only an aggregate estimation of average 
g-ratio, assuming counterfactually that g-ratio is the same for all fibers. 
Thus, our method fulfills an important need.
Conclusions: Automated segmentation and measurement of axons 
and myelin is more complex than it appears initially. We have devel-
oped a feasible approach that has proven comparable to human seg-
mentation in our tests so far, and the trained networks generalize very 
well on datasets other than those used in training.
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Living organisms make predictions in order to survive, posing the 
question of how do brains learn to make those predictions. General 
models based on classical conditioning [1] assume that prediction per-
formance is feed back into the predicting neural population. However, 
recent studies have found that sensory neurons without feedback 
from higher brain areas encode predictive information [4]. Therefore, 
a bottom-up process without explicit feedback should also gener-
ate predictions. Here we present such a mechanism through latency 
reduction, an effect of Synaptic Time-Dependent Plasticity (STDP) [3].
We study leaky-integrate and fire neurons with a refractory period 
(LIF), each one getting a fixed input spike train that is repeated many 
times. The weights of the synapses change following the Synaptic 
Time-Dependent Plasticity (STDP) with soft bounds. From this we use 
a variety of mathematical tools and simulations to create the following 
argument:

  •  Short Temporal Effects: We analyze how do postsynaptic spikes 
evolve, showing that a single postsynaptic spike reduces its 
latency

  •  Long Temporal Effects: We prove that the postsynaptic spike 
train becomes very dense at input onset and that the number of 
postsynaptic spikes reduces with the stimulus repetition.

  •  Coding: The concentration of inputs makes the code more effi-
cient in metabolic and decoding terms.

 •  Predictions: STDP makes postsynaptic neurons fire at the onset 
of the input spike train, which might be before the stimulus if the 
input spike train includes a pre-stimulus clue, thus generating 
predictions.

We show here (Fig. 1) that STDP in combination with regularly timed 
presynaptic spikes generates postsynaptic codes that are efficient and 
explain how forecasting are phenomena that emerge in an unsuper-
vised way with a simple mechanistic interpretation. We believe that 
this idea offers an interesting complement to classical supervised pre-
dictive coding schemes in which prediction errors are feed back into 
the coding neurons. Furthermore, the concentration of postsynaptic 
spikes at stimulus onset can be interpreted in information theoretical 
terms as a way to improve the code in terms of error-resilience. Finally, 
we speculate that the fact that the same mechanism can be used to 
generate predictions as well as improve the effectiveness and meta-
bolic efficiency of the neural code might give insights into how the 
ability of the nervous system to forecast might have evolved.
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The structural connectome (SC) of the rat nervous system has been 
built by collating neuronal connectivity information from tract trac-
ing publications [1]. In most publications semi quantitative estimates 
of axonal densities are indicated. These connectivity weights and the 
orientation of connections (source-target of action potentials) were 
imported into neuroVIISAS [2].
The connectivity of the peripheral nervous system and of the spinal 
cord allows a continuous reconstruction of the transfer of afferent 
signals from the periphery, respectively, dorsal root ganglions via 
intraspinal or medullary secondary neurons. As opposed to this the 
efferent pathway from the central peripheral nervous system (PNS) 

Fig. 1 We show that STDP can lead to predictions through a schema 
where a single event generates stimulus S1, S2, S3 which trigger 
spikes on the neural populations P1 P2 P3. By STDP the spikes in P3 
and P2 appear before the stimuli S2, S3
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through primary vegetative neurons as well as α-motoneurons is avail-
able, too. This thorough connectome data allows the investigation of 
complete peripheral-central-afferents pathways as well as central-
peripheral-efferent pathways by dynamic analyses.
The propagation of signals derived from basic diffusion processes [3], 
the Gierer-Meinhardt [4] and Mimura-Murray [5] diffusion models (DM) 
was investigated. The models have been adapted to a weighted and 
directed connectome. The application of DM in SCs exhibit a lower 
complexity by contrast with coupled single neuron models (FitzHugh 
Nagumo (FHN)) [3] or models of spiking LIF populations. To compare 
outcomes of DM the FHN model has been realized in the same SC 
(Fig. 1).
Modeling of diseases like Alzheimer and Parkinson as well as multi-
ple sclerosis (MS) in SC helps to understand spreading of pathology 
and predicting changes of white and gray matter [6-8]. The reduc-
tion of connection weights by modelling reflect the effect of mye-
lin degeneration in MS. The change [9] of diffusibility of a lesioned 
afferent-efferent loop in the rat PNS-ZNS has been analyzed. A 
reduction of diffusion was observed in the GM and MM models fol-
lowing linear and nonlinear reduction of connectivity weights of 
central processes of the dorsal root ganglion neurons, cuneate and 
gracile nuclei. The change of diffusibility shows slight effects in the 
motoric pathway.
The effects of the two models coincides with clinical observations 
with regard to paresthesias and spaticity because changes of diffu-
sion were most prominent in the somatosensory and somatomo-
toric system. Further investigations will be performed to analyze 
functional effects of local white matter lesions as well as long term 
functional changes.
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Neocortical activity fluctuates endogenously, with much variability 
shared among neurons. These co-fluctuations are generally charac-
terized as correlations between pairs of neurons, termed noise cor-
relations. Noise correlations depend on anatomical dimensions, such 
as cortical layer and lateral distance, and they are also dynamically 
influenced by behavioral states, in particular, during spatial attention. 
Specifically, recordings from laterally separated neurons in superficial 
layers find a robust reduction of noise correlations during attention [1]. 
On the other hand, recordings from neurons in different layers of the 
same column find that changes of noise correlations differ across lay-
ers and overall are small compared to lateral noise-correlation changes 
[2]. Evidently, these varying patterns of noise correlations echo the 
wide-scale population activity, but the dynamics of population-wide 
fluctuations and their relationship to the underlying circuitry remain 
unknown.
Here we present a theory which relates noise correlations to spati-
otemporal dynamics of population activity and the network structure. 
The theory integrates vast data on noise correlations with our recent 
discovery that population activity in single columns spontaneously 
transitions between synchronous phases of vigorous (On) and faint 
(Off) spiking [3]. We develop a network model of cortical columns, 
which replicates cortical On-Off dynamics. Each unit in the net-
work represents one layer—superficial or deep—of a single column 
(Fig. 1a). Units are connected laterally to their neighbors within the 
same layer, which correlates On-Off dynamics across columns. Visual 
stimuli and attention are modeled as external inputs to local groups 
of units. We study the model by simulations and also derive analyti-
cal expressions for distance-dependent noise correlations. To test the 
theory, we analyze linear microelectrode array recordings of spiking 
activity from all layers of the primate area V4 during an attention task.
First, at the scale of single columns, the theory accurately predicts the 
broad distribution of attention-related changes of noise-correlations 
in our laminar recordings, indicating that they largely arise from the 
On-Off dynamics. Second, the network model mechanistically explains 
differences in attention-related changes of noise-correlations at dif-
ferent lateral distances. Due to spatial connectivity, noise correla-
tions decay exponentially with lateral distance, characterized by the 
decay-constant called correlation length (Fig. 1b) . Correlation length 
depends on the strength of lateral connections, but it is also modu-
lated by attentional inputs, which effectively regulate the relative 
influence of lateral inputs. Thus changes of lateral noise-correlations 
mainly arise from changes in the correlation length. The model pre-
dicts that at intermediate lateral distances (<1mm), noise-correlation 

Fig. 1 Visualization of bilateral weighted connectivity (upper left: 
adjacency matrix) of spinal and supraspinal regions (spherical 3D 
reconstruction). Upper right: Coactivation matrix of an FHN simula‑
tion. FHN oscillations of an afferent pathway. Lower left: Adjacency 
matrix of complete bilateral system. Coactivation matrix after simulat‑
ing a MS demyelination
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changes decrease or increase with distance, when the correlation-
length increases or decreases, respectively. To test these predictions, 
we used distances between receptive-field centers to estimate lateral 
shifts in our laminar recordings (Fig. 1c). We found that during atten-
tion, correlation length decreases in superficial and increases in deep 
layers, indicating differential modulation of superficial and deep 
layers. (Fig. 1d). Our work provides a unifying framework that links 
network mechanisms shaping noise correlations to dynamics of popu-
lation activity and underlying cortical circuit structure.
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Plasticity in cerebellar synapses is important for adaptability and fine 
tuning of fast reaching movements. The perceived sensory errors 
between the desired and actual movement outcomes are commonly 
considered to induce plasticity in the cerebellar synapses, with an 
objective to improve the desirability of the executed movements. In 
fast goal-directed eye movements called saccades, the desired out-
come is to reach a given target location in minimum-time, with accu-
racy. However, an explicit encoding of this desired outcome is not 
observed in the cerebellar inputs prior to the movement initiation. 
It is unclear how the cerebellum is able to process only partial error 
information, that is the final reaching error signal obtained from sen-
sors, to control both the reaching time as well as the precision of fast 
movements in an adaptive manner. We model the bidirectional plas-
ticity at the parallel fiber to Purkinje cell synapses that can account for 

the mentioned saccade characteristics. We provide a mathematical 
and robot experimental demonstration of how the equations govern-
ing the cerebellar plasticity are determined by the desirability of the 
behavior. In the experimental results, the model output activity dis-
plays a definite encoding of eye speed and displacement during the 
movement. This is in line with the corresponding neurophysiologi-
cal recordings of Purkinje cell populations in the cerebellar vermis of 
rhesus monkeys. The proposed modeling strategy, due to its mecha-
nistic form, is suitable for studying the link between motor learning 
rules observed in biological systems and their respective behavioral 
principles.
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Density-based clustering (DBC) [1] provides efficient representations 
of a multidimensional time series, allowing to cast it in the form of the 
symbolic sequence of the labels identifying the cluster to which each 
vector of instantaneous values belong. Such representation naturally 
lends itself to obtain compact descriptions of data from multichannel 
electrophysiological recordings.
We used DBC to analyze the spatio-temporal dynamics of dorsal pre-
motor cortex in neuronal data recorded from two monkeys during a 
‘countermanding’ reaching task: the animal must perform a reaching 
movement to a target on a screen (‘no-stop trials’), unless an interven-
ing stop signal prescribes to withhold the movement (‘stop-trials’); no-
stop (~70%) and stop trials (~30%) were randomly intermixed, and the 
stop signal occurred at variable times within the reaction time.
Multi-unit activity (MUA) was extracted from signals recorded using a 
96-electrodes array. Performing DBC on the 96-dimensional MUA time 
series, we derived the corresponding discrete sequence of clusters’ 
centroid.
Through the joint analysis of such cluster sequences for no-stop and 
stop trials we show that reproducible cluster sequences are associ-
ated with the completion of the motor plan in no-stop trials, and that 
in stop trials the performance depends on the relative timing of such 
states and the arrival of the Stop signal.
Besides, we show that a simple classifier can reliably predict the out-
come of stop trials from the cluster sequence preceding the appear-
ance of the stop signal, at the single-trial level.
We also observe that, consistently with previous studies, the inter-trial 
variability of MUA configurations typically collapses around the move-
ment time, and has minima corresponding to other behavioral events 
(Go signal; Reward); comparing the time profile of MUA inter-trial vari-
ability with the cluster sequences, we are led to ask whether the neu-
ral dynamics underlying the clusters sequence can be interpreted as 
attractor hopping. For this purpose we analyze the flow in the MUA 
configuration space: for each trial, and each time, the measured MUA 
values identify a point in the 96-dimensional space, such that each trial 
corresponds to a trajectory in this space, and a set of repeated trials to 
a bundle of trajectories, of which we can compute individual or aver-
age properties. We measure quantities suited to discriminate between 
a dynamics of convergence of the trajectories to a point attractor, 
from different flows in the MUA configuration space. We tentatively 
conclude that convergent attractor relaxation dynamics (in attentive 
wait conditions, as before the Go or the Reward events) coexist with 
coherent flows (associated with movement onset), in which low inter-
trial variability of MUA configurations corresponds to a collapse in the 
directions of velocities (with high magnitude of the latter), like the sys-
tem entering a funnel.
The ‘delay task’ (Go signal comes with a variable delay after the visual 
target), allows to further check our interpretation of specific MUA con-
figurations (clusters) as being associated with the completion of the 
motor plan. Preliminary analysis shows that pre-movement-related 

Fig. 1 a Model architecture. A network of columns with lateral inter‑
actions represents one layer of cortical area V4. b The theory predicts 
that noise correlations decay exponentially with lateral distance. c 
Decrease of noise correlations with lateral distance in the laminar 
recordings. d Recordings show that during attention, noise correla‑
tions decrease in superficial and increase in deep layers
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MUA cluster sequences during delay trials are consistent with those 
from other trial types, though their time course qualitatively differs in 
the two monkeys, possibly reflecting different computational options.
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The information that we receive through our sensory system (e.g. 
sound, vision, pain, etc), needs to be transmitted to different regions 
of the brain for its processing. When these regions are sufficiently sep-
arated from each other, the latency in the communication can affect 
the synchronization state; it is possible that the regions synchronize in 
phase or out of phase, or even not synchronize [1]. These types of syn-
chronization, when occur, can have important consequences in infor-
mation transmission and processing [2].
Here we study the information transmission in a V and a circular motif 
(see Fig. 1). We initially use the Kuramoto model to describe the nodes 
dynamics and derive analytical stability solutions for the V-motif for 
different delays and coupling strengths among the neurons as well 
as different spiking frequencies. We then analyze the effect that a 
third connection would have on the stable solutions as we change 
its axonal delay and synaptic strength. For a more realistic model, we 
simulate the Hodgkin-Huxley neuron model. For the V-motif we find 
that the delay can play an important role in the efficiency of the sig-
nal transmission. When we introduce a direct connection between 1 
and 3, we find changes in the stability conditions and so the efficacy 
of the information transmission. To distinguish between rate and tem-
poral coding, we modulate one of the elements with low and high 

frequency signals, respectively, and investigate the signal transmission 
to the other neurons using delayed mutual information and delayed 
transfer entropy [3].
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The current lack of knowledge on the precise neural circuits responsi-
ble for performing sensory and motor tasks, despite the large amounts 
of neuroscience data available, significantly slows down the develop-
ment of new treatments for impairments caused by neurodegenera-
tive diseases.
The Liquid State Machine (LSM) is one of the widely used paradigms 
for modelling brain computation. This model consists of a fixed recur-
rent spiking neural network, called Liquid, and a linear Readout unit 
with adjustable synapses. The model possesses, under idealised con-
ditions, universal real-time computing power [1]. It was shown that, 
when the connections in the Liquid are modelled as dynamical syn-
apses, this model can reproduce accurately the behaviour of the rat 
cortical microcircuits [1]. However, it is still largely unknown which 
neurons and synapses in the Liquid play a key role in a task performed 
by the LSM. Several proposed methods train the Liquid in addition to 
the Readout [2], which leads to improvements in accuracy and net-
work sparsity, but offers little insight into the functioning of the origi-
nal Liquid.
In the typical LSM architecture, the spike trains generated by the Liq-
uid neurons are filtered before being processed by the Readout. It was 
shown that using the exact spike times generated by the Liquid neu-
rons, rather than the filtered spike times, results in a much better per-
formance of LSMs on training tasks. The algorithm introduced, called 
the Orthogonal Forward Regression with Spike Times (OFRST), leads to 
higher accuracy and fewer Readout connections than the state-of-the-
art algorithm [3].
This work proposes an analysis of the underlying mechanisms used by 
the LSM to perform a computational task by searching for the key neu-
ral circuits involved. Given an LSM trained on a classification task, a new 
algorithm is introduced that identifies the corresponding task specific 
circuit (TSC), defined as the set of neurons and synapses in the Liquid 
that have a contribution to the Readout output. Thorough numerical 
simulations, I show that the TSC computed with the proposed algorithm 
has fewer neurons and higher performance when the training is done 
with OFRST compared with other state-of-the-art training methods 
(Fig. 1).
I introduce a new representation for the Liquid dynamical synapses, 
which demonstrates that they can be mapped onto operators on the Hil-
bert space of spike trains. Based on this representation, I develop a novel 
algorithm that removes iteratively the synapses of a TSC based on the 
exact spike times generated by the Liquid neurons. Additional numerical 
simulations show that the proposed algorithm improves the LSM classi-
fication performance and leads to a significantly sparser representation. 
For the same initial Liquid, but different tasks, the proposed algorithm 
results in different TSCs that, in some cases, have no neurons in common. 
These results can lead to new methods to synthesize Liquids by intercon-
necting dedicated neural circuits.

Fig. 1 Three bidirectionally connected neurons. Two outer nodes 
(1 and 3) are bidirectionally connected to a middle node (2) with 
the same synaptic strength K and delay δ thus creating the V‑motif. 
The addition of third bidirectional connection (white arrows) with 
synaptic strength K’ and delay δ’ between two outer nodes gives rise 
to the circular motif



Page 52 of 190BMC Neurosci 2019, 20(Suppl 1):56

References
1. Maass W, Natschläger T, Markram H. Computational models for generic 

cortical microcircuits. Computational neuroscience: A comprehensive 
approach 2004;18:575–605.

2. Yin J, Meng Y, Jin Y. A developmental approach to structural self‑organ‑
ization in reservoir computing. IEEE transactions on autonomous mental 
development 2012 Dec;4(4):273–89.

3. Florescu D, Coca D. Learning with precise spike times: A new approach to 
select task‑specific neurons. In Computational and Systems Neuroscience 
(COSYNE) 2018 Mar 2. COSYNE.

P83 
Cross‑frequency coupling along the soma‑apical dendritic axis 
of model pyramidal neurons
Melvin  Felton1, Alfred  Yu2, David  Boothe2, Kelvin  Oie2, Piotr  Franaszczuk2

1U.S. Army Research Laboratory, Computational and Information Sciences 
Division, Adelphi, MD, United States of America; 2U.S. Army Research 
Laboratory, Human Research and Engineering Directorate, Aberdeen 
Proving Ground, MD, United States of America
Correspondence: Piotr Franaszczuk (pfranasz@gmail.com)  
BMC Neuroscience 2019, 20(Suppl 1):P83

Cross-frequency coupling (CFC) has been associated with mental 
processes like perceptual and memory-related tasks, and is often 
observed via EEG and LFP measurements [1]. There are a variety of 
physiological mechanisms believed to produce CFC, and different 
types of network properties can yield distinct CFC signatures [2]. While 
it is widely believed that pyramidal neurons play an important role in 
the occurrence of CFC, the detailed nature of the contribution of indi-
vidual pyramidal neurons to CFC detected via large-scale measures of 
brain activity is still uncertain.
As an extension of our single model neuron resonance analysis [3], we 
examined CFC along the soma-apical dendrite axis of realistic models 
of pyramidal neurons. We configured three models to capture some 
variety that exists among pyramidal neurons in the neocortical and 
limbic regions of the brain. Our baseline model had the least amount 
of regional variation in conductance densities of the Ih and high- and 
low-threshold Ca2+ conductances. The second model had an expo-
nential gradient in Ih conductance density along the soma-apical 
dendrite axis, typical of some neocortical and hippocampal pyramidal 
neurons. The third model contained both the exponential gradient in 
Ih conductance density and a distal apical “hot zone” where the high- 
and low-threshold Ca2+conductances had densities 10 and 100 times 
higher, respectively, than anywhere else in the model (cf., [3]). We sim-
ulated two current injection scenarios: 1) perisomatic 4 Hz modulation 
with perisomatic, mid-apical, and distal apical 40 Hz injections; and 
2) distal 4 Hz modulation with perisomatic, mid-apical, and distal 40 
Hz injections. We used two metrics to quantify the strength of CFC—
height ratio and modulation index [4].

We found that CFC strength can be predicted from the passive filter-
ing properties of the model neuron. Generally, regions of the model 
with much larger membrane potential fluctuations at 4 Hz than at 40 
Hz (high Vm4Hz/Vm40Hz) had stronger CFC. The strongest CFC values 
were observed in the baseline model, but when the exponential gradi-
ent in Ih conductance density was added, CFC strength decreased by 
almost 50% at times. On the other hand, including the distal hot zone 
increased CFC strength slightly above the case with only the exponen-
tial gradient in Ih conductance density.
This study can potentially shed light on which configurations of fast 
and slow input to pyramidal neurons can produce the strongest CFC, 
and where exactly within the neuron CFC is strongest. In addition, 
this study can illuminate the reasons why there may be differences 
between CFC strength observed in different regions of the brain and 
between different populations of neurons.
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The relationship between neuronal connectivity and frequency in 
the power spectrum of calculated local field potentials is poorly char-
acterized in models of cerebral cortex. Here we present a simulation 
of cerebral cortex based on the Traub model [1] implemented in the 
GENESIS neuronal simulation environment. We found that this model 
tended to produce high neuronal firing rates and strongly rhythmic 
activity in response to increases in neuronal connectivity. In order 
to simulate spontaneous brain activity with a 1/f power spectrum as 
observed using electroencephalogram (EEG) (cf. [2]), and to faithfully 
recreate the sparse nature of cortical neuronal activity we re-tuned the 
original Traub parameters to eliminate intrinsic neuronal activity and 
removed the gap junctions. While gap junctions are known to exist 
in adult human cortex, their exact functional role in generating spon-
taneous brain activity is at present poorly characterized. Tuning out 
intrinsic neuronal activity allows changes to the synaptic connectivity 
to be central to changing overall model activity.
The model we present here consists of 16 simulated cortical regions 
each containing 976 neurons (15,616 neurons total). Simulated cor-
tical regions are connected via short association fibers between 
adjacent cortical regions originating from pyramidal cells in cortical 
layer 2/3 (P23s). In the biological brain these short association fibers 
connect local cortical regions that tend to share a function like the 
myriad of visual areas of the posterior, parietal and temporal cortices 
[4]. Because of their ubiquity across cortex short association fibers 
were a natural starting point for our simulations. Long range layer 2/3 
pyramidal cell connections terminated on neurons in other cortical 
regions with the same connectivity probabilities that they have locally 
within a region. We then varied the relative levels of long range and 
short-range connectivity and observed the impact on overall model 
activity. Because model dynamics were very sensitive to the overall 
number of connections we had to be careful that the simulations we 

Fig. 1 The task specific circuits (TSCs), computed with the proposed 
algorithm, corresponding to the classification task of discriminating 
jittered spike trains belonging to two classes. The training is done 
with three methods: OFRST, Least Squares, and Lasso. OFRST, the only 
method processing exact spike times, leads to the smallest circuit and 
the best performance on the validation dataset
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were comparing only varied in proportion of long and short range 
connections and not in terms of total connectivity.
Our starting point for these simulations was a model with relatively 
sparse connectivity, which exhibited 1/f power spectrum with strong 
peaks in power spectral density at 20 Hz and 40 Hz ((Fig. 1), black 
line). We found that increases in long range connectivity increased 
power across the entire 1 to 100 Hz range of the overall local field 
potential of the model ((Fig. 1), blue line) and also increased heteroge-
neity in the power spectra of the 16 individual cortical regions. Increas-
ing short range connectivity had the opposite effect, with overall 
power in the low frequency range (1 to 10 Hz) being reduced while 
the relative intensity at 20 Hz and 40 Hz remained constant (Fig. 1, red 
line). We will explore how consistent this effect is across varying levels 
of short- and long-range connectivity and model configuration.
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Transcranial electrical stimulation produces an electrical field that propa-
gates through cortical tissue. Finite element modeling has shown that 
individual variation in spatial morphology can lead to variability in field 
strength within target structures across individuals [1]. Using GENESIS, 
we simulated a 10x10 mm network of neurons with spatial arrangements 
simulating microcolumns of a single cortical region spread across sulci 
and gyri. We modeled a transient electrical field with distance-dependent 
effects on membrane polarization, simulating the nonstationary effects of 
electrical fields on neuronal activity at the compartment level. In previous 
work, we have modeled applied electrical fields using distant electrodes, 
resulting in uniform orientation and field strength across all compart-
ments. In this work, we examine a more realistic situation with distance- 
and orientation-dependent drop-off in field strength. As expected, this 
change resulted in a greater degree of functional variability between 
microcolumns and reduced overall network synchrony. We show that the 
spatial arrangement of cells within sulci and gyri yields sub-populations 
that are differentially susceptible to externally applied electric fields, 
in both their firing rates and the functional connectivity with adjacent 
microcolumns. In particular, pyramidal cell populations with inconsist-
ently oriented apical dendrites produce less synchronized activity within 
an applied external field. Further, we find differences across cell types, 
such that cells with reduced dendritic arborization had greater sensitivity 
to orientation changes due to placement within sulci and gyri. Given that 
there is individual variability in the spatial arrangement of even primary 
cortices [2], our findings indicate that individual differences in outcomes 
of neurostimulation can be the result of variations in local topography. In 
summary, aside from increasing cortical surface area and altering axonal 
connection distances, cortical folding may additionally shape the effects 
of spatially local influences such as electrical fields.
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Implementing morphologically and biophysically accurate single cell 
models, capturing the electrophysiological variability observed experi-
mentally, is the first crucial step to obtain the building blocks to con-
struct a brain region at the cellular level.
We have previously applied a unified workflow to implement a set of 
optimized models of CA1 neurons and interneurons of rats [1]. In this 
work, we apply the same workflow to implement detailed single cell 
models of CA1 and DG mouse neurons. An initial set of kinetic mod-
els and dendritic distributions of the different ion channels present 
on each type of cells studied neurons was defined, consistently with 
the available experimental data. Many electrophysiological features 

Fig. 1 Differential impact of changes to short‑ and long‑range 
connectivity. Black line shows power spectrum of model LFP. Blue 
line shows increase in LFP power across 1 to 100 Hz frequency range 
when long range connectivity is increased. Red line shows reduction 
in model power in 1 to 10 Hz range due to increase in short range 
connectivity
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were then extracted from a set of experimental traces obtained under 
somatic current injections. For this purpose, we used the eFEL tool 
available on the Brain Simulation Platform of the HBP (https ://colla 
b.human brain proje ct.eu/#/colla b/1655/nav/66850 ). Interestingly, for 
both cell types we observed rather different firing patterns within the 
same cell population, suggesting that a given population of cells in the 
mouse hippocampus cannot be considered as belonging to a single 
firing type. For this reason, we have chosen to cluster the experimental 
traces on the basis of the number of spikes as a function of the current 
injection and optimize each group independently from the others. We 
identified four different types of firing behavior for both DG’s granule 
cells and CA1’s pyramidal neurons. To create the optimized models, 
we used the BluePyOpt Optimization library [2] with several differ-
ent accurate morphologies. Simulations were run on HPC systems at 
Cineca, Jülich, and CSCS. The results of the models for CA1 and DG will 
be discussed also in comparison with the models obtained for the rat.
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The observation of place cells in the hippocampus has suggested that 
this brain area plays a special role in encoding spatial information. 
However, several studies show that place cells do not only encode 
position in physical space, but that their activity is in fact modulated 
by several other variables, which include the behavior of the animal 
(e.g. speed of movement or head direction), the presence of objects 
at particular locations, their value, and interactions with other animals. 
Consistent with these observations, place cell responses are reported 
to be rather unstable, indicating that they encode multiple variables, 
many of which are not under control in experiments, and that the neu-
ral representations in the hippocampus may be continuously updated. 
Here we propose a memory model of the hippocampus that provides 
a novel interpretation of place cells and can explain these observa-
tions. We hypothesize that the hippocampus is a memory device that 
takes advantage of the correlations between sensory experiences to 
generate compressed representations of the episodes that are stored 
in memory. We have constructed a simple neural network model that 
can efficiently compress simulated memories. This model naturally 
produces place cells that are similar to those observed in experi-
ments. It predicts that the activity of these cells is variable and that the 
fluctuations of the place fields encode information about the recent 
history of sensory experiences. Our model also suggests that the hip-
pocampus is not explicitly designed to deal with physical space, but 
can equally well represent any variable with which its inputs correlate. 
Place cells may simply be a consequence of a memory compression 
process implemented in the hippocampus.
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Neurons in a network must integrate information from multiple inputs, 
and how this information is encoded (e.g. redundantly between mul-
tiple sources, or uniquely by a single source) is crucial to the under-
standing of how neuronal networks transmit information. Information 
theory provides robust measures of the interdependence of multiple 
variables, and recent work has attempted to disentangle the different 
types of interactions captured by these measures (Fig 1A).
The Information Decomposition of Williams and Beer proposed 
decomposing the mutual information into unique, redundant, and 
synergistic components [1, 2]. This has been fruitfully applied, par-
ticularly in computational neuroscience, but there is no generally 
accepted method for its computation. Bertschinger et al. [3] devel-
oped one particularly rigorous approach, but it requires an intensive 
optimization over probability space (Fig 1B).
Independently, the quantitative genetics community has developed 
the Information Delta measures for detecting non-pairwise interac-
tions for use in genetic datasets [4, 5, 6]. This has been exhaustively 
characterized for the discrete variables often found in genetics, yield-
ing a geometric interpretation of how an arbitrary discrete function 
maps onto delta-space, and what its location therein encodes about 
the interaction (Fig 1C); however, this approach still lacks certain 
generalizations.
In this paper, we show that the Information Decomposition and Infor-
mation Delta frameworks are largely equivalent. We identify theo-
retical advances in each that can be immediately applied towards 
answering questions open in the other. For example, we find that the 
results of Bertschinger et al. answer an open question in the Informa-
tion Delta framework, specifically how to address the problem of link-
age disequilibrium dependence in genetic data. We develop a method 
to computationally map the probability space defined by Bertschinger 
et al. into the space of delta measures, in which we can define a plane 
to which it is constrained with a well-defined optimum (Fig 1D). These 
optima occur at points in delta space which correspond to known dis-
crete functions. This geometric mapping can thereby both side-step 
an expensive optimization and characterize the functional relation-
ships between neurons. This unification of theoretical frameworks 
provides valuable insights for the analysis of how neurons integrate 
upstream information.
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Fig. 1 a Let x,y be neurons which determine z. b The Information 
Decomposition (ID) breaks information into unique, redundant and 
synergistic components. c Delta theory maps functions onto a space 
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This identifies the function by which z integrates information
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The structure of white matter in patients affected by Alzheimer’s dis-
ease (AD) and age-related dementia, typically reveals aberrant myeli-
nation, suggesting that ensuing changes in axonal conduction speed 
could contribute to cognitive impairment and behavioral deficits 
observed in those patients. Experiments ex vivo in a murine model of 
AD confirm these observations but also pinpoint to multiple, coexist-
ing mechanisms that could intervene in regulation and maintenance 
of integrity of myelinated fibers. Density of myelinated fibers in the 
corpus callosum indeed appears not to be affected by disease progres-
sion in transgenic mice whereas density of myelinating oligodendro-
cyte is increased with respect to wild-type animals. Significantly, this 
enhancement correlates with an increased expression of myelin basic 
protein (MBP); as well as with nodes of Ranvier that are shorter and 
more numerous; and a decrease in axonal conduction speed. We show 
that these results can be reproduced by a classical model of action 
potential propagation in myelinated axons by the combination of 
three factors that are: (i) a reduction of node length in association with 
(ii) an increase of both internode number and (iii) myelin thickness. 
In the simple scenario of two interacting neural populations where a 
recently-observed inhibitory feedback on the degree of myelination is 
incorporated as a function of synaptic connection disrupted by extra-
cellular amyloid beta oligomers (Aβ1-42), we show that the reduction 
of axonal conduction speed by the concerted increase of Ranvier’s 
node number and myelin thickness accounts for minimizing the ener-
getic cost of interacting population activity.
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We analyze the behavior of a network of active rotators [1] containing 
both oscillatory and excitable elements. We assume that the oscilla-
tory character of the elements is continuously distributed. The system 
exhibits three main dynamical behaviors (i) a quiescent phase in which 
all elements are stationary, (ii) global oscillations in which all elements 
oscillate in a synchronized manner, and (iii) partial oscillations in which 
a fraction of the units oscillates, partially synchronized among them 
(analogous to the case in [2]). We also observe that the pulse dura-
tion is shorter for the excitable units than for the oscillating ones, even 
though the former has smaller intrinsic frequencies than the latter. 
Apart from the standard usage of the Kuramoto order parameter (or 

its variance) as a measure of synchrony, and consequently, as a meas-
ure of the macroscopic state of the system, we are interested in finding 
an observable that helps gain insight on what is the position within a 
hierarchy of states. We can call this measure the potential or energy of 
the system, and define it as the integral over the phases, by gradient 
dynamics [3]. This variable can be considered as a measure of multi-
stability. We also study more complex coupling situations, included 
the existence of negative links between coupled elements in a whole-
brain network, mimicking the inhibitory connections present in the 
brain.
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Previous studies have established the involvement of prefrontal cortex 
(PFC) neurons in the decision process during a distance discrimina-
tion task. However, no single-neuron correlates of important task vari-
ables such as trial difficulty was found. Here, we perform a trial-by-trial 
analysis of ensembles of simultaneously recorded neurons, specifi-
cally, multiple single-unit data from two rhesus monkeys performing 
the distance discrimination task. The task consists in the sequential 
presentation of two visual stimuli (S1 and S2, in this order) separated 
by a temporal delay. The monkeys had to report which stimulus was 
farthest from a reference point after a GO signal consisting in the pres-
entation of the same two stimuli in the two sides of the screen. Six 
stimulus distances were tested (from 8 to 48mm), generating five lev-
els of difficulty, each measured as the difference |S2-S1| between the 
relative positions of the stimuli (difficulty increases with |S2-S1|).
We analyzed the neural ensemble data with a Poisson hidden Markov 
model (HMM). A Poisson-HMM describes the activity of each single 
trial by a sequence of vectors of firing rates across simultaneously 

Fig. 1 a First transition time after S2 evaluated across trial difficulties 
|S2‑S1|. Higher |S2‑S1| means lower difficulty. Dashed line is the linear 
regression interpolation (p<0.05). **=p<0.01, Welch’s t‑test. b Mean 
state duration computed before and after the GO signal on correct 
and incorrect trials (2‑way ANOVA, significant interaction and effects 
of trial type and time interval; p<0.001)
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recorded neurons. Each vector of firing rates is a metastable ‘state’ of 
the neural activity. HMM allows to identify changes in neural state 
independently of external triggers, which have previously been linked 
to states of attention, expectation and decision making, to name a few.
For each experimental session, we fit the HMM to the neural ensemble 
starting from random initial conditions and different numbers of states 
(between 2 and 5) using maximum likelihood (Baum-Welch algo-
rithm). The fitting procedure was repeated 5 times with new random 
initial conditions until a convergence criterion was reached (capped 
at 500 iterations). The model with the smallest BIC was selected as the 
best model. Post-fitting, a state was assigned to each 5ms bin of data if 
its posterior probability given the data exceeded 0.8. To further avoid 
overfitting, only states exceeding 0.8 for at least 50 consecutive ms 
were kept.
First, we looked for a relationship between trial difficulty and the first 
state transition time after S2 presentation. We found that faster state 
transitions occurred in easier trials (Fig. 1a), but no correlation was 
found with first transition times after the GO signal. This demonstrates 
that task difficulty modulates the neural dynamics during decisions, 
and this modulation occurs in the deliberation phase and is absent 
when the monkeys convert the decision into action.
Second, we found that RTs were significantly longer in error trials 
compared to correct trials overall (p<0.001, t-test). Thus, we investi-
gated the relationship between reaction times and neural dynamics. 
We focused on a larger time window, from 400 ms before S2 until the 
beginning of the following trial, in order to better capture the whole 
dynamics of state transitions. We found longer mean state durations 
after S2 in error trials compared to correct trials (Fig. 1b), a signature of 
a slowing down of cortical dynamics during error trials. The effect was 
largest in the period from S2 to the GO signal, i.e., during the delib-
eration period (2-way ANOVA, interaction term, p<0.001). These results 
indicate a global slowdown of the neural dynamics prior to errors as 
the neural substrate of longer reaction times during incorrect trials.
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Humans are highly skilled at interpreting intent or social behavior 
from strongly impoverished stimuli [1]. The neural circuits that derive 
such judgements from image sequences are entirely unknown. It has 
been hypothesized that this visual function is based on high-level cog-
nitive processes, such as probabilistic reasoning. Taking an alternative 
approach, we show that such functions can be accomplished by rela-
tively elementary neural networks that can be implemented by simple 
physiologically plausible neural mechanisms, forming a hierarchical 
(deep) neural model of the visual pathway.
Methods: Extending classical biologically-inspired models for object 
and action perception [2, 3] and alternatively a front-end that exploits a 
deep learning model (VGG16) for the construction of low and mid-level 
feature detectors, we built a hierarchical neural model that reproduces 
elementary psychophysical results on animacy and social perception 
from abstract stimuli. The lower hierarchy levels of the model consist 
of position-variant neural feature detectors that extract orientation and 
intermediately complex shape features. The next-higher level is formed 
by shape-selective neurons that are not completely position-invariant, 
which extract the 2D positions and orientation of moving agents. A sec-
ond pathway analyses the 2D motion of the moving agents, exploiting 
motion energy detectors. Exploiting a gain-field network, we compute 
the relative positions of the moving agents and analyze their relative 
motion. The top layers of the model combine the mentioned features 
that characterize the speed and smoothness of motion, and spatial rela-
tionships of the moving agents. The highest level of the model consists 
of neurons that compute the perceived agency of the motions, and that 
classify different categories of social interactions.

Results: Based on input video sequences, the model successfully 
reproduces results of [4] on the dependence of perceived animacy on 
motion parameters, and its dependence on the alignment of motion 
and body axis. The model reproduces the fact that a moving figure 
that with a body axis, like a rectangle, result in stronger perceived ani-
macy than a moving circle if the body axis is aligned with the motion 
direction. In addition, the model classifies different interactions from 
abstract stimuli, including six categories of social interactions that 
have been frequently tested in the psychophysical literature (follow-
ing, fighting, chasing, playing, guarding, and flirting) (e.g. [5, 6]).
Conclusion: Using simple physiologically plausible neural circuits, 
the model accounts simultaneously for a variety of effects related to 
animacy and social interaction perception. Even in its simple form 
the model proves that animacy and social interaction judgements 
partly can be derived by very elementary operations within a hierar-
chical neural vision system, without a need of sophisticated proba-
bilistic inference mechanisms. The model makes precise predictions 
about the tuning properties of different types of neurons that should 
be involved in the visual processing of such stimuli. Such predictions 
might serve as starting point for physiological experiments that inves-
tigate the correlate of the perceptual processing of animacy and inter-
action at the single-cell level.
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Recurrent Artificial Neural Networks (RNNs) are popular models for 
neural structures in motor control. A common approach to build such 
models is to train RNNs to reproduce the input-output mapping of 
biological networks. However, this approach suffers from the prob-
lem that the internal dynamics of such networks are typically highly 
under-constrained: even though they correctly reproduce the desired 
input-output behavior, their internal dynamics are not under control 
and usually deviate strongly from those of real neurons. Here, we show 
that it is possible to accomplish the dual goal of both reproducing the 
target input-output behavior and constraining the internal dynam-
ics to be similar to the ones of real neurons. As a test-bed, we simu-
lated an 8-target reaching task; we assumed that a network of 200 
primary motor cortex (M1) neurons generates the necessary activity 
to perform such tasks in response to 8 different inputs and that this 
activity drives the contraction of 10 different arm muscles. We further 
assumed to have access to only a sample of M1 neurons (30%) and 
relevant muscles (40%). In particular, we first generated multipha-
sic EMG-like activity by drawing samples from a Gaussian process. 
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Secondly, we generated ground truth M1-like activity by training a sta-
bility-optimized circuit (SOC) network [2] to reproduce the EMG activ-
ity through gain modulation [1]. Finally, we trained two RNN models 
with the full-FORCE method [3] to reproduce the subset of observed 
EMG activity; critically, while one of the networks (FF) was free to reach 
such a goal through the generation of arbitrary dynamics, the other 
(FFH) was constrained to do so by generating, through its recurrent 
dynamics, activity patterns resembling those of the observed SOC 
neurons. To assess the similarity between the activities of FF, FFH and 
SOC neurons, we applied canonical correlation analysis (CCA) on the 
latent factors extracted through PCA. This analysis revealed that while 
both the FF and FFH network were able to reproduce the EMG activi-
ties accurately, the FFH network, that is the one with constrained inter-
nal dynamics, showed a greater similarity in the neural response space 
with the SOC network. Such similarity is noteworthy since the sample 
used to constrain the internal dynamics was small. Our results sug-
gest that this approach might facilitate the design of neural network 
models that bridge multiple hierarchical levels in motor control, at the 
same time including details of available single-cell data.
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Binary decisions are presumably made by weighing and comparing 
evidence, which can be modeled using the threshold gate formal-
ism: the decision depends on whether or not a weighted sum of input 
variables S exceeds a threshold θ. Incidentally, this is exactly how the 
first neuron model proposed by McCulloch and Pitts in 1943, and later 
used in the perceptron, worked. But can biological neurons implement 
such a function, assuming that the input variables are the afferent fir-
ing rates? This matter is unclear, because biological neurons deal with 
spikes, not firing rates.
We investigated this issue through analytical calculations and numeri-
cal simulations, using a leaky integrate-and-fire (LIF) neuron (with 
τ  =  10 ms). The goal was to adjust the LIF’s threshold so that it fires 
at least one spike over a period T if S>θ (“positive condition”), and 
none otherwise (“negative condition”). We considered two different 
regimes: input spikes were either asynchronous (i.e., latencies were 
uniformly distributed over [0; T]), or synchronous. In the latter case, 
the spikes arrived in discrete periodic volleys (with frequency fo), and 
with a certain dispersion inside each volley (σ). As Fig. 1 Top shows, in 
the asynchronous regime any threshold will lead to false alarms and/
or misses. Conversely, in the synchronous regime, it is possible to set a 
threshold that will be reached in the positive condition, but not in the 
negative one.
To demonstrate this more rigorously, we computed the receiver oper-
ating characteristic (ROC) curve as a function of T in both regimes 
(Fig. 1 Bottom). For the synchronous regime, we varied fo and σ. 
In short, the asynchronous regime leads to poor accuracy, which 

increases with T, but very slowly. Conversely, the synchronous regime 
leads to much better accuracy, which increases with T, but decreases 
with σ and fo.
In conclusion, if the decision needs to be taken in a reasonable 
amount of time, only the synchronous regime is viable, and the pre-
cision of the synchronization should be in the millisecond range. We 
are now exploring more biologically realistic regimes in which only a 
subset of the afferents is synchronized, in between the two extreme 
examples in Fig. 1. In the brain, the required synchronization could 
come from abrupt changes in the environment (e.g., stimulus onset), 
active sampling (e.g., saccades and microsaccades, sniffs, licking, 
touching), or endogenous brain oscillations. For example, rhythms in 
the beta or gamma ranges that correspond to different values for fo 
lead to different efficiency in our scheme for transmitting information, 
which implies constraints on the volley precision σ.
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Due to the inherent complexity of information processing in the brain, 
many different approaches have been taken to creating models of 
neural circuits, each making different choices about the level of bio-
logical detail to incorporate and the mathematical/analytical trac-
tability of the models. Some approaches favour investigating large 
scale, brain wide behaviour with interconnected populations, each 
representing the activity of many neurons. Others include many of 
the known biophysical details of the constituent cells, down to the 
level of ion channel kinetics. These different approaches often lead to 
disjointed communities investigating the same system from very dif-
ferent perspectives. There is also an important issue of different simu-
lation technologies being used in each of these communities (e.g. The 
Virtual Brain; NEURON), further preventing exchange of models and 
theories.

Fig. 1 (Top left) The asynchronous regime. Threshold = 24 causes a 
hit for the positive condition, but also a false alarm for the negative 
one. (Top right) The synchronous regime. Threshold = 105 causes a 
hit for the positive condition, and no false alarm for the negative one. 
(Bottom left) Examples of ROC curves. (Bottom right) ROC area as a 
function of T, in the asynchronous and synchronous conditions
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To address these issues, we have extended the NeuroML model speci-
fication language [1, 2], which already supports descriptions of net-
works of biophysically complex, conductance based cells, to allow 
descriptions of population units where the average activity of the cells 
is given by a single variable. With this, it is possible to describe clas-
sic models such as that of Wilson and Cowan [3] in the same format as 
more detailed models. To demonstrate the utility of this approach we 
have converted a recent large-scale network model of the macaque 
cortex [4] into NeuroML format. This model features the interaction 
between the feedforward and feedback signalling across multiple 
scales. In particular, interactions inside cortical layers, between layers, 
between areas and at the whole cortex level are simulated. With the 
NeuroML implementation we were able to replicate the main findings 
described in the original paper.
Compatibility with NeuroML comes with other advantages, particu-
larly the ability to visualise the structure of models in the format in 3D 
on Open Source Brain [5] as well as analyse the network connectivity 
and run and replay simulations (http://www.opens ource brain .org/
proje cts/mejia setal 2016). This extension to NeuroML for neural mass 
models, the support in compatible tools and platforms and exam-
ple networks in this format will help enable sharing, comparison and 
reuse of models between researchers taking diverse approaches to 
understanding the brain.
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Modern Neuroscience relies heavily on software. From the gather-
ing of data, simulation of computational models, analysis of large 
amounts of information, to collaboration and communication tools 
for community development, software is now a necessary part of the 
research pipeline.
While the Neuroscience community is gradually moving to the use of 
Free/Open Source Software (FOSS) [11], our tools are generally com-
plex and not trivial to deploy. In a community that is as multidiscipli-
nary as Neuroscience, a large chunk of researchers hails from fields 
other than computing. It, therefore, often demands considerable time 
and effort to install, configure, and maintain research tool sets.
In NeuroFedora, we present a ready to use, FOSS platform for Neu-
roscientists. We leverage the infrastructure resources of the FOSS 
Fedora community [3] to develop a ready to install operating sys-
tem that includes a plethora of Neuroscience software. All software 

included in NeuroFedora is built in accordance with modern software 
development best practices, follows the Fedora community’s Quality 
Assurance process, and is well integrated with other software such as 
desktop environments, text editors, and other daily use and develop-
ment tools.
While work continues to make more software available in NeuroFe-
dora covering all aspects of Neuroscience, NeuroFedora already pro-
vides commonly used Computational Neuroscience tools such as the 
NEST simulator [12], GENESIS [2], Auryn [8], Neuron [1], Brian (v1 and 
2) [5], Moose [4], Neurord [10], Bionetgen [9], COPASI [6], PyLEMS [7], 
and others.
With up to date documentation atneuro.fedoraproject.org, we invite 
researchers to use NeuroFedora in their research and to join the team 
to help NeuroFedora better aid the research community.
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Background: In many complex systems, when an event occurs, other 
units follow, giving rise to a cascade. The spreading of activity can be 
quantified by the branching ratio σ, defined by the number of active 
units at the present time over the one at the previous time step [1]. If 
σ = 1, the system is critical. In neuroscience, a critical system is believed 
to be more efficient [2]. For a critical branching, the system will visit a 
higher number of states [3]. Utilizing MEG recordings, we characterize 
patterns of activity at the whole brain level, and we compare the flex-
ibility of patterns observed in healthy controls and Parkinson’s disease 
(PD). We hypothesize that the damages to the neuronal circuitry will 
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move the network to a less efficient and flexible state, and that this 
may indicate clinical disability.
Methods: We recorded five minutes of closed eyes resting-state MEG 
in two cohorts: thirty-nine PD patients (20 males and 19 females, age 
64.87 ± 9.12 years) matched with thirty-eight controls (19 males and 
19 females, age 62.35 ± 8.74 years). The source-level time series of 
neuronal activity were reconstructed in 116 regions, by a beamformer 
approach based on the native MRI. The time series were filtered in the 
classical frequency bands. An avalanche was defined as a continuous 
sequence of time bins with activity on any region. T σ was estimated 
based on the geometric mean. We then counted the number of differ-
ent patterns of avalanches that were present in each subject, and com-
pared them between groups by permutation testing (Fig. 1). Finally, 
the clinical state was evaluated using the UPDRS-III scale. The relation-
ship occurring between the number of patterns a patient visited and 
its clinical phenotype was assessed using linear correlation.
Results: Firstly, the analysis of sigma shows that MEG signals are in the 
critical state. Furthermore, the frequency band analysis showed that 
criticality is not a frequency-specific phenomenon. However, the con-
tribution of each region to the avalanche patterns was frequency spe-
cific A comparison between healthy controls and PD patients shows 
that the latter tend to visit a lower number of patterns (for broad band 
p = 0.0086). The lower the number of visited patterns, the greater their 
clinical impairment.
Discussion: Here we put forward a novel way to identify brain states 
and quantify their flexibility. The contribution of regions to the diver-
sity of patterns is heterogeneous and frequency specific, giving rise 
to frequency specific topologies Although the number of patterns 
of activity observed across participants is varied, we found that they 
are substantially reduced in the PD patients. Moreover, the amount of 
such reduction is significantly associated with the clinical disability.
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We know that the brain can estimate what is the expected value of an 
input signal. Up to some extent, signals that differ slightly from this 
expectation will be ignored, whereas errors that exceed some particu-
lar threshold will unavoidably convey a behavioral or physiological 
response. In this work, we assume that this threshold should be vari-
able and therefore dependent on the input uncertainty. Consequently, 
we present here a biologically plausible model of how the brain can 
estimate uncertainty in sensory signals. In the predictive coding frame-
work, our model will attempt to assess the validity of sensory predic-
tions and regulate learning accordingly. In this work, we use gradient 
ascent to derive the formulation that defines a dynamical system which 
provides estimations of input data while also estimating their variance. 
We start with the assumption that the probability of our sensory input 
being explained by internal parameters of the model and other exter-
nal signals follows a normal distribution. Similar to the approach of [1], 
we minimize the error in predicting the input signal but, instead of fix-
ing the standard deviation to one static value, we estimate the variance 
of the input online, as a parameter in our dynamical system. The result-
ing model is presented as a simple recurrent neural network in Fig. 1C 
(nodes change with the weighted sum of inputs and vertices follow 
Hebbian-like learning rules). This microcircuit becomes a model of how 
cortical networks use expectation maximization to estimate mean and 
variance of the input signals simultaneously (Fig. 1D). We carefully ana-
lyze the implications of estimating uncertainty in parallel to minimizing 
prediction error to observe that the computation of the variance results 

Fig. 1 a Reconstructed MEG time series. b Z‑scores of each time 
series, binarized as abs(z) > 3. c Binarized time series, red rectangle is 
an avalanche. d Active regions (yellow) in an avalanche. e Avalanche 
pattern: any area active in any moment during the avalanche. f All 
individual patterns that have occurred (i.e. no pattern repetition is 
shown in this plot)

Fig. 1 a Cortical representation of our microcircuit model, drawn 
schematically in c. b extension beyond the Rao‑Ballard model of 
predictive coding by our model. d A fairly linear profile in model esti‑
mated variance and real variance. e Shows the prediction error over 
time comparing our model (blue) and a standard gradient descent 
method (orange) for 3 initial estimates of variance
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in the minimization of the relative error (absolute error divided by vari-
ance). While classical models of predictive coding assume the variance 
to be a fixed constant extracted from the data once, we observe that 
estimating the variance online increases considerably learning speed at 
the cost of sometimes converging to less accurate estimations (Fig. 1E). 
The learning process becomes more resilient to input noise than previ-
ous approaches while requiring accurate estimates of the expected input 
variance. We discuss that this system can be implemented under biologi-
cal constraints. In that case, our model predicts that two different classes 
of inhibitory interneurons in the Neocortex must play a role in either esti-
mating mean or variance and that external modulation of the variance-
computing interneurons results in the modulation of learning speed, 
promoting the exploitation of existing models versus the adaptation of 
existing ones.
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It has been recently shown that it is possible to use sinusoidal elec-
tric fields at kHz frequencies to enable focused, yet non-invasive, 
neural stimulation at depth by delivering multiple electric fields to 
the brain at slightly different frequencies (f1and f2) that are them-
selves too high to recruit effective neural firing, but for which the 
offset frequency is low enough to drive neural activity. This is called 
temporal interference (TI) [1]. However, it is not yet known the 
mechanism by which these electric fields are able to depolarise 
the cell membrane at the difference frequency despite the lack of 
depolarization by the individual kHz fields. There is some theoreti-
cal analysis into showing how neural stimulation at f1, f2<150Hz 
generates activity at the difference (f1-f2) and sum (f1+f2) of the 

frequencies due to the non-linearity of the spiking mechanism in 
neurons [2] via frequency mixing (FM). Yet, this approach is not 
general enough to explain why at higher frequencies we still see 
activity at the difference (f1-f2) with no activity present at any other 
frequency. To model the non-linearity present in neurons we pro-
pose using a Volterra expansion. First, we show that any non-linear 
system of order P when stimulated by N sinusoids will output a lin-
ear combination of sinusoids at frequencies given by all the possi-
ble linear combinations of the original frequencies with coefficients 
±{0, 1, …, P}. This is consistent with [2] who give output frequencies 
at fout = nf1+mf2for n, m = ±{0, 1, 2}. We also show that the ampli-
tude of each of the sinusoidal components at the output depends 
on the P-dimensional Fourier transforms of the Pth order kernel of 
the Volterra expansion evaluated at the stimulation frequencies (e.g. 
for a P = 2 system Ψ(±f{1, 2}, ±f{1, 2})) We simulate a population of 
leaky integrate and fire neurons stimulated by two sinusoidal cur-
rents at f1and f2and record the average population firing rate. For 
low frequencies (Fig. 1a), we see all combinations nf1+mf2as in [2]. 
For high frequencies (Fig. 1b), we only find f1-f2as in [1].
We then obtain the second order Volterra kernel using the Lee-
Schetzen method [3]. The 2D Fourier transform of the kernel is 
shown in Fig. 1c. The dots show the 16 coefficients corresponding 
to |Ψ(±f{1, 2}, ±f{1, 2})|. As shown, for high stimulation frequencies, 
only the coefficients corresponding to f1-f2and the DC term are 
high enough to generate a response in the network, thus explain-
ing TI stimulation. For low stimulation frequencies (<150Hz), all 
coefficients are high enough to produce a significant response at all 
nf1+mf2.
We have generalised previous experimental and theoretical results 
on temporal interference and frequency mixing. Understanding the 
mechanism of temporal interference stimulation will facilitate its 
clinical adoption, help develop improvement strategies and may 
reveal new computational principles of the brain.
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Recent advances in neuronal recording techniques have led to the 
availability of large datasets of neuronal activity. This creates new chal-
lenges for neural data analysis methods: 1) scalability to larger num-
bers of neurons, 2) combining data on different temporal and spatial 
scales e.g. single units and local field potentials and 3) interpretability 
of the results.
We propose a new approach to these challenges: Neural Topic Mod-
elling, a neural data analysis tool based on Latent Dirichlet Allocation 
(LDA), a method routinely used in text mining to find latent topics in 
texts. For Neural Topic Modelling, neural data is converted into the 
presence or absence of discrete events (e.g. neuron 1 has a higher fir-
ing rate than usual), which we call “neural words”. A recording is split 
into time windows that reflect stimulus presentation (“neural docu-
ments”) and the neural words present in each neural document are 
used as input to LDA. The result is a number of topics—probability 
distributions over words—which best explain the given occurrences of 
neural words in the neural documents.
To demonstrate the validity of Neural Topic Modelling we analysed an 
electrophysiological dataset of visual cortex neurons recorded with a 

Fig. 1 a, b FM and TI respectively on 1000 LIF neurons. c PSD of the 
2D‑Fourier Transform of the second order Volterra kernel of a non‑
linear system consisting of the LIF neurons used in a and b explaining 
both FM and TI
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Neuropixel electrode. The spikes were translated into four simple neu-
ral word types: 1) increased firing rate in neuron i, 2) decreased firing 
rate in neuron i, 3) small inter-spike intervals in neuron i, 4) neurons i 
and j are simultaneously active.
Neural Topic Modelling identifies topics in which the neural words are 
similar in their preferences for stimulus location and brightness. Five 
out of ten topics exhibited a clear receptive field (RF)—a small region 
to which the words in the topic responded preferentially (positive RF, 
see Fig. 1 D) or non-preferentially (negative RF, see Fig. 1 C) as meas-
ured by weighted mean probabilities of the appearance of topic words 
given the stimulus location. The topic receptive fields overlap with 
the general mean probability of a word occurring given the stimulus 
location (see Fig. 1 A), but the topics responded to different subre-
gions (see Fig. 1 B) and some were brightness-sensitive (see Fig. 1 D, 
right). Additionally, topics seem to reflect proximity on the recording 
electrode. We confirmed that topic groupings were not driven by word 
order or overall word count.
Neural Topic Modelling is an unsupervised analysis tool that receives 
no knowledge about the cortex topography nor about the spatial 
structure of the stimuli, but is nonetheless able to recover these rela-
tionships. The neural activity patterns used as neural words are inter-
pretable by the brain and the resulting topics are interpretable by 
researchers. Converting neural activity into relevant events makes the 
method scalable to very large datasets and enables the analysis of 
neural data recordings on different spatial or temporal scales. It will be 
interesting to apply the model to more complex datasets e.g. in behav-
ing mice, or to datasets where the neural representation of the stimu-
lus structure is less clear e.g. for auditory or olfactory experiments.
The combination of scalability, applicability across temporal and spa-
tial scales and the biological interpretability of Neural Topic Modelling 
sets this approach apart from other machine learning approaches to 
neural data analysis. We will make Neural Topic Modelling available to 
all researchers in the form of a Python software package.
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It’s not difficult for people to distinguish the sound of a piano and a 
bass in a jazz ensemble, or to recognize an actor under unique stage 
lighting, even if these combinations have never been experienced 

before. However, these multi-label recognition tasks remain challeng-
ing for current machine learning and computational neural models. 
The first challenge is to learn to generalize along with the combinato-
rial explosion of novel combinations, in contrast to brute-force mem-
orization. The second challenge is to infer the multiple latent causes 
from mixed signals.
Here we present a new attentional inhibitory feedback model as a first 
step to address both these challenges and study the impact of feed-
back connections on learning. The new model outperforms baseline 
feedforward-only networks in an overlapping-handwritten-digits rec-
ognition task. Our simulation results also provide new understanding 
of feedback guided synaptic plasticity and complementary learning 
systems theory.
The task is to recognize two overlapping digits in an image (Fig 1A). 
The advantage of this for comparing neuro-inspired and machine 
learning approaches is that it is easy for humans but challenging for 
machine learning models, as they need to learn individual digits from 
combinations. Recognizing single handwritten digits, by contrast, can 
easily be solved by modern deep learning models.
The proposed model (Fig 1B) has a feature encoder built on a multi-
layer fully connected neural network. Each encoder neuron receives 
an inhibitory feedback connection from a corresponding attentional 
neural network. During recognition, an image is first fed through the 
encoder, yielding a first guess. Then, based on the most confidently 
recognized digit, the attention module feeds back a multiplicative 
inhibitory signal to each encoder neuron. In the following time step, 
the image is processed again, but by the modulated encoder, resulting 
in a second recognition result. This feedback loop can carry on several 
times.
In our model, attention modulates the effective plasticity of different 
synapses based on the predicted contributions. While the attention 
networks learn to select more distinctive features, the encoder learns 
better with synapse-specific guidance from attention. Our feedback 
model achieves significantly higher accuracy comparing with the 
feedforward baseline network on both training and validation data-
sets (Fig 1C), despite having fewer neurons (2.6M compared to 3.7M). 
State of the art machine learning models can outperform our model 
but requires five to ten times as many parameters and more than a 
thousand times training data. Finally, we found intriguing dynamics 
during the co-learning process among attention and encoder net-
works, suggesting further links to neural development phenomena 
and memory consolidation in the brain.
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Fig. 1 Topic receptive fields. a Probability of a word happening given 
stimulus location on the 9x34 grid. c, d Weighted mean probabilities 
for five topics with negative (c) and positive (d) receptive fields (RF). 
Colormap applies to C and D. Brightness sensitivity is shown for two 
topics (d left & right). b Overlap of pos. and neg. (dashed) RFs from 
topics in C & D masked at 0.8 of max value

Fig. 1 a Samples of input images for overlapping handwritten digit 
recognition task. b Attentional feedback network structure. c Left: 
Attentional feedback model learning process. Right: Performance 
comparison to feedforward‑only baseline network
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Closed-loop interrogation of neural circuits allows for causal description 
of circuit properties. Recent developments in recording and stimulation 
technology brought about the ability to stimulate or inhibit activity in 
one brain region conditional on the activity of another. Furthermore, 
the advent of optogenetics made it possible to control the activity of 
discrete, anatomically defined neural pathways. Normally, optogenetic 
excitation is induced using narrow pulses of light of the same intensity. 
To better approximate endogenous neural oscillations, we used continu-
ously varied sinusoidal open- and closed-loop optogenetic stimulation 
of ventral hippocampal terminals in prefrontal cortex in awake mice. 
This allowed us to investigate the dynamical relationship between the 
two brain regions, which is critical for higher cognitive functions such 
as spatial working memory. Open-loop stimulation at different frequen-
cies and amplitudes allowed us to map the response of the circuit over 
a range of parameters, revealing that response power in prefrontal 
and hippocampal field potentials was maximal in two tongue-shaped 
regions centered respectively at 8 Hz and 25–35 Hz, resembling resonant 
properties of coupled oscillators. Coherence between them was also 
maximal at these two frequency ranges. This suggests that neural activ-
ity in the circuit became entrained to the laser-induced oscillation, and 
the entrainment was not limited to the region near the stimulating laser. 
Further, adding frequency-filtered feedback based on the hippocampal 
field potential enhanced or suppressed synchronization depending on 
the amount of delay introduced to the feedback procedure. Specifically, 
delaying the optical stimulation relative to the hippocampal signal by 
about half of its period enhanced the entrainment of the prefrontal and 
hippocampal field potential responses to the stimulation frequency and 
enhanced prefrontal spikes’ phase locking to hippocampal field poten-
tial. On the other hand, closed-loop feedback without delay resulted in 
little enhancement and even decreased firing rate of prefrontal neurons. 
This is to our knowledge the first demonstration of an oscillatory phase-
dependent bias in hippocampal-prefrontal communication based on an 
active closed-loop intervention. These results stand to inform computa-
tional models of communication between brain regions, and guide the 
use of continuously varying, closed-loop stimulation to assess effects of 
enhancing endogenous long-range neuronal communication on behav-
ioral measures of cognitive function.
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Neuronal morphology is critical in the form and function of nervous 
systems. Morphological diversity in and between populations of neu-
rons contributes to functional connectivity and robust behavior. Mor-
phologically-realistic computational models are an important tool in 
improving our understanding of nervous systems. Continual improve-
ments in computing make large-scale, morphologically-realistic, bio-
physical models of nervous systems increasingly feasible. However, 
reconstructing large numbers of neurons experimentally is not scal-
able. Algorithmic generation of neuronal morphologies (“synthesis” of 
“virtual” neurons) holds promise for deciphering underlying patterns 
in branching morphology as well as meeting the increasing need in 

computational neuroscience for large numbers of diverse, realistic 
neurons.
There are many ways to quantify neuronal form, not all are useful. [1] 
proposed that “from the mass of quantitative information available” a 
small set of “fundamental parameters of form” and their intercorrela-
tions could be measured from reconstructed neurons which could 
potentially “completely describe” the population. A parameter set 
completely describing the original data would be useful for classifica-
tion of neuronal types, exploring embryological development of neu-
rons, and for understanding morphological changes following illness 
or intervention. [2] realized that virtual dendritic trees could be gen-
erated by stochastic sampling from a set of fundamental parameters 
(a synthesis model). Persistent differences between the reconstructed 
and virtual trees guided model refinement. [3] realized entire virtual 
neurons could be created by synthesizing multiple dendritic trees 
from a virtual soma. [3] implemented the models of Hillman and Burke 
et al. and made the code and data publicly available. Both groups used 
the same data set: a population of six fully-reconstructed cat alpha 
motoneurons. They were able to generate virtual motoneurons that 
were similar to the reconstructed ones, however, persistent, significant 
differences remained unexplained.
Exploration of these motoneurons and novel synthesis models led to 
two major insights into dendritic form. 1) Parameter distributions cor-
relate with local properties, and these correlations must be accounted 
for in synthesis models. Dendritic diameter is an important local prop-
erty, correlating with most parameters. 2) Parent branch parameters 
correlate differently than those of terminal branches, requiring setting 
a branch’s type before synthesizing it. Inclusion of these findings in a 
synthesis model produces virtual motoneurons that are far more simi-
lar to the reconstructions than previous models and which are statisti-
cally indistinguishable across most measures. These findings hold true 
across a variety of neuronal types, and may constitute a key to the elu-
sive “fundamental parameters of form” for neuronal morphology.
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We propose a formal, systematic methodology for examining informa-
tion flow in the brain. Our method is based on constructing a graphical 
model of the underlying computational circuit, comprising nodes that 
represent neurons or groups of neurons, which are interconnected 
to reflect anatomy. Using this model, we provide an information-the-
oretic definition for information flow, based on conditional mutual 
information between the stimulus and the transmissions of neurons. 
Our definition of information flow organically emphasizes what the 
information is about: typically, this information is encapsulated in the 
stimulus or response of a specific neuroscientific task. We also give 
pronounced importance to distinguishing the defining of information 
flow from the act of estimating it.
The information-theoretic framework we develop provides theoreti-
cal guarantees that were hitherto unattainable using statistical tools 
such as Granger Causality, Directed Information and Transfer Entropy, 
partly because they lacked a theoretical foundation grounded in 
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neuroscience. Specifically, we are able to guarantee that if the “out-
put” of the computational system shows stimulus-dependence, then 
there exists an “information path” leading from the input to the output, 
along which stimulus-dependent information flows. This path may be 
identified by performing statistical independence tests (or sometimes, 
conditional independence tests) at every edge. We are also able to 
obtain a fine-grained understanding of information geared towards 
understanding computation, by identifying which transmissions con-
tain unique information and which are derived or redundant.
Furthermore, our framework offers consistency-checks, such as statis-
tical tests for detecting hidden nodes. It also allows the experimental-
ist to examine how information about independent components of 
the stimulus (e.g., color and shape of a visual stimulus in a visual pro-
cessing task) flow individually. Finally, we believe that our structured 
approach suggests a workflow for informed experimental design: 
especially, for purposing stimuli towards specific objectives, such as 
identifying whether or not a particular brain region is involved in a 
given task.
We hope that our theoretical framework will enable neuroscientists to 
state their assumptions more clearly and hence make more confident 
interpretations of their experimental results. One caveat, however, is 
that statistical independence tests (and especially, conditional inde-
pendence tests) are often hard to perform in practice, and require a 
sufficiently large number of experimental trials.
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The detection of bursts and also of response onsets is often of rele-
vance in understanding neurophysiological data, but the detection of 
these events is not a trivial task. Building on a method that was origi-
nally designed for burst detection using the so-called burst surprise as 
a measure [1], we extend it to a significance measure, the strict burst 
surprise [2, 3]. Briefly, the strict burst surprise is based on a measure 
called (strict) burst novelty, which is defined for each spike in a spike 
train as the greatest negative logarithm of the p-values for all ISI 
sequences ending at the spike. The strict burst surprise is defined as 
the negative logarithm of the p-value of the cumulative distribution 
function for the strict burst novelty. The burst detection method based 
on these measures consists of two stages as follows. In the first stage 
we model the neuron’s inter-spike interval (ISI) distribution and make 
an i.i.d. assumption to formulate our null hypothesis. In addition, we 
define a set of ‘surprising’ events that signify deviations from the null 
hypothesis in the direction of ‘burstiness’. Here the (strict) burst nov-
elty is used to measure the size of this deviation. In the second stage 
we determine the significance of this deviation. The (strict) burst sur-
prise is used to measure the significance, since it represents (the nega-
tive logarithm of ) the significance probability of burst novelty values. 
We first show how a non-proper choice of null hypothesis affects burst 
detection performance, and then we apply the method to experimen-
tal data from macaque motor cortex [4, 5]. For this application the data 
are divided into a period for parameter estimation to express a proper 
null-hypothesis (model of the ISI distribution), and the rest of the data 
is analyzed by using that null hypothesis. We find that assuming a Pois-
son process for experimental spike data from motor cortex is rarely a 
proper null hypothesis, because these data tend to fire more regularly 
and thus a gamma process is more appropriate. We show that our 
burst detection method can be used for rate change onset detection 
(see Fig. 1), because a deviation from the null-hypothesis detected by 
(strict) burst novelty also covers an increase of firing rate.
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The Hebbian hypothesis [1] states that neurons organize in assem-
blies of co-active neurons acting as information processing units. We 
hypothesize that assembly activity is expressed by the occurrence 
of precise spatio-temporal patterns (STPs) of spikes—with temporal 
delays between the spikes—emitted by neurons being members 
of the assembly. We developed a method, called SPADE [2, 3], that 
detects significant STPs in massively parallel spike trains. SPADE 
involves three steps: it first identifies repeating STPs using Frequent 
Itemset Mining [4]; second, it evaluates the detected patterns for 
significance; third, it removes the false positive patterns that are a 
byproduct of true patterns and background activity. SPADE is imple-
mented in the Python library Elephant [5].

Fig. 1 Raster plot of an example single unit (black dots), shown 
together with rate change onset detection results (orange and blue 
marks, for gamma and Poisson null hypotheses, respectively). The 
Poisson null hypothesis fails to detect a lot of rate changes in this 
case, where the baseline spike train is highly regular (the shape factor 
k of the spike train is 3.3723, corresponding to a CV of 0.5445)
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Here we aim to evaluate if cell assemblies are active in relation to 
motor behavior [6]. Therefore, we analyzed parallel spike data 
recorded in the pre-/motor cortex of a macaque monkey performing 
a reach-to-grasp task. The experimental paradigm is the following: 
after an instructed preparatory period, the monkeys had to pull and 
hold an object by using either a side or a precision grip, and using 
either high or low force (four behavioral conditions). We segmented 
the data into 500ms periods and analyzed them separately for the 
occurrence of STPs (an extension of [2]). We then registered for each 
significant STP its neuron composition, its number of occurrences 
and the times of the spikes involved in the pattern (see an example 
pattern in Fig. 1). This enabled us to investigate the time-resolved 
occurrences of each pattern across trials. Furthermore, we can make 
statistics of patterns’ characteristics in relation to the behavioral 
condition.
We find that STPs occur in all phases of the behavior, but are more 
frequent during the movement period. The patterns are specific to 
the behavioral conditions (different grip and force type combina-
tions) during movement, suggesting that different assemblies are 
active for the performance of the different behavior. Interestingly, 
there is a high tendency that the same neurons participate in dif-
ferent STPs, however with different temporal lag constellations, i.e. 
as different STPs. This means that individual neurons are involved in 
different patterns at different points in time. These neurons may be 
interpreted as hub neurons [7]. We also find that individual spikes 
of some neurons may take part in different patterns. We are cur-
rently exploring if that indicates the existence of larger patterns, not 
detected because of our strict definition on the exact timing and 
constellation of spikes and neurons in the pattern. This may be too 
strict given the insights from modeling work [8].
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Theta oscillations in the hippocampus are important functional units 
for phase-coding in the brain [5]. However, how the interactions 
of the multiple inhibitory cell types and pyramidal cells give rise 
to these rhythms is far from clear. Recently, Bezaire and colleagues 
[1] built a full-scale CA1 hippocampus model with 8 inhibitory cell 
types and pyramidal cells using cellular, synaptic and connectivity 
characteristics based on a plethora of experimental data. Among 
other aspects, theirmodel identified interneuronal diversity and 
parvalbumin positive (PV) cell types as important factors for theta 
generation. In another recent modeling study [2], a network of PV 
fast-firing inhibitory and pyramidal cells revealed the importance of 
post-inhibitory rebound (PIR) as a network property requirement for 
the emergence of theta. As both models generated theta rhythms 
intrinsic to the hippocampus [3], we undertook comparisons to 
both leverage their advantages and overcome their limitations. An 
analysis of the Bezaire et al network model showed a consistency 
with the experimental excitatory/inhibitory current balances [4]. 
Also, the Ferguson et al model [2] predictions of connection prob-
ability requirements for theta, were consistent with the empirically 
determined connections in the Bezaire et al model [3]. Given this, 
we extracted a network `chunk’ of the later of a size similar to the 
model in [2], to facilitate comparisons and efficient computational 
investigations. Since it is known that the CA1 contains multiple 
theta generators across the septotemporal axis [3], our chunk net-
work representsone of the many oscillators in this area. Without any 
model parameter adjustments, a chunk of the Bezaire et al no longer 
produces theta. After taking advantage of the balances exposed in 
the [2] model using high performance computing, we find that it is 
possible to generate theta in our chunk model. These rhythms occur 
preferentially for decreased pyramidal-pyramidal synaptic conduct-
ances relative to [1], suggesting that PIR plays a fundamental role in 
intrinsic theta. Moving forward, our models can be used to extract 
cell-type specific pathways critical for the theta rhythm.
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Computer modeling of neuronal circuits has become a valuable tool 
in neuroscience. For a neuron model to be useful, its many free param-
eters need to be properly tuned using various exploration methods. 
These methods can illustrate a complete picture of all possible model 
outcomes and have been extremely valuable in understanding the 
principles of neuronal circuit function. These explorations yield large-
scale neuron model simulation results databases, which provide 
opportunities for further investigations and new discoveries.
Many examples of such databases of simulation results already exist 
([1, 2]; for a review, see [3]) and more will be available as new neuronal 
models are constructed and computing platforms get less expensive 
and more powerful. Simulation results databases are either publicly 
unavailable, or only available upon request [4]. However, the data 
are often stored in custom formats whose size increase exponentially 
with the number of parameters varied, making collaborations difficult. 
There is no central repository with a common format to store these 
databases. As computer simulation technologies and neuron models 
are advancing, parameter exploration methods are becoming more 
accessible to many researchers. Therefore, a common location to store 
and analyze model databases is needed more than ever.
To serve this need, we are proposing an online portal, called NeuroViz, 
which hosts neuronal simulation and recording databases. NeuroViz is 
planned to be an open freely available website where researchers can 
submit new model databases, and visualize and analyze existing data-
bases. At first stage, we plan to provide only tabular data formats that 
contain parameter values and metrics already extracted from raw elec-
trophysiology data. Here, we are presenting our initial designs of the 
software interface to validate and explore usage scenarios and receive 
feedback from potential users. Fig. 1 shows our first step into building 
this tool. For demonstration purposes, we have incorporated the HCO-
DB [1] database from the leech.
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Since first observed in the rabbit hippocampus [1], LTP has remained 
a key subject of research, and the hippocampus continues to serve as 
a model structure for the study of plasticity. Studies of induction of 
hippocampal plasticity have shown that blockade of GABA inhibition 
can greatly facilitate the induction of LTP in excitatory synapses [2]. 
More specifically, recent studies show that repeated inhibition of hip-
pocampal CA1 somatostatin-positive interneurons can induce lasting 
potentiation of Schaffer collateral (SC) to CA1 EPSCs, suggesting that 
repeated dendritic disinhibition of CA1 pyramidal cells plays a role in 
the induction of synaptic plasticity. It was also shown experimentally 
that repeated cholinergic activation enhanced the SC-evoked EPSCs 
through a7-containing nicotinic acetylcholine receptors (a7 nAChRs) 
expressed in oriens lacunosum-moleculare (OLMa2) interneurons. 
However, it is not clear how these circuits and neuromodulatory fac-
tors interplay to result in synaptic plasticity.
To analyse the plasticity mechanisms, first we used a biophysically-
realistic computational model to examine mechanistically how inhibi-
tory inputs to hippocampal pyramidal neurons can modulate the 
plasticity of the SC-CA1 excitatory synapses. We found that locally-
reduced GABA release (disinhibition) could lead to increased NMDAR 
activation and intracellular calcium concentration sufficient to upregu-
late AMPAR permeability. Repeated disinhibition of the excitatory syn-
apses could lead to larger and longer lasting increase of the AMPAR 
permeability, i.e. synaptic plasticity. We then used our model to show 

Fig. 1 Our proposed web portal NeuroViz is a central repository 
that can host recorded and model simulation results databases, and 
provide support and tools to conduct or enhance model parameter 
exploration research
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how repeated cholinergic activation of a7 nAChR in stratum oriens 
OLMa2 interneurons paired with SC stimulation can induce synaptic 
plasticity at the SC-CA1 excitatory synapses. Activation of pre-syn-
aptic a7 nAChRs in OLM cells activates these interneurons which, in 
turn, inhibit fast-spiking stratum radiatum interneurons that provide 
feed-forward inhibition onto pyramidal neurons after SC excitation, 
and thus disinhibiting the CA1 pyramidal neurons. Repeated cholin-
ergic activation then leads to repeated feed-forward disinhibition of 
the pyramidal cell, which can modulate the SC-CA1 synapses by the 
method previously described.
Our modelling work thus unravels the intricate interplay of the hierar-
chal inhibitory circuitry and cholinergic neuromodulation as a mecha-
nism for hippocampal plasticity.
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Macroscopic oscillations of different brain regions show multiple 
phase relationships that are persistent across time [3]. Such phase 
locking is believed to be implicated in a number of cognitive functions 
and is key to the so-called Communication Through Coherence theory 
for neural information transfer [3]. Multiple cellular level mechanisms 
influence the network dynamic and structure the macroscopic firing 
patterns. Key question is to identify the biophysical neuronal and syn-
aptic properties that permit such motifs to arise and how the different 
coherence states determine the communication between the neural 
circuits. We use a semi-analytic approach to investigate the emergence 

of phase locking within two bidirectionally delayed-coupled spiking 
circuits with emergent global gamma oscillations. Internally the cir-
cuits consist of excitatory and inhibitory quadratic integrate-and-fire 
neurons coupled synaptically in an all-to-all fashion. Importantly the 
neurons are heterogeneous and are not all intrinsic oscillators. The cir-
cuits can show global pyramidal-interneuron or interneuron gamma 
rhythms. Using a mean-field approach and an exact reduction method 
[1, 4], we break down each gamma network into a low dimensional 
nonlinear system. We then derive the macroscopic phase resetting-
curves (mPRCs) [1, 2] that determine how the phase of the global oscil-
lation responds to incoming perturbations. We find that depending 
on the gamma type and perturbation target (excitatory of inhibitory 
neurons), the mPRC can be either class I (purely positive) or class II 
(by-phasic). We then study the emergence of macroscopic coherence 
states (phase locking) of two weakly synaptically-coupled gamma-net-
works. We derive a phase equation that links the synaptic mechanisms 
to the coherence state of the system; notably the determinant part 
played by the delay and coupling strength in the emergent variety 
of coherence modes. We show that the delay is a necessary condition 
for symmetry breaking, i.e. a non-symmetric phase lag between the 
macroscopic oscillations. We find that a whole host of phase-locking 
relationships exist, depending on the coupling strength and delay, 
potentially giving an explanation to the experimentally observations 
[8]. Our analysis, see Fig. 1, further allows us to understand how sig-
nal transfer between the gamma circuits may depend on the nature of 
their mutual coherence states [2].
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Working memory (WM) is the ability to retain information not cur-
rently presented from sensory systems. WM retention is accompanied 
by self-sustained elevation of firing rates, which is usually modelled as 
transition of a bistable system from the “background” to the “active” 
state after a brief stimulus presentation [1]. Besides firing rates, the 
beta oscillations are usually enhanced, supposedly stabilizing WM 
retention [2]. In this study, we propose mechanisms for such stabiliza-
tion. Key to these mechanisms is that beta input could provide addi-
tional excitation due to non-linear properties of the neurons.
First, we identified the regimes where non-specific beta input affects 
more strongly populations in the active (memory) state, compared to 
the background state (due to their different resonant properties). We 
considered a system of two mutually inhibiting populations, one that 
(S) actively maintains a stimulus, and the other (D) is selective to a dis-
tractor and stays in the background state. Non-selective beta input to 
both populations provides stronger excitation to S (compared to D), 
impeding activation of D by the distractor and decreasing the chance 
that its presentation will erase the stimulus from WM (Fig. 1a, b).

Fig. 1 Emergent phase locking and signal flow. a Emergent oscilla‑
tions b PRC obtained via direct method (dots) and the adjoint (black 
line). In red the perturbation are on the E‑cells, in blue, on the I‑cells. 
c Interaction function for different delays. d Diagram locking modes. 
e Spiking activity of the networks is presented. The locking mode 
corresponds to the prediction. f, g Global‑PRCs

http://arxiv.org/abs/1812.03455%5bq-bio.NC


Page 67 of 190BMC Neurosci 2019, 20(Suppl 1):56

Second, we considered models where the WM-holding popula-
tion does not have a “true” attractor active state, but reacts to the 
stimulus by a slowly decaying firing rate increase. We found that 
an external beta input can provide enough excitation to make the 
memory retention stable (Fig. 1c) (similar mechanism was explored 
in [3]). Then we considered two such populations with excitatory 
coupling that could be considered as parts of a distributed single 
object representation. In the post-stimulus high firing rate regime, 
populations generate beta-band quasi-oscillations and could syn-
chronize with certain probability, providing mutual excitation that 
supports stable joint activity (Fig. 1d,e). Weak external beta input to 
both populations increases the chance for synchronization, thus sta-
bilizing WM retention (Fig. 1f ).
We successfully tested the proposed mechanisms with the Wilson-
Cowan-like population models. In summary, we demonstrated that 
WM retention could be stabilized by an external beta-band input 
via increasing competition between active and background popu-
lations, as well as via promoting cooperation between parts of a 
distributed active population. This is in line with the ideas that beta 
activity promotes status quo and helps forming of distributed func-
tional ensembles in the cortex.
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One presumable role of neural oscillations is stabilization or desta-
bilization of neural codes, which promotes retention or updating of 
the encoded information, respectively [1, 2]. We hypothesize that 
such functions could stem from the ability of oscillations to differen-
tially affect neural populations that actively retain information and 
those that stay in the background state [3]. To explore this mecha-
nism, we considered a bistable excitatory-inhibitory network of 
leaky-integrate-and-fire (LIF) neurons with external sinusoidal forc-
ing. The two steady states differ by their average firing rates and cor-
respond to the active retention and to the background, respectively. 
We wanted to understand how periodic beta-band input affects 
time-averaged firing rates in both states. In order to systematically 
address this question, we developed a method for semi-numerical 
prediction of the oscillation-induced average firing rate shifts. We 
simulated single LIF neurons under various combinations of the 
input mean, variance, and oscillation amplitude. This time-consum-
ing step was performed once; then its results were interpolated 
during the parameter space exploration. We considered a discrete 
grid in re-ri coordinates (time-averaged presynaptic excitatory and 
inhibitory firing rates, respectively). For each (re, ri) combination, we 
calculated the corresponding input mean and variance, as well as 
the linear response coefficient (input-output amplitude relation) for 
each population. Then, in a reverse-engineering way, we derived the 
amplitudes of the total (external + recurrent) oscillatory inputs. The 
pre-calculated data was used to determine the time-averaged post-
synaptic firing rates (re1, ri1). The curves re = re1 and ri = ri1 defined 
the nullclines for the time-averaged forced system, and their inter-
sections—the corresponding equilibria. In order to predict the stim-
ulation effect, we visualized the nullclines both for the models with 
and without external periodic input (Fig. 1a). Using the described 
method, we found parameters, for which the oscillatory input pro-
duced an increase in the average firing rate of the excitatory popu-
lation in the active memory state, but not in the background state. 
Our predictions were confirmed by spiking network simulations 
(Fig. 1b,c). Given the obtained results, we suggest that our method 
would be useful for further investigation of oscillatory control in 
multi-stable systems such as working memory or decision-making 
models.
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Fig. 1 Simulation results. a, b Two populations with mutual inhibi‑
tion; a no input; b beta‑band input. c Single population with unstable 
active state; upper panel no input, lower panel beta‑band input. d–f 
Two populations with mutual excitation; d, e no input, different noise 
realizations; f beta‑band input

Fig. 1 a Phase plane for the unforced and for the periodically forced 
time‑averaged system. b, c Results of the spiking network simula‑
tion. In b stimulus switches the network into the active state, in c the 
network stays in the background state. Horizontal black lines denote 
average firing rates with and without the input oscillations
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Due to its high temporal resolution, EEG, in principle, can be used to 
characterize the dynamics of how remote brain regions communicate 
with each other on a millisecond scale. Recent advances have also 
made it possible to project the time series recorded at the scalp into 
the gray matter, localizing the sources of the activity. The main limita-
tions one faces when analyzing such source-level time series are that 
the source signal has low SNR and spatial resolution and is polluted by 
volume conduction of the electromagnetic field between the sources. 
The latter leads to signals appearing functionally connected (i.e., sta-
tistically dependent) simply due to their proximity. Here we propose 
a new approach that addresses these issues: We combine source-level 
EEG data (resting state, 18 subjects) with structural connectivity (SC; 
number of streamlines found via diffusion imaging and fiber tracking). 
Thereby we exploit the fact that functional connectivity (FC) is partially 
mediated by anatomical white matter connections. We define a graph 
which consists of N nodes corresponding to N brain regions. Edges 
between nodes are defined by the SC. The source-projected activity 
measured at each point in time is taken to be the activity of the graph’s 
nodes over time. Each node in this graph has a set of nearest neigh-
bors (NNs), i.e. nodes to which it is directly connected according to the 
SC, and we smooth our data using these NNs. In particular, for each 
point in time, a weighted average of each node’s NNs’ activity is added 
to its own activity. The contribution of the NNs is scaled by a factor G, 
controlling the level of smoothing. This procedure corresponds to con-
volving the electric signal with a low-pass filter, in graph space.
To test whether this method reduces the effects of volume conduc-
tion, we correlate EEG-FC to FC derived from fMRI, a method which 
does not suffer from volume conduction (fig. left). We compute enve-
lope correlation-based EEG-FC matrices in three different frequency 
bands (alpha, beta, gamma; See Fig. 1, middle). We find that the EEG-
FCs derived from smoothed data (fig. right) have a better fit to the 
fMRI-FC (0.28 vs 0.46 at G = 200). Importantly, the increase in fit is sig-
nificantly stronger than when using NNs purely derived from Euclid-
ean distance (Wilcoxon signed-rank test, corrected alpha = 0.05).

To further validate our technique, we fit the EEG-FCs to simulated data 
which are free of volume conduction effects. We use a network of N 
Kuramoto oscillators, coupled according to the empirical SC scaled 
by a global factor K. This model includes time delays tau, which are 
proportional to the length of the fibers connecting brain regions. We 
compute FCs from simulated data in the same way as from empirical 
data and assess the correlations between simulated and empirical 
FCs across a parameter space spanned by K and tau. Without filtering 
the empirical data, the maximum fit is 0.38; with filtering, this value 
increases to 0.49, again at G = 200. This is in line with the interpretation 
that graph filtering removes spurious correlations between nearby 
regions and boosts FC between far-away pairs of regions, demonstrat-
ing the merit of combining structural (SC) and functional data in EEG.
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Learning complex skills requires continuous coordination between 
several behaviors. Juvenile male zebra finches, for instance, learn 
to produce songs by imitating the songs of adult male tutors. These 
songs consist of a sequence of syllables with distinct spectral features 
(e.g., pitch). The juvenile’s task is twofold: matching their syllable reper-
toire to the tutor’s (syllable assignment), and producing syllables in the 
right temporal order (syntax learning). It was previously shown that 
in learning a new song that involves both pitch and syntax change, 
juveniles first assign syllables to targets, followed by syntax learning 
[1]. Our work aims at identifying potential neural mechanisms of sylla-
ble assignment through data-driven computational modelling within 
reinforcement learning (RL) theory.
RL theory states that skill acquisition proceeds by learning the 
behaviors that maximize future rewards. This theoretical framework 
is often invoked as a working hypothesis for explaining songbird 
behavior when an aversive auditory stimulus is presented to an 
adult as reinforcement, but no formal models are yet developed 
in this context. Furthermore, dopaminergic neurons in the Ventral 
Tegmental Area (VTA) of adult songbird brains provide the learn-
ing signal necessary for escaping the aversive stimulus [2]. Juve-
niles, however, learn syllable assignment in the absence of external 
reinforcement, leading us to posit that an inner critic system drives 
learning during development. Sincedepleting dopamine in juveniles 
impairs tutor song learning [3], we suggest that the critic evaluates 
how well syllables in the juvenile’s repertoire match those in the tar-
get song.
Here we show that syllable assignment learning as observed experi-
mentally [1] can be reproduced by assuming an intrinsic, global 
reward function that evaluates similarity in pitch between sung and 
target syllables. We develop an RL model in which an independent 
agent represents the motor program for each syllable pitch, assum-
ing that both action and reward are continuous functions. Each 
agent aims at maximizing the global reward by adjusting its mean 
syllable pitch toward a target. We infer model parameters from one 
set of experimental data, including pitch and reward variances, and 
the time when a juvenile switches its attention toward a new target. 
Simulations with data-inferred parameters illustrate accurate quali-
tative agreement between data not involved in the fitting procedure 
and model. Finally, we make model-based, quantitative predictions 
on changes in dopaminergic VTA neuronal activity during juvenile 
song learning. These predictions are empirically verifiable and will 
be the basis for future investigations in the songbird brain.

Acknowledgments: Hazem Toutounji acknowledges the financial 
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Fig. 1 Left: Fits of EEG‑FC (beta) to fMRI‑FC depending on the 
strength G of SC‑based smoothing, when using nearest neighbors 
defined: blue: the SC, red: the Euclidean distance, yellow: the Euclid‑
ean distance masked by the SC (same pairs of brain regions as in the 
SC are connected, but with weights derived from Euclidean distance). 
Middle: EEG‑FC (beta) at G = 0. Right: EEG‑FC at G = 0
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In most computational models of neurons, the membrane potential 
is the key dynamic variable. A common model assumption is that the 
intra- and extracellular concentrations of the main charge carriers 
(K+, Na+, Cl-) are effectively constant during the simulated period. 
On the time scale relevant for synaptic integration and the firing of a 
few action potentials (<1s), this is often a good approximation, since 
the transmembrane ion exchange is too small to impose significant 
concentration changes on this short timescale. The approximation is 
often valid also on a longer time scale due to the work done by uptake 
mechanisms (ion pumps and co-transporters) to restore baseline con-
centrations. However, in cases of neuronal hyperactivity or pump dys-
function, the re-uptake may become too slow, and ion concentrations 
may change over time. This occurs in several pathological conditions, 
including epilepsy, stroke and spreading depression.
To explore conditions involving shifts in ion concentrations, one needs 
neuron models that fully keep track of all ions and charges in the intra- 
and extracellular space. To accommodate this, we propose a version 
of the two-compartment (soma + dendrites) Pinsky-Rinzel model of 
a CA3 pyramidal cell [1], which is expanded so that it (i) includes two 
additional compartments for the extracellular space outside the soma 
and dendrite compartment, (ii) keeps track of all ion concentrations 
(K+, Na+, Cl- and Ca2+) in the intra- and extracellular compartments, 
and (iii) adds additional membrane mechanisms for ion pumps and 
co-transporters. The additional membrane mechanisms were taken 
from a previous model [2], and ion transports in the intra- and extra-
cellular space were modelled using an electrodiffusive formalism that 
ensures ion conservation and a consistent relationship between ion 
concentrations and membrane voltages [3].
We tuned the new model aiming to preserve the characteristic firing 
properties of the original model, and at the same time obtain realistic 
ion-concentration dynamics, i.e., concentrations that remained close 
to physiological baseline values during normal working conditions, 
but diverged from baseline during neural hyperactivity. We analyzed 
the model by performing a sensitivity analysis using Uncertainpy [4]. 
With its reduced morphology, we envision that the model will be a 
useful building block in large network simulations of pathological 
conditions associated with ion concentration shifts in the extracellular 
space, such as stroke, spreading depression, and epilepsy.
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Neural circuits producing rhythmic behavior are often driven by 
pacemaker neurons. The endogenous pacemaker activity is often 
modulated by proprioceptive or descending signal. Although all 
the components of the compact locomotion circuit of Caenorhabdi-
tis elegans are identified and their connectivity has been deduced 
from electron micrographs, the neural mechanisms underlying 
rhythm generation and undulatory locomotion are still unknown. 
In C. elegans, undulation is produced by a propagation of alternat-
ing activation of 95 dorsal and ventral muscle cells along the ani-
mal body, opposite to the direction of movement. Past studies have 
mainly focused on two hypotheses: 1) Sensory feedback suffices to 
generate and propagate the rhythm: There are no pacemaker neu-
rons and the neural circuit merely integrates over proprioceptive 
inputs to generate and propagate appropriate muscle activity [1, 2]. 
2) Head oscillator model: A dorsoventral alternating pattern is gen-
erated in the neck by an oscillator, which drives the sensory feed-
back propagation along the animal [6-9]. Gjorgjieva et al [4] revisit a 
third hypothesis: Dorsoventral alternations are produced locally by 
oscillating pacemaker neurons and the orchestrations of appropri-
ate phase relations are mediated by the finely tuned neuronal cir-
cuitry. In this study, we chose a computational approach to test the 
conditions for generation of locomotion patterns relying on pace-
makers in the known connectivity in the absence of proprioceptive 
feedback.
We use our previously described neuromuscular network [5] that 
spans the full length of an animal and includes seven classes of 
motoneurons, muscle cells, and synaptic connections, both chemi-
cal and electrical. Using two kinds of motoneuron classes and mus-
cle cells: leaky (passive) and endogenously oscillating (pacemaker), 
we systematically screened all 2^7 = 128 configurations of pas-
sive and pacemaker motoneuron classes. For each configuration, 
we screened parameter space and used parameter optimization 
approach to search for synaptic weights that produce a propagating 
dorsoventral alternation of muscular activity in forward or backward 
directions. The opposing directions of locomotion were induced by 
adding a tonic current to forward or backward motoneurons. We 
scored the dorsoventral alternation phases to evaluate simulation 
outputs, and used the same scoring algorithm on biological animals 
to assess biologically realistic undulation patterns. In the second 
stage, to see how fictive patterns translate in an embodied scenario, 
successful neuromuscular outputs were fed into a neuromechanical 
model [3] to test for realistic forward and backward locomotion.
When motoneuron classes were either all passive or all endogenous 
oscillators, an undulatory pattern in both forward and backward 
directions was not generated. We found that several configurations 
in which some excitatory motoneurons were oscillators produced 
undulatory-like activity pattern in both forward and backward direc-
tions. Moreover, implementation of these motor programs in the 
neuromechanical model produced multiple trajectories with vary-
ing speed and waveform, and clear wave propagation during both 
forward and backward locomotion depending on descending drive.
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Cortical networks are strongly recurrent, and neurons have intrin-
sic temporal dynamics. This sets them apart from deep networks. 
Reservoir computing [1, 2] is an approach that takes these features 
into account. Inputs are here mapped into a high dimensional space 
spanned by a large number of typically randomly connected neurons; 
the network acts like a kernel in a support vector machine (Fig. 1). 
Functional tasks on the time-dependent inputs are realized by training 
a linear readout of the network activity.
It has been extensively studied how the performance of the reservoir 
depends on the properties of the recurrent connectivity; the edge of 
chaos has been found as a global indicator of good computational 
properties [3, 4].
However, the interplay of recurrence, nonlinearities, and stochastic 
neuronal dynamics may offer optimal settings that are not described 
by such global parameters alone. We here set out to systematically 
analyze the kernel properties of recurrent time-continuous stochas-
tic networks in a binary time series classification task. We derive a 
learning rule that maximizes the classification margin. The interplay 
between the signal and neuronal noise determines a single optimal 
readout direction. Finding this direction does not require a training 
process; it can be directly calculated from the network statistics. This 
technique is reliable and yields a measure of linear separability that we 
use to optimize the remainder of the network. We show that the clas-
sification performance crucially depends on the input projection; ran-
dom projections will lead to significantly suboptimal readouts.
We generalize these results to nonlinear networks. With field theoreti-
cal methods [5] we derive systematic corrections due to neuronal non-
linearities, which decompose the recurrent network into an effective 
bilinear time-dependent kernel. The expressions expose how the net-
work dynamics separates a priori linearly non-separable time-series, 

and thus explain how recurrent nonlinear networks acquire capabili-
ties beyond a linear perceptron.

Acknowledgements: Partly supported by HGF young investigator’s 
group VH-NG-1028 and European Union Horizon 2020 grant 785907 
(Human Brain Project SGA2).

References
1. Maass W, Natschlaeger T, Markram H. Real‑time computing without 

stable states: A new framework for neural computation based on pertur‑
bations. Neural Computation 2002, 2531–2560.

2. Jaeger H, Haas H. Harnessing nonlinearity: Predicting chaotic systems 
and saving energy in wireless communication. Science 2004, 304, 78–80

3. Bertschinger N, Natschlaeger T, Legenstein R. At the Edge of Chaos: Real‑
time Computations and Self‑Organized Criticality in Recurrent Neural 
Networks. Conference: Advances in Neural Information Processing Systems 
17, 2005. (pp. 145–152).

4. Toyoizumi T, Abbott L. Beyond the edge of chaos: Amplification and 
temporal integration by recurrent networks in the chaotic regime. Phys. 
Rev. E 2004, 84, 051908.

5. Helias M, Dahmen D. Statistical field theory for neural networks. 2019, 
arXiv :1901.10416 .

P118 
Coordination between individual neurons across mesoscopic 
distances
David  Dahmen1, Moritz  Layer1, Lukas  Deutz2, Paulina  Dabrowska1,3, Nicole 
 Voges1,3, Michael von  Papen1,3, Sonja  Gruen1,4, Markus  Diesmann1,3, 
Moritz  Helias1

1Jülich Research Centre, Institute of Neuroscience and Medicine 
(INM‑6), Jülich, Germany; 2University of Leeds, School of Computing, 
Leeds, Germany; 3Jülich Research Centre, Institute for Advanced 
Simulation (IAS‑6), Jülich, Germany; 4Jülich Research Centre, Institute 
of Neuroscience and Medicine (INM‑10), Jülich, Germany
Correspondence: David Dahmen (d.dahmen@fz‑juelich.de)  
BMC Neuroscience 2019, 20(Suppl 1):P118

The cortex is a network of networks that is organized on various spatial 
scales [1, 2]. On the largest scale, coordination of activity is mediated 
by specific white matter connectivity patterns of small-world charac-
ter, allowing for short path lengths between any two cortical areas. In 
contrast, on the scale of small groups of neurons (<100 microns), con-
nection patterns are seemingly random, offering the potential com-
munication between any two cells. For the intermediate, mesoscopic 
scale inside a cortical area one finds that the majority of connections 

Fig. 1 Reservoir Computing Scheme. A neural network with random 
connectivity (middle) is stimulated with an input via an input vector 
(left). A linear readout transforms the high dimensional signal into a 
one‑dimensional quantity (right). While the performance depend‑
ence on the properties of the connectivity is well studied, we aim at 
quantifying the effects of input modulation and readout generation
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is governed by connection probabilities that fall off with distance on 
characteristic length scales of a few hundred microns. Neurons that 
are a few millimeters apart therefore most likely lack any synapse that 
would be required for coordination.
Yet, in massively parallel recordings of motor cortex spiking activity 
in awake and resting macaque monkey we find strongly correlated 
neurons almost across the whole Utah array, which covers an area of 
4 × 4 mm2. Positive and negative correlations form salt-and-pepper 
patterns in space that are seemingly unrelated to the underlying 
short-range connectivity profiles. Whilst additional complex connec-
tion and input structures could potentially give rise to such patterns, 
we here show that the latter emerge naturally in a dynamically bal-
anced network near criticality [3] where interactions are mediated by 
a multitude of parallel paths through the network. As a consequence 
of multi-synaptic interactions via excitatory and inhibitory neurons, 
spatial profiles of correlations are much wider than those expected 
from structured connectivity, giving rise to long-distance coordination 
between individual cells. Using methods from statistical physics and 
disordered systems [4], we discover a relation between the distance to 
criticality and the spatial dependence of the statistics of correlations. 
For networks close to the critical point, individual neuron pairs show 
significant long-range correlations even though average correlations 
decay much faster than the connectivity. The operation point of the 
network, for example its overall firing rate, controls the spatial range 
on which neurons cooperate, thus offering a potential dynamic mech-
anism that adapts the circuit to different computational demands.
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Simulation of biological neural networks has become an essential part 
of neuroscience. The complexity of the structure and activity of the 
brain, combined with the limited access we have to measurements of 
in-vivo function of this organ, has led to the development of computa-
tional simulations which allows us to decompose, analyze and under-
stand its elements and the interactions between them.
Impressive progress has recently been made in machine learning 
where brain-like learning capabilities can now be produced in non-
spiking artificial neural networks [1, 3]. A substantial part of this pro-
gress arises from computing-intense learning-to-learn (L2L) [2, 4, 5] 
or meta-learning methods. L2L is a specific solution for acquiring con-
straints to improve learning performance.
The L2L conceptual world can be decomposed into an optimizee 
which learns specific tasks and an optimizer which searches for 

generalized hyperparameters for the optimizee. The optimizer learns 
to improve the optimizee’s performance over distinct tasks as meas-
ured by a fitness function (see Fig. 1).
In this work we present an implementation of L2L which works on 
High Performance Computing (HPC) [6] for hyperparameter optimi-
zation of spiking neural networks. First, we discuss how the software 
works on a supercomputing environment. Taking advantage of the 
large parallelization which can be achieved by deploying independ-
ent instances of the optimizees on HPC, our L2L framework becomes a 
powerful tool for understanding and analyzing mathematical models 
of the brain. We also present preliminary results on optimizing NEST 
simulations with structural plasticity using a variety of optimizer algo-
rithms e.g. gradient descent, cross entropy, evolutionary strategies. 
Finally, we discuss initial results on optimization algorithms designed 
specifically to work with spiking neural networks.
The L2L framework is flexible and can be also used for finding optimal 
configurations of generic programs, not only neural network simula-
tions. Because of this, it can be applied in and outside of neuroscience.
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The ability to sequence at the phoneme, syllable, and word level is 
essential to speech production. Speech production models generally 
contain buffers or working-memory modules to encode sequences [2, 
4] or use slots to label the kind of the unit [3]. The goal of this work is 
to propose a simple computational model of speech production that 
produces sequences using a biological plausible method, but also it 
has reduced spatial and temporal complexity compared to the existing 
ones. We propose a novel method where the sequences are encoded 
by the synaptic weights of the network, a feature shared by many 
connectionist models. The organization of the model is derived from 
psycholinguistic models that propose a higher-level lexical (abstract 
word) system and a lower-level phonological system. Accordingly, the 
proposed computational model contains a lexical and a motor-phono-
logical structures bidirectionally connected to each other. These com-
ponents map onto the cortical regions of posterior superior temporal 
sulcus/middle temporal gyrus (pSTS/pMTG) for the lexical component, 
and posterior inferior frontal gyrus (pIFG) for the motor-phonological 
component. Additionally, the model contains an inhibitory mecha-
nism that simulates the interneurons in pIFG. The basic idea of the 
model is that the ``word’’ at the lexical level, and its ``phonemes’’ at 
the motor level are connected by synaptic weights, where the first ele-
ment of the sequence is more strongly connected with the word than 
the second one and so on. This is essentially equivalent to what Karl 
Lashley proposed in 1951; the serial order of the sequence is encoded 
into the activity level of each unit. The architecture of the model elimi-
nates the need for buffers or position slots used by other models [2, 3].
Another advantage of our model is that it does not include a separate 
working memory to explicitly store symbolic information. Both layers 
include a winner-take-all mechanism to ensure that only one unit will 
remain active. However, the inhibitory mechanism is an essential part 
of the model for producing sequences. The role of this mechanism is 
to be a “puppet master” during the production of each phoneme by 
inhibiting the more active unit so the second more active unit will be 
expressed.
Saying it differently, each neuron representing a phoneme should stay 
active until the production has been completed, but be silent after. 
Analysis of the network behavior showed that with this simple archi-
tecture, the model is sufficient to produce any word as a sequence of 
phonemes. Furthermore, this method can be embedded in a broader 
model of sensorimotor planning for speech production. A limitation 
of the model is that cannot represent a sequence with duplicated 
elements; although, this can be overstepped by adding hierarchi-
cal organization at the lexical layer. For example, the lower level will 
include all the known syllables in the language, and in upper levels will 
include the combinations of these syllables to more complex words. 
The different levels at the lexical layer can be linked by using the same 
mechanism presented here.
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Spectral analysis of magneto/electroencephalography (M/EEG) time 
series presents with a clearly pronounced alpha-band peak followed 
by a distinct S(f ) = 1/f^β noise profile. The mechanistic origin of the 
alpha peak and its progenitor oscillation is an unresolved question 
in M/EEG research often thought to be dynamically unrelated to the 
S(f ) = 1/f^β noise structure present in power spectra. Assuming that 
the measured M/EEG power spectrum can be modeled as a super-
position of alpha-band relaxation processes with a distribution of 
dampings, the origin of the alpha peak and S(f ) = 1/f^β noise profile 
can thus be explained via a singular generative mechanism. Within 
this framework, changes to the alpha peak and spectral noise profile 
are hypothesized to be a consequence of changes in the underlying 
damping distribution. We estimated the damping distributions for M/
EEG power spectra computed from time series data that was recorded 
for multiple participants across a range of conditions. In practice this 
required solving a Fredholm integral equation of the first kind which 
was achieved through the use of second order Tikhonov regulariza-
tion. The estimated damping distributions shared several robust fea-
tures across multiple participants. The damping distributions were 
found to be multimodal with changes in EEG alpha peak between 
eyes closed and eyes open resting state, the result of a shift in the first 
mode of the distributions to a more heavily damped mode. The same 
were found for MEG power spectra where reductions in the alpha peak 
between resting and anesthesia (Xenon) states were observed. The 
shift in the most weakly damped distribution mode to more heavily 
damped one resulted in a direct reduction in the alpha peak. Further-
more, the bulk S(f ) = 1/f^β properties of the M/EEG power spectra 
was replicated by using the regularized damping distributions in the 
forward model to generate an estimated power spectrum which fit 
the measured data remarkably well. The results demonstrate that the 
alpha peak and the S(f ) = 1/f^β noise profile can be explained by a sin-
gular mechanism and changes to the spectral properties are a direct 
consequence of changes in the underlying damping distributions.
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This work deals with a sufficient mechanism for reproducing predictive 
eye velocity control known as predictive optokinetic response (OKR).
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The vestibuloocular reflex (VOR) maintains stable vision during head 
motion by counter rotating the eyes in the orbit. The VOR has been 
a popular model system to investigate neural mechanism of motor 
learning as its gain defined as eye velocity / head velocity is easily 
modifiable by visual-vestibular mismatch stimuli. When visual stimu-
lation is given in-phase or out-of-phase with head motion for 10 min 
or longer, VOR gain measured in darkness w/o visual stimulation 
decreases or increases, respectively. As many other biological adaptive 
motor control systems, VOR motor learning is context dependent [1]. 
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For example, VOR gain increase and decrease can be induced simul-
taneously for different head rotation directions. Namely, by applying 
visual stimulus out-of-phase with leftward head rotation and in-phase 
with rightward head rotation (L-Enh/R-Sup stimulus), VOR gain in dark 
during left and rightward head rotation respectively increases and 
decreases. It has been shown that long-term depression (LTD) and 
long-term potentiation (LTP) at the parallel fiber (PF)–Purkinje cell 
(PC) synapses in the cerebellum play major roles in VOR motor learn-
ing. However, how cerebellar neuronal circuitry incorporating those 
LTD and LTP achieves head direction dependent VOR motor learning 
is still unknown. Presently, we investigated the effect of directional 
context in the VOR motor learning, using the artificial cerebellum 
that we have been developing and modifying for the past decade [2]. 
Our artificial cerebellum having a bihemispheric structure was uti-
lized for simulations of head direction dependent VOR motor learn-
ing. For that, the non-cerebellar neural pathways subserving VOR are 
described by transfer functions based on physiological experimental 
results in squirrel monkey. The cerebellar flocculus neuronal network 
was constructed based on the known anatomical and physiological 
evidence by spiking neuron models. LTD and LTP between PF–PC were 
described in spike timing dependent plasticity. Directional dependent 
VOR motor learning was induced in the model after 2-hour L-Enh/R-
Sup training. A simple possible mechanism to achieve this head 
direction selective VOR motor learning is that the cerebellar left hemi-
sphere is responsible for VOR gain increase during leftward head rota-
tion and the right hemisphere is for gain decrease during rightward 
rotation. We showed that this scenario is unlikely because substituting 
PF-PC synaptic weights in the left hemisphere with those acquired by 
ordinary VOR gain increase training and those in the right hemisphere 
with those after ordinary gain decrease training did not reproduce 
the directional dependent VOR gain changes. These results suggest 
that the need of learning of directional context to achieve directional 
context dependent VOR gain change. Our results also indicated that 
mechanism for context dependent VOR motor learning differs from 
ordinary VOR gain increase and decrease learning.
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Pituitary hormone producing gonadotrope cells can fire spontaneous 
action potentials (APs). The hormone-release rate is proportional to 
the cytosolic Ca2+ concentration, which is regulated by release from 
intracellular stores (ER), and/or influx through Ca2+ channels on the 
plasma membrane. While ER-Ca2+ release normally requires G-protein 
activation, Ca2+ influx through the plasma membrane relies largely 
on the intrinsic firing properties of the cell. The spontaneous activity 
is partly important for the re-filling of ER, but may also give rise to a 
basal hormone secretion rate [1]. Pituitary APs are typically generated 

by TTX-sensitive Na+ currents (INa), high-voltage activated Ca2+ cur-
rents (ICa), or by a combination of the two [1]. Previous computational 
models have focused on conditions where spontaneous APs are pre-
dominantly mediated by ICa. This is representative for many pituitary 
cells, but not all (see [2] and refs. therein).
Here, we present a computational model of a gonadotrope cell in the 
teleost fish medaka, which fire INa-dependent spontaneous APs. The 
model contains a leak conductance, two depolarizing channels (INa 
and ICa) that mediate the AP upstroke, and three hyperpolarizing 
K+-channels that shape the downstroke of the AP. The leakage- and 
K+- channels were adapted from a previous study [3], while the kinet-
ics of INa and ICa were adapted to new voltage-clamp data. The chan-
nel conductances were constrained to current-clamp recordings under 
control conditions, after TTX application, and after application of the 
BK-channel blocker paxilline. We compare the model to previous 
pituitary cell models (based on data from rats and mice), and perform 
a sensitivity analysis of the model by using the toolbox UncertainPy 
[4]. Although the model was constrained to experimental data from 
gonadotrope cells in medaka, we anticipate that modified versions of 
it will be useful for describing also other pituitary cells that fire INa-
mediated APs.
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The transmission of information in neural systems inherently 
involves delays, which results in our awareness of sensory events 
necessarily lagging behind the occurrence of those events in the 
world. In the absence of some mechanism to compensate for these 
delays, our visual perception would consistently mislocalize mov-
ing objects behind their actual position. Anticipatory mechanisms 
that might compensate for these delays have been hypothesized to 
underlie perceptual effects in humans such as the Flash-Lag Effect. 
However, there has been no consistent neural modelling framework 
that captures these phenomena.
By extending the predictive coding framework to take account of 
the delays inherent in neural transmission, we have proposed a real-
time temporal alignment hypothesis [1]. In this framework both the 
feed-forward and feedback extrapolation mechanisms realign the 
feedback predictions to minimize prediction error. The consequence 
is that neural representations across all hierarchical stages become 
aligned in real-time.
In order to demonstrate real-time temporal alignment in a layered 
network of neurons, we consider a network architecture in which 
the location of a moving stimulus is encoded at each layer of the 
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network by a population code for both the position and velocity 
of the stimulus. There are N position sub-populations at each layer, 
each with an identical Gaussian distribution and each containing 
M velocity sub-populations. The sub-populations are connected 
by both feed-forward and feedback weights. The excitatory feed-
forward weights between the neural populations at each layer and 
subsequent layer are learned by a Hebbian rule and normalization 
is imposed.
Using this model, we explore the key mechanisms of neural coding 
and synaptic plasticity necessary to generate real-time alignment of 
neural activityin a layered network. We demonstrate how a moving 
stimulus generates a representation of the position and velocity of the 
stimulus in the higher levels of the network that maintains the real-
time representation of the stimulus, accounting for the neural process-
ing delay associated with the transmission of information through the 
network. This neural population code alignment provides a solution 
to the temporal binding problem, since the neural population activ-
ity remains in real-time temporal alignment with the moving stimulus 
that generates the input to the network. Second, we show that this 
real-time population neural code can prime the appropriate neural 
sub-population that is consistent with a constantly moving stimulus. 
This priming of the neural activity in alignment with a moving stimu-
lus provides a parsimonious explanation for several known motion-
position illusions [2].
In summary, this study uses visual motion as an example to illustrate a 
neurally plausible model of real-time temporal alignment. This model 
is consistent with evidence of extrapolation mechanisms throughout 
the visual hierarchy, it predicts several known motion-position illu-
sions in human observers, and that it provides a solution to the tem-
poral binding problem.
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The orientation selectivity of neurons in the primary visual cortex (V1) 
of higher mammals, such as primates and cats, are spatially arranged 
in columnar maps. In contrast, the V1 of rodents are believed to have 
no clear spatial organization, and rather form a ‘salt-and-pepper’ style 
organization. However, [1] recently showed that the tuning similarity 
of pyramidal neurons in mouse V1 decreases with cortical distance, 
indicating a weak spatial clustering of tuning, instead of a strict salt-
and-pepper map (Fig. 1a) [1].
To study the emergence of spatial organization of orientation tun-
ing, we model the layer (L) 4 and layer (L) 2/3 of rodent V1 with a net-
work of spiking neurons (Fig. 1b). The tuning curves of L4 neurons are 
homogeneous, with preferred orientations randomly assigned with-
out any spatial correlation (i.e. ‘salt-and-pepper’). The L2/3 network 
consists of excitatory and inhibitory neurons receiving feedforward 
input from L4 neurons, and lateral recurrent inputs. The probability of 
both feedforward and recurrent connectivity decays with physical dis-
tance, which obey 2D Gaussian-shaped function with average widths 
alpha_F and alpha_R, respectively.
We found that when the network has strong, yet balanced, excitatory 
and inhibitory interactions, even though feedforward and recurrent 
inputs to L2/3 neurons are weakly tuned due to spatial filtering, L2/3 

neurons can be orientation selective. This is consistent with previous 
studies [2, 3]. Surprisingly, spatial clustering of similarly tuned neurons 
emerges in L2/3 when recurrent connections are broader than feed-
forward connections (alpha_R>alpha_F), which resembles the colum-
nar maps of higher mammals, though weaker. We name this pattern 
‘columnette’ (Fig. 1c).
This result could be intuitively interpreted in the spatial Fourier space: 
Both feedforward and recurrent input currents have low-pass structure 
in the Fourier domain, due to the spatial filtering of a Gaussian-shaped 
connectivity footprint. Their summation can be either low-pass when 
alpha_R< = alpha_F (Fig. 1d, left panel), or band-pass when alpha_
R>alpha_F (Fig. 1d, right panel), which corresponds to a clustered pat-
tern in the physical space.
Furthermore, we predict that the signal correlation between neurons 
decreases with distance (Fig. 1e). Especially, when alpha_R>alpha_F 
and ‘columnette’ emerges, the signal correlation shows non-mono-
tonic dependence on distance.
Previous models of orientation maps typically use long-range lateral 
inhibition which gives rise to strong columnar periodicity [4]. In con-
trast, we show that in networks with spatially balanced excitatory and 
inhibitory connections, ‘columnette’, a weak columnar structure, can 
emerge without any feature based spatial organization of either feed-
forward inputs or recurrent coupling.
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Fig. 1 a Tuning similarity of pyramidal neurons in mouse V1 [1]. 
b Schematic of the network model. c Spatial patterns of preferred 
orientations of excitatory neurons, under different alpha_R. d Input 
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magnitude of spatial Fourier mode. e Signal correlation as a function 
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In perceptual categorization tasks, both reaction times (RTs) and 
choices not only depend on current stimulus information, but also on 
urgency and prior expectations. To study them, we trained 10 rats in 
a two-alternative forced choice auditory discrimination task in free-
response paradigm. The standard Drift Diffusion Model (DDM) for evi-
dence accumulation up-to-threshold predicts a modulation of RTs by 
evidence strength. However, rats showed stimulus-independent RTs 
for fast, ‘express’ responses (RT<80ms,≈35% of trials). On the other 
hand, rats’ express choices were clearly modulated by stimuli because 
their express performance was significantly above chance (also for 
unbiased trials), and increased with RT. Additionally, in≈20% of tri-
als, rats aborted fixation close to the onset of the stimulus, i.e. fixation 
break (FB, unrewarded).
The stimulus-independent express RTs, FBs and the increase of perfor-
mance with RT for unbiased trials are inconsistent with standard DDMs 
for decision-making. Therefore, we propose a novel variant in which 
rats’ responses are triggered by independently integrating time and 
evidence. In this Dual DDM (2DM), time is tracked by a single-thresh-
old DDM with constant bound initiating before the stimulus onset. 
This time integrator acts as both, an anticipation signal and an urgency 
signal. The evidence integrator is a standard DDM (two-threshold, con-
stant-bound) that starts integrating sensory evidence some sensory 
delay after stimulus onset. The response of the rat is triggered when a 
bound is reached (either time-bound or evidence-bound). The choice 
of the rat is always set by the accumulated evidence at response time. 
The unconstrained fit of the 2DM to the full RT distributions provides 
initial, strong and consistent evidence across rats for the dual nature of 
their decision process.
We also introduced correlations in the stimulus sequence to induce 
trial-dependent expectations to repeat or alternate the previous 
response. We first found that, surprisingly, post-error slowing arose 
from two distinct phenomena: a slowing of the time integrator, and a 
lower stimulus sensitivity (i.e. slower integration to threshold) of the 
evidence integrator. Also, as expected, the evidence integrator was 
strongly influenced by history biases. We were able to decouple the 
contribution of the ‘lateral bias’ (i.e. accumulated ‘win-stay’ side bias) 
and the ‘transition bias’ (i.e. accumulated bias to repeat or alternate the 
previous response) on rats’ decisions. By maximum likelihood fitting 
(with L2 regularization) of the 2DM to rats’ choices, we consistently 
found that the lateral bias arises as a constant bias in the drift of the 
evidence integrator, whereas the transition bias is implemented as an 
initial offset of the evidence integrator.
We also found an unexpected modulation of the time integrator with 
history biases: it was slower under an expectation to repeat, while it 
became faster under an expectation to alternate. Preliminary results 
seem to support a distinct impact of the lateral and the transition bias 
also on the time integrator.
In conclusion, current standard models of decision making predict 
a direct relation between evidence accumulation and RTs, which is 
inconsistent with experimental observations in rats. A novel dual 
model, grounded on an independent integration of time and evi-
dence, is able to capture rat’s behavior, and even decouple the impact 
of distinct history biases on RTs and choices.
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People with retinitis pigmentosa (RP) and age-related macular degen-
eration (AMD) lose retinal cells called photoreceptors that convert 
light energy into electro-chemical signals. However, many other types 
of retinal neurons survive in RP and AMD. It is possible to return a rudi-
mentary vision to people with these diseases by stimulating remaining 
neurons in the retina with small electrical currents via an implanted 
electrode array. To improve efficacy of visual prostheses it is important 
to understand electrophysiology of different classes of visual neurons.
We used machine learning techniques to divide previously recorded 
data into clusters. We analyzed if the clusters discovered using the 
machine learning technique corresponded to the cell receptive field 
classifications. Extracellular recordings with 32 electrode array were 
collected from 189 V1 cortical neurons in anaesthetised cats. For each 
cell, a spike with the largest amplitude (out of 32 recordings) was ana-
lysed. White noise light stimulation protocol was implemented to clas-
sify receptive field size for each cell. Recorded extracellular spikes were 
spike sorted and used for clustering analysis. Wavelet decomposition 
was used to decompose experimentally recorded data into coeffi-
cients at five levels (the number of levels was based on the number of 
samples in the data). The coefficients at levels 3, 4 and 5 were used as 
input into K-means algorithm to classify data into clusters. The num-
ber of clusters in the algorithm was chosen to match six receptive field 
types.
Results show that clusters found by wavelet decomposition have some 
overlap with the receptive field types, i.e. cells with the same receptive 
field types have similar shapes of extracellular spikes. The clusters can 
be divided into triphasic slow, triphasic fast, double spikes, upwards, 
biphasic and fast spikes. In addition, the extracellular spikes were clus-
tered into fast and slow groups which corresponded to previously 
published results for cortical visual neurons.
Understanding the differences in electrophysiological properties 
between V1 neurons is important for the advancement of basic neuro-
science. In addition, our results may have an important implication on 
the development of stimulation strategies for visual prostheses.
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Neurons in the mammalian primary visual cortex (V1) are classically 
labelled as either simple or complex based on their response linear-
ity. A fundamental transformation that occurs in the mammalian vis-
ual cortex is the change from linear, polarity-sensitive responses of 
simple cells to nonlinear, polarity-insensitive responses of complex 
cells. While the difference between simple and complex responses is 
clear when the stimulus strength is high, reducing stimulus strength 
(e.g. contrast) diminishes the differences between the two cell types 
and causes some complex cells to respond as simple cells. This con-
trast-dependent transformation has been observed in extracellularly 
recorded spiking responses in V1 of mouse, cat and monkey. However, 
the mechanism underlying the phenomenon is unclear. In this study, 
we first explored two models that could potentially explain the con-
trast-dependent transformation and then examined the signature of 
the potential models by recording both the spiking and subthreshold 
responses of mouse V1 neurons using in vivo whole cell recordings. In 
the first candidate model the contrast-dependent shifts in complex 
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cell responses emerge due to the “iceberg” effect, generated by the 
biophysical spike threshold, in which not all synaptic responses are 
converted into spikes at low contrast. However, we found systematic 
shifts in the degree of complex cell responses in mouse V1 at the sub-
threshold level, demonstrating that synaptic inputs change in concert 
with the shifts in response linearity and that this change cannot be 
explained with a simple threshold nonlinearity model. In the second 
candidate model recurrent amplification of the network acts as a criti-
cal component in generating linear or nonlinear responses in complex 
cells when input gain is low or high, respectively [1]. This model pre-
dicts that both spiking and subthreshold responses undergo con-
trast-dependent shifts in response linearity. Our experimental data 
confirms that this is the case in mouse V1 neurons. In conclusion, while 
the threshold nonlinearity may play an additional role in altering the 
response linearity of neurons [2], there is a clear synaptic component 
to the shift in response linearity that is likely driven by the changing 
recurrent inputs received from the cortical network.
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There are evidences that different brain networks may have distinct 
forms of holding information, both in terms of mechanism and cod-
ing. In particular, when modeling memory function in the brain, two 
theoretical frameworks have been used: recurrent attractor networks 
and bistability based working memory buffers. Recurrent attractor 
networks store information in the synaptic connections, and memory 
is a network property. On the other hand, working memory buff-
ers may rely on short-lived changes, sometimes at single cell level, 
and have a much lower storage capacity that can be circumvent, for 
instance, by a multiplexing code like the theta-gamma temporal code. 
Moreover, while it is likely that recurrent networks could present an 
irregular asynchronous state the same may not be true of the work-
ing memory buffers of the theta-gamma kind where synchrony is an 
essential feature. But ultimately if both networks are to be present in 
the brain they need to communicate to exchange information. In this 
work we propose a mechanism using inhibitory competition that pro-
vides a satisfactory functional coupling between such different forms 
of information storage and processing. We focus in the simpler case of 
a neural architecture comprised of two working memory buffers that 
interact via a recurrent neural network (RNN) that is capable of hold-
ing long term memories as attractors. In the network the temporal 
sequence coming from the input buffer is stored as a spatial pattern 
in the RNN, and subsequently decoded as a temporal pattern in the 
output buffer. We investigate its encoding and decoding capabilities 
in presence of noise and incomplete information. We also address the 
question of whether a random network structure in RNN could be suf-
ficient to guarantee information transfer between the two buffers. We 
explore 4 models of random connectivity: Erdos-Renyi (ER), Watts-Stro-
gatz (WS), Newmann-Watts-Strogatz (NWS) and Barabasi-Albert (BA). 
Using as a metric for the encoding/decoding error the edit distance 
between the output and input sequences, we show that the WS and 
NWS models, which correspond to networks that have small-world 
properties, are more efficient than the other models. When compared 
to the ER model, the WS and NWS models present a smaller error for 
almost every value of the connectivity parameters.
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Geppetto [1] is an open-source platform for building web applica-
tions for visualizing neuroscience models and data, as well as man-
aging simulations. Geppetto underpins a number of neuroscience 
applications available to the research community, including Open 
Source Brain (OSB) [2], Virtual Fly Brain (VFB) [3], NetPyNE-UI [4] and 
HNN-UI [5]. While Geppetto traditionally employed a Java backend 
we have now augmented it to also support Python. This means 
that applications built with Geppetto now also offer their users the 
ability to interact directly with any underlying Python APIs, while 
seamlessly keeping the user interface synchronized. To make this 
possible we developed a series of Javascript-Python Connectors 
that let developers easily build a user interface, whose state can be 
controlled from a Python model and vice versa. Neuroscience appli-
cations built with Python Geppetto have the advantage of bridging 
the beginner/advanced user usability gap. Beginner users will be 
able to interact with a user interface that will simplify the accessibil-
ity of the underlying APIs. Expert users will be able from the same 
GUI to programmatically interact with the underlying data mod-
els and Python APIs while the user interface will be kept updated 
graphically reflecting any programmatic changes. Python Gep-
petto applications can be deployed locally, installed using standard 
Python packages (accessible from PyPI) or Docker and deployed 
remotely on the web using Kubernetes and Jupyter Hub.

Fig. 1 NetPyNE-UI [4] as an example of an application built with 
Python Geppetto. In the screenshot the number of cells for popu-
lation M was programmatically changed via an integrated Jupyter 
notebook, causing the GUI to automatically update
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The primary motor cortex (M1) is the core region for body action and 
movements. Here we have been constructed a large-scale real spiking 
neural network of M1, based on anatomical and electrophysiological 
data [1, 2]. The model includes 5 layers L1, L23, L5A, L5B, and L6 and 
19 different cell types. Spatial extents and connection probabilities 
among the neurons were estimated from experimental Laser Scanning 
Photo Stimulation (LSPS) data and unitary synaptic connections.
First, the virtual LSPS experiment was conducted. Those already 
reported by experiments [3], repeated by our results, while other non-
reported maps were reported by our stimulation.
Also, we conducted columnar shape stimulation to inhibitory neurons. 
To elucidate the application of such a structure, we assumed a verti-
cal cylinder and applied the stimulation on neurons inside. All neurons 
of 5 populations of L1-ENGC, L1-SBC, L2/3-PV, L2/3-SST, and L2/3-VIP 
were stimulated and spiking activity of all neurons was recorded.
As a result, SBC, PV, and SST interneurons were categorized as local 
inhibitors. Projection of all these 3 interneurons were confined to the 
inside of assumed column. In contrast, stimulation of layer 1 ENGC and 
layer 2/3 VIP interneurons showed both vertical and horizontal propa-
gation. ENGC cells almost inhibited all neurons of layer 1 and 2/3, plus 
SST neurons of all layers and VIP interneurons activated all neuron 
types including PV neurons in all layers (excluding layer 1) except SST 
neurons which are inhibited by VIPs.
Inhibition of inhibition is a well-known logic to control the activity 
of cortex. ENGCs and SBCs in layer 1 and SSTs of layer 2/3 inhibit VIP 
neurons, while VIP interneurons themselves have a versatile impact 
on others. The results suggest that VIP neurons may act as a switch for 
activation of inhibition on entire cortical network.
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Understanding the structure and function of S1 is critical for figuring 
out the information process mechanism in the sensory nervous sys-
tem. Spatial organization of connections, layers, and columns in the 
somatosensory cortex is considered to work as information processing 
device for integration of inputs and selection of outputs. However, it 
remains unknown how different types of connections with different 
spatial extent work for sensory processing in the primary somatosen-
sory cortex (S1). To investigate it, we developed a three-dimensional 
model of spiking neural network model of the S1 based on anatomi-
cal and electrophysiological experiment results [1, 2]. The S1 model 
comprised 7 layers, with 1 excitatory neuron and 5 inhibitory neuron 
types (L1: 2 inhibitory neuron types; L2 and L3: 3 inhibitory and 1 
excitatory neuron types; L4, L5A, L5B&L6: 2 inhibitory and 1 excitatory 
neuron types). We used the layer thicknesses and the cell densities of 
the mouse’s S1 data. Leaky integrate-and-fire neuron model was used 
for all neuron types. We used the information of spatial extents, prob-
abilities, and connectivity from the reports of laser-scanning photo-
stimulation (LSPS) experiments and patch clamp recordings. We used 
Gaussian function as the connection probability function. All simula-
tions were performed using pyNEST 2.16 on HOKUSAI supercom-
puter in RIKEN. The simulation time step was set to 0.1 ms. When we 
performed a size of 1  mm2 S1 simulation on one compute node with 
40 CPU cores, it took 6 minutes to construct the network. And it also 
took 0.5 minute to complete the simulation of 1 second of neuronal 
network activity in real biological time. Total neuron number in the  
1mm2 microcircuit is 94396.By adjusting external Poisson input for 
each kind of neuron, we realized resting state firing rate for all neuron 
types in our S1 model. We made a virtual slice of the S1 whose shape 
was a cube of 1600 × 400 × 1400 micron. We first performed virtual 
LSPS experiments for excitatory and inhibitory connections to all neu-
ron types. The responses of neurons to LSPS were qualitatively simi-
lar to those in real LSPS experiments. Most importantly, to investigate 
the relation between excitatory and inhibitory signals, we compared 
the excitatory and inhibitory conductance with changing distances 
between neurons with external stimulation and recorded neurons. 
The excitatory and inhibitory synaptic conductance of L2/3 and L5 
excitatory neurons similarly decayed with increasing in the horizontal 
distance between stimulation sites and positions of recorded neurons, 
which is similar to real experimental results [3]. These results sug-
gest that spatial extents of different connections may cause spatially 
coupled excitation and inhibition in L2/3 and L5A, which may lead to 
cooperative information processing by excitation and inhibition.

Fig. 1 a Experiment of spatial interaction between excitatory and 
inhibitory signals in S1. The width of a virtual column is around 200 
microns. b The excitatory and inhibitory synaptic conductance of 
L23 pyramidal cells in different barrel columns. c The excitatory and 
inhibitory synaptic conductance of L5 pyramidal cells
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Initiation of seizure activity in the brain is generally believed to 
be caused by an alteration in excitation-inhibition balance such 
as when dendritic inhibition is impaired. Alternatively, it is also 
believed that seizure activity can arise due to a synaptic reorganiza-
tion of neural networks such as the emergence of axonal sprouting 
in which axonal processes of a neuron grow out and create syn-
aptic connections with the dendritic processes of other neurons. 
In fact, co-occurrence of seizure activity and axonal sprouting has 
been established in epilepsy and lesion models. For example, Cava-
zos et al. [1] report that alterations in terminal projections of mossy 
fiber pathway progressed with the evolution of kindled seizures. It 
remains unclear, however, whether axonal sprouting is a cause or 
effect of seizure activity or how and when it contributes to brain 
dysfunction and initiation of seizure activity. In this study, we used a 
coupled neural mass model to demonstrate that epileptic discharge 
activity can initiate from non-pathologic brain regions, reciprocally 
coupled to simulate an emergence of axonal sprouting. As axonal 
sprouting progresses and creates stronger connections between 
the brain regions, the discharge activity transitions into different 
types of seizure activity such as high frequency discharges, periodic 
oscillations, and low-amplitude high-frequency rhythms; increas-
ing in beta-activity component (Fig. 1). These transitions can also be 
brought by an increase in post-synaptic gain, possibly concurrent 
with an increase in number of synaptic connections. Such increase 
in post-synaptic gain captures observed aberrant post-synaptic 
morphologies like the formation of multiple spine buttons similar to 
those observed with long term potentiation. The results delve into 
the possibility that axon sprouting maybe a primary mechanism, 

possibly concomitant with impaired inhibition, which can provide 
insights on how networks of brain regions are recruited and give 
rise to the generalization of seizure activity. In the future, we aim 
to construct a generative model for seizure activity initiation and 
propagation for diagnosis and treatment of patients with primary or 
secondary generalized epilepsy [2].
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The vestibuloocular reflex (VOR) is one of the most popular model 
systems to study motor learning due to its clear function (stabili-
zation of our vision) and ease in recording its input (head rotation) 
and output (eye movement) signals. The motor learning of the VOR 
requires the cerebellar flocculus. The flocculus receives sensory and 
motor information through mossy and climbing fibers, and outputs 
motor related activities to vestibular nuclei via Purkinje cell axons. 
Between these inputs and outputs lies a rich network of interneu-
rons, most of them inhibitory (GABAergic). While most of the previ-
ous studies on VOR motor learning have focused on responses of 
Purkinje cells, little attention has paid to roles of cerebellar inhibi-
tory interneurons due to a difficulty in identifying and recording 
those neurons in cerebellar cortex in behaving animals. Herein, we 
have constructed a computational model of the VOR that explicitly 
implements the anatomically realistic floccular neuronal network 
structure so that activities of each inhibitory interneuron can be 
evaluated. The model also allows us to knocked-out any specific 
interneuron(s) at any timing of VOR motor learning. The model con-
sists of 20 Purkinje, 10000 granular, 900 Golgi, and 60 basket/stel-
late cells each of which is described as a conductance based spiking 
neuron model. These neuron models are connected, preserving 
convergence/divergence ratios between neuron types [1]. As bases 
of VOR motor learning, climbing fiber spike timing dependent LTD 
and LTP have been implemented at parallel fiber—Purkinje cell 
synapses. To induce VOR motor learning we simulated continuous 
application of visual-vestibular mismatch paradigm: VOR enhance-
ment (VORe) and VOR suppression. In the VORe, the head and visual 
stimulus was applied out of phase, while those are given in phase in 
the VORs. Continuous application of VORe and VORs stimulus, VOR 
gain measured in darkness without visual stimulation increases or 
decreases, respectively. Furthermore, knock-out of Golgi and/or bas-
ket/stellate cells is simulated to investigate roles of those cells in the 
VOR motor learning.
We confirmed that the model reproduces adaptive changes of VOR 
gain with/without Golgi cells or basket/stellate cells. When the 
Golgi cell knocked-out in the motor learning, increase of VOR gain 
was slightly impaired while its decrease was enhanced. When the 
basket/stellate cell knocked-out, decrease of VOR gain was slightly 
impaired, while its increase was enhanced. Interestingly, retention 
of acquired VOR performance was affected for only low gain condi-
tion by elimination of Golgi cell or Basket/Stellate cell after the VOR 
motor learning. Those results indicated that the inhibitory interneu-
rons play key roles in the high and low gain VOR motor learning, and 
retention of those memories.
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Fig. 1 Seizure activity initiates as ictal discharges in a reciprocally 
coupled non‑pathological neural masses. As coupling (axonal 
sprouting) increases, discharge activity increases in frequency and 
a transition to different types of seizure activity is observed such as 
low‑amplitude high‑frequency rhythms and waxing and waning. 
After further increase in coupling, baseline activity is recovered
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The basal ganglia (BG) is involved in various cognitive functions, 
including stimulus-response associative learning and decision mak-
ing. The two major pathways that connect the striatum and the output 
nuclei of the basal ganglia are direct and indirect, with the substantia 
nigra pars reticulata (SNr) / globus pallidus internus (GPi) inhibitory 
projections providing the final output. Signals through these path-
ways converge to inhibit the glutamatergic thalamic nuclei, which 
output onto the cortex. GPi activity suppresses inappropriate motor 
activity that may conflict with the movement being performed, mak-
ing it an important integrator of learned reward-related behaviors [3]. 
Recent innovations in genetic technology resulted in the ability to 
stimulate distinct neural populations with light through the insertion 
of light sensitive ion channels. Optogenetic manipulations to the basal 
ganglia has shown to alter behavioral execution in mice, but what 
exactly are these behaviors that are being altered and to what degree? 
In our studies we have designed a self-paced treadmill task that will 
help better our understanding of how movement planning inter-
sects with a self-motivational task. Ultimately, the goal is to use this 
task with optogenetic methods to activate GPi and determine how it 
reduces learned reward-seeking behaviors.
We designed an open field environment with a horizontal treadmill and 
a simple water delivery system. Mice are water-restricted to increase 
motivation. During training, once the mouse runs above a 200 cm dis-
tance threshold on the treadmill, an associated visual light cue signals 
that the water reward is ready. Water delivery is triggered by the break-
ing of an IR bream at the spout. To investigate the motivation aspect, 
we manipulate the reward sizes, which become a function of the run 
distance in a set period (15-60 s) and are delivered at the end of each 
period. Higher motivation is signaled by higher run speeds or run dis-
tances, as well as by between-trial response time. With this task, the 
effect of GPi activation on learned behavior and motivation can be elu-
cidated with expression of Channelrhodopsin (ChR2) through AAV injec-
tion in GPi. A glass fiber will be implanted to allow for light stimulation 
of GPi. Optogenetic stimulation of GPi will be delivered at various inter-
vals, such as right before cue delivery or during the behavioral response, 
to observe the effect of BG control has on learned behavior at different 
parts of execution. Because GPi provides inhibitory input to motor plan-
ning circuits in the cortex, we expect a reduction in learned behavior 
across all levels of baseline motivation. Future investigation of BG cir-
cuits and their movement effects can also use this task for examination 
into reward-seeking behavior and self-motivation.
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How can a neuron maintain its function under changed physiologi-
cal or pathological conditions? Brain lesions affect not only the locally 
damaged area but have an impact also on postsynaptic regions. 
Lesion-induced denervation of connections from the entorhinal cor-
tex causes significant loss of synapses in the hippocampal dentate 
gyrus. Subsequently, dendritic retraction occurs in the postsynaptic 
target area containing hippocampal dentate granule cells. Our previ-
ous models showed that dendritic retraction is capable of increasing 
the excitability of neurons thus compensating for the denervation-
evoked loss of synapses. The firing rate remains similar in healthy and 
denervated neurons despite weaker synaptic input upon denervation 
(firing rate homeostasis). However, this effect was computed only for 
stochastically stimulated AMPA synapses [1] but not for more real-
istic AMPA/NMDA synapses. Furthermore, a boost in backpropagat-
ing action potentials (bAPs) in denervated granule cells might affect 
homeostasis of synaptic plasticity. Therefore, here we investigated the 
consequences of dendritic retraction for (1) firing rate homeostasis 
and (2) NMDA receptor-dependentsynaptic plasticity in biologically 
realistic compartmental models driven by AMPA/NMDA synapses. Our 
simulations predict that dendritic retraction supports firing rate home-
ostasis and partially also synaptic plasticity homeostasis.
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The dentate gyrus is one of two brain regions that exhibit adult neuro-
genesis. It was shown to be important for hippocampal learning and 
memory processes, which are based on synaptic plasticity. We have 
recently reported structural homo- and heterosynaptic long-term 
synaptic plasticity emerging in adult-born dentate granule cells at a 
cell age of 35 days [1]. High frequency stimulation of the medial per-
forant path in this and later stages of adult neurogenesis led to spine 
enlargement in stimulated dendritic regions (homosynaptic structural 
LTP) and a concurrent spine shrinkage in neighboring non stimulated 
dendritic segments (heterosynaptic structural LTD).
Here we perform a follow-up systematic analysis of spine plasticity 
data. Our results show that spine sizes follow a lognormal distribu-
tion, both in dendritic segments undergoing homosynaptic spine 
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enlargement as well as heterosynaptic spine shrinkage, suggesting 
that the overall distribution of spine sizes does not change. We are cur-
rently developing computational models, which should account for 
the observed spine changes in adult-born granule cells and provide 
new insights into plasticity rules in the dentate gyrus.
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Despite the importance and common use of Bayesian inference in brain 
network modelling to understand how experimental modalities result 
from the dynamics of coupled neural populations, many challenges 
remain to be addressed in this context. The recent successful person-
alized strategies towards epilepsy treatment [1] motivated us to focus 
on Bayesian parameter estimation of Virtual Epileptic Patient (VEP) 
brain model. The VEP is based on personalized brain network models 
derived from non-invasive structural data of individual patients. Using 
VEP as generative model, and the recently developed Bayesian algo-
rithms implemented in probabilistic programming languages [2], our 
aim is to infer the dynamics of brain network model from the patient’s 
empirical data. We estimate the spatial dependence of excitability and 
provide a heat map capturing an estimate of epileptogenicity and our 
confidence thereof. The Bayesian framework taken in this work pro-
poses an appropriate patient-specific strategy to infer epileptogenicity 
of the brain regions to improve outcomes after epilepsy surgery.
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Deep brain stimulation (DBS) is a surgical technology in which fine 
electrodes are implanted into the brain and connected to a type of 
pacemaker. This applies chronic high frequency electrical stimulation 

to the brain 24 hours a day for years. It has revolutionized the treat-
ment of movement disorders, such as Parkinson disease, and is being 
studied as potential treatment for several other disorders, including 
treatment resistant depression (TRD). In TRD, the subcallosal cingulate 
gyrus (SCG) is most commonly used as a DBS target because it shows 
hyperactivity in patients with depression, normalization of activity in 
the context of positive response to other antidepressant treatments, 
and because the SCG has structural connections with several key 
regions involved in mood regulation.DBS treatment outcome has been 
variable, with some studies failing to find effects, and others finding 
positive outcomes in up to 80% of patients. Potential reasons for these 
inconsistent findings are that the ideal stimulation target location and 
ideal stimulation parameters are currently unknown. DBS for TRD is 
therefore still applied on a trial-and-error basis, which, especially con-
sidering the invasive nature of this treatment, is far from ideal. Deter-
mining the exact stimulation conditions that generate good treatment 
outcome is thus crucial for applying DBS to TRD.
In this study, we propose a computational modeling approach for 
identifying the ideal stimulation location. Toward this end, we have 
built personalized brain network models based on neuroimaging data 
obtained from each patient, using The Virtual Brain (TVB) platform. 
Then, spatiotemporal brain activation patterns following the stimula-
tion are simulated. In the simulations, electrical stimulation is system-
atically applied to each electrode contact (8 contacts per patient), and 
the fiber tracts activated in each case are determined from the voltage 
distribution across each fiber tract. The voltage distribution is calcu-
lated based on patient-specific contact positions and anatomical loca-
tions of fiber tracts, by employing the finite difference method. Source 
activity from each brain node is projected to 65-channel electroen-
cephalography (EEG) sensor space, through the forward solution. In 
order to verify the validity of the proposed model, the simulated EEG 
signals are compared with empirical data, i.e., the event-related poten-
tials recorded by means of EEG from the individual patient. The results 
show that brain network models based on fiber tract activation are able 
to reproduce the spatiotemporal response patterns according to the 
stimulation location, which can be useful to optimize the active con-
tact positions in individual patients. This study sets the stage forapply-
ing computational modeling in the context of personalized medicine, 
where an in-silico brain platform allows clinicians to test andoptimize 
DBS strategies for individual patients, prior to implantation.
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Timings of the activity at brain regions, which can be described by 
their phases for oscillatory processes, are of crucial importance for the 
brain functioning. The structure of the brain constrains its dynamics 
through the delays due to propagation and the strengths of the white 
matter tracts [1]. Rhythms and their synchronization, as one of the key 
mechanisms of brain function [2] are particularly sensitive to delays, 
which become notably long in large-scale brain models with biologi-
cally realistic connectivity [3].
We show theoretical and in-silico numerical results for phase coher-
ence between signals from different brain regions. For this we build on 
the Kuramoto model with spatially distributed time delays [4], where 
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the network connectivity strengths and distances are defined by the 
connectome. Phase relations and their regions of stability are derived 
and numerically confirmed, showing that besides in-phase, clustered 
delays can induce anti-phase synchronization for certain frequencies, 
while the sign of the lags is determined by the inhomogeneous net-
work interactions [5]. For in-phase synchronization faster oscillators 
always phase lead, while stronger connected nodes lag behind the 
weaker during frequency depression, which consistently arises for in-
silico results (See Fig. 1). The statistics of the phases is calculated from 
the phase locking values, as in many empirical studies, and we scru-
tinize the method’s impact. The choice of surrogates does not affect 
the mean of the observed phase lags, but higher significance levels 
that are generated by some surrogates, cause decreased variance and 
might fail to detect the generally weaker coherence of the interhemi-
spheric links. These links are also affected by the non-stationary and 
intermittent synchronization, which causes multimodal phase lags 
that can be misleading if averaged [5].
The architecture of the phase lags are confirmed for non-isochronous, 
nonlinearly damped, and chaotic oscillators, which show a robust 
switching from in to anti-phase synchronization by increasing the fre-
quency, with a consistent lagging of the stronger connected regions 
[6]. Increased frequency and coupling are also shown to distort the 
oscillators by decreasing their amplitude, and stronger regions have 
lower, but more synchronized activity [6]. Taken together, the results 
indicate specific features in the phase relationships within the brain 
that need to hold for a wide range of local oscillatory dynamics, 
given that the time-delays of the connectome are proportional to the 
lengths of the structural pathways [5, 6].
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Energetic constraints might limit and shape information processing 
in the brain, and it has been shown previously that synapses maxi-
mize energy efficiency of information transfer rather than information 
transfer itself. To investigate computation by neural systems, measur-
ing the amount of information transferred between stimuli and neu-
ral responses is essential. Information theory offers a range of tools to 
calculate information flow in neural networks. Choosing the appropri-
ate method is particularly important in experimental contexts, where 
technical limitations can complicate or limit the use of information 
theory.
Here, we will discuss the comparative advantages of two different 
metrics: mutual information and transfer entropy. We will compare 
their performance on biologically plausible spike trains and discuss 
their accuracy depending on various parameters, and on the amount 
of available data, a critical limiting factor in all practical applications 
of information theory. We will first demonstrate these metrics’ per-
formances using synthetic random spike trains before moving on to 
more realistic spike-generating models. Those realistic models focus 
on the generation of input spike trains with a statistical structure 
similar to biological spike trains, and also on the generation of output 
spike trains with an experimentally-calibrated Hodgkin-Huxley-type 
model. We will conclude by discussing how these metrics can be used 
to study brain function, especially the effect of neuromodulators and 
learning rules as ways for synapses to maximize energy efficiency.
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Information measures are often used to assess the efficacy of neural 
networks and learning rules can be derived through optimization 
procedures on such measures [3, 8, 10]. There has also been recent 
interest for sequence learning for specific tasks [2], or with specific net-
work configurations [7]. In biological neural networks, computation 
is restricted by the amount of available resources [4, 11]. Considering 
energy restrictions, it is reasonable to balance information processing 
efficacy with energy consumption [1]. Here, we obtain such an energy-
constrained learning rule for inputs described as sequence of events.
We studied networks of non-linear Hawkes neurons and assessed 
information flow using mutual information. We then applied gradi-
ent descent for a combination of mutual information and energetic 
costs to obtain a learning rule. The rule obtained contains a sliding 
threshold similar to the Bienenstock-Cooper-Munro rule [5]. It contains 
terms local in time and in space, plus one global variable common to 
the whole network. The rule thus belongs to so-called three-factors 
rules, and the global variable could be related to neuromodulation 
[6]. Because that global variable integrates over time, consecutive 
inputs can influence synaptic changes triggered by preceding events. 
We additionally investigated the relation between that rule and STDP, 
and obtained different STDP-like learning windows for excitatory and 
inhibitory neurons.
Constraining energy consumption results in a rearrangement of the 
correspondence between inputs and respective outputs, with more 
frequent input patterns mapped to lower energy orbits. Taking into 
account unreliability of neural transmission results in an additional 

Fig. 1 a In‑ and b anti‑phase interhemispheric synchronization 
for different frequencies. Matrices show phase lags between brain 
regions, ordered by in‑strength within each hemisphere, and upper 
right are histograms of phase lags for the whole brain. (bottom) Intra‑ 
and inter‑hemispheric lags for links between 10 strongest regions. c 
Amplitude reduction of the neural activity due to delays
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negative term in the learning rule proportional to the synaptic weight. 
This has the effect that extremely rare events aren’t learned, while 
moderately rare inputs evoke maximal network activity.
When different neurons respond to different inputs that are predic-
tive of each other, synaptic weights between these neurons will be 
reinforced. Different inputs regularly occurring in close temporal rela-
tion to each other can be defined as a context, which can lead to the 
appearance of subnetworks coding for the whole context rather than 
for components of it, lowering energetic costs of that representation. 
For almost strict sequences, neurons representing late inputs in the 
sequence might be inhibited, reducing energy costs.
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In a constantly changing world, accurate decisions require flexible 
evidence accumulation. As old information becomes less relevant, it 
should be discounted at a rate adapted to the frequency of environ-
mental changes. However, sometimes humans and other animals 
must simultaneously infer the state of the environment and its vola-
tility (hazard rate). How do such inference processes interact when 
performed hierarchically? To address this question, we developed 
and analyzed a model of an ideal observer who must report either 
the state or the hazard rate. We find that the speed of both state and 
hazard rate inference is mostly determined by information integra-
tion across change points.
Our observer infers the state and hazard rate by integrating noisy obser-
vations and discounting them according to an evolving hazard rate 
estimate. To analyze this model and its variants, we developed a new 
method for computing the observer’s state and hazard rate beliefs. 

Instead of sampling, we solve a set of nonlinear partial differential equa-
tions (PDEs), leading to faster and more accurate estimates. We char-
acterize how optimal and suboptimal (those with mistuned evidence 
discounting rates or other discounting functions) observers infer the 
state and hazard rate and compare their performance in tasks with vary-
ing difficulty. Suboptimal observers may possess mistuned evidence 
discounting rates or even different functional forms of discounting.
Evidence near change points strongly perturbs an observer’s poste-
rior by altering the state belief and supports higher hazard rates. Thus, 
state and hazard rate inference are linked, and the speed of hazard rate 
learning is primarily determined by how well the observer accounts 
for change points. Early in a trial, changes may not be well tracked, as 
the observer’s hazard rate estimate is poor, but this estimate improves 
as the trial evolves, and environmental changes are better tracked.
We measure how biases in hazard rate learning influence an observ-
er’s state inference process. Our setup can therefore be used to 
improve dynamic decision task design by identifying parameteriza-
tions that reveal hierarchical inference strategies.
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Natural environments change over many different timescales. To make 
the best decisions organisms must therefore flexibly accumulate infor-
mation, accounting for what is relevant, and ignoring what is not. 
However, many experimental and modeling studies of decision-mak-
ing focus on sequences of independent trials. In such studies, both the 
evidence gathered to make a choice and the resulting actions are irrel-
evant to future decisions. To understand decision-making under more 
natural conditions, we propose and analyze models of observers who 
accumulate evidence to freely make choices across a sequence of cor-
related trials, and receive uncertain feedback.
Two alternative forced choice tasks are often used to identify strate-
gies humans and other animals use to make decisions. Experiments 
have shown that subjects can learn the latent probabilistic structure 
of the environment to increase their performance. However, a lack of 
systematic analyses of normative models makes it difficult to study 
whether and how subjects’ decision-making strategies deviate from 
optimality. To address this problem, we extend drift-diffusion mod-
els to obtain the normative form of evidence accumulation in serial 
trials whose correct choice evolves as a two-state Markov process. 
Ideal observers integrate noisy evidence within a trial until reaching 
a decision threshold. Their initial belief is biased by their choice and 
feedback on previous trials. If observers use fixed decision thresholds, 
their bias decreases decision times, but leaves the probability of cor-
rect answers unchanged. To optimize reward rate in trial sequences, 
ideal observers adjust their thresholds over trials to deliberate longer 
on early decisions, and respond more quickly later in the sequence. 
We show how conflicts between unreliable feedback and evidence 
from previous trials are resolved by marginalization. Our findings are 
consistent with experimentally observed response trends, suggesting 
humans often assume correlations in task environments even when 
none exist.
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Every neuron of a network exerts its function by transforming multi-
ple spatiotemporal synaptic input patterns into a single spiking out-
put. During development and during the entire lifetime of a neuron, 
its input/output function is adapted to realize ongoing refinement of 
the function of the neuron and circuit, or maintain functional robust-
ness in the face of constant protein turnover or an evolving pathologi-
cal condition. This process results in a high variability in the observed 
peak conductance of ion channels across neurons. The mechanisms 
responsible for this variability are not well understood, although there 
are clear experimental and modeling indications that correlation and 
degeneracy among a variety of conductances can be involved.
Here, using a unified data-driven simulation workflow [1, 2], we stud-
ied this issue in -detailed models of hippocampal CA1 pyramidal cells 
and interneurons with morphological and electrophysiological prop-
erties explicitly constrained with experimental data from rats [3].
The models and their analysis show that the set of conductances 
expressed in any given hippocampal neuron may be considered 
as belonging to two groups: one subset is responsible for the major 
characteristics of the firing behavior in each population and the other 
more involved in degeneracy. It is also possible to conceive several 
experimentally testable predictions related to the combination and 
relative proportion of the different conductances that should be 
expressed on the membrane of different types of neurons for them to 
fulfill their role in the hippocampus circuitry.
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Neuroprosthetic devices are reaching a level of maturity and have ben-
efited many people who suffer from neurological conditions such as 
deafness and blindness. However, the perception outcome that they 
provide is significantly less than normal function. In part, this is due 

to the current spread, neural adaptation and inability to selectively 
activate different classes of neurons when using electrical stimulation. 
Optogenetic neural stimulation may provide an alternative to conven-
tional electrical pulse stimulation by delivering more targeted stimula-
tion with higher spatial resolution. A novel way to stimulate neurons is 
to combine conventional electrical stimulation with targeted optoge-
netic stimulation. The mechanisms of neural activation in response to 
the combined electrical and optogenetic costimulation are not clear.
To investigate the mechanisms of neural activation in response to 
electrical and optogenetic costimulation, we used computer simu-
lations in the NEURON environment. We simulated single compart-
ment neurons and used Hodgkin-Huxley type formalism to study how 
costimulation and a combination of ionic channels affect the neuronal 
response. To simulate an optogenetically modified neuron, we com-
bined voltage-activated currents with a model of channelrodopsin-2 
ion channel responsive to voltage, temperature and light. We system-
atically applied different levels of intracellular current pulse stimula-
tion and optical stimulation to bring the membrane potential close to 
firing threshold. We also applied mock-electrical current stimulation 
that approximates the response of neurons to optical-alone stimula-
tion and studied the activation of ionic channels in this case. To iso-
late the mechanisms during costimulation, the maximum sodium 
conductance in the NEURON model was set to zero, simulating total 
blockage of sodium channels.
Our results showed that the membrane is initially depolarised by a 
small inward channelrhodopsin current during the optical stimula-
tion, followed by a rapid sodium current following the electrical trig-
ger. During costimulation, the channelrhodopsin current transiently 
reduced during the action potential due to its voltage sensitivity. This 
result matched modelling and experimental data reported by [1] in 
cardiomyocytes.
Our results support the interpretation of a costimulation mechanism 
involving two separate families of ion channels. Our results may have 
implications for the development of stimulation strategies in novel 
neurosprosthetic devices that have electrical and optogenetic stimula-
tion capabilities.
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The activity of neural ensembles in gustatory cortex encodes various 
features of gustatory stimuli in a temporally dynamic fashion, using 
adaptive coding schemes. Although it is well-established that elec-
trophysiological activity of neural ensembles in gustatory cortex dif-
ferentiates the identities of basic tastes over many taste exposures, 
it is unknown if taste can be statistically and reliably identified from 
individual trials, on an instantaneous basis. Rats were implanted with a 
multielectrode drive in gustatory cortex and were given oral deliveries 
of liquids with one of each of the basic tastes. Here we demonstrate 
that a naïve Bayesian decoder can reliably decode tastes from popula-
tions of neurons on an instantaneous basis, evaluate various strategies 
for establishing sampling periods, and compare dynamics of Bayes-
ian decoding against dynamic state transitions identified by Hidden 
Markov Modeling.
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Various computational accounts have been proposed to explain how 
sensorimotor decisions are biased by value. Although the longstand-
ing dominant account has been the Starting Point Bias model, where 
the starting point of an evidence-accumulating decision variable is 
shifted towards the higher value decision bound, our group recently 
showed that fast biased decisions are best explained by a Drift Rate 
Bias model when one allows for temporally increasing drift rate [1] 
Such drift rate biases may arise directly from the modulation of the 
sensory representations of evidence in low-level sensory cortex. Alter-
natively, they may be implemented through post-sensory modula-
tions, in which case they would be expressed in motor preparation 
dynamics but not in sensory encoding. Our study examines this by 
recording EEG (Biosemi), eye-position (Eyelink) and EMG of the flexor 
policis brevis muscle during a value-biased orientation discrimination 
task under a strict deadline, where a correct response to one orienta-
tion was worth more (40 points) than the other (10).
As expected, errors were more frequent (p<.001) and were commit-
ted with greater haste (p<.01) on low value trials such that the fastest 
responses were purely value driven and the slowest entirely sensory-
driven (hence correct). Replicating Afacan et al, a Dynamic Drift Rate 
Bias model, in which drift rate is biased by value and is non-stationary, 
increasing over the short decision time frame, fit the behavioural data 
better than models with stationary evidence and/or starting point 
bias.
Neurophysiological analyses revealed that the initial “C1” compo-
nent of the visual evoked potential (VEP), thought to reflect primary 
visual cortical activation, showed no signs of significant value mod-
ulation (p>.1) for either correct responses or for errors. A Starting 
Point bias mechanism around target onset was observed in the Lat-
eralized Readiness Potential (LRP), across the different value condi-
tions. Interestingly, this starting point bias seemed to increase with 
time (Fig. 1).
Given that the best fitting model included a drift rate bias but our 
results showed that value does not modulate the earliest sensory 
evidence, this bias must be implemented at a later processing 
stage. It could be that these biases are implemented at the motor 
level, taking the form of urgency signals. The slopes of the urgency 
signals and their onsets could vary according to the value of the 
stimulus. In order to test this hypothesis, a new model was created 
which included an urgency signal with a different start time and rate 
of increase for each value condition. This Dynamic Urgency model 
proved to fit the data as well as the Dynamic Drift Rate Bias model 

did. Further, these urgency signals can account for an initially nega-
tive drift rate as well as the temporally growing Starting Point Bias 
observed in the Lateralized Readiness Potential. These findings fur-
ther demonstrate the inadequacy of standard stationary-accumu-
lation models in explaining highly time-constrained, value-biased 
decisions, and highlight novel computational architectures that may 
explain the more complex decision formation dynamics unfolding in 
such scenarios, which are prevalent in real life.
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Most currently available methods of constructing conductance-
based biophysical models of neuronal activity are not suitable for 
finding valid descriptions of live individual neurons. Often, data 
from several neurons of a given type, e.g. pharmacologically sepa-
rated currents, are pooled to yield a single model, ignoring the cells’ 
unique morphology and, as has been shown to be the case in at 
least some invertebrate neurons, individual differences in current 
expression. Alternatively, electrophysiological data from a single 
neuron are combined with morphological reconstruction of that 
same neuron to yield a highly accurate model of a single cell at the 
price of a process spanning many days or weeks. In neither case 
does the resulting model match a living, experimentally accessible 
neuron.
In order to probe e.g. the dynamics of small neuronal circuits, or 
to track changes in neuronal properties over time induced e.g. by 
intrinsic plasticity, cellular homoeostasis, or extrinsic modulation of 
ion channels, it would be desirable to have an accurate model of the 
cell under investigation while the experiment is ongoing. Here, we 
present a novel method that attempts to solve this problem. Rather 
than separating currents pharmacologically, we use a machine learn-
ing approach to design highly informative voltage clamp stimulation 
protocols in advance of an experiment, guided by an informed guess 
about how the model might be structured and parametrised. Using 
these stimulations and a massively parallel optimisation algorithm, we 
rapidly arrive at model parameters that accurately reflect the proper-
ties of the membrane and its active conductances. We show a proof of 
concept for single-compartment models in simulation and in a model 
system and discuss advantages and limitations of the method.
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The coding principle of pain has been debated between two oppos-
ing ideas for decades—labeled line coding and distributed coding. 
Further, according to the way of distribution, distributed coding can 
be categorized as linear distributed and non-linear distributed cod-
ing. Noxious information is well known to be conveyed at a periph-
eral level via independent neural pathways, such as C and A-delta 

Fig. 1 Orientation discrimination task, average retinotopic organiza‑
tion of the V1 region and neurophysiological results
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fibers. However, it remains largely unknown how the neural circuits 
at the spinal and supraspinal level process pain information. Here, 
we examined whether primary somatosensory (S1) neurons process 
various properties of spontaneous pain and further, how S1 neurons 
encode pain information in terms of computational coding principle. 
We recorded activities of neural populations in the S1 cortex from 
awake head-fixed mice during formalin-induced pain using in vivo 
two-photon Ca2+ imaging (n = 7). Subcutaneously injected forma-
lin elicits a biphasic pain-related behavior, i.e. a short early phase 
around 0–5 min, a longer period of late phase around 20–60 min, 
and interphase showing minimum pain-related behavior between 
them. To capture the dynamics of neural activities during each 
phase, Ca2+ imaging was performed before injection, 1–3 min, 7–9 
min, 25–27 min, and 43–45 min after injection periods (basal, early, 
inter, late 1, and late 2 phase). First, we computed the preference 
index (PI) of neurons for each phase and compared those between 
different phases using PI scatter plots. A distinct population of neu-
rons with different preference for each phase was observed, imply-
ing the response of S1 neurons to noxious information from the 
periphery during each phase is not one-dimensional. To establish 
whether the neuronal population of S1 cortex supports labeled line 
coding or distributed coding, we conducted multiple linear regres-
sion analysis with Ca2+ signals of each neuron as the outcome and 
binary phase information as the predictors. Most neurons (446/468) 
showed more than two significant beta coefficients for phases, sug-
gesting that S1 neurons encode multiple phase information (distrib-
uted coding) rather than tuned to a specific phase. To examine the 
way S1 neurons distribute pain information, we first applied sup-
port vector machine (SVM) classifier with linear kernel, and success-
fully decoded the phase information using the neural activity of the 
population (average multiclass classification accuracy of 0.88, 10-fold 
cross-validation). We then removed all the linear components of the 
neural signals with respect to the phase information by orthogonal-
izing them. SVM with the non-linear kernel using this orthogonalized 
residuals still achieved significant decoding performance for each 
phase (average performance of decoding was 0.77, 10-fold cross-
validation), while linear SVM did not. Taken together, these results 
suggest that S1 neurons process each phase of the spontaneous 
pain information using both linear and non-linear distributed coding 
schemes, rather than labeled line coding scheme.
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The ability to discern how the brain orchestrates behavior relies on 
the development of successful computational approaches to link 
and analyze outcomes of multi-pronged investigations of the nerv-
ous system. We have developed such an integrative approach for 
the nematode Caenorhabditis elegans (C. elegans). Specifically, we 
propose a model which emulates the full somatic nervous system 
and its response to stimuli. The model incorporates the anatomi-
cal wiring diagram, connectome of 279 neurons, and intra-cellular 
and extra-cellular neural dynamics. In addition, it includes layers 
which translate neural activity to muscle forces and muscle impulses 
to body postures. The model also implements an inverse integration 
procedure which modulates neural dynamics according to external 
forces on the body. We validate the model by injecting currents into 
sensory- and inter- neurons and by applying external forces to the 
body.
We are able to generate locomotion behaviors typical to the nema-
tode (forward and backward) from neural stimuli or body forces. 
The characteristics of the movements are similar to experimentally 

identified ones. Furthermore, the neural dynamics associated with dis-
tinct movements can be mapped and classified using low dimensional 
embeddings. Accordingly, these results show that our model, and thus 
the connectome along with neural dynamics, encompass rhythmic 
activity and locomotion behaviors. Utilizing the inverse integration 
approach, we simulate the effect of environmental forces acting on 
the body through proprioceptive feedback and show that feedback 
can entrain and sustain movements initiated by neural or mechani-
cal triggers. Taken together, our results show that the structure of the 
connectome sets specific movement patterns for the organism. These 
patterns are enabled by neural dynamics guided by the connectome.
The success of the dynamic worm framework to generate robust 
directional locomotion warrants the development of computational 
approaches utilizing it for identification of neural circuits and path-
ways associated with specific neural stimuli. We demonstrate that such 
studies are plausible. We apply neural stimuli experimentally known to 
modulate locomotion and trigger behavioral responses such as turns, 
escape and avoidance and show that our model supports them. We 
then propose computational ablation strategies, particularly (i) abla-
tion survey and (ii) conditional ablation, for inferring neural pathways 
associated with these stimuli. Specifically, we demonstrate how abla-
tion survey of all inter-neurons reveals command neurons that facili-
tate sensory-motor responses, such as SMDV in a sharp turn response 
to RIV stimulation. We also show how conditional ablation can identify 
alternative pathways to known command neurons and facilitate steer-
ing away behavior in the case of olfactory asymmetric neural stimuli.
In conclusion, our study provides a novel computational approach to 
study the interaction between the brain and behavior in C. elegans. 
Specifically, the dynamic worm framework incorporates models of 
interacting layers of the nervous system and bio mechanics and shows 
their critical role in generating locomotion movements. The outcomes 
of our study show that such framework can be utilized to identify brain 
circuits which control, mediate and generate natural behavior.
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EEG has been utilized as an important means of investigation on anes-
thetized brain because it instantaneously reflects the change in distinct 
brain dynamics during anesthesia. EEG during deep anesthesia is usu-
ally characterized by prominent slow oscillatory activities: slow oscilla-
tion and burst suppression. Slow oscillation and burst suppression have 
significantly different EEG patterns and therefore it may seem inconsist-
ent with the studies that slow oscillation and burst suppression have 
qualitatively similar active-inactive patterns in neuronal level.
Our assumption is that the difference comes from synchronization of 
slow activity of the brain. Slow oscillation is known to be fragmentized 
across cortex. On the other hand, burst suppression is mainly global phe-
nomena although it has some significant local characteristics. Moreover, 

Fig. 1 Slow activity desynchronization in 1D chain model. a Raster 
plot for no inhibition case (upper) and widely inhibited case (lower). b 
Characteristic length of correlation (l_c) and slow oscillation power
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the cortex is known to be hyper-excitable so that a small excitation can 
propagate over the cortex during burst suppression period. To sum up, we 
can hypothesize that spatially incoherent slow oscillation may turn into 
spatially coherent burst suppression due to the cortical hyper-excitability 
caused by reduced inhibition during burst suppression period.
We suggest two inhibitory structures which may prohibit spatial syn-
chronization of slow activities. The two possible inhibitory structures 
we suggest are overlapped inhibitions and inter-inhibitory connec-
tivity and we constructed a computational model to verify the effect 
of the structures. First of all, we studied the two possible inhibitory 
structure on a 1D chain of neurons which is divided into two mod-
ules. We found that the additional inhibitory structures on the model 
can disturb the coherence of slow activities. With these inhibitory 
structures, we constructed more realistic model where the neurons 
are distributed in finite space and the neurons are linked each other 
with probabilities depending on the distance between each neuron. In 
the models, the inhibitory structure could interrupt the spatial coher-
ence of slow activities, and the degree of incoherence was dependent 
on the interaction range of inhibitory neurons. Also simulated EEG 
derived from the model exhibits several characteristics which can be 
generally observed in transition period between slow oscillation and 
burst suppression (see Fig. 1). These results suggest that inhibitory 
neuron can disturb the coherence of slow activities in deep anesthesia 
and the transition between slow oscillation and burst suppression may 
governed by disturbance of synchronization by inhibitory structures.
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The brain perceives information from external environments, extracts 
critical aspects of the information and integrates them to make decisions 
and regulates behaviors. How can the network of multiple neurons in 
the brain substantiate such sophisticated functions? Previous modelling 
studies focused on those large brains, e.g. in human and rodents, which 
are too complex to obtain accurate understanding. In contrast, recent 
fast 3D optical monitoring of all neuronal activities (whole brain imag-
ing) in small brains such as zebrafish and the nematode Caenorhabditis 
elegans has allowed us to model brain activities accurately. However, 
these studies were mostly based on “compressed” data from principal 
component analysis, or simply applied correlation analyses, which can-
not reveal accurate “information flow” in the brain. Here we modelled 
activities of all head neurons (~150) in C. elegansacquired by whole brain 
imaging [1]. Our data-driven models using machine learning techniques 
were able to predict individual neuronal activities by its own history and 
effects from other neurons, thus accurately described the potential ways 
of information processing in the brain. We found the tree-based mod-
els and support vector regression model are more accurate than simple 
linear model, while the long short-term memory (LSTM) predicts poor. 
Furthermore, we estimated the “causality” from our models by estimat-
ing the importance of predictors in each model. Although the estimated 
importance from different models are somewhat variant in details, usu-
ally those most important predictors were commonly chosen. To reveal 
the commonality and differences between anatomical and functional 
neural network, we will compare those “causality” patterns with con-
nectome information [2] and will test our results by experimentally per-
turbing neuronal activities with optogenetics techniques. Our studies 
suggest that machine learning-based modeling of neuronal activities can 
reveal the patterns of information processing in small brains and may be 
used for understanding large brains in future.
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Bilinguals with aphasia (BWA) may present varying degrees of 
impairment in their two languages, yet both languages have poten-
tial for recovery [1]. Computational models that simulate treatment 
outcomes in BWA can help predicting which language should be 
targeted in treatment to observe the maximum potential treat-
ment gains in both languages. Here we aimed to simulate (i) nam-
ing impairment in the native (L1) and the second language (L2) and 
(ii) treatment effects in the treated language and cross-language 
transfer effects in the untreated language in BWA. Based on our 
previous DISLEX model [1] we developed BiLex, a neural network 
model of bilingual lexical access based on self-organizing maps 
SOMS, that can simulate L1 and L2 naming ability in healthy bilin-
guals with varying degrees of language proficiency [2]. First, we 
trained an individual instance of the BiLex model for 13 Spanish-
English BWA (mean age = 55.61 years) whose data have been pre-
viously reported elsewhere [1, 3] to simulate their naming abilities 
prior to stroke while accounting for their age at testing, L2 age of 
acquisition and L1 and L2 prestroke exposure. Next, these individual 
models were lesioned by gradually applying increasing amounts 
of damage to simulate independently the L1 and L2 naming defi-
cits observed in standardized language tests in each BWA. Finally, 
each individual model was retrained to simulate treatment out-
comes in the treated and the untreated language (Fig. 1). All BWA 
received naming treatment based on semantic feature analysis in 
English (n = 6) or Spanish (n = 7), and their treatment outcomes 
were estimated by computing effect sizes [4] on the treated and the 

Fig. 1 Simulations of language impairment and recovery. a–f Real 
(horizontal line) vs simulated (dotted lines) performance of patients 
UTBA01 and UTBA17 where BiLex matches (vertical line intersection) 
semantic (a, d) and naming deficits (b, c, e, f) in English (green) and 
Spanish (red). g–h Simulations (dotted lines) of treatment response 
(solid lines) in the treated (English) vs the untreated language
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untreated language. Significant treatment gains were observed in 
10 BWA in the treated language (English n = 4; Spanish n = 6) and 3 
BWA also presented significant cross-language transfer effects to the 
untreated language. Cross-correlations between behavioral treat-
ment and computational model times-series data for the treated 
(range: 0.48 to 0.96) and the untreated language (range: −0.15 to 
0.63) suggest that overall, BiLex can capture treatment effects in 
the language targeted in therapy for most BWA, and cross-language 
transfer for BWA presenting treatment gains in the untreated lan-
guage. In future research, these simulations can be employed to 
evaluate potential treatment gains in each language and to guide 
clinical decisions on the language that should be targeted in treat-
ment with BWA.
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It has been suggested that in order to overcome the motor redun-
dancy of the mammalian musculoskeletal system and simplify motor 
control, the nervous system imposes neural constraints on redundant 
degrees of freedom. For example, during the cycle of locomotion, the 
three elevation angles of leg segments (Fig. 1B) are constrained to 
form a loop in a plane—the kinematic synergy of planar covariation of 
elevation angles. The origin of these neural constraints in the nervous 
system is unknown.
Here, we addressed this question by computational and experimental 
studies of planar covariation of hindlimb segmental elevation angles 
during intact locomotion and during locomotion of decerebrate cats 
evoked by electrical stimulation of the mesencephalic locomotor 
region (MLR) in the brainstem and by epidural stimulation (ES) of the 
spinal cord at L6–L7. Possible differences in the planar covariation 
between intact and MLR-evoked locomotion could indicate the poten-
tial contribution of the forebrain in imposing the neural constraints. 
Differences in planarity between MLR- and ES-evoked locomotion 
would suggest the role of motion-dependent sensory feedback, 
which is partially disrupted by ES. If a neuromechanical model of spi-
nal control of locomotion (Fig. 1A) reproduced the elevation angle 
planarity, this result would suggest that spinal locomotor circuits may 

be responsible for the neural constraints on the hindlimb elevation 
angles. We modelled electrical MLR and ES stimulations as excitatory 
tonic inputs to spinal interneurons representing the CPG network and 
afferent motion-dependent pathways, respectively. We tuned these 
inputs to reproduce EMG activity of major hindlimb muscles recorded 
during MLR-evoked and ES-evoked locomotion. Planarity of elevation 
angle trajectories was quantified by the percentage of total data varia-
tion (PV) accounted for by the first two principal components describ-
ing the data. Thus, the complete planarity occurred when PV = 100%.
We found that all three walking conditions exhibited planar covaria-
tion of elevation angles (Fig. 11C). There was no significant difference 
in planarity between the MLR-evoked (PVMLR = 99%) and ES-evoked 
(PVES = 99%) walking and intact walking (PVInt = 98%; Fig. 1C). Since 
the circuitry in the spinal cord and brainstem lead to planar covaria-
tion, the forebrain does not appear to contribute to the neural con-
straints on the elevation angles. The neuromechanical model of spinal 
locomotor control reproduced planar trajectories of the elevation 
angles for MLR-evoked (PVMLR_m = 97%), ES-evoked (PVES_m = 98%) 
and intact (PVInt_m = 98%) walking (Fig. 1D). Analysis of the model 
suggested that neural constraints on elevation angles may originate 
from the CPG periodic activity.
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The brain recognizes regularity of trains of sound sequences soon 
after a few repetitions. A MEG study showed that the predictability 
of sound sequences is positively correlated to the root mean square 
(RMS) amplitude of the MEG signals: the participants showed higher 
RMS amplitude when passively listening to regular than random, and 
short than long sound sequences [1]. This finding is counterintuitive 
in the context of predictive-coding because the prediction error is 
assumed to decrease under more predictable conditions (i.e., regular 
and short sequences). Auksztulewicz and colleagues included synaptic 
gain modulation in their dynamic causal modeling (DCM) to account 

Fig. 1 a Neuromechanical model of cat hindlimb spinal locomotor 
control. b Definitions of segment elevation angles. c, d Elevation 
angles obtained experimentally and reproduced by the neurome‑
chanical model. Black, red and green lines are the mean trajectories 
for intact, MLR‑ and ES‑evoked walking
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for the change in RMS amplitude [2]. However, how the synaptic gain 
is modulated according to the predictability is not clear. In order to 
clarify this, we investigate how the dynamics of neural activities and 
change in synaptic strength in a local neural network (representing 
the primary auditory cortex) may be reshaped by sound sequences 
under conditions of different predictability.
We construct a rate-based primary auditory cortex model that consists 
of excitatory (E) and inhibitory (I) neural populations, where all E popu-
lations receive external inputs in tonotopic manner. Three short-term 
plasticity rules are considered: (1) synaptic adaptation on E-to-E con-
nections, (2) Hebbian learning on E-to-E connections, and (3) Hebbian 
learning on E-to-I connections. The 1st plasticity rule reduces the syn-
aptic strength according to the pre-synaptic activity [3]. The 2nd and 
3rd plasticity rules increase/reduce the synaptic strength according 
to the temporal order of firing activities between the populations [4]. 
The simulation results show that the 1st plasticity rule (i.e. adaptation) 
alone can account for the higher neural activity in regular than random 
sequences, but cannot account for the higher neural activity in short 
than long sequences, if the 2nd and 3rd plasticity rules (i.e. Hebbian 
learning) are not considered.
We demonstrate how synaptic gain is modulated (as suggested by [2]) 
during predictable sequences, which potentially links RMS amplitude 
and predictability of sound sequences. This study provides a possible 
mechanism of reshaping the synaptic strength and firing activities 
when only local information is available.
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With the advent of advanced MRI techniques, it has become possible 
to study the white matter non-invasively and in great detail. Estimat-
ing important parameters of long-range connections, such as axon 
diameters and myelin thickness, enables building and refining compu-
tational models of the brain that incorporate detailed effects of long-
range transmission, such as distributed delays and synchronisation. If 
one wants to study large networks (possibly of the entire brain) and 
systematically investigate their parameter spaces, we need a math-
ematical description of action potential propagation that is sufficiently 
simple, yet still biologically plausible. We developed a mathematical 
framework that can achieve this by using a leaky integrate-and-fire 
framework with passive sub-threshold dynamics and explicit thresh-
old-activated ion currents. We study different types of ion current pro-
files ranging from instantaneous currents modelled by delta functions, 
to combinations of exponential functions describing ion current pro-
files found experimentally. This framework allows us to derive explicit 
solutions for the depolarisation / hyperpolarisation profiles of action 
potentials. We use these to study in detail the influence of the various, 
potentially MRI derived, model parameters on action potential veloc-
ity. We also use this framework to study the synchronisation of action 
potentials between ephaptically coupled axons.

Specifically, we recover known results regarding the influence of axon 
diameter, node of Ranvier length and internode length on the velocity 
of action potentials. The velocity scales approximately linearly with the 
diameter in myelinated axons, and with the square root of the diame-
ter in unmyelinated axons [1]. The velocity shows a maximum at values 
of node and internode length in myelinated axons that correspond to 
experimentally observed values [2, 3], thus suggesting that the axonal 
microstructure is optimised for high velocities. Furthermore, we find 
that the velocity depends more strongly on the thickness of the mye-
lin sheath than was suggested by previous theoretical studies [1]. In 
addition, we explain the slowing down and synchronisation of action 
potentials in ephaptically coupled fibers through changes in the effec-
tive electrotonic length constant. We see the same effect of thresh-
old perturbation within passive fibres by action potentials passing 
through neighbouring axons that has been observed experimentally 
[3]. Finally, we use our results to derive the delay distribution between 
brain regions given a specific distribution of axonal diameters within 
a fibre bundle. In summary, we present a solution for incorporating 
detailed axonal properties into a whole-brain modelling framework.
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From a dynamical systems point of view, the brain can be described as 
a complex system consisting of a vast number of interacting, non-lin-
ear units, i.e. neurons. One prominent approach to study this system is 
to describe the collective behavior of large neural populations instead 
of the behavior of each single neuron [1, 2].Crucial to this approach is 
the availability of proper macroscopic descriptions of the collective 
behavior of interacting neurons. In a recent study, Montbrio and col-
leagues analytically derived a mathematically exact description of the 
macroscopic firing rate and membrane potential dynamics of a fully 
coupled population of quadratic integrate-and-fire neurons (QIF) [3]. 
While simple excitatory-inhibitory circuits of these QIF populations 
have been shown to exhibit sustained oscillatory activity [4], a single 
QIF population as described by Montbrio and colleagues cannot do so 
without periodic forcing. In this work, we extended the QIF model by 
a synaptic depression mechanism which weakens post-synaptic effica-
cies following pre-synaptic activity. The mechanism is independent of 
the specific synaptic model that is used and, in a globally coupled QIF 
network, can be coupled to the mean field such that each spike in the 
network triggers post-synaptic depression at all synapses. We demon-
strate, that this synaptic depression mechanism can be well integrated 
into the macroscopic population description derived by Montbrio and 
colleagues and investigate its impact on the population dynamics. We 
show that, depending on the parametrization of synaptic depression, 
the QIF population can exhibit various forms of sustained oscillatory 
activity such as sinusoidal oscillations and bursting behavior. Further-
more, we provide a detailed description of the model’s bifurcation 
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structure with regard to the synaptic depression. Finally, we provide an 
outlook in which scenarios this model could find application, i.e. which 
neurodynamic phenomena in the brain it could be linked to.
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Cognition involves using attended information (e.g., stimuli, rules, 
responses), maintained in working memory (WM), to guide action. 
During a cognitive task, a correct response requires flexible, selective 
gating so that only the appropriate information flows at the proper 
time from WM to downstream effectors that carry out the response. 
Much evidence suggests that WM information is encoded in the firing 
rates of populations of neurons in prefrontal cortex (PFC). At the same 
time, many experiments have demonstrated separate, task-related 
modulation of oscillatory dynamics in PFC networks. In this work, we 
used biophysically-detailed modeling to explore the hypothesis that 
network oscillations, leveraging lateral inhibition, can independently 
gate responses to rate-coded items in working memory. Consistent 
with recent data, we modeled the superficial layers of PFC as a WM 
buffer that stores task-relevant information and the deep layers of PFC 
as an output gate that flexibly governs which information in the WM 
buffer is propagated downstream to guide action. We investigated 
two models of the WM buffer: one where items were stored in per-
sistent spiking and one where items were stored synaptically. In the 
former “classic” model, item-encoding populations were in an asyn-
chronous or rhythmic state modulated at fast beta/gamma oscillation 
frequencies. In the latter model, motivated by recent findings, items 
were stored in distributed connectivity patterns among populations 
with anatomically-motivated architecture; the synaptically-stored 
items were then made available for downstream propagation through 
the output gate by transient reactivation in a gamma-frequency rhyth-
mic burst. In both cases, we found that whichever WM item induced a 
response in the output gate with the shortest period between spike 
volleys would be most reliably propagated through the output gate. 
Furthermore, the output gate exhibited network resonance capable 
of selectively propagating items with resonant oscillatory modulation. 
We found that network resonance of the deep layer gate can be flex-
ibly tuned by varying the excitability of deep layer principal cells. Our 
results demonstrate that the propagation of WM-associated neuronal 
activity can be modulated by tuning either the oscillatory proper-
ties of populations encoding WM items, themselves, or the resonant 
properties of the output gate through which item-encoding activity 
must propagate to reach downstream effectors. In our PFC model, 

these dynamics reveal how population rate-coded items embedded 
in superficial beta and gamma oscillations can be alternately selected 
by tuning network resonance in the deep layers of PFC depending 
on task demands. Thus, our model predicts that the experimentally-
observed modulation of PFC beta and gamma oscillations could lev-
erage network resonance and lateral inhibition to govern the flexible 
routing of signals in service of cognitive processes like gating outputs 
from working memory and the selection of rule-based actions.
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Recent studies show that cognition is biased by (nasal) respiration and 
presented emotional stimuli, providing insight to the physical origins 
of emotion’s influences. However, the mechanism for this influence 
remains uncertain, with neuro-modulation through the locus coer-
uleus (LC), or influences from the piriform cortex being suggested as 
possible candidates [1]. To compensate for the difficulty of measur-
ing the activity of LC in humans while performing tasks, a combined 
approach of both human behavioral experimentation and computa-
tional modeling was taken.
In the human behavioral experiments, participants were presented 
with emotional faces (fearful or surprised) and were asked to identify 
the emotions exhibited or respond to a cue presented subsequently 
[2, 3]. The change in the time taken to identify the emotions, or 
respond to the cues, were used as a measure for the change in cog-
nition. Respiration during task performance was measured as a phase 
calculated from the chest movements of participants.
The computational model was constructed to incorporate, the influ-
ence of LC activity on human cognition, the mechanical, chemical and 
neurological activities involved in respiration, and the influence of res-
piration/emotion on the human brain. The influence of respiration and 
emotion was newly formed in the form of connections to the LC, com-
bining experimental findings of the involved brain regions and in vitro 
connections.
Results from the behavioral experiments showed different emotional 
stimuli having a different influence on the responses. Furthermore, 
observations on how this influence changed with respiration, in 
each task, showed the presented emotions’ influence on cognition to 
change at the level of specific respiration phases, with each emotion 
showing different influences.
The computational model showed activity that matches experimen-
tal findings, for example, LC activity increasing in magnitude and 
synchrony during task performance. In addition to the physiological 
resemblance, the model showed different responses when provided 
with different emotional inputs, which corresponds to the presen-
tation of fearful and surprised faces. Furthermore, this change in 
response created by the introduction of emotion, was observed to 
change at the level of respiration phases. By changing the model’s 
threshold to produce a response, the model was able to reproduce the 
influences of the emotions at the respiration phase level, matching the 
experimental results closely for both tasks.
Our findings implicate that changes in human cognition through res-
piration and presentation of emotion, can be reproduced by using 
neuro-modulation/LC, indicating the importance of this mechanism in 
the human body. Furthermore, our model shows an ability to match 
humans, making it possible to be used to predict human responses, 
or to provide machines the ability to respond to emotional stimuli in a 
human-like manner.
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Obtaining electroencephalograms (EEGs) from neonates is important 
for the clinical assessment of several pathologies, such as neonatal 
seizures and hypoxic ischemic encephalopathy. However, because 
multiple factors mature simultaneously during neonatal development, 
how the specific factors cause developmental changes in EEG remain 
unclear. Two potential factors are cortical morphology and global con-
nectivity, as both have been reported to affect spectral features of EEG 
signal during early development. In this study, we constructed EEG 
simulations based on real cortical morphology and global connec-
tivity data and described how their developmental changes affected 
EEG signals. We first constructed a simple geometric model to confirm 
the relationship between cortical morphology and the EEG signal. In 
a simple model, neural activity propagated along a two-dimensional 
sine curve, and EEG signals are estimated at model electrode posi-
tions. To simulate developmental changes in cortical morphology, we 
manipulated spatial frequency and the amplitude of the sine curve, 
which correspond to the number of sulci and the depth of the sulcus, 
respectively. Next, we constructed a thalamocortical model based on 
cortical morphology and global connectivity that was acquired from 
fetal and neonatal magnetic resonance imaging at 28 and 37 weeks 
after conception, respectively. The model neuronal activity was gener-
ated based on a spiking neural network composed of about one mil-
lion neurons. We approximated postsynaptic potentials with electric 
dipoles and generated EEG signals as a superposition of these electric 
field potentials. The EEG signals obtained from the data at 28 and 37 
weeks after conception was verified using the following three features: 
(1) the power spectral density at each electrode, (2) the activation syn-
chrony index (ASI) between EEG signal pairs of each electrode, and (3) 
the global structure formed by a minimum spanning-tree graph net-
work. By using the simple geometric model, we confirmed the influ-
ence of cortical morphology on EEG signals. The peak frequency of the 
EEG signal became higher as the morphological frequency increased. 
Additionally, we found that as the amplitude of the cortical morphol-
ogy increased, the absolute value of the power spectral density at the 
peak frequency of the EEG signal became large, which affected the 
frequency distribution of the EEG signal. The same effect of cortical 
morphology on EEG characteristics was observed in the thalamocorti-
cal simulation. We also examined the influence of global connectivity 
on the EEG signal using the thalamocortical simulation. We compared 
the EEG signal obtained using the global connectivity at 28 weeks with 
that using the connectivity at 37 weeks. Although the frequency char-
acteristics did not change, the synchrony between neurons pairs did, 
as indicated by differences in ASI, the index for quantitatively meas-
uring the synchrony of signals between two electrodes. In conclusion, 
we constructed a biologically based EEG simulation that enabled us to 
independently examine the influence of two developmental factors 
on neonatal EEG. Furthermore, our simulation suggests that cortical 
morphology influences EEG frequency distribution, while global con-
nectivity influences the functional connectivity.
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Tobacco use is a worldwide leading cause of preventable mortal-
ity. The addictive component of tobacco, nicotine, exerts its effects 
through nicotinic acetylcholine receptors (nAChRs). Among the differ-
ent nAChRs, the β2-containing nAChRs (β2-nAChRs) have been shown 
to play a crucial role in the positive rewarding properties of nicotine 
and to be particularly densely expressed in the mesolimbic reward 
system. Specifically, nAChRs regulate dopamine (DA) which is released 
by the mesolimbic system. nAChRs are expressed on DA neurons in 
the ventral tegmental area (VTA) as well as neighboring GABA neu-
rons that modulate DA neuron activity. ACh and nicotinic regulation 
of DA neuron activity is complex and its understanding is incomplete. 
With our model, we provide mechanisms for several apparently con-
tradictory experimental results. First, systemic knock out of ß2-nAChRs 
drastically reduces DA neurons bursting even though the major gluta-
matergic (Glu) afferents that have been shown to evoke this bursting 
stay intact. Second, the most intuitive way to rescue this bursting—by 
re-expressing the nAChRs on VTA DA neurons—fails. Third, nAChR re-
expression on VTA GABA neurons rescues DA neurons bursting and 
increases their firing rate under the influence of ACh input, whereas 
nicotinic application results in the opposite changes in VTA DA neu-
rons firing. The model shows that, first, without ACh receptors, Glu 
excitation of VTA DA and GABA neurons remains balanced and can-
cel each other. Second, re-expressing the ACh receptors on the DA 
neurons provides an input that impedes membrane repolarization 
and is ineffective in restoring firing of DA neurons. Third, the distinct 
responses to ACh and nicotine are due to distinct temporal patterns of 
these inputs: pulsatile vs. continuous. All together this study highlights 
how β2-nAChRs influence co-activation of VTA DA and GABA neurons 
required for DA neuron bursting and, thus, motivation and saliency 
signals carried by these bursts.
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The basal ganglia (BG), a collection of nuclei located deep beneath 
the cerebral cortex is involved in learning and selection of rewarded 
actions. We analyze the mechanism by which the BG enable learn-
ing of the rewarded action. We have implemented a rate model of a 
BG-thalamo-cortical loop and simulated its performance in a stand-
ard instrumental conditioning task, in which an animal is rewarded 
for choosing one of two options. We have shown that potentiation 
of cortico-striatal synapses enables learning of the rewarded option 
(Fig. 1). However, later these synapses become redundant as direct 
connections between prefrontal and premotor cortices (PMC-PFC) 
potentiate by Hebbian learning. After we switch the reward to the 
previously unrewarded option (reversal), the BG are again respon-
sible for switching to the new option. Due to the potentiated direct 
cortical connections, the system is bias to the previously rewarded 
choice, and establishing new choice requires greater number of trials. 
We then modified our model to reproduce pathological physiology 
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of mild Parkinson (PD) and Huntington (HD) diseases. We have found 
that, in PD, the PMC activity levels become extremely variable, which 
is caused by oscillations arising in the BG-thalamo-cortical loop. The 
model reproduces severe impairment of learning and predicts that 
it is caused by these oscillations as well as a reduced reward predic-
tion signal. By contrast, in HD, the potentiation of the PFC-PMC con-
nections shows much better learning, but the altered BG output 
disrupts expression of the rewarded choices. This results in random 
switching between rewarded and unrewarded choices resembling an 
exploratory phase that never ends. Our results reconcile the appar-
ent contradiction between the BG involvement in execution of pre-
viously learned, in particular habitual actions and no impairment of 
these actions after the BG output is ablated by lesions or deep brain 
stimulation: The model predicts that BG-thalamo-cortical loop simply 
conforms to the previously learned choice in the healthy state, but 
impedes the choice in the disease states.
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Neural codes, such as rate code (spike firing rate) and temporal code 
(precise spike timing), should be reliably propagated across the 
feedforward network (FFN) of the brain for successful neural infor-
mation processing. However, how distinct subtypes of inhibitory 
interneurons modulate the propagation of rate and temporal codes 
is unclear. Especially, excitatory inputs onto parvalbumin-positive 
(PV) and somatostatin-positive interneurons (SST) show different 
short-term plasticity (STP) characteristics where excitatory post-
synaptic potentials (EPSPs) onto PV display short-term depression, 
while EPSPs onto SST display short-term facilitation. To address such 
question, we built four different types of 5-layer FFN models, com-
posed of Hodgkin-Huxley–type excitatory neurons only (EX-FFN), 
EX-FFN with PV (EX-PV-FFN) or SST (EX-SST-FFN) or both (EX-PV-SST-
FFN) to investigate how STP characteristics of PV and SST modulate 
the propagation of rate and temporal codes. In investigating the 
propagation of rate code, different asynchronous spike firing rates 

(5-100 Hz) were given to the input layer of each FFN model and the 
firing rate in the final layer was used to analyze input-output ratio of 
firing rate (I/O-ratio). I/O-ratio in EX-FFN was above 1 for all input fir-
ing rates, indicating failure of rate code propagation. However, I/O-
ratio was close to 1 for input firing rates at high gamma-frequency 
ranges (50-100 Hz) in EX-PV-FFN while I/O-ratio was close to 1 for 
input firing rates at alpha/beta-frequency ranges (10-30 Hz) in EX-
SST-FFN. Since PV and SST had differential effects on propagat-
ing firing rates, we investigated how different ratios of PV and SST 
would influence rate code propagation.
We found that PV and SST ratio of 6:4 in EX-PV-SST-FFN could reli-
ably propagate firing rates across all frequency ranges, indicating 
that distinct ratio of PV and SST with differential STP properties could 
selectively enhance the propagation of rate code. In investigating the 
propagation of temporal code, we designed a spike train with spike 
timing pattern that monotonically decreased or increased in inter-
spike interval (ISI) to investigate firing rate-dependent temporal code 
propagation. Temporal similarity (SR), which measures synchroniza-
tion between two spike trains with reliable propagation indicated as 
1, was used to analyze propagation of input spike trains. SR values 
in EX-FFN were less than 1 for all ISIs, indicating failure of temporal 
code propagation. However, SR values were close to 1 for ISIs that 
had instantaneous firing rate (IFR) at gamma-frequency ranges (30-50 
Hz) in EX-PV-FFN while SR values were close to 1 for ISIs that had IFR 
at alpha/beta-frequency ranges (10-20 Hz) in EX-SST-FFN. We again 
examined the effect of different ratios of PV and SST on temporal code 
propagation. We found that PV and SST ratio of 6:4 in EX-PV-SST-FFN 
could reliably propagate input spike trains across all IFR ranges. Over-
all, our results indicate that PV and SST with distinct STP characteris-
tics activated at 6:4 ratio could allow for reliable propagation of both 
rate and temporal codes, suggesting that STP mechanisms of distinct 
interneurons might play important roles in reliable transmission of 
neural information in the cortical network.
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In primary somatosensory cortex (S1), tactile information is believed 
to be encoded in temporally complex spike-timing patterns using two 
different types of neural codes: rate code (spike firing rate) and tem-
poral code (precise timing of spikes). For effective sensory information 
processing, such neural code-carrying spike-timing patterns should 
reliably propagate to downstream neurons across multiple layers of 
the feedforward network (FFN) of the cortex. Inhibitory neural circuits 
have been suggested to gate the propagation of spikes in FFN. How-
ever, how distinct subtypes of interneurons, such as parvalbumin-pos-
itive (PV) and somatostatin-positive (SST) interneurons, recruit distinct 
neural circuit motifs such as feedforward inhibition (FFI) and feedback 
inhibition (FBI), to gate the propagation of neural code-carrying spike-
timing pattern is unclear. Here, to address this question, we performed 
in vivo single-unit recording in S1 during whisker stimulation with 
optogenetic modulation of PV and SST interneurons and compared 
the in vivo-recorded results with that from in silico three-layer FFN 
model with FFI or FBI.
By analyzing layer-wise spike-timing coherence similarity, we found 
that in vivo spike-times recorded in layer 4, the main recipient layer 

Fig. 1 Trial‑by‑trial dynamics of the choices and underlying modula‑
tion of synaptic weights in the Healthy BG model. Trials 1–199:initial 
learning; trials 200‑500: reversal a A higher activity of PMC1 (blue) 
manifests choice 1, whereas higher activity of PMC2 manifests choice 
2. b Synaptic weights of the PFC to striatum connections. c Synaptic 
weights of the PFC to PMC connections
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of S1, reliably propagated across downstream layers 2/3, 5, and 6. 
Optogenetic activation of blue-light sensitive opsin (channelrhodop-
sin2, ChR2)-expressing PV or SST interneurons during whisker stimu-
lation revealed that activation of ChR2-expressing PV interneuron 
preferentially facilitated the propagation of spike-times with low fir-
ing rate (<12 Hz) while activation of ChR2-expressing SST interneu-
ron facilitated the propagation of spike-times with high firing rate 
(>12 Hz). By comparingin vivooptogenetic modulation results with 
thein silico FFN model with FFI and FBI network, we found that ChR2-
expressing PV interneuron in vivo preferentially recruited FFI while 
ChR2-expressing SST interneuron in vivo preferentially recruited FBI. 
These results suggest that PV and SST interneurons preferentially 
recruit distinct inhibitory network motifs to function as complemen-
tary frequency-selective gates, which may have critical roles in neural 
information processing in the cortex.
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MIIND is a population level simulator, centered around population 
density techniques (PDTs). Populations are modeled by a density 
function, representing the distribution of neurons across their state 
space. By modeling the evolution of the density function in response 
to individual neurons receiving Poisson spike trains from elsewhere, 
their subthreshold dynamics can be captured, and the fraction of 
neurons crossing the threshold can be estimated, which leads to a 
reliable prediction of the population firing rate in response to exter-
nal input. PDTs are a main technique for calculating so-called transfer 
functions that are used in linear response theory. Here, we present 
an extension of PDTs that allows the point model neurons to be two 
dimensional [1], e.g. Izhikevich, adaptive-exponential-integrate-
and-fire, Fitzhugh-Nagumo and others, and that facilitates grouping 
individual populations into large networks. The method is agnostic 
regarding the neural model, which can be presented to the simulator 
as a mesh, and the method is universal in that sense: if a model can 
be represented accurately by a mesh in state space, the method will 
work. Stationary points and nullcline crossings require extra care, but 
can be handled. We are not restricted to the diffusion limit: arbitrar-
ily large synapses can be considered. For large networks, we have 
shown that the 2D techniques are as fast as direct simulation, but use 
an order of magnitude less memory. A CUDA implementation allows 
the simulation of networks that otherwise must be simulated on an 
HPC cluster to be moved on a single PC equipped with GPGPU. MIIND 
provides an open source implementation of the PDTs. It allows users 
to configure simulations using an XML script. Python scripts convert 
this into C++ and CUDA. A Docker container simplifies installation. We 
will present several examples of population and network simulations. 
(Fig. 1) describes a population of conductance-based neurons with a 
two-dimensional state space, spanned by the membrane potential 
and the conductance variable g.
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While the stable propagation of synchronous spikes is well under-
stood and relatively easy to implement by neuronal models, reliable 
propagation of firing rate—specifically slow modulation of asynchro-
nous spikes in fairly short time windows [20–500] ms—across multiple 
layers of a feedforward network (FFN) receiving background synaptic 
noise has proven difficult to capture in spiking models [1]. Particularly, 
the firing rate of asynchronous spikes is attenuated in the first layer 
of an FFN. In this study, we explore how information of asynchronous 
spikes is disrupted in the first layer of a typical FFN, and which fac-
tors can enable reliable information representation. In a typical FFN, 
each layer comprises a certain number (network size) of excitatory 
neurons—modeled by leaky integrate and fire (LIF) model—receiv-
ing correlated input (common stimulus (modeled by Ornstein–Uhlen-
beck process of time constant 100 msec) from the upstream layer) plus 
independent background synaptic noise. We develop a reduced net-
work model of FFN which captures main features of a conventional all-
to-all connected FFN. Exploiting the reduced network model, synaptic 
weights are calculated using a closed-form optimization framework 

Fig. 1 Population state (fine: A, coarse B). The firing rate caused by 
neurons pushed over threshold (sharp edge in a, b). Connectivity is 
applied to output firing rates, and converted to input firing rates on 
the CPU. c The density itself is maintained on the GPU to minimize 
data transfer (d). The method is about as fast as a NEST simulation (e), 
but uses an order of magnitude less memory (f)
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that minimizes the mean squared error between reconstructed stimu-
lus (by spikes of the first layer of FFN) and the original common stimu-
lus. We further explore how representation of asynchronous spikes 
in an FFN changes with respect to other factors like the network size 
and the level of background synaptic noise while synaptic weights are 
optimized for each scenario. We found that not only synaptic weights 
but also the network size and the level of background synaptic noise 
are crucial to preserve a reliable representation of asynchronous spikes 
in the first layer of an FFN. This work sheds light in better understand-
ing of how information of slowly time-varying fluctuations of the firing 
rate can be transmitted in multi-layered FFNs.
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Optogenetically evoked local field potentials (LFPs) were recorded 
from the medial prefrontal cortex (mPFC) of male PV-Cre mice 
infected with a viral vector [1]. We recorded multiple basal condi-
tions followed by a systemic injection with D1 receptors antago-
nist SCH23390 and/or D2 antagonist sulpiride. Optical stimulation 
was provided by a blue laser (473 nm) stimulus delivered to mPFC 
through a fiber optic every 2 seconds and each trial was repeated 
100 times. The extracellular signals were sampled at 10 kHz and 
stored for offline analysis.
We previously used nonlinear dynamics tools, such as delay embed-
ding and false nearest neighbors, to estimate the embedding 
dimension and the delay time for attractor reconstruction from LFPs. 
Delay embedding has relatively limited use in the case of short, non-
stationary, and nonlinear time series.
To alleviate these concerns, we also used the Empirical Mode Decom-
position (EMD) to extracts the Intrinsic Mode Functions (IMFs) from 
our data [2]. The first IMF represents the fast variations of data and 
capture the short-term processes in the system. The second IMF con-
tains information regarding the next longer temporal scale present 
in the data. We compared the phase resetting determined using the 
delay embedding dendrogam against the Hilbert transform of IMFs 
and found a good agreement between the two methods.
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Past research on spatial working memory has largely focused on 
simple tasks with a binary choice, such as the T-maze. In these tasks, 
the animal can memorize the location of the goal or the route to the 
goal from the start location. In addition, such tasks tend to result in 
stereotyped behaviors for each goal that may themselves produce 
goal-associated neural correlates. Thus, the animal’s strategy to solve 
the task and the interpretation of neural correlates can be ambiguous. 
We have devised a novel spatial memory task where rats are required 
to flexibly encode three spatially distinct goals on a trial-by-trial basis. 
The goals can be reached via multiple routes, one of which is available 
in each trial. Knowledge of the available route is only gained after a 
delay period in which the animal has to perform a nose poke in one 
of three randomly chosen start positions. This design forces the ani-
mal to memorize the spatial location of the goal instead of planning 
a route from start position to goal position. This allows us to dissociate 
between neural correlates of route planning and goal representation 
as well as investigate the nature of egocentric and allocentric spatial 
goal representations in working memory. In such cognitively demand-
ing tasks a large population of neurons in several brain regions, includ-
ing prefrontal areas, are expected to be required to coordinate their 
activity and encode task-relevant variables and rules. Sampling a suf-
ficiently large number of neurons at high temporal accuracy poses a 
challenge to current electrophysiological recording technology. Here 
we have employed Neuropixels probes, a new type of high channel 
count silicon probe featuring nearly a thousand recording sites along 
a single 10 mm shank, of which 384 can be recorded simultaneously. 
These probes are ideally suited for our experiments as the shank 
spans multiple task-relevant brain regions including anterior cingu-
late cortex, prelimbic cortex and infralimbic cortex. This technology 
has allowed us to record activity from 100-200 frontal cortical neurons 
simultaneously in freely behaving rats performing the complex spatial 
working memory task described above. The high number of neurons 
also facilitates single trial analysis, which is highly relevant since the 
working memory content must be updated from trial to trial and be 
instantly accessible despite other cognitive requirements, distractions 
or activities of the subject. Furthermore, especially in higher cognitive 
areas, working memory might not be statically encoded and instead 
could be constantly reshaped by ongoing local and non-local net-
work dynamics, limiting the success of trial averaged analysis. We have 
found that current spatial location at the start positions can be clearly 
and unambiguously decoded by the combined firing rates of multiple 
neurons over a range of timescales, ranging from hundreds of mil-
liseconds to seconds. The representation of goal location in our well-
controlled task is more complex. Ongoing analysis is focused on other 
biologically plausible forms of representation, such as sequences of 
neural activity or coordinated ensemble activity.
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Introduction: A plethora of machine learning models have been 
trained to learn the relationship between age and brain structure. 
However, the creation and analysis of optimal machine learning mod-
els is a cumbersome and time-consuming process. It not only requires 
expert knowledge of the used tools, their limitation and assumptions 
but it is also subject to experimental bias.To overcome these limita-
tions and extensively search the parameter space, we used automated 
machine learning to extract the best age prediction models from the 
data and analysed their similarities. Automated machine learning con-
sists of extensively testing different algorithms combinations with var-
ious parameters to find the model with the appropriate combination 
that maximises the predicted accuracy. In this project, we have used a 
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tree-based genetic programming algorithm (TPOT [1]) to find the best 
set of models and evaluate their prediction accuracy.
Methods: Using data from N = 1227 healthy individuals (aged 18–98 
years, mean age = 36.89), we trained different algorithms which 
included among others k-nearest Neighbours, Random Forrest Regres-
sion and Gaussian Processor Regression. For each of the analysed sub-
jects, we used 140 features that describe the volume and thickness of 
different brain areas and were obtained using Freesurfer recon-all [2] 
on the T1 images. TPOT uses genetic programming to find the best 
pipeline with the highest accuracy. It does so not only by combining 
pipelines evaluated in the previous generation but also by perform-
ing synthetic feature construction. We then run the analysis multiple 
times and explored the accuracy and the similarities of the models 
suggested by TPOT over the different runs.
Results: For each run TPOT suggested a pipeline that has a MAE simi-
lar to the current literature [3]. We also systematically explored the 
importance of feature generation, population size and cross-over and 
mutation rate on the final pipeline suggested by TPOT. By mutating 
previous models TPOT analyses a large pool of models with a high var-
iability on prediction, however, only the best models are passed to the 
next generations. Although the initial population size is crucial to the 
ending model, Gaussian Process regressors tend to lead to a higher 
accuracy.
Conclusion: We showed that TPOT can build machine learning pipe-
lines that achieve MAE similar to the current state of the art [3], and 
that it also creates innovative pipelines consisting of the combination 
of different models. Therefore, our study shows the potential of using 
automatic machine learning to reduce prior assumptions, broaden the 
range of models used for predicting brain age, and improving the gen-
eralisability and reproducibility of the findings.
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Various brain regions have distinct and highly conserved ratios of 
excitatory and inhibitory neurons. For instance, cerebral cortex typi-
cally includes around 20% of inhibitory neurons. However, it is not 
clear whether unphysiological ratios would change collective neu-
ronal dynamics or jeopardize the balance of excitation and inhibition 
on a synaptic level. To investigate this question, we developed a plat-
form that allowed us to culture hippocampal networks with various 
fractions of inhibitory neurons. We also study how cellular composi-
tion affects neuronal dynamics in finite network models with balanced 
excitation/inhibition currents and neuronal adaptation.
We used fluorescence-activated cell sorting to isolate inhibi-
tory and excitatory neurons and seeded them while keeping pre-
scribed inhibitory percentages. We recorded the calcium dynamics 
of these cultures. All of them developed spontaneous network activ-
ity manifested in full network bursts. The cultures with 10–80% of 
inhibitory cells showed surprisingly similar mean inter-burst intervals, 
which were indistinguishable from unsorted control cultures that usu-
ally contain 20–30% of inhibitory neurons. Fully excitatory and fully 

inhibitory cultures had significantly longer inter-burst intervals. The 
coefficient of variation of inter-burst intervals grew with the number 
of inhibitory neurons.
To model the observed effects, we developed a set of networks 
with various fractions of excitatory and inhibitory neurons. The net-
works were comprised of adaptive leaky integrate-and-fire neurons 
driven by slow Poisson input. The relative strength of inhibitory and 
excitatory synapses was kept at balance. The model showed that the 
stable mean but increasing variance of inter-burst intervals can be 
achieved by the balance of excitation and inhibition that regulates 
effects of the adaptation. In a fully excitatory network, inter-burst 
intervals are determined by the adaptation alone. Adding inhibition 
to the network results in stopping bursts before the adaptation com-
pletely silences the activity. This, in turn, allows the next burst to start 
earlier, leading to shorter inter-burst intervals with higher variance. 
To further compare the behavior of the model and cultures, we dis-
rupted the excitation/inhibition balance by decreasing the strength of 
inhibitory synapses. In the experimental setup, this corresponded to 
the application of bicuculline. In the cultures with 10–80% of inhibi-
tory neurons application of bicuculline led to prolonged interburst-
intervals and decreased variability. Under maximum concentration, 
the activity of these cultures was generally similar to the fully excita-
tory cultures. Similarly, in the model, blocking of inhibition resulted in 
stronger adaptation after a burst that led to longer and less variable 
inter-burst intervals.
Overall, our results suggest that developed hippocampal cultures with 
artificial cellular excitatory and inhibitory composition tend to main-
tain the excitation/inhibition balance. This result in a constant mean 
activity but a growing variability of bursting in cultures with increasing 
numbers of inhibitory neurons.

Fig. 1 a Diagram of the model with adaptation. b Activity of hip-
pocampal cultures and of the model with adaptation. c Changes in 
the mean inter-burst intervals with various fractions of inhibitory 
neurons. d Coefficient of variation of inter-burst intervals. e Effects 
of blocking inhibitory receptors
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The brain is undoubtedly the most complex system known to human-
ity. Networks constitute the backbone of systems dynamics and there 
is a big arsenal of tools to describe relevant network properties. These 
tools can be employed to further study micro- and mesoscale 
organizations of the brain. Our goal here is to find out how different 
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measures borrowed from graph theory influence structure inference 
in neuronal networks.It is widely expected that brain networks pos-
sess a small-world property, and that is important for fast and reliable 
information processing [1]. In order to calculate the small-worldness, 
we need two other measures: the characteristic path length and the 
clustering coefficient. In this study, we focus on the clustering coef-
ficient, its different definitions, and their attributes. The local cluster-
ing coefficient of a node quantifies the tendency for edge formation 
between vertices connected to this node. For the case of undirected 
and unweighted networks, the definition of clustering coefficient is 
straightforward. However, the real cortical networks are both directed 
and weighted. To consider neuronal networks simply binary and undi-
rected inevitably leads to misinterpretations of the network’s structure 
and, possibly, function. Multiple methods of computing a weighted 
clustering coefficient have been proposed, each capturing a particular 
aspect of the weighted network [2]. However, which of them is most 
suitable for brain networks is not established.In order to capture the 
differences among definitions, first, we go through simulated net-
works (random, small-world, and scale-free). We draw weights from 
a lognormal distribution that represents well the distribution of syn-
aptic strength in a brain. We compute the weighted local clustering 
coefficient distributions for each definition. The difference between 
each method’s range and order of magnitude is shown in (Fig. 1, A). 
This perceptible diversity in ranges is rooted within either the slightly 
different property that it captures or its normalization method.The 
brain networks have a highly complex structure, that is not captured 
by the simple random networks we consider in theoretical studies. To 
account for it, we investigate functional networks extracted from the 
developed cultures using High-Density Multi-Electrode Array (HD-
MEA). We pre-process the recordings using SpiCoDyn package and 
employ transfer entropy to capture information flow. We define func-
tional connectivity by conventional thresholding the transfer entropy 
matrix at the level of different percentages of strongest connections. 
In the end, we compare different weighted clustering coefficient dis-
tributions (Fig. 1, B). Our result indicates the tangible difference in 
weighted clustering coefficient distributions which can noticeably 
influence inferred small-worldness. This also states the necessity of 
modifying a clustering coefficient appropriate for neuronal networks.
We present a list of properties that a definition of clustering coefficient 
suitable for subsampled and arbitrarily thresholded neuronal network 
should satisfy. We discuss why the existing methods are not optimal 
for the task and how to modify them.
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The precise timing of neuronal activity is critical to normal brain func-
tion, be it for sound localization, escape responses, or plasticity and 
learning. The medullary pacemaker network (PN) of the wave-type 
weakly electric fish sets the timing for a high-frequency (~1000Hz) 
electric organ discharge (EOD) used in electric sensing. The PN is com-
posed of ~150 cells which are sparsely coupled via gap junctions (~4% 
connectivity). Despite this weak coupling, the PN is the most precise 
biological oscillator known, with sub-microsecond period variation 
and highly synchronous activity across the network. Interestingly, 
oscillator precision and synchrony are under behavioural control: fish 
produce communication signals called “chirps” that involve a transient 
increase in PN frequency and a subsequent desynchronization of the 
PN. Previous work has suggested that the rapid recovery to a synchro-
nized state after a chirp, and the high temporal precision of ongoing 
oscillations, is inconsistent with the sparse gap junctional connectivity 
of the PN. We hypothesize that electric field effects feeding back from 
the EOD underlie PN dynamics. We suggest that the bi-directional cou-
pling between the EOD and the PN serves to stabilize oscillations and 
decrease resynchronization times after a perturbation from the syn-
chronized state. As a first step towards testing this hypothesis, we first 
develop a new biophysical model that better-describes the dynamics 
of PN cells. We then construct networks using these model cells and 
show that while electric field feedback (from the EOD) produces only 
modest effects on oscillator precision, such feedback can significantly 
decrease network resynchronization times. This suggests that electric 
field effects may increase functional connectivity in some neuronal 
networks.
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To study the dynamics of large and sparse recurrent networks of spik-
ing neurons, Brunel [1] applied a stochastic mean field theory that 
considers a single representative neuron. Neural input, i.e. a large sum 
of independent spikes in the network, is approximated by temporally 
uncorrelated (white) Gaussian noise with a flat power spectrum. As a 
consequence, the problem can be formulated as a one-dimensional 
Fokker-Planck equation (FPE) with self-consistent coefficients; its sta-
tionary solution yields the firing rate. This theory is by construction 
only consistent with respect to the first-order statistics. Spike-trains of 
cortical neurons, however, exhibit nontrivial second-order statistics, 
i.e. non-flat power spectra [2] and the neural input maintains these 
temporal correlations [3]. Hence, the condition of self-consistence 
requires that input and output spike-train power spectra coincide. So 
far, this self-consistency condition has only been exploited in iterative 
schemes to determine these spectra numerically (e.g. in [4]). A com-
plete self-consistent theory of spike-train correlations in a sparse net-
work is still missing.
Here we present a theoretical framework for the temporal correlations 
of spike trains in networks of integrate-and-fire neurons. Neural input 

Fig. 1 Different definitions result in extensively different values of 
clustering coefficients. a Weighted clustering coefficient computed 
for the simulated networks (rn: random, sw: small‑world, sf: scale‑free) 
of size 10000. b Weighted clustering coefficient computed for the 
extracted network of developed cortical culture. Quartile value and 
median are shown by the dashed lines in both panels
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is approximated by a Markovian embedding, provided by the projec-
tion of an N-dimensional Ornstein-Uhlenbeck process. We can formu-
late a corresponding (N+1)-dimensional FPE, that describes the time 
evolution of a neuron ensemble driven by colored noise (open loop 
problem) and use it to derive a partial differential equation for the 
spike train power spectrum. The numerical solution of this equation 
displays strongly different spectral shapes depending on the color of 
the (prescribed) input noise.
In a second step, we can achieve self-consistence by solving equations 
for the output spectrum such that it coincides with the input noise 
spectrum. More specifically, the numerical solution of the equation 
for the power spectrum at selected frequencies in combination with 
a Pade expansion of the input spectrum is utilized to obtain the self-
consistent solution. The results are presented in Fig. 1. For N = 0 (red 
curve) self-consistence is only achieved at the high-frequency limit as 
in [1]. For N = 1 it is achieved additionally at f = 0 and at the firing rate 
(thin gray line). For N = 2 we determined the solution that is self-con-
sistent at f = ∞ and f = 0 and that minimizes the difference between 
input and output spectrum. Clearly, with increasing N, our self-consist-
ent spike-train power spectrum approximates the network spectrum 
with increasing accuracy.
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To model decision making on a low level of cognition, the Drift-Dif-
fusion model (DDM) was introduced in [1]. There, perceived evidence 
for a decision is modelled by a one-dimensional diffusion process and 
accumulated by an abstract variable x. When x exceeds the thresh-
old xA or xB, the decision A or B is made, respectively. Afterwards the 
system is quiet for a time t0and, subsequently, the variable is reset to 
the value x0 [cf. Fig. 1a]. For a constant bias in x the diffusion process 
is analytically tractable using the Fokker-Planck equation (FPE). The 
model and slight variations were extensively used for data analysis 
and to gain insights in neuropsychological mechanisms. From another 
perspective neural networks were used as models of decision mak-
ing. Biologically plausible networks are nonlinear. It was shown in [2] 
that the dynamics of nonlinear neural networks can be reduced to a 
nonlinear one-dimensional DDM. However, in contrast to the original 
model no analytic solution for the statistics of the nonlinear diffusion 
processes is known in general.
Here we present an effective numerical tool to calculate the statistics 
and the linear response to a weak sinusoidal input modulation of non-
linear DDMs, that is based on the method in [3]. The FPE and the conti-
nuity equation are written as two first-order differential equations and 
integrated numerically from the two thresholds.
We introduce the decision train, that marks decisions in a series of 
subsequent trials by a sum of delta functions at the decision times 
with negative (A decision) or positive signs (B decision); cf. Fig. 1b. 
The solution of the FPE yields the first-passage time densities for both 
thresholds (Fig. 1c), being the distribution of time intervals between 
sequential decisions, where the kind of the previous decision yields 
no relevance. Considering inter-decision intervals of only one deci-
sion type, the reset of the other decision has to be included in the FPE 
[Fig. 1d]. From these distributions, or directly from a corresponding 
FPE, we derived the decision-train power spectra in Fig. 1e.
Besides the stationary statistics, we use the threshold integration 
method to calculate the linear response to a sinusoidal modulated 
input (Fig. 1e). For weak stimuli the amplitude and phase of the deci-
sion rate modulation can be calculated (Fig. 1f and g). This might be an 
interesting tool for the analyzes of experiments in which decisions are 
influenced by known perturbations across trials.

Fig. 1 Self‑consistent spike‑train power spectrum from a network of 
LIF neurons with high synaptic weights and dominating inhibition 
(black line) and self‑consistent solutions of N+1‑dimensional FPEs 
(output solid, input dashed lines). We obtain a better approximation 
with increasing N

Fig. 1 Nonlinear Drift‑Diffusion model a and decision train for 
chosen parameters b. c: First passage time density and d: the inter‑
decision interval for same kind of decision. Solid lines show results of 
our method, histograms of simulations of the model. e Decision‑train 
power spectra. f Modulated input and rate modulations. g, h Linear 
response theory (lines) and simulations (dots)
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The model without perturbation generates a renewal point process 
that cannot show correlations among decision times. However, in 
measurements these correlations were measured [4]. Future exten-
sions of our model should incorporate mechanisms (slow adaptation 
variables, colored noise) that can explain such correlations.
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The current trend in computational neuroscience is to incorporate 
multiple physical levels of the brain into mathematical models, which 
often results in large networks of interconnected neural cells. Com-
prehensive models with accurate system dynamics are necessary in 
order to increase understanding of different mechanisms in the whole 
brain, but these models are analytically intractable. Additionally, their 
numerical simulation is very resource intensive. Useful ways of mitigat-
ing the computational burden include using a mean-field approach, as 
well as mathematical model order reduction (MOR).
Using mean-field approximation, one can account for the random fluc-
tuations of variables by replacing them by their mean averages. The 
cells are grouped together into populations based on their statistical 
similarities, in order to represent the dynamics of the system in terms 
of the averaged out ensemble behaviour. These populations can then 
be described by a probability density function expressing the distribu-
tion of neuronal states at a given time. This approach ensures that the 
essential system dynamics converge to a stationary attractor consist-
ent with the steady-state dynamics of the original system. Here we use 
the Fokker-Planck formalism, which results in a nonlinear system of 
partial differential equations (PDEs).
PDE systems can be difficult to solve analytically, and thus discreti-
sation for numerical analysis is necessary. This discretisation often 
leads to very high-dimensional numerical models that correspond to 
equally high computational demand. Discretised PDE systems can be 
reduced using mathematical model order reduction methods [1]. MOR 
methods are well established in engineering sciences, such as control 
theory, as they improve computational efficiency of simulations of 
large-scale nonlinear mathematical models. In computational neuro-
science MOR is underutilised, although the potential benefits in ena-
bling multilevel simulations are obvious [2].
In this study we use mathematical MOR methods to reduce the dimen-
sions of a PDE model derived using the mean-field approach. The 
system can be reduced with minimal information loss, by deriving a 
subspace that approximates the entire system and its dynamics with 
a smaller number of dimensions compared to the original model. 
Here we use Proper Orthogonal Decomposition with Discrete Empiri-
cal Interpolation Method (POD+DEIM), a subspace projection method 
for reducing the dimensionality of general nonlinear systems [1]. By 
applying these methods, the simulation time of the model is radically 
shortened, albeit not without dimension-dependent approximation 
error. The tolerated amount of inaccuracy depends on the final appli-
cation of the model.

Due to being well-suited for depicting mesoscopic behaviour, the 
mean-field approach in combination with the POD+DEIM method 
allows us to describe the behaviour of any large multiscale brain 
model with a relatively low computational burden. This can be par-
ticularly useful when attempting to model whole-brain connectiv-
ity, for which there is an immediate demand in clinical and robotic 
applications.
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Understanding the influence of glial cells on brain functions is of fun-
damental interest for neuroscience and theoretical neuroscience. We 
focus on one type of glial cells, the astrocyte, that has been found to 
contribute to signal transmission in neural networks. Astrocytes are 
a non-homogeneous cell type whose structural and functional prop-
erties vary across different brain areas. A number of computational 
efforts have been presented to explore selected biophysical mecha-
nisms and their roles in various neurophysiological phenomena [1,2]. 
Models focusing on astrocytic regulation of synaptic transmission are 
however scarce. Further efforts are needed to extend these models 
with other relevant biophysical mechanisms. In addition, simple yet 
dynamically correct models suitable for addressing the role of neuron-
astrocyte interactions in larger systems, neural networks and brain 
circuits, are rare. While the experimental evidence of astrocytes’ roles 
in neural activity regulation accumulate, adequate network-level mod-
els could help to explore the role of neuron-astrocyte interactions in 
cognition.
Here we focus on one specific mechanism of neuron-astrocyte regula-
tion that, according to the experimental evidence, supports network 
synchrony. In [3], glutamate released from astrocytes has been shown 
to activate extrasynaptic N-methyl-D-aspartate receptors (NMDARs) 
in neighboring neurons, causing slow inward currents and increased 
capacity for synchronization at the circuit level. This experimental find-
ing is first explored in combination with our previous work [4] that 
focused on impact of ionotropic glutamatergic and GABAergic recep-
tors to synaptic transmission and activity in cortical networks. Using 
a data-driven modeling framework, we integrated the model with the 
experimental data and quantified accuracy of data representation. 
Here, we extend this previous work by equipping the model with the 
minimal description for the extrasynaptic NMDARs and the related cel-
lular and synaptic mechanisms.
The results obtained from this initial model will be further used as a 
guideline to extend a well-established theoretical model [5] with the 
same mechanism of neuron-astrocyte interactions, and to test how 
this mechanism contributes to dynamical regimes in a model incorpo-
rating the realistic size and organization of cortical circuits.
The proposed work provides a step towards developing of theoreti-
cal methods for describing neuron-astrocyte interactions and more 
generally glial contributions in activity regulation, information trans-
fer, synchronization, and learning in neuron-glia circuits. Furthermore, 
it will establish guiding principles for implementation of simplified, 
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generic astrocyte models in neuromorphic technologies for engineer-
ing applications.
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The Local Field Potential (LFP) summarizes synaptic and somato-
dendritic currents in a bounded ball around the electrode and is 
dependent on the spatial distribution of neurons. Both fine-grained 
properties and the temporal distribution of typical waveforms in 
spontaneous LFP have been used to identify global brain states (see 
e.g. [1] for P-waves in stages of sleep). While some LFP signatures have 
been studied in detail (in addition to Pons, see e.g. sleep spindles in 
the Thalamus and areas of the cortex [2], sharp-wave-ripples [3] in 
the Hippocampus and k-complexes [4]), it stands to understand the 
relationship between simultaneous signaling in cortical and subcor-
tical areas. To characterize the mesoscale spontaneous activity, we 
quantify data-driven properties of LFP and use them to describe dif-
ferent brain states. Inspired by [5], we treat frequency-localized tem-
porary increases in LFP power simultaneously recorded from Cortex, 
Hippocampus, Pons and LGN as Neural Events that carry information 
about the brain state. Here, we give a fine-grained characterization 
of events in the 0-60Hz frequency range that differentiates the onset 
and offset intervals from the ongoing short-term oscillation within the 
event’s duration. For example, a fixed-amplitude oscillatory interval 
can be conceptually thought of as a temporally resolved sample from 
a circle, whereas the onset and offset can be regarded as samples from 
spirals. Thus, the change within an event corresponds to a topological 
change of the trajectory in phase space. We use topological data anal-
ysis to detect this change in topology. In detail, we look at barcodes 
computed using persistence homology [6] of the delay embedding [7, 
8] of consecutive windows within a neural event. A persistence bar-
code can be seen as a topological signature [9] of the reconstructed 
trajectory. We rely on the difference between a circle and a spiral in 
homology when this qualitative change is inferred from looking at 
consecutive barcodes. This feature (Fig. 1) describes the onset-dura-
tion-offset intervals for each oscillation, yet is agnostic to event type, 
recording site or brain state.
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Stimuli can induce gamma oscillations in primary visual cortex (V1) 
of monkeys [1]. The resulting oscillations appear as discrete events 
with short durations (gamma bursts) . A single recording does not 
easily link stimulus properties to the induced LFP. However, trial 
averaged recordings capture well the stimulus-induced gamma 
oscillations by means of a transient epoch of approximately 100 
ms after the stimulus onset where the power of gamma oscillations 
is high and the peak frequency spans a large band [1]. Trial aver-
aged analysis also shows how the stimulus properties like contrast 
or orientation tuning shape the resulting oscillations [2].
The goal of this study is to propose a robust mechanism of stimu-
lus-induced gamma oscillations. Specifically we are interested in a 
model with the ability to explain the sharp increase in the power 
and the corresponding large frequency band observed in the trial 
averaged spectrogram immediately after the stimulus onset. It 
should also explain the increase in the peak frequency as the 

Fig. 1 Left panel: example neural event localized to 34‑64Hz fre‑
quency range from a hippocampal site and, highlighted in blue—an 
interval within it. Right panel: persistence diagram of the point cloud 
obtained via delay‑embedding of that interval; black dots correspond 
to birth and death times of zeroth homology groups, and red trian‑
gles—of first homology groups (cycles in data)

http://arxiv.org/abs/1710.04019v1
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stimulus contrast increases and the modulation of the peak fre-
quency with the time-varying contrast as observed in vivo [2].
We address this issue from a nonlinear dynamical point of view. We 
consider a stochastic spiking network [3], whose corresponding 
mean field description leads to the stochastic Wilson-Cowan model. 
Linear stability analysis with the external currents (impinging on the 
excitatory and inhibitory populations respectively) shows many sta-
ble domains, namely the asynchronous state (real negative eigen-
values), the transient synchrony (complex conjugate eigenvalues 
with negative real parts) and the high synchrony (complex conju-
gate eigenvalues with positive real parts). When there is no contrast, 
the system is in the asynchronous state and there is no oscillation. 
Increasing the contrast leads to a transition from the asynchronous 
state to the transient synchrony state. At the transition between the 
two domains, oscillations appear, and the peak frequency increases 
upon entering the transient synchrony domain. This explains the 
increase of the peak frequency as the contrast increases. The modu-
lation of the oscillations with the stimulus contrast is also observed 
in the transient synchrony regime. Finally, the transient amplifica-
tion observed in the spectrogram can be explained by a strong non-
normal amplification [4] of the network when the system enters the 
transient synchrony state from the asynchronous state. These mech-
anisms can also be implemented in a similar network with a ring 
architecture.
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Oscillations in the gamma-band frequency (30-90) Hz are ubiquitous 
in the brain and are believed to be useful for perceptual and cognitive 
behaviour, coding properties or communication between brain areas 
[1]. To be a good candidate for these tasks gamma oscillations need 
to show sufficient coherence in their amplitude, phase and peak fre-
quency. However, usually recorded LFP or EEG in vivo show oscillations 
at gamma band frequency which exhibit epochs of high amplitude 
(gamma bursts) alternating with epochs of low amplitude, random 
phase dynamics and highly variable peak frequency. The incidences 
and durations of gamma bursts are stochastic and the peak frequency 
inside bursts also shows high variability.
Despite this stochastic behaviour, a recent computational work 
has showed that such gamma bursts can efficiently transmit informa-
tion between brain areas [2]. Our work has showed that the dynamic 
and statistics of such gamma band activity can be efficiently described 
by simple nonlinear coupled stochastic differential equations repre-
senting the amplitude and phase dynamics of the oscillations [3]. How-
ever, the network model used to derive equations for the amplitude 
and phase dynamics in this study is a simple stochastic Wilson-Cowan 

model, without any level of complexity (no propagation delays, no 
heterogeneity,…). Further, the network model in [2] uses a more 
detailed single neuron model (Wang-Buzsaki) and high level of com-
plexity (delays propagation, synaptic heterogeneity, sparseness,…). 
A central question then appears since both network types generate 
gamma band activity similar to what is recorded in vivo. Is flexible 
communication between brain areas with gamma bursts just due to 
the oscillation generation mechanism which is similar for both net-
works type (The network needs to be noisy and to work at the onset 
of oscillatory synchrony)? Or it is due to a more complex phenomenon 
due to the high complexity of the neural network?
To answer this question, we first extend our previous method to 
derive coupled phase-amplitude equations for a single network [3] 
to two E-I networks coupled by long range excitatory (i.e. E-to-E) con-
nections with inter-areal propagation delay. We focus here on phase 
synchronization between two coupled networks and information 
transfer between them. We used a recent method based on Phase 
Transfer Entropy (PTE) [4] which only requires the phase dynamics we 
have derived for the two networks. This allows us to infer the amount 
of information transmitted between coupled networks and its direc-
tionality. Results show phase synchronization and the presence of 
two routing states for information transfer, similar to what has been 
showed in the detailed computational study [2]. However, the location 
of the routing states and efficiency of phase synchronization depend 
respectively on delay propagation and the noise level and coupling 
strength. This suggests that the higher network complexity is not nec-
essary; all that is required for flexible information transfer is operation 
near the onset of synchrony in the presence of generic additive noise 
on the rate equations
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The emergent activity of biological systems, such as neural networks 
or ion channel assemblies, can often be represented as low-dimen-
sional, Langevin-type stochastic differential equations. Reconstruct-
ing these equations from experimental time series is possible by 
estimating the coefficients of the associated Fokker-Planck equation. 
In certain systems, however, large and abrupt events can occur and 
violate the assumptions of this Langevin approach. We address this 
situation here by providing a novel method that reconstructs a jump-
diffusion stochastic differential equation based solely on a realization 
of the original process. We use threshold-crossing of the increments to 
detect jumps in the time series. This is followed by an iterative scheme 
that compensates for the presence of diffusive fluctuations that are 
falsely detected as jumps. Our approach is based on probabilistic 
calculations associated with these fluctuations, and on the use of the 
Fokker-Planck and the differential Chapman-Kolmogorov equations.
We show that this inference procedure can be successfully applied 
to two unrelated types of data from pulse-type electric fish: electro-
physiological time series of membrane noise in pyramidal neurons 
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of the electrosensory line lobe, and recordings of the electric organ 
discharge rate during rest and exploratory locomotion. In this first 
case, we show that membrane potential fluctuations display large, 
jump-like depolarization events that occur at random times, the bio-
physics of which is unknown. After applying our inference procedure 
to these data, we find that some pyramidal cells increase their jump 
rate and noise intensity as the membrane potential approaches spike 
threshold, while their drift function and jump amplitude distribution 
remain unchanged. As for the second case, previous studies have 
demonstrated that fish exhibit abrupt increases in their electrosensory 
sampling rate. By reconstructing a jump-diffusion process from these 
data, we show the abrupt events occur more frequently during rest 
than during exploratory locomotion. We also show that the remain-
ing fluctuations in electrosensory sampling rate evolve in a wider 
potential well during movement than during rest. We conclude that 
our inference approach is applicable to a variety of situations where 
abrupt events occur among diffusive fluctuations, and that it provides 
a means to investigate the functional role of these events without rely-
ing on poorly understood biophysical or neural mechanisms.
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The processes of fear conditioning and extinction are dependent on 
the amygdala circuitry [1, 2], and the effects of alcohol on these pro-
cesses are extensively documented [3, 4]. However, the connections 
between the changes in amygdala structure and function induced by 
alcohol and fear conditioning are not well established. We introduce 
a computational model to test the mechanistic relationship between 
amygdala functional and structural adaptation during fear learning 
and the impact of acute vs. repeated alcohol. We hypothesize that 
acute and prior repeated alcohol exposure impedes fear extinction.
We use firing rate formalism to model a total of five neuronal popu-
lations following earlier models [5] with modifications that improve 
robustness. The model includes the lateral nucleus (LA) of the amyg-
dala, which is crucial to fear acquisition, the basal nucleus (BA) and the 
lateral subdivision of the central nucleus (CeL). Further, BA and CeL are 
subdivided into two groups responsible for fear expression and extinc-
tion (BAf/BAe; CeLOn/CeLOff). Learning in the model is mediated by 
the potentiation of inputs to LA and BAf from the thalamus and hip-
pocampus respectively (for acquisition) and to BAe from the prefrontal 
cortex (for extinction). The behavioral output of the model is activ-
ity of the CeLOn neurons, which underlies fear-related behaviors. We 
calibrate the model to reproduce changes in amygdala connectivity in 
acute and after prior repeated alcohol exposure measured in vitro [6, 
7] and connect this data with in vivo alterations in fear behavior and 
learning [3, 4].
We determine that, in accordance with experiments [6, 7], alcohol dis-
rupts fear extinction greater than fear conditioning. In conditioning, 
however, the model predicts that both acute and prior repeated alco-
hol exposure changes the contribution of context and stimuli (Fig. 1A 
BAf activity above LA in both alcohol cases). While this does not affect 
the speed of fear conditioning, both acute and prior repeated alcohol 
negatively affect speed and robustness of fear extinction in simula-
tions (Fig. 1). The model predicts that the mechanism for this negative 
effect is related to the above restructuring of amygdala activity that 
changes the contributions of context and stimuli during condition-
ing. Furthermore, our results predict that alcohol, especially its prior 
repeated exposure, move the system to the threshold for spontane-
ous renewal (relapse) of fear expression. Indeed, in our simulations, 
both acute and prior repeated alcohol lead to greater activation of 
the fear pathway after conditioning and shifts the system from robust 
extinction to relapses. (Fig. 1). Thus, we show how structural changes 
induced by alcohol in amygdala may affect fear behaviors.
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Despite showing significant promise for treating patients with neu-
ropsychiatric conditions, the underlying mechanisms of psychedelics 
have remained elusive. However, recently new light has been shed on 
the causal mechanisms of how psychedelics work through the 5HT-2A 
receptors of the serotonergic system in the brain [3]. Treatment-resistant 

Fig. 1 Dynamics of amygdala activity and synaptic inputs during 
conditioning and extinction in control (top), acute alcohol (middle) 
and prior repeated alcohol (bottom) conditions. LA = Lateral Amyg‑
dala; BAf/BAe = fear/extinction‑activated Basal Amygdala; CeL On/
Off = fear/extinction‑related Central amygdala nucleus. High activity 
of CeL On signifies behavioral fear response
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depression has been treated with psilocybin—an active component of 
magic mushrooms—and shown promising outcomes [2]. Here, we ana-
lysed the neuroimaging data (fMRI) from this pilot study comprising 15 
patients with treatment-resistant depression grouped into 7 respond-
ers and 8 non-responders based on their QIDS depressive score 5 weeks 
after the treatment [2]. We firstly explore the dynamical landscape of the 
brains of patients using leading eigenvector dynamics analysis (LEiDA) 
[1] (Fig. 1A, B). We further model the patients’ pre- and post-psilocybin 
intervention brain states using super-critical Hopf bifurcation model 
connected in a network defined by a group structural connectome. Sub-
sequently, by perturbing the model, we identify possible brain regions 
and mechanisms leading to the treatment outcomes between groups 
(Fig. 1C). Our experimental analysis shows the Functional Connectiv-
ity Dynamics (FCD) histograms to be significantly different between 
pre- and post-treatment conditions and between responders and non-
responders post-treatment conditions. Clustering the leading eigenvec-
tors of BOLD phase coherence, we identified k = 3 recurrent patterns, 
with k chosen by the most appropriate combination of Davies–Boul-
din score and Silhouette criterion. We showed a significant difference 
between the conditions for responders in the Probabilistic State Space 
(PMS) of state three. Furthermore, we constructed and validated the 
Hopf model to both FCD histograms and PMS for the pre-psilocybin con-
dition for both the responders and non-responders. Through a principled 
perturbation of the expected psilocybin effects on the brain dynamics 
we were able to predict the significant functional differences between 
the responder and non-responder groups. In conclusion, we demon-
strate that an increased difference in the FCD as well as the PMS of the 
third functional state are suggestive of the re-organisation of the brain 
dynamics for the two-groups of responders/non-responders between 
the pre- and post-conditions. Moreover, the ability to mechanistically 
explore the changes in brain dynamics between the conditions through 
the deployment of a whole-brain model leads to a systematic prediction 
of the successful treatment between the two groups. In terms of long-
term goals, this approach has a potential to address the appropriate 
dynamical transition of the brain and thus tailor a specific treatment to fit 
an individual patient’s need.
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Information flow within the cortical areas responsible for motor plan-
ning and motor execution is disrupted in Parkinson’s disease (PD). 
This disruption and information loss is associated with exaggeration 
of beta oscillations (~13-30 Hz) observed in the LFP and ECoG record-
ings from the cortex. The underlying mechanism of the generation of 
these enhanced beta rhythms is still in debate and remains unclear. 
Recent studies hypothesize that alterations in synaptic connections 
both within and between the cortex and thalamus play a critical role 
in the generation of pathological beta rhythms in PD. To examine 
this hypothesis, we developed a spiking neuronal network model of 
the thalamo-cortex, the thalamo-cortical microcircuit (TCM). The TCM 
contains reciprocal synaptic connections that generate low frequency 
oscillations in the microcircuit in healthy conditions. Alterations of 
specific connections is shown to lead to high beta rhythm within the 
TCM. The model was compared and validated against neural firing 
patterns recorded in rodent models of PD from the literature. The TCM 
model was then used to investigate the effects of deep brain stimu-
lation (DBS) on exaggerated beta oscillations in the cortical network. 
The beta rhythm within the TCM was attenuated by the application of 
monophasic DBS pulses that travel antidromically to the deep layer of 
cortex. The TCM model provides several advantages over mean field 
and neural mass models. It enables us to examine individual neural 
spiking patterns and synchronization within and between the popu-
lations under study, both with and without stimulation. In addition, it 
enables short term synaptic plasticity to be incorporated. Finally, the 
model presented provides with a biophysical pathway for integration 
of results from different studies and sources, to better understand 
changes in cortical information flow in PD.
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We developed a model of primary motor cortex (M1) microcircuits [1] 
with over 10,000 biophysically detailed neurons and 30 million synaptic 
connections. It simulates a cylindric cortical volume with a depth of 1350 
μm and a diameter of 300 μm. Neuron densities, classes, morphology 
and biophysics, and connectivity at the long-range, local and dendritic 
scale were derived from experimental data published in over 30 studies. 
The model was developed using the NetPyNE tool [2], which facilitated 
the integration of this complex experimental data at multiple scales. Our 
model exhibited spontaneous neural activity patterns and oscillations 
consistent with M1 data. Neural activity depended on cell class, corti-
cal layer and sublaminar location. Different output dynamics were seen 
when the network was driven by brief activation of particular long-range 
inputs, or in the setting of different neuromodulatory conditions. Results 
yielded insights into circuit information pathways, oscillatory coding 
mechanisms and the role of HCN in modulating corticospinal output.

Fig. 1 Study Overview: a Leading Eigenvector Dynamics Analysis 
(LEiDA) of the fMRI dataset. b State‑space representation for three 
cluster solution of the k‑means algorithm. c Super‑critical Hopf net‑
work model fitted to the pre‑treatment and perturbed according to 
psilocybin neuropharmacology to predict the post‑treatment results



Page 102 of 190BMC Neurosci 2019, 20(Suppl 1):56

LFP revealed physiological oscillations in delta (0.5-4 Hz) and high beta to 
low gamma (25-40 Hz) ranges across layers and populations. Oscillations 
occurred in the absence of rhythmic external inputs, emergent from neu-
ronal biophysical properties and circuit connectivity. Filtering the LFP 
signal from the electrode located in upper L5B revealed phase-ampli-
tude coupling of fast oscillations on delta wave phase. LFP spectrogram 
demonstrated that the fast oscillations occurred robustly during the 
time course of simulations. Strong LFP beta and gamma oscillations are 
characteristic of motor cortex activity, and have been found to enhance 
signal transmission in mouse neocortex. Phase-amplitude coupling may 
help integrate information across temporal scales and across networks.
Analysis of firing dynamics and information flow in our model confirmed 
and extended our understanding of information flow in cortical microcir-
cuits. Consistent with existing models, sensory-related long-range inputs 
targeted superficial layers which in turn projected to deeper layers. Our 
simulations, however, provided further details: information flow was 
cell-class specific, going unidirectionally from IT to PT cells; sublaminar-
specific, with superficial ITs targeting primarily the upper portion of L5B 
PT cells; and oscillation frequency-specific, with Granger causality peaks 
occurring at shifted beta/gamma range frequencies for different internal 
connections.
Our work provides insights into oscillatory mechanisms and information 
flow in M1 microcircuits. Our detailed computational model provides 
a useful tool for researchers in the field to evaluate novel hypothesis, 
understand motor disorders and develop novel pharmacological or neu-
rostimulation treatments.

Acknowledgments: Research supported by NIH grant U01EB017695, 
DOH01-C32250GG-3450000, NIH R01EB022903.
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[1] reported avalanches in local field potential recordings from organo-
typic cultures and in unit recordings from acute slices of rat soma-
tosensory cortex with a power-law value of − 1.5. Since then, a range of 
avalanche size distribution values has been reported from about − 2.05 
to − 1.25. Some teams have reported strongly curved avalanche size dis-
tributions rather than a power law.
Cortical layer, cell type, and connectivity of individual cells are unavail-
able for in vitro and in vivo recordings. In addition, sample size and tem-
poral resolution are necessarily limited. By comparison, simulation offers 
access to all of this information. We therefore investigated the circuitry 
underlying avalanche propagation in a computer model of area M1 of 
cerebral cortex. This allowed us to distinguish the characteristics of ava-
lanches along different routes defined by either layer or cell type, as well 
as throughout the column. The M1 model is a moderately detailed simu-
lation of a full-depth cylindrical column of 300μm diameter, containing 
10,074 neurons with about 18 million connections. Activation was with 
a 0.57nA intracellular square-wave current applied to all cells in a 40μm 
cylindrical subvolume.

Avalanche sizes from all neuron types and layers of the M1 cortical col-
umn showed a linear fit to power-law value − 1.72. Avalanches in all 
excitatory neurons fit − 1.67 and the population of M1 inhibitory neu-
rons fit to the power-law value − 1.60 for avalanche size. Avalanche sizes 
in layer 2/3 fit a relatively steep − 1.90 and similarly in layer 4 they fit 
− 1.87 . The power-law value became sharply less negative in layer 5A at 
− 1.37 and became more negative again in layer 5B and layer 6 at − 1.67. 
Excitatory neurons appeared to form two groups. One group includes 
four neuron types: IT2/3 neurons carried avalanche sizes that fit power-
law value of − 1.68, IT5A also neurons fit − 1.68, PT5B fit − 1.63, and 
IT6 fit − 1.66. Two other excitatory neurons form the second group: IT4 
neurons with avalanche sizes that fit − 1.87 and IT5B neurons at − 1.81. 
Inhibitory neurons also formed two groups. One group had very steep 
power-law curves and the size of their avalanches did not get very large. 
This group included PV2/3 neurons with a power-law value of − 2.38 and 
SOM6 at − 2.36. The second group had somewhat less steep curves and 
included SOM2/3 − 1.88, PV5A − 1.87, and PV5B − 1.76. SOM5A, SOM5B, 
CT6, and PV6 neurons had low response rates and therefore did not 
generate enough data to determine the shape of their avalanche size 
distributions.
In conclusion, many excitatory neuron types, particularly IT2/3, IT5A, 
PT5B, and IT6, may operate at criticality in our simulated M1 cortical 
column. Our data also suggest that some inhibitory neurons, especially 
PV2/3 and SOM6, may not operate in the critical state. Avalanche size dis-
tribution is differentially expressed across different layers and different 
cell types in our simulated M1 cortical column.
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Oscillations are ubiquitous in the brain [1]. Although the functional 
role of oscillations is still unknown, some studies have conjectured 
that the information transmission between two oscillating neuronal 
groups depends on the relative phases between them. Thus, the 
theory of Communication Through Coherence (CTC) proposes that 
effective communication occurs when the inputs sent by the emit-
ting population arrive at the phases of maximal excitability of the 
receiving population [2]. In this context, phase-locking between 
neural populations is relevant for understanding neuronal commu-
nication [3].
The phase response curve (PRC) is a powerful and classical tool 
to study the effect of a perturbation on the phase of an oscillator, 
assuming that all the dynamics can be explained by the phase vari-
able. However, factors like the rate of convergence to the oscillator, 
strong forcing or high stimulation frequency may invalidate the 
above assumption and raise the question of how is the phase varia-
tion away from an attractor [4].
We present powerful computational techniques to perform the 
effective computation of the phase advancement and phase locking 
properties beyond weak perturbations. In particular, we consider a 
population rate model consisting of excitatory and inhibitory cells 
modeling the receiving population and perturb it with a time-
dependent periodic function modeling the input from the emit-
ting population. We consider the stroboscopic map for this system 
and study its fixed and periodic points and their bifurcations as 
the amplitude and the frequency of the perturbation are varied. 
The techniques that we use to do the bifurcation analysis have 
no restriction neither on the amplitude nor on the frequency of 

https://doi.org/10.1101/201707
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the perturbation. From the bifurcation diagram, we can identify 
the phase-locked states as well as different areas of bistability. We 
explore carefully the dynamics on these invariant objects and we 
discuss the implications of these results for the CTC theory, paying 
attention to the implications in terms of phase-locking and ampli-
tude of the response of the oscillatory neuronal population to the 
external input. Our results show that naturally an optimal phase 
locking for CTC emerges, providing a mechanism by which the 
receiving population can implement selective communication, as 
well as a mechanism by which different communication regimes 
between areas can be established (communication can be turned 
on and off ) without changing the connectivity of the network.
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Language understanding requires the structured encoding of sen-
tence contents in the human brain. A recent fMRI study by Frank-
land and Greene [1] has shed some light on the representation of 
such structured information in human cortex: there exist specific 
subareas in the left mid-superior temporal cortex (lmSTC) which 
encode semantic variables for thematic roles (such as the agent or 
patient in a sentence). Furthermore, the authors were able to reli-
ably decode the content of these semantic variables from the cor-
responding lmSTC subregions.
Assignment of values to semantic variables can be viewed as a form 
of binding. Existing models addressing this problem either rely on 
detailed assumptions such as specifically constructed circuitry or 
strict connectivity assumptions, or they cannot reproduce the find-
ings of Frankland and Greene due to their inner workings. We pre-
sent a model which avoids both issues.
The proposed model shows how binding capabilities emerge in 
a generic spiking neural network using minimal assumptions and 
experimentally well-established neural mechanisms. The network 
consists of sparsely connected populations of spiking neurons with 
divisive inhibition, where connections are subject to spike-timing 
dependent plasticity (STDP). In particular, we make no assumptions 
on specific wiring or symmetric connectivity. The control over the 
binding processes is implemented through disinhibition of neural 
populations.
We show through extensive computer simulations that the assign-
ment of semantic variables (like agent or patient in a sentence) to 
words or values robustly emerges through STDP in this model. Val-
ues are encoding by elevated responses of sparse assemblies in 
the “content space” (similar to the concept cells of the MTL, see [2]). 
These values can be assigned to different variables, each encoded 
by a population of neurons (“variable spaces”). If a variable space is 
disinhibited while some value is active in the content space (Fig. 1A–
B), an assembly forms in the variable space (Fig. 1C). This assembly 
is strongly linked to the neurons in the content space encoding its 
value (though sparse, random connectivity).

Such a value assignment is consistent with the findings of Frank-
land and Greene as the activity of a variable is shaped by its content 
(Fig. 1C-D). Assigning different values (agent, patient of a sentence) 
to two separate variables allows reading out the values of the 
semantic variables from the network activity of the corresponding 
variable space (with high accuracy, >97% under severe noise condi-
tions), thus reproducing the experimental findings in lmSTC.
The proposed model further allows performing a number of ele-
mentary cognitive operations which have been proposed as fun-
damental primitives of symbolic computation in the brain: recalling 
the contents of a variable (by disinhibiting the content space and 
the variable space after a delay, the variable space drives the tar-
get assembly in the content space to fire), copying the contents of 
one variable to another (by performing a recall and simultaneously 
assigning the recalled value to a new variable space), and compar-
ing the contents of two variables (by performing two consecutive 
recall operations with a readout assembly connected to the content 
space via depressing synapses). The model thus can serve as a build-
ing block for models performing more demanding cognitive tasks.
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Neuronal plasticity, also called brain plasticity, is the capability of the 
brain to change its function and structure. The plasticity occurs due to 
external environment, recovery from brain injury, and modifications 

Fig. 1 a Network architecture with a single variable space for one 
variable. b Input (representing the word “truck”) activates the encod‑
ing assembly (blue). c Assigning different values (left: “truck”, right: 
“ball”) gives rise to different encoding assemblies (blue, green) in the 
variable space. d Reproducing lmSTC data: variable contents can be 
read out from the variable space network dynamics
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within the body. We study the effect of both spike-timing depend-
ent (STDP) and short-term (STP) plasticity in the synaptic strength 
between coupled excitatory Hodgkin-Huxley neurons as a function of 
their natural frequencies. The STDP rule changes the intensity of the 
synaptic coupling considering the time interval between the spikes of 
postsynaptic and presynaptic neurons. The STP is related to the release 
of neurotransmitters into the synaptic cleft and the recovery time. Pre-
vious works reported that the STDP rule induces the appearance of 
directed connections from the high to low frequency neurons. In our 
simulations, we observe that the presence of STP with high recovery 
time allows the existence of connections only when the neurons have 
close spiking frequencies. We show that, depending on the STP recov-
ery time and the neuronal frequencies distribution, the neuronal net-
work can form clusters of connected neurons with different sizes.
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In order to build interpretable models of neuronal networks, it is 
necessary to retain only a subset of their biological features. Popula-
tion models, where the activity of several neurons is averaged and 
treated as a single functional unit, are a common way of achieving 
this [1,2]. Such models also address both the experimental limita-
tions in identifying large numbers of individual cells, and the compu-
tational limitations in simulating them. What then is the cost of such 
an approximation, and how can we mitigate it ? We argue that even in 
models which attempt to account for a biological structure, that cost is 
substantial, and consequently that any theoretically predicted param-
eter is unlikely to be better than an order of magnitude estimate. We 
propose using machine learning methods to close the gap between 
model and data, by tuning model parameters towards effective values 
which account for neglected biological features. We show that this 
provides a substantially better match to data, and can recover behav-
iours typically lost in population models, such as bursting (Fig. 1A). The 
use of Bayesian methods also enables us to compute rich posteriors 
over the model parameters (Fig. 1B).
Inference methods have been very successful at fitting statistical 
models to neuron population dynamics. Such models are usually 
either relatively simple [3], or generic function approximators based 
on neural networks [4]. In both cases the dynamical equations are 
chosen to facilitate inference and may be simple caricatures of the 
underlying biology—they rely on the inference procedure adjusting 
their parameters in order to provide good predictions. These mod-
els are consequently difficult to interpret and may not extrapolate 
well outside the regime in which they were fit. By extending infer-
ence methods to mechanistic models, we are able to combine their 
explanatory power with the predictive power of statistical models. 
Moreover, because the dynamical equations are better aligned with 
the underlying biology, we expect them to generalize to a wider 
range of dynamical regimes—and this is exactly what we find with 
respect to bursting behaviour.
We anticipate that empirically tuning mesoscopic models will be 
a powerful method for further understanding large-scale neural 
processes, and are releasing software to facilitate its implemen-
tation. Compared to simulating an entire network, population 
models tuned to compensate for unaccounted features provide a 
simpler mechanistic representation of the population dynamics that 
remains quantitatively reliable and yet is amenable to theoretical 
and computational analysis.
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Fig. 1 a A population model can partially reproduce bursting behav‑
ior observed in a spiking model, but only when using inferred effec‑
tive parameters. Shown are simulations of a putative cortical column 
containing four populations. Inferred parameters were obtained on 
non‑bursting data. b Posterior over parameters for a smaller two‑
population model. Red dots and lines indicate ground‑truth values
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Acting as a dynamical relaying center between different cortical 
areas, the hippocampus is known to significantly contribute in shap-
ing the functional connectivity (FC) profile of the cortex. Many works 
in the field are being addressed to understand how the hippocampus 
has an impact on other cortical regions, both during motor action 
and at rest, but also from single areas to larger subnetworks, such as 
the default mode network (DMN), a resting state (RS) network, more 
strongly active during idling states than during task performance. On 
one hand, some studies have reported a progressive decrease of hip-
pocampal volume during the time course of early-stage Alzheimer’s 
disease (AD), which has been attributed to the loss of neurons and the 
deterioration of the related connections. On the other hand, the DMN 
appears to be functionally impaired in AD and even in earlier stages, as 
in mild cognitive impairment (MCI).
In light of this, the present work aims at understanding the mecha-
nistic underpinnings of FC transitions that take place during MCI. 
Specifically, we wanted to unveil whether the transitions of the DMN 
FC observed in this early phase of the AD can be attributed to the 
deterioration of the hippocampus as a dynamical relaying center 
between cortical areas. To this purpose, we investigated the RS interac-
tions between the hippocampus and the remaining areas of the DMN 
(identified in our work by 12 areas (right and left): precuneus, isthmus 
cingulate, inferior parietal cortex, superior frontal gyrus, middle tem-
poral gyrus, and anterior cingulate cortex). Functional and structural 
connectivity (SC) profiles have been extracted from n = 9 healthy con-
trols (HC). We generated spiking-neuron based personalized models of 
the DMN of these subjects, including the hippocampal relay network 
(HRN, i.e. the star-like network composed of the hippocampus and its 
connections to the remaining 12 cortical areas of the DMN). We gener-
ated two different versions of the HRN: HRNHC (the healthy version, 
sized with data from healthy participants) and HRNMCI (the degraded 
version, based on volumetric data from a group of MCI participants). 
Then, we have simulated 30 s of RS activity and calculated the DMN 
FC profiles of each subject under the two conditions (i.e., using the 
HRNHC first, and then the HRNMCI). We compared the FC transitions 
caused by the degradation of the HRN in the model, with those that 
have emerged from a previous comparative study (HC vs. MCI) carried 
out in our laboratory with real subjects [1]. Differences were evaluated 
in the alpha band, where the reference study had reported significant 
results.
Simulation results show that the structural modification of the HRN 
is able to predict up to 80% of the FC variations on the whole DMN, 
found in the reference study.
Our findings suggest that the misadjustment of the hippocampus as a 
relaying center between cortical areas could be playing a pivotal role 
on the disruption of the FC at the initial stage of the disease, when the 
SC is not yet considerably damaged. It could be the hippocampus mal-
function that subsequently triggers a plasticity-driven reconfiguration 
process, causing over time the structural and functional disruptions 
that characterize most advanced AD stages.
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Recent advances in the field of human brain imaging by electrophysi-
ological recordings provide novel tools to investigate the connectivity 
patterns during spontaneous oscillatory activity. As a consequence, we 
could reliably explore, also by means of electrophysiological data, the 
mechanisms underlying complex brain mechanisms, such as the func-
tional reorganization after brain injury. As a first step towards this goal, 
we developed a pipeline integrating high-density electroencephalog-
raphy (hdEEG) and graph theory and we tested it on the resting-state 
activity of 16 healthy subjects. The goal of our analysis is to explore, by 
using weighted graphs, the frequency-specific organization of differ-
ent graph-derived metrics such as the clustering coefficient, the path 
length and the recent small world propensity index [1]. To reach the 
above goal, we employed state-of-the-art techniques to process 
hdEEG channels, to build the head volume conductor model and to 
estimate thesources location in the gray matter [2]. Once the sources 
were estimated, we mapped them onto the 384 ROIs of the AICHA 
atlas [3]. The spectral estimates of each ROI were derived using Mor-
let wavelet (number of cycles = 5.83). We then employed the power 
spectra envelope orthogonalization method to unravel the connec-
tivity value between the estimated sources that, otherwise, would be 
masked by the source leakage problem. Thus, ROIs power envelopes 
were firstly orthogonalized, log-transformed and then correlated 
as reported in [4]. The obtained adjacency matrices, containing the 
strength of the connections, were statistically thresholded to further 
obtain the graph-based metrics (see Fig. 1). We tested the pipeline on 
resting state recordings, by showing the behavior of the graph param-
eters in the different Morlet wavelets’ carrier frequency describing the 
frequency-specific changes of the brain functional organization. Our 
future plan is to exploit this pipeline to compute hdEEG derived elec-
trophysiological biomarkers of the sensorimotor recovery in patients 
with neurological disease enrolled in neurorehabilitation programs.

Fig. 1 Overview of the experimental setup and of the developed 
pipeline
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Optogenetics is a neuromodulation technique that uses light to 
control neuronal activity. To this end, light sensitive ion channels 
or pumps (termed opsins) are genetically expressed into neurons. 
Channelrhodopsin-2 (ChR2) is an excitatory opsin consisting of seven 
transmembrane helices covalently bound with a retinal chromophore. 
Illumination of the opsin triggers a retinal 13 trans-cis isomeriza-
tion followed by opening of the pore. UV/vis and difference infrared 
spectroscopy identified at least five different states in a single photo-
cycle. Furthermore, electrophysiological recordings, retinal extraction 
and Raman measurements provide evidence for the existence of a 
second photocycle, which is widely adopted [1]. The place of transi-
tion between this dark- and light adapted photocycle is however still 
under debate (Fig 1, left). In-silico, the whole photocycle is predomi-
nantly modelled with a four-state branched model that consists of 
two open and closed states (Fig 1, middle). Moreover, an extra state-
variable is typically used to model the time- and irradiance depend-
ent activation [2]. Consequently, the model consists of four differential 
equations making it quite computational demanding.We proposed 
an alternative model that is based on the fast transient sodium 
model of Hodgkin and Huxley. However, instead of inactivation in 
the Hodgkin and Huxley model, the second state pair represents the 
light-dark adaptation (Fig 1, right). This model requires only two dif-
ferential equations, thus reducing the number of equations with fifty 
percent. Furthermore, by using two light dependent rates in the light-
dark adaptation cycle, we hypothesized no loss of ChR2 current fea-
tures (i.e. a transient peak followed by a steady-state plateau and slow 
recovery from light adaptation, under voltage-clamp conditions). This 
hypothesis was tested and confirmed, by fitting our model to voltage-
clamp recordings reported by [2]. For both the equilibrium and time 
constants, a logistics relationship was used to incorporate intensity 
and voltage dependence. However, these dependences were on a 
logarithmic and linear scale, respectively. Subsequently, the obtained 

model was compared against the 4-state branched model created by 
[2]. The computational efficiency was addressed in a cortex network 
model, consisting of 36 excitatory neurons containing the ChR2 cur-
rent model and 12 inhibitory neurons. The simulation was solved with 
a global variable step and variable order solver (ode15s) in MATLAB. 
For a two second simulation containing one second of optical stimula-
tion, an average (n = 10) of 220.73 s and 175.32 s computation time 
was required, for the configuration with the 4-state branched and own 
model, respectively. The proposed model results thus in a significant 
increase of computational efficiency.
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In hippocampus, a type of slowly-activated and non-inactivating K+ 
channels, belonging to the Kv7 family, are highly localized on initial 
segments of myelinated and unmyelinated axons where they influ-
ence neuronal excitability. Interestingly, immunohistochemistry shows 
that the Kv7.2 and Kv7.3 subunits are localized throughout hippocam-
pal mossy fibers. Electrophysiological recordings from mature synaptic 
boutons showed that the Kv7/M- current is also present here, is active 
at rest and enhances the membrane conductance. The current also 
reduces the spike half-width and after depolarization (ADP) following 
a presynaptic spike. This is likely to have significant consequences for 
the modulation of excitatory neurotransmitter release from these bou-
tons, and thus signal transmission, at DG-CA3 synapses.
In this poster, using a biophysical computational model of a mossy 
fiber bouton (MFB), we will discuss the mechanisms underlying the 
ADP observed after Kv7 channels block. The model is able to repro-
duce a number of experimental findings under control and after 
Kv7 current block by XE991. The results suggest that Kv7 conduct-
ance limits spike-induced rise in Ca2+concentration and regulates 
spike width and ADP amplitude. The model suggests that the ADP is 
caused by a relatively slow Ca2+-dependent mechanism, which can 
be conveniently modelled as a slow deactivation time constant of the 
Ca2+current in MFB. This is a new feature that has not been previously 
observed experimentally. Taken together, these results suggest that 
presynaptic Kv7 channels expression at the mossy fiber-CA3 synapse 
may have an important role in modulating synaptic transmission and 
signal coding in the hippocampus network.
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Neuronal networks are composed of different cell types precisely 
arranged into organizational schemes and connected via complex 

Fig. 1 The ChR2 photocycle based on UV/Vis and difference infrared 
spectroscopic measurements (left). The transition between the dark 
adapted (DA) and light adapted (LA) occurs either at the parent states 
(dashed step) or at the late intermediates (dotted step). A four state 
branching model (middle). The proposed model with opening and 
light‑dark adaptation separately (right)
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electrochemical signaling mechanisms [1]. Since the high brain organ-
ization complexity, the use of simplified in vitro experimental mod-
els is a valid choice to better investigate how dynamics originate and 
propagate in the different assemblies. In this work, we investigated 
the mutual interactions between cortical and hippocampal neuronal 
networks an extremely important communication pathway for under-
standing the mechanism behind many pathologies, like epilepsy and 
depression.
In this work, we used a polydimethylsiloxane (PDMS) device to drive 
the connectivity of three sub-populations of cortical and hippocam-
pal neurons. The device consists of a compartment with a larger 
area (width = 6.5 mm, length = 4.3 mm). The two smaller compart-
ments have a diameter of 3.4 mm. There are 20 micro-channels 
(width = 10mm, length = 100mm and height = 5 μm) for each branch. 
Such a device is coupled to Micro-Electrode Arrays (MEAs) by splitting 
into three interconnected regions the recorded area where the neu-
rons can recreate modular connectivity [2].
Cortical-hippocampal cultures were grown on MEAs with 120 elec-
trodes to investigate network activity during their development. We 
carried out recordings of homogeneous interconnected cortical or 
hippocampal neurons (controls) and heterogeneous interconnected 
hippocampal and cortical neurons. Spiking and bursting features 
have been characterized using: Mean Firing Rate, Mean Bursting 
Rate, Burst Duration, Inter Burst Interval and percentage of random 
spikes. Kruskal-Wallis test was used to statistically assess the behav-
iour of the cortical cell with and without the interaction with the hip-
pocampal cells. We demonstrated the functional separation of the two 
neuronal populations by evaluating the similarity between the spike 
trains [3]. In the homogeneous cultures, we observed that the similar-
ity takes medium-high values regardless of compartment of belong-
ing. From the functional point of view, this result revealed that there 
is a high probability to have the same types of neurons in the three 
compartments. In the heterogeneous cultures we observed that the 
recorded cortical activity was different respect to hippocampal cells. 
This outcome suggests the functional separation between the differ-
ent compartments. To verify the functional connection between the 
compartments we studied the propagation of the electrophysiologi-
cal signals in the cultures with and without compartmentalization. 
We assessed the ignition sites where the Network Bursts (NBs) started 
from as the sites where bursts initiate in at least 3% of all the NBs [4]. 
We observed that the compartments are mutually connected. Finally, 
using the graph theory, we studied the functional connectivity that 
evidenced a small world network topology.
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Deep convolutional spiking neural networks (DCSNNs) are the next 
generation of neural networks that are hardware-friendly and energy-
efficient. They are able to function in both spatial and temporal 

domains which makes them potentially more computationally power-
ful than deep convolutional neural networks (DCNNs).
Despite the recent advances of DCSNNs, their performance has not 
been better than DCNNs yet. One of the main reasons for the rapid 
improvements of DCNNs is the existence of efficient and user-friendly 
simulation frameworks that facilitate the implementation of new 
ideas. On the other hand, most of the current DCSNN simulators not 
only need dealing with complex details of neural mechanisms, but 
also are not efficient enough for examining ideas on large neural 
networks.
Here, we introduce SpykeTorch which is an open-source PyTorch-
based package for efficient simulation of DCSNNs with at most one 
spike per neuron and time-to-first-spike information coding. Com-
patible learning rules can be easily added to SpykeTorch, however, 
spike-timing-dependent plasticity (STDP) and reward-modulated 
STDP (R-STDP) are already provided. The proposed package is fully 
integrated with PyTorch and makes use of its high-speed tensor-based 
operations. Due to this integration, models implemented in Spyke-
Torch can be easily launched on CPU, GPU, or Multi-GPU platforms. 
Apart from the efficiency, implementing models with SpykeTorch is 
almost similar to PyTorch’s workflow which is familiar to deep learning 
communities.
Temporal domain is crucial to DCSNNs. Here, the concept of time is 
implemented by adding an extra dimension to the tensors. In other 
words, spikes and potentials are stored in four-dimensional tensors of 
the shape (time-steps, features, height, width), filled with binary and 
floating-point values, respectively. Besides, spikes are kept in accu-
mulative format: if a neuron fires at a particular time-step, we keep its 
spike flag “on” till the final time-step (Fig. 1). This accumulative struc-
ture enables SpykeTorch to simultaneously operate on and returning 
the outputs of all time-steps.
SpykeTorch is already fully functional, and we re-implemented mod-
els proposed in [1, 2] (available on GitHub [3]). We are now developing 
further facilities such as automation modules and batch processing or 
utilities to work with modalities other than vision to enhance the user 
experience.
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Slow-wave activity is a hallmark of sleep and deep anesthesia and 
constitutes a default spatiotemporal pattern invariantly expressed 
by cortical networks upon which cognitive functions emerge during 
wakefulness [1]. The transition from slow-wave activity to wakefulness 
is thus an ideal experimental framework to understand how complex 
network dynamics underlying brain computations emerge.
With this aim, we studied the generation and propagation of slow 
waves under different anesthesia (isoflurane) levels, by means of 
an array of 32 surface electrodes covering a large part of a mouse 
brain hemisphere. The propagation of slow waves was detected 
relying on the multisite, multiunit activity extending a methodology 
introduced in [2]. For each wave, the estimated matrix of time lags 
between local activation onsets (transitions from almost quiescent 
Down to high-firing Up states) reflected the shape of the propa-
gating activity wave fronts. We quantified the properties of these 
spatiotemporal patterns, as well as their frequency and degree 
of diversity in time and space. At the deepest anesthesia level, we 
observed two modes: back-to-front and front-to-back waves [3]. 
With fading anesthesia, the complexity of the propagation modes 
(quantified with the entropy computed on the plane of the first two 
PC components) increases, until a continuum of wave front shapes 
arises. Besides, both the frequency of Up/Down slow oscillations 
and the regularity of the rhythm (as measured by the coefficient of 
variation cv of Up/Down cycles) increase together such that under 
light anesthesia the highest frequency (≈0.5 Hz) occurs with the 
lowest variability (cv≈0.2). As a result, wave entropy tightly corre-
lates with the slow oscillation frequency allowing us to work out an 
anesthesia depth index (ADI), which turns out to correlate with the 
cv and the average Up and Down state durations too. Intriguingly, 
the condition where cortical travelling waves show poor diversity 
(low entropy) and large variability of the rhythm, are characterized 
by increased network memory, measured as similarity of two succes-
sive wave fronts. This is in contrast with lighter levels of anesthesia, 
where the waves display memory-lessness. It is worthy to mention 
that despite all these changes, the wave velocity does not vary sig-
nificantly (10.3±1.6 mm/s, mean± SD, n = 19).
In the observed brain state transition two, apparently incoher-
ent phenomena emerge: increase of temporal regularity/memory 
and of spatial complexity. To unravel this paradox, we resorted to 
simulations of spiking neuron networks modeling the probed corti-
cal areas by extending [2]. In order to reproduce the properties of 
the in vivo slow-wave activity, the model had to incorporate a bal-
anced competition between an increase of global cortical excitabil-
ity and the presence of a state-dependent inhibition/refractoriness 
related to more local fatigue processes. As a result, the starting low 
complexity and propagation mode memory can be due to fatigue 
effects in the network: waves tend to be stereotypical and follow 
‘known tracks’.
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Alzheimer’s disease (AD) is a chronic progressive neurodegenerative 
disorder afflicting millions worldwide. Abnormal N400 Event-Related 
Potentials (ERP) are biomarkers indicative of AD progression [1]. Spe-
cifically, in the semantic category judgment task, N400 congruency 
and repetition effects diminish with AD progression in Mild Cogni-
tive Impairment Patients. Aberrant neuronal properties in AD such as 
Calcium (Ca2+) concentrations and N-methyl-D-aspartate (NMDA) 
receptor dysfunction could be the underlying cause of these ERP 
abnormalities [2, 3]. However, there is no consensus in the literature on 
the cognitive functions or specific neural generators of the N400 nor 
detailed neuronal models that account for these factors.
Here we propose, to our knowledge, the first biologically detailed and 
plausible connectionist spiking neural network architecture to model 
the semantic category judgment task. The architecture’s neuronal 
characteristics are based on the spiking Selection over Time and Space 
(sSoTS) model that encompasses gamma aminobutyric acid (GABA), 
alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA), 
NMDA, and the spike frequency adaptation currents [4]. AMPA&GABA 
account for fast excitatory and inhibitor currents, respectively. NMDA 
accounts for slow magnesium ion dependent currents. The spike fre-
quency adaptation current is a Ca2+ ion dependent after-hyperpo-
larization mechanism. The architecture has groups of neurons divided 
into pools arranged in layers as seen in Fig. 1. Each layer represents a 
specific feature type i.e. auditory, visual, or semantic. Pools within a 
layer represent stimulus properties. The connectivity between and 
within pools and layers is approximated by converting the architecture 
into a population coded model using the Mean Field Approach, per-
mitting the exploration of a large parameter space.

Fig. 1 Implementation of the semantic category judgement task in 
the model

http://arxiv.org/abs/1804.00227
https://github.com/miladmozafari/SpykeTorch
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The proposed model architecture successfully generates spiking activ-
ity in the semantic layer similar in time course as found in the N400 
literature. The results suggest that N400s for individual stimuli are 
generated by stimulus-induced spiking activity in the semantic layer 
through AMPA and NMDA currents. The N400 congruency effect is 
generated by the spike frequency adaptation mechanism. This model 
provides a biologically detailed and plausible account of the N400 ERP 
in the semantic judgement task and is the first step in understanding 
the N400 biomarker in AD patients.
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Experimental data and theoretical considerations suggest that 
strongly interconnected groups of active neurons, called neural 
assemblies, constitute the ‘language’ of the brain. Chaining such 
assemblies leads to the formation of assembly sequences, which are 
commonly found in experimental data and have been related to cog-
nitive processes such as memory recall, decision making and planning 
[1]. However, the mechanisms that allow neural networks to sponta-
neously form assembly sequences without supervision are not fully 
understood. We present a new mathematical framework grounded in 
information theory, that sheds light on the principles for self-organi-
zation that may underlie assembly sequence formation. We hypoth-
esize that a viable objective for learning in recurrent neural networks 
is to maximize its ability to predict the future continuation of transient 
stimuli while keeping a minimum information about the past. We 
formulate this goal in terms of the transfer entropy [2], measuring the 
amount of information about future stimuli that is gained by adding 
additional neural responses to the assembly sequence. Neurons there-
fore learn to contribute to the sequence only if their activity helps to 
increase the predictive power of the network.
The learning rules that emerge from the transfer entropy framework 
are local and resemble commonly observed STDP curves. In contrast 
to previously considered Hebbian plasticity, we find that learning rules 
derived from our theoretical framework include competition between 
neurons that trades off expressiveness against redundancy. More pre-
cisely, we identify a new mechanism that depresses synapses if neu-
rons reverberate information that is already present in the network. 
We show that this mechanism leads to robust learning where neurons 
preferably respond with transient activity to external stimuli, and the 
automatic formation of stable cell assemblies without a global super-
visor. To do so we conduct experiments for learning sequence memory 
and prediction in recurrent neural networks. Furthermore, we find that 
the competition induced by the transfer entropy learning rule prefera-
bly leads to hierarchically organized assembly sequences, where single 
neurons learn to fill niches of missing information in the spike train, 
e.g. to close a gap for sequence memory.

The new theoretical framework has interesting correspondences to 
previously considered learning models. It provides a new view on the 
predictive coding paradigm [3] and allows us to pinpoint learning 
rules that enable a network to develop neural codes that minimize sur-
prise. Moreover, transfer entropy learning generalizes the previously 
considered spiking information bottleneck model [4]. In summary, 
our approach provides a new theory towards understand the ability of 
spiking neurons to self-organize into robust assembly sequences.
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The NEURON simulator (neuron.yale.edu) provides a computa-
tional framework for studying networks of neurons and the interplay 
between electrophysiology and chemical dynamics. While NEURON 
has supported 3D intracellular dynamics for years, the computational 
requirements previously put this out of reach for many investigators. 
To make these studies practical for more researchers, we have devel-
oped a new 3D intracellular engine—planned for widespread release 
with NEURON 7.7—that accelerates serial simulations by an order of 
magnitude and can take advantage of parallel hardware while pre-
serving NEURON’s traditional reaction-diffusion interface.
The new 3D intracellular compute engine adapts the Douglas-Gunn 
Alternating Direction Implicit method [1] used for NEURON’s 3D extra-
cellular simulation [2] to the irregularly shaped geometry of a neuron. 
Voxelization proceeds from an abstract neuron reconstruction using 
rules adapted from [3], but by explicitly incorporating the connectivity 
information, improving voxel-NEURON segment mapping and acceler-
ating the discretization. Additionally, the new engine yields a speedup 
of approximately 10 times for serial simulations compared to the pre-
vious Python implementation. This speedup can be further enhanced 
using threads, exploiting the fundamentally parallel nature of the 
algorithm; we are currently achieving a speedup of approximately 3 
times with 4 threads. With careful cache management, we expect to 
achieve a performance improvement that scales with the number of 
threads.
We consider two examples: first, diffusion of a messenger from a spine 
into the dendrite with emphasis on the local microdomain near the 
spine in the dendrite. Second, we compare 1D, 3D, and hybrid 1D-3D 
simulations of a propagating calcium wave in a 3D reconstruction of a 
CA1 pyramidal cell. Hybrid 1D-3D simulation reduces compute time by 
continuing to solve mostly 1D domains like dendrites using a simpler 
1D approximation while preserving 3D details for non-linear areas like 
near the soma.
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Page 110 of 190BMC Neurosci 2019, 20(Suppl 1):56

References
1. Douglas J. Alternating direction methods for three space variables. 

Numerische Mathematik 1962 Dec 31;4(1):41–63.
2. Newton AJ, McDougal RA, Hines ML, Lytton WW. Using NEURON for 

reaction‑diffusion modeling of extracellular dynamics. Frontiers in neuro-
informatics 2018;12.

3. McDougal RA, Hines ML, Lytton WW. Water‑tight membranes from 
neuronal morphology files. Journal of neuroscience methods 2013 Nov 
15;220(2):167–78.

P202 
How do stimulus statistics change the receptive fields of cells 
in primary visual cortex?
Ali  Almasi1, Shi  Sun2, Molis  Yunzab1, Michael  Ibbotson1, Hamish  Meffin1

1National Vision Research Institute, Melbourne, Melbourne, Australia; 2The 
University of Melbourne, Vision Science, Melbourne, Australia
Correspondence: Ali Almasi (aalmasi@student.unimelb.edu.au)  
BMC Neuroscience 2019, 20(Suppl 1):P202

Our understanding of sensory coding in the visual system is largely 
derived from the use of basic stimuli (e.g. bars/gratings) to param-
eterize responses with a restricted range of stimulus parameters (e.g. 
orientation, spatial frequency etc.). Such techniques provide only 
partial descriptions of the full response functions. More recently, 
mathematical tools for comprehensively characterizing responses to 
arbitrary stimuli (e.g. white noise) have emerged, such as probabilis-
tic frameworks where model estimation is performed by maximizing 
the likelihood of the recorded responses to particular stimuli. In this 
case, characterization is achieved by estimating the parameters of a 
receptive field (RF) model, which are typically a cascade of linear filters 
on the stimulus, followed by static nonlinearities that map the output 
of the linear filters to the neuronal spike rates (e.g. the general linear 
model). However, how much do these characterizations depend on 
the choice of the stimulus?
Here, we studied the changes that neuronal receptive field models 
undergo due to the change in the statistics of the visual input. We 
applied the nonlinear input model (NIM) to the recordings of single 
cells in cat primary visual cortex in response to white Gaussian noise 
(WGN) and natural scenes (NS), with a fixed global RMS contrast. We 
estimated for each cell the spatial filters constituting the neuronal 
RF, and their corresponding pooling mechanism. The NIM framework 
makes minimal assumptions about the underlying neuronal process-
ing and is able to fit a diverse range of nonlinearities. The number of 
spatial filters for each cell was determined by performing cross-valida-
tion techniques over a test dataset. Fig. 1 shows model fits to an exam-
ple cell under the two stimulation regimes.
The most striking finding was that NS resulted in around twice as 
many significant filters as WGN. We also compared the identified RF 

filters under the two stimulation regimes in terms of preferred ori-
entation and preferred bandwidths for spatial frequency, orienta-
tion and spatial frequency. Due to unequal numbers of RF filters, we 
computed and compared the mean of each of the above character-
istics across RF filters within the same cell. The preferred orientation 
was highly preserved between filters estimated using WGN or NS, 
with a correlation coefficient (r) of 0.97. Other characteristics were 
preserved to a lesser degree: preferred spatial frequency (r = 0.73), 
orientation bandwidth (r = 0.53), and spatial frequency bandwidth 
(r = 0.45). Population analysis of the above characteristics revealed 
a statistically significant shift towards higher spatial frequency filters 
under the NS stimulation regime (t-test; p-value>0.99).
We compared the response function (i.e. function relating the filter’s 
output to the cell’s spike rate) of those cells that had the same num-
ber of spatial filters when stimulated by WGN and NS. We found pro-
found differences in the relationship between the filter’s output and 
the cell’s spike rate: notably for gain, input scaling, output scaling, or 
a combination of all three. An interesting observation was that fea-
ture-contrast covered a wider range when using NS, which suggests 
that higher local contrast features embedded in the NS stimuli have 
a major impact on the recovered RF filters. A thorough investigation 
of the changes introduced in the response functions under different 
stimulation regimes are to be undertaken.
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Extracellular spike waveforms from recordings in the visual cortex 
have been classified into either regular-spiking (RS) or fast-spiking 
(FS) units and are often associated with excitatory and inhibitory 
neurons, respectively. While both these types of spikes have wave-
forms with negative-going first-phases, we show that there are also 
distinct classes with positive-going first phases, which have not 
previously been reported. We estimated the spatial receptive fields 
(RFs) of these different spike waveform types and found that they 
have distinctly different structures.
237 single units were classified into five categories by the shape 
of their spike waveforms: RS units (33%, 78/237) which are bipha-
sic, have a dominant negative peak, and a slow declining slope at 
the end of the waveform; FS units (32%, 75/237) which are bipha-
sic, have a dominant negative peak, and a fast declining slope at 
the end of the waveform; triphasic spiking (TS) units (11%, 25/237) 
which have a positive first peak that is>10% of the negative peak, 
a large negative second peak and smaller positive third peak; com-
pound spiking (CS) units (4%, 9/237) which are also triphasic but a 
significantly longer waveform; and positive spiking (PS) units (21%, 
50/237) which have a dominant positive peak.
RFs were classified as either oriented and Gabor-like (orientation 
bandwidth <85°) or non-oriented and blob-like (orientation band-
width >110°). PS units had mostly non-oriented RFs (65%, 24/37). 
RS and FS units had mostly oriented RFs (94%, 66/70; 99%, 71/72, 
respectively). TS and CS units are also mostly non-oriented RFs (56 
%, 14/25; 75%, 6/8, respectively).
The non-oriented blob-like RFs are similar to the centre-surround 
RFs reported in the lateral geniculate nucleus. Thus, PS units may 
correspond to recordings from thalamic axons projecting to visual 
cortex, while the other spike types correspond to cortical neurons, 
which are orientation-tuned in the great majority of cases. This 
would allow cortically implanted electrodes to record activity from 
thalamus and cortex simultaneously.

Fig. 1 Schematic diagram of the nonlinear input model estimated 
for an example cell in cat primary visual cortex, using responses to a 
WGN and b NS stimuli. The estimated filters represent the neuronal 
spatial receptive field. The pink curves indicate the uncovered func‑
tions that are applied to the output of the filters, prior to pooling. The 
green curves are the estimated spiking nonlinearities
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The brain displays various oscillatory rhythms across scales that are 
related to one or multiple cognitive functions. One of the most promi-
nent features in waking electroencephalograms of a variety of mam-
mals, mainly observed at eyes-closed rest, is the alpha rhythm (around 
10 Hz). This oscillation is observed in different areas of the cerebral 
cortex, standing out in occipitoparietal regions. Although alpha is 
strongly associated with reduced visual attention, it is also related 
to other functions such as the regulation of the timing and temporal 
resolution of perception, and transmission facilitation of predictions 
to visual cortex [1]. Understanding how and where this rhythm is gen-
erated can elucidate its functions. Even today there is no definitive 
answer on this question, though several hypotheses put forward the 
thalamus and the cortex as possible protagonists. In this work, two 
possible mechanisms responsible for alpha rhythm generation were 
studied: 1) pyramidal cortical neurons of layer 5 (L5) producing rhyth-
mic bursts after stimulation by a short current pulse [2]; 2) a thalamo-
cortical loop delay around 100 ms, as proposed before in mean-field 
models [3]. Here we investigate these hypotheses by implementing 
a full-scale computational model of a primary visual layered corti-
cal microcircuit connected to a thalamic network, both containing 
excitatory and inhibitory neurons modeled by the adaptive exponen-
tial integrate-and-fire model (AdEx). The mechanisms were evaluated 
separately to isolate the role of each in generating the alpha rhythm. 
For hypothesis 1, the isolated cortical network was used and the AdEx 
model was adjusted so that the firing pattern resembled experimen-
tal data from a specific electrophysiological class of L5 neurons [2]. 
As observed experimentally, the addition of these neurons in the 
isolated L5 network was able to generate oscillations close to 10 Hz. 
To test hypothesis 2, thalamus was connected with its main cortical 
entry pathway to cortical layers 4 and 6. In turn, closing the thalamo-
cortical loop, L6 neurons sent feedback connections to thalamus. Dif-
ferent combinations of thalamocortical and corticothalamic delays 
were evaluated adding up to the total delay mentioned. The results 
show alpha oscillations when the thalamocortical delay is sufficiently 
smaller than the corticothalamic one. Thus, both mechanisms poten-
tially contribute to generating and sustaining the alpha rhythm in the 
thalamocortical network.
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Neuronal avalanches are activity bursts with approximately power-law 
distributed sizes and durations. They have been observed on differ-
ent scales in various neural systems. A possible explanation for their 
generation is that the underlying dynamics operate close to a critical 
state in which responses to small perturbations (or inputs) occur on 
all scales. Experimental studies indicate that neuronal avalanches may 
emerge during network development [e.g. 1, 2]. We present a simple 
model based on activity-dependent growth for developing networks 
of spiking neurons and demonstrate how these can “grow into” critical-
ity [3]. Neurons spike stochastically with an instantaneous rate, which 
is excited by input spikes from other neurons as in a system of Hawkes 
processes. The growth mechanism is regulated homeostatically: If a 
neuron’s average spike rate is below a target rate, its neurites grow to 
increase the excitatory input. If its average spike rate is above the tar-
get rate, its neurites shrink.
Using mathematical analysis and simulations we show that our net-
works grow into a stationary state at which growth and shrinkage 
of neurites balance while the neurons are active at their target rates 
(Fig. 1). The characteristics of the stationary state are determined by 
the ratio of the target spike rate to the neurons’ spontaneous spike 
rate. If this ratio is large, every spike in the network causes on aver-
age almost one additional spike, and the network self-organizes into 
a nearly critical state (Fig. 1, rightmost column). Identifying the net-
work’s total spiking dynamics with a self-exciting Hawkes process we 
analytically derive the size and duration distributions for nearly critical 
as well as subcritical states.
In neuroscientific experiments, avalanches may overlap and form com-
plexes. The observer of an experiment will usually only have access 
to the latter. Using the duration distribution of single avalanches, we 
therefore compute the probability that avalanches overlap in our 
model as well as the duration distribution of avalanche complexes.

Fig. 1 Network growth and activity dynamics (adapted from [3]). 
a Similar to previous models for network development extents of 
neurites are represented by disks arranged in a plane; their overlaps 
determine synaptic connection strength. Radii grow slowly and 
shrink upon spike generation. b Spiking activity during initial (red), 
growing (blue) and stationary state (green)

https://doi.org/10.1111/ejn.13747
https://doi.org/10.1126/science.1824881
https://doi.org/10.1016/j.jtbi.2008.03.005
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Animals are considered to have a great capacity to generalize when 
learning a task, and transfer the learned information from a variant of 
the task to another, more so than standard machine learning meth-
ods. Here we systematically quantify the capacity of mice to transfer 
the learning of different stages of a task and compare it to several 
machine learning models. We used 24 mice in a standardized behav-
ioural pipeline trained on go/no-go detection of change task (Fig. 1a). 
We quantify the speed of learning following a transition from oriented 
square-wave gratings to natural images. We compare the hit rate dur-
ing the first few trials of the session prior to the change with the same 
number of trials in the following session. We observe a significant dif-
ference in hit distribution between the 30th and the 60th trial, indicat-
ing that mice are able to quickly transition to the new task (Fig. 1b).
We constructed a model of the computations involved, in which a pre-
trained CNN (representing the visual processing stages) is followed by 
an RNN (which implements the memory) followed by a two-layer feed-
forward neural network acting as value function, trained with deep 
reinforcement learning (DQN). It matches well a number of existing 
models describing how reinforcement learning is realized in the brain 
(Fig. 1c). The transition between training phases of this model is signifi-
cantly slower than the mice (~ 10000s trails; see Fig. 1d).
We hypothesize that the superior ability to transfer knowledge in ani-
mals is due to the ability to quickly recycle partial knowledge from 
past experiences. Similarly to how primates split visual processing 
between the “what” or ventral pathway associated with the ability to 
recognize an object and the “where” or dorsal pathway associated with 
the ability to reach that object, we suggest a first separation between 
environment representation and task control logic. Our model uses a 
sparse autoencoder trained to represent the input vector generated 
by the pre-trained CNN. The encoder translates an arbitrary feature 
vector to a very sparse encoding of “higher order concepts”. This code 
is sent to an RNN to capture the environment dynamic features which 
are finally forwarded to the DQN network. Encoder and decoder par-
ticipate in the computation of a reconstruction error which is used to 
detect a change in the images used. The encoder acts as “firewall” by 
guaranteeing a constant encoding despite dictionary changes. When 
a change is detected, the RL algorithm stops and the autoencoder 
training proceeds to minimize the reconstruction error and to maxi-
mize the sparsity of the encoding. Assuming the dimensionality of the 
encoding vector is equal to the number of images in the dictionary, 
the task learned by the DQN network can be transferred to a new set 
of images by simply retraining the sparse autoencoder (Fig. 1e). We 
performed simulations with dictionaries of 2 images. Fig. 1f ) shows 
that a few hundred trials suffice to detect and update the autoencoder 
weights which is two orders of magnitude quicker than the baseline 
model.

We hypothesise that computing predictions at intermediate stages, 
monitoring these predictions and using them to improve the local 
computations is a general organization principle of biological nervous 
systems, which would allow for rapid transfer of knowledge. Studying 
how they are built in biological structure can help us understand the 
biological systems and make better machine intelligence models.
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We investigate minimally complex circuits that perform related but 
different tasks by using knowledge common to both tasks (transfer 
learning) and apply them to visual processing of images and visual 
processing of movies. Experimental evidence suggests that such 
a circuit exists in the brain’s visual area V1, where in addition to 
excitatory Pyr neurons and inhibitory SST neurons that interact with 
each other, an additional inhibitory VIP population enables switch-
ing between processing of different input types (static and mov-
ing). This circuit performs context-dependent computations, which 
means that Pyr neurons receive contextual information from the 
surround that could be different for the two input modalities and 
thus could lead to different neuronal interactions. Instead of requir-
ing two circuits to solve the two separate tasks for visual process-
ing, the brain processes scenes using a single network, where VIP 
neurons act as switching units that become activated as soon as the 
animals are running.
Could such a flexible circuit operate in both static and moving con-
texts to perform optimal processing? We use a model for optimal 
integration of context to predict neuronal connectivities (weights) 
that achieve optimal visual processing in the static and movement 
conditions separately. These weights are essentially lateral connec-
tions between Pyr and SST neurons that provide prior information 

Fig. 1 a Mice are presented a sequence of images (initially gratings, 
later natural images) and are trained to respond to identity changes. 
b Significance of hit distribution difference between the initial trials 
of the session prior and after transition. c The baseline model d recov‑
ers from transitions slowly. e New model with “higher order concept 
mapping” f recovers normal faster
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about the (past) surround. As different input types can have very 
different statistics, whether the inputs are static or moving changes 
the value of the priors (and hence the value of weights). Instead of 
using these two different sets of weights in two separate circuits 
performing visual processing, we attempt to find one circuit where 
VIP neurons interact in a switch-like manner with the Pyr and SST 
populations. Here, Pyr and SST are connected by the weights found 
optimal in the static condition. To find a circuit with the capability of 
doing both visual processing tasks, we need to find the VIP contribu-
tion during movement that produces the same firing rate statistics 
that the set of optimal weights for the movement condition would 
generate.
We find that having feedforward connections (either additive or 
multiplicative) from VIP neurons to SST and Pyr is not enough to 
explain the firing rates statistics during movement. However, provid-
ing additional feedback connections from Pyr to VIP makes the cir-
cuit capable of reproducing firing rates for movement. Applying this 
network to natural images, we confirm that the network does opti-
mal visual processing of images and, when the VIP units are active, 
optimal visual processing of videos. Our network predicts realistic 
connectivity patterns and firing rates of Pyr and other neural popu-
lations, while also finding the minimal number of VIP neurons that 
are necessary to still achieve an optimal switching circuit.
Using these findings, we are able to build such a circuit that achieves 
transfer learning by switching between different, but related, visual 
processing tasks. This provides a concrete example of an artificial 
neural network (ANN) that models a biological circuit—complete 
with cell type specifications—capable of performing multiple tasks, 
further paving the way for such bio-inspired ANNs.
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How do people understand concepts such as bird, yellow bird, or 
early bird? The meaning of a concept depends largely on the con-
cepts around it. While this hypothesis has existed for a long time, only 
recently it has become possible to test it based on neuroimaging and 
quantify it using computational modeling. Embodiment approaches 
to knowledge representation suggest that words are represented as a 
set of features that are the basic components of meaning. In particular, 
Binder et al. [1] grounded this idea by mapping semantic attributes to 
different brain networks and creating the Concept Attribute Represen-
tations (CAR) theory.
In CAR theory, words are represented as a set of weighted features 
stimulated by context. People weigh concept features based on con-
text to construct a new representation specific to the combination 
of the concepts around it. For example, listeners understand that red 
apple is a fruit with certain color by selecting salient features that 
dominate the combination. Apple is defined by color, size, etc. and its 
color dimension is modified during conceptual combination.
This study focuses on the attribute combination process by quantify-
ing such dynamic construction of concepts in the brain. Previous work 
showed (1) that words in different contexts have different representa-
tions, and (2) these differences are determined by context [2, 3]. These 
effects were demonstrated by analyzing individual sentence cases 
across multiple fMRI subjects (Fig. 1). The analysis was extended in 
this study to verify these same conclusions in the aggregate through 
a statistical analysis across an entire corpus of sentences and semantic 
roles. It measured how the CAR representation of a word changes in 
different sentences, and correlates these changes to the CAR represen-
tations of the other words in the sentence.
The analysis was based on a neural network trained to map brain-
based semantic representations of words (CARs) into fMRI data of 

subjects reading everyday sentences. Backpropagation was then 
repeated separately for each sentence, reducing the remaining error 
by modifying only the CARs at the input of the network (the FGREP 
method). As a result, the strengths of the attributes in the CARs 
changed according to context. The correlations are significantly higher 
for new CARs than for the original CARs across all subjects and all roles; 
the average correlation was 0.3201 for original CARs and 0.3918 for 
new CARs. Hence, the new CARs are more similar to the other words 
in the sentence than to the original CARs. These results indeed dem-
onstrated that the effect is robust, and can be quantified by analyz-
ing fMRI images through the FGREP mechanism. In the future such 
dynamic conceptual combination effects could be included in natural 
language processing systems by making the word embeddings sus-
ceptible to the semantic meanings that humans truly perceive.
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Fig. 1 A detailed individual example of the conceptual combina‑
tion effect. The conceptual combination effect in two sentences. 
In Sentence 200 (blue lines), the CAR representation modified by 
FGREP for the word flew has salient activations on animate features, 
presumably denoting bird properties like Small, Biomotion, Music, 
Smell and Taste, Pleasant and Happy. In Sentence 207 (red lines), it 
has high activations on inanimate object features, describing a Large, 
Fast, heavy Weight, and Loud object with some spatial and evaluation 
properties such as Path, Away, and Benefit which resembles a plane. 
The strengths of the attributes in the CARs changed according to 
context
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People with locked-in syndrome lose the ability to effectively com-
municate due to the loss of limb movement and capacity to talk. This 
condition has a drastic impact on their quality of life, entailing emo-
tional, social and financial costs. Restoring independent communica-
tion for people with locked-in syndrome remains a challenging clinical 
problem with no viable solution. Brain-computer interfaces (BCIs) can 
help them regain independence by providing the ability to control 
communication interfaces, interact with ICT technologies (brain-
controlled computer cursor). Non-invasive BCIs have been used to 
restore communication to people with paralysis. Yet, the communica-
tion rates were low and BCIs required frequent (daily) recalibration by 
highly skilled engineers. We designed a method that aims to achieve 
stable performance of EEG-based BCIs using reconstructed activ-
ity of sources from the cortical motor regions. Subjects performed a 
delayed instructed movement task, where each movement instruction 
was followed by a go cue after a fixed delay. We reconstructed activ-
ity of motor cortical sources from high-density EEG recordings made 
while the subjects performed the task. We then calibrated a regular-
ized linear discriminant analysis decoder on movement-related cor-
tical potentials (MRCPs), and event-related desynchronization and 
synchronization (ERDS) responses in the beta frequency bands. Our 
decoder successfully detects feet, wrist and finger movements in an 
asynchronous test scenario. These results open the way for developing 
efficient, stable and user-friendly communication BCI using high-den-
sity EEG and source reconstructed responses for people with locked-in 
syndrome.
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Linear Pearson correlation, is the most frequently used framework in 
most of the research about functional and dynamic functional connec-
tivity between brain areas in task conduced and in resting state stud-
ies. An alternative, introduced in previous work [1, 2], emphasized that 
the relatively stronger Blood Oxygen Level Dependent (BOLD) activa-
tions contain most of the information relevant to brain functional con-
nectivity. Here we study the correlation properties of these relatively 
strong BOLD activations investigating novel features that further 
characterize the brain functional and dynamical connectivity. These 
include characteristics of the brain network, such a) directionality in 
the influence between areas, resulting in non-symmetric correlations; 
b) temporal latency of the events, i.e., a sequence of activations across 
brain regions; c) detection of negative correlations between areas, 
focusing in relevant high and low amplitude events; and d) the pos-
sibility of using this method on task conducted studies by considering 
the input signal in the chain of events.
As a test-bed of the method, here we use the Autism ABIDE database 
[3], which is an open database of fMRI with more than a thousand rest-
ing state scans of patients (AU) and healthy subjects (HS). Our method 
[2, 1] starts by selecting from each BOLD time-series those events 
which surpass a given threshold of intensity (usually 1 SD), defining a 

vector than contains few points before and after this trigger (usually ~ 
8-15 seconds). The average value of these vectors for each time-series 
(termed source) is stored with the mean signal of all other voxels’ time-
series evaluated at the same times (termed target). Further calcula-
tions used these vectors in order to compute the correlation between 
source and target (Fig. 1A), its direction (Fig. 1B), its temporal delay 
(Fig. 1C), etc.
Here we replicated the findings reported in [4] in which HS showed 
higher correlation between ventral agranular insula L and Precuneus 
L and R, and revealed that identical results are obtained by correlation 
from the relevant strong events. In addition, we find a clear asymmetry 
in the direction of the co-activations between Insula and Fusiform. The 
computation of the delays of the events shows that AU have higher 
delays between the events of Insula and Precuneus. These results 
show the ability of our method for inspecting relevant events going 
beyond the classical measures of resting state functional connectivity.
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Most real-world networks present non-trivial topological features, 
such as high clustering and short minimum paths, a modular structure 
or cost-efficient wiring [1]. Remarkably, the evolution of the topology 
is typically linked to the activity state and vice-versa, giving rise to a 
co-evolving or adaptive network. This interplay between form and 

Fig. 1 a Selection method for the relevant events; b Representation 
of asymmetry calculation; c Representation of delay calculation
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function affects the emerging behavior of the system in a critical way, 
and certain dynamic phenomena appear repeatedly: the formation of 
complex topologies, robust dynamical self-organization, and complex 
mutual dynamics in both activity and topology. Here we propose an 
adaptive network model inspired in synaptic pruning. This consists in 
the extensive elimination of synapses during infancy [2], and it plays a 
major role in the development of the mammalian brain. It is believed 
to provide an optimum compromise between network efficiency and 
the amount of energy it consumes, whereas minimizing the amount 
of genetic information needed. Recent studies have also pointed at 
its implications on high-level brain functions, and its relation with the 
emergence of some neurological disorders such as autism and schizo-
phrenia [3].
Given that synaptic growth and death depend on neural activity, 
here we propose a biologically inspired co-evolving model for neu-
ral network development which couples a classical attractor neural 
network with a preferential attachment model for network evolution 
that reproduces experimental profiles of synaptic density [4]. This 
coupling gives rise to a feedback loop between activity and structure 
that strongly increases noise tolerance and ensues the existence of a 
region of bistability between heterogeneous networks that are capa-
ble of memory, and homogeneous ones goberned by noise. Moreo-
ver, the inclusion of a transient time of high connectivity, as it occurs 
during brain development, enhances the memory capabilities of the 
system. Interestingly, there is an optimal intermediate connectivity 
leading to efficient networks with minimum energy consumption, so 
that it is not necessary -and may in fact be detrimental- to start out 
with an overly connected network. Finally, depending on parameters 
there appear oscillations among different memories, reminding mind 
dynamical processes, which originate due to the destabilization of 
memory attractors due to synaptic pruning.
These results could explain why experimental pruning curves present 
their characteristic temporal profiles and, eventually, anomalies such 
as autism and schizophrenia associated, respectively, with a deficit 
or an excess of pruning. The basic mechanism illustrated here is not 
restricted to neural networks, but may play a role in shaping other sys-
tems, such as protein interaction networks. In fact, almost all biological 
networks change in time, so pruning may be a general mechanism for 
network optimization in an environment of limited resources.
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Cortical neural dynamics unfolds over multiple timescales. Beyond 
a simple heterogeneity of timescales, in vivo electrophysiological 
recordings in the resting state reveal a hierarchical structure that 
matches anatomical hierarchies remarkably well [1]. This structure 
could arise either from systematic variations in single-neuron prop-
erties or from the intricate network structure. We focus on the lat-
ter and investigate intrinsic timescales, characterized by single-unit 

autocorrelation times, in spiking neural network models with bio-
logically constrained connectivity [2, 3].
For networks of rate units, dynamic mean field theory (DMFT) has 
yielded significant insights into the interrelation between network 
structure and intrinsic timescales [4, 5]. In a first step, DMFT reduces 
the dynamics of the recurrent network to a set of self-consistent sto-
chastic differential equations. Technically, the starting point of the 
theory is the system’s characteristic functional and it proceeds with 
a disorder average, a Hubbard-Stratonovich transformation, and 
a saddle point approximation. Although mathematically involved, 
the result is intuitive: The massive recurrent input to each neuron 
is replaced by an effective stochastic process. In a second step, the 
self-consistency problem has to be solved. To this end, the output 
statistics of a neuron driven by anon-Markovian Gaussian process 
have to be calculated. The full non-Markovian problem has to be 
considered because a Markovian approximation neglects the quan-
tity of interest: the temporal correlations. For sufficiently simple rate 
neurons, the problem is analytically solvable [4, 6]. However, for 
spiking neuron models, this is an open challenge. In the low firing 
rate regime where the mean inter-spike interval exceeds the cor-
relation time of the input, a renewal approximation is admissible. 
A renewal process is fully characterized by its hazard function, i.e. 
its instantaneous firing rate given that no previous firing occurred. 
Thus, we derive a novel approximation for the hazard function of a 
leaky integrate-and-fire neuron driven by a non-Markovian Gaussian 
process. This enables us to obtain a closed system of self-consistent 
equations for the autocorrelation functions of single neurons. From 
the autocorrelation functions we can finally obtain the intrinsic 
timescales (Fig. 1).
Establishing a direct link between the connectivity and the emer-
gent intrinsic timescales allows for a thorough investigation of the 
effect of network architecture. From a modeler’s point of view, such 
mechanisms could be used to fine-tune network models to match 
the experimentally observed hierarchy of timescales. Focusing on 
computational aspects, diverse time scales strongly enhance the 
computational capacity of a recurrent network [7].
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Fig. 1 Sketch of the spiking neural network model (a, figure adapted 
from [2]). A raster plot b shows asynchronous irregular dynamics. 
Spike‑train power spectra obtained from our theory (c, black lines) 
agree well with simulations (c, colored symbols). Accordingly, pre‑
dicted intrinsic timescales (d, light bars) are also in good agreement 
with simulations (d, solid bars)
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Rett syndrome (RTT) is a neurodevelopmental disorder that includes 
pyramidal and extrapyramidal motor system dysfunction. Individu-
als with RTT breathe abnormally having apnea, apneusis, hyperven-
tilation and irregular respiratory rate. The neurological mechanism of 
breathing dysrhythmia is not fully understood, but accumulating evi-
dence indicates that disruption of inhibitory transmission in the pon-
tine nuclei mediates disrupted respiration. For example, the blockade 
of GABAAor 5-HT1Areceptors in the Kӧlliker-Fuse nuclei (KFn) induces 
periodic apnea in rats and mice. Augmentation of inhibition in the KFn 
by application of a 5-HT1Areceptor agonist or the blockade of GABA 
reuptake suppresses periodic apneas in mouse models of RTT. Here, 
we use mathematical modeling to investigate the role of inhibition 
in the pontine respiratory circuitry as well as the physiological conse-
quences of perturbations to the pontine inhibitory tone.
The respiratory central pattern generator (rCPG) is a neuronal network 
in the mammalian medulla that provides the timing and amplitude of 
descending respiratory drive to respiratory-modulated motoneurons. 
This neuronal circuitry is distributed across the ventrolateral respira-
tory column (VRC). During normal breathing neurons in these nuclei 
produce activity, which results in inspiratory motor output to the 
diaphragm. Under increased ventilatory drive (e.g.high pCO2) an 
additional population of neurons is recruited in the parafacial respira-
tory group (pFRG) to activate abdominal muscles during expiration. 
Interestingly, manipulating inhibitory tone in the KFn modulates the 
emergence of this activity. Weak activation of GABAAreceptors with 
low doses of isoguvacine in the KFn facilitates abdominal expiratory 
activity during hypercapnia, and activation of 5-HT1Areceptors in the 
KFn induces active expiration during normocapnia. Consistent with 
inhibition facilitating expiratory motor activity, weak dis-inhibition of 
the KFn with gabazine, a GABAAreceptor antagonist, suppresses expi-
ration during hypercapnia.
We extend our established computational model of the respiratory 
central pattern generator by including a more detailed pontine cir-
cuit. This model is consistent with the experimental results produced 

by manipulation of GABA and 5HT1Areceptor-mediated transmission. 
We propose that a glutamatergic KFn population provides excitation 
to the expiratory neurons in VRC that in turn inhibit the expiratory 
oscillator in pFRG. The activity of KFn neurons is under external or local 
GABAergic inhibitory control. With reduced inhibition, a subpopula-
tion of neurons in the KFn produces seizure-like activity periodically. 
During these seizures, KFn drives expiratory activity in VRC to periodi-
cally produce central apnea characteristic to RTT. When inhibition in 
the KFn is strong and the output of the KFn is weak, this ‘inhibitory’ bal-
ance in the KFN reduces the drive to post-inspiratory neurons of the 
Bötzinger Complex, which dis-inhibits pFRG population, allowing it to 
be active at eucapnic CO2levels. Integrating these results, we suggest 
that periodic apnea and modulation of active expiration are products 
of specific interactions between the medullary and pontine structures 
determined the excitatory-inhibitory balance in the KFn. Moreover, 
our modeling results support the concept that inhibitory receptors in 
the KFn are potential therapeutic targets to treat periodic apnea and 
abnormal emergence of active expiration.
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The rhythmic movement of limbs during locomotion is controlled by 
central pattern generators (CPGs)–neural networks that can produce 
rhythmic output in the absence of rhythmic inputs. These locomotor 
CPGs are located in the spinal cord and each limb is controlled by a 
separate CPG. Thus, interlimb coordination depends on the activity of 
the CPGs and interactions between them. The rhythm generated by 
the locomotor CPG network depends on the endogenous dynamics 
of CPG cells, interaction between these cells, supraspinal inputs to the 
CPGs, and sensory feedback.
The dynamics of limb coordination has been recently experimentally 
investigated with spinalized cats walking on a split-belt treadmill [1]. 
The speed of each belt was varied in a tied- or split-belt fashion while 
recording the continuous transformation of walking gait. In tied-belt 
experiments, with an increase of belt speed the duration of the swing 
phase of stepping remained relatively constant, whereas the duration 
of the stance phase decreased. Moreover, as belt speed increased, the 
walking gait takes on an antiphase pattern in which the swing phases 
on each side of the body were separated by epochs of dual support 
when both left and right limbs were on the ground. In split-belt exper-
iments, the belt speed was fixed on one (slower) side and increased 
on the other (faster) side. In these experiments, the walking pattern 
was perturbed in an asymmetric fashion. As belt speed on the fast 
side increased, the cycle duration of steps on the slow side generally 
did not change. However, on the fast side the duration of the stance 
phase decreased. At high ratios of belt speeds the cats produced 
multiple steps on the fast side for each step on the slow side. In such 
1-to-N gaits, the first swing phase on the fast side had greater duration 
than subsequent swing phases. In both 1-to-1 and 1-to-N gaits, split-
belt experiments revealed an asymmetric mode of synchronization 
in which the stance phase on the slow side was initiated at the time 
when stance on of fast side ended. In this manner, the swing phase on 
the slow side was immediately succeeded by the swing phase on the 
fast side without an interceding interval of dual support.
We adopted these experimental results to elucidate the potential neu-
ronal mechanisms of interlimb coordination using a tractable math-
ematical model of interacting locomotor CPGs. Our model contains 
two pairs of flexor and extensor neuronal populations mutually inhib-
iting each other representing two interacting CPGs. The endogenous 
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dynamics of rhythmic activity in these populations was governed by 
the slow inactivation of a persistent sodium current. The oscillation fre-
quency of each CPG is controlled by an external drive implemented as 
an excitatory synaptic conductance in a flexor population. Each flexor 
population received inhibition from the contralateral flexor and exten-
sor populations. The split-belt locomotion was simulated by setting 
different frequencies of oscillations in left and right CPGs. The model 
could reproduce and proposed explanation to the above experimental 
results as the consequence of both specific organization of the circuits 
mediating interactions between CPGs on the left and right sides of the 
cord and dynamical properties of the CPGs.
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Human health and wellbeing are maintained by numerous homeo-
static processes mediated by the cardiorespiratory systems. These 
processes do not operate independently. In fact, coupling between 
respiratory and autonomic processes may be a biomarker of health. 
Interactions between cardiovascular and respiratory systems are evi-
dent in sympathetic and parasympathetic nerve activities. The sym-
pathetic nervous system regulates vascular tone and controls blood 
flow, and its activity is modulated by respiration. Vagal nerve activity 
regulates the heart rate, and the cardiac vagal preganglionic neurons 
of the nucleus ambiguous are modulated by respiration. Physiologi-
cally these systems interact to control tissue oxygenation. Individually, 
the cardiovascular and respiratory systems are well studied, but less is 
known about the neural mechanisms that underlie their interaction.
Previously, we reported that slow deep breathing (SDB) evoked an 
increase in the respiratory modulation of blood pressure. Respira-
tory modulation of the blood pressure could emerge from modula-
tion of the heart rate via the parasympathetic nervous system. This 
respiratory modulation of the heart rate is known as the respiratory 
sinus arrhythmia (RSA), which is characterized as the tendency of the 
heart rate to increase during inspiration and decrease during expira-
tion. In the published SDB dataset, the magnitude of RSA increased 
significantly during SDB. We applied our computational model to test 
whether the increased RSA was sufficient to explain an enhanced res-
piratory modulation of the blood pressure. We found that the baseline 
RSA— prior to SDB— could be replicated by choosing an appropriate 
combination of modulatory inputs from respiratory neurons to the 
nucleus ambiguous. The enhanced RSA during SDB could be repro-
duced by an increase in activity of the respiratory neurons modulating 
the parasympathetic tone to the heart. However, the parasympathetic 
modulation alone was not sufficient to reproduce either the baseline 
or the enhanced blood pressure oscillations. To reproduce the Traube-
Hering waves successfully, our model required respiratory input to the 
pre-sympathetic populations, which enabled both the experimentally 
observed baseline and the amplified respiratory modulation of blood 
pressure during SDB.
In summary, we considered the effects of slow deep breathing on the 
respiratory modulation of the heart rate and blood pressure. In addi-
tion to the previously identified enhancement of the blood pressure 

modulation, we found that the respiratory modulation of the heart 
rate is comparably increased during slow deep breathing. Using 
computational modeling we inferred the parasympathetic and sym-
pathetic mechanisms of these effects. Results from our modeling sug-
gest that the enhanced heart rate modulation can be explained by 
increased inputs from the respiratory neurons to nucleus ambiguous. 
However, the enhanced modulation of the heart rate alone does not 
explain the respiratory modulation visible in the blood pressure traces. 
Based on model simulations, we propose that blood pressure oscilla-
tions at the respiratory frequency originate from respiratory modula-
tion of the pre-sympathetic neuronal activity in ventrolateral medulla. 
The amplification of these oscillations during slow deep breathing is 
associated with longer respiratory phases and/or stronger inputs from 
the respiratory neurons.
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Max-entropy (Ising) models allow for probabilistic modeling of neural 
population activity directly from data. Recently, approaches based on 
max-entropy assumptions have been applied to retinal, cortical, and 
hippocampal recordings, showing that they can provide powerful 
tools for characterizing and decoding the neural state [2, 3]. An impor-
tant feature of these statistical models is that novel neural patterns 
can be generated by sampling from the corresponding probability dis-
tribution. A crucial question concerns the generative power of these 
models, i.e., how the generated patterns relate to the functionality of 
neural activity for the cognitive task. In the case of the Ising model, it 
is unclear which observables matter functionally, so the question of 
whether these statistical models are generative or not for neural data 
remains open.
Here, we address this issue in the case of hippocampal place cells 
activity recorded during open navigation. Place cells encode for the 
spatial location of the rat, as well as for contextual information; there-
fore, in the case of place-cells, functionality has a precise meaning 
regarding the spatial correlate of the activity. We infer an Ising model 
from reference CA3 data of [1], recorded during free exploration of a 
familiar environment. We then generate activity patterns by sampling 
from the inferred model, and test them on their spatial correlate.
We first show that generated patterns are novel yet statistically coher-
ent with real data, see Fig. 1a. To assess the functionality (spatial 
selectivity) of these patterns we use a Bayesian decoder to retrieve a 
position in the environment from each pattern s of the generated ses-
sion. The standard deviation of the spatial posterior P(x,y | s), measured 
in cm, is used as a proxy for the dispersion of the bump of activity, 
while the distance between consecutive decoded positions quanti-
fies the coherence of the virtual trajectory in time. As shown in Fig. 1b, 
both bump dispersion and time-coherence are comparable in gener-
ated vs. real data. Moreover, the forced activation of a single neuron, in 
the model, resulted in a clustered activation of cells that have nearby 
place fields in the environment, effectively pinning the activity bump 
at the corresponding position (Fig. 1c), coherently with theoretical 
attractor models [3].
We then perform the same analysis on a model inferred from the joint 
collection of patterns from two distinct open environments. Strikingly, 
this model generates bimodal activity configurations, coding for well-
defined position in one of the two environments only, with spontane-
ous stochastic transitions from one map to the other (Fig. 1d), recalling 
the flickering oscillations observed in the “teleportation” session of the 
original training data [1].
Combined, these findings show that Ising-generated activity con-
figurations are meaningful, in that they code for positions of the 
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“simulated” animal in the familiar environment. Therefore, the inferred 
model captures and preserves the fundamental functional relation 
between neurons. These results highlight the tight relation between 
functionality and dimensionality reduction in the hippocampal cogni-
tive map.
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Topographic maps, comprising ordered projections among distinct 
neuronal populations, form an important component of the brain’s 
anatomical repertoire. Particularly prominent in sensory systems, such 
connectivity scheme has the potential to underlie important func-
tional roles, ranging from information segregation and transmission 
to spatiotemporal feature aggregation. While the anatomical feature 

itself has been the subject of many studies, its computational signifi-
cance remains relatively unexplored.
Here, we study the features enabling the reliable transfer of infor-
mation across multiple recurrent, spiking neural network modules, 
tuned to operate in a balanced, asynchronous irregular regime. 
We exploit the complex input-driven dynamics that such networks 
exhibit during active processing and probe the systems’ computa-
tional proficiency with simple tasks. We show that, in a sequential 
setup, structured projections between the modules are strictly nec-
essary for information to propagate to sufficient depths. Such map-
ping is shown to not only improve computational performance and 
efficiency, but also reduce response variability, increase robustness 
against noise and interference effects, and boost memory capacity. 
This suggests that, while random projections might be sufficient 
for communication between a few populations, signal propagation 
over longer distances and across several modules requires topo-
graphic precision for accurate, robust and reliable transmission.
Given that topographic specificity is assumed to decrease with hier-
archical depth in cortical networks, we explore how the variation in 
the specificity of topographic projections influences the systems’ 
properties by manipulating key structural parameters such as mod-
ularity, map size and degree of overlap. Doing so, we identify a con-
dition where the global population statistics converges towards a 
stable asynchronous irregular regime, the networks exhibit denois-
ing properties and the overall discrimination capability improves 
with hierarchical depth. These results extend the relevance of topo-
graphic precision and suggest that it plays an important role in the 
control and modulation of population responses towards computa-
tionally advantageous regimes.
We further investigate the ability of the modular circuit to extract, 
integrate and propagate information from two concurrent input 
streams in a more complex, nonlinear fashion. Using the XOR task, 
we demonstrate that it is more advantageous to perform computa-
tions locally, within a given module, and subsequently transfer the 
results downstream than to transfer intermediate information and 
perform the computation downstream. Additionally, depending on 
how the input streams are mixed in the early processing stages, the 
networks employ different strategies to encode information with 
similar accuracy.
Apart from demonstrating and quantifying the functional benefits 
of topographic projections, the results and insights gained from this 
work can shed new light on important requirements for designing bio-
logically inspired, functional hierarchical spiking networks.
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An understanding of the structure of synaptic connectivity in the brain 
is fundamental and necessary to ultimately understand brain function. 
Yet, the relationship between macro-scale connectomics—the study 
of connectivity between regions—and ultimately their implementa-
tion at the micro-scale—the motifs, rules and principles for how con-
nectivity manifests at the neuronal level—remain largely unexplored. 
We have combined these two complementary views of connectomics 
to build a first draft statistical model of the neuron-to-neuron micro-
connectome of a whole mouse neocortex.
We started by analyzing two recently published high quality data-
sets: The whole brain axon reconstructions of Janelia Mouselight [2], 
and the Allen Institute Mouse Meso-Connectome [3, 4]) to model in 
addition to the meso-scale trends also the innervation of individual 
neurons by individual axons, within and across regions. In doing 
so, we have identified, parameterized and validated new principles 

Fig. 1 a Likelihood consistence and novelty (hamming distance>0) 
of Ising‑generated vs. real data. b same comparison in term of 
positional variance and speed c pinning test on generated data 
d cognitive‑map oscillations in data generated by a single model 
inferred from data recorded from two cognitive maps
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Fig. 1 In‑silico retrograde tracer experiments. Locations and num‑
bers of neurons innervating around 100 neurons in a small volume 
(1.8·10−4  mm3) at the indicated locations in various representative 
brain regions

underlying the topographical mapping of connectivity between 
regions and the efferent long-range connectivity of individual 
neurons.
By combining the principles with an openly available cell atlas [1] we 
generated statistical connectomes between all ~10 million neurons in 
the mouse neocortex at sub-cellular resolution. These connectomes 
are made openly available to the community, and provide a powerful 
null model, i.e. a quantitative context in which experimental results 
can be understood and appreciated, for example retrograde tracer 
experiments (Fig. 1). The connectome instances can also serve as the 
basis of large-scale simulations of neuronal activity, ranging from 
mean-field to point-neuron or even morphologically detailed models, 
and allowing the study for example of emergent EEG dynamics or hier-
archical interactions in cortex.
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Synaptic connectivity between neocortical neurons is highly struc-
tured, including first-order structure, such as strengths of connec-
tions between different neuron types and distance-dependent 
connectivity, and higher-order structure, such as an abundance of 
cliques of all-to-all connected neurons and small-world topology. 
The relative impact of first- and higher-order structure on emergent 

cortical network activity is unknown. Here, we compared network 
topology and emergent activity in two neocortical microcircuit 
models with different null-models of synaptic connectivity, both 
with similar first-order structure, but with higher-order structure 
arising from morphological diversity within neuronal types removed 
in one model. We found that morphological diversity within neu-
ronal types creates heterogeneous degree distributions with hub 
neurons, raises in-degrees at the bottom of layer six, contributes 
to the abundance of cliques, and increases small-world topology. 
The increase in higher-order network structure was accompanied 
by more nuanced changes in neuronal firing patterns, including 
increased activity and response reliability at the bottom of layer six. 
Without morphological diversity, the dependence of pairwise corre-
lations on the positions of neurons in directed cliques was strongly 
reduced. Our study shows that circuit models with very similar first-
order structure of synaptic connectivity can have a drastically dif-
ferent higher-order network topology, and that the higher-order 
topology imposed by morphological diversity within neuronal types 
has a clear impact on emergent activity.
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Long-term potentiation (LTP) and long-term depression (LTD) of syn-
aptic responses are often thought to be among the fundamental 
building block of learning and memory in the brain. These plastic 
changes are largely heterogeneous in the neocortex, even within the 
same region. Due to the complexity of the experimental procedures 
involved, a complete map of LTP and LTD dynamics is still missing. It 
has been shown in vitro that such heterogeneity could be explained, 
at least in part, by the specificity of synaptic innervation rather than of 
plastic mechanisms [1, 2]. In this work, we tested the previous hypoth-
esis by integrating in vitro data on LTP and LTD at layer 5 thick-tufted 
pyramidal cell connections [2, 3] into a morphologically detailed 
model of somatosensory cortex [4]. Our results suggest that indeed 
innervation specificity could account for a large portion of the availa-
ble experimental evidence at different connection types [5-8]. We then 
generalized our results to the non-experimentally characterized con-
nection types, obtaining a first predicted map of LTP and LTD in the 
somatosensory cortex.
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Stellate (SC) and basket cells (BC) are inhibitory interneurons located 
in the molecular layer (ML) of the cerebellum. These cells receive 
excitatory inputs from parallel fibers and their branched axons make 
synapses onto Purkinje cells (PC), providing feed-forward inhibition. 
SCs make synaptic contacts with PC dendrites, while BCs with PC soma 
and axon initial segment (AIS). Although these interneurons are gener-
ated by the same progenitor and, during their migration, are morpho-
logically indistinguishable, they achieve different localization in the 
ML. SCs are placed at the top of the ML, whereas BCs are located in the 
deepest part [1].To investigate SC and BC electrophysiological proper-
ties, we elaborated multi-compartmental biophysically realistic mod-
els in Python-NEURON (Python 2.7; NEURON 7.5) [2]. 3D morphologies 
of mouse neurons were reconstructed into Neurolucida format from 
fluorescent images obtained with a confocal microscope. The morpho-
electrical equivalents, composed of dendritic tree, soma, AIS and axon, 
were reconstructed with NEURON. Ionic channels were located on the 
morphological compartments according to immunohistochemistry 
[3] and their gating kinetics were modeled following the HH formula-
tion or Markov-chains [4]. The maximum ionic conductances (Gi-max) 
were tuned to match the firing pattern revealed by electrophysiologi-
cal recordings in mice cerebellar slices using patch-clamp techniques. 
SC and BC discharges elicited by step current injections were used as 
templates to extract the features needed to assess the fitness function 
for optimization. Gi-max tuning was performed by automatic param-
eter estimation algorithms, using multi-objective genetic algorithm 
[5] implemented in Blue Brain Python Optimization Library (BluePy-
Opt) [6]. The optimized models reproduce the spontaneous firing of 
both cells and the firing patterns in response to positive and nega-
tive current injections. Cellular responses to synaptic activity modula-
tion and to gap junction synchronization (in the case of SCs), will be 
investigated to study the electrophysiological microcircuit dynamics. 
The optimization technique gave satisfactory results, reproducing 
interneurons biophysical properties. The model provided a valuable 
tool to examine the neuronal function involved in cerebellar network 
activity.
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During neuropathy, the excitability of cutaneous nerve fibers is altered, 
which has been associated with voltage-gated ion channels abnormal-
ities. It is technically difficult to measure the excitability in nerve fibers, 
particularly in small fibers. However, the perception threshold tracking 
technique can be used to indirectly assess the excitability in nerve fib-
ers. Small surface electrodes (Pin electrodes) have been developed to 
preferentially activate small fibers with superficial innervation while 
conventional surface electrodes (Patch electrodes) activate large fib-
ers around perception threshold. The aim of this study was to develop 
a computational model in order to understand how subtypes of volt-
age-gated ion channels influence the excitability of nerve fibers.
A two-part computational model has been developed in order to 
study nerve fiber activation by cutaneous electrical stimulation. The 
first part of the model is a 3D finite element model, calculating the 
electrical field generated by a cutaneous electrode. A pin electrode 
and a patch electrode were developed in COMSOL version 5.2. The 
skin model consists of four rectangular layers: stratum corneum, epi-
dermis, dermis, and adipose tissue. In order to understand how the 
electrical field influences the nerve fibers, two multi-compartment 
nerve fiber models were developed in the simulator environment 
NEURON (version 7.6). Two different fibers were implemented: one 
large fiber (length: 5.0 cm, diameter: 9 µm, compartments: 27 120) and 
one small fiber (length: 5.5 cm, diameter: 3.5 µm, compartments: 25 
940). The small fiber model terminated in the middle of the epider-
mis whereas the large fibers model terminated in the middle of the 
dermis. The axon models included the voltage-gated ion channels: 
Nav1.6-Nav1.9, KDr, KM, KA and HCN channel. Experimentally assessed 
perception threshold of the strength-duration relationship, threshold 
electrotonus, and slowly increasing pulse forms were set as constraints 
for the two nerve fiber models.
The computational model reproduced the experimentally assessed 
perception thresholds for the three protocols; the strength-duration 
relationship, the threshold electrotonus, and the slowly increasing 
pulse forms. The small nerve fiber model showed a higher increase in 
activation threshold for shorter square pulses compared to the large 
nerve fiber model. This is consistent with the experimental results 
showing a significantly higher time constant for small nerve fibers 
(computational model: 1170 µs, experiment obtained: 1060 µs ± 690 
µs) than for large nerve fibers (computational model = 420 µs, experi-
ment obtained: 580 µs ± 160 µs). For long hyperpolarizing prepulses 
(duration>30 ms), the small nerve fiber model had a substantial 
increase in the activation threshold compared to the large nerve fiber 
model. The computational model showed that difference in excitabil-
ity between the two fiber types could be explained by the different 
distribution of TTX sensitive- and TTX resistant sodium channels as 
well as the M-current.
In conclusion, assessments of perception thresholds using the three 
protocols may be an indirect measurement of the membrane excitabil-
ity, and computational models may have the possibility to link voltage-
gated ion channel activation to perception threshold measurements.
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One of the most important questions in computational neuroscience 
is how the brain’s structural wiring gives rise to its function and its 
patterns of activity. Although neural mass models that involve large 
coupled non-linear differential equations have previously been pro-
posed for capturing these structure-function relationships, they are 
unwieldy, difficult to compute, and are only accessible via simulations. 
Here we present for the first time a linear and analytically accessible 
model that incorporates local oscillations and long-range connectivity, 
fully accounts for the axonal conductance delays, and obtains closed 
form equations for each of the graph Laplacian’s eigen-modes. The 
proposed model incorporates all frequencies of oscillations, is fast and 
in a closed form, given by the eigen-modes of the graph Laplacian. 
Since the model does not require spatially-varying model parameters, 
its success could imply that network topology alone is capable of pro-
ducing spatial patterning in brain activity.
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The existence of specialized mechanisms for burst generation in 
pyramidal cells (PCs) suggests that bursts are likely to be an important 
temporal feature of neural signals. Bursts appear to be correlated with 
sensory processing and perception [1], are effective inducers of syn-
aptic plasticity [2], and have been proposed as a cellular mechanism 
to combine external and internal information [3]. In layer 5 PCs, bursts 
occur at a low, but consistent rate, and are thought to arise from active 
dendritic processes. Because burst activity relies on dendritic thresh-
old mechanisms [4], it appears likely that low burst activity requires 
an intricate homeostatic control. We hypothesized that this control is 
mediated by inhibitory plasticity of connections from Martinotti cells, 
which are known to control dendritic activity [5]. To investigate this 
hypothesis, we studied a computational network model comprising 
layer 5 pyramidal cells with a somatic and dendritic compartment that 
was fitted to in vitro data [6], as well as different classes of interneu-
rons. Our results show that a simple Hebbian plasticity rule on inhibi-
tory synapses leads to robust and self- organized control of dendritic 
and burst activity. The dendritic learning rule we propose is inspired 
by a homeostatic rule that was previously proposed to control somatic 
spiking activity [7] and therefore inherits properties such as a balance 
of excitation and inhibition. We demonstrate that this E/I balance is 
necessary for realistic burst firing patterns in biologically inspired cor-
tical microcircuits with inhibitory neurons and recurrent connections. 
Furthermore, we show that the self-organized control of somatic and 
dendritic activity in pyramidal cells enables a multiplexed burst code 
suggested recently [6], by alleviating the need to tune input or noise 
levels. Finally, we show in simulations that the self-organising proper-
ties of inhibitory plasticity rules can be used to multiplex sensory and 
decision-related signals in decision-making networks [8], allowing us 
to decode behavioral decisions from burst activity in populations of 
sensory neurons.

References
1. Takahashi N, Oertner TG, Hegemann P, Larkum ME. Active cortical den‑

drites modulate perception. Science 2016 Dec 23;354(6319):1587–90.
2. Sjostrom PJ, Rancz EA, Roth A, Hausser M. Dendritic excitability and 

synaptic plasticity. Physiological reviews 2008 Apr;88(2):769–840.
3. Larkum M. A cellular mechanism for cortical associations: an organ‑

izing principle for the cerebral cortex. Trends in neurosciences 2013 Mar 
1;36(3):141–51.

4. Larkum ME, Zhu JJ, Sakmann B. A new cellular mechanism for coupling 
inputs arriving at different cortical layers. Nature 1999 Mar;398(6725):338.

5. Murayama M, Pérez‑Garci E, Nevian T, Bock T, Senn W, Larkum ME. Den‑
dritic encoding of sensory stimuli controlled by deep cortical interneu‑
rons. Nature 2009 Feb;457(7233):1137.

6. Naud R, Sprekeler H. Sparse bursts optimize information transmission in a 
multiplexed neural code. Proceedings of the National Academy of Sciences 
2018 Jul 3;115(27):E6329–38.

7. Vogels TP, Sprekeler H, Zenke F, Clopath C, Gerstner W. Inhibitory plasticity 
balances excitation and inhibition in sensory pathways and memory 
networks. Science 2011 Dec 16;334(6062):1569–73.

8. Wimmer K, Compte A, Roxin A, Peixoto D, Renart A, De La Rocha J. Sen‑
sory integration dynamics in a hierarchical network explains choice prob‑
abilities in cortical area MT. Nature communications 2015 Feb 4;6:6177.

P225 
Reinforcement‑mediated plasticity in a spiking model 
of the drosophila larva olfactory system
Anna‑Maria Jürgensen1, Afshin  Khalili1, Martin Paul  Nawrot2

1University of Cologne, Cologne, Germany; 2University of Cologne, 
Computational Systems Neuroscience, Institute of Zoology, Cologne, 
Germany
Correspondence: Anna‑Maria Jürgensen (a.juergensen@uni‑koeln.de)  
BMC Neuroscience 2019, 20(Suppl 1):P225

The mushroom body is a center for the integration of sensory input and 
reinforcement information in insects [1]. In Drosophila larva it consist of 
less than two hundred neurons [2], yet the animal is able to identify and 
learn about odors and their context to guide behavior [3]. This spiking 
model is based on a generic insect model [4] and takes advantage of 
the recently released full synaptic connectome of the mushroom body 
[2]. Leaky integrate-and-fire neurons with an emphasis on biologically 
realistic parameters for neurons and synaptic connectivities are modeled 

Fig. 1 Absolute odor conditioning in Drosophila larva. a, exemplary 
virtual odors used as stimuli during training. Input activation of differ‑
ent sets of receptors as denoted by the stimulus index. Overlap codes 
similarity of odors. b, acquired odor valence depends on the similarity 
of tested with trained odor for n = 10 independent experiments
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in Brian2. Sparse coding has been demonstrated a key feature of insect 
sensory systems. In our model, temporal sparseness is achieved through 
spike frequency adaptation at the cellular level, while population sparse-
ness is caused by lateral inhibition [6] and feedback inhibition via the 
anterior paired lateral neuron [7]. Reinforcement-mediated plasticity 
between the intrinsic and the output neurons of the mushroom body is 
sufficient to account for fundamental features of memory formation. The 
model performs well in one-trial and multiple-trial learning, solely based 
on plasticity at a single synaptic site (Fig. 1). It captivates with its exact 
implementation of the network size and the connectivities [2] along with 
the biological plausibility of the neuron parameters and the naturalistic 
behavior of cells including spike frequency adaptation [8].
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Recent studies [1-3] have extended the balanced random network 
model to incorporate clusters of strongly interconnected neurons. 
This network topology can exhibit a functionally desired attractor 
dynamics [3-5]. In the regime repeated attractor stimulation results 
in a temporal reduction of an initially increased trial-to-trial spike 
count variability [1-3] that qualitatively matches the experimentally 
observed variability dynamics [6-8] (Fig. 1A). However, we recently 
showed that in the regime the firing rate of inactivated clusters 
tends quickly towards firing rate saturation [9], which is inconsist-
ent with experimental observations and strongly limits the dynamic 
working range. Moreover, the regime is highly sensitive even to 
small changes in network parameters which strongly limits robust-
ness. Moreover, when the stimulus is weak the spiking network 
model fails to capture the reduction of trial-to-trial variability during 
stimulation (Fig. 1B).

To improve on these aspects we incorporated two biologically plausi-
ble mechanisms in our cortical network models. We first implemented 
clustering of inhibitory neuron pools (Fig. 1C) as motivated by an 
increasing number of anatomical and physiological studies that sug-
gest stimulus and choice selectivity of inhibitory neurons [10-11].
We find that the network model with inhibitory clustering achieves 
biologically realistic spiking activity with respect to the firing rate 
regime, spiking regularity and trial-to-trial spike count variability. 
As shown in Fig. 1C the temporal dynamics of the Fano factor (FF) 
shows a realistic reduction even for weak stimulation (light colors) 
while spike train regularity remains constant, in line with the experi-
mental observation. We further added the cellular mechanisms 
of spike frequency adaptation (SFA) to all neurons in the network 
consistent with its importance in accounting for cortical network 
dynamics found in a recent study of large-scale recordings [12]. We 
previously demonstrated a strong regularizing impact of SFA on 
cortical variability dynamics [13, 14]. Including the cellular mecha-
nism of SFA adds a second transient temporal component to vari-
ability dynamics and enhances the robustness of attractor dynamics 
against variation in network parameters. We propose that both 
mechanisms—inhibitory clustering at the network level and spike 
frequency adaptation at the cellular level—are crucial features of 
functional processing units inneocortex.
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In primate motor cortices (MC) it is well established that neurons 
encode kinematic parameters of voluntary arm movements such as 
movement, speed and direction [1, 2, 3]. Recurrent pathways between 
MC and somatosensory cortices (SS) provide a substrate for soma-
tosensory integration during movement planning and execution. 
However, little is known about the encoding of movement parameters 
in SS. This project compares neuronal representation of movement 
direction in MC and SS during a multi-directional isometric wrist task 
[4]. The delayed task paradigm allows for a separation of preparation 
and movement epochs. Simultaneous recording of multiple single 
units from MC and SS enable us to study a potential temporal delay 
between MC and SS. For MC we expect to replicate published results 
in similar experiments [5, 4]. For MC and SS we quantitatively compare 
the task-related dynamics of (i) directional tuning [3] quantified by the 

signal-to-noise ratio [6], and (ii) trial-by-trial spiking variability [7, 8, 9]. 
So far obtained results indicate tuning in both cortices and a delay of 
directionally tuned activity in SS relative to MC (Fig. 1). An increase in 
directional tuning can already be observed in the preparatory phase 
in MC but not in SS. Average tuning strength in MC is greater than in 
SS. We anticipate that our findings will improve the understanding of 
cortico-cortical somatosensory interactions.
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Olfaction is a vital sense for insects and underlies innate as well 
as adaptive behaviors. During foraging flights, insects locate odor 
sources by navigating through airborne odor plumes. It has been 
shown experimentally that odor plumes evolve in fine filaments that 
form a complex, spatial landscape of volatile compounds. When fly-
ing through such plumes with intermittent structure, the animal’s 
sensory system thus encounters a temporally highly dynamic input 
with almost discrete stimulation peaks at a high temporal rate. Here 
we analyze a fully spiking multi-layered neural network model of the 
insect olfactory system of the fruit fly Drosophila melanogaster with 
realistic connectivity. Peripheral input from olfactory sensory neurons 
is processed in the antennal lobe generating a dense odor code in 
the population of projection neurons, which in turn transforms into 
a high-dimensional sparse representation [7] in the mushroom body 
(see Fig. 1). Population sparseness [5] and temporal sparseness [6] in 
the large population of Kenyon cells are achieved by lateral inhibition 

Fig. 1 Time‑resolved average signal to noise ratio (SNR) for motor 
cortex (MC) and somatosensory cortex (SS) during preparation and 
movement. The go signal was presented with a delay of 970 ms after 
the directional cue. The SNR presents the extent of directional tuning 
strength of a neuron. Red and blue curves show the average time‑
resolved SNR of 276 M1 and 484 SS neurons respectively
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and spike frequency adaptation, respectively [1]. Our model is able to 
sense odor fluctuations on very short time scales in agreement with 
experimental studies [2, 9, 8]. We finally demonstrate that perform-
ing temporal credit-assignment within a single plastic [4] mushroom 
body output neuron (MBON) can rapidly solve the hard problem of 
odor source identification when navigating environments composed 
of turbulent mixtures [3] of odors that are emitted from separate dis-
tant sources. We suggest that our model for overcoming the delayed 
reward problem in the olfactory system is generic and applicable in 
different systems across taxa.
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Adapting to an ever-changing world is crucial for survival and repro-
duction of all animals. When learned information turn out to be incor-
rect, the underlying memory needs to be updated. Memory extinction, 
the ability to reprocess previously learned information by integrating 
contradictory information, is a key player in this adaptation process. 
Insight from experimental research on D. melanogaster suggest that 
after memory extinction two parallel but opposing memory traces 
coexist at different sites in the mushroom body (MB) [1] (Fig. 1A). To 
validate this hypothesis, we designed and investigated a simple con-
nectionist model (based on [2]) integrating the fly’s olfactory and rein-
forcement pathway. The multi-layered model employs plastic synaptic 
connections in separate appetitive and aversive learning pathways 
[3]. In this context we focus on two specific MBONs, (i) the MVP2 neu-
ron mediating approach; its inhibition is associated with avoidance 

Fig. 1 Top: Our simulated environment using fluid dynamics of tur‑
bulent odors from two sources. Subject travels upwind towards the 
sources. Reward delivery is delayed until after completion of a flight 
path at one of the two sources. Bottom: Sketch of spiking network 
model of the olfactory pathway, mushroom body (MB) of Drosophila 
and a plastic readout neuron to solve the temporal credit‑assignment

Fig. 1 a The mechanisms underlying memory extinction in the 
fruit fly’s MB. (modified from [6]). b The model reproduces olfactory 
extinction learning (p<.01, n = 15). c Aversive conditioning leads to a 
reduced CS+ response in MVP2 MBON (p<.001), but not in M6 MBON 
(p>.05). After extinction, the MVP2 trace remains (p<.001) and there 
is an additional decrease in the CS+ response in M6 MBON (p<.05, 
n = 15)
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behavior [4]; (ii) the M6 neuron mediating avoidance behavior; block-
ing M6 induces appetitive behavior [5].
We subjected our model to an aversive learning protocol. In the train-
ing phase, one odor (CS+) was paired with punishment. During the 
test phase the CS+ odor was presented alone to measure the con-
ditioned response (CR). In the experiments investigating extinction 
learning, a second training phase in which the CS+ odor was pre-
sented without punishment was included.
After initial absolute conditioning the model showed an aversive CR 
for the CS+ odor test (Fig. 1B). However, the reactivation during the 
extinction phase resulted in a robust suppression of aversive memory 
(Fig. 1B). Thus, our model is suitable to qualitatively and quantitatively 
reproduce olfactory extinction experiments in D. melanogaster.
To test whether two separate memory traces are formed in the 
model, we compared the total synaptic drive received by the MBONs 
in response to stimulation with CS+ and a control odor (CS−) dur-
ing different experimental phases (Fig. 1C). In the MVP2 MBON, 
there was a significant decrease in CS+ response relative to CS− 
evoked activation after the initial training. This effect was still vis-
ible after the extinction learning. In contrast, aversive training did 
not alter the M6 neuron response. However, extinction training led 
to a reduction of the CS+ specific M6 drive. The presented findings 
match the recent behavioral and in vivo neurophysiological results 
in D. melanogaster [1]. Our model supports the hypothesis of a paral-
lel appetitive memory trace that is formed during aversive extinc-
tion learning.
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Odour detection and odour learning are crucial for insect survival. 
The anatomy of the olfactory system of the fruit fly Drosophila mela-
nogaster has been described in great detail and is thus suitable for 
biologically detailed modelling of odor processing and synaptic 

plasticity. The insect mushroom body (MB) is a central brain neuropil, 
that integrates different sensory modalities and is an essential site for 
learning-induced plasticity. The olfactory input region (calyx) of the 
MB is organized into a large number of microglomeruli (MGs). Each 
MG constitutes a recurrent microcircuit of high synaptic density (cf. 
Fig. 1) [1-5]. It involves recurrent connections between one central 
large bouton of a single projection neuron (PN, providing excitatory 
olfactory input from the antennal lobe), the primarily postsynaptic 
Kenyon cells (KCs, the excitatory primary intrinsic neurons of the MB) 
and the inhibitory anterior-paired lateral neuron (APL).
Here we investigate a model for local sensory processing within a sin-
gle MG based on detailed structural data from a fly connectome [6, 7]. 
We hypothesize that the inhibitory APL is a non-spiking neuron, that 
can be locally activated within the MG and recursively, provides local 
feedback inhibition within the same MG as well as lateral inhibition to 
neighbouring MGs. This circuit motive leads to a reduction of the over-
all KC activity and we quantify the effect on population sparseness in 
the KC population. Experimental studies have indicated that the MGs 
are also a locus of learning-induced long-term and short-term mem-
ory [7, 5]. Inspired by our previous model in the honeybee MB [8] we 
explore how plasticity at the inhibitory synapses could play a role in 
reinforcement learning.
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Fig. 1 A: Optical section through calyx of adult fly, synaptic markers 
define the microglomerular complexes. B: Schematic drawing of MG 
microcircuit (postsynaptic endings represented by curved structures). 
The model is realised in Brian2, uses realistic neuronal parameters, 
consists of 1 PN,14 KCs (both modelled as LIF neurons) and one non‑
spiking APL neuron. The exact connections are visualized in C
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In many insect species, including Drosophila melanogaster, olfac-
tory receptor neurons (ORNs) are housed in hair-like sensilla in a 
stereotypical manner. Each sensillum contains two or more ORNs 
of different types. ORNs within the same sensillum interact, without 
synaptic connection, mostly inhibiting each other. As suggested 
previously [1, 2], these non-synaptic interactions (NSIs) could be 
crucial for insects capability to resolve concentration ratio or tim-
ing between different odorants at high resolution, and they are the 
focus of our study.
Here we test the hypothesis that NSIs could improve the spatiotem-
poral resolution of odor recognition in mixed odor plumes (see 
Fig. 1): If a single source emits an odor mixture (multiple odorants), 
odorants arrive in close synchronization, NSIs take effect and both 
ORNs responses are diminished. If separate sources emit odorants, 
their concentrations are less correlated, and NSIs have almost no 
effect, resulting in larger ORN responses. This fast mechanism could 
provide an essential advantage because behavioural relevant tem-
poral and spatial scales of plumes can be very fine, on the order of 
tens of milliseconds and tens of millimeters.
Here, we analyze this hypothesis in a computational model. Firstly, 
we generate a model of the early olfactory system of insects—a sim-
ple circuit model with two ORNs and their corresponding projection 
neurons (PNs) and local neurons (LNs) in the antennal lobe (AL)—
and reproduce the responses to simple odor stimuli reported in the 
literature. Secondly, we analyze the advantages of having NSIs (com-
pared to not having them) for detecting target odors within com-
plex mixtures.
The system reproduces most of the response dynamics reported 
in the literature: ORN responses adapt and follow ‘intensity invari-
ant’ trends as recently reported [3]; a linear-nonlinear model well 
describe ORN responses for long periods of stimulation [3]; and 
when the stimulus is a step, the function relating the activity of 
ORNs to PN responses is the same sigmoidal function as reported 
by Olsen and Wilson [4]. This latter effect is a consequence of the 
assumptions of the model and no parameter was tuned to obtain it.

We then studied how the presence or absence of NSIs between 
ORNs modifies the ability of the model to detect a target odorant 
in an odorant mixture. Our results lead us to speculate that NSIs and 
lateral inhibition may implement two different functions: NSIs have 
a high spatiotemporal resolution and they generate selective inhi-
bition between ORNs; Local LN networks take effect later to decor-
relate PN activities and normalize them with respect to the average 
input from ORNs [5].
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Drosophilae exhibit matching behavior, whereby their relative prefer-
ences for different foods are determined by the relative nutritional and 
energetic values of the respective food sources [1]. Key to this behavior 
is their ability to learn and accurately evaluate the valence of different 
options that elicit unique sensory cues. An important site of learning in 
Drosophila is the mushroom body (MB) [2]. Current models posit that 
distinct regions of the MB encode the valence of reward information 
and actions (Fig. 1A): DANs in the PAM cluster (hereafter called D+) are 

Fig. 1 Driving hypothesis: a If a single source emits an odor mixture 
(multiple odorants), odorants arrive in close synchronization, NSIs 
take effect and both ORNs responses diminished. b If separate 
sources emit odorants, their concentrations are less correlated, and 
NSIs have almost no effect, resulting in larger ORN responses. ORN 
response data shown is based on our model

Fig. 1 a Anatomical and functional organization of the MB. Colors 
indicate cell types as in b. b Schematic of the MB model presented in 
this work. c The MB model is able to accurately learn and update pre‑
dictions for the true reward mean with a dynamic reward schedule. d 
The variance encoding MBON in the extended MB model learns and 
updates accurate predictions of the true reward variance
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excited by positive (+ve) rewards (R+),depressing active Kenyon cell 
(KC) synapses onto MBONs that bias actions toward retreat (M-); DANs 
in the PPL1 cluster (D-) are excited by punishments, or negative (−ve) 
rewards (R), and depress active (+). Some MBONs provide excitatory 
feedback to DANs [3, 4], such that the learned reduction in MBON fir-
ing can offset the excitatory reward signal arriving at that DAN. Thus, 
D (D +ve (−ve) reward valence. Here, we postulate that the difference 
between M+ and M-firing rates signals the net learned valence, i.e. a 
reward prediction, associated with a particular sensory cue. We cap-
ture these details in a reduced, computational MB model (Fig. 1B), in 
which the tens of neurons comprising each cell type mentioned above 
are modeled with just a single rate-based, point neuron.
We investigate the ability of the MB to track multiple dynamic cue-
specific rewards. Learning accurate estimates of rewards amounts 
to minimizing the error between the reward prediction and the net 
reward (the difference between R+ and R−). We capture this objec-
tive with a cost function that penalizes RPEs over all cued options. A 
Rescorla-Wagner like plasticity rule can then be obtained by gradient 
descent on the cost functions with respect to the KC-MBON synaptic 
weights. However, we show that the known MB circuitry cannot learn 
under this normative approach, as all synaptic weights are driven to 
zero. We therefore propose additional circuitry in the MB (Fig. 1B) that 
not only enables learning (Fig. 1C), but also captures several additional 
physiological and behavioral phenomena observed in experiments. 
We then demonstrate how the model performs as a function of the 
number of options in a multi-armed bandit task.
We next extend the model to address how the MB may learn sec-
ond order moments of a reward distribution, which provide a meas-
ure of reward reliability, given that unreliable rewards carry risks that 
an organism may want to avoid. We therefore formulate a new cost 
function and derive a corresponding plasticity rule that minimizes a 
reward-variance prediction error (Fig. 1D). We then demonstrate how 
scaling reward predictions by variance predictions can explain the 
relative utility of different flower species, as determined by the forag-
ing behavior of bees and wasps, and the dependence of utility on the 
mean and variance in the flowers’ respective nectar yields [5].
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Information in the brain is carried in correlated network activity. Dec-
ades of research has established that these correlations play a crucial 
role in representing sensory information. For example, the onset of 
visual attention has been shown to have a greater effect on the cor-
relations in the macaque V4 than on the firing rates in that region [1]. 
In order to understand the representation of sensory information we 
must understand the interactions between neurons.
Because of limitations in recording technology almost all research has 
explored correlations between neurons within a given brain region. 
Relatively little is known about correlations between neurons in dif-
ferent brain regions. However, the recent development of ‘Neuropixels’ 

probes [2] has allowed extracellular voltage measurements to be col-
lected from multiple brain regions simultaneously routinely, and in 
much larger numbers than traditional methods. In this project we 
used a publicly-available Neuropixels dataset to analyze correlations 
between different brain regions.
Using two probes, spiking activity was simultaneously collected from 
over 800 neurons in an awake mouse brain for a period of 84 minutes. 
During this period, the mouse and was shown various visual stimuli. 
The 800 neurons were distributed across 5 different brain regions: V1, 
hippocampus, thalamus, motor cortex, and striatum. Using these data, 
we examined pairwise correlations between neurons within the same 
region, and between neurons in different regions (see Fig. 1). We also 
compared the distribution of regional pairwise correlations across 
regions. As well as measuring pairwise correlations, we took an infor-
mation theoretic approach and measured the ‘incremental mutual 
information’ (IMI) between pairs of neurons [3]. Again we measured 
the IMI for pairs of neurons within regions and for pairs of neurons in 
different regions.
Our main objective was to see if, using these quantities, the neurons 
could be clustered such that the clustering matched their anatomical 
partition. We first clustered the neurons based on their spike responses 
to stimuli. Then we clustered pairs of neurons based on their pairwise 
correlations. Then we clustered pairs of neurons based on their IMI. 
Finally we compared these clustering results to the anatomical parti-
tion of the cells.
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Fig. 1 Spike count correlations between 20 randomly chosen neu‑
rons in 5 different brain regions. Spiking activity was measured while 
the mouse was exposed to a moving bar visual stimulus
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In visual areas of primates, neurons activate in parallel while the ani-
mal is engaged in a behavioral task. In this study, we examine the 
structure of the population code while the animal performs delayed 
match to sample task on complex natural images. The macaque 
monkey visualizes two consecutive stimuli that can be either the 
same or different, while we record the activity of neural popula-
tions that span the cortical depth in its V1 and V4 cortical areas. We 
decode correct choices on binary stimulus classes (“same” and “dif-
ferent”) in single neurons as well as in the population of simultane-
ously recorded units. The use of a linear decoder allows to compute 
population decoding weights that also take into account inter-
neuron interactions. Such weights have a straightforward biologi-
cal interpretation as the synaptic weights between a population of 
projecting neurons and a read-out neuron. We show that population 
decoding weights are uncorrelated with absolute firing rate of sin-
gle neurons, their trial-to-trial variability and the coupling of single 
neurons with the population. The population code is therefore not 
merely a byproduct of decoding properties of single neurons, but 
instead has its own intrinsic structure.
Comparing the predictive power of the activity of single neurons 
with the high-dimensional model of the population activity, we 
find that typically, the high-dimensional read-out of the population 
activity predicts correct choices better than an average single neu-
ron from the same recording session. This increase in performance 
is attributed to more information in the population response, com-
pared to single neurons, and is in general not due to the correlation 
structure of simultaneously active units. Considering the population 
decoding weights, we divide the population in two mutually exclu-
sive coding pools. We find that correlations between neurons from 
the same coding pool decrease the performance of the decoder, 
while correlations between neurons from different coding pools 
do not affect the performance. Even though correlations within the 
same coding pool slightly decrease the accuracy of discrimination, 
neurons within the coding pool are more strongly correlated than 
neurons across the two coding pools. The difference in pairwise 
interactions for neurons within and across coding pools appears to 
be a robust structural feature of the population code. It is present in 
the correlation of trial-to-trial variability, correlation of spike counts 
on shorter time scales as well as in synchrony of spiking. This effect 
is robust across the two brain areas and across different time win-
dows. It persists also when we replace optimal decoding weights 
with non-optimal ones and divide the population in two coding 
pools according to the preference of each single neuron for one of 
the two mutually exclusive stimulus classes. In summary, our results 
point out the existence of functional subnetworks that also differ in 
pairwise interactions on different time scales.
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Many experiments have evidenced that electrical and chemical syn-
apses coexist in most organisms and brain structures (For reviews, 
see [1, 2]). The role of electrical and chemical synapse connection in 
diversity of neural activity generation has been investigated sepa-
rately in networks of varying complexities. Nevertheless, theoretical 
understanding of mixed synapses in diverse dynamical states of neu-
ral networks for self-organization and robustness still has not been 
fully studied. We here present a model of neural network built with 
both types of synapse connections to investigate the emergence of 
global and collective dynamics states. These neural networks consist of 
excitatory and inhibitory populations interacting together. The excita-
tory population is connected by excitatory synapses in small world 
topology and adjacent neurons are also connected by gap junctions. 
The inhibitory population is only connected by chemical inhibitory 
synapses with all-to-all interaction. Our numerical simulations show 
that in the networks with weak electrical coupling, the synchrony 
states generated by this architecture are mainly controlled by hetero-
geneity among neurons and the balance of its excitatory and inhibi-
tory inputs. More importantly, we show that the boundary between 
sub-threshold regime and firing regimes of excitatory populations is 
linear. In networks with strong electrical coupling, diverse dynamical 
states arise from different combinations of excitatory and inhibitory 
weights. We show that the synchronous firing, cluster synchrony, and 
various ripples events (such as traveling waves) emerge by slight mod-
ification of chemical coupling weights. For large enough electrical 
synapse coupling, the whole neural networks become synchronized. 
Our results pave a way in the study of the dynamical mechanisms and 
computational significance of the contribution of mixed synapses in 
the neural functions
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The map of the neural connections or connectome has been pro-
posed as a key to understanding cortical activity. Indeed, network 
analysis of the whole-brain activity has shown that the fluctuations of 
cortical activity correlate with structural hubs and sub-network cores. 
Hubs underscore the influence of single areas in the network activity 
whereas the cores point out the contribution of shells of well-intercon-
nected areas on the collective dynamics. Some authors postulate that 
structural cores rather than hubs enhance the propagation of activity 
in the networks [1]. However, the contribution of structural hubs and 
cores on the cortical activity needs to be disentangled by a computa-
tional perspective, with a focus on its collective dynamics. In this work, 
we simulated cortex-like dynamics using a mean-field model for corti-
cal areas [2], wired by the Human cortex connectome (HC), obtained 
from diffusion imaging database [3]. Using the coupling strength 
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between cortical areas (G) as a control parameter, we study the onset 
of the bistable regime, at which some cortical areas can develop a 
high or low firing rate activity, depending on the initial conditions. 
This bistable regime has been often associated with a functional role 
in working memory or input integration, and we call G- the minimum 
G value at which it is observed. At G-, high activity in the network is 
observed only in a unique subset of the cortical areas, that we call the 
ignition core. This subset corresponds with the critical s-core structure 
of the network but not with the hubs. Next, we studied the onset of 
the bistable regime in structural models, having either similar small-
world index, degree or weight distribution of the HC. We find that the 
strength of global excitation needed to trigger ignition at G- is sub-
stantially larger for these models compared to the empirical HC. Nota-
bly, only the HC shows a tight core relationship with the ignited areas 
at G-, not observed in any of the structural models. Furthermore, when 
increasing the strength of excitation (or G), the propagation of ignition 
outside of this ignition core –which can self-sustain its high activity– is 
more gradual in the HC than for any of the randomized connectomes, 
allowing for better control of the number of ignited regions. We 
explain both these assets in terms of the exceptional weighted core-
shell organization of the empirical connectome, speculating that this 
topology of HC may be optimized to support an enhanced ignition 
dynamic [4].
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Neural activity in awake behaving animals exhibits a vast range of time-
scales that can be several fold larger than the membrane time constant 
of individual neurons. Two types of mechanisms have been proposed to 
explain the origin of these large timescales. One possibility is that large 
timescales are generated by a network mechanism based on positive 
feedback, but this hypothesis requires fine-tuning of the strength or 
structure of the synaptic connections. A second possibility is that large 
timescales in the neural dynamics are inherited from large timescales 
of underlying biophysical processes, two prominent candidates being 
intrinsic adaptive ionic currents and synaptic transmission. How the 
timescales of adaptation or synaptic transmission influence the time-
scale of the network dynamics has however not been fully explored.
To address this question, here we analyze large networks of randomly 
connected excitatory and inhibitory units with additional degrees of 
freedom that correspond to adaptation or synaptic filtering. We deter-
mine the fixed points of the systems, their stability to perturbations and 
the related dynamical timescales (Fig. 1 A-B). Furthermore, we apply 
dynamical mean field theory to study the temporal statistics of the activ-
ity beyond the bifurcations, and examine how the effects of adaptation 

and synaptic timescales transfer from individual units to the whole popu-
lation (Fig. 1 C).
Our overarching finding is that synaptic filtering and adaptation in single 
neurons have very different effects at the network level. Unexpectedly, 
the macroscopic network dynamics do not inherit the large timescale 
present in adaptive currents. In contrast, the timescales of network 
activity increase proportionally to the time constant of the synaptic fil-
ter. Altogether, our study demonstrates that the timescales of different 
biophysical processes have different effects on the network level, so that 
the slow timescales of different biophysical processes within individual 
neurons do not necessarily induce slow activity in large recurrent neural 
networks.
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In this study we present a unified model of the visual cortex for pre-
dicting visual attention using real image scenes. Feedforward mech-
anisms from RGC and LGN have been functionally modeled using 
wavelet filters at distinct orientations and scales for each chromatic 
pathway (Magno-, Parvo-, Konio-cellular) and polarity (ON-/OFF-
center), by processing image components in the CIE Lab space. In 
V1, we process cortical interactions with an excitatory-inhibitory net-
work of firing rate neurons, initially proposed by [1], later extended by 
[2]. Firing rates from model’s output have been used as predictors of 
neuronal activity to be projected in a map in superior colliculus (with 
WTA-like computations), determining locations of visual fixations. 
These locations will be considered as already visited areas for future 
saccades, therefore we integrated a spatiotemporal function of inhi-
bition of return mechanisms (where LIP/FEF is responsible) to feed to 
the model with spatial memory for next saccades. Foveation mecha-
nisms have been simulated with a cortical magnification function, 
which distort spatial viewing properties for each fixation. Results show 
lower prediction errors than with respect no IoR cases (Fig. 1), and it 
is functionally consistent with human psychophysical measurements. 
Our model follows a biologically-constrained architecture, previously 
shown to reproduce visual saliency [3], visual discomfort [4], bright-
ness [2] and chromatic induction [5].

Fig. 1 Diagram of the different dynamical regimes of the recurrent 
neural network (i), illustration of the dynamics of ten units in the fluc‑
tuating regime (ii) with the eigenspectrum of the linearized dynamics 
(inset) and timescale of the activity of single units in the network as a 
function of the timescale of the slow process (iii)
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Both the human brain and recent deep neural networks (DNNs) per-
form exceptionally well in natural image recognition [1]. However, the 
visual cortex (ventral stream: 8 layers) is composed of a much smaller 
number of layers and more sparse connections than DNNs (ResNet: 
152 layers), presumably due to the limited volume of the brain [2]. 
What is the strategy of the brain to construct a high-functioning net-
work for natural image perception using a much smaller number 
of inter-neural connections than those in a DNN? Here, we suggest 
that long-range horizontal connectivity, which has been observed in 
the early visual cortex of various mammals, is a critical factor in the 
cost-effectiveness for natural image perception. We hypothesize that 
long-range connections can be spontaneously evolved in the net-
work under the condition that minimizing the number of connections 
while maintaining the ability to accurately recognize natural images. 
To validate our hypothesis, we designed a three-layer neural network 
that has lateral connections and convergence feedforward connectiv-
ity implementing the receptive field (RF), as a simplified model of the 
visual pathway. The objective function of the system was defined as 
an error minimization term for image classification added by a con-
nection length-penalty term, which represents the visual recognition 

function and physical length constraint of the brain, respectively. After 
optimizing the network using natural images, we observed that most 
of the initial connections had disappeared, but a few long-range con-
nections (LRCs), which are defined as the connections longer than the 
diameter of RF, remained. The statistics of the developed connectiv-
ity were similar to those observed in primate’s V1 [3]. Remarkably, the 
number of LRCs optimized for natural images was significantly larger 
than the number of LRCs optimized for random images. Disconnecting 
the LRCs in the trained network noticeably reduced performance for 
the natural image classification compared to that for random connec-
tions. Taken together, these results imply that LRCs play an important 
role in natural image perception in networks with limited connection 
length. To find which features of natural images are extracted by LRCs, 
we designed new image sets in which a pair of numeric images (local 
feature) are placed in different positions (global feature). We found 
that the ratio of LRCs to optimal recurrent connectivity increased 
when the network was trained by images with longer feature distance. 
When LRCs were deleted on the optimized networks, the accuracy 
of image classification was further reduced for networks trained by 
images with longer feature distance. This suggests that long-range 
connections contribute to image classification by extracting the low-
frequency components of natural images. Overall, we propose that 
long-range recurrent connectivity found in the visual pathway is a 
critical component to optimize the balance between maximizing natu-
ral image perception performance and minimizing wiring cost. We 
believed that long-range recurrent connectivity can be used as a new 
module of DNN architecture with high connection efficiency.
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Discovering functional networks underlying different cognitive states 
has become a crucial goal in neuroimaging over the last decade. The 
urgency is even larger for clinical studies where knowing the specific 
links involved in pathological conditions can push forward our under-
standing of brain diseases and provide better diagnostic and prognos-
tic tools. Brain atlases have become more detailed with an increasingly 
larger number of brain regions. As a consequence functional brain 
networks have become larger and the problem of finding sets of links 
(subnetworks) related to cognitive or pathological conditions have 
become more complex.
Here we propose a method to extract such subnetworks based on 
Machine Learning tools. In particular, we frame the problem as a 
feature selection [1] in the context of supervised learning. Each func-
tional connectivity matrix can be considered as one sample in the 
high dimensional space of functional links. Supervised learning can 
be used to fit a model to map from the links space to the cognitive or 
pathological labels associated to each matrix. In this context each link 
can be ranked in order of relevance for the prediction of labels. Here 
we compare different ranking methods: univariate information filter 
[1], infinite feature selection [2] and recursive feature elimination [3]. 
Finally we propose a method to automatically select the subset of links 
that best support the prediction of labels. We show applications of the 
method with controlled synthetic datasets, where the performance of 

Fig. 1 Evolution of inhibition factor for 100 mem.time (about 1000 
iterations), corresponding approximately to performing 10 saccades 
to the model (top). Spatial representation of the IoR with distinct size 
(bottom)
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the method can be easily understood and with a real dataset to distin-
guish different cognitive states.
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The resting state brain is often modelled as a dynamic system transi-
tioning among multiple coexisting stable states. Despite the increas-
ing number of studies on the multistability of the brain system, the 
state transition processes of the brain, which are essential to under-
standing the dynamic characteristics of the brain system, have rarely 
been explored. Thus, in the present study, we investigated the state 
transition processes of the large-scale cortical brain system by con-
structing state transition networks. The state transition processes were 
analyzed based on the graph-theoretical perspective.
To obtain state transition pathways and their transition rates, we per-
formed energy landscape analysis, adopting a pairwise maximum 
entropy model (MEM). For the estimation of the model parameters of 
the MEM, the resting state fMRI (rs-fMRI) data from the Human Con-
nectome Project (HCP) database were used. We extracted local minima 
and optimal pathways among them in the energy landscape, explored 
the characteristics of the brain state transition processes from the 
graph-theoretical perspective. In the state transition network, brain 
microstates, i.e., brain activity patterns, were assigned as nodes, and 
transitions and transition rates between two states (nodes) as edges 
were assigned as edges and their weights.
Three types of state transition networks were introduced in this study; 
1) a state transition network among full states (STN-FS), 2) a state 
transition network from local minima toward the global minimum 
(STN-GM), and 3) a state transition network among rate-determin-
ing transition states and local minima states (STN-LM). The STN-FS 
includes all states that were utilized in paths, the STN-GM is a reduced 
network in that all remained states are connected to the global mini-
mum, and the STN-LM is the simplified network that only includes 
stable and transition states, which is determine the transition rate. 
Finally, we constructed perturbed systems to evaluate robustness of 
the dynamic properties of the state transition processes in the resting 
state.
As a result, we found that the cortical brain system at rest contains 
multiple stable states that are clustered into two major state groups. 
The transition between brain states in the two groups was mediated 
by a frequent transition state, which operated as a hub of the transi-
tion network. State transition in the brain appears to involve multi-
step state transitions, with some stable states serving as intermediate 
states for the complete transition. We also found that the baseline cor-
tical brain system at rest shows a more complex and organized state 
transition network than those of artificially perturbed systems. This 
network approach to the state transition in the brain may provide a 
new framework for exploring the brain dynamics.
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Introducing realistic firing properties of single neurons in large-scale 
simulations of Spiking Neural Networks is a fundamental challenge in 
computational neuroscience. In fact, not only connectivity and plas-
ticity but also the variety of neuron spiking patterns has been proved 
fundamental for eliciting complex network activity, neural signal 
transmission and, eventually, behavior generation. This is particularly 
important for the cerebellum, where a rich variety of neurons is pre-
sent, each one with a specific set of electroresponsive features [1]. In 
view of large-scale simulations with limited computational load and 
high biological plausibility, an extended generalized leaky integrate-
and-fire (E-GLIF) point neuron has been developed [2], using NEST. 
Thanks to the intrinsic currents (endogenous and spike-triggered—
depolarizing; adaptive—mainly hyperpolarizing) and the coupling 
between membrane potential and adaptive current, E-GLIF is able to 
reproduce autorhythm, linear slope between response frequency and 
input current (f-Iin), adaptation and bursting mechanisms, phase reset, 
intrinsic self-sustained oscillations of the membrane potential and res-
onance. Based on the gradient-based optimization tool developed for 
cerebellar Golgi cells [2], we here optimized E-GLIF to reproduce the 
f-Iin relationship and the post-inhibitory response of olivo-cerebellar 
neurons (Molecular layer interneurons, Granule, Purkinje, Cerebellar 
nuclei and Inferior olive neurons). The cell-specific E-GLIFs were then 
validated in PyNEST simulations, where different input current steps 
were provided to test the remaining spiking patterns. Specifically, 
Granule cell E-GLIF showed theta-band subthreshold oscillations, 
causing resonance in the same frequency band when stimulated with 
periodic spike trains. Molecular layer interneuron E-GLIF exhibited 
low-frequency autorhythm with zero-input current, while Purkinje 
cells were characterized by high-frequency spontaneous simple 
spikes, and complex spikes were triggered by high-amplitude current 
pulses. Post-inhibitory rebound excitation was reproduced in cerebel-
lar nuclei E-GLIF, before returning to the 30-Hz autorhythm. Inferior 
olive neurons exhibited intrinsic subthreshold sinusoidal oscillations 
of membrane potential, phase reset and bursts of two/three spikes 
with depolarizing input currents.
The E-GLIF point neuron was able to capture the variety of firing patterns 
of olivocerebellar neurons. For each neuron we identified a set of model 
parameters allowing to generate cell-specific spiking responses depend-
ing on the provided input stimulus, like in experimental conditions. Thus, 
the optimized neurons can be used in large-scale simulations of the 
olivocerebellar circuit, eventually embedded in closed-loop control sys-
tems to reproduce sensorimotor behaviors [1]. The resulting multiscale 
tool would allow to link detailed single neuron dynamics to network and 
behavioral properties.

Acknowledgements: This work was developed within the HBP Partner-
ing Project CerebNEST and was supported by European Union’s Horizon 
2020 under Specific Grant Agreement No. 785907 (Human Brain Project 
SGA2).

References
1. D’Angelo E, et al. Modeling the Cerebellar Microcircuit: New Strategies for 

a Long‑Standing Issue. Frontiers in Cellular Neuroscience 2016, 10, 1–29
2. Geminiani A, et al. Complex Dynamics in Simplified Neuronal Models: 

Reproducing Golgi Cell Electroresponsiveness. Frontiers in Neuroinformat-
ics 2018, 12, 1–19



Page 132 of 190BMC Neurosci 2019, 20(Suppl 1):56

P243 
Modelling complex cells of early visual cortex using predictive 
coding
Angelo Franciosini, Victor Boutin, Laurent Perrinet
CNRS ‑ Aix‑Marseille Université, Institut de Neurosciences de la Timone, 
Marseille, France
Correspondence: Angelo Franciosini (angelo.franciosini@univ‑amu.fr)  
BMC Neuroscience 2019, 20(Suppl 1):P243

Predictive Coding (PC) is an influential framework introduced by [1] to 
model neural processes in the primary visual cortex of mammals (V1). 
PC exploits the hierarchical structure of sensory information into a bi-
directional update scheme: Higher-level cortical layers predict at best 
the activity of the lower-level ones and send the prediction through 
feedback connections. This prediction is compared to the activity of 
the lower-level layers to generate a prediction error that is sent to the 
upper layer through feed-forward connections. Interestingly, PC gives a 
possible explanation to extra-classical receptive fields effects in V1, this 
is also in line with the abundance of feedback connectivity in the brain. 
Additionally, this model has provided an elegant way to model task-
driven learning in the brain by approximating error back-propagation, 
commonly used in deep neural networks, only by means of Hebbian 
plasticity and local computations. When implemented in a recurrent 
neural network, with the addition of sparsity constraints, PC can explain 
the emergence of edge sensitive cells in low-level visual areas as well as 
more specific descriptors in higher cortical areas. We show that such a 
model, called Sparse Deep Predictive Coding network (SDPC), can also 
account for the topological organization of the primary visual cortex 
when imposing a max-pooling operator across small groups of neurons. 
Moreover, we show that the resulting model encodes for edges of spe-
cific orientation independently of their phase, a behaviour analogous to 
the one observed in neural recordings of complex cells.
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Many efforts in the study of the brain have focused on representa-
tions of stimuli by neurons and learning thereof. This presentation 
will build on two of our recent works to propose a novel perspec-
tive for the processing of spike-based representations in neuronal 
networks.
The first work [1] provides a mathematical description of the propa-
gation of high-order moments of spiking activity in Hawkes pro-
cesses, also known as Poisson neurons. Our approach describes the 
spatio-temporal filtering induced by the afferent and recurrent con-
nectivities using operator theory. Our algebraic viewpoint provides 
intuition about how the network ingredients shape the input-out-
put mapping for moments, as well as cumulants.
The second work [2] focuses on learning an input-output mapping 
in a network based on second-order statistics, namely spatio-tem-
poral covariances. Relying on the multivariate autoregressive (MAR) 
dynamics, our theory derives the weight update such that input 
covariance patterns are mapped to given objective output covari-
ance patterns. It can be as an extension of the classical perceptron 
[3], a central concept that has brought many fruitful theories in the 
fields of neural coding and learning in networks. As an example, it 
performs the categorization of fluctuating time series determined 
by their hidden dynamics. Conceptually, variability in the time series 

is the basis for information to be learned, via the co-fluctuations 
that result in second-order statistics. Our approach is thus a radical 
change of perspective compared to classical approaches that typi-
cally transform time series into a succession of static patterns where 
fluctuations are noise.
After presenting the key aspects on these two studies, we will envis-
age future steps that join them toward a novel theory where infor-
mation is conveyed by high-orders in the spike trains. In particular, 
we will illustrate the concepts with examples in spiking networks.
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As information about the world traverses the brain, the signals 
exchanged between neurons are passed and modulated by synapses, 
or specialized contacts between neurons. While neurotransmitter-
based synapses tend to exert either excitatory or inhibitory pulses of 
influence on the postsynaptic neuron, electrical synapses, composed 
of plaques of gap junction channels, continuously transmit signals 
that can either excite or inhibit a coupled neighbor. A growing body 
of evidence indicates that electrical synapses, similar to their chemical 
counterparts, are modified in strength during physiological neuronal 
activity. The synchronizing role of electrical synapses in neuronal oscil-
lations has been well established, but their impact on transient signal 
processing in the brain is much less understood.

Fig. 1 Network of coupled canonical circuits
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To investigate the impact of electrical synapses on transient signals, 
we constructed computational models based on the canonical feed-
forward neuronal circuit, wherein two principal neurons, connected by 
an excitatory synapse, are also connected by disynaptic feedforward 
inhibition (See Fig. 1). We used Izhikevich-type neurons for all cell 
types. We progressively expanded models and analysis from a single 
circuit to a pair of circuits, and finally to network composed of canoni-
cal circuits. We provided these models with single closely timed inputs, 
in order to determine how the embedded electrical and inhibitory 
synaptic connections between interneurons influence subthreshold 
integration and spiking statistics at the output stage of the model.
Our simulations highlight the diverse and powerful roles that electri-
cal synapses play even in simple circuits. In pairs of canonical circuits, 
electrical synapses either delay interneuron spiking by increasing leak 
or act to coordinate interneuron spiking, with substantial impacts in 
both cases on output principal neuron summation. The presence or 
absence of chemical synapses between electrically coupled interneu-
rons also shapes subthreshold summation at the output stage. In net-
works of canonical circuits, electrical coupling between interneurons 
can delay, accelerate, and sharpen spiking of output principal neurons, 
depending on connection strength.
Because these canonical circuits are represented widely throughout 
the brain, we expect that these are general principles for the influence 
of electrical synapses on transient signal processing across the brain.
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Many recent advances in artificial intelligence (AI) are rooted in neu-
roscience. For example, a large body of AI work has used ideas from 
neuroscience to build neural networks that can perform sensory infor-
mation processing and reinforcement learning tasks. However, ideas 
from more complicated paradigms like perceptual decision-making 
tasks are less used. Although automated decision-making systems 
are ubiquitous in modern applications (driverless cars, pilot support 
systems, medical diagnosis algorithms etc.) achieving human-level 
performance is still a challenge. Humans can effortlessly accomplish 
decision making tasks that are deemed difficult for artificial systems. 
Thus, understanding complex decision-making dynamics in the brain 
and modeling them using deep neural networks could open new ave-
nues to tackle these difficulties. Here we used multivariate methods 
and deep recurrent neural networks to model some of the complex 
neural interactions during sensorimotor decision making in primate 
brain. We investigated how brain dynamics flexibly represented and 
distinguished between sensory processing and categorization in two 
different sensory domains: motion direction and color. We found that 
representations changed depending on context. Selectivity of each 
brain area depended not only on the stimulus represented but also on 
the domain of categorization. We trained deep recurrent neural net-
works with monkey LFP recordings and found that they could process 
sensory information and perform categorization in the motion and 
color domains similarly to the animals. By comparing brain dynamics 
with network predictions, we found that computations in different 
brain areas also changed flexibly between the two tasks. Color com-
putations appeared to rely more on sensory processing, while motion 
computations more on categorization. Overall, our results shed light 
to the biological basis of categorization and differences in selectivity 
and computations in different brain areas.
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The cellular hallmark of Parkinson’s disease is the selective and pro-
gressive loss of dopaminergic neurons in the substantia nigra pars 
compacta (SNc). While their degeneration is associated with the 
appearance of the cardinal motor symptoms of the disease, the 
etiopathology of their loss remains unknown. The massive, pro-
fusely branched and unmyelinated axons of dopamine neurons, 
has given rise to the hypothesis that their selective vulnerability is a 
consequence of the axon structure and morphological characteris-
tics. Indeed, detailed biophysical modeling has shown that bioen-
ergetic requirements elevate in a power law fashion as a function of 
the size of the axon arborization and the number of branches (com-
plexity) that an SNc dopamine axon establishes. Furthermore, it has 
been shown that the distal terminals are energy inefficient, meaning 
that sodium channels can conduct superfluous sodium current dur-
ing the upstroke phase of the action potential, requiring extra Na+/
K+ATP-ase activity to recover membrane potential. Here we sought 
to examine the hypothesis that the thin caliber axon segments render 
an increased surface to volume ratio, associated with elevated Na+/
K+ATP-ase activity, that leads to incomplete sodium and calcium gra-
dient replenishment inducing toxicity that could lead to axonal and 
cellular degeneration. We implemented a biophysical model of ion 
and mitochondrial diffusion coupled to channel activity at the axon 
compartment level to examine the above hypothesis. A successful vali-
dation of the hypothesis may shed light to the enigma as to why SNc 
dopamine neurons and their axon terminals degenerate in Parkinson’s 
disease.
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Temporal lobe epilepsy causes significant cognitive deficits in both 
humans and rodents, yet the specific circuit mechanisms underly-
ing these deficits remain unknown. There is profound and selective 
interneuron death and axonal reorganization within the hippocampus 
of both humans and animal models of temporal lobe epilepsy.
To assess the specific contribution of these mechanisms on spatial 
coding, we developed a biophysically constrained network model of 
the CA1 region that consists of different subtypes of cells [1]. More 
specifically, our network consists of 150 cells, 130 excitatory pyramidal 
cells and 20 interneurons (Fig. 1). To simulate place cell formation in 
the network model, we generated grid cell and place cell inputs from 
the Entorhinal Cortex (ECLIII) and CA3 regions, respectively, activated 
in a realistic manner as observed when an animal transverses a linear 
track. Realistic place fields emerged in a subpopulation of pyramidal 
cells (40–50%), in which similar EC and CA3 grid cell inputs converged 
onto distal/proximal apical and basal dendrites. The tuning properties 
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of these cells are very similar to the ones observed experimentally in 
awake, behaving animals
To examine the role of interneuron death and axonal reorganization in 
the formation and/or tuning properties of place fields we selectively 
varied the contribution of each interneuron type and desynchronized 
the two excitatory inputs. We found that desynchronized inputs were 
critical in reproducing the experimental data, namely the profound 
reduction in place cell numbers, stability and information content [2]. 
These results demonstrate that desynchronized firing of hippocampal 
neuronal populations contributes to poor spatial processing in epilep-
tic mice, during behavior. Given the lack of experimental data on the 
selective contributions of interneuron death and axonal reorganiza-
tion in spatial memory, our model findings predict the mechanistic 
effects of these alterations at the cellular and network levels.
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Prefrontal Cortex (PFC) exerts control on action selection and medi-
ates behavioral flexibility. This flexibility is imperative during working 
memory (WM), when stimuli retention and integration takes place. 

Neurons of the PFC exhibit mixed selectivity to stimuli, yet the mecha-
nisms that enable them to rapidly modify their response properties 
in a context-dependent manner remain poorly understood. How can 
a recurrently and sparsely connected network perform both stimulus 
selection and integration in a way that appears highly dynamic at the 
single neuron level, yet is stable and separable at the population level 
remains an open question.
To answer this question we hypothesize that: a) it is possible to have 
neurons displaying this highly dynamic behavior (e.g. via encoding 
both ‘sensory’ and ‘memory’ signals) in a recurrently connected net-
work and b) rapid synaptic facilitation via NMDARs enables this behav-
ior in a network constrained by the highly reciprocal and clustered 
connectivity that is prominent in PFC.
We test this hypothesis using detailed biophysical models of PFC neu-
ronal networks, which are constrained in their physiological and con-
nectivity properties and reproduce the key features of single neuron 
and population processing. Our simulations show that NMDA proper-
ties of L5 PFC neurons are appropriate for exploiting the structured 
connectivity profile in order to implement highly dynamic, yet dis-
crete WM representations in the PFC. Specifically, we predict that both 
NMDA nonlinearities and a structured connectivity are needed to pro-
duce multiple, flexible states thus maintaining WM information in a 
dynamical way while also exhibiting robustness in time.
Our results (Fig. 1) are summarized in: a) a network model that repro-
duces the complexity of population responses as well as the emer-
gence of low energy stable states during the WM period. b) This model 
can respond with different stable states, in response to different 
stimulus applied, through a rapid, internal connectivity reconfigura-
tion. c) This reconfiguration is mediated by dendritic nonlinearities, 
since eliminating them abolishes the discrimination abilities of the 
network. d) This reconfiguration is observed more prominently in a 
network connected as the PFC anatomy indicates, compared to a ran-
domly connected network. e) We note that the aforementioned stable 
states can in principle be attributed to dynamically recruited neuronal 
ensembles or to combinations of them, that respond stably in time.
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Fig. 1 a Dynamic single neuron responses. b Activity induced by 
different stimuli settles in discernable states (PCA space). c Activity 
decomposed into three assemblies, color coded per stimulus. d Same 
as c, color coded for different states

Fig. 1 (Top) Schematic diagram of CA1 computational network 
model, (bottom) Grid‑like and place‑like inputs to CA1 pyramidal cells
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A difficult challenge in neuroscience is to determine the functional 
connectivity of neural networks. Nature provides us a with a small 
but valuable ally in the shape of the zebrafish larvae. Thanks to the 
transparent skull of the animal, the brain of zebrafish larvae is amena-
ble to optic investigation. Once the neurons are filled with a calcium 
sensitive dye, the in vivo activity of these neurons become measur-
able without any alteration to the natural behaviour. We have built 
a multidisciplinary team to investigate the structure of the zebrafish 
neural network. We’re establishing a pipeline running from animal care 
and data acquisition to spike inference and network reconstruction 
(Fig. 1). First, fast scanning microscopes allow real time data acquisi-
tion in large 3D brain structures with high frequency (around 30 Hz). 
Then, a homemade flexible segmentation program gives the time 
series of fluorescence measured simultaneously in (for now) more than 
300 neurons. Such an approach has been pioneered by the group of 
Ahrens [1]. We believe that our original data set will provide insights 
on the properties of neural networks. Connectivity can be determined 
either directly from the correlations in calcic activity or from correla-
tions in the inferred spike trains. To infer individual spike trains from 
the fluorescence, we tailored an algorithm developed by Deneux 
et al. [2]. Given an experimental time series, this algorithm recursively 
searches for the spike train most likely to explain it, using a hidden 
layer Markov model. The fluorescence data presents difficulties: slow 
drift in the baseline signal, presence of noise and acquisition fre-
quency all limit the accuracy of spike detection. To estimate the failure 
rate, we simulated synthetic data sharing the most relevant aspects of 
experimental data such as noise amplitude and signal strength. The 
estimated error is a 30 percent probability of failing to detect an actual 
spike and a 7 percent probability that a detected spike isn’t an actual 
one. The aggregated mean spike rate is 4 Hz with important oscilla-
tions and spike rates above 15 Hz often sustained for periods of more 
than 1 second. The inferred spike trains lead to a natural classification 
of neurons into oscillating, noisy and one time active. Important cor-
relations are observed between the activity of oscillating neurons. 

Our next goal is to use the inferred spike trains to deduce functional 
connections between neurons. We hope to uncover network statistics 
such as clustering coefficients or small world properties that may help 
explain the robustness and resilience of natural neural networks.
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Recent progress in neuroimaging techniques has advanced our under-
standing of structural and functional properties of the brain. Resting-
state functional connectivity (FC) analysis has brought new insights 
to the inter-individual variability [1]. Using diffusion-weighted mag-
netic resonance imaging, one can retrieve the basic features of the 
anatomical architecture of brain networks, i.e. structural connectiv-
ity (SC) [2]. Empirical SC (eSC) and FC (eFC) can be used to build and 
validate large-scale mathematical models of the brain dynamics being 
in the focus of research nowadays [3, 4]. In this work, we set out to 
investigate the impact of different brain atlases on the dynamics of 
the whole-brain computational models and their optimal parameters 
fitted to the neuroimaging data, resulting in the optimal agreement 
between empirical and simulated data. We considered a sample of 
23 healthy subjects from the Human Connectome Project database 
[5] and 2 different brain atlases, the Harvard-Oxford structural atlas 
and the Schaefer functional atlas [6]. The large-scale network model 
of brain activity is based on an informed by eSC Kuramoto model [8] 
and is simulated using The Virtual Brain (TVB) platform [7], with an 
optimized code from TVB-HPC adequate for high-performance clus-
ters computing. We found that the two considered atlases are in good 
agreement with respect to the optimal parameters (e.g. global cou-
pling strength K) and the corresponding values of the correlation coef-
ficient of the best correspondence between sFC and eSC. Moreover, 
the considered model can demonstrate relatively strong correlations 
between eSC and sFC matrices whereas the correspondence between 
eFC and sFC matrices is, however, weaker for both atlases [9].
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of raw fluorescence data. Bottom: An instance of spike inference
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Equivalent neuronal excitability can be achieved through different ion 
channel combinations. This is an example of degeneracy. Ion channel 
diversity is greater than required to regulate any one aspect of excit-
ability, but multiple aspects of excitability plus other aspects of cell 
function (e.g. energy usage) must be regulated. Here we show that 
the number of tunable ion channels (N) must exceed the number 
of regulated outputs (M) to ensure degenerate solutions. We argue 
that degeneracy cannot be inferred from N alone, but, rather, that it 
depends on N relative to M. In other words, the dimensionality of the 
solution is defined by N–M.
Experimental work has revealed that the levels of certain ion channels 
are correlated. Theoretical work has revealed that such correlations 
can be explained based on the relative rates of underlying processes 
like transcription. Yet the existence of strong pairwise correlations 
is surprising if dimensionality of the solution is high. Consistent with 
this prediction, we show that correlations weaken as the number 
of tunable ion channels (N) is increased (Fig. 1A and B). On the other 
hand, correlations strengthen as the number of regulated outputs 
(M) is increased (Fig. 1B and C). Hence, the existence of ion channel 
correlations suggests that the dimensionality of the solution (N–M) 
is low. Since N is known to be high, this suggests that M is also high, 
or, in other words, that neurons are regulating multiple properties 
simultaneously.
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Electrical activity in cortical networks and their composite neurons 
provides the basis for understanding the information processing in 
single neurons and interconnected neural populations [1]. To this 
end, numerous theoretical/computational studies have focused on 
how networks and their composite neurons operate from an electri-
cal perspective [2, 3]. With the advent of molecular techniques, the 
underlying molecular activity also plays important role, where neu-
rons and glia are now appreciated to be complex molecular machines, 
adapting their response properties over short and long-time scales 
[4]. Recent experiments have implicated the Extracellular Matrix (ECM) 
and its molecular components in neural signalling and information 
processing, by virtue that it strategically occupies the synaptic cleft 
[5, 6]. Recent evidence suggests the ECM is involved in Life-long learn-
ing and memory and significantly, in the recall of fear memory [7, 8]. 
Some have also shown that the expression of certain ECM molecules 
can modulate the efficacy of neural transmission on multiple time 
scales [9]. Currently, a handful of computational studies have focused 
on understanding the role of the ECM through bidirectional signalling 
and interaction between neurons and the ECM [10]. How this interac-
tion impacts network behaviour and information processing has yet to 
be explored from a computational perspective.
We present a new biologically inspired framework and accompanying 
mathematical model that captures the nature of bidirectional neuron-
ECM signalling. The framework considers the various roles played by 
various ECM molecules through their activity-driven influence on 
neural transmission and impact on neural responses. Our model is 
computationally tractable and can be applied to study the bidirec-
tional nature of neural-ECM signalling in different brain areas and their 
collective influence on both single neuron responses and network 
activity.
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Fig. 1 a Red dots show ion channel combinations (N = 2) producing 
a target rheobase of 100 microamps/cm2 (M = 1) found using a toy 
homeostatic rule. White dots show starting values. b Same as a, but 
N increased to 3; Red grid = iso‑rheobase surface. c Same as b, but M 
increased to 2 for rheobase and ATP per spike (energy usage); Green 
grid = iso‑ATP surface; dashed line = intersection
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The motor plan generated in the brain is relayed to specific centers 
in the spinal cord via descending commands. These specific cent-
ers, in turn, recruit spinal modules consisting of neuronal circuits 
that are capable of producing and or modulating specific movement 
type independent of supraspinal input. This emphasizes the idea 
that descending commands can interact with spinal modules mostly 
to modulate and alter network dynamics while spinal modules work 
independently to produce activations in the array of muscles that are 
required by the movement type. Hence the modular organization of 
motor circuits is a smart and efficient design strategy by which the 
nervous system is capable of achieving complex motor activation. 
These spinal neuronal modules are spread across the rostrocaudal 
axis of the spinal cord and evidence from intraspinal stimulations on 
anaesthetized monkeys and cats explain the presence of such anatom-
ical localizations. For e.g. Specific spinal foci responsible for particular 
movement types have been observed in animals. In decerebrate cats 
stimulating particular spinal foci resulted in activation of all muscles 
required for swinging the limb forward. Somatotopic maps thus gen-
erated are essential in understanding spinal circuitry in conjunction 
with spinal anatomy. Understanding circuit localizations specific to 
movement types is essential in designing stimulation therapies or 
rehabilitation planning after spinal injury. Although strong evidential 
models of spinal modules responsible for movement types are avail-
able but are restricted to rodent, monkey or cat models. Models on 
human spinal cord are rare owing to the experimental constraints. In 
the current study we tried to build an in-silico spinal cord model based 
on anatomical motor maps obtained from [1] study and combined 
with elementary spinal circuits proposed by [2-5]. The elementary spi-
nal circuits generated within the model are based on movement syn-
ergy and circuit topology encompasses spinal reflex components and 

interneuronal pathways. The setup contains spinal anatomy + circuit 
model interacting with an external biomechanical model of the lower 
limb. Preliminary stimulation studies on the model revealed the seg-
mental segregation of movement types along the rostrocaudal axis. 
While this has been established for some movement types in previous 
studies, we show that the same exists as a general principle cover-
ing all degrees of freedom in the lower limb. The movements that are 
strongly opposed or are major antagonists are found to be separated 
along the axis. For instance, hip_flexion, knee_extension, hip_adduc-
tion are localized in more rostral segments compared to hip_exten-
sion, knee_flexion, hip_abduction. This pattern is borne out in the 
figure (Fig. 1) where the diameters indicate the combined activity of 
all motor neurons responsible for a movement type in response to a 
stimulation along various segments. This organization has an impor-
tant implication for descending connections and stimulation therapies 
namely that movement types may be triggered by selectively stimu-
lating different spinal segments. The error probabilities of triggering 
antagonistic movements simultaneously are automatically controlled 
by the fact that strongly antagonistic joints/movement types are far-
ther away along the rostrocaudal axis of the spinal cord. Open and 
closed loop model stimulation studies strengthen the claim of this 
general principle.
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Neurodegeneration and traumatic brain injuries generate a broad 
array of pathologies across multiple spatial scales. At the most funda-
mental level, neuronal impairments distort the information encoded 
in spike trains, ultimately undermining the neuronal network’s func-
tionality. We demonstrate that slow-gamma frequencies in the 38–41 
Hz range are most robust to injury, independent of parameter and 
methodological choices in common neuron models. Our theory pro-
vides a unified signal-processing framework that accounts for major 
cellular-level pathologies that affect spike train propagation, includ-
ing axonal swellings and demyelination. Specifically, we model with 
a family of discrete-time filters eight experimentally observed trans-
formations that occur to injured spike trains, including increasing 
refractoriness and intermittent blockage. We also derive continuous 
counterparts for the filters by convolving neuronal firing rates from 
spike trains with Causal and Gaussian kernels. Our filters align with the 
spectrum of dynamic memory fields; Thus, working memory, visual 
consciousness, and other higher cognitive functions seem to operate 
in a frequency band that is optimally guarded against common types 
of pathological effects. In contrast, higher-frequency neural encoding, 
such as is observed with short-term memory, is greatly compromised Fig. 1 Movement types vs spinal segmental foci
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by neurodegeneration and injury. We also propose impaired tuning 
curves for a few classic visual/motor studies to facilitate experimental 
validation of our results.
All impaired neurons seem to distort, confuse and/or block the infor-
mation encoded in spike trains. Thus, it is possible to draw common-
alities between the demyelinating effects of Multiple Sclerosis, some 
neurodegenerative developments in Alzheimer’s disease, and the 
axonal swellings following traumatic brain injuries. These incurable 
brain disorders are of great societal interest since they are respectively 
the most common type of autoimmune disease, dementia, and a lead-
ing source of death/disability among youngsters. We show that neural 
response frequencies in the slow-gamma range of 38—41 Hz are most 
insulated against common spike-train distortions [1]. This frequency 
band is involved in key functions: (a) the hippocampus is known to 
split its gamma oscillations in two distinct components, a fast band 
(@ 120 Hz) and slow band (@ 40 Hz). This separation is important to 
reliably distinguish the perceptions of ongoing experiences from the 
internally evoked memories [2]. Our results show that the slow band 
is optimally robust. (b) F. Crick and C. Koch made the 40-Hz oscillation 
the centerpiece of their theory of visual consciousness and aware-
ness after several studies reported neuronal phase-locking in this 
frequency in the visual cortex [3]. (c) Changes in slow-gamma oscilla-
tions have been observed in several neurological disorders, but most 
prominently in rat models for Alzheimer’s Disease (AD). Iaccarino et al 
[4] showed that external stimulation of CA1 neurons at 40 Hz- and at 
40 Hz only- attenuates pathologies associated with AD. We conjecture 
that if more neurons synchronize at robust frequencies, the overall 
capability of the system to transmit information should increase. Over-
all, we provide a compelling hypothesis as to why so many higher cog-
nitive functions are encoded in the slow-gamma range.
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Chemotherapy-induced peripheral neuropathy (CIPN) is a prevalent, 
painful, dose-limiting toxicity which arises due to a number of chemo-
therapy drugs, such as vincristine, paclitaxel, and cisplatin. CIPN can be 
prolonged, affecting the quality of life of cancer patients. Moreover, 
sometimes, chemotherapy treatment is stopped altogether because 
of the severe pain, thereby affecting the treatment efficacy. Currently, 
there are no FDA-approved agents to prevent it. The lack of an estab-
lished CIPN treatment stems from an incomplete understanding of its 
mechanism. The aim of this study is to fundamentally understand CIPN 
mechanism with a focus on voltage-gated ion channels.
The aforementioned chemotherapy drugs alter the expression of 
peripheral sensory neuron ion channels, which can lead to hyperexcit-
ability [1]. Hyperexcitability is an abnormal discharge of action poten-
tials and is a potential indicator of peripheral neuropathy in vitro [2]. 
To understand the role of voltage-gated ion channels in the onset of 

hyperexcitability, we analyzed a mathematical model that represents 
voltage dynamics in a small dorsal root ganglia neuron. We performed 
nonlinear dynamical systems analysis to obtain a comprehensive view 
on the role of various voltage-gated ion channels and external current 
in the onset of hyperexcitability. Keeping external current as a bifur-
cation parameter, we found a subcritical Hopf and cyclic limit point 
bifurcations separating the steady state and full-blown action poten-
tial oscillations respectively, and several period-doubling and limit 
point bifurcations describing the mixed-mode oscillations in between. 
Specific ion channels’ conductance and gating kinetics were most sig-
nificant in inducing hyperexcitability since they were highly sensitive 
to the Hopf and limit point bifurcations. Hence, selectively targeting 
these ion channels can be a potential strategy to reverse hyperexcit-
ability and subsequently provide relief from CIPN. This study outlines 
a promising approach to understand CIPN mechanism and explore 
therapeutic agents to prevent it. Further collaborative effort among 
clinicians, experimentalists, and mathematicians can lead to determin-
ing a robust solution to this long-standing problem.
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Previous studies based on the ‘Quantal Model’ for synaptic transmis-
sion suggested that neurotransmitter release is mediated by a single 
release site at individual synaptic contacts in the neocortex. How-
ever, recent studies seem to contradict this hypothesis and indicate 
that multi-vesicular release (MVR) could better explain the synaptic 
response variability observed in vitro.
In this study we present a novel method to estimate the number of 
release sites per synapse, also known as the size of the readily-releas-
able pool (NRRP), from paired whole-cell recordings of layer 5 thick 
tufted pyramidal cell (L5-TTPC) connections in the somatosensory 
neocortex. Our approach extends the work of Loebel and colleagues 
to take advantage of a recently reported data-driven biophysical 
model of neocortical tissue .
From a collection of 33 paired whole cell patch-clamp recordings of 
L5-TTPC in the P14 rat somatosensory cortex, we extracted the synap-
tic parameters for the Tsodyks-Markram model of synapse dynamics 
(TM-model)and estimated the maximal synaptic conductance through 
matching experimental EPSPs values with equivalently sampled pairs 
simulated in the neocortical tissue model in silico. Finally, the size of 
the readily releasable pool, NRRP, was adjusted to obtain the best 
match between the coefficient of variation (CV) profile of the EPSPs 
for the in vitro data and in silico simulations. Using this approach, we 
estimated NRRPto be between two to three for connections between 
layer 5 thick tufted pyramidal cells. To constrain NRRPvalues for other 
connections in the microcircuit, we developed and validated a gener-
alization approach using data on EPSP CVs from literature and match-
ing to in silico experiments.
Our study shows that synaptic connections in the neocortex gener-
ally are mediated by MVR and provides a data-driven approach to 
constrain the MVR model parameters of the microcircuit. These find-
ings have important implications for synaptic transmission, biophysi-
cal models of synaptic plasticity, and when considering synaptic noise 
sources for information processing in the neocortex.
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Simulating extracellular recordings of neuronal populations is a 
challenging task for understanding the nature of extracellular field 
potentials (LFPs), investigating specific brain structures and map-
ping cognitive functions. It is well known that recording devices like 
microelectrodes record a mixture of high-frequency components 
reflecting action potentials (APs) activity and low frequency patterns, 
mainly attributed to the synaptic currents. Simulating such is a key 
step to understand the brain functioning, however it often requires a 
high computational burden due to the multicompartmental neuron 
models used [1]. This could be an issue for producing and validating 
computational models of neural activity of large populations such as 
hippocampal oscillations [3]. Here, we propose a method to reproduce 
brain oscillations by taking into account the APs and the synaptic cur-
rents contributions.
A model of the hippocampal structure was previously proposed to 
reproduce various oscillatory rhythms within the sleep–wake cycle 
and neurons were positioned and connected in an anatomically real-
istic manner [4]. Based on [5], we were able to set the neurons mor-
phologies and the axon orientations for each hippocampus region in 
accordance with the literature. The model dynamic was modelled as a 
Poisson process with variable intensity (firing rate). This firing rate was 
extracted from the envelopes of real depth EEG recordings from cer-
ebral areas projecting onto the Entorhinal cortex of human epileptic 
patients (recorded during presurgical evaluation in the Neurology Ser-
vice of the Nancy University Hospital - CHRU Nancy, France). Contribu-
tions of the APs and the synaptic currents to the LFP were balanced by 
a pair of coefficients.
First of all, it was found that the frequency properties of the simulated 
signal were consistent with the ones of the real recorded signals. It was 
also found that the APs contribution was a key parameter for gamma 
band however it is less significant for lower frequency bands.
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Most sensory systems are organized topographically so that features 
of the sensory input are represented in an orderly fashion in the brain. 
How topography can be used to encode sensory information requires 
a firm understanding of how sensory features are mapped onto neural 
elements. A stumbling block is that the fundamental processing unit 
of cortex is ill-defined. Proposed motifs have included single neurons, 
canonical microcircuits, and large columns. Early experiments sug-
gested that somatosensory and visual cortices are divided into col-
umns, which consists of neurons with similar tuning properties. Over 
the years, the definition of columns has evolved to include micro- and 
hypercolumns and the requirement that the borders be sharp was 
relaxed. Moreover, other motifs emerged such as canonical microcir-
cuits and ensembles. The dimensions and organization of proposed 
units have important theoretical implications as each impose limits on 
the computations that networks may perform.
To explore how these abstract notions of cortical organization affect 
function, the representation of sound in auditory cortex is examined. A 
salient feature of auditory cortex is that the characteristics frequencies 

of neurons vary systematically along one axis. This tonotopic organiza-
tion, which originates in the cochlea and preserved via precise topo-
graphic afferent projections between stages of the auditory pathway, 
is the substrate for a ‘place code’ for representing tone frequency. 
Despite conceptual problems, the importance of this tonotopy-based 
coding scheme is undeniable: cochlear implants, the most successful 
brain-machine interface, enable the deaf to discriminate pitch sim-
ply by stimulating different points of the cochlea with brief electrical 
pulses. To gain insights into the functional organization of cortex that 
underlie sensory representation, a mapping from the acoustic space 
to neural space is constructed, adhering strictly to the constraints 
imposed by mathematics and the biology. The analyses indicate that 
the functional unit of cortex for a place code is unlikely to be a corti-
cal column. Rather, the cortex is organized as overlapping clusters of 
neurons with flexible borders: tone frequency is represented by the 
location of the active clusters along the tonotopic axis and intensity 
by the cluster size.
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Neurons in-vivo are subject to an input where the arrival time and 
strength of synaptic pulses is highly variable. The integration of this 
stochastic synaptic drive has been modelled extensively from the late 
1960s. Since then, significant analytical progress has been made in the 
understanding of how class-specific membrane properties and syn-
aptic dynamics affect neuronal integration. Due to the constraints of 
tractability, the majority of analytical work has been directed at neu-
rons that can be approximated as electrotonically compact or as com-
prising a small number of connected, discrete compartments.
Here we consider continuous models of neurons comprising den-
drites, soma and axon driven by spatially distributed fluctuating 
synaptic drive. We demonstrate that in the fluctuation-driven, low 
firing-rate limit a level-crossing approach can be used to approxi-
mate the steady-state firing rate. The low-rate limit in which Rice’s 
level-crossing becomes accurate is applicable to pyramidal neurons in 
which average firing rates have been measured to be low, when com-
pared to the reciprocal of the effective membrane time constant.
We apply this approach to some very simple neuronal morphologies 
that can be considered as “toy models” of spatiotemporal synaptic 
integration. First, we demonstrate the interesting result that certain 
dendritic morphologies have firing-rate functions of the input drive 
that are independent of the electrotonic length but, nevertheless, 
distinct to that seen in point-like integrate-and-fire models. Second, 
when an axon is added, we demonstrate that the firing rate varies non-
monotonically with the axonal radius, with the peak firing rate corre-
sponding to an axonal radius similar to that found in pyramidal cells. 
Third, we observe that adding dendrites driven by fluctuating drive 
does not always increase the firing rate of the neuron. This last effect 
can also be captured quantitatively by discrete, compartment-based 
models; however, the advantage of the continuous approach is that 
the spatial variables are approximated in controlled fashion. Finally, we 
show that soma size and moving the position of the spike-initiation 
site on the axon alter both these non-monotonic relationships, with a 
larger soma causing the firing rate to be maximised for a higher num-
ber of dendrites.
Though applied to toy models of neuronal structure, these initial 
results show that it is possible to obtain analytical results, at least in 
the low-rate limit, that capture the effects of spatially distributed syn-
aptic drive. This framework can also be straightforwardly extended 
to quasi-active neuronal membranes to include the effects of the 
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h-current present in apical dendrites of pyramidal cells and thus pro-
vides a basis for future studies that include greater biophysical detail.
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Cortical coherence is important for the communication of func-
tionally specific brain regions to establish transient networks that 
accomplish cognitive function [1]. Meanwhile, stochastic effects 
have been shown to induce optimal system responses, termed sto-
chastic resonance (SR) [2, 3]. Thus, we ask whether stochastic inputs 
can produce an SR-like coherent dynamics on the human connec-
tome. We implement a large-scale model of noisy Kuramoto oscilla-
tors on a human connectome with 513 interconnected nodes. Each 
oscillator has a local phase and a natural frequency and is driven by 
a Gaussian noise. Based on findings that a hierarchy of timescales 
exists across the primate cortex [4], we take the natural frequency 
from a hierarchical distribution within the bandwidth of fMRI [5] 
(Fig. 1b inset). This allows the cortical hierarchy to be mapped into 
a gradient of timescales with slow hubs and fast peripheral regions. 
We use the order parameter R to quantify global phase coherence 
(R = 0 for incoherent state and R = 1 for coherent state). We also cal-
culate the network synchronization from the time average of R after 
discarding transient dynamics.
Fig. 1a shows that coherence paradoxically improves for an intermedi-
ate noise level but breaks down for a higher level. This is reminiscent 
of SR, which is also found in experiments on human perception and 
cognition [6] and on metastable transitions of brain waves [2]. Fig. 1b 
further demonstrates SR where an intermediate noise level optimizes 
synchronization. We also found that SR disappears by destroying the 
structure of the connectome (e.g., random connectivity) and/or choos-
ing other frequency distributions (e.g., random distribution). This 
proves that the hierarchical structure of the human connectome and 
the hierarchy of time scales are both key ingredients to produce and 
drive the paradoxical SR effect.
The significance of this work can be summarized as follows: (i) a coun-
terintuitive effect is found where addition of disorder leads to a more 
ordered state; (ii) the formulation is general because the Kuramoto 
model applies to many neural and non-neural systems with coupled 
oscillatory units; (iii) the results emphasize the role of hierarchy and 
heterogeneity in brain dynamics, which is a topic of current interest 
in neuroscience; and (iv) the results disentangle the contributions of 
the network and local node dynamics to the emergence of large-scale 
dynamics.
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The antennal lobe (AL) of insects receives the stimuli from the olfac-
tory receptor neurons (ORNs), grouping them in glomeruli related to 
the different ORNs. Once the odor information is collected by the glo-
meruli, it is sent to the mushroom body (MB) by the projection neurons 
(PNs) located in AL. However, despite the fact that odor concentration 
affects the ORNs, the signal transmitted by the PNs is invariant to it [1]. 
This is due to the gain control mechanism realized by the local neu-
rons (LNs) of AL that control the activity of PNs by inhibiting them. This 
gain control mechanism may be due to the heterogeneity [2] found 

Fig. 1 a Top: Node dynamics for cases with no noise, with intermedi‑
ate noise, and with high noise. Bottom: Coherence for the three noise 
cases. b Percent change of synchronization as a function of noise 
strength. The shaded region is the SEM. The inset shows the hierarchi‑
cal distribution. The results clearly demonstrate the counterintuitive 
SR effect
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in the LNs since two types of neurons are observed: homoLNs, which 
innervate most if not all glomeruli uniformly, and heteroLNs, which 
innervate only a few of them [3]. The aim of this study is to simulate 
this gain control mechanism and analyze its ability to modulate the 
stimulus signal compared to normalization.
To implement the gain control mechanism, we took into account that 
the proportion of the LNs is approximately one third of the PNs (830 
PNs and 300 LNs in locust, 150-200 PNs among the 250 AL neurons in 
Drosophila) and made the following assumptions: (i) all PNs are uni-
glomerular (as it happens in the majority of PNs of the Drosophila), 
(ii) homoLNs are connected to all the glomeruli and use the activ-
ity received by one of them to inhibit the rest and (iii) heteroLNs are 
connected to a few glomeruli and use their average activity to inhibit 
them.
This gain control is introduced in the input layer of our computational 
model that simulates the main parts of insect olfactory system [4, 5]. 
In this model, the input corresponds to AL, the hidden layer to the 
Kenyon cells and the output to the MB output neurons, where odor 
stimuli are classified by a Hebbian learning between the connections 
of these last two layers.
In order to simulate the odor patterns for different concentration lev-
els, we used Gaussian distributions with variable heights and widths, 
which centers encode the odor identity. The concentration variability 
of these patterns generates in our gain control mechanism an input-
output relationship similar to the one observed in AL. Furthermore, 
the classification error using our heterogeneous gain control mecha-
nism had an improvement of 2.4% compared to a homogeneous gain 
control such as normalization of patterns. These preliminary results 
give a possible computational explanation of why neural heterogene-
ity can perform a suitable gain control mechanism in the insect olfac-
tory system.
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The electromotor system of pulse mormyrids, a family of weakly 
electric fish, is a neural network which encodes information using a 
multiplexed temporal coding scheme [1]. The output of the system 
is correlated with the generation of electrical discharges by the elec-
tric organ of these fish. The electrical activity can be recorded non-
invasively during long-time periods by monitoring a freely-behaving 
specimen using an appropriate registration setup [2]. Recordings of 
such electrical activity typically show a large temporal variability. 

In this context, a set of stereotyped temporal patterns (which are 
related to overall fish behavior) has been described by previous neu-
rothological studies [3]. Furthermore, the topology of the network 
has been described by several physiological studies [4]. These char-
acteristics make this neural network an interesting case for studying 
information encoding and processing in the nervous system.
A model of the electromotor system which replicates temporal firing 
patterns described by previous studies was developed using genetic 
algorithms (GA) for multi-objective parameter optimization [5]. 
The model was tuned to reproduce a set of artificially-constructed 
stereotyped temporal firing patterns. Patterns of the electrical 
interpulse intervals detected from real recordings of several Gnatho-
nemus Petersii specimens were used as target patterns to readjust 
the parameters of the model. Accordingly, several changes in the GA 
evaluation function were introduced to consider the larger variabil-
ity of pattern examples observed in living fish recordings.
Output results from the model showed a proper adjustment to the 
temporal structure of the real patterns. Nevertheless, automated 
parameter optimization techniques result in disparate parameter 
configurations which almost equally adjust to experimental data. 
The robustness of each GA-adjusted configuration was evaluated 
in this study. In particular, the reproducibility of the patterns was 
tested by adding disturbances to the model inputs in terms of inten-
sity and duration.
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A mechanism that controls the generation of neural spikes and, there-
fore, how information is encoded in biological systems is the neu-
ral threshold. Some studies have pointed out that neural threshold 
dynamics could cause certain emerging properties, like the regulation 
of the sensitivity of neurons [1]. Previous research on the locust olfac-
tory system showed that Kenyon Cells (KCs) in the mushroom body 
use sparse coding to represent the odorants that arrive at the sys-
tem [4] and that there is variability in the sensitivity of these neurons 
towards the input they receive [2].
To study the implications of this hypothesis, we have used the locust 
olfactory system model presented in [3], which includes a learning 
algorithm capable of finding the best neural threshold distribution for 
KCs in order to resolve a classification problem. The model also imi-
tates the effects of the inhibition KCs receive from the giant GABAer-
gic neuron [5] through an activity regulation term. We have examined 
the threshold distributions found by the algorithm for Gaussian 
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patterns of two different complexity levels, according to the measure 
developed in [1]: (i) Gaussian patterns with moderate noise (easier to 
classify) and (ii) Gaussian patterns with high noise (more difficult to 
classify).
We have found that the distributions adjusted by the learning algo-
rithm are always heterogeneous and that there is a relationship 
between the complexity of the patterns and the ratio between gen-
eralist neurons (lower thresholds) and specialist ones (higher thresh-
olds). When the classification problem is easy, the solution found by 
the learning algorithm contains a majority of generalist neurons with 
lower thresholds (3.33 ± 1.95 arbitrary units in the model), while, 
when complexity is high, specialist neurons with higher thresholds 
(9.52 ± 2.84) predominate after the learning process.
A plausible explanation to this behavior is that, as complexity 
increases, using sparse coding to separate the patterns of different 
classes is more advantageous. This is why a greater amount of spe-
cialist neurons that only respond to certain inputs are preferred. This 
is also consistent with previous studies where neural thresholds were 
estimated by a brute-force search algorithm [1]. The results obtained 
show the important influence of neural threshold in order to regulate 
neural sensitivity and provide energetic efficient ways of encoding 
information like sparse coding, which could be potentially applied to 
artificial neural networks.
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Accurate population models are needed to build very large-scale 
neural models. Nevertheless, their derivation is difficult for realis-
tic networks of neurons, in particular when nonlinear properties are 
involved such as conductance-based interactions and spike-frequency 
adaptation. Here, we consider such models based on networks of 
Adaptive Exponential Integrate and Fire excitatory and inhibitory 
neurons. Using a Master Equation formalism, we derive a mean-field 
model of such networks and compare it to the full network dynam-
ics. The mean-field model is capable to correctly predict the average 
spontaneous activity levels in asynchronous irregular regimes similar 
to in vivo activity. It also captures the transient temporal response of 
the network to complex external inputs. Finally, the mean-field model 
is also able to quantitatively describe regimes where high and low 
activity states alternate (UP-DOWN state dynamics), leading to slow 
oscillations. We conclude that such mean-field models are “biologically 
realistic” in the sense that they can capture both spontaneous and 

evoked activity, and they naturally appear as candidates to build very 
large-scale models involving multiple brain areas.
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The cerebral cortex is organized in a hierarchical modular (HM) way, 
from cellular microcircuits at the lowest level to cortical areas at the 
intermediate level to brain regions at the highest level. The effect of 
this complex structure on activity propagation across its multiple spa-
tial scales is still not well understood. Here, we use simple HM spiking 
network models to study information transmission (IT) in these net-
works as a function of two parameters, hierarchical level H of the net-
work, which determines the number of modules, and overall strength 
J of synaptic coupling, and show that there is an optimal range of H 
values which maximizes IT. We start with a random network of N = 217 
neurons connected with probability 0.01. The ratio of excitatory to 
inhibitory neurons is 4:1. Neurons are described by the LIF model with 
parameters as in [1]. The arrival of a synaptic input causes an instan-
taneous postsynaptic voltage increment J (excitatory synapse) or −gJ 
(inhibitory synapse). We fix g = 5, so synaptic strength is parameter-
ized by J (in the range (0,1]). We create HM networks from the random 
network using the same scheme as in [2], so networks with hierarchi-
cal level H have 2H modules. We considered networks with H in the 
range from 1 (2 modules) to 9 (512 modules). We simulated networks 
generated by all combinations of parameters (H,J) in their respective 
ranges for simulation times of 2 sec. We quantified IT in the networks 
by the mean transfer entropy (TE) between firing rates of adjacent 
modules [3]. Our simulations show that for each value of J there is 
always a single value of H that optimizes IT: TE increases with H up 
to a certain value of H, and then decreases as H increases further on. 
The H values that maximize IT are always in the range 5-7. So, for the 
networks considered by us the number of modules that maximize IT 
is neither too small nor too large. We observed that the increase of IT 
caused by the increase of H is associated to an increase in the cross-
correlation of the spike trains of network neurons. So, we propose the 
following mechanism to explain why there is an optimal intermediate 
range of H values for IT in the network: while H is below the optimal 
range, each increase in H causes modules to fire in a more correlated 
way; but after H passes the optimal range, each further increase in 
H causes modules to behave more independently from each other, 
gradually decreasing inter-modular communication. We also observed 
that for networks with their H value set within the optimal range, the 
effect of varying the coupling strength J is to cause small changes in IT, 
demonstrating robustness with respect to J in this range. Our results 
suggest that there is an interplay between the topological structure 
of the cortical network and the synaptic strength level, which affects 
information transmission in the network.
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We explore a new computational procedure devised both to obtain a 
heuristic neuron model and to estimate input parameters only from a 
single voltage trace. Our proposal is based on an efficient use of artifi-
cial neural networks based on wavelets (wavenet). On one side, given 
an appropriately designed input and the resulting voltage trace, we 
obtain a black-box model that reproduces neuron’s dynamics (“iden-
tification” process); it is intended for cases where electrophysiologi-
cal exploration is discarded, but still one seeks for predictions on the 
neuron’s response under different stimuli or neighbouring activity. On 
the other side, we show how the wavenet methodology can also be 
applied to the reverse situation, that is, to provide input estimations 
from voltage traces (by means of an inverse network). We use this 
reverse procedure to estimate the synaptic input with the ultimate 
goal of estimating synaptic conductances, an active current research 
line with no complete solutions yet, see for instance [1].
The efficiency of the wavenet methodology comes from a modifica-
tion in the representation of dynamical systems by wavenets which 
decreases the number of used functions, see [2]. This approach com-
bines localized and global scope functions in a network with a spe-
cially chosen target function.
In this communication, we focus on a proof-of-concept of the whole 
methodology instantiated by conductance-based neuron models, 
although it is clearly extendable to experimental data. We first per-
form the identification from voltage traces obtained by simulation of 

the specific neuron models. We show that, after training our network 
with biologically plausible input currents, the network is able to iden-
tify the neuron’s behaviour with high accuracy. Interestingly, the input 
currents used for training the wavenet span both quiescent and spik-
ing regimes (Fig. 1, left), thus showing the ability of identifying abrupt 
changes in the bifurcation diagram, from almost linear input-output 
relationships to highly nonlinear ones. These findings open new ave-
nues to provide heuristic models for real neurons by stimulating them 
in closed-loop experiments, using for instance dynamic-clamp.
Concerning the estimation of synaptic inputs, we train the inverse 
wavenet with voltage traces (obtained from direct wavenet) and their 
corresponding inputs. Given a voltage trace, the output of the inverse 
wavenet turns out to be the estimation of the input current received 
by the cell. In (Fig. 1), we show both estimations of the input for the 
Morris-Lecar model and the corresponding voltage reconstruction 
whose high accuracy validates the test. Note that from the synaptic 
input we can further estimate the synaptic conductances. Remark-
ably, our method overcomes typical shortcomings that are persistent 
in the literature on estimation of synaptic conductances: it works with 
a single trial and resists the presence of nonlinear currents (spiking or 
specific subthreshold currents). Apart from single experimental data, 
the proposed method can also be used for rate models and popula-
tion data.
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At the tripartite synapse astrocytes are increasingly recognized as 
major modulators of synaptic transmission. However, there are signifi-
cant gaps in our understanding of the early changes in neuronal and 
astrocyte function during reduced energy availability. In this work we 
introduce a detailed single-cell biophysical model of the glutamater-
gic tripartite synapse to study dynamics of five relevant ions during 
metabolic stress. We calibrated the model with recent experimen-
tal findings on early events of metabolic failure. The model explains 
previously unclear mechanisms of early synaptic failure and cellular 
swelling during low energy conditions, as a function of ion clearance 
pathways by the astrocyte and extracellular space. We show that 
smaller extracellular spaces correspond to higher vulnerability to met-
abolic stress. Using sensitivity and bifurcation analysis, we explain the 
transitions between physiological and pathological states, parameter-
ized by initial extracellular ratio and maximum ATPase activity. We also 
discuss key mechanisms associated with recovery from a pathological 
state upon restoring physiological conditions, thereby providing direc-
tions for future experiments.
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Fig. 1 (Up) Solid line: the original current input; light dot‑dashed line: 
estimation of current input (a mask, not explained in the abstract, has 
been applied). (Down) Voltages obtained from the direct wavenet 
mimicking a Morris‑Lecar model. Solid line: voltatge elicited by the 
original current input; light dot‑dashed line: voltatge reconstruction 
using the estimated current trace. Time step is 0.01 ms
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Cortical circuitry is shaped through ongoing synaptic plasticity. How-
ever, network models in which recurrent synaptic connections change 
via Hebbian plasticity rules are unstable: synapses become maximally 
potentiated or depressed, effectively erasing all nontrivial structure 
in the connectivity. One solution to this dilemma is to include addi-
tional mechanisms to offset Hebbian instabilities. Here we consider 
an alternative scenario in which, given constant firing rates, the rates 
of potentiation and depression are equal and opposite. Net poten-
tiation or depression only occurs when the firing rates of neurons 
covary in time. We show that standard heuristic STDP (spike-timing 
dependent plasticity) rules can have this property. Furthermore, we 
show how external time-varying signals can be used to flexibly con-
trol the network structure. As an example, neuronal assemblies can be 
strongly coupled, decoupled, or uni-directionally coupled by driving 
them with oscillatory signals with distinct phase lags. Alternatively, the 
connectivity between assemblies driven by stochastic inputs can be 
flexibly shaped via the covariance matrix of the inputs.
Recent work [1] shows that model networks with hierarchically 
organized clusters can fit all relevant connectivity statistics reported 
in slice experiments from rat cortex [2]. Our work here suggests a 
mechanism to account for the formation of such a clustered net-
work structure. Namely, when sensory stimuli drive a time-varying 
response in a network with heterogeneous feature selectivity, the 
recurrent connectivity will be shaped by the cross-correlation in the 
firing rates. Our analysis indicates that neurons with similar time-
varying response (selectivity) will form strongly interconnected clus-
ters, while the connectivity between any pair of clusters will depend 
on the cross-correlation and time-lag in the sensory drive that each 
receives. Importantly, this rewiring only occurs due to stimulus-
driven fluctuations of the neuronal activity about the baseline rates; 
constant rates result in no overall plasticity.
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Synchrony of neural oscillations is believed to play important role in 
a variety of brain functions. Too excessive or too weak synchrony is 
associated with several neurological and neuropsychiatric dysfunc-
tions. However, the synchrony in cortical and subcortical circuits 
may not necessarily stay perfect for a prolong intervals of time. This 
implies that for some intervals of time synchrony may be stronger, 
while for other intervals of time it may be weaker. Few long inter-
vals of desynchronized dynamics may be functionally different from 
many short desynchronized intervals, although the synchrony may 
be the same on the average [1].
Recent developments in time-series analysis allowed exploring the 
temporal patterning of synchrony on very short time-scales [2]. 
These methods were recently used to study neural synchronization 
in several different systems and signal types (humans and rodents, 
spikes, LFP, and EEG). All these studies had one common feature: the 
observed synchrony level was reached by potentially very frequent, 
but short desynchronizations [3, 4].
This study explores the effect of synaptic plasticity and channel 
noise on the temporal patterning of intermittent synchronization on 
short temporal scales. Small networks of a conductance-based mod-
els (of a Morris-Lecar type) are used similarly to a prior study [5], the 
neurons are connected via excitatory synapses. STDP plasticity rule 
is implemented in the model to consider the plastic effects. Chan-
nel noise is introduced con consider how noise affects the patterns 
of intermittent synchrony. with implemented STDP rule. Presence of 
oscillatory activity is confirmed via SNR criterion.
Temporal patterning of synchronization was characterized by the 
distribution of desynchronization durations. Since some level of 
phase synchronization is present, there is a preferred value of the 
phase difference. Dynamics is considered to be desynchronized, 
when the actual phase difference deviates from the preferred 
phase difference by more than a pre-selected threshold value. This 
approach distinguishes between a large number of short desyn-
chronizations, a small number of long desynchronizations, and the 
spectrum of possibilities in between even if they all yield the same 
average value of synchronization strength.
We found that both STDP plasticity and channel noise have a sub-
stantial potential in promoting short desynchronizations dynamics. 
These model-based observations fit with earlier experimental obser-
vations of the changes in the distribution of desynchronization 
durations.
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In the mammalian central nervous system, post-synaptic activation of 
ionotropic GABAA-receptors underlies a primary form of fast synaptic 
transmission. The resulting GABAA-current (IGABA), while typically 
considered inhibitory, may also be shunting or excitatory. Moreover, 
IGABA may exhibit biphasic inhibitory-to-excitatory responses medi-
ated by intracellular chloride dynamics [1]. In this computational study, 
we show that detailed consideration of GABAergic dynamics may be 
critical for understanding neurocircuit function in brain regions that 
depend heavily on GABAA synaptic transmission.
We simulated GABAergic synaptic transmission in a model of the 
substantia nigra pars reticulata (SNr). The SNr is the primary output 
nucleus of the rodent basal ganglia (BG) and receives converging 
GABAA-receptor mediated synaptic inputs from the two major trans-
mission channels through the BG, the direct and indirect pathways. 
Due to the convergence of these inputs, we predict that GABAergic 
signals to SNr will induce the range of atypical responses described 
above, depending on conditions and input properties. The details of 
these responses will be shaped by the firing rates and patterns of the 
presynaptic neurons and the short-term plasticity of the associated 
synapses. Moreover, direct pathway projections synapse on the distal 
dendrites whereas indirect pathway projections form basket-like syn-
apses around the somas of SNr neurons [2]. The functional significance 
of these synapse locations is unclear; however, due to differences in 
compartment size and the distribution of the Cl extruder KCC2, den-
dritic and somatic compartments may have different susceptibilities 
to Cl accumulation and to breakdown of the GABAA reversal potential 
(EGABA) [1]. Distinct changes in EGABA due to these factors may lead 
to significant disparities in the properties of direct and indirect path-
way synapses on SNr neurons.
To test the roles of EGABA and the Cl extruder KCC2 in shaping SNr 
responses to synaptic inputs, we constructed a novel conductance-
based model of an SNr neuron that includes dendritic and somatic 
compartments. After showing that the model’s dynamics matches 
a range of experimental findings on SNr firing patterns, we used the 
model to study the effects of [Cl]i dynamics on EGABA and short-term 
ionic plasticity. We show that GABAA- and KCC2-mediated fluctua-
tions in [Cl]i can explain many aspects of the SNr spiking responses to 
GABAergic inputs from the direct and indirect pathways. We also 
explore the predictions of our model relating to SNr activity patterns 
in functionally relevant settings involving inputs from both path-
ways. We provide a possible explanation for motor rescue in akinetic 
dopamine-depleted mice during optogenetic stimulation of indirect 
pathway subpopulations published by the Gittis lab. Integration of 
GABAA receptor-mediated synaptic inputs to somatic and dendritic 
compartments is not unique to SNr neurons; thus, these results may 
have implications for other brain regions as well.
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Several large-scale data-collection efforts have been undertaken to 
characterize different brain areas in different species, including their 
underlying neuronal composition and circuitry down to the cellular, 
synaptic and molecular levels [1, 2]. Parallel efforts also aim to develop 
neuronal circuit models incorporating this vast biological detail, to 
explain/match various features observed in vivo and in vitro (e.g., [3, 
4]). Such data-driven computer models can be used as frameworks for 
hypothesis testing and experimentation. Traditionally, comparison of 
experimental activity data and equivalent neuronal network models 
have been conducted at the level of spiking activity. Here, we aim to 
substantiate such a model by also comparing the commonly recorded 
local field potential (LFP), that is, the low frequency part of extracel-
lularly recorded potentials, and the corresponding current source den-
sity (CSD).
Here, we use a model of the mouse primary visual cortex (area V1), 
currently in development at the Allen Institute for Brain Science (that 
will be made publicly available when it has been validated). The model 
incorporates ~230,000 neurons across each cortical layer, 21 neuronal 
classes, over 100 unique cell models, and over 200 connection classes. 
~52,000 of the neurons are morphologically detailed multicompart-
ment models, while remaining neurons are single-compartment 
models. The neuron model responses were fit to in vitro experimental 
measurements [5]. The use of multicompartment neuron models facili-
tates LFP predictions using electrostatic forward modeling [6,7]. Visual 
inputs are mediated by a feed-forward, filter-based model represent-
ing the retina and lateral geniculate nucleus (LGN) V1 pathway [8]. The 
V1 and LGN models are set up with the Brain Modeling ToolKit (BMTK, 
github.com/AllenInstitute/bmtk) in Python, and simulated using NEU-
RON [9].
The experimental validation datasets are obtained using high-density 
multi-electrode arrays (Neuropixels [10]) inserted in V1 and LGN, and 
conventional laminar probes (NeuroNexus) inserted in V1. The awake, 
head-fixed mice are subjected to various visual stimuli (flashes, drifting 
gratings etc.).
We systematically compare activity observed in the V1 model with that 
recorded experimentally, at the level of spikes, LFP and CSD, for differ-
ent types of visual stimuli. We also explore the use of laminar popula-
tion analysis (LPA) [11] as a means to decompose laminar recordings of 
spikes and LFP/CSD into contributions from layer-specific populations. 
The LPA method is first validated on model output, before application 
on corresponding experimental data. By characterizing activity in mul-
tiple animals, we find which features of spiking activity, LFP CSD are 
conserved across all animals and which reflect individual variability 
and investigate whether these features are reproduced in simulations.
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The cerebral cortex exhibits a rich dynamic repertoire of activity, rang-
ing from highly synchronized states (e.g. in slow wave sleep) to desyn-
chronized states (e.g. awake). These collective phenomena are the 
product of the interaction between single neurons that are endowed 
with diverse ionic channels with complex biophysical properties. The 
study of the mechanisms that control emergent network activity in the 
cortex is often focused on synaptic properties and network connectiv-
ity. Our objective here is to further elucidate the impact of ion chan-
nels on cortical dynamics, bridging the divide between the individual 
neuron and the network. To this end, we investigated here a model 
of spontaneous activity in the form of slow oscillations (SO), which 
consist of periods of high neuronal firing (Up states) interleaved with 
periods of near-silence (Down states). SO dynamics and in particular 
Down states have been associated with activity-dependent K+ chan-
nels, such as Ca2+-dependent K+-current (KCa) and Na+-dependent 
K+-current (KNa) channels [1].
In vitro extracellular multiunit recordings were obtained from cortical 
slices under physiological conditions and bath-application of apamin, 
a KCa channel blocker. Also, in a data-based computational network 
model of Up and Down states, we parametrically varied the fraction 
of neurons—as well as their conductance—that includes KCa and 
KNa channels. Experimentally we found that properties of the net-
work, such as Up and Down state duration and the frequency of SO 
and its firing rate, were affected when KCa was partially blocked. These 
findings were also reproduced by the computational model, which 
also predicted that KNa is essential for maintaining the network in a 
bistable state. Furthermore, we found that the ionic properties of 
individual neurons become network properties through synaptic 
recurrency, such that the extracellular and intracellular recordings of 
neurons without these ionic currents are indistinguishable from those 
with them. Together our findings highlight the challenge of disen-
tangling the link between intrinsic and synaptic mechanisms derived 
from the dynamics of emergent oscillatory activity. They also suggest 
these off-periods caused by potassium currents share properties with 
those described in the brain of unresponsive wakefulness syndrome 
patients that have been found to disrupt causality and complexity [2].
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Propagating waves of cortical activity are dynamical patterns that 
occur across different brain states and are also present in unconscious 
states [1]. In this study we aimed to characterize different brain states 
characterizing the changes occurring to the spatiotemporal dynamics 
of slow-wave activity in multichannel data. During the sleep-like slow 
oscillations (SOs,<1Hz), activation waves propagate across the corti-
cal network both in vitro [2] and in vivo in anesthetized animals [3]. 
By varying the anesthesia levels, it is possible to vary the brain state 
[4]. Here, we varied the anesthesia levels without departing from the 
slow-wave activity regime. The emergent oscillatory activity ranged 
from lower (0.12 Hz) to higher (1.15 Hz) frequency for low to high 
anesthesia levels respectively. We recorded the extracellular local field 
potential (LFP) with a superficial 32-channel electrode-array placed 
on the surface of the brain of eight mice anesthetized at three differ-
ent levels. To reconstruct the spatiotemporal dynamics of propagat-
ing waves in multichannel recordings we developed a phase-based 
method. We computed the instantaneous phase at each electrode via 
the analytic signal obtained using the Hilbert transform of our time 
series, and used the latency in absolute time to a given phase crossing 
[5] to reconstruct the spatiotemporal profile of the waves across the 
space covered by the electrode grid. By considering each electrode as 
a node of a network, we estimated the synchrony at the network-level 
as a function of time by computing the Kuramoto order parameter 
[6]. We then evaluated the differences in the synchronization dynam-
ics across the different anesthesia levels. As a result, we were able to 
define the patterns of propagating activity under each anesthesia 
level, to study their dynamical evolution in time, and estimate, for each 
brain state, the overall dynamical richness and sequence predictabil-
ity. Overall, our findings allowed us to characterize the evolution of the 
cortical spatiotemporal dynamics under different brain states within 
the SO regime, revealing that the wave propagation patterns change 
together with the brain state showing higher dynamical richness and 
lower predictability in lighter anesthesia states, supporting the idea of 
an increasingly complex brain activity that varies when we move from 
deeply unconscious states towards wakefulness.
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The electrophysiological signals recorded both in the cortex and 
in the thalamus exhibit clearly distinct dynamical features during 
wakefulness and sleep, particularly during nonrapid eye movement 
(NREM) sleep, or anesthesia. The former is characterized by high fre-
quencies and low voltage activity. The latter shows high-amplitude 
slow oscillatory activity and a reduction of behavioral responses 
to sensory stimuli. However, it remains unclear how the different 
stages of sensory processing are modulated by each brain state (and 
its idiosyncratic dynamics), leading to different perceptual thresh-
olds. Recent findings have revealed that changes in consciousness 
levels correspond to changes in the interactions between function-
ally specialized brain regions [1]. Therefore, differences across brain 
states not only arise locally, but are also manifested in the effective 
connectivity among widespread cortical areas. Indeed, local dynam-
ics fail to explain differences between wakefulness and rapid eye 
movement (REM) sleep, since, at this stage, cortical activity exhibits 
wake-like dynamics but the sensory threshold is raised above wak-
ing levels similar to NREM sleep. In this study we have focused on 
natural sleep, and we have recorded cortical local field potentials 
(LFP) of rats while they naturally transitioned from wakefulness to 
sleep and vice-versa [2]. Scoring arousal levels is a time-consuming 
task that, in many laboratories, is manually performed by experts. 
Besides, the wake-sleep cycle of rodents is more fragmented than in 
humans and the presence of REM epochs is lower [3]. Here we pre-
sent a classification algorithm that can facilitate state detection in 
chronic animal experiments that last several days. Automatic scor-
ing programs that have been published to date are mainly based on 
decision trees that require threshold criteria for the choice of sleep-
wake states [4,5] or on supervised learning algorithms [6]. Here we 
present a multinomial logistic regression where the labels are manu-
ally assigned based on visual inspection of the LFP, EMG and behav-
ior. Freely-moving rats are monitored during the awake-sleep cycle 
until enough data is collected to train the classifier and to accu-
rately predict (> 80%) wake, REM and NREM. Rats were implanted 
in the visual, motor, prefrontal, parietal association cortex and the 
auditory cortex. The animal movement is videotaped to later track 
its position within the cage. We found that power spectral density 
ratios of beta-gamma and theta-delta in 5-s epochs can be success-
fully used as predictors to classify the three states (A). Training of the 
classifier is performed offline and individually for each subject. The 
optimal weights are then used for an online detection of states. We 
tested the performance of the classifier under its different operation 
modes: homogeneous versus heterogeneous weighting of the LFP 
channels, EMG versus video tracking (B and C), different temporal 
epochs and different choices of predictors. In summary, we present 
a fully-characterized classifier, which can use different neuronal/
behavioral signals for detecting awake, REM and NREM. Moreover, 
reliable online identification of brain states allows simultaneous 
computations of effective connectivity estimates across the record-
ing sites, which provide an online large-scale description of those 
states.

Fig. 1 Characterization of a single rat’s LFP, EMG and location. a 
2D map of the predictors, theta-delta ratio versus beta-gamma 
ratio, computed over 5s-windows of the averaged LFP (upper 
plot). The standard deviation of the EMG computed in the same 
temporal window as a function of the ratios of the predictors 
(bottom plot). b Trajectory of the rat during a recording session 
obtained from a video trac
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Slow oscillations (SO) of neural activity emerge spontaneously in the 
neocortex during functionally-disconnected brain states (e.g. deep 
anaesthesia or slow-wave sleep). A multi-scale phenomenon con-
sisting of the alternation (ca. 1 Hz) of high- (UP) and low-responsive 
(DOWN) periods, the SO propagate spatio-temporally as a travelling 
wave, which reveals properties of the underlying cortical network. 
Even though the SO would act as its preferred global state, the net-
work can be driven into other richer dynamical states by neuromodu-
lation, inducing for example the transition from sleep to wakefulness. 
How such a highly-synchronized state (the SO) may give rise sponta-
neously to an awake-like interdependent state is something that some 
modelling approaches have partially addressed. Yet identifying the 
way the network dynamics spatially evolve when the SO breaks down 
is still an open question. For example, when the SO weakens, faster 
and irregular oscillations appear interleaved with asynchronous peri-
ods, whose dynamics are poorly known.
We analysed extracellular multi-electrode array recordings that were 
carried out on acute slices from the ferret’s V1 cortex. The slices exhib-
ited a robust SO activity and were then subjected to neurochemical 
modulations aimed at eliciting an awake-like state (AS). In order to 
capture population firing rates of the nearby neuronal ensembles, we 
proposed an enhanced estimation of the multi-unit activity (MUA). We 
suggest that locally sampled probability densities of the MUA reflect 
the state of the network at different spatial and temporal scales, within 
and beyond the SO state.
By determining shape parameters of these MUA densities, we provided 
a data-driven definition of UP/DOWN states from a neuronal-ensemble 
perspective, without further assumptions on their properties. While 
DOWN, and in general, low-activity states are well fitted by gamma 
probability densities, residual upper-tail subdensities account for UP-like 
higher-activity states. Thus, our new technique allows to identify alter-
nating states other than UP/DOWN when the SO regime weakens.
Furthermore, the embedding of the MUA densities in a suitable met-
ric space enabled us to compare the network activity at different 
periods and locations. Our approach reveals the emergence, during 
the AS, of a particular spatial clustering pattern that seems to follow 
the laminar structure of the slice. More generally, we have devised 
a theoretical procedure to evaluate the propagation of the MUA 
densities based on cross-correlation analyses of the Kolmogorov-
Smirnov statistic. This way we could capture transient spatiotempo-
ral changes in the underlying distributions.
This study has again confirmed that the SO propagate longitudinally 
across the network in waves, although in a rather more complex 
way as previously reported. Interestingly, our method can also be 
applied to the AS case, in which a propagating wave-front cannot 
be identified like in the SO regime. Preliminary results suggest that, 
during the AS, UP-like bursts of activity emerge and propagate amid 
short asynchronous periods.
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High cognitive functions critically rely on the ability of the brain to 
sustain complex activity patterns that are characterized by an opti-
mal balance between functional integration and segregation in cor-
tical circuits, a feature also known as brain complexity [1, 2]. Over 
the last decade, different metrics have been proposed to assess 
brain complexity based on the analysis of graph theoretical prop-
erties of spontaneous activity [1] or on the algorithmic complexity 
of perturbation-evoked responses [2]. These indices have proven to 
discriminate different levels of consciousness both in humans and 
animals.
Here, we aim to investigate the temporal fading of the perturbation-
evoked high-correlation states in cortical circuits as a function of the 
level of consciousness. To this end, three levels of anesthesia (deep, 
mid and light) were selectively induced in mice by means of vary-
ing isoflurane levels (2% to 0). Spontaneous extracellular LFP activity 
was recorded with 32 channel multielectrode arrays covering almost 
entirely the right hemisphere (Fig. 1A). We subsequently delivered 
electrical stimulation through a bipolar electrode aimed at the infra-
granular layers of the frontal or occipital cortex at a distance of 500 
µm from the edge of the electrode array. In all cases, we computed 
the time course of the correlation between the broadband LFP signals 
using a sliding window approach (width of 200 ms and step of 100 
ms). For each window, we extracted the functional integration as pro-
posed in [1] (Fig. 1B).
The average integration of spontaneous activity was found to be 
higher in lighter anesthesia, in accordance with previous studies [3]. 
We then analyzed the effect of the electrical stimulation, finding a sig-
nificant increase of the integration after stimulation in all cases. Prelim-
inary results show that the duration of the stimulus-evoked response 
in the network depends on the level of anesthesia. In particular, we 
showed that the recovery time, defined as the time it takes for the net-
work integration to reach stable values after the stimulus is delivered, 
is larger in states of light anesthesia, suggesting a more complex pro-
cessing of the delivered stimulus.
Overall, we proposed a novel measure to define brain complexity 
based on the recovery time of the brain network integration after a 

Fig. 1 a Location of the electrodes used for the recordings (left 
hemisphere, from the top when placed on the brain). b FC matrices 
and global integration are computed across time using a sliding 
window approach. Black bars correspond to stimulations. c Stimulus‑
evoked integration is averaged across trials (blue) and the recovery 
time, defined as the time it takes for the network integration to reach 
stable values, is extracted (marked in red)
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perturbation is delivered, being this time significantly longer in light 
than in deep anesthesia.
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Receptive fields of V1 simple cells in mammalian visual cortex are 
characterised as localized, oriented bandpass filters that respond to 
oriented contrast edges of a specific spatial scale in a particular area 
of the visual fields. Olshausen and Field [1] showed that V1 receptive 
fields can be obtained with an algorithm that learns basis functions 
from natural image patches by maximising sparsity whilst prioritising 
the preservation of information. However, Olshausen & Field’s algo-
rithm is lacking biorealism on several fronts. First, it uses static image 
patches, whereas real brain activity is dynamic and input is constantly 
changing. Second, it assumes a rate code, assigning real numbers to 
the activity of neurons, instead of timed events as in spike trains.
Our goal is to develop a spiking network that employs event-based 
synaptic update rules to learn dynamic receptive fields. Input to 
our system will be provided by an event-based camera that trans-
mits “spikes” whenever the brightness at a pixel crosses a threshold 
(Dynamic Vision Sensor (DVS), Inivation, Zurich, Switzerland) [2]. In 
addition, we aim to learn receptive fields in real-time by leveraging the 
neuromorphic SpiNNaker platform to accelerate the spiking network 
simulation [3]. We are using a balanced E/I network with spike-timing 
dependent plasticity at inhibitory synapses, with 800 excitatory (E) 
neurons and 200 inhibitory (I) ones. The first step was to parameterise 
the network in the asynchronous-irregular (AI) regime to ensure it is 
reactive to input [4]. We achieved an AI state, even under temporally 
dynamic input. The next step was to expose the network to defined 
stimuli where the ground truth is known for the sparse basis functions 
that the network is supposed to learn. To this end, we generated sur-
rogate data consisting of oriented spike fronts travelling across the 
receptive field at a set of predefined orientations, mimicking what the 
DVS sensor would output in response to moving oriented lines.
We exposed the network to up to 1 hour of such oriented contrast 
edges, with 5 edges per second, and orientation picked randomly 
from one of 0, 45,90, 135, 180, 225, 270 and 315 degrees. For each 
spike in the E population, we computed the average reverse correla-
tion with each input pixel at different time points. Although some 
cells clearly showed a preference to certain orientations and angles, 
no clear pattern has yet emerged that would demonstrate learning of 
V1-like receptive fields (Fig. 1). Further work will thus concentrate on 

exploring the parameter space of the network and learning rule, as 
well as the presentation statistics of the stimuli to support receptive 
field formation. Ultimately, the network will ideally learn V1-like recep-
tive fields from long exposure to DVS recordings. Our results will hope-
fully aid further understanding of the mechanisms of receptive field 
emergence and efficient event-based vision in general.
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A basic time scale in neural dynamics from single cells to the net-
work level is the membrane time constant—set by a neuron’s input 
resistance and its capacitance. Interestingly, the membrane capaci-
tance appears to be more dynamic than previously assumed with 
implications for neural function and pathology. Indeed, altered 
capacitance has been observed in reaction to neural swelling [1], but 
also in ageing and Alzheimer’s disease [2]. Importantly, according 
to theory, even small capacitance changes can induce a qualitative 
switch in spike generation and affect neuronal signal processing, 
e.g. increased network synchronization [3]. In experiment, robust 
methods to modify the capacitance of a neuron have been missing. 
Here, we present the capacitance clamp—an electrophysiological 
method for capacitance control based on an unconventional appli-
cation of the dynamic clamp.

Fig. 1 Reverse correlated activity receptive fields of 8 selected neu‑
rons after 1 minute, 15 minutes, 30 minutes, 45 minutes and 1 hour 
of being exposed to randomized oriented contrast edges. The color 
represents the number of correlated spikes that occurred in the input 
population during 4ms before any spike of the selected neuron over 
a simulated minute
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In its original form, dynamic clamp mimics additional synaptic or ionic 
conductances by injecting their respective currents [4]. Whereas a 
conductance directly governs a current, the membrane capacitance 
determines how fast the voltage responds to a current. Accordingly, 
capacitance clamp mimics an altered capacitance by injecting a 
dynamic current that slows down or speeds up the voltage response 
(Fig 1 A). For the dynamic current, the experimenter only has to spec-
ify the original cell and the desired target capacitance. In particular, 
capacitance clamp requires no detailed model of present conduct-
ances and thus can be applied in every excitable cell.
To validate the capacitance clamp, we performed numerical simu-
lations of the protocol and applied it to modify the capacitance of 
cultured neurons. First, we simulated capacitance clamp in conduct-
ance-based neuron models to verify altered capacitance. Second, 
in cultured hippocampal neurons from rats, we could reliably con-
trol the capacitance in a range of 75 to 200% of the original capaci-
tance and observed pronounced changes in the shape of the action 
potentials: increasing the capacitance reduced after-hyperpolariza-
tion amplitudes and slowed down repolarization. Third, we studied 
the saddle-node loop (SNL) bifurcation, a particular switch in spike 
onset generation that leads to stuttering and increased network 
synchronization [3]. Our preliminary results indicate that we may 
reversibly shift neurons over this SNL point via capacitance clamp 
(Fig. 1 B, C). With robust control over capacitance, we aim next to 
map how close different neuron types are to this critical switch.
To conclude, we present a novel tool for electrophysiology: the 
capacitance clamp provides reliable control over the capacitance 
of a neuron and thereby opens a new way to study the temporal 
dynamics of excitable cells.
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We have introduced [1] and discussed the synchronization properties 
[2, 3] of a circuit containing superconducting Josephson junctions that 
in many respects mimics the dynamics of biological neurons. In this 
study, we explore computationally whether our “Josephson junction 
neuron” can reproduce the different dynamical behaviors tabulated by 
Izhikevich [4] and reproducible by his model. For different choices of 
the circuit and input current parameters, our model can indeed repro-
duce several of these behaviors like phasic spiking, tonic spiking, and 
tonic bursting, as shown in (Fig. 1), as well as others. This suggests that 
Josephson junction neurons could be constructed to simulate differ-
ent classes of biological neurons. As these circuits have picosecond-
scale dynamics and operate fully in parallel, they would potentially 
allow for much faster simulation of neural circuits and brain regions 
than is achievable with conventional computers, even with massively 
parallel architectures.
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Fig. 1 The capacitance clamp. A With the original cell and the 
desired target capacitance (Cc, Ct), the dynamic clamp adjusts the 
current I_dyn to mimic the change of capacitance. B Spike trains 
of a cultured neuron: original at Cc = 115pF (black) and clamped at 
Ct = 150pF (blue). More irregular spiking suggests passing of the SNL 
bifurcation. C Spike shapes from B (l.) and capacitance clamp currents 
(r.)

Fig. 1 Response (blue) of simulated Josephson junction neuron to 
current step (red) for different circuit parameters, showing phasic 
spiking, tonic spiking, and tonic bursting. DC bias current is used for 
first two cases, AC for third. Membrane potential is represented by 
derivative of quantum‑mechanical phase across one of the junctions 
(which produces a voltage). All quantities nondimensionalized
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Local field potential (LFP) is electrophysiological signal that is used as a 
marker of cognitive processes and malfunctioning of neural structures 
in neuroscience. LFP is formed by currents and dipoles, and measured 
with array electrodes. In other words, they are created by the effect of 
synaptic currents due to the synaptic inputs to the dendrites, regard-
less of the neurons producing the spikes. The measurement results are 
generally interpreted using frequency analysis, as in EEG data [1, 2].
In order to obtain these empirical results with computational models, 
there has to be a method to calculate the LFP. Although there are some 
methods given in the literature, these methods are mainly focused on 
networks composed of morphologically modeled neurons [3, 4]. While 
some methods are designed for point neurons, they also try to model 
LFP data by segmenting the neurons [5, 6].
Here, we focus on obtaining results from computational models that 
can be compared with empirical LFP data. The computational model 
is formed as a spiking neural network consisting of point neurons. 
The spiking point neuron model is created in 3 dimensions. A random 
coordinate is assigned for each neuron that corresponds to their physi-
ological dimensions. The distance of the neurons from the electrodes 
placed in the structure is determined. Then based on the distance of 
each neuron to electrodes and the total synaptic current for each neu-
ron LFP values are obtained.
The proposed model for calculating LFP is tested on a computational 
model of nucleus accumbens where the role of dopamine from ventral 
tegmental area on LFP is investigated. The LFP and the frequency anal-
ysis related are given in (Fig. 1). As it can be followed from beta band is 
observed in resting state as mentioned in literature [7, 8].
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The hierarchical structure of the cortex raises the question how plastic-
ity in the brain is able to shape such a structure in the first place. The 
distant cousins of biological neurons, deep abstract neural networks, 
are commonly trained with the backpropagation-of-errors algorithm 
(backprop), which solves the credit assignment problem for deep 
neural networks and is behind many of the recent achievements of 
deep learning. Despite its effectiveness in abstract neural networks, 
it remains unclear whether backprop might represent a viable imple-
mentation of cortical plasticity. Here, we present a new theoretical 
framework that uses a least-action principle to derive a biologically 
plausible implementation of backprop.
In our model, neuronal dynamics are derived as Euler-Lagrange equa-
tions of a scalar function (the Lagrangian). The resulting dynamics can 
be interpreted as those of multi-compartment neurons with apical 
and basal dendrites, coupled with a Hodgkin-Huxley-like activation 
mechanism allowing neurons to phase-advance their somatic input 
and hence undo temporal delays introduced by somatic and dendritic 
low-pass filtering. We suggest that a neuron’s apical potential encodes 
a local prediction error arising from the difference between top-down 
feedback from higher cortical areas and bottom-up predictions repre-
sented by activity in its home layer. This computation is enabled by a 
stereotypical cortical microcircuit, projecting from pyramidal neurons 
to interneurons back to the pyramidal neurons’ apical compartments. 
When a subset of output neurons is slightly nudged towards a target 
behavior that cannot be explained away by bottom-up predictions, an 
error signal is induced that propagates back throughout the network 
via feedback connections. By defining synaptic dynamics as gradient 
descent on the Lagrangian, we obtain a biologically plausible plasticity 
rule that acts on the forward projections of pyramidal neurons in order 
to reduce this error.
The presented model incorporates several features of biological neu-
rons that cooperate towards approximating a time-continuous version 
of backprop, where plasticity acts at all times to reduce local predic-
tion errors, thereby minimizing a global output error or cost function. 
Finally, the model is not only restricted to supervised learning, but can 
also be applied to unsupervised and reinforcement learning schemes, 
as demonstrated in simulations.
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We demonstrate that a randomly connected attractor network with 
dynamic synapses can discriminate between similar general basis for 
neural computations in the brain. The network contains units rep-
resenting assemblies of pools of neurons, with preferentially strong 
recurrent excitatory connections rendering each unit bi-stable. Weak 
interactions between units leads to a multiplicity of attractor states, 
within which information can persist beyond stimulus offset. When a 
new stimulus arrives, the prior state of the network impacts the encod-
ing of the incoming information, with short-term synaptic depression 
ensuring an itinerancy between sets of active units. We assess the abil-
ity of such a network to encode the identity of sequences of stimuli, 
so as to provide a template for sequence recall, or decisions based on 
accumulation of evidence. Across a range of parameters, such net-
works produce the primacy (better final encoding of the earliest stim-
uli) and recency (better final encoding of the latest stimuli) observed 
in human recall data and can retain the information needed to make 
a binary choice based on total number of presentations of a specific 
stimulus. Similarities and differences in the final states of the network 
produced by different sequences lead to predictions of specific errors 
that could arise when an animal or human subject generalizes from 
training data, when the training data comprises a subset of the entire 
stimulus repertoire. We suggest that such networks can provide the 
general-purpose computational engines needed for us to solve many 
cognitive tasks.
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Mosquitoes are known for their tendency in selecting host species as 
certain individuals are preferred over the other. How do mosquitoes 
determine and alter their host preferences? One important factor that 
affects host selection is olfaction, and requires a key neurotransmitter, 
dopamine, that enforces learning [1].
The major goal of this study is to investigate how dopamine modu-
lates the neuronal activity in Aedes aegypti mosquitoes. Superfus-
ing dopamine on the olfactory center of the brain, the antennal lobe 
(AL), is known to modulate the activities of neurons and increase the 
ability to learn new hosts. In our work, we process the multi-neuronal 
recordings of the projection neurons (PNs) in the AL under three differ-
ent phases: before (P1), during (Dop), and after (P2) the superfusion of 
dopamine. The firing-rates of PNs were recorded for six different odor 
stimuli for several trials in each of the phases.
The dynamics of PNs projected to lower dimensional odor space reveal 
converging to fixed points as in [2, 3]. Comparison of the locations of 
the fixed points in each of the phases indicates that the superfusion 
of dopamine causes fixed points to dislocate indicating that dopa-
mine has longer-term effects on the AL neural encoding (Fig. A right). 
Furthermore, dislocation of the fixed point appears to be specific for 
each odor. In order to investigate how dopamine modulation could 
rearrange neural connectivity in the AL, we employ a network model 
which infers the connectome of neurons in the AL from recorded data 

[3]. In particular, the model that employs lateral inhibition where both 
inhibitory and excitatory neurons receive common input and interact 
to mediate the response of the PNs. We then further extend the neu-
ral dynamics model and propose a new learning rule to accommodate 
the roles of dopamine neurons.
In particular, we assume that the connectome matrices are time-invar-
iant during the phase when no learning is occurring (P1) and use the 
representation of the fixed point in an orthogonal odor space to cali-
brate the connectivity matrices [3, 4]. We then examine recordings in 
the Dop phase and re-calibrate the inhibition matrix B while keeping 
the other matrices fixed. The calibration is using the new dynamics to 
the fixed point in the Dop phase as the target. Specifically, we enforce 
a learning rule that at each time point takes the difference between 
P1 and Dop dynamics and solves a convex optimization problem for 
the elements of B. We observe that modulation of the elements of B 
oscillate during and after the stimulus in the Dop phase with the most 
salient burst observed between 500ms and 600ms These oscillating 
patterns are consistent throughout all neurons, which suggests that 
superfusion of dopamine has global impact on the neural population.
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Caenorhabditis elegans (C. elegans) is known to perform aerotaxis, 
behavior in which locomotion is modulated according to the composi-
tion of air in the environment. Sensory neurons related to O2aerotaxis 
have been proposed through experimental research [1]. In particular, 
it was shown that the sensory AQR neuron, located in the anterior part 
of the body, is a possible trigger for changing oxygen level. Here we 
use a recently introduced in-silico model, which emulates nervous 
system responses to stimuli [2] and simulates the body to investigate 
functional pathways of O2sensation [3]. Our approach is to introduce 
neural stimuli continuously varying according to the location of the 
body. Specifically, we develop spatial gradients of AQR stimulation 
proportional to the level of O2concentration. We utilize such stimuli 
to search for downstream neurons which play a key role in mediating 
O2aerotaxis response.
We first validate that when AQR gradient is placed as an obstacle 
for forward locomotion the stimulus changes the forward bearing 
causingC. elegansto steer away from the gradient, as observed in 
experiments (see Fig. 1). Consequently, we propose a computational 
ablation approach for examination and testing of the effective func-
tionality of sensorimotor neural pathways, such as pathways from AQR 
to motor neurons. In particular, we propose aCombinatorial Neighbor 
Ablation (CNA) algorithm, in which all possible combinations of neu-
rons connected via synaptic or gap connection to a set of neurons is 
enlisted and ablation is performed for each combination. We identify 
64 of such combinations for the AQR neuron. Application of CNA to 
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the AQR neuron allows us to sort pathways into strongly or loosely cor-
related with AQR response. Indeed, the analysis identifies a command 
neuron, PVPL as an interneuron that has the highest correlation with 
AQR induced oxygen sensation, i.e., its ablation masks motor response 
driven by oxygen sensation functionality. In addition, we identify alter-
native sensorimotor pathways from AQR which include neurons (PVPR, 
DVC, AVKL). Upon triple ablation of these neurons, the ventral turning 
inside the AQR gradient is significantly diminished.
With this study we show that C. elegans in-silico model in conjunction 
with spatial stimulation and systematic ablation can assist in identi-
fying behavioral functional pathways and circuits, even in a complex 
model that incorporates connectomics, dynamics and body postures, 
exhibiting intricate behaviors such as aerotaxis.
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Sequence representation is an essential part of many kinds of learn-
ing and memory, and as such there may be common design principles 
which describe the circuits that mediate it. My work proposes a sub-
strate for such representations, via a biophysically realistic network 
model that can robustly learn and recall sequences of variable order 
and duration. This work is in agreement with recent experimental 
results, which have shown that visual temporal sequence represen-
tations may be stored and recalled by local neural circuits in visual 
cortex. While this model is designed specifically to account for these 
observations in V1, it can also be thought of as a general circuit model 
for sequence representation, regardless of cortical modality.
The network consists of spiking leaky-integrate-and-fire model neu-
rons placed in a modular architecture designed to mimic cortical micr-
ocolumns. The network is stimulated from an input layer designed to 
mimic LGN inputs. Learning is performed via competitive LTP and LTD 
like “eligibility traces”, which hold a history of synaptic activity before 
being converted into changes in synaptic strength upon the presen-
tation of reward. This short term synaptic history solves the temporal 

credit assignment problem that arises from traditional Hebbian rules. 
A recent study has found evidence that these eligibility traces indeed 
exist and are consistent with the theoretically proposed mechanism 
that can be used to associate distal events.
Before training, the network only produces naïve responses to incom-
ing stimuli, and contains no memory of any particular sequence. 
During training, a particular temporal sequence of visual stimuli is 
repeatedly presented to the network. After training, presentation of 
only the first element in that sequence is sufficient for the network to 
recall its entire learned representation of the sequence (Fig. 1). This 
capability provides a sufficient framework for biologically realistic 
sequence based learning and memory.
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Consideration of interneuron subtypes is critical to understanding 
brain function and behavior [4]. However, deciphering the contribu-
tions of intrinsic cell properties and cell firing to network population 
output and behavior is extremely challenging given the large diversity 
of cell types, connectivity rules, and ion channels present in neurons. 
Certain interneuron subtypes synapse only onto other interneurons, 
exerting disinhibitory control over circuits [1]. One such example is 
work from [6], where photoactivation of interneuron specific 3 (IS3) 
cells in CA1 hippocampus at a 10 Hz frequency was sufficient to con-
trol the spiking of oriens lacunosum moleculare (OLM) cells in vitro. 
This frequency is notable since it is in the theta frequency range, a 
brain rhythm important in memory [2], which OLM cells are known to 
be phase-locked to in vivo. It remains unclear whether this finding is 
due to direct connections from IS3 cells, resultant activity from other 
interneuron types in CA1 (e.g. feedforward inhibition/excitation), or 
contributions of post-inhibitory rebound (PIR)-related currents in OLM 
cells. To explore this question computationally, we first used BluePy-
Opt [7] and the neuroscience gateway [5], to develop new, spiking 
multi-compartment models of OLM cells that were constrained by 
morphologies and electrophysiologies from the same cell. We then 
used these models to simulate the in vitro conditions in [6]. For this 
we chose three different presynaptic populations to simulate a vir-
tual network on our OLM cell models: IS3 cells, bistratified cells, and 
local pyramidal cells. Synaptic conductance for each compartment in 
the model were fit to approximately match the current amplitudes 
seen experimentally for these inputs to OLM cells. We first tested the 
effect of IS3 cell inputs alone on the OLM cell models spiking across 
a range of frequencies and numbers of synapses. While IS3 cell inputs 
alone could time OLM cell spiking, this was preferentially at lower 
spike frequencies with larger numbers of synapses. We also did not 

Fig. 1 Left: Diagram of O2 sensation circuit induced by AQR sensory 
neuron compiled from connectome and circuitry identifies from 
vulnerability analysis of Kim et al [4]. Middle: Snapshots of baseline 
forward locomotion. Right: Snapshots of forward locomotion with 
the presence of a spatial AQR gradient

Fig. 1 Top, representation of stimuli presented during training (dot‑
ted boxes) and after training (solid boxes). Bottom, time averaged 
firing rates of neuronal subpopulations in response to only stimulus 
1 (after training). The network recalls the entire learned sequence 
1‑2‑3‑4
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observe any substantial contributions of PIR-currents relative to other 
intrinsic properties in the OLM cell models, suggesting that OLM cell 
spiking was timed through spike suppression rather than PIR. We next 
looked at the effects of adding feedforward inhibitory inputs, which 
generated similar results to having IS3 cell inputs alone. Given these 
results, we also added feedforward excitatory inputs, and found much 
more stereotyped spiking in the OLM cell models, similar to the experi-
mental results obtained by [6]. Thus, our simulations lead us to predict 
that in vitro photoactivation of IS3 cells causes a feedforward disinhibi-
tion of pyramidal cell spiking and recurrent excitation onto OLM cells, 
which leads to more phase-locked OLM cell spiking. Our computa-
tional studies help untangle interacting inhibitory and excitatory inter-
actions controlling the various cell subtypes. Moving forward, these 
interactions can be examined in in vivo-like scenarios [3].
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Scaffolds and patterned substrates are among the most success-
ful devices to tailor the connectivity between neurons in culture. 
We compare simulations of networks with known ground truth 
topology to inferred functional networks from experimental data 
obtained by calcium fluorescence imaging of in vitro cultures.
We model axonal growth as a random walk where connections are 
established with a given probability where an axon crosses the den-
dritic tree of another neuron as in [1]. Physical obstacles have been 

observed to guide the growth of neurites in experiments [2], axons 
tend to follow rounded obstacles.
The impact of obstacles and their shape on connectivity of the net-
work is examined. Fig. 1 illustrates that box like scaffolds reduce the 
in-degree and enhance the clustering coefficient. The effect of an 
array of obstacles is discussed and the results are compared to those 
obtained for cultures of varying density [3].

Acknowledgements: This research is part of MESOBRAIN. MESO-
BRAIN has received funding from the European Union’s Horizon 
2020 research and innovation programme under grant agreement 
No 713140. [4]

References
1. Orlandi JG, Soriano J, Alvarez‑Lacalle E, et al. Noise focusing and the 

emergence of coherent activity in neuronal cultures. Nature Physics 2013, 
9(9), p.582–590.

2. Tibau E, Bendiksen C, Teller S, et al. Interplay activity‑connectivity: dynam‑
ics in patterned neuronal cultures. In AIP Conference Proceedings 2013, 
1510(1), p. 54–63.

3. Martorell ET, Ludl AA, Rudiger S, et al. Neuronal spatial arrangement 
shapes effective connectivity traits of in vitro cortical networks. IEEE Trans-
actions on Network Science and Engineering 2018, https ://doi.org/10.1109/
tnse.2018.28629 19.

4. The MesoBrain Project, http://www.mesob rain.eu.

P289 
Application of control theory to neural learning in the brain
Catherine  Davey1, David  Grayden1, Anthony  Burkitt1, Bastian  Oetemo2, 
Artemio Soto‑Breceda1

1University of Melbourne, Department of Biomedical Engineering, 
Melbourne, Australia; 2University of Melbourne, School of Computing 
and Information Systems, Melbourne, Australia
Correspondence: Catherine Davey (cedavey@unimelb.edu.au)  
BMC Neuroscience 2019, 20(Suppl 1): P289

Neural plasticity describes the process by which the brain learns, pri-
marily in response to environmental inputs. Supervised multisen-
sory learning in the biological context can be considered a subset 
of plasticity that describes how one sensory system trains a second 
sensory modality to achieve a specific goal [1]. This sensory integra-
tion requires multimodal neurons and is often performed in higher 
processing areas. Consequently, while there are several small-scale 
examples of supervised learning, more general cases require a com-
plex system of interconnected neurons from multiple brain regions 
[2]. Supervised learning in artificial neural networks has historically 
been modelled using iterative gradient evaluation techniques [3], typi-
cally using backpropagation of error through the network to enable 
local updating of synaptic connection strengths. In biological neural 
systems, this assumes that the network can propagate the error back-
wards, which is a significant assumption that is not biologically plausi-
ble at the level of individual synapses [4].
In this work, we pose supervised learning within a control framework, 
with the primary objective to capitalise on the success of control the-
ory in managing large scale, complex systems [5]. We design and build 
a biologically plausible supervisory system that is scalable in both size 
and complexity. Feedback control, in particular, has many desirable 
properties, such as the ability to converge to a specified output, sta-
ble performance in a noisy environment, and a framework for model-
ling complex systems [6]. We develop a proof-of-concept for the use of 
control theory in supervised multi-modal learning, showing how the 
visual system can ‘teach’ the auditory system to identify the direction 
of a sound source, demonstrating superior performance to existing 
techniques. Our prototype system learns to transform the interaural 
time difference (ITD) (delay between the arrival of a sound to the left 
and right ears [7]) into an estimate of angle to the source. The audi-
tory feature map generated from the ITD is transformed to a source 
angle feature map in the superior colliculus, though exactly how this is 
achieved is the subject of ongoing research.

Fig. 1 Heatmaps of in‑degree (left) and clustering coefficient (right) 
for a simulation of 2500 neurons in a circle of radius 2.0 mm with two 
4x4 scaffold arrays
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The primary challenge in employing control theory for biological 
neural networks is in the calculation of the control signal. In a control 
system, the controller calculates the optimal signal to be fed into the 
system to minimise the difference between the system’s output and 
the supervisor’s output. The controller is limited in the operations 
available to it to ensure it is feasibly implemented in a neural network. 
In this work, we show that it is possible to design a controller that 
complies with the requirements of the control system as well as being 
biologically feasible. Application of control theory has the potential to 
resolve complexity limitations inherent in current approaches in addi-
tion to addressing the biological plausibility issues associated with 
current techniques.

Fig. 1 Schematic showing the integration of auditory angle esti-
mate from a Jeffress ladder, with visual angle estimate, in a recon-
struction neuron. The reference signal from the visual system, V^V, 
is combined with the sum of the output of the Jeffress ladder, S^A, 
weighted by synaptic weights, J. Update of the weights is deter-
mined by the controller, which calculates an optimal gain signal, K
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Systems memory consolidation transfers declarative memories 
that initially depend on the hippocampal formation into long-term 
memory traces in neocortical networks. Over the last decades, mul-
tiple phenomenological theories of systems memory consolidation 
have been proposed. While it appears clear that episodic memories 
undergo a semantization over time, no consensus on why and how 
this arises has been found as of now, partially because the mechanistic 
basis for systems consolidation on the level of neurons and synapses is 
largely unresolved.
Here, we study how episodic memories change over time in a recently 
suggested computational model for the neuronal basis of systems 
memory consolidation. The model suggests that systems memory 
consolidation could arise from Hebbian synaptic plasticity in networks 
with parallel synaptic pathways (Fig. 1). In the model, memories are ini-
tially stored as cue-response associations in a multisynaptic pathway. 
During consolidation, these associations are reactivated and allow 
the multisynaptic pathway to act as a teacher for a shortcut pathway. 
This transfer into shortcut pathways—which are widely encountered 
throughout the brain—can be hierarchically iterated to achieve a 
transfer of memories from the hippocampus to neocortex.
In the present work, we implement the proposed mechanism in artifi-
cial neural networks to study how the characteristics of episodic mem-
ories change over time. Given that episodic memories contain details 
of individual autobiographic events, we conceptualize the formation 
of an episodic memory in neural networks as overfitting to a single 
event—thereby learning all of its details. Semantic memory on the 
other hand is abstract and factual knowledge that allows to general-
ize across experiences and is hence largely independent of any specific 
event. To model memory consolidation, we simulate the acquisition of 
new episodic memories during the day by storing their associations in 
the multisynaptic pathway of the shortcut mechanism. Consolidation 
during the night is then modelled by reactivating these associations 

and thereby learning them in the parallel shortcut pathway. Memo-
ries are therefore transferred from a multi-layer neural network into 
a two-layer neural network, and hence from a higher capacity learn-
ing system to a lower capacity learning system. We show that in such 
a model, the transfer of memory associations into the shortcut path-
way facilitates the forgetting of random episodic detail in memories 
and enhances the extraction of semantic generalizations. Moreover, 
we show that (i) the amount of episodic detail that is transferred into 
the shortcut pathway depends on the speed of learning in the short-
cut pathway and (ii) that neural replay enhances the speed of consoli-
dation and can in certain situations be necessary for the extraction of 
semantic memories. The latter appears to be the case specifically for 
the extraction of semantic content from a rapidly learning hippocam-
pal system. Finally, we hypothesize that the previously suggested hier-
archical iteration of the mechanism may provide a mechanistic model 
for the spatial and temporal gradients of episodic and semantic mem-
ories observed in lesion studies, which suggest that episodic memory 
content decreases and semantic memory content increases with dis-
tance from the hippocampus.
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Chemical synapses mediate neuronal information transmission 
through the release of vesicles. The neurotransmitter molecules of a 
released vesicle diffuse in the synaptic cleft and attach to the postsyn-
aptic receptors located opposite to the release site. Through diffusion, 
the neurotransmitters can activate the receptors of the neighboring 
release sites, a phenomenon known as neurotransmitter spillover 
[1]. Such spillover causes the number of open receptor channels to 
rise faster than linearly with the number of vesicles released, thereby 

Fig. 1 Schematic of the network motif consisting of two parallel 
synaptic pathways. Memories, conceptualized as cue‑response asso‑
ciations, are initially stored in a multisynaptic pathway (blue) and later 
consolidated into a parallel shortcut connection (red)
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altering synaptic integration. How the nonlinear transformations of 
the postsynaptic potential affect synaptic information efficacy has not 
been fully understood yet.
We present an analytical model of spillover in excitatory and inhibi-
tory synapses, and derive the postsynaptic potential as a function of 
the number of released vesicles for different levels of spillover (Fig. 1A). 
Each release site is modeled by a binary asymmetric channel which 
distinguishes between synchronous spike-evoked release and asyn-
chronous release of the synapse. The short-term plasticity of the syn-
apse is incorporated into the memory of the communication channel; 
the release probability of the synapse is determined based on the 
history of vesicular release and the spiking activity of the presynaptic 
neuron [2, 3].
We have shown that neurotransmitter spillover changes the functional 
role of short-term depression. In the presence of spillover, short-term 
depression can increase the rate of information transmission between 
the neurons [4]. Here we study the interplay between short-term syn-
aptic facilitation and neurotransmitter spillover and its modulatory 
effect on information transmission.
Short-term facilitation increases the release probability of both syn-
chronous spike-evoked release and asynchronous release, which 
represent two distinct modes of release regulated by different syn-
aptotagmins. We first identify the regime of facilitation dynamics for 
which neurons (without spillover) transfer information optimally 
(Fig. 1B). Interestingly, both spillover and facilitation can separately 
improve synaptic information transmission, but asynchronous release 
limits the benefits of having both. Indeed, in the presence of spillover, 
the optimal rate of information transmission is attained for facilita-
tion that is weaker and decays faster (Fig. 1C). Many synapses mani-
fest not only short-term facilitation, but also short-term depression 
on slightly longer time-scales. We determine the optimal joint dynam-
ics of depression and facilitation that results in the maximum rate of 
information transmission between the neurons, and investigate the 
dependency of the optimal regime on the level of spillover.
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Cortical connectome develops in an experience-dependent manner 
under the constraints imposed by the morphologies of axonal and 
dendritic arbors of numerous classes of neurons. In this study, we 
describe a theoretical framework which makes it possible to construct 
the connectome of the cortical column by loading associative memory 
sequences into its structurally (potentially) connected network [1]. To 
generate the structural connectivity of the column, we put together 
axonal and dendritic arbors of 55 neuron classes reconstructed as 
part of the Blue Brain project [2] and created a network containing 
28,156 neurons interconnected with 1.9 × 108 potential synapses [3]. 
By loading associative memory sequences into this network [4, 5], we 
generated its functional connectivity. Learning in the model is accom-
panied with biologically inspired constraints imposed by structural 
connectivity, constraints on connection signs (excitatory or inhibitory), 
homeostatic constraints on connection weights, and the requirement 
of reliable memory storage [4, 5]. We solved the associative learning 
problem analytically (replica theory) and numerically, showing that 
at close to maximum memory storage capacity many properties of 
connectivity in the model column are in good agreement with the 
available experimental measurements. These include connection 
probabilities for 14 types of local excitatory and inhibitory projections, 
dependence of connection probability on distance between neurons, 
correlations between structural and functional connectivity, overrep-
resentations of specific excitatory and inhibitory 3-neuron motifs, and 
volume densities of inhibitory synapses in different cortical layers (see 
Fig. 1). Our results contain predictions regarding intra- and inter-lami-
nar connectivity between specific neuron classes that can be tested in 
future experiments. We conclude that basic properties of the connec-
tome of the cortical column may have resulted from biologically-con-
strained associative learning in a morphologically constrained neural 
network.
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Fig. 1 a Excitatory postsynaptic potential depending on the number 
of released vesicles for various levels of spillover. b The mutual infor‑
mation rate, MI, between an input neuron and the target neuron as a 
function of facilitation dynamics in the absence of spillover. c Similar 
to b for synapses with spillover

Fig. 1 Functional connectivity results from biologically‑constrained 
associative learning in a morphologically constrained neural network
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Absence seizures are the most common form of epilepsy in children. 
They start and finish abruptly, last for 10–20 seconds and can be 
detected by generalised spike-and-wave discharges (GSWDs) in the 
electroencephalogram. These GSWDs are based on neuronal oscilla-
tions in thalamocortical networks, which can be caused by excessive 
inhibition in the thalamus or excessive cortical activity. Absence sei-
zures can be triggered by switching of the normal asynchronous neu-
ronal activity in thalamocortical networks to synchronised oscillations, 
and terminated by the reverse process, switching from synchronised 
oscillations to asynchronous activity.
Experimental studies have shown that thalamic stimulation can dis-
rupt oscillatory activity in thalamocortical networks. More recently, it 
was also found that optogenetic activation of neurons in the cerebel-
lar nuclei (CN) can stop epileptic absence seizures and reset the oscil-
latory activity, for example in a closed loop system [1]. However, the 
underlying mechanism of the termination of absence seizures by CN 
stimulation is not yet clear.
To investigate the mechanism of the termination of absence seizures 
by thalamic input from the CN we used computer simulations. We 
simulate a thalamocortical network model with adaptive exponential 
integrate-and-fire neurons, displaying complex intrinsic properties 
such as low-threshold spiking, regular spiking, fast spiking and adapta-
tion [2]. The network activity can exhibit oscillatory or asynchronous 
irregular (AI) dynamics, depending on the time constants of the inhibi-
tory synaptic conductance, which are 5 ms (AI) and 15 ms (oscillatory), 
respectively. An increase in the inhibitory decay time constant reflects 
a change from GABAA dominated inhibition to more GABAB, which 
can result in GSWDs, given that the “wave” components of GSWDs are 
related to slow GABAB -mediated K+ currents [3].
We provide CN input to all thalamocortical neurons to analyse the 
mechanism of reverting from abnormal oscillatory activity to the nor-
mal AI state. Our results confirm that input from the CN can control 
oscillatory activity in thalamocortical networks. Furthermore, they 
show that the effectiveness of this input exhibits phase-dependence. 
In our simulations, CN input terminates epileptic absence seizures 
most effectively when it arrives at the peak of GSWDs, while seizure 
termination is least efficient for input between the GSWD bursts. This 
finding is potentially relevant for therapeutic applications of CN stimu-
lation to terminate seizures. However, the simulations in silico did not 
take several biological factors such as indirect pathways from the CN 
to the thalamus into account that may explain differences with animal 
models of epilepsy [1].
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Several homeostatic mechanisms enable the brain to maintain desired 
levels of neuronal activity after disruptive changes to synaptic inputs. 
One of these homeostatic mechanisms, structural plasticity, can 
restore activity levels after peripheral lesions and deafferentation by 
altering neuronal connectivity over extended time periods [2]. Several 
experimental lesion studies have investigated the temporal evolu-
tion of network rewiring by structural plasticity in detail. However, the 
underlying mechanisms and growth rules that underlie these homeo-
static rewiring processes are still not known [3].
We have used computer simulations of a network model that exhibits 
biologically realistic Asynchronous Irregular (AI) activity [1] in order to 
study the growth rules and processes that could explain homeostatic 
rewiring based on structural plasticity after peripheral lesions. In our 
simulations, we observe network rewiring after loss of peripheral input 
to a localised part of the network, the Lesion Projection Zone (LPZ).
Our simulation results indicate that the homeostatic re-establishment 
of activity in neurons both within and outside the LPZ requires oppo-
site activity dependent growth rules for excitatory and inhibitory post-
synaptic elements. As a consequence, the reduction of activity in the 
LPZ results in ingrowth of novel excitatory inputs and a retraction of 
inhibitory input connections, whilst an increase in activity due to the 
loss of inhibition outside the LPZ causes a retraction of excitatory 
input connections and an increase in inhibitory ones. Our growth rules 
maintain desired activity levels in the network as well as in individual 
neurons.
Furthermore, we show that these growth rules replicate the directional 
formation of connections that is observed in lesion experiments. After 
deafferentation of the LPZ, the simulated network exhibits the sprout-
ing of excitatory axons from areas next to the LPZ into the LPZ that has 
been reported in experiments, and the outgrowth of inhibitory axons 
from the LPZ into neighbouring areas that has been found experimen-
tally. Further predictions of our model that could be tested experimen-
tally are (1) that the ingrowth of excitatory axons into the LPZ requires 
that the growth of excitatory axons is triggered by an increase in neu-
ronal activity, and (2) that the sprouting of inhibitory axons needs to 
be caused by a decrease in neuronal activity.
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Recent GWAS have identified more than 100 risk genes for schizophre-
nia (SCZ) [1]. Many of these encode ion channels. While their function 
has been well characterized, the contributions of common variation 
in these channels to SCZ pathology remain elusive. Here, we explored 
the effects of altered kinetics of voltage-gated ion channels on gamma 
range auditory steady-state (ASSR) deficits, a common biomarker for 
SCZ [2]. We used a network model of coupled E and I neurons [3].
We modified the parameters of single cells in a way that mimics the 
expected effects of common variants associated with SCZ [4, 5].We 
included a total of 86 variants of the following genes: CACNA1C, 
CACNA1D, CACNB2, SCN1A, and HCN1 [5]. We then simulated a click 
train paradigm with stimulation at 40 Hz, to investigate gamma ASSR 
deficits. Overall, not surprisingly, we found that almost all genetic vari-
ants had a small effect on gamma power (72/86 had gamma power 
change<15%). However, we identified few variants that either strongly 
reduced or strongly increased gamma power. Interestingly, these were 
exclusively variants of genes encoding Ca currents subunits. Further-
more, the variants resulting in reduced gamma power also produced a 
strong component in the theta range. These changes in spectral com-
position were caused by changes in the offset and the slope of param-
eter ‘m’ of the high-voltage activated Ca channel. Our results deepen 
the understanding of gamma range ASSR deficits in patients suffering 
from SCZ. All scripts will be freely available (https ://githu b.com/Chris 
tophM etzne r) and integrated into the ASSRUnit software package [6].
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The six-layered cerebral cortex, o neocortex, mediates sensory-motor 
integration and higher order associative and cognitive functions. It 
constitutes a hallmark of mammalian evolution; other vertebrates, 
such as birds or reptiles, lack a neocortex, and homologue inputs, 
outputs and internal circuits are organized in neuronal clusters. The 
neocortex is extensively interconnected within and between hemi-
spheres via axons that form the anterior commissure in egg-laying 
monotremes and marsupials, while eutherian mammals (also known 
as placental) evolved a new route: the corpus callosum. Studies of the 
cortical connectome have focused on rodents and humans, and have 
described conserved features of interhemispheric communication via 
the corpus callosum. However, whether these features arose exclu-
sively in eutherians with callosum origin, or instead they represent 

ancient features of neocortical organization shared by all mammals 
have remained unanswered [1]. Here, I will present recent findings of 
a pan-mammalian map of cortical connections between hemispheres 
[2]. These include findings in platypus (a monotreme) and dunnarts 
(a marsupial), combining magnetic resonance imaging, cell-level 
anatomical mapping and in-pouch electroporation of fluorescent 
markers in vivo. Despite lacking a corpus callosum, monotremes and 
marsupials share with eutherians a pattern of connections between 
similar areas of both hemispheres (homotopy), as well as some hyper-
connected regions (hubs). Moreover, contralateral axons are spatially 
segregated as they cross the midline, and parcellation of the midsag-
ittal anterior commissure is sufficient to reconstruct the main homo-
topic domains (Fig. 1). Additional features shared between eutherian 
and non-eutherian mammals include the layer-of-origin of commis-
sural neurons (layers 5 and 2/3), topographic representation of fib-
ers according to the position of the cell bodies within the cortex, and 
hyperconnected hubs at regions bordering the neocortex on its dor-
sal extent (cingulate and motor cortices) and its lateral extent (insula 
and claustrum). These results suggest that ancient principles of neo-
cortical connectivity arose at least 80 million years before the origin 
of the corpus callosum. Because these features have been conserved 
throughout mammalian evolution in species with or without a corpus 
callosum, they likely represent key principles of neocortical develop-
ment and organization.
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Fig. 1 Dorsal view of a fat‑tailed dunnart brain, after magnetic 
resonance imaging and tractography reconstruction. Tracts were 
generated by parcellating the midsagittal anterior commissure (ac) 
into five segregated color‑coded domains, each labeling homotopic 
contralateral connections between the olfactory bulbs (OB), frontal 
cortex (Fr), neocortex (NCx) and entorhinal cortex (Ent)
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A moderate hearing loss can pose major challenges for speech iden-
tification, principally in noisy environments. This is despite most fea-
tures of speech remaining audible. It is not yet clear how the neural 
representation of speech changes following hearing loss, and whether 
it is in fact worse. Here, in order to quantify this, we present a frame-
work that integrates a Bayesian classifier with neural data.
Neural responses to the presentation of vowel-consonants (VCs) 
overlapping one another, with onset asynchronies between 0 ms and 
±262.5 ms, were recorded from the midbrain of anaesthetised guinea 
pigs. Animals either had normal hearing (NH) or a moderate high fre-
quency hearing loss imposed (HL). A naïve Bayesian-inspired classifier 
was implemented to predict auditory perception. The classifier was 
trained and tested on neural data recorded from either the NH or HL 
animals, with additional zero-mean Gaussian noise (variance was the 
classifier’s only fitting parameter). The stimuli used to train the model 
were VCs in quiet, but it was tested with or without prior knowledge of 
overlapping VCs. Collectively this protocol has the potential to high-
light how hearing loss alters speech identification.
The classifier was set to predict VCs in quiet with a 95% accuracy. When 
presented with the overlapping VC stimuli the classifier’s performance 
reduced to as low as 55% (0 ms offset). When this classifier was instead 
fed the HL data, identification of the VCs in quiet and the overlapping 
VCs reduced further. Crucially this reduction was more than 10x larger 
for some temporal overlaps of the competing VC stimuli (e.g. +37.5 ms 
offset) relative to VCs in quiet. Despite predicted errors mainly result-
ing from consonant confusions it was vowel confusions that became 
more prominent following hearing loss. This remained the case when 
the classifier was run for neurons maximally responsive to frequencies 
below 3 kHz where there was no measurable hearing loss. Classifier 
performance improved when tested with prior knowledge of over-
lapping VCs, particularly for the HL data. Hearing loss may however 
adversely affect whether such prior information can be used optimally.
Overall, this work offers evidence for a degraded representation of 
speech in complex acoustic backgrounds at the midbrain level, follow-
ing hearing loss. The qualitative changes to speech identification that 
were predicted are not solely attributable to a simple loss of auditory 
information in the frequencies most affected by hearing loss. Finally, 
the principle of applying a machine classifier to the neural coding of 
speech appears to be a promising method for understanding the real-
world problems associated with hearing loss.
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Decision-making process is often considered as a self-decision-making 
process, independent of the decisions of others. Yet, in social interac-
tions, decisions are often dependent on the decisions of others, espe-
cially in social reciprocity. In order to determine the underlying factors 
contributing to the decision-making process, we propose a computa-
tional model in which the decision is determined by computing the 
conditional probability depending on the decision of the opponent. To 

account for social reciprocity [1, 2], decisions are dependent on trust, 
which requires prediction of the opponent’s decision and fairness, 
which requires reciprocation of decision.
In this computational model, a decision-space diagram of transition 
probability diagram is used to represent the conditional probability 
of decision dependent on the prior opponent’s decision. Using such 
transition probability diagram, equal-reciprocating decision is repre-
sented by the diagonal line in which the current decision is the exactly 
same as the prior decision of the opponent, i.e., a tit-for-tat decision. 
The decision-space in the upper-triangular region represents deci-
sions that are reciprocated with more generous offers than the prior 
opponent’s offers. This indicates reciprocating decisions that are nice. 
On the other hand, decision-space in the lower-triangular region rep-
resents decisions that are reciprocated with less generous offers than 
the prior opponent’s offers. This indicates reciprocating decisions that 
are mean. Thus, we provided a computational model of transition 
probability of reciprocating decision-making process based on the 
prior opponent’s decision, which is dependent on the decisions of oth-
ers, not just based on self.
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Segregation of images into figures and background (FG) is a crucial 
step for understanding scenes and recognizing objects. As a step 
towards understanding the formation of FG in intermediate-level 
ventral visual cortical areas, we focused on the local information con-
tained in natural images and investigated the potential of neuronal 
activity to signal figures and grounds in the absence of global context 
and scene analysis. We recorded spiking activities of a population of 
macaque V4 neurons in response to a variety of natural image patches 
that extended approximately three times larger than the extent of 
the classical receptive field (cRF) of the cells. We examined whether 
the activity of V4 neurons depend on the local FG configuration of 

Fig. 1 (Left) The computed STSA of four example cells in response to 
figures and grounds. Antagonistic structures are observed (reddish 
and blueish colors show facilitation and suppression, respectively). 
The shape and extent of sub‑regions differ across cells. (Right) The 
mean STSA across FG‑responsive cells, with the preferred sides of 
each cell aligned toward the left of the cRF center
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stimulus images, and intended to evaluate how a population of V4 
neurons represents figure-ground information.
Around one third of the visually responsive neurons showed response 
modulation depending on the positional relation between the cRF of 
the neuron and the figural region of the stimulus. First, we estimated 
the spatial structure of the RFs using spike triggered stimulus average 
(STSA). With our aim of detecting the spatial organization of the RFs in 
response to FG configuration, we linked the FG to luminance contrast. 
We grouped the stimulus patches based on their luminance contrast 
of the figure region with respect to the ground region. We then gener-
ated STSAs for each group and took the difference between the two. 
This subtraction cancelled out the contrast dependence of the cell. We 
compensated nonuniformity of luminance in the natural images by 
subtracting the simple ensemble average of the stimuli from the STSA 
(equivalent to weight = 1 for all stimuli). The estimated STASs exhib-
ited antagonistic structures; facilitative and suppressive sub-regions 
on the preferred and non-preferred figure sides, respectively, as shown 
in Fig. 1. The antagonistic structure might be suitable in the detection 
of FG from local structures. The sub-regions showed a wide variety in 
shape and spatial extent, suggesting the limitation of individual neu-
rons in the detection of FG from a variety of natural images and the 
necessity of the integration of multiple-cell responses.
A wide variety of the shape and extent of sub-regions led us to 
predict population coding in FG judgement. Because the natural 
image patches include a wide variety of figure shapes and extent, 
we expected that individual neurons exhibit low consistency in FG 
determination across a variety of image patches. The measured con-
sistency was approximately 55%, indicating a low capability of indi-
vidual neurons in judging FG across a variety of natural patches. We 
then hypothesized that an integration of responses across a small 
population of FG-modulated neurons would be capable of correctly 
judging FG across a variety of images. To examine the power of inte-
gration and the number of neurons necessary for accurate FG dis-
crimination across a variety of stimuli, we trained a support vector 
machine to classify figures and grounds of stimuli on the basis of 
firing activity. The integration of the activities of 40 to 50 neurons 
yielded the discrimination consistency far greater than that of single 
neurons (up to 72%), suggesting a distributed representation of FG 
information in V4.
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Research in large-scale brain networks has shown that brain struc-
tural core includes regions such as posterior medial/cingulate 
and parietal cortex. These regions have high degree, strength and 
betweenness centrality, and constitute connector hubs that link 
major structural modules [1]. Our RCTs indicated that the integrative 
body-mind training (IBMT) induces brain functional and structural 
changes related to self-control networks such as anterior cingulate 
cortex following about 2-10 h of practice [2-4]. However, whether 
brief mindfulness could induce structural plasticity within brain 
structural core remains unexplored. Here we targeted the brain 
structural core—posterior cingulate cortex (PCC) as ROI to exam-
ine potential volumetric changes in 40 healthy adults who either 
received 1 month (about 10 h in total) of IBMT or relaxation training.
Structural data (T1-weighted images) were acquiredin a 3-Telsa Sie-
mens Skyraat pre- /post-training and automatically processed using 
FreeSurfer for cortical reconstruction and segmentation (http://surfe 
r.nmr.mgh.harva rd.edu/). Similar to the literature [5-7], a standard 

longitudinal processing pipelinewas employedto extract reliable 
volume and thickness estimates. Specifically,an unbiased within-
subject template space and image was created using robust, inverse 
consistent registration. Several processing steps such as skull strip-
ping, Talairach transforms, atlas registration, spherical surface maps 
and parcellations were then initialized with common information 
from the within-subject template.The white and pial surfaces were 
visually inspected and manually edited to correct for errors when 
necessary. We calculated symmetrized percent change (spc) in vol-
umes for our ROI using long_stats_slopes command lines. The spc 
is the rate of change with respect to the average volume: spc = 100 
* rate / avg. For longitudinal design, this is a more robust measure 
than the rate of change from time point 1 to 2. Our results indi-
cated a significantly positive spc of the ventral PCC volume in the 
IBMT group, suggesting that brief mindfulness training can lead to 
increase in grey matter volume and plasticity withinbrain structural 
core/hub. Such increases may serve as underlying mechanisms of 
behavioral improvements in emotion regulation, conscious aware-
ness and attention control that are often observed following mind-
fulness [4].
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Mindfulness meditation induces brain plasticity such as the prefrontal 
cortex, anterior cingulate cortex (ACC) and insula [1]. Among the areas 
related to self-control, the insula is a key node of the salience network 
that plays the key role in integrating external sensory info with internal 
bodily states and awareness [2]. Research has shown that short-term 
mindfulness changes insula activity whereas long-term mindfulness 
changes insula structure [3-5].
Our RCTs showed that the integrative body-mind training (IBMT) 
induces brain functional and structural changes related to self-
control networks such as ACC after 2-10 h of practice [3, 4]. How-
ever, whether short-term mindfulness could induce insula structural 
plasticity remains unexplored. Here, we targeted the anterior insula 
(AI) as the ROI to examine potential volumetric changes in 40 
healthy adults who either received1 month (about 10 h in total)of 
IBMT or relaxation training. Structural data (T1-weighted images) 
were acquired in a 3-Telsa Siemens Skyraat pre-/post-training and 
automatically processed using FreeSurfer for cortical reconstruc-
tion and segmentation (http://surfe r.nmr.mgh.harva rd.edu/).Simil 
ar to the literature [6- 8],a standard longitudinal processing pipeline 
was employed to extract reliable volume and thickness estimates. 
Specifically, an unbiased within-subject template space and image 
was created using robust, inverse consistent registration. Several 
processing steps such as skull stripping, Talairach transforms, atlas 
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registration, spherical surface maps and parcellations were then ini-
tialized with common info from the within-subject template.
The white and pial surfaces were visually inspected and manually 
edited to correct for errors when necessary. We calculated sym-
metrized percent change (spc) in volumes for our ROI using long_
stats_slopes command lines. The spc is the rate of change with 
respect to the average volume: spc = 100 * rate / avg. For longitu-
dinal design, this is a more robust measure than the rate of change 
from time point 1 to 2. Our results showed a significantly positive 
spc of AI volume in the IBMT group. This result suggests that brief 
mindfulness leads to greater grey matter volume and plasticity in 
the AI and that such insula plasticity may indicate that IBMT works 
through executive control and salient networks supported by ACC 
and insula [1, 3, 4].
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Transcranial focused ultrasound (tFUS) has recently gained atten-
tion, due to its capability to modulate brain activity non-invasively, 
reversibly and with high spatial accuracy. However, the underlying 
mechanism of ultrasonic neuromodulation (UNMOD) is not well 
understood. Although several possible mechanisms have been pro-
posed (e.g. acoustic radiation pressure, mechanosensitive ion chan-
nels, extracellular cavitation…), only the bilayer sonophore model 
(BLS) of intramembrane cavitation has been able to provide a com-
prehensive mathematical framework, predicting how ultrasound 
can induce action potentials [1-2]. However, numerical modeling 
studies with the BLS-model have been restricted to single-com-
partment point-neurons (Fig. 1) [1-4], leaving important questions 
with respect to UNMOD in the BLS-framework unanswered (e.g. 
location of the excitation node, importance of the spatial features 
of the pressure field (phase and intensity distribution), sensitivity of 
model predictions on spatially distributed parameters…). Further-
more, a spatially extended (multi-compartmental) UNMOD-model 
would streamline the coupling of neuronal and ultrasonic propaga-
tion simulations, benefiting future neural engineering studies con-
centrating on the design of the ultrasonic transducer or transducer 
array. In this study, the BLS-model is implemented in NMODL (NEU-
RON) as a distributed-mechanism, and subsequently coupled with 

modifications of Blue Brain Project multi-compartmental pyramidal 
cells and interneurons [5]. We investigate the importance of the 
spatial variations in the pressure field (e.g. subsequent nodes of 
Ranvier will be subjected to different ultrasonic intensity and phase) 
and the predicted location of excitation in the BLS-framework. 
Finally, we determine the quantitative and qualitative importance 
of multi-compartmental neuron models for UNMOD, by comparing 
our results with previous studies using single-compartment BLS-
simulations. We conclude that the extension of the intramembrane 
cavitation model to spatially extended neurons is an important step 
to improve understanding of the underlying mechanism of ultra-
sonic neuromodulation and enable the combined simulation of the 
acoustic field and neuronal response.
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Fig. 1 Example simulation of ultrasonic neuromodulation within 
the BLS‑framework. Subthalamic nucleus neuron (Otsuka‑model) 
insonicated with continuous‑wave ultrasound (690 kHz, pulse onset 
at 1000 ms, pulse duration of 1000 ms and inhibitory perturbation 
at 1500 ms). Different traces represent the membrane charge and 
gating parameters
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Over the last decades, an increasing computational effort has been 
undertaken to develop quantitative tools for intracranial EEG analysis 
to better identify the brain regions involved in seizure generation and 
propagation in patients with drug-resistant epilepsy. Yet, the devel-
opment of automated methods for seizure onset zone (SOZ) spatial 
delineation remains challenging due to a number of reasons. The 
complex localization of the SOZ, the variable number and typology 
of seizures during the monitoring period and the variety of electro-
physiological seizure-onset patterns that may occur even within one 
patient [7] represent major challenges to design a detection algorithm 
that is universally valid for all patients. While several algorithms have 
been proposed to characterize the epileptogenicity of different brain 
structures [1-6, 8], most of them are based on preselected spectral 
features of the SEEG signals and might fall short to capture the broad 
diversity of seizure-specific onset patterns.
Here, we report a fully unsupervised and automatic algorithm for 
SOZ identification that maximizes the amount of information that 
can be extracted to this aim from short epochs comprising seizure 
events (peri-ictal period). The current approach builds upon the pre-
viously introduced mean activation (MA) measure [11], which quan-
tifies the average spectral activation of each targeted brain structure 
for pre-defined frequency and time windows of interest. The meth-
odology developed in this study relies on finding the time-fre-
quency windows of interest where the MA is maximal with respect 
to a baseline pre-ictal period, while being spatially confined to a 
few contacts. Central to this approach is the definition of two novel 
measures, the global activation (GA) and the activation entropy (AE), 
that are used to monitor the magnitude of spectral changes with 
respect to the pre-ictal epoch and the spread of these spectral acti-
vations, respectively, at different frequencies and as time progresses 
from seizure onset (Fig. 1). By setting appropriate conditions on the 
two measures, it is possible to find time-frequency windows where 
SOZ regions can be optimally discriminated. Selected windows 
characterize the seizure-specific seizure-onset spectral properties 
in each case. Within those windows, the most active channels are 
selected and accumulated across seizures to output a single SOZ per 
patient.
Our method was successfully tested with a cohort of 10 patients 
with clinically assessed SOZ featuring heterogeneous patterns and 
validated with the post-operative outcome of resective surgery and 
radio-frequency thermo-coagulation (RF-TC) after follow-up periods 

from 2 to 6 years. Significantly, we provided evidence that seizure 
onset is characterized by a shift towards higher values of GA and 
lower values of AE, regardless of the specific seizure onset spectral 
features. Furthermore, we showed that time-frequency windows 
selected by the method reliably characterize a variety of electro-
physiological seizure onset patterns described in the literature [7]. 
Overall, the application of the method on the ictal epoch across all 
patients yielded an average sensitivity of 0.94 ± 0.09, with an aver-
age specificity of 0.90 ± 0.09. SOZ detection was not complete only 
in three patients but missed SOZ sites lied at most 1.5 mm apart 
from the delineated region. Complementary to the main results, we 
further investigated the effect of the recording referencing on the 
method performance. While no significant differences were found in 
terms of specificity, the algorithm was more sensitive to SOZ regions 
in the monopolar than in the bipolar configuration. Additionally, we 
independently applied the method in a short pre-ictal window (30s 
before seizure onset), which yielded a lower but still notable accu-
racy (sensitivity: 0.77 ± 0.32; specificity: 0.77 ± 0.12) supporting 
the view that the pre-ictal period already carries information that 
might be of interest for SOZ localization, in agreement with previous 
studies [1, 10] Finally, cross-validation of the method outputs with 
postresective information revealed the predictive power of the core 
variable of the study (MA) as a putative biomarker of the resected 
zone in long follow-up seizure-free patients.
Overall, we proposed a novel methodology to automatically esti-
mate SOZ regions from intracranially recorded signals that extracts 
the most relevant time-frequency windows for SOZ detection from 
the spectral properties of the signals. In practice, this approach 
can be easily integrated as a complementary diagnostic tool with 
minimal computational costs for surgical planning, reducing time-
consuming SEEG revisions and improving the clinician decision after 
pre-surgical evaluation.
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Fig. 1 Identification of the most relevant seizure onset windows 
(SOW) and seizure onset zone (SOZ) detection is illustrated with one 
exemplary seizure. Signals are band‑pass filtered in pre‑defined bands 
of interest spanning the whole spectrum. For each recording site, a 
mean activation index (MA) is obtained over different time‑frequency 
windows of interest using the Hilbert transform method and averag‑
ing the instantaneous power across time. For each window, the MA 
profile is characterized by two summary measures: the global activa‑
tion (GA) and the activation entropy (AE), that quantify the magni‑
tude of spectral changes with respect to the pre‑ictal epoch and the 
spread of these spectral activations, respectively. SOW detection is 
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under the constraint of low AE. For each SOW, most active regions are 
considered to be part of the SOZ
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The effects of noise correlations on neuronal stimulus discrimination 
have been the subject of sustained debate. Both experimental and 
computational work suggest beneficial and detrimental contribu-
tions of noise correlations [1]. The aim of this study is to develop an 
analytically tractable model of stimulus discrimination that reveals the 
conditions leading to improved or impaired performance from model 
parameters and levels of noise correlation.
We begin with a mean firing rate integrator model as an approxima-
tion of underlying spiking activity in neuronal circuits [2]. We consider 
two independent units receiving constant input and time fluctuating 
noise. Synaptic connectivity between units is not modeled explicitly, 
but is accounted for through correlated activity that can be tuned 
independently of firing rate. We implement a perceptron-like readout 
with Fisher Linear Discriminant Analysis (LDA) [3]. We exploit its closed 
form solution to find explicit expressions for discrimination error as a 
function of network parameters (leak, shared inputs, and noise gain) 
as well as the strength of noise correlation.
First, we derive equations for discrimination error as a function of 
noise correlation. We find that two sets of results exist, based on the 
ratios of the difference of means and variance of the distributions of 
neural activity. In one set, an increase in noise correlation can only 
cause higher overlap between distributions and a monotonic increase 
in error. However, under a second set, the distributions stretch along 
parallel axes, and their resulting overlap leads to error rates that can 
evolve non-monotonically as a function of correlation. These results 
provide a potential explanation for previously reported contradictory 
effects of noise correlation.
Second, we derive functions of network parameters that allow us to 
examine the diverse behaviour of error rates. Particularly, when the 
noise gains of a pair of units is increased, the error rate as a function 
of noise correlation increases multiplicatively. However, when the 
noise gain of a single unit is increased, the effect of noise can be ben-
eficial to stimulus discrimination. This arises from the stretching of the 
variance in neural activity on an axis different from that of correlation, 
thus counterbalancing the overlap caused by the latter.
In sum, we present a framework of analysis that explains a series of 
non-trivial properties of neuronal discrimination via a simple linear 
classifier. We show explicitly how different configurations of parame-
ters can lead to drastically different conclusions on the impact of noise 
correlations. These effects shed light on abundant experimental and 
computational results reporting conflicting effects of noise correla-
tion. The derived analyses rely on few assumptions and may therefore 
be applicable to a broad class of neural models whose activity can be 
approximated by a multivariate distribution.
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Many cognitive and behavioral tasks—such as interval timing, speech 
or bird song production—requirethe execution ofprecisely-timed 
series of behaviors. These behaviors rely on temporal sequences of 
neural activation that are produced in the absence of external inputs, 
and therefore cannot be explained by a succession of external stimuli. 
To produce these sequences, neural circuits must act as autonomous 
systems (that is, systems whose ongoing dynamics are not driven by 
fluctuating inputs) whose activation is triggered by a brief external 
“GO” cue or an intrinsic cue. The objective of this study is to examine 
the autonomous production of sequences of neural activity using a 
reservoir computing framework [1, 2]. In this model, an output unit is 
taught to produce a complex time-varying series as it reads the activ-
ity of a recurrent network (reservoir) [2, 3]. The reservoir is a balanced 
network of leaky integrate-and-fire units with synaptic connections 
mediated by conductance-based synapses. A subset of cells from the 
reservoir receives oscillating inputs (Fig. 1A,B). Only the connections 
between the reservoir and the output unit are trained. Our results 
show that reservoirs driven with periodic inputs produce robust, 
meaningful and repeatable neural patterns. In addition, our model 
displays two key features observed experimentally: i) the emergence 
of temporal tuning (Fig. 1C), where some neurons consistently elevate 
their firing rate after a given time delay; and ii) after learning a task at 
a given speed, the network is able to scale the speed of the execution 
of the task without additional training (Fig. 1D). When trained on an 
interval timing task, the model yielded superior performance com-
pared with other implementations while being resistant to relatively 
large perturbations of its state or parameters, as shown previously [4]. 
The model performed well when we replaced the artificially generated 
sine wave driving the network with subnetworks within the reservoir 
that have slower inhibitory kinetics. In this regime, these subnetworks 
produce asynchronous spontaneous activity, but a simple step func-
tion switches their activity from asynchronous and chaotic to a fully 
synchronized and repeatable regime (Fig. 1E). These subnetworks can 
be embedded in the reservoir to create a plausible source of repeat-
able oscillating inputs (Fig. 1F). In sum, our work proposes a novel role 
for neuronal oscillations found in cortical circuits, where they may 
serve as a collection of inputs from which a network can robustly gen-
erate complex dynamics and implement rich computations.

Fig. 1 a Architecture of the model. b Sample activity of a network. c 
Cells showing a time‑locked increase in activity during a trial. d Tem‑
poral rescaling of the output of a network trained at only one speed. 
e Synchronized activity in a network with increased inhibitory decay. 
f Architecture of the model with oscillating subnetworks embedded 
in the reservoir
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The development of the primary visual cortex (V1) of mice is character-
ized by distinct time windows with enhanced plasticity. During each of 
these periods, neurons develop feature selective spiking patterns with 
respect to a variety of features of visual stimuli. The critical period (CP), 
for example, is the time interval wherein ocular dominance is established 
and concurrently gamma rhythms emerge in the network’s spontaneous 
activity. In contrast, visual stimulation results in enhancement of beta 
rhythms at the expense of these gamma rhythms. So far, models have 
been presented for each rhythm in isolation. Here, we, therefore, propose 
a spiking neuron network model that unites these individual aspects 
and allows for the inference of mechanisms and the exploration of the 
network’s synchronization properties. It comprises excitatory pyramidal 
cells and two types of inhibitory interneurons. The first is the parvalbu-
min expressing (PV) interneuron, which produces gamma oscillations, 
while the other interneuron group, the somatostatin expressing cell, was 
found to generate beta rhythms. Our results indicate that for both types 
of oscillations a pyramidal-interneuron gamma (PING) mechanism was 
at play. In addition, our findings show that prominent gamma and beta 
oscillations in respectively the spontaneous and visually evoked activ-
ity of the mouse V1 can only occur within the same network configu-
ration if there is a balance between both types of interneurons (Fig. 1). 
This harmony requires that PV and SOM neurons have a similar influence 
on pyramidal cells and are both active in the spontaneous state of the 
network. Taken together, our results demonstrate that PV and SOM cell 
inhibitions must be balanced for a proper functioning of the V1. Since 
spontaneous gamma rhythms emerge during the CP, our findings fur-
thermore support the idea that PV cells become integrated in the circuit 
of this cortical area during this time window. This concurrently activates 
new plasticity mechanisms, which in their own turn can be exploited to 
restore developmental visual deficits.
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Rodents have an array of whiskers that aids in navigating their environ-
ment. We are interested in the characteristics of sensory information 
that enters the brain via the whiskers and aim to determine the result-
ing spatiotemporal properties of activity patterns in barrel cortex. As 
a first step towards this goal we modeled the structural and dynami-
cal properties of the whiskers using a mechanical model. A rod can be 
modeled according to the nonlinear equations of elasticity theory [3] 
which can be linearized to obtain the Euler-Bernoulli equations [3], 
however, the latter are not appropriate for the typical bending angles 
of rodent whiskers. Current state of the art for nonlinear whisker 
modeling is therefore essentially limited to 2D [2], which presents a 
problem because due to the intrinsic curvature of the whisker in com-
bination with applied contact forces from objects in the environment, 

the shape of the whisker is not constrained to be in the plane. We have 
therefore formulated the full 3D equations for whisker structure in a 
way that can be solved either directly using a standard integrator for 
boundary value problems or by optimizing an objective function gen-
erated by integrating the equations directly. The key innovation was to 
use the Bishop coordinate frame [1] to parallel transport the intrinsic 
curvature along the deformed whisker shape and to model the intrin-
sic curvature using a form for which the path length could be calcu-
lated analytically.
To validate our approach we first compared the results for the 3D 
equations to published results for the 2D equations [2], for the case 
when contact force is in the plane defined by the intrinsic curvature, 
which constrains the shape to be in the same 2D plane. We success-
fully reproduced the bifurcation diagram as a function of push angle. 
We then repeated the same analysis in 3D which again resulted in a 
saddle node bifurcation. In addition, we compared the results of this 
static model to a dynamical model, comprised of discrete segments 
coupled through torsion springs, which provided suggestions for how 
to adjust the parameter settings to match resonance frequencies to 
experimental measurements.
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Brain computer interfaces require recordings of relevant neuronal 
population activity with high precision and/or stimulate a spatially 
restricted set of neurons. In order to achieve that, both the precise 
placement of the electrode grid on the cortex and the electrode 

Fig. 1 A balance between the inhibitory contributions of parvalbu‑
min and somatostatin expressing cells is required for experimentally 
observed changes in network synchronization to occur. a Network 
synchronization types as a function of the parvalbumin and soma‑
tostatin expressing cell projection strengths. b–e Corresponding 
frequency spectra
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properties, such as the electrode size and material, need to be opti-
mized with regard to the subject’s head anatomy. For this, it is crucial 
to have a reliable method and tool able to calculate the extracellular 
potential generated by realistic population activity patterns and to 
incorporate the properties of the electrodes explicitly in the model. In 
this study, this need is addressed by introducing a new open-source 
pipeline based on the finite element method implemented in FEniCS.
We have tested our pipeline using several standard scenarios and 
source configurations such as a monopole source in two infinite half-
spaces with different conductivities and a multi-layer sphere model, 
each layer having a different conductivity. We report on the heuristics 
for picking the number of mesh elements and their sizes to obtain 
accurate results. This can primarily be described as function of the dis-
tance of a source to a surface across which accurate values need to be 
simulated. In addition, as a proof of concept, we simulated the extra-
cellular potential in an individualized realistically shaped head model.
We were interested in the influence the electrode properties have 
on the measurements, as well as on the distribution of the extracel-
lular potential itself. This effect is expected to be especially relevant 
in electrocorticography (ECoG) because of the large electrode surface 
relatively close to the current source. Therefore, most electrode place-
ments in the geometries were made comparable to ECoG electrodes. 
We considered four models: (1) a virtual electrode that records the 
extracellular potential at the center of the electrode, which implies a 
zero-flux boundary condition (homogeneous Neumann boundary 
condition); (2) an electrode that absorbs currents and that is an equi-
potential (Dirichlet boundary condition); (3) an electrode explicitly 
modeled as a conductive sheet either having a thickness in the geom-
etry or using a thin-layer approximation (mixed boundary condition); 
(4) an electrode modeled as a sheet with a pseudocapacitive con-
stant phase angle impedance and a charge transfer resistance, which 
includes the effects of the boundary layer formed at electrolyte-con-
ductor interfaces and for which we need to do a frequency-resolved 
calculation. Furthermore, we included a tissue model with a dielectric 
constant in addition to a conductivity, with parameters taken from 
the literature. Overall, the first electrode model (virtual electrode) and 
pure conductivity tissue model yields an excellent approximation to 
the more realistic electrode models. When the electrodes are large, 
they affect the field itself which can deviate from model 1 by averag-
ing the underlying potential distribution.
Taken together, these results demonstrate this pipeline is an appropri-
ate tool to simulate the signals generated on ECoG grids by the spa-
tiotemporal electrical activity patterns produced by cortical neurons 
and thereby allows to optimize grids for brain computer interfaces 
including exploration of more exotic electrode materials/properties.
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Spatiotemporally coordinated neuronal activity is key for inter-areal 
information transfer. Specifically, the strength of synchronous activity 
between brain regions has been related to many cognitive processes, 
often in a frequency-band specific way. Recent experiments show that 
attentional processes modulate communication between frontal brain 
regions. During a selective attention task, recordings from macaque 
prefrontal cortex (PFC) and the anterior cingulate cortex (ACC) were 
obtained. Spike train analysis showed an increase in the proportion 
of high-frequency burst events, during the attention period, relative 
to baseline [4]. The combination of a decrease of non-burst spikes 
together with an increase of burst events was responsible for the 
increase of burst proportion (burst-events/non-burst-spikes). This 
effect is especially evident in broad-spiking cells, although also appar-
ent in narrow-spikers [3].

Larkum et al. [1] showed that a burst of somatic action potentials of a 
Layer 5 (L5) pyramidal cell can be triggered as the result of a calcium 
spike traveling from dendrite to soma [1]. These calcium waves are 
triggered by the coincidence of back-propagating action potentials 
and distal dendritic excitatory inputs near the dendritic initiation site. 
This mechanism—BAC firing—could be relevant for integration of 
top-down and bottom-up information. Low-threshold spiking cells 
called Martinotti cells inhibit L5 pyramidal cells on their tuft in the 
superficial layers. Hence, it is hypothesised that the coordinated activ-
ity of these cells could modulate BAC firing.
To test this hypothesis, we used a reduced biophysical model, com-
prised of two leaky integrate-and-fire compartments with a somatic 
spike-triggered afterhyperpolarization current and a voltage-depend-
ent dendritic calcium current, respectively, connected by an ohmic 
resistance [2]. The input current to the somatic compartment was 
modelled as an Ornstein-Uhlenbeck (O-U) process with correlation 
time (τ) = 3 ms, whereas rhythmic inhibitory synaptic inputs drove 
the dendritic compartment. We measured the burst proportion for 
two conditions in which the excitatory inputs to the dendrite had 
similar statistics but the degree of precision of the inhibitory inputs 
to the dendritic compartment was varied. When the inhibitory inputs 
changed from low precision (a Poisson spike train with constant instan-
taneous probability of spiking, Fig. 1A) to high precision (an oscillatory 
spike train with period 100 ms and standard deviation 18 ms, Fig. 1B), 
both the non-burst firing rate and burst proportion increased, even 
though the mean number of inhibitory inputs remained the same.
Further, when the input rate of the high precision inhibition and the 
excitatory dendritic input increased simultaneously relative to the low 
precision case the non-burst firing rate decreased (Fig. 1C). Neverthe-
less the fraction as well as the absolute number of bursting events 
increased. This effect only occurred within a restricted frequency band 
of 5–20 Hz.
These simulations show that we could reproduce the experimental 
results on burst proportion in a single neuron model, the next step is 
to build a multi-area network based on this motif.
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Fig. 1 Synchronous inhibition modulates burst fraction. On the left, 
the model’s voltage traces and inhibitory synaptic current. On the 
right, the interspike interval histogram
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Small fiber neuropathy is an increasing health care issue and there is 
a current need for an easy, fast, non-invasive and safe assessment of 
small fiber function. Electrical stimulation meets these requirements; 
however, conventional surface electrical stimulation activates large 
fibers at lower intensities than small fibers. As small fibers terminate 
more superficially than large fibers, three electrodes have achieved 
some degree of preferential activation of small fibers, by producing a 
higher current density in the superficial skin layers than in the deeper 
tissues. However, the selectivity of the electrodes is highly debated. 
The electrodes were developed empirically and have not been directly 
compared. Hence, the aim of the present study was to develop a com-
putational model to compare the nerve fiber activation for the differ-
ent electrodes and identify important design features for achieving 
preferential small fiber activation.
Three electrodes for small fiber activation: intra-epidermal, pin, and 
planar concentric as well as a regular patch electrode were modeled in 
two steps. The first step was a finite element model of the skin (COM-
SOL, version 5.3) estimating the electrical field. The model consisted 
of four horizontal skin layers: stratum corneum, epidermis, dermis, 
and hypodermis, with tissue thickness, conductance and permittivity 
adopted from literature. The second step was two axon models (NEU-
RON, version 7.6), describing the cutaneous nerve fiber activation. 
Both a small fiber (Aδ-fiber) and a large fiber (Aβ-fiber) models were 
developed with a diameter of 3.5 µm and 9 µm, respectively. The 
models included the following ion channels: Nav1.6, Nav1.7, Nav1.8, 
Nav1.9, Kdr, KM, KA, and the HCN channel. Experimental validation of 
the models included measurements of impedance and reaction times, 
for all electrodes. Impedances were obtained for frequencies between 
10 Hz and 100 kHz, with 10 measuring points per decade. Reaction 
times were acquired at perception threshold intensities for rectangular 
pulses of 0.1, 0.5, 1, 10, 25, and 50 ms duration.
Impedance measurements corresponded well with the computational 
model. The current density in the epidermis was higher for electrodes 
with smaller cathode area, while current spread into deeper tissues 
was more prominent in electrodes with larger anode-cathode distance 
and larger anode area. The largest difference in the current density 
between the epidermal and dermal layer was observed for the intra-
epidermal electrode, which also produced the largest difference in 
activation threshold between the nerve fiber models. Reaction times 
were 6.8%, 10.6% and 17.3 % shorter for the patch electrode (p<0.05), 
compared to the pin, planar concentric, and intra-epidermal electrode, 
respectively.
The intra-epidermal electrode was the most selective for small fiber 
activation. The cathode-anode distance and the anode area are impor-
tant design features in order to limit the current spread to the dermis, 
while a small cathode area is the most important feature for producing 
high current density in the epidermis.
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The CA1 area of the hippocampus exhibits multiple types of gamma 
oscillations in vivo, which can be segregated based on their spectral, 
temporal and spatial profiles [1-4], however the exact nature and 
origin of the intrinsic CA1 gamma oscillations is still under debate. 
Recently, Butler et al. in [5] have demonstrated that the CA1 in vitro 
is capable of generating intrinsic gamma oscillations in response to 
optogenetic theta stimulation, thus demonstrating that CA1 can pro-
duce its own gamma oscillation in addition to inheriting activity from 
the upstream regions. In particular, sinusoidal optical stimulation 
of CA1 at theta frequency was found to induce robust theta-nested 
gamma oscillations with a temporal and spatial profile similar to CA1 
gamma in vivo. We can define a theta-nested gamma oscillation, a 
gamma oscillation which is phase-amplitude coupled to the theta 
stimulation, occurring at the peak of each sinusoidal stimulation cycle. 
Further measurements suggest that this intrinsic CA1 gamma oscilla-
tion is generated via a PING mechanism.
In order to reproduce the phenomenon revealed by [5], we considered 
spiking neural networks of quadratic integrate and fire neurons (QIF) 
as well as the corresponding exact mean field description, recently 
developed in [6]. In particular, we considered a two networks setup 
to investigate whether PING or ING mechanisms can be at the origin 
of the gamma-nested oscillations reported in [5]. Regarding the PING 
case, we studied a setup composed of an excitatory and an inhibitory 
network, coupled with fast synapses; moreover excitatory neurons are 
subject to an excitatory theta forcing. On the other hand, for the ING 
setup, we examined a self-coupled inhibitory network with exponen-
tial post-synaptic potentials driven by an excitatory theta stimulation 
[7]. We have been able to obtain in both cases theta-nested gamma 
oscillations and to reproduce to a large extent the experimental obser-
vations (see Fig. 1).
Furthermore, the bifurcation analysis of the mean field revealed that 
the origin of the theta-nested gamma oscillations can be in both cases 
associated to the proximity of the non-oscillatory resting state to a 

Fig. 1 PING and ING mechanisms originating gamma‑nested oscil‑
lations. The response of the excitatory (inhibitory) population in the 
PING (ING) configuration to the theta‑forcing e are shown in panels 
a, b (c, d): average rates in a, d and average membrane potentials in 
b, c. Solid lines refer to the mean field, while symbols to the spiking 
network simulations
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supercritical Hopf bifurcation, that in presence of the theta forcing is 
excited, giving rise to gamma oscillations super imposed on the theta 
rhythm, somehow similarly to what previously found in [8].
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Gamma rhythms are the most studied brain oscillations due to their 
crucial role for attention, memory formation and for their relevance 
for focal seizures. Recently two different experiments have shown the 
coexistence of fast and slow gamma oscillations in the hippocampus 
of rodents (see reference [1] and [2]). These studies have analyzed the 
modulation of gamma oscillations induced by the theta rhythm, pre-
sent during locomotory actions and rapid eye movement sleep, and 
have revealed clear phase locking between theta and gamma oscilla-
tions in the two coexisting bands, thus suggesting their functional rel-
evance. The mechanisms behind the emergence of these two distinct 
gamma bands are not yet clarified, in particular it is not clear if these 
are induced by external inputs [2] or generated locally [3].
In our study, we report for the first time the coexistence of fast and 
slow gamma oscillations in a single inhibitory neural population. 
Furthermore, we show that the two rhythms have different “physi-
cal” origin: one being driven by coordinated tonic firing of the neu-
rons the other by endogenous noise due to irregular neural firing. As 
discussed in [4] these are the only two possible mechanisms able to 
generate gamma oscillations in purely inhibitory networks, for the first 
time we show that both mechanisms can coexist in the same model 
and that theta forcing can activate one or the other mechanism at dif-
ferent theta phases and give rise to different phase locking with the 
two gamma rhythms during the same stimulation session (see Fig. 1), 
in agreement with experimental results reported in [1] and [2]. In par-
ticular, we have shown that fast gamma are locked to a strong excita-
tory input, resembling that generated in the CA1 by the activity of the 
place cells evoked from direct inputs from the medial enthorinal cor-
tex (MEC) as reported in [2], while low gamma COs emerge when exci-
tation and inhibition balance, somehow indicating that these COs can 
occur when the place cell activity is mostly inhibited by inputs origi-
nating from the CA3 region of the hippocampus as suggested in [1, 2].

Finally, to gain analytic insights on the dynamics besides direct sim-
ulations of the spiking network we employ an effective mean field 
model (which is an extension of that introduced in [5] for fully cou-
pled networks) and that despite its extreme simplicity can reproduce 
the dynamics of sparse balanced networks [6], which are commonly 
believed to be a realistic representation of cortical dynamics domi-
nated by endogenous fluctuations.
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Fig. 1 Fast and slow gamma oscillations entrainment with the theta 
phase a Spectrogram of the collective oscillations as a function of the 
phase of the theta forcing I0, which is reported in a as a white solid 
line in arbitrary units. b Instantaneous firing rate; c raster plot and the 
profile of the forcing current I0 d versus time
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We report a transition from asynchronous to oscillatory behavior in 
balanced inhibitory networks for class I and II neurons with instantane-
ous synapses. Collective oscillations emerge for sufficiently connected 
networks. Their origin is understood in terms of a recently developed 
mean-field model, whose stable solution is a focus. Microscopic irregu-
lar firings, due to balance, trigger sustained oscillations by exciting the 
relaxation dynamics towards the macroscopic focus. The same mecha-
nism induces in balanced excitatory-inhibitory networks quasiperiodic 
collective oscillations.
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An autapse is a synapse connecting the neuron to itself. Previous ana-
tomical studies suggest that autapses in excitatory cortical neurons 
known as pyramidal cells (PCs) are rare, irrelevant errors in neuronal 
wiring. However, a recent electrophysiological study challenges this 
view by showing that autapses are a common phenomenon, specifi-
cally in layer 5 PCs, that are also functionally relevant to neural compu-
tation [1]. Among other findings, Yin and colleagues [1] observed that 
autapses enhance bursting in PCs, which may suggest a role in boost-
ing neural information transmission. Furthermore, previous studies on 
the aplysia demonstrate that autapses in motor neurons facilitate per-
sistent activity (necessary for memory) in the absence of sufficiently 
strong input [2], a phenomenon that was not observed in layer 5 PCs 
according to [1].
The aim of this work is to reconcile these disparate experimental 
observations within a single theoretical framework, namely, dynamical 

systems theory. I augmented a simple, biophysically motivated neural 
model with autaptic excitation. My initial simulations show that, for dif-
ferent parameter choices, the presence of an autapse either enhances 
bursting (Fig. 1, left) or leads to persistent activity in absence of strong 
external excitation (Fig. 1, right). This suggests that this autaptic neu-
ron model can support diverse modes of operation that correspond to 
different neuro-computational properties of functionally specific cell 
types. Furthermore, augmenting the autapse with delay results in cha-
otic dynamics within a biophysically plausible parameter regime. This 
suggests autaptic neurons as potential contributors to neuronal firing 
variability.
The current contribution presents mathematical analyses of the 
dynamics of the model, involving numerical simulations, linear stabil-
ity analysis, Lyapunov exponent estimation and bifurcation analysis. 
This will lead toward identifying model parameter ranges and bifurca-
tions that underlie transition to bursting, persistent activity, chaos and 
other neural phenomena the model can support and, by extension, a 
better understanding of the neuro-computational roles of autapses.

References
1. Yin L, Zheng R, Ke W, et al. Autapses enhance bursting and coincidence 

detection in neocortical pyramidal cells. Nature Communications 
2018,9(4890).

2. Saada R, Miller N, Hurwitz I, et al. Autaptic Excitation Elicits Persistent 
Activity and a Plateau Potential in a Neuron of Known Behavioral Func‑
tion. Current Biology 2009,19(6), 479–484.

Editor’s note: This abstract has been retracted. Please handle as dis-
cussed with the copy editor.

P315 
A Bayesian model explains how individual and mutual properties 
of action and outcome affect sense of agency
Roberto Legaspi, Taro Toyoizumi
Rikem Center for Brain Science, Neural Computation and Adaptation, 
Wakoshi, Saitama, Japan
Correspondence: Roberto Legaspi (roberto.legaspi@riken.jp)  
BMC Neuroscience 2019, 20(Suppl 1): P315

Although sense of agency (SoA) is a significant concept in the human 
sciences, the literature still lacks a mathematical elucidation of its 
underlying principles. SoA, i.e., the experience that oneself initiated an 
action that caused an outcome, grounds our sense of self and all kinds 
of causally efficacious self-world interactions mediated by our actions. 
We have introduced a theoretical model of SoA [1] that adapted a 
Bayesian inference model originally used to explain the ventriloquism 
effect as an effort to estimate a common cause behind its multisen-
sory integration. However, we have yet to explain through our model 
how action and outcome signals, in isolation or interacting with each 
other, affect SoA.
Our Bayesian model exhibits the following properties for high SoA: 
(A) the perceived action-outcome effect is consistent (e.g., spatially 
or temporally) with the causation of the outcome by the action, (B) 
the prior belief that the action caused the outcome is strong, and (C) 
the perceived action or outcome signals are reliable when they hap-
pen in isolation, i.e., the amplitudes of sensory jitters are small enough 
not to increase sensory uncertainty. Given that human perception is 
inherently noisy, the brain resolves ambiguity by drawing on prior 
expectation of action-outcome consistency, which can be cognitively 
modulated by prior experience of cause-outcome pairing. These joint 
priors inform SoA only when precise estimates of action and outcome 
attributes are shifted towards each other.
The above properties accounted for the intentional binding (IB) effect 
in two pertinent experiments. IB refers to the perceived compression 
of the temporal interval of a volitional action and its sensory outcome. 
The first is the seminal experiment by Haggard et al. [2] that showed 
voluntary actions produced IB but involuntary actions produced a 
repulsion effect, i.e., a prolonged opposite perception of the action-
outcome interval. Both binding and repulsion effects were accounted 
for by property (A) of our Bayesian model. The second study is by 

Fig. 1 Depending on its parameters, a model neuron with an 
autapse enhances bursting (left) or leads to persistent activity in 
absence of strong external excitation (right)
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Wolpe et al. [3] that showed the contribution of sensory uncertainty 
to IB, which was accounted for by (C). Moreover, as accounted for by 
(B), the strength of a prior belief of the action causing the outcome 
moves the perception of the action and outcome towards each other, 
and weakening it consequently diminishes the action-outcome effect 
similar to when their signals are unrelated. This accounted for both 
the repulsion effect from involuntary actions reported by Haggard 
et al. and the diminished action binding reported by Wolpe et al. How-
ever, our model also explains action and outcome binding even for 
unintended actions given high confidence in the action causing the 
outcome, which suggests that intentionality is not strictly necessary. 
Finally, our Bayesian model also explains that if the sensory cues are 
reliable, SoA can emerge even for unintended actions.
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A good compromise between conductance-based and integrate-
and-fire models is found in map-based neuron or cardiac cell models 
[1]. Maps describe the actual membrane potential of the neurons, 
allowing for studies in many levels of detail: from single-cell dynam-
ics to entire networks [1-3]. Recently, we studied a simplified model 
that captures many different experimental behaviors of single cells: 
the logistic KTz map [4]. It is computationally efficient and displays 
from class I and II excitability, to adaptation, to many more dynamical 
regimes. The model has only five parameters and three dynamic vari-
ables, allowing for the computation of all the fixed-point bifurcations 
analytically [4].
Here, we focus on the dynamics of the logistic KTz map that describes 
the action potential (AP) of cardiac cells. By tuning its parameters, we 
may reproduce the activity of many heart cells, including the sinoatrial 
node, the atrioventricular node, the Purkinje cell, and the myocytes. 
We characterize the dynamics of three different mechanisms through 
which the AP of the map shows impaired oscillations: autonomous 
spikes with early afterdepolarization (EAD), excitable spikes with EAD 
(related to the long QT syndrome), and nonchaotic aperiodic cardiac 
spiking. EADs are pathological voltage oscillations during the repolari-
zation of the AP that may disrupt the healthy heart rhythm, ultimately 
leading to lethal ventricular fibrillation [5].
The healthy regime of autonomous cardiac spiking is bordered by two 
separate unhealthy regimes: aperiodic cardiac spiking and bursting 
[4]. Autonomous spikes displaying EAD appear in the model on the 
frontier between cardiac spikes and bursting. They look like a spike 
with a plateau immediately followed by a long burst of thin spikes. 
The Lyapunov exponent in this transition is greater than 1, making this 
type of oscillations chaotic. The nonchaotic aperiodic cardiac spiking 
appears when, in the fast subsystem, an unstable node turns into an 

unstable spiral, causing the orbit to spiral for a few timesteps before 
the rise of the spike. This mechanism makes the rise of the spike a sto-
chastic event. The EAD in excitable spikes occurs because the fast sub-
system displays a subcritical Neimark-Sacker (NS) bifurcation followed 
closely by a Saddle-Node (SN) of an unstable node causing a stretch of 
the duration of the spike. When the spike is too long, it encounters the 
limit cycle of the NS bifurcation, causing the spontaneous depolariza-
tion during the repolarization phase of the AP, and delaying the T wave 
in electrocardiograms.
Our next step is to plug many logistic KTz cells into a lattice to deter-
mine how the behavior of an unhealthy cell can disrupt the activity 
of the entire lattice, causing synchrony and fibrillation. The study of 
conductance-based models is sometimes too confusing due to both 
the massive amount of parameters and the complexity of the calcula-
tions involved in the determination of its dynamics. Maps turn out to 
be useful (and essential) in these situations, allowing for an integrative 
understanding of complex phenomena, like heart and brain diseases. 
Thus, provided that the bifurcations of simple map neurons and con-
ductance-based models match, the latter may often be replaced by 
maps.

Acknowledgements: MGS, PAM and RVS acknowledge financial sup-
port from Brazilian agencies FAPESP, CAPES and FAPESC, respectively.

References
1. Girardi‑Schappo M, Kinouchi O, Tragtenberg MHR. A brief history of 

excitable map‑based neurons and neural networks. Journal of Neurosci 
Methods 2013, 220(2):116–130.

2. Girardi‑Schappo M, Kinouchi O, Tragtenberg MHR. Critical avalanches 
and subsampling in map‑based neural networks coupled with noisy 
synapses. Physical Review E 2013, 88:024701.

3. Izhikevich EM, Edelman GM. Large‑scale model of mammalian thalamo‑
cortical systems. PNAS USA 2008, 105(9): 3593–3598.

4. Girardi‑Schappo M, Bortolotto GS, Stenzinger RV, Gonsalves JJ, Tragten‑
berg MHR. Phase diagrams and dynamics of a computationally efficient 
map‑based neuron model. PLoS ONE 2017, 12(3):e0174621.

5. Katz AM. Physiology of the heart, 5th Edition. Philadelphia: Lippincott Wil-
liams & Wilkins; 2011

P317 
Deterministic search process underlies memory recall
Michelangelo Naim, Mikhail Katkov, Misha Tsodyks
Weizmann Institute of Science, Neurobiology, Rehovot, Israel
Correspondence: Michelangelo Naim (michelangelonaim@gmail.com)  
BMC Neuroscience 2019, 20(Suppl 1): P317

It is believed that human cognitive abilities could not be theoreti-
cally predicted because their neuronal mechanisms are poorly under-
stood. For example, it is hard to imagine how one may predict the 
performance in memory task. The standard experimental paradigm 
to address the memory for random material is free recall. Typical 
experiments involve recalling randomly assembled lists of words in 
arbitrary order after a brief exposure. It was observed over the years 
that when the presented list becomes longer, the average number of 
recalled words grows but in a sublinear way, such that the fraction of 
words recalled steadily decreases. We have recently proposed a model 
for recalling random unstructured information that gives an analyti-
cal prediction for the number of words that can be recalled without 
any free parameters to tune. More specifically, the number of recalled 
items is predicted to be the square root of the number of acquired 
items. We conjectured that recall performance may be affected by vari-
ability in the words acquisition. Therefore, we performed a number of 
experiments where each participant performed both free recall and 
recognition experiment. From recall experiment we estimated the 
number of words recalled, while from recognition experiments we 
estimated the number of words acquired. The data show a remark-
able agreement between theoretical prediction and experimental 
observations. This level of precision of an analytical model is common 
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for physical theories but is believed to be impossible for biological 
systems. The result (Fig. 1) provides the first analytical description of a 
high-level cognitive process. Moreover, the theoretical model is based 
on neuronal representation of material and potentially may be used 
to gain a neuron-level understanding of recall process. In conclusion, 
human memory recall operates according to deterministic search pro-
cess, which results in a fundamental limit on the number of items that 
can be successfully recalled.
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Experimental evidence suggests that autistic neural networks exhibit 
reduced inhibition, weaker synapses, and higher response variabil-
ity. Using these findings, we develop a phenomenological model of 
autism to better understand sensory deficits associated with the dis-
order. In the model, neuronal responses in autistic networks are emu-
lated by weakening the synaptic strength and increasing the neuronal 
excitability relative to typical model neuron parameter values. Our 
results agree with empirical findings above a certain firing rate 
and generate testable predictions about the variability of neuronal 
responses at different stimulus intensities. To validate these results, we 
perform analytical calculations of the equal-time cross-correlation and 
examine the relationship between the stimulus intensity, neuronal 
excitability, and neuronal response variability. We show that the calcu-
lated contour geometry extremizes the cross-correlation, suggesting 
anunderlying conservation law and variational principlein the study of 
autism.
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For decades, the study of seizure initiation has focused on either over-
excitation or dis-inhibition as the underlying cause of the synchronous 
and hyper-excitable dynamics hallmarking seizure. However, a variety 
of recent findings in the experimental literature implicate the synchro-
nous activity of GABAergic interneurons in driving this pathology [1, 
3]. Given the novelty of these results, little computational research into 
a “GABAergic initiation hypothesis” of seizure has been performed. 
Correspondingly, few mechanisms explaining the predisposition of 
ictogenic inhibitory networks toward abrupt transitions into syn-
chrony have been articulated.
This research [4] proposes such a mechanism by comparing simulated 
inhibitory networks containing control interneurons (a modification 
of an existing PV+ interneuron model [2]) and networks contain-
ing hyper-excitable interneurons modeled to mimic treatment with 
4-Aminopyridine (4-AP), an agent used to model seizures in vivo and in 
vitro. The differences in these models were informed by experimental 
literature describing the effects of 4-AP [5], as well as in-house experi-
ments recording spiking properties of the same cortical interneuron in 
both a control and 4-AP setting. Thein silicostudy revealed that 4-AP 
networks are more prone than their control counterparts to exhibit 
bistability, where the two stable states are sparse, asynchronous firing 
and faster, synchronous activity. In the 4-AP setting, it is significantly 
more likely that a perturbation to the network, modeled as a brief 
synchronizing current pulse, will force an asynchronous network into 
stable synchronous dynamics. Analogous dynamical changes arise 
when an Ornstein-Uhlenbeck process modeling background excita-
tory synaptic dictates the perturbation, indicating that this transition 
might be feasiblein vivo. These results propose a mechanism by which 
a cortically-inspired inhibitory network can shift from incoherent to 
coherent dynamics, which in turn might initiate seizure according to 
a “GABAergic initiation hypothesis”. Moreover, this mechanism spe-
cifically explains how inhibitory networks containing hyper-excitable, 
and in turn potentially ictogenic, interneurons can undergo this transi-
tion without relying upon a permanent change in the drive to the sys-
tem. This potentially explains such networks’ increased vulnerability to 
seizure initiated by GABAergic activity. These mechanistic ideas will be 
expanded upon via application to excitatory-inhibitory (E-I) network 
systems based on recordings from human cortical cells.
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Fig. 1 Average number of words recalled (RC) as a function of the 
average number of acquired words (M) for different list length (L). 
Black line: theoretical prediction. Yellow line: experimental results for 
presentation rate 1.5 sec/word. Green line: experimental results for 
presentation rate 1 sec/word. The error in RC is a standard error of the 
mean, while the error in M is computed with bootstrap
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The emergence of flexible information channels in brain networks is 
a fundamental question in neuroscience. Understanding the mecha-
nisms of dynamic routing of information would have far-reaching 
implications in a number of disciplines ranging from biology and med-
icine to information technologies and engineering.
In this presentation, we study how signals transmit in bidirectionally-
coupled networks. In these networks, each node represents a unit 
composed of excitatory and inhibitory neurons and all nodes, except 
one, produce a local oscillation with frequency ν0in the gamma range. 
An inhomogeneity is introduced by placing the remaining node –
called source node– to oscillate at a different intrinsic frequency 
ν = ν0+ Δν. We find that the presence of this particular node leads to 
reliable transmission of signals and establishes a preferential direction 
of information flow.
Our results show that slowly varying local signals can better propa-
gate along the network if the receiving node has a higher intrinsic fir-
ing rate. Moreover, we find that high frequency units determine the 
direction of signal propagation, so the effective connectivity in such 
a network.
To gain insights into the mechanisms that favor the preferable direc-
tion of information flow, we study in depth the simple case of two 
mutually-coupled Hodgkin-Huxley neurons and compare it results 
with the analytical predictions of two coupled Kuramoto models.
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Functional sequential activity underlying neural rhythms requires 
the synergistic interaction of both intrinsic and circuit dynamics. In 
experimental setups, information of rhythmic activity is obtained 
through low dimensional observations, i.e., only some aspects of 
neurons’ rich dynamics are accessible as the number of simultane-
ous recordings is restricted. On the other hand, variability and flex-
ibility present in living circuits are not captured by commonly used 
models and since they are usually simplified by reducing the num-
ber of neurons or the variables in the model. These restrictions in 
experimental and computational studies hinder the understanding 
and assessment of the origin and mechanisms responsible for spe-
cific cycle-by-cycle temporal properties of sequential activity.
Hybrid circuits connect living cells to model neurons typically 
by means of dynamical clamp protocols [1]. Hybrid circuits allow 
to manipulate parameters or features under study with a similar 
degree of precision and freedom than in a model, and modulate the 
living neural circuit dynamics through a more realistic interaction. 
Thus, they combine the best features of computer modeling and 
experimental electrophysiology in particular in the context of the 
study of neural sequential dynamics, and they also provide insight 
of the origin of such properties.
In this work, we use hybrid circuits to study the origin of cycle-by-
cycle temporal relationships between pivotal time intervals that 
build the sequence of the pyloric CPG rhythm. In particular, we 
characterized time intervals defined using the LP and PD neuron 

bursting activity. These temporal relationships are preserved under 
various conditions, and thus can be identified as dynamical invari-
ants [2]. Hybrid circuits were built by coupling the LP neuron and 
neuron and graded synapse models using our recently developed 
RTHybrid software [3, 4]. Results show that dynamical invariants 
could be interpreted as an intrinsic balance between flexibility and 
robustness of the neural sequences. We assess the conditions under 
which the neuron and synapse models provide the minimum ele-
ments to build robust invariants in the hybrid circuits. The analysis is 
also relevant to design models that include such relevant aspects of 
sequential dynamics. We argue that these invariants can be a univer-
sal feature of many sequences shaping neural rhythms in the nerv-
ous system.
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Bio-inspired central pattern generators have been widely used to con-
trol robot locomotion, see for review [1]. Some efforts use neurons 
with intrinsic rich dynamics as observed in several experimental works 
of CPGs [2, 3]. However, most studies use simplified oscillator para-
digms with some bioispiration from the connectivity of living CPGs. 
We have recently revealed the presence of dynamical invariants in the 
pyloric CPG in the form of cycle-by-cycle linear relations among spe-
cific time intervals and the instantaneous period [4]. Such invariants 
may underlie effective locomotion programs. In this work we show 
that flexible robot locomotion with cycle-by-cycle invariants can be 
directly driven by the living CPG rhythm.
A hexapod robotic platform was built using printable parts from the 
BQ DIWO PrintBot Crab, whose schematics are open-source. A BQ Zum 
BT-328 board was used, programmed with Arduino code, with three 
TG9e microservomotors. Activity from both the LP and PD neurons 
of the stomatogastric ganglion of a crab was recorded using intracel-
lular electrodes and sent to a computer through a DAQ device. The 
computer then performed online event detection on the signals and 
forwarded this information to the robot via Bluetooth connection, 
accurately preserving the temporal structure of the intervals building 
the CPG sequence. We tested two different strategies to control the 
robot. The first one consisted of using the neuron oscillations to drive 
the robot directly, for example moving the legs when a specific neuron 
fires. In the second case, the robot was moved by artificial oscillators 
from the ArduSnake library, whose parameters were set cycle-by-cycle 
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based on the dynamical properties of the living circuit rhythm, such as 
the instantaneous inter-burst intervals duration. These trials were also 
carried out using a model CPG rhythms instead of living recordings to 
compare the robot performance in both cases.
Our results show that a direct translation of the properties that shape 
the sequences and dynamical invariants of the living CPG can effi-
ciently drive the hexapod robot. Moreover, this platform can also be 
used to incorporate feedback to the living system by using the sensory 
information collected by the robot. This will be implemented in future 
studies to assess the functional role of CPG dynamical invariants.
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While in most neurons propagation of neural signaling occurs via all-
or-none action potentials, graded synapses are also present in many 
nervous circuits such as the pyloric CPG of crustacean [1, 2]. We have 
recently discovered the presence of dynamical invariants in the form 
of preserved cycle-by-cycle relationships between specific time inter-
vals of the rhythm and the instantaneous period [3]. In this work, we 
assess how the parameters of a graded synapse can influence the 
propagation of rich dynamics of living circuits to neuron models.
We performed long recordings of the sequential activations of the LP 
and PD neurons corresponding to several waveform patterns and fre-
quencies. The time series of each living neuron was used to drive the 
input to a set of neuron models through a graded chemical synapse 
using the RTHybrid software [4]. The automatic amplitude, temporal 
scaling and adaptation of the living neuron signals to each model’s 
working regime was performed by the algorithms described in [5]. We 
then mapped the regions of the parameter space that produced a lin-
ear relationship between the instantaneous period and the intervals 
defining the sequence of this hybrid circuit. In these high resolution 
maps, the linear relationship was quantified by the calculation of the 
R2 of the regression.
The analysis of the maps generated from these hybrid circuits shows 
that there are regions of the synaptic parameter space that allow the 
transfer of the dynamics that give rise to the dynamical invariants 
between the living and the model neurons. The maps help identify-
ing the specific role of synaptic parameters in sustaining the invari-
ants. They show that not only the expected maximum conductance, 
but also the threshold of the graded release and the time constants 
that control the waveform and dynamics of the synapse affect the 
existence of the invariant. Furthermore, the maps can also be used to 
study how the features of the neuron model influence the presence 
and quality of the invariant.
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Neurodegenerative diseases involve a protracted pre-symptomatic 
phase, during which, many structural, functional and molecular 
abnormalities precede imminent neuronal loss and overt symptoms. 
Our research focuses on understanding the cellular and molecular 
dynamics of disease development using experimental and computa-
tional approaches. Here, we report early abnormalities of brainstem 
sensorimotor neurons controlling jaw function, in a mouse model for 
neurodegenerative Lou Gehrig’s disease, also known as Amyotrophic 
Lateral Sclerosis (ALS). In this fast-progressing, devastating disease, 
alpha motor neurons (MNs) degenerate, resulting in muscle atrophy, 
paralysis and death. Complementing our previous report on early 
hyperexcitability of MNs1, and recent evidence that proprioceptive 
inputs to alpha-MNs could play a trigger role in the neurodegenera-
tive process2, we directly tested whether proprioceptive sensory neu-
rons are abnormal early during disease development. Using diverse 
approaches we establish early circuit-specific proprioceptive sensory 
abnormalities in a well-characterized Super-Oxide-di-Mutase-1 (SOD1) 
transgenic mouse model for ALS at postnatal age P11±3. Our results 
suggest circuit-specific early dysregulation of proprioceptive neurons 
and predicts consequent sensorimotor dysfunction in ALS.
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Do human brain functional connectivity networks obey power law 
scaling in their degree distributions? Initial claims to the affirmative, 
based on least-squares fitting, have been challenged on methodologi-
cal grounds [1, 2]. Subsequently, estimators based on maximum-like-
lihood and non-parametric tests involving surrogate data have been 
proposed [2]. However, no clear consensus has emerged as results 
have varied across studies [3], especially, showing a dependence on 
the resolution of the data used [4]. Addressing this question calls for a 
closer examination of methodological issues. In this study, we analyze 
high-resolution fMRI data from the Human Connectome Project at six 
different resolutions: 1, 5, 10, 20, 50 and 80 thousand regions of inter-
est. We test for the power law, exponential, log normal, Weibull and 
generalized Pareto distributions. Our results show that the statistics 
generally do not support a power law. These degree distributions are 
not fat-tailed. Instead, they tend towards the short-tailed limit of the 
generalized Pareto model. This has clear implications for the organiza-
tion of hubs in human fMRI data. Furthermore, working across several 
resolutions of the data and performing cross-model comparisons, we 
establish robustness of the generalized Pareto model in explaining the 
data. An interesting by-product of this analysis is the observation that 
down-sampling the data affects statistical tests in a systematic man-
ner. The statistical plausibility of every model systematically increases 
up to a limit. Lower resolutions make it harder to discern between 
models, leading to the appearance of multiple models being signifi-
cant. This is why one sees more power laws there than at higher resolu-
tions, but those tests fail cross-model comparisons. This is particularly 
relevant for studies that involve down-sampling fMRI data into ana-
tomical parcellations. The down-sampling effects we report here bear 
significance for the broader discussion of scientific reproducibility.
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Body Ownership (BO) was originally considered a sensory state deriv-
ing reactively as a consequence of bottom-up integration of multi-
sensory cues when exafferent inputs are presented synchronously [1]. 
Interestingly, recent evidence shows that BO is also actively modulated 
by top-down prediction of both externally [2] and self-generated sen-
sory events [3]. Thus, BO seems to be a product of bottom-up integra-
tion and top-down prediction of both self and externally-generated 
sensory events, which occurs when sensory prediction errors are low 
[4, 5, 6]. In motor control, Forward Models (FM) driving goal-oriented 
behavior integrate any task-relevant sensory cues to minimize sensory 
prediction errors and optimize performance with the world, however, 
inevitably triggers processing of not only proximal (TRPC)(i.e. proprio-
ceptive)but also distal (TRDC) (i.e. vision, audition)task-relevant cues, 
and these, in turn, might influence TRPC establishing a feedback loop 

[7].In that direction, Forward Models (FM) which leads goal-oriented 
behavior will combine each sensory modality that pertains to the goal 
at hand and the performance of an embodied self. The study aimed 
to find if BO depends on the consistency of FMs driving goal-oriented 
action, where congruent relationship between TRPC and TRDC influ-
ence BO and even define the borders of the embodied self. To do so, 
we created an embodied VR-based goal-oriented task where action 
outcomes were driven by diverse auditory cues. By manipulating the 
cues with respect to their spatiotemporal congruency and valence, we 
show that action-driven distal feedback (TRDC) which breaks predic-
tions about the environment settle both BO and performance. Our 
results demonstrate that feedback cues related to not only the body 
itself but also by feedback around it within a task might influence BO.
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An important challenge in computational neuroscience is to quantify 
information complexity [1] of the brain at different temporal and spa-
tial scales, especially given the surge in high-throughput imaging and 
recording technologies. The question we address here is: How can we 
quantify temporal informational complexity of the brain to distinguish 
states of volition? To investigate this, we work with a new formulation 
of network integrated information that is based on the Kullback-Lei-
bler divergence between the multivariate distribution on the set of 
network states versus the corresponding factorized distribution over 
its parts [2, 3]. We extend this formulation for temporal networks and 
then apply it to human brain data obtained from intracranial record-
ings in epilepsy patients. We test subjects on a virtual-reality based 
navigation task, where one group performs active exploration of 
visual information, while the other passive. Computing the tempo-
ral integrated information on these datasets shows that our measure 
captures statistical differences in volitional versus passive navigation 
modes. Moreover, compared to random re-wirings, functional connec-
tivity networks constructed from human brain data, score consistently 
higher in the above measure of integrated information. This work sug-
gests that temporal integrated information may indeed function as a 
useful measure of volition and more generally cognitive complexity.
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Humans and other species face the challenge of navigating through 
complex social interactions. They critically depend on developing 
appropriate social interactions with their conspecifics for survival, 
reproduction, and even regulation of their own body physiology [1]. 
Recent evidence from neuroimaging and developmental studies indi-
cates that human’s social competencies are learnt and developed from 
experience with other individuals of their social group (e.g. caregiv-
ers) through a joint agency [2]. In particular, the ability of individuals 
to focus on a common goal (joint attention) and share psychological 
states (intention sharing) have been proposed to be foundational skills 
for many of our social competencies like theory of mind, and support 
general cognitive development [2].
In this work we address the question of how joint attention develops 
between agents during social cooperation. In particular, we employ 
causal influence and information measures in a deep reinforcement 
learning setting to study how intrinsic rewards (in addition to the 
task’s extrinsic rewards) guide agents to detect and manipulate the 
attention of other agents to achieve their own goals. For this pur-
pose, we use environments inspired by social dilemmas, including 
Stag-Hunt, with a rich variety of goals that promote the specialisation 
of agents in particular tasks, and where joint attention is an advan-
tageous skill to learn. To characterise the learning process we meas-
ure the degree of joint attention achieved by different agents using 
counterfactual methods [3] and asses the importance of this skill at 
different stages of learning using evolution-inspired algorithms such 
as population-based training [4]. Finally, based on our studies, we dis-
cuss the conditions that are necessary for joint attention to emerge 
between computational agents and how it can be used to develop 
further social skills.
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The brain, as any other biological system, is an open system in inter-
action with the environment, which means, among other things, that 
there is an interchange of matter and energy between the brain and 
the environment. However, as a cognitive system, the brain is gener-
ally considered to be a closed system. There is a traditional characteri-
zation of neural systems as cognitively closed, where cognition must 
be understood as an internal process. According to these views, cogni-
tion is created by intrinsic processes within the brain. In contrast with 
this approach, insights from different lines of research have empha-
sized the view of cognition as a coupled continuum between the 

neural system and the environment. Some authors have used the term 
“wide cognition” (Milkowski et al., 2018) to characterize such views. 
According to the wide-cognition approaches, which I have explored 
elsewhere (Vilarroya, 2012, 2014, 2017), the neural system should be 
considered to be linked with an external element of the environment, 
creating a “coupled” system that can be seen as a cognitive unit in its 
own right. All the components in such a system play an active causal 
role, and together they govern behavior. If we remove the external 
component, the system’s behavioral competence decline, just as it 
would do so if we removed part of the neural system. The assump-
tion is that such a coupled process must be characterized as a genuine 
cognitive computation, whether or not it is wholly part of the neural 
system. In other words, the environment should be considered to have 
not only an active role in the internal activity of the neural system, but 
as a necessary part of what enables cognition. As far as I have been 
able to assess, there are few computational approaches that model 
wide-cognition approaches. It is true, that there are computational 
models of, for example, object grasping that have begun to integrate 
the environment in their formalization. However, we need an alterna-
tive view that does not require encoding the bodily and environmen-
tal elements. Such an alternative view should assume parameters that 
are environmentally maintained, by relying on the use of the proper-
ties of external elements without internally coding for them. My aim 
with this communication is to open a discussion with participants at 
the CNS*2019 in order to discuss the possible approaches that could 
model the wide-cognition view. More specifically, my aim is to be 
able discuss the possibility of a computational model that can rely 
on properties of the environment without coding for them. My goal 
is to use such a proposal to assess the possibility of modelling the 
cognitive properties of a minimal cognitive system, as well as to pro-
vide evidence that such a model shows some of the core properties 
of a cognitive system, such as learning, generalization, flexibility and 
context-sensitivity.
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Brain fluctuations can be indexed in the spectrum of the field poten-
tials by the asynchronous background activity—possibly representing 
the “noise” of cortical neurons-. It has been shown that cortical com-
putation under neuromodulatory control affect intrinsic variability. In 
macro scale, it has been shown that by pharmacology, catecholamine 

Fig. 1 PSD slope covariance matrices of 86 electrodes taken pairwise. 
Significative differences using t‑test were found between whole trial 
and top‑down attention (probe) conditions (p<0.005) and between 
top‑down attention (probe) and rest (grid) conditions (p<0.05)

http://arxiv.org/abs/1711.09846
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modulates fMRI network dynamics in a spatially distributed manner, 
depending on the its receptors density.
Brain fluctuations have a distributed “scale-free” behaviour, where 
power scales by frequency, according to a power law, P(f ) ∝ fβ. This 
asynchronous component has been suggested to reflect background 
noise and catecholaminergic modulation and it has been proposed as 
a correlate of the BOLD signal. This makes asynchronous activity a can-
didate to link micro and macro scale dynamics with plausible mecha-
nism. Here, we extend the spatial distribution of catecholaminergic 
network modulations seen in fMRI to intracortical field potential dur-
ing a top-down visuospatial working memory task.
We will show that the slope of the power spectrum covaries differ-
ently depending on attentional recruitment (see Fig. 1). By correlating 
spatial distribution of asynchronous activity with catecholaminergic 
receptor densities, we show regions under neuromodulatory control 
of intrinsic background activity.
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Neurons often feature complex dendritic morphology that host intri-
cate connectivity motifs. These compartmentalised structures are 
thought of as independent functional units, and recent experimental 
and computational studies have helped to elucidate the impact and 
function of dendritic dynamics on somatic activity [1-3]. However, 
dendritic responses to complex input patterns have still not been 
explored in detail. Specifically, we still do not fully understand how 
slow and fast synaptic currents interact in response to varying spike 
trains, and how single neurons can perform pattern detection on the 
many spike patterns that it experiences throughout the day. Towards 
this goal, we build a simplified dendritic compartment model with 
conductance-based synapses such that we can quantify how den-
drites integrate synaptic inputs under various conditions. In our 
model, the dendritic dynamics results from synaptic input patterns 
and the strength of their coupling to the soma, i.e., electrotonic dis-
tance. To assess voltage responses, we explore the impact of distinct 
input spike train statistics: uniform Poisson, non-uniform Poisson with 
bursts, and non-uniform Poisson following an Ornstein-Uhlenbeck 
process. Additionally, we test how correlated excitatory and inhibi-
tory spike trains affect excitatory-inhibitory balance, and dendritic 
responses. We find that four parameters can diversify the dendritic 
dynamics: soma-dendrite coupling strength (or distance); number 
of synapses connected onto the dendritic region; ratio between syn-
apse types; and correlation between excitatory and inhibitory inputs. 
The first is related to the neuronal morphology, and the latter three to 
connectivity motif (branch location). We show that inhibition tightly 
balances excitation even for uncorrelated excitatory and inhibitory 
inputs when enough incoming synapses are present, and that non-
linear integration of inputs allows for the emergence of up- and down-
states [4], that depends on the soma-dendrite coupling. Furthermore, 
we show that, depending on the correlation between excitatory and 
inhibitory inputs, the dendrite responds to either the onset or the 
offset of a strong stimulation (burst), like ON and OFF cells [5], which 
also depends on its coupling to the soma. Our work strengthens the 
hypothesis that dendritic branches can be understood as computa-
tional units that give rise to diverse responses based on the location, 
and synaptic configuration of its input.
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Synaptic plasticity is the main mechanism for learning, allowing for 
versatile synaptic changes that are required to shape the rich vari-
ety of cortical dynamics and, consequently, define its functional 
flexibility [1]. Classically, plasticity is thought to be Hebbian, i.e., a 
local phenomenon in which changes in synaptic weights depend 
solely on pre- and post-synaptic quantities [2]. Recently, plastic-
ity has been shown to be modulated by additional pre-synaptic 
activity, e.g., from neighbouring synapses connecting onto the 
same post-synaptic dendritic region [3]. It is therefore plausible to 
re-think the concept of locality and consequently expand it from 
synapse-specific to dendritic–specific. Furthermore, the functional 
consequences of this extra modulation are unexplored due to lack 
of models that incorporate the direct interaction among synapses, 
especially different synaptic types. Here we present a model of code-
pendent synaptic plasticity including this direct interaction. Based 
on experimental data, our model adjusts its synapses so that the 
total excitatory inputs onto a dendritic region is the desired fixed-
point; different from the standard firing-rate fixed-point dynamics. 
Inhibitory plasticity has a complementary role that is also independ-
ent of post-synaptic firing-rate. GABAergic synapses change so that 
the total synaptic input onto a dendritic region is precisely bal-
anced. Together, excitatory and inhibitory synapses dictate the state 
of excitability of the post-synaptic neuron, while slow homeostatic 
processes could control its activity, without any unstable dynam-
ics. Additional flexibility is achieved by the modulation of the learn-
ing rate of excitatory plasticity via inhibitory inputs. Codependent 
excitatory plasticity learning-rate is directly affected by inhibitory 
input currents, which creates a powerful control of “when” to learn 
through disinhibition. We show that, when connected in a simplified 
feed-forward network, a post-synaptic neuron dynamically modifies 
its receptive field-like input weights due to this disinhibitory effect, 
as reported for auditory cortex [4]. When connected in a recurrent 
network we show that, by controlling the total excitability of neu-
rons, the network learns to be highly sensitive to external inputs, 
producing strong transient dynamics, similarly to what is seen in 
motor cortex [5]. Finally, we show that synaptic clustering emerges 
naturally in dendrites, as a function of initial number of correlated 
synapses and distance to the soma. Codependent plasticity is the 
next step in plasticity modelling by including synaptic interactions 
for efficient, quick and stable learning of multiple brain functions.
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Our brains interpret ambiguous streams of information to make 
decisions and guide our behavior. Canonical approaches to model 
this cognitive function are based on diffusion processes that assume 
bounded or unbounded perfect integration of the stimulus [1]. Here 
we study the integration process in neurobiological models with 
winner-take-all dynamics that can be reduced to a diffusion pro-
cess of the decision variable x in a double well (DW) potential: dx/
dt = -dφ/dX+S(t) with φ = -aX2+bX4 where the stimulus is a gauss-
ian signal (S(t) = μ+ ση(t)) with mean μ and std. deviation σ [2, 3].
To show the key mechanisms that differentiate this model from 
canonical ones, we characterize the integration process by quantify-
ing the shape and magnitude of the Psychophysical Kernel (PK) . The 
PKs allow us to characterize the time course of the stimulus impact 
in both psychophysics experiments and models of perceptual deci-
sion making. With this approach and increasing the magnitude of 
the stimulus fluctuations (σ), we find different integration regimes: i) 
For small σ, there is transient integration (i.e. primacy) because once 
the system reaches one well, there are no transitions. iii) For medium 
σ, we find flexible categorization as initial decisions can be reversed 
by the stimulus fluctuations (changes of mind). In this regime, the 
stimulus can impact the choice during the whole trial iii) When σ 
is large, it can drive several transition between wells. Thus the first 
visited attractor is irrelevant for the decision and only the late fluc-
tuations in the trial can have an impact on the choice, i.e. the inte-
gration is leaky (recency).
We test this prediction in a visual discrimination task (N = 16 humans) 
and in an auditory discrimination task (N = 5 rats). We find that sub-
jects show heterogeneous psychophysical kernels from primacy to 
recency. To quantify these different strategies we develop an algo-
rithm to fit a general potential to each subject φ = -aX2+bX4+cX6. 
Adding a third term allows the potential to take different shapes, from 
a double well shape to shapes that allow bounded or unbounded 
nearly perfect integration of the evidence. We test the generality and 
power of the algorithm using synthetic data. First, we confirm that the 
algorithm recovers the original parameter set used to generate the 
data. Second, we can include different mechanisms in the algorithm 
and test whether they improve the fit to the data. Such mechanisms 
include an urgency signal, variability at the initial condition or a bias 
towards one of the sides. This algorithm could be a powerful tool to 
find the neural mechanisms that explain subject heterogeneity.
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Neural population activity recorded from primate prefrontal cortex 
carries information about the remembered stimulus, maintaining a 
stable representation throughout the delay period of working mem-
ory tasks. During cue presentation and in the beginning of the delay 
period the population code is dynamic [3]. Individual prefrontal neu-
rons show heterogeneous activity including strong temporal dynam-
ics in all task phases. It remains unresolved how individual neurons 
support the dynamic and stable population codes and what are the 
underlying circuit mechanisms.
Here we set out to investigate how prefrontal neurons with different 
trial-period dynamics contribute to population dynamics during an 
oculomotor delayed response task from two datasets [1, 2]. We used 
linear decoders on single neurons and compared stimulus information 
during different time points through the whole trial period. We iden-
tified a subpopulation of neurons with stable delay decoding at the 
level of individual neurons and those neurons were the main contribu-
tors to the stable population code during the delay. We consistently 
found stable population decoding, as accurate as the whole popula-
tion, even for small neuronal subpopulations. These findings are con-
sistent with attractor dynamics.
However, as observed previously (e.g. [3]), the population code and 
the underlying neuronal firing rates show transient dynamics during 
cue presentation and in the early delay, apparently at odds with attrac-
tor dynamics. We show that this can be explained by a circuit model 
composed of two coupled ring models. External input impinges on a 
ring model with weaker recurrence, which is in turn coupled to a sec-
ond ring model with stronger recurrence that generates the sustained 
code. The model predicts the existence of two distinct neuronal sub-
populations: Firing rates of neurons in the first ring quickly increase 
in response to the stimulus and decay relatively quickly after stimu-
lus offset (~100 ms). Firing rates in the second ring show a transient 
increase in firing rate during the cue and early delay periods before 
the network reaches a stable fixed point.
The experimental data [2] provides support for this model. Changes 
of the firing rate of functionally different neurons (cue-responsive vs. 
delay-responsive) are characterized by different time constants. Cue-
responsive neurons show faster firing rate dynamics with a narrow 
distribution of time constants, and the time constants of the delay-
responsive population are higher on average. They are also more 
widely distributed due to ramping activity until the end of the delay 
period in a fraction of neurons. Finally, an analysis of spike cross-cor-
relation of pairs of simultaneously recorded neurons reveals stronger 
synaptic coupling within than across the cells of each subpopulation, 
thus supporting the notion of specialized circuits.
In sum, our findings suggest that the presence of highly dynamic 
activity during the initial memory storage originates mainly from dif-
ferent neuronal subpopulations. After this initial transient, a stable 
state is reached, and memory maintenance is achieved through attrac-
tor dynamics.
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The activity of an individual border ownership selective (BOS) neuron 
indicates where a foreground object is located relative to its (clas-
sical) receptive field [4]. Collectively, BOS neurons thus provide an 
important component of perceptual grouping, the organization of 
the visual scene into objects. Previous theoretical work has proposed 
that this grouping mechanism is implemented by dedicated neuronal 
population of grouping (“G”) cells and that, furthermore, these G-cells 
also serve as “handles” for attention to objects [1]. Recent experimen-
tal studies have investigated correlations between BOS neurons [2]. 
A previous theoretical study showed that modulatory common feed-
back may underlie the physiologically observed synchrony between 
BOS neurons with consistent border ownership preferences, i.e. when 
both neurons in the pair respond to the same visual object [3]. Here, 
we extended this model to explain synchrony observed between 
neurons with non-consistent BOS. In our model, the responses of BOS 
neurons are modulated by the activity of G-cells which receive their 
input from BOS neurons and mediate selective attention. We assume 

two distinct types of G-cells: spatial-attention (Gsp) and object-based 
G-cells (Gobj) (Fig. 1).Whereas Gsp-cells provide a fast sketch of object 
locations, Gobj-cells mediate object-based attention. The G-cells pro-
vide modulatory feedback to BOS neurons via N-methyl-D-aspartate 
(NMDA) receptors. Common feedback from G-cells modulates activity 
of BOS neuron and underlies the synchrony. Simulations of the net-
work model are in overall agreement with the physiological findings 
reported by [2]. Our results suggest that the interactions between 
feedback signals from top-down and recurrent pathways play a critical 
role to modulate the responses of BOS neurons.
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The spontaneous activity of the brain interacts with stimulus-induced 
activity which is manifested in event-related amplitude and its trial-to-
trial variability (TTV). TTV describes the variability in the amplitude of 
the stimulus-evoked response across trials, and it is generally observed 
to be reduced, or quenched. While such TTV quenching has been 
observed on both the cellular and regional levels, its exact behavioral 
relevance and neuronal basis remains unclear. Applying a novel para-
digm for testing neural markers of individuality in internally-guided 
decision-making, we here investigated whether TTV (i) represents an 
individually specific response by comparing individualized vs shared 
stimuli; and (ii) is mediated by the complexity of prestimulus activity 
as measured by the Lempel-Ziv Complexity index (LZC). We observed 
that TTV- and other electrophysiological markers such as ERP, ERSP, 
and ITC—showed first significant differences between individualized 
and shared stimuli (while controlling for task-related effects) specifi-
cally in the alpha and beta frequency bands, and secondly that TTV 
in the beta band correlated significantly with reaction time and eLO-
RETA activity. Moreover, we demonstrate that the complexity (LZC) of 

Fig. 1 Architecture used in this study. Two distinct types of G‑cells 
(balls with “G”) were assumed. Feedback signals from these G‑cells 
modulate activity of BOS neuron (balls with “B”) by NMDA‑type con‑
nections (gray downward pointing arrows). Black and gray ellipses 
represent the location of (classical) receptive fields of BOS neurons 
and arrows point toward the preferred side of a BOS neuron

Fig. 1 Lempel‑Ziv complexity (LZC) in the prestimulus and post‑
stimulus periods
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neuronal activity is higher in the prestimulus period while it decreases 
during the poststimulus period, with the former also correlating spe-
cifically with poststimulus individualized TTV in alpha (but not with 
shared TTV). Together, our results show that the TTV represents a 
marker of ‘neural individualization’ which, being related to internal 
processes on both neural and psychological levels, is mediated by the 
information complexity of prestimulus activity. More generally, our 
results inform the pre- and post-stimulus dynamics of rest-stimulus 
interaction, which is a basic and ubiquitous neural phenomenon in 
the brain and highly relevant for mental features including their indi-
viduality. Fig. 1 shows Lempel-Ziv complexity (LZC) in the prestimulus 
and poststimulus periods. To examine complexity as a mechanism for 
TTV, as shown in Fig. 1A, 500ms prior to and after stimulus onset were 
investigated for complexity using the LZC measure. In paired samples 
t-tests, it was found that stimulus onset had a significant effect on 
complexity in both groups of stimuli and conditions. In contrast, there 
was no significant difference in the pseudotrials, which acted as sur-
rogates. The time-resolved LZC seen here in Fig. 1A was computed 
for visualization only using a window of 500ms, overlap of 90%, and 
step of 50ms. Line curves were smoothed in MATLAB using the func-
tion spline. Two paired-samples t-tests was conducted comparing the 
difference in LZC related to stimulus onset between the individualized 
and shared stimuli in both conditions, as shown in Fig. 1B. There was a 
significant effect of stimulus in the IDM condition, but not in the EDM 
condition. P-values are Benjamini-Hochberg FDR corrected for multi-
ple comparisons.

P336 
The retina predicts information in inertial stochastic dynamics
Min  Yan1, Yiko  Chen2, ChiKeung  Chan2, K. Y. Michael  Wong3

1Hong Kong University of Science and Technology, Hong Kong, Hong 
Kong; 2Institute of Physics, Academia Sinica, Taipei, Taiwan, Physics, 
Taiwan, Taiwan; 3Hong Kong University of Science and Technology, 
Physics, Hong Kong, Hong Kong
Correspondence: Min Yan (myanaa@connect.ust.hk)  
BMC Neuroscience 2019, 20(Suppl 1): P336

Vision is one of the most vital sensory modalities for animals to 
receive information from the surrounding world. Visual stimuli are first 
received by the retina, but the processing of visual signals begins first 
at the retina, instead of the visual cortex [1]. Experiments showed that 
the retina not only receives, but also preprocesses, the visual informa-
tion. In experiments on the salamander retina, the mutual information 
between the visual signals and the responses of the retina with vari-
ous time differences showed that responses of the retina actually have 
correlations with subsequent visual inputs [2]. Hence, not only can 
the retina transmit information, but it can also anticipate future sig-
nals based on what it has received. The anticipative mechanism in the 
retina is useful, especially when animals need to make quick responses 
and decisions to survive. The earlier the processing of the information, 
the higher the efficiency of signal analysis. Recently, experiments on 
the bullfrog retina showed that visual stimuli applied in the forms of 
Hidden Markov Model (HMM) and Ornstein-Uhlenbeck (OU) process 
resulted in different behaviors [3]. Predictive ability is present for HMM 
but effectively disappears in OU processes. To model these predic-
tive behaviors, we propose a neural network model to simulate the 
dynamics of the amacrine cells and ganglion cells [4]. Since the sto-
chastic dynamics is driven by inertia (or momentum) in HMM but not 
in OU, our model incorporates elements that accommodate inertia, 
an example being the inhibitory feedback in [5]. We found that when 
HMM stimuli are applied, single ganglion cells can realize anticipating 
tasks well, in accordance with experimental results. Besides, the popu-
lation of ganglion cells can also achieve the predictive task as a whole 
(Fig. 1). On the other hand, for inputs produced by the OU process, the 
mutual information computed from single neurons or the whole net-
work is effectively non-predictive, also in accordance with experimen-
tal results.
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In order to understand how memory and robustness (to altered param-
eters and missing connections) emerges in spiking neural networks, we 
have evolved very small spiking neural networks for temporal pattern 
recognition in presence of membrane potential noise. The network con-
sists of three input channels, a maximum of three interneurons and one 
output neuron. Interneurons and output neurons are represented by 
adaptive exponential integrate and fire models which generate a vari-
ety of spiking behaviors with different sets of parameters. For the cur-
rent study we use the set of parameters which generates tonic spiking 
in response to constant input current [1]. If we consider the input sig-
nals as letters A, B and C, the task of the network would be to recognise 
input signals in a particular order, for example A followed by B followed 
by C in a continuous sequence of signals such as ACCBCCBABCACBBAB-
CAC. Each signal lasts for 6 ms followed by a silent interval of 16 ms. The 
evolved network should not respond to any other possible combination 
of A, B and C. We use a genetic algorithm to evolve the topology and 
weights of the connections of the network. The initial population con-
sists of 300 randomly created individuals encoded as a linear genome 
[2]. The fitness function rewards for a spike response after occurrence of 

Fig. 1 The mutual information (MI) curves for various correla‑
tion times τ of HMM. Positive δt denotes prediction. a The mutual 
information calculated from simulations. b The mutual information 
measured from experiments. Amplified part of ‘predictive MI’ in a is in 
the left figure
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a correct pattern (for example ABC) and penalises spikes elsewhere. The 
evolved network is robust to changes in neuronal parameters [3]. We are 
currently investigating which connections can be removed from the net-
work without compromising performance.
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The epsilon 4 allele of apolipoprotein E (APOE) is the major genetic 
risk factor for Alzheimer’s disease (AD), but the reason APOE4 car-
riers have a higher incidence of AD than non-carriers is still not 
fully understood. Most studies have investigated APOE-mediated 
AD pathology by focusing on the ability of APOE4 to increase the 
aggregation and decrease the clearance of amyloid β (Aβ) [1]. In 
contrast, recent studies have suggested APOE4 also contributes to 
AD pathogenesis by Aβ-independent mechanisms [1-3]. One study 
investigated APOE mice lacking overt Aβ pathology and identi-
fied APOE4-associated neuronal hyperactivity driven by decreased 
background inhibition [3]. Because neuronal hyperactivity has been 
shown to be an early phenotype and accelerate AD pathology, this 
APOE4-associated hyperactivity has been suggested as a causative 
factor driving increased risk of AD [3]. However, the mechanism that 
links APOE4 to the decreased background inhibition driving neu-
ronal hyperactivity remains unclear. On the other hand, other neu-
roimaging studies also investigated APOE4 carriers who were Aβ 
negative and suggested the age-dependent and Aβ-independent 
effects on structural connectivity [2]. However, whether and how 
the alternations of brain structural connectivity contribute to the 
increased risk of AD is not clear. In this study, I investigate the associ-
ation between age-dependent alternations of structural connectiv-
ity in APOE4 carriers and neuronal hyperactivity by using computer 
simulations. Specifically, I built large-scale brain models consisting 
of 2.5 million excitatory and inhibitory spiking neurons and 5.0 bil-
lion synaptic connections. For determining inter-areal connectivity 
of each model, I used structural connectivity data of APOE4 carriers 
of different ages in which age-dependent alternations characterized 
by local interconnectivity loss had been reported [4, 5]. I then simu-
lated and compared resting-state brain activities. Consequently, I 
found that while intrinsic cortical activities of each model matched 
typical patterns and quantitative indices from biological observa-
tions [6], the models based on the data of older APOE-4 carriers sig-
nificantly increased excitatory neuronal activity along with reduced 
inhibitory activity and increased complexity of neural ensembles. 
This preliminary result suggests that age-dependent alternations of 
brain structural connectivity in APOE4 carriers might contribute to 
increased risk of AD by driving neuronal hyperactivity.
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The recurrent error-driven adaptive control hierarchy (REACH) model 
[1] is a spiking network model for brain-style motor learning and 
control. The model can control a nonlinear multi-link arm adaptively 
against perturbation such as an unknown force field. The model, how-
ever, must be preprogrammed to move the arm appropriately under 
perturbation-free condition. Thus, the model does not have ability to 
learn from scratch. Reinforcement learning (RL) is a learning mecha-
nism such that an agent learns appropriate behavior from scratch. RL 
is thought to be mediated by the basal ganglia (BG) in the brain. There-
fore, we integrated BG model into REACH model to learn to move arm 
from scratch.
REACH model contains premotor cortex (PMC), primary motor cortex 
(M1) and cerebellum (CB). PMC generates abstract trajectories from 

Fig. 1 Predicted goal positions during 3500 trials of reaching. Each 
point represents the predicted target position for each trial. Color 
shows the trial number. The black circle represents the actual goal. 
The arm has two links and two joints (black thick lines with a small 
filled circle). It is controlled by joint torques exerted by the M1 
module
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start position to goal position, M1 transforms forces from abstracted 
representation to joint torques, and CB generates error correcting sig-
nals. We have implemented an RL algorithm called actor-critic model 
and integrated it into REACH model as a BG model. An actor-critic 
model consists of two networks, an actor network and a critic network. 
The critic network learns a value function that represents how good 
a given state is, whereas the actor network learns a policy that repre-
sents which action should be taken in a given state [2]. The learning 
is driven by the temporal-difference (TD) error, which is computed by 
the value function and external rewards. In BG, dopamine neurons 
are thought to provide the reward signals and thus trigger long-term 
synaptic plasticity. In the arm reaching task the BG model provides the 
predicted goal position and joint torques to move the arm to the goal, 
based on the current estimation of the goal position, current joint 
angles and angular velocities, the current hand position, and reward 
which is the distance between the predicted and actual goal positions.
Using this integrated model, we simulated arm reaching task in 
which the model moves the arm to the given target. Fig. 1 shows 
the sequence of predicted goal positions estimated by the BG model 
during 3,500 trials of arm movement. The accuracy of prediction is 
improved across trials. This result suggest that the BG model learn 
learns to predict the goal position gradually, which in turn allow the 
entire model to move the arm to the and the entire model learns mov-
ing arm to the goal position from scratch.
We confirmed that the model successfully learns to predict the goal 
position and move the arm to the predicted position. We expect 
implementing more biologically plausible models would improve the 
performance of motor control, and analyzing neuron activities would 
provide better understanding of brain functions during motor control.
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The cerebellum plays important roles in motor control, learning, and 
cognitive functions. However, the computational mechanism is not 
fully understood. The human cerebellum holds 80% of all neurons in 
the human brain [1]. We believe that dynamics of the neural network 
composed of huge neurons contributes to the functions. Furthermore, 
the cerebellum is interconnected with the cerebral cortex and the 
basal ganglia. To understand the computational mechanism of the cer-
ebellum, it is necessary to consider the interaction with the other parts 
of the whole brain. Simulation of a realistic neural network model is a 
useful tool to examine how neural network dynamics contributes to 
the brain function. Under the support of Post-K Exploratory Challenge 
#4, we built a spiking network model of the cerebellum based on our 
previous study [2] on Japanese flagship K computer. First, we used 
NEST simulator running on K computer [3]. We carried out computer 
simulation of optokinetic response (OKR), which is one of the simplest 
form of cerebellum-dependent eye movement task, and confirmed 

that the NEST version exhibited qualitatively the same results as the 
previous version. In response to sinusoidally modulated mossy fiber 
input signals, granule cells exhibited complex reservoir-like activity 
(Fig. 1A). Further, simulated neuronal activity patters of Purkinje cells 
(Fig. 1B) and vestibular nuclear neurons (Fig. 1C) are consistent with 
electrophysiological findings. Moreover, with the other groups in the 
same Post-K project, we have been connecting the present model with 
the other models for the cerebral cortex and the basal ganglia solely 
on NEST simulator. On the other hand, we implemented the same 
model on a different simulator called MONET (Mille-feuille like Organi-
zation NEural neTwork), which has been developed by the other group 
of this project. The MONET simulator partitions a stacked two-dimen-
sional sheets of a network structure into a number of smaller square 
tiles and then performs calculation in parallel for the tiles. The MONET 
version produced qualitatively similar results of OKR simulation with 
the NEST version as well as the original version. We examined whether 
the network size can be further extended with the MONET version. We 
succeeded to build a very large-scale network model composed of 
more than 68 billion spiking neurons. The size is almost the same with 
the human entire cerebellum. In other words, we succeeded to build a 
human-scale cerebellar model on K computer. We expect that our cer-
ebellar network model on NEST and MONET simulators would allow us 
to explore how such large-scale model and interaction with the cer-
ebral cortex model play roles in complex voluntary motor tasks as well 
as higher-order cognitive tasks in which the cerebellum is involved.

Acknowledgements: This work was supported by MEXT Post-K 
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Fig. 1 Network dynamics of the cerebellar network model on NEST 
simulator. a Top: Activity pattern of 1,024 granule cells in response to 
sinusoidally modulating input signal, which represents sinusoidally 
rotated visual world movements. Dot represents a spike. Bottom: 
Firing rate of the input signal. Firing rate of b Purkinje cells and c 
vestibular nuclear neurons
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Fig. 1 a Schematic figure of the proposed neuromusculoskeletal 
model. The proposed neural system with a CPG model composed 
of a rhythm generator (RG) network and a pattern formation (PF) 
network. b Patterns of the motor modules in the normal locomo‑
tion model. c Patterns of the motor modules in the pathological 
locomotion model. Gray lines show the motor modules in the normal 
locomotion model
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The motor module hypothesis [1] proposes that the nervous system 
groups a number of muscles into smaller number of modules to sim-
plify motor control such as locomotion [2]. In locomotion of healthy 
adults, four or five motor modules are recruited, whereas patients 
with neural disorders such as stroke exhibit abnormal locomotion 
patterns, and two or more motor modules are merged into one [3]. 
However, how the nervous system of patients with alters the organi-
zation of motor modules is unclear. In this study, we focused on how 
motor modules are altered in pathological locomotion by building a 
two-dimensional neuromusculoskeletal model and carrying out its 
dynamical simulation.
The two-dimensional neuromusculoskeletal model consists of seven 
rigid links and nine principal muscles for each leg, a neural system 
with hierarchical central pattern generator (CPG), and various feed 
backs from sensor organs (Fig. 1A). The CPG contains a rhythm 
generator (RG) and a pattern formation (PF) network. The RG is 
composed of four neurons mutually inhibited to generate rhythm, 
whereas the PF network contains 10 neurons with mutual- and 
self-inhibition that correspond to five motor modules for each leg. 
62 parameters of the neural system were tuned by genetic algo-
rithms (GAs). After the parameter estimation, the model successfully 
walked for five sec. We call this a normal locomotion model. Then, 
we weakened the amplitude of neural inputs to muscles on one side 
leg to simulate a pathological condition such as stroke. We call this 
a pathological locomotion model. In the pathological model, we ran 
GAs for searching parameters only for proprioceptive feedback.
After, 3000 generations of GAs, the normal locomotion model 
acquired a stable bipedal locomotion. The locomotion pat-
tern resembles that of the human biped quantitatively. Next, we 
changed the model to the pathological condition. Initially, the 
model failed to walk. Then, after 1000 generations of GAs, the model 
once again succeeded to walk. The locomotion pattern showed 
more variations in the step size. Figure 1B shows the activity of 10 
motor modules, five for left and five for right legs, in the normal 
locomotion model for three steps, showing that these modules are 
activated one by one sequentially with different phases. Figure 1C 
illustrates the same plots in the pathological locomotion model. In 
the affected leg, the first module does not exhibit marked activity 
due to the weakening of neural inputs, and the second and third 
modules tended to become active closely in time, suggesting that 

these modules are merged. These results suggest that alterations of 
proprioceptive feedback affect motor modules for stroke patients.
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In the brain, the basal ganglia (BG) is thought to be the site for Rein-
forcement Learning (RL) [1] using dopaminergic system. RL plays 
important roles in several brain functions such as decision making and 
motor control. A precise model of BG performing RL would contribute 
to realize brain-style artificial intelligence with advanced functions like 
human beings. On the other hand, spiking neuron networks are paid 
much attention by its computational power and low power consump-
tion of neuromorphic hardware. Therefore, we developed a spiking 
neuron network model of the basal ganglia.
The network structure of our model consisted of 9 layers, including 
the pre-frontal cortex (PFC), patch of striatum, matrix of striatum-D1/
D2, globus pallidus pars interna/externa, subthalamic nucleus, thala-
mus, and premotor cortex (PMC). We did not implement the substan-
tia nigra pars compacta (SNc) as spiking neuron layer. Each layers had 
100 spiking neurons, except PFC and PMC. For PFC and PMC, we set 
the number of neurons in accordance with a task. A neuron model we 
used was a simplified spike response model (SRM 0) [2], which emit 
spikes stochastically according to its membrane potential. For synap-
tic plastisity rule realizing Reinforcement Learning, we applied TD-LTP 
[3] method to synapses, from PMC to striatum. In our model, cortico-
striatal synaptic weights were modulated by the difference of pre-post 
spike time and reward prediction error (RPE) signal like dopaminergic 
neuron activities of SNc. The RPE signal were calculated from activity 
of neurons in the patch of the striatum.
We implemented the model on NVIDIA GeForce GTX TITAN Z in C++ 
and CUDA to accelerate numerical calculation. Then, to verify the per-
formance of the model, we conducted numerical simulation of two 
standard RL tasks: arm reaching and water maze. In reaching task, an 
agent moves its arm, and obtains reward if the arm reaches a target. 
The agent learns to move the arm towards the target. In the case of 
water maze task, an agent is put on the starting point and explores 
the maze. When the agent reaches the goal area, the agent obtains a 
reward. On the other hand, the agent is given a punishment on touch-
ing obstacles or walls in the maze. The agent learns to go to the goal 
while avoiding obstacles and walls.
As a result, our BG model successfully learned to move the arm 
smoothly to the target, and to find a goal in the maze, respectively. 
Furthermore, all the numerical simulation ran faster than real-time.
These results suggest that our BG model implemented on GPU allows 
us to study the detailed dynamics and learning process of the BG in 
a real-world environment. Moreover, we believe that we could imple-
ment the same model on neuromorphic processors, and the online RL 
capability would be useful to solve various real-world and AI problems.
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Fig. 1 a Network structure. b Reaching task overview. c Arm trajec-
tory of the reaching task. The target was shown at 12 o’clock in the 
first 500 trials, and the target was moved to 9 o’clock in the next 500 
trials. d Raster plot of the last trial in c (left). Cortico-striatal synaptic 
weights changing in 1000 trials (right). e Maze task overview. f Tra-
jectories of the agent for each trial of maze t
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The next generation supercomputers with exaflops levels of compu-
tational performance in the 2020s are estimated to be able to perform 
human-scale whole-brain spiking neural networks. However, it remains 
unclear how we can efficiently perform communication of increasing 
spike data among compute nodes, load balancing for the heterogeneous 
structure of the brain, and construction of neural networks with huge 
amounts of neurons and connections in whole-brain scale simulation.
We conducted a feasibility study of efficient parallelization and com-
munication methods of a brain model using supercomputer K.
In the mammalian brain, the cortex and the cerebellum include 99 
% of neurons and have layered sheet types of structures. They are 
densely wired within the regions and sparsely across distant regions. 
Therefore, an efficient parallel computing of layered sheet types of 
spiking neural networks with the dense-neighbor and long-range-
sparse distant connections is essential for realizing human-scale 
whole-brain simulation from a viewpoint of calculation amount.
Taking into account the anatomical features of the brain, we chose to 
use tile partitioning parallelization, which assigns compute nodes with 
partitioned tiles of layered sheet types of neural networks. The tile 

partitioning method works for load balancing in both simulation and 
construction of networks. In addition, the communication method to 
reduce communication frequency of spike data that exploits signal 
transmission delay, which has been used in NEST and NEURON simula-
tors, was expanded for tile partitioning method and used.
We tested the parallelization method by applying it to a realistic spik-
ing neural network simulation of the cortico-thalamo-cerebellar circuit 
using our in-house simulator, MONET (Mille-feuille like Organization 
NEural neTwork). The cortico-thalamo-cerebellar circuit was devel-
oped based on anatomical and electrophysiological data including 
neural density and spatial extent of connections. We used a leaky Inte-
grate-and-Fire neuron model for all neuron types and conductance-
based synaptic models for all synapses. We used the K computer that 
has 88128 CPUs and 1.28 PB DRAM memory. In programming of paral-
lel computing, we used C language, MPI and, OpenMP libraries.
We measured elapsed times of simulations for 1 second of biological 
time in various sizes of cortico-thalamo-cerebellar models with fixing 
the assigned tile size per compute node, where the numbers of neu-
rons per compute node were 45 thousand neurons for a cortical tile, 
2 thousand neurons for a thalamic tile, and 200 thousand neurons for 
a cerebellar tile. The total numbers of neurons and compute nodes 
ranged from 63 million to 1 billion neurons and from 768 to 12288 
compute nodes, respectively. The elapsed times were 614 to 620 sec, 
which means that the sizes of the neural network scaled up with keep-
ing the same range of elapsed time.
We also checked elapsed time of construction of the neural network. 
The elapsed time kept in the same range irrelevant of the network 
sizes.
These results demonstrated that the parallelization method realized 
efficient computing of cortico-thalamo-cerebellar circuit, which may 
contribute to human-scale whole-brain simulation on the next gen-
eration exascale supercomputers.
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Discrimination of temporal sequences is thought as a fundamental 
function of the brain. Cortical pyramidal neurons exhibit sensitivity 
to the sequence of synaptic activation [2]. In particular, these neurons 
can emit spikes only when the synapses are stimulated in a certain 
order.
Cerebellar Purkinje cells have remarkably large dendrites. Thus, we 
investigated whether Purkinje cells can emit spikes in response to a 
certain sequential activation of synapses.
We used a Purkinje cell model built by De Schutter and Bower [1] 
(Fig. 1A). This is an elaborated biophysical model composed of 1,600 
compartments and 10 types of voltage-dependent ion channels. The 
model receives excitatory parallel fiber inputs from granule cells and 
inhibitor inputs from stellate and Golgi cells. We stimulated multiple 
parallel fiber synapses sequentially in various orders, and examined the 
effect of sequential stimulation on the dendrites of the Purkinje cell. For 
efficient numerical stimulation, we reimplemented the model on GPU.
We selected 9 parallel fiber synapses, all of which connected to one 
straight dendrite from Purkinje cell soma (Fig. 1B). We activated them 
in any orders, and we found that the order of stimulation from distal to 
proximal can produce larger somatic response than from proximal to 
distal (Fig. 1C). The larger directionality index of the order of stimula-
tion was, the more likely somatic spike was emitted. We also confirmed 
that by assigning synaptic weights appropriately, the stimulation 
order for emitting spike can be reversed (Fig. 1D).
Branco et al. [2] suggest that two factors are important for the discrimi-
nation of temporal input sequences in cortical pyramidal neurons: 
the spatial gradient of input impedances along the dendrites and the 
highly nonlinear voltage dependence of the NMDAR conductances. 
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Fig. 1 a Detail of the shape of Purkinje cell model built by De Schut‑
ter & Bower [1]; yellow box is Fig. B. b Places of synapses on dendrite 
we stimulated. c Voltage of soma when the dendrite is stimulated by 
parallel fiber synapses in the order from distal to proximal and from 
proximal to distal. d Voltage of soma when the dendrite is stimulated 
by parallel fiber synapses, adding synapse weights

On the other hand, the Purkinje cell model in our study suffices only 
the former factor, because the model does not have NMDA channels. 
Nevertheless, we could reproduce sequence-selective response of 
the cell. This suggests that either (a) spatial gradient of input imped-
ances along dendrites was sufficient, or (b) some other mechanisms 
substituted the functional role of the NMDAR conductances. For (b), a 
potential candidate is the intracellular Ca2+ dynamics, because both 
NMDAR and Ca2+ exhibit voltage dependence and slow temporal 
dynamics. Additional simulation studies using other types of neuron 
models will be necessary to clarify this issue. Moreover, the reverse-
order stimulation for emitting spike suggests that Purkinje cells could 
learn a specific sequence of parallel fiber stimulation specified by 
the climbing fiber inputs via long-term depression at parallel fiber-
Purkinje cell synapses.
Overall, the sequential discrimination ability may enhance the compu-
tational capability of the cerebellar cortex beyond the standard notion 
as a perceptron. We are particularly interested in the capacity of infor-
mation on the sequence such as the lengths and the variations.
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We introduce Arbor [1, 2], a performance portable library for the 
simulation of large networks of multicompartment neurons on HPC 
systems. Arbor is an active open source project, developed based 
on an open-development model with code, bug reports, and issues 
hosted on GitHub under the auspices of the Human Brain Project. 
The performance portability is by virtue of back-end specific opti-
mizations for x86 multicore, Intel KNL, and NVIDIA GPUs. The devel-
opment of Arbor has focused on tackling issues of vectorization 
and emerging hardware architectures by using modern C++ and 
automated code generation. When coupled with low memory over-
heads, these optimizations make Arbor an order of magnitude faster 
than the most widely-used comparable simulation software. The 
single-node performance can be scaled out to run very large models 
at extreme scale with efficient weak scaling (Fig. 1). Examples of new 
features that will be released soon include but are not limited to: a 
python wrapper for user-friendly model building and execution; 
accurate and efficient treatment of gap junctions; and a GPU solver 
for Hines matrices exposing more fine-grained parallelism. Arbor’s 
released features, its performance as well as current development 
work on the python front-end and the GPU solver are shown within 
the scope of this poster.
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The early olfactory system of the fruit fly encodes odorant identity and 
odorant concentration into a combinatorial neural code that is further 
processed in higher brain centers for recognition, associative learn-
ing, and other cognitive tasks. The combinatorial neural code is trans-
formed along the olfactory system across two stages, the antenna and 
the antennal lobe. The antenna encodes an odorant stimulus into a 
concentration-dependent combinatorial code, and the antennal lobe 
encodes the output of antenna into a concentration-independent 

Fig. 1 Simulation time for the weak scaling tests with 8,192 cells per 
node, 1 to 128 nodes. Each cell is connected to 10,000 random cells 
with no self‑connections

http://doi.org/10.5281/zenodo.2583709
http://doi.org/10.5281/zenodo.2583709
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code. The combinatorial code at the input to the antennal lobe is 
concentration-dependent. It is transformed into a concentration-inde-
pendent code within the antennal lobe of the fruit fly.
To interrogate the transformation of the combinatorial code, we 
devised a full-scale computational model of the antennal lobe at the 
molecular level as a predictive coding circuit. The in silico antennal 
lobe is comprised of inhibitory and excitatory local neurons (LNs), the 
projection neurons (PNs), synapses from olfactory sensory neurons 
(OSNs) to PNs, synapses from OSNs to LNs, and synapses from LNs to 
PNs. The predictive encoding circuit consists of LNs that presynapti-
cally inhibit the axonal terminals of the OSNs. We advance biophysi-
cal models of the molecular processing in the axonal terminals of the 
OSNs and in the dendritic tree of the PNs, and biologically validate 
our modeling approach with data obtained from electrophysiological 
experiments for a subset of OSNs and PNs.
By modeling the odorant identity and concentration as an odorant-
receptor affinity tensor modulated by the odorant concentration 
profile, we first show that the OSN spike train input to the predictive 
coding circuit is concentration dependent, and the affinity value char-
acterizing different OSN types results in shifts of the OSN odorant con-
centration versus PSTH response curve. Second, we demonstrate that 
the LNs by inhibiting the axonal terminals drive the OSN axonal ter-
minals to encode the odorant-receptor affinity value independently of 
the odorant concentration amplitude. We further show that the tem-
poral response curves are contrast invariant across orders of magni-
tude of concentration amplitude values.
Our approach demonstrates for the first time that olfactory processing 
in the antennal lobe of the fruit fly is based upon predictive coding. The 
predictive coding circuit reproduces key properties of the olfactory pro-
cessing, including divisive normalization and concentration invariant 
combinatorial coding. It strongly suggests that the contrast of the odor-
ant concentration is preserved across a wide range of mean concentra-
tion amplitudes. Our work shows that predictive coding provides a new 
theoretical frontier for investigating the neural code in the antennal lobe 
and its role in memory and learning in fruit flies.
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Locomotion of an animal requires a precise coordinated movement of all 
part of the legs. This coordination is achieved by the interaction between 
groups of neurons, the central pattern generators (CPGs), which drive 
the motoneurons and muscles. In the absence of any sensory input this 
network creates a stable rhythmic motor activity that is essential for a 
successful coordination between limbs. Hence, it is of particular interest 
to know the structure of this central neural circuit and the interaction 
between different parts of the CPG network.
This work is motivated by recent experimental results reported by [1]. 
By chemically activating both isolated and interconnected deafferented 
thoracic segments (ganglia) of the stick insect [1] analysed the interac-
tions between contralateral networks that drive the levator-depressor 
muscle pairs, which are responsible for the upward-downward move-
ment of the legs. The results of the experimental analysis showed that 
intrasegmental phase relationships differ between isolated segments. 
In particular, in isolated segments where the control networks of the 
middle and hind legs reside, i.e. in meso- and metathoracic ganglia, 
the phase relation between activities of the contralateral depressor 
motorneurons were in-phase and anti-phase, respectively. Moreover, the 
phase relations switched to in-phase and stabilized when the ganglia 
were interconnected.

Using the phase reduction of an intersegmental network model of 
stick insect locomotion presented in our previous work [2], we built a 
reduced model of the intra- and intersegmental network controlling 
levator-depressor activity in the meso- and metathoracic ganglia. By 
examining the intra- and intersegmental phase differences in the model 
we identified the properties of the couplings of the network that repli-
cate the results observed in the experiments. We applied the theoretical 
analysis to escape type central pattern generators and revealed a set of 
possible contra- and ipsilateral synaptic connections. Finally, we defined 
general features of the synaptic couplings between central pattern gen-
erators of any type that maintain the phase relationships observed in the 
experiments.
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It is a common appreciation that neurons code incoming stimulus 
into spike or spike train. There are two ideas on how neurons encode 
information in the spike train: spike time and rate. One of the encod-
ings with spike time is latency coding in which neurons code infor-
mation in their first spike times [1]. It is thought that first-spike 
latency conveys much of the information about the stimulus [1]. On 
the other hand, first spike latency could be increase due to various 
factors such as noise. In this context, [2] studied the effects of noise 
on the first-spike latency dynamics of excitable Hodgkin-Huxley 
(H-H) system subjected to a strong periodic forcing, and observed 
that appropriate noise induces a time delay on the occurrence time 

Fig. 1 The statistics of the first‑spike occurrence times depending on 
chaotic current intensity for various frequency of suprathreshold sig‑
nal (amplitude of suprathreshold signal A = 4μA/cm2) a Mean latency 
of the H–H neuron. b Jitter of the H–H neuron
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of the first spike of neuron which was called as “noise delayed decay” 
(NDD) [2]. Later, this finding has been extensively studied by using 
complex neuronal networks [3]. However, the origin of the neuron’s 
response variability is still unclear. Although it has been primarily 
thought that such variability in the neuron’s response is due to accu-
mulating noise, it could be due to the chaotic activities [4]. Chaotic 
oscillations have been investigated in the various neuron models. 
The presence of chaotic activity in neurons has been shown in the 
numerical and experimental studies [5]. Here, we aim to present 
the effects of the chaotic activity on the first spike latency of single 
H–H neuron. To do this, we set the parameters of the Lorenz system 
for ensuring chaotic oscillations and obtained this chaotic signal is 
injected to H–H neuron along with the suprathreshold periodic sig-
nal. To measure the mean latency and jitter of the H–H neuron, the 
first-spike times of H–H are recorded. Then, by averaging these val-
ues mean latency time and jitter is computed. Obtained results are 
presented in Fig. 1.
Conclusions: It is seen that mean latency and jitter of the first-
spike times exhibit a bell-shaped dependence on the chaotic activ-
ity intensity. This finding is similar to the NDD phenomenon in ref. 
[2], but in our study, the effect is induced by chaotic activity instead 
of noise. In this context, our new finding can be called as “chaos 
delayed decay” (CDD).
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Information coding and transmission in brain are fulfilled via neu-
ronal networks. It is shown that neuron communities have some of 
the characteristics of complex network structures [1-2]. On the other 
hand, it is indicated that complex networks include some micro 
topologies called “network motifs,” which are believed to be basic 
building blocks of these networks [3]. Therefore, it is important to 
demonstrate the dynamics and functions of this motif networks in 
order to understand the behavior of complex networks. With this 
motivation, in this study, we investigate the Stochastic Resonance 
(SR) phenomenon in a triple-neuron feed-forward-loop (FFL), shown 
in Fig. 1. Here, FFL motifs have eight possible structural configura-
tions depending on the synapse type in the FFL motifs (Fig. 1C). 
We found that Q (Fourier coefficients, performance of weak signal 
detection of neuron 3) exhibits SR in all FFL motifs. Also, the weak 
signal transmission in networks via SR mechanism is dependence 
on synapse type. There are two ways to efficiently transmitted the 
weak signal to neuron 3: Synapse 3 should be excitatory, type of 
other synapses is unimportant, or Synapse 1 and Synapse 2 should 
be excitatory, type of synapse 3 is unimportant.
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Many studies examine different cases of perception of visual elements 
as significant objects, borders, textures, as well as filtration of many of 
the observed elements as just noise. Spatial perception can be consid-
ered at the level of behavior and at the level of brain activity.

Fig. 1 a The weak signal transmission dependence on noise intensity 
in different FFL motifs. b Schematic illustration of the considered 
feed‑forward‑loop motif. The weak signal is applied only neuron 1. 
Neuron 1 and 3 is considered as input and output neurons, respec‑
tively. c Table 1

Fig. 1 Stimulus‑response correspondence in flying pigeons
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To understand the complex spatial orientation it is necessary to study 
not only short-distance movements (indoors locomotion), but also 
medium-distance movements, such as pigeon flights. Pigeon trajecto-
ries during medium-distance flights are determined, in particular, by 
the visual perception of the terrain.
This work considers hypothesis that visual perception of external envi-
ronment affects reactions of birds during medium-distance flights, 
which is reflected in birds’ trajectories.
Simultaneous comparison of data on external environment, on pigeon 
trajectories and on activities in the brains of birds helps to determine 
which elements of landscape can be a stimulus for bird navigation. 
Responses to basic spatial elements appear at the level of place cells, 
head direction cells, grid cells and a boundary cells [1]. Visual percep-
tion of more complex scenes is represented in total brain activity [2]. 
GPS tracks are often used to examine pigeon’s ability to consider visual 
landmarks and to change navigational behavior [3]. Analysis of power 
changes in high-frequency bands of the pigeon EEG allows to identify 
the response of bird’s brain to significant previously known visual navi-
gational landmarks [4].
In this work, data on the flights of pigeons and remote sensing data for 
terrain over which these flights took place were used as primary source 
materials. Data packages were collected from Dryad Digital Repository 
(https ://datad ryad.org). Satellite images in the form of OpenLayers 
(http://openl ayers .org) were used to obtain surface information.
This work showed that pigeon’s flight paths may reflect specific 
areas and objects in terrain. Here, we calculated typical time delays 
in pigeon responses after perception of visual stimuli during flights, 
and described characteristic reactions to visual stimuli for the inter-
vals +/- 10 seconds (shown in Fig. 1). As a result, it was shown that the 
response characteristics vary depending on the ability of the pigeon 
to visually detect separate elements of the terrain during flight. So, it is 
possible to identify the features of birds’ response both to single land-
marks and to boundaries of different surfaces.
Analysis of visual perception of landscapes, textures and landmarks in 
flying pigeons helps to better understand how spatial features are rep-
resented in the mind during motion.
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Emergent nonlinear dynamics within the primary visual cortex (V1) 
may determine how information is encoded and processed in the early 
visual pathway and have been shown to affect visual perception. A 
major goal of visual systems neuroscience is to understand how com-
plex visual functions can arise from the collective nonlinear dynamics 
of the V1 network. This challenge has been partly met through elec-
trophysiological recordings, optical imaging and neural population 
models. But a full account of how the multi-scale population-dynam-
ics emerges from the detailed biophysical properties of individual 
neurons and the network architecture remains elusive. Previously, 
working on a homogeneously coupled network, using a partitioned 
ensemble average (PEA), we derived a series of population dynamics 
models, ranging from Master equations, to Fokker-Planck equations, 
and culminating in an augmented system of spatially-coupled ODEs 
[1]. This reduced model can describe the many dynamical regimes of 
a strongly coupled neuronal network, ranging from homogeneity to 
synchronous avalanche-like activity patterns.
Here we present an application of our reduction to a realistic integrate-
and-fire network model of V1 [2]. The spatially-coupled ODE system, 
with locally organized visual feature maps and long-range orienta-
tion specific couplings, recapitulates the cortical wave generation and 
propagation induced by visual illusory stimuli [3]. We also found that 
the temporal dynamics of individual patches can be well captured by 
a low-dimensional set of voltage moments, demonstrating the effec-
tiveness of our reduction (Fig. 1 A). Furthermore, this coarse-graining 
reveals the importance of the temporal differences between on-/off-
pathways (Fig. 1 B), that may account for the directional motion per-
ception from dark to bright [4].
We further extend our framework to model other heterogeneous 
dynamics, e.g., [5]. Our coarse-grained dynamical models successfully 
capture a particular type of transient dynamics, multiple-firing events 
(MFEs) (Fig. 1 C1). This type of neural activity pattern emerges natu-
rally in fluctuation-driven networks of strongly coupled neurons and 
contributes to the overall heterogeneous dynamics. The mechanisms 
underlying these MFEs, their generation, evolution, and contribution 
to large-scale cortical activity patterns (Fig. 1 C2,3), cannot easily be 
understood. Using our PEA formalism, we can address and account 
for this type of transition, leading to a more compact and efficient 
coarse-grained cortical model. We present simulations and analyses 
illustrating the utility of our framework, making explicit the connec-
tion between the emergent macroscopic dynamics to the underlying 
network architecture.
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Fig. 1 a Demonstrates the effectiveness of our reduced model from 
various visual illusory stimuli, In b, our model reveals the importance 
of temporal properties between on‑/off‑pathway, c1,2,3 presents the 
transient dynamic MFEs, and the interplay between network architec‑
ture and the emergent cortical dynamics with these MFEs
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Determining the structure of a network is of central importance to 
understanding its function in both neuroscience and applied math-
ematics. However, recovering the structural connectivity of neuronal 
networks remains a fundamental challenge both theoretically and 
experimentally. While neuronal networks function in certain dynami-
cal regimes, which may influence their connectivity reconstruction, 
there is widespread experimental evidence of a balanced neuronal 
operating state in which strong excitatory and inhibitory inputs are 
dynamically adjusted such that neuronal voltages primarily remain 
near resting potential. Utilizing the firing dynamics of neurons in such 
a balanced regime in conjunction with the ubiquitous sparse connec-
tivity structure of neuronal networks, we develop a theoretical frame-
work using compressive sensing theory for efficiently reconstructing 
network connections by measuring individual neuronal dynamics in 
response to a relatively small ensemble of random stimuli injected 
over a short time scale. By tuning the network dynamical regime, we 
determine that the highest fidelity of reconstructions is achievable in 
the balanced state. We hypothesize the balanced dynamics observed 
in vivo may therefore be a result of evolutionary selection for optimal 
information encoding and expect the methodology developed to 
be tractable for alternative model networks as well as experimental 
paradigms.
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Divisive normalization has long been proposed as a canonical neu-
ral computation employed by the brain, particularly for the purpose 
of adaptation and attention modulation [1]. In photoreceptors and 
olfactory sensory neurons, for example, divisive normalization ena-
bles adaptation to a wide range of input intensity and contrast values. 
Adaptation to the mean and variance of the amplitude of the stimuli 
has also been observed in the auditory system.
It is often considered that processing by neural circuits leads to loss 
of information. However, it has been rigorously demonstrated that 
1) sensory neural circuits with linear receptive fields and biophysical 

spike generators can faithfully represent encoded sensory stimuli [3], 
and 2) visual stimuli encoded by an ensemble of complex cells, classi-
cally considered to have (quadratically) nonlinear receptive fields, can 
be perfectly recovered [4].
Divisive normalization is highly nonlinear by nature. While the pres-
ence of it is beneficial for downstream processing, the question 
remains as to whether this highly nonlinear transformation could also 
faithfully represent the entire information content of the sensory input 
and convey them to downstream neurons.
In the present work, we leverage the functional framework of divi-
sive normalization proposed in [4], and explore the problem of input 
recovery given output samples. We formulate the stimulus encod-
ing with divisive normalization circuits as generalized sampling. The 
reconstruction of stimuli from irregularly sampled outputs of divisive 
normalization circuits can be solved via an optimization problem with 
linear constraints. We provide novel algorithms based on semidefi-
nite programming and alternating direction method of multipliers [5] 
for faithful recovery of sensory inputs, and demonstrate that (Fig. 1), 
under conditions akin to the Shannon-Nyquist Rate, divisive normali-
zation is indeed capable of faithfully representing the input stimuli for 
downstream processing. We provide theoretical and simulation results 
regarding the performance of the algorithm in terms of sample effi-
ciency. Finally, we demonstrate the ability to faithfully recovery the 
input of a model auditory circuit.

Acknowledgments: The research reported here was supported by 
AFOSR under grant #FA9550-16-1-0410.

References
1. Carandini M, Heeger DJ. Normalization as a canonical neural computa‑

tion. Nature Reviews Neuroscience 2012 Jan;13(1):51.
2. Lazar AA, Zhou Y. Reconstructing natural visual scenes from spike times. 

Proceedings of the IEEE 2014 Oct;102(10):1500–19.
3. Lazar AA, Ukani NH, Zhou Y. Sparse Functional Identification of Complex 

Cells from Spike Times and the Decoding of Visual Stimuli. The Journal of 
Mathematical Neuroscience 2018 Dec;8(1):2.

Fig. 1 Schematic of Divisive Normalization Circuit (DNC). a Compo‑
nents of the circuit. b Convergence of the recovery algorithm for a 
different number of iterations



Page 188 of 190BMC Neurosci 2019, 20(Suppl 1):56

4. Lazar AA, Ukani NH, Zhou Y. Modeling Contrast Gain Control of Fly Pho‑
toreceptors. Computational Neuroscience Meeting, CNS*2018, 2018 Seattle, 
WA.

5. Wen Z, Goldfarb D, Yin W. Alternating direction augmented Lagrangian 
methods for semidefinite programming. Mathematical Programming 
Computation 2010 Dec 1;2(3–4):203–30.

P354 
Movement directional maps for optical imaging with fNIRS 
(functional near‑infrared spectroscopy)
Nicoladie  Tam1, Luca  Pollonini2, George  Zouridakis2

1University of North Texas, Department of Biological Sciences, Denton, 
TX, United States of America; 2University of Houston, Department 
of Engineering Technology, Houston, TX, United States of America
Correspondence: Nicoladie Tam (nicoladie.tam@unt.edu)  
BMC Neuroscience 2019, 20(Suppl 1): P354

Using invasive single-unit spike recording techniques, it has been 
shown that intentional movement direction can be decoded compu-
tationally by the population vector of an ensemble of cortical motor 
neurons [1]. In this study, we aim to estimate movement direction 
using noninvasive fNIRS (functional near-infrared spectroscopy) opti-
cal imaging. Since fNIRS records the hemodynamic activity of an 
ensemble of neurons, it correlates well with the scalar sum of neural 
firings rather than the vector sum of individual neural firings. There-
fore, the population vector cannot be computed from individual 
neurons, since individual neural firings are not captured by the hemo-
dynamic responses.
We propose to use the combined locations in the cortex to reconstruct 
a map of the intentional movement direction. More specifically, con-
sidering that fNIRS can record different parts of the cortex simultane-
ously, we can obtain the differential activation of distinct locations 
in the cortex to reconstruct the movement direction. We analyzed 
recordings obtained from human subjects who were instructed to 
make arm movements in different orthogonal directions while hemo-
dynamic responses were recorded using fNIRS from the premotor 
and motor cortex simultaneously. We then correlated the movement 
direction with the differential hemodynamic activation at different 
locations in the motor cortex to determine the intentional movement 
direction.
Our computational method revealed that the differential activation 
of distinct ensembles of neurons could be accurately correlated with 
different movement directions. These results augment our previous 
findings [2–6] that intentional movement direction can be accurately 
reconstructed from different computational methods using the hemo-
dynamic responses and distinct activation patterns of neural ensem-
bles in the motor cortex.
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Understanding the behaviour of large recurrent networks of spiking 
neurons is one of the major challenges in computational neurosci-
ence. A first step in understanding the dynamical properties of such 
networks is to determine the location and stability of equilibria and 
how they depend on the connectivity profile and single neuron prop-
erties. Integrate-and-fire neuron models are widely used for this pur-
pose because they are simple enough to be studied analytically while 
still being able to capture important dynamical features observed on 
a single neuron level, or in a network context. In the diffusion approxi-
mation, the synaptic input is approximated by Gaussian white noise 
which gives rise to a Fokker–Planck equation describing how the neu-
ron responds on average to given input statistics.
Even for simple models, solving the Fokker–Planck equation for time 
dependent input statistics is a difficult task. If the amplitude of the 
temporal modulation of the input rate is small compared to its base-
line, then perturbation theory can be used. In first order approxima-
tion, the neuron acts as a linear filter called the transfer function. It 
determines the gain and the phase shift of the neuron response for a 
given frequency of the input modulation. Using spectral decomposi-
tion [1, 2], we propose a method to systematically extend the solution 
to higher orders.
To do so, the eigenfunctions and associated eigenvalues of the Fok-
ker–Planck operator have to be known for a model of interest. So 
far, analytic solutions only exist for the perfect and leaky integrate-
and-fire neuron (PIF, LIF). To overcome this problem, we developed a 
numerical method to determine a finite number of eigenfunctions and 
eigenvalues for a given neuron model and confirmed that it is able to 
reconstruct the theoretical results for the PIF and LIF neuron (Fig. 1). 
Using the simulation platform MIIND, we demonstrate that the neuron 

Fig. 1 a Shows how the density function of the membrane potential 
for the PIF neuron can be decomposed into individual modes. 
b Compares the state of the first mode at a given point in time 
obtained by our numerical method (blue) to the theoretical result 
(red) and MIIND (black). c Compares the numerical reconstruction of 
the first eigenfunction (blue) to the theoretical result (red)
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dynamics for the PIF and LIF neuron can be reliably explained in terms 
of eigenmodes even if the Gaussian input is replaced by a Poisson 
process if the synaptic efficacy is small. We started to investigate if the 
method of spectral decomposition can be extended to regimes with 
large synaptic efficacy by correcting eigenvalues and eigenfunctions 
in a systematic manner.
As a next step, we want to determine the spectrum for more compli-
cated models including spike generating currents, adaptation and 
synaptic dynamics. Since theoretical results are lacking for these mod-
els, we use numerical results generated with MIIND for validation.
Once the eigenfunctions are known, the neuronal dynamics are solely 
captured by the time evolution of the weighting coefficients of indi-
vidual modes, leading to an infinite linear system of coupled differen-
tial equations. Our hope is that a small number of modes is sufficient 
to describe the overall network dynamics. If so, then spectral decom-
position could facilitate a very efficient way to simulate large scale net-
works on a population level.
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Background: The atrophy in the hippocampus is greater in subjects 
with AD than in subjects with mild cognitive impairment and greater 
than the atrophy thought to be produced during ageing. This atrophic 
pattern is furthermore asymmetric, being more pronounced in the left 
side [1]. A mechanistic understanding of the progression of atrophy 
is still lacking. Volumetric studies in structures in the temporal lobes 
other than the hippocampus show complex dynamics, including an 
increase in volume at the beginning of cognitive impairment [2].
Objective: To study whether the hippocampal atrophy observed 
in mild cognitive impairment of the amnesic type shows a linear 
decrease over time. We compare the pattern of atrophy in patients 
with Alzheimer’s disease, frontotemporal dementia and healthy older.
Methods: The Vallecas Project carries out the annual monitoring of 
healthy and cognitively impaired people through neurological evalu-
ation, neuropsychological, blood analysis and neuroimaging for the 
early detection of cognitive impairment. We analyzed the hippocampal 
atrophy observed in an MRI 3 T scanner over a 7 years longitudinal study 
using Freesurfer 6.0 for automatic subcortical segmentation [3].
Results: A greater decrease in hippocampal volume was observed in 
people with Alzheimer’s disease and frontotemporal dementia com-
pared to mild cognitive impairment. Fluctuation was observed in the vol-
ume of the hippocampus of the subject with mild cognitive impairment, 
increasing just before diagnosis and then descending, which is not seen 
in the rest of cases.
Conclusions: Temporal structures show different atrophy dynamics 
throughout the progression of cognitive impairment, and automatic 
subcortical segmentation is relevant to find possible fluctuations at its 
onset.
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The role of prior expectations biasing perceptual decisions has been 
extensively studied in the context of two-alternative forced-choice 
tasks (2AFC). Here, we investigate this issue by training recurrent neural 
networks (RNNs) in a novel 2AFC task where both the current sensory 
evidence and the previous trial history provide information about the 
identity of the correct choice. Briefly, the probabilitypof repeating the 
previous stimulus category was varied between a low (e.g.p = 0.2, alter-
nating block) and a high (e.g.p = 0.8, repeating block), in blocks of 200 
trials [1].
We found that RNNs are able to learn the task and develophistory tran-
sition biases (a tendency to repeat/alternate the previous choice more 
often depending on the number of previous repetitions vs. alternations) 
similar to those found in rats performing the same task (Fig. 1a, left) [1]. 
Consistent with intuition, networks perform better with respect to an 
ideal observer as the correlation in the trial sequence is made stronger 
(Fig. 1b, left). Transition biases after correct trials are positively correlated 
with the probability of transitioning (orange dots), and are larger in mag-
nitude than the biases after error trials (blue dots) (Fig. 1b, middle). In 
addition, sensitivity (slope of the curve) is negatively correlated with the 
transition probabilities (Fig. 1b, right).
Also in line with experimental results, the magnitude of the bias is 
stronger after correct trials than after errors (Fig. 1a, right). This could 
indicate that RNNs (and rats) develop different strategies for the after-
correct and after-error scenarios. Indeed, while a rewarded response 
likely strengthens the confidence of the agent on the current strategy, a 
failed trial could indicate both an error caused by noise in the percep-
tion of the stimulus or by a change in the transition probability, reveal-
ing a flaw in the strategy. Consistently with this view, as the duration of 
the alternating/repeating blocks is increased and thus the change in the 
transition probability is made less probable, the asymmetry between 
the after-correct and after-error biases vanishes (Fig. 1c). Therefore, the 
different behaviors in the after-correct and after-error scenarios could 
reflect the fact that RNNs find a trade-off between the optimal strat-
egy for each block and the need to rapidly adapt to a change of blocks. 
Indeed, throughout training networks learn to rapidly adapt to changes 
in transition probability (i.e. a block change): the bias after those changes 
adjusted faster during the late stages of the training than at earlier stages 
(Fig. 1d).
We also found that 75% of the network units presented activity that cor-
related with the number of repetitions during the last 5 trials, which is 
consistent with the estimation of the transition probabilities done by the 
networks during the task.
The present work demonstrates that RNNs can learn to perform a task 
which promotes the development of history transition biases and to rap-
idly adapt to new environments presenting different statistics.
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Object recognition in scenes develops across a hierarchy of visual 
areas. Robust recognition requires fine selectivity for particular fea-
tures of relevance and invariance to irrelevant features. Deep con-
volutional neural networks have achieved near-human levels of 
performance in object recognition by iteratively applying filters that 
select features, followed by pooling of their outputs to generate 
invariance.

We applied a “filter-then-pool” model to recordings from neurons in 
cat primary visual cortex (V1) to investigate visual feature selectivity 
and invariance in the brain. Many neurons pooled the outputs of mul-
tiple filters, resulting in selectivity for feature characteristics that were 
preserved across filters, and invariance to feature characteristics that 
differed across filters. We found cells corresponding to the “energy 
model” of V1 complex cells that were invariant to spatial phase but 
selective to a combination of other feature characteristics. We also 
frequently found cells that showed only partial invariance to spatial 
phase, while exhibiting invariance to perturbations in peak orientation 
and spatial frequency. For each of these feature characteristics, some 
cells were more selective for the characteristic and others that were 
more invariant. To quantify the “selective-to-invariant” spectrum we 
used a bandwidth measuring the range of a characteristic over which 
a cell responded equally allowing for modest changes in contrast 
(< 2×). Peak orientation had the greatest portion of selective cells, 
followed by peak spatial frequency and then spatial phase, the latter 
showing the greatest portion of invariance. The bandwidth measure 
also allowed us to quantify how much the nonlinear pooling operation 
contributed to invariance by comparing it to the bandwidth expected 
from a linear operation. This showed that spatial phase invariance ben-
efited the most from nonlinear pooling over multiple features, with 
the bandwidth frequently much greater than expected in the linear 
case, and sometimes reaching the maximum possible (360 deg). In 
contrast, orientation and spatial frequency had bandwidths that did 
not increase much with nonlinear pooling over that of linear pooling.
Thus, in V1 there is a diversity of cells that combine selectivity for some 
feature characteristics with invariance to perturbations in others. This 
diversity encompasses a variety of feature characteristics beyond spa-
tial phase.
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Fig. 1 a RNNs develop transition biases similar to those found in rats, 
including the difference between the biases after correct and error 
trials. b Performance (left), bias (middle) and slope (right) for different 
transition probabilities. c The magnitude of the bias increases with 
the block sizes. d Evolution of performance and bias through training
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