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Abstract 

Chronic pain is a multi-faceted condition comprising of pathological, psychological and biological 

influences. This poses a significant problem to accurate assessment and treatment, with 

symptomology commonly not matching pathology. It is also unclear why some individuals develop 

chronic pain, while others appear resilient. Identifying individual differences in pain processing and 

modulation may be one method to help identify individuals who are susceptible to pain. 

Consequently, this thesis examined pain, its assessment and management in a clinical setting and 

individual differences in pain response in a laboratory setting. 

Study one evaluated pain ratings from hysteroscopy patients, to understand the prevalence of pain. 

Clinician estimates of pain were used to examine the accuracy of clinical pain assessment and how 

this related to pain management. Despite being considered a minimally-painful procedure, we 

found that patients’ pain ratings varied substantially, and were inversely correlated with clinician 

estimates. Our results indicate that hysteroscopy should not be advertised as a minimally-painful 

procedure. Advancing pre-surgical assessments to predict individuals at risk of developing pain 

could have important clinical implications. 

Individual differences in pain behaviour and response were examined in studies two and three, 

using resting-state connectivity in healthy controls. Study 2 investigated dispositional mindfulness, 

alongside sensory and cognitive pain variables. Trait mindfulness was associated with beneficial 

pain responses. Mindfulness was also associated with higher functional connectivity to the 

somatosensory cortex, and lower connectivity to the prefrontal cortex, with a precuneus seed. Our 

results may suggest that trait mindfulness is associated with increased sensory, present-moment 

focus, facilitating more effective pain management.  

Study 3 investigated Conditioned Pain Modulation (CPM), which quantifies the efficiency of 

descending modulation circuitry. Our results indicate that high CPM is associated with increased 

connectivity between pain modulatory and processing regions. Taken together, this research 

suggests that clinical assessments may benefit from psychometrics quantifying individual 

differences in their intrinsic ability to manage pain, to detect patients vulnerable to pain.  



 

7 | P a g e  
 

Chapter 1. Introduction 

1.1. Problem of Pain 

When investigating pain in the laboratory, it is crucial to understand the scope of this problem in 

the real-world. This not only emphasises the importance of this research, but also helps inform the 

direction of our studies based on specific challenges encountered by patients and clinicians alike. 

Chronic pain is one of the most prevalent and costly problems in the world today. In Europe, it is 

estimated that 20% of adults are currently living with chronic pain (Breivik, Collett, Ventafridda, 

Cohen, & Gallacher, 2006) and the associated societal costs are calculated to be around €200m per 

annum (Tracey & Bushnell, 2009). However, there is a strong narrative suggesting that chronic 

pain historically has been seen more as a co-morbid condition, rather than a primary condition in its 

own right (van Hecke, Torrance, & Smith, 2013). As a result, the impact of chronic pain on the 

global burden of disease is frequently underestimated (Croft, Blyth, & van der Windt, 2010). A 

recent influential review by pain research leaders, Irene Tracey & Katherine Bushnell, has also 

aided in reconceptualising the perspective of pain from a syndrome to a disease, thus specifying our 

focus and, hopefully, improving the accuracy of future epidemiological investigation (Tracey & 

Bushnell, 2009). As assessments improve, the underestimation of chronic pain may be corrected. 

Alongside a persistently increasing global life expectancy and the finding that prevalence of 

generic (Elliott, Smith, Penny, Smith, & Chambers, 1999) and disabling (Thomas, Mottram, Peat, 

Wilkie, & Croft, 2007) chronic pain increase with age, this suggests that the burden of chronic pain 

will continue to grow in stature as a global health burden.  

 

When evaluating the importance of pain research, it is important to not just limit the rationale to 

purely fiscal, financial & epidemiological domains. There is also a tremendous humanistic burden 

associated with pain. Anecdotally, the prospect of severe pain as a response to the most mundane 

tasks is something non-sufferers would struggle to comprehend. Those who have suffered an acute 

back injury may have experienced first-hand what it’s like having to grit their teeth when 
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contemplating getting out of bed, making a cup of tea or getting up from a chair. However, when 

this problem is chronic, it can persist, on average, for 10.7 years and can sometimes be life-long 

(Moulin, Clark, Speechley, & Morley-Forster, 2002), making the burden several magnitudes 

higher. While the rate of major depression in the general population is estimated to be around 5-8% 

(Kessler et al., 2003), within chronic pain populations, this number is estimated to be around 30-

54% (Banks & Kerns, 1996; Sullivan, Reesor, Mikail, & Fisher, 1992).. Additionally, chronic pain 

has been associated with psychological distress (Croft et al., 1995), sleep dysfunction (Sayar, 

Arikan, & Yontem, 2002), anxiety (Asmundson & Katz, 2009; McWilliams, Cox, & Enns, 2003), 

post-traumatic stress disorder (Demyttenaere et al., 2007) and alcohol/substance abuse (Alford et 

al., 2016). Most worryingly, suicidal ideation in chronic pain sufferers is 3 times higher on average 

relative to non-sufferers (McWilliams et al., 2003) and a 10 year longitudinal study found that 

chronic back pain patients were 10 times more likely to commit suicide than age-, smoking- & 

social status-controlled non-sufferers (Penttinen, 1995). This is a pertinent indicator for the 

importance of research on how psychology may influence the experience of pain and how progress 

in this field could have implications for the existence of pain in the real-world. 

 

While the lived experience of chronic pain is evidently burdensome for patients, this is intensified 

due to challenges with clinical assessment and treatment. Typically, pain is clinically first assessed 

by patient self-report. Following the traditional medical model, the clinician will then perform tests 

to examine for an observable abnormality that could explain the aetiology of the patient-reported 

pain. This pathological approach will then determine what treatment, if any, the patient is given. 

Issues with pain assessment and treatment have long been identified within the pain literature, 

highlighting that in 1997, approximately 50-70m Americans were being undertreated (or not 

treated at all) for painful conditions (Krames & Olson, 1997). This statistic represented 

approximately 18-26% of the general population at the time (U.S. Bureau of the Census, 1998) and 

is a trend that has continued, and potentially even magnified, into the present day. In addition to 

treatment, challenges are also present within the assessment of the condition. 22% of chronic pain 

patients feel that their Doctor never asks them about their pain, while 20% believe that their Doctor 
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does not view their pain as a problem. As such, not only are chronic pain patients impeded by their 

condition on a daily basis, but challenges in assessment may also act as barriers to accessing 

treatment. Based upon this premise, examining and evaluating pain assessment is a core feature of 

this body of work. Understanding clinical processes within assessment, as well as underlying 

mechanisms in healthy controls, may help us identify areas in which this process can be improved 

or modified. When outlining the problem of pain for those struggling to live with a diagnosis of 

chronic pain, statistics only serve to describe part of the picture. Patients with lower back pain 

(LBP) reported that doctors sometimes present the prospect of a bleak future, which generates 

anxiety, pessimism and hopelessness in the patient (Corbett, Foster, & Ong, 2007). Analysis also 

revealed that patients felt their medical professionals viewed them as demanding, difficult & drug-

seeking (White & Seibold, 2008). Although the use of analgesia was common, concerns about 

dependency, side effects and their impact on the patients view of their ‘self’ was widely reported 

(Bunzli, Watkins, Smith, Schütze, & O’Sullivan, 2013). With regards to the aetiology of pain, 

healthcare professionals who infer a psychological cause of pain can elicit negative feelings that the 

patient’s integrity is being questioned (Bunzli et al., 2013). While biomedical explanations 

provided by clinicians often led to passivity and avoidance of treatment in patients (Walker, 

Holloway, & Sofaer, 1999), patients who did not receive a suitable aetiological explanation, felt at 

risk of their condition not being believed (Campbell & Guy, 2007; Holloway, Sofaer, & Walker, 

2016) and experienced a deleterious effect upon their belief in the medical model (diagnosis-

treatment-cure).  This fuelled feelings of anxiety due to an uncertain future, as well as anger and 

frustration towards the medical professionals involved (Bunzli et al., 2013).  

 

These criticisms of a predominantly pathological approach & concerns of limitations in aetiological 

explanation are especially relevant when examining chronic pain. When treating pain, it is 

important to understand the potential disparity between symptomology & pathology. Whilst the 

21st century has seen a heightened focus on psychological health within treatment, chronic pain 

treatment still often gravitates towards a pathological diagnosis (Cohen, 2005; Gatchel, McGeary, 

McGeary, & Lippe, 2014; Lovell, 1995; Tu, As-Sanie, & Steege, 2005). Although a subset of 
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patients suffering from an entirely peripherally derived source of pain may benefit from this 

approach, when evaluating variability in clinical outcomes, we must also evaluate those who do not 

benefit. For treatment, it has recently been postulated that traditional surgical & pharmacological 

treatment strategies are insufficient for managing chronic non-cancer pain (Turk, Wilson, & 

Cahana, 2011) and that psychological, or combinative, therapies are required. Additionally, 

medical assessment reliant upon pathology alone is also vulnerable to inaccuracy. A review of 

spinal degeneration imaging found that for asymptomatic 20-year olds (participants not suffering 

from back pain), 37% have disk degeneration, 30% have disk bulge and 29% have disk protrusion. 

For 80-year olds, the prevalence for these diagnoses increase to 96%, 84% and 43%, respectively 

(Brinjikji et al., 2015). While these observations leave medical professionals susceptible to 

diagnostic type 1 errors (a chronic pain diagnosis, without appropriate symptomology), 

incongruence between symptoms and pathology can also put them at risk of type 2 errors; failing to 

diagnose a true patient, due to a lack of observable injury. This is one of the key challenges faced 

in the treatment of chronic pain and one of the key perspectives in this body of work is to further 

understand how psychology may influence pain and pain modulation, and to explore the variability 

in pain across individuals.  

 

Assessment is a key factor for patients gaining access to management for a chronic pain condition. 

In 2013, IASP submitted a declaration stating that access to pain management is a fundamental 

human right (Cousins & Lynch, 2011), a call echoed by WHO and the United Nations (Lohman, 

Schleifer, & Amon, 2010). However, access to pain management is associated with unacceptably 

long waiting times, which are associated with deterioration of psychological-wellbeing, health-

related quality of life, higher severity of pain and greater cost to the health system (Lynch et al., 

2007, 2008; McGhie & Grady, 2016;  McGhie, 2014). . Collectively, chronic pain is a complex 

dynamic medical condition, with day-to-day fluctuations in presentation and a wide range of 

clinical co-morbidities (Pincus, Burton, Vogel, & Field, 2002; Schneider et al., 2012; Thibault, 

Loisel, Durand, Catchlove, & Sullivan, 2008). It has also been shown that the underlying 

neuropsychological changes associated with chronic pain states sometimes appear sooner than 
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chronic pain can be officially diagnosed (<3 months) (Dickenson, Berkman, Arch, & Lieberman, 

2013; Rolke et al., 2006; Treede et al., 2015). Given the complications in gaining access to 

treatment, this means that by the time a patient gains access to treatment, it is conceivable that their 

chronic pain entangled within a combination of auxiliary physical & psychological issues. A 

vicious cycle of pain, psychopathology, frustration and hopelessness that would plausibly 

contribute to the deleterious effect of chronic pain on an individual. This cycle also presents 

challenges for assessment and relies upon co-ordinated multi-disciplinary treatment across multiple 

medical domains.  

 

Investigating the influence of individual differences in pain response, could have huge implications 

for assessment and would inevitably improve our understanding on chronic pain as a whole. It is 

still unclear why subsets of patients appear to be vulnerable to developing chronic pain while 

others (often the majority) do not. For instance, within diabetic neuropathy, a minority of patients 

(34%) develop painful neuropathy and for lower backpain patients, only a third continue to 

experience persistent chronic pain for 12 months or more and, for osteoarthritis, no link has yet to 

be found between extent of damage severity and pain (Abbott, Malik, Van Ross, Kulkarni, & 

Boulton, 2011; Denk, McMahon, & Tracey, 2014; Dieppe & Lohmander, 2005; Maher, 

Underwood, & Buchbinder, 2017). Given that the extent of observable damage does not necessarily 

directly translate to severity of pain, relying on observation for pathology alone is unreliable. Based 

on this premise, identifying why some patients may be susceptible to chronic pain is a crucial area 

for pain research. Understanding the mechanisms behind pain sensitivity is one possible method for 

achieving this. Increasing our knowledge of individual differences in pain processing, and more 

specifically the psychological appraisal of pain, could help develop tools for early prediction of 

chronic pain and thus facilitate preventative interventions.  
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2.1.1. Summary 

Chronic pain is a multi-faceted condition, comprising of pathological, psychological and biological 

influences. It is also a global health concern associated with massive societal and healthcare costs. 

As our population continues to age, it is anticipated that the burden of pain will continue to 

increase. The impact of pain on the individual is severe, with patients often reporting all aspects of 

their life being detrimentally impacted by their condition. Additionally, chronic pain is associated 

with a wide range of co-morbidities, such as depression and anxiety, adding to the complexity of 

this condition. Unfortunately, chronic pain treatment is usually reported to be inadequate, as 

supported by highly variable and generally poor clinical outcomes. While there is an array of 

possible explanations for variable treatment response, one contributing factor may be that the 

multi-faceted nature of chronic pain represents a challenge for clinical assessment. Specifically, the 

traditional medical model prioritises the isolation of a pathological trigger to explain patient-

reported symptoms, in order to diagnose and treat. This is often challenging in chronic pain 

conditions where the pathological basis commonly does not match the described symptomology, or 

in some cases, is entirely absent.   

 

One potential strategy that may help address this is issue is to increase the breadth of these 

assessments to match the multiple levels associated with chronic pain, thereby increasing the 

accuracy and comprehensiveness of clinical assessments. Learning more about individual 

differences in pain response could be crucial in improving our assessments and could help inform 

why only subsets of patients develop chronic pain  It is evident across conditions such as painful 

diabetic neuropathy, lower backpain and postoperative chronic pain, that while most patients 

achieve a pain-free recovery, a minority of patients develop chronic pain. Studying the 

phenomenon of pain in healthy controls allows us to identify traits that may predict pain response, 

which could have clinical implications for identifying the minority of patients who could be 

vulnerable to developing chronic pain. For instance, this could facilitate the development of 

preventative interventions prior to chronic pain developing, for example in the case of post-
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operative chronic pain. Alternatively, in instances where the pain is inevitable, being able to predict 

individuals at risk of developing chronic pain could improve access to treatment for these patients 

before their pain develops into co-morbidities, lifestyle deficits and frustration.  

 

1.2. Pain Mechanisms 

1.2.1. Peripheral mechanisms 

Understanding the multi-faceted experience of pain requires knowledge of how the underlying 

mechanisms function to generate it. As described within Rey’s account of the History of Pain (Rey, 

1998), early philosophical thinking provided insight to the experience of pain, during a period 

where science was not yet equipped to validate the theories. One of the initial pain mechanism 

hypotheses was postulated by Renes Descartes. Facilitated by his research on animal and human 

dissection, the Treatise of Men offered an early-scientific insight to the anatomy and physiology of 

the human experience. Within this, Descartes suggested that, while the experience of pain was 

generated in the periphery, the signal was passed along nerve fibres, until it reached the brain. The 

analogy used was that of a hammer hitting a hand, triggering the pulling of a cord between the hand 

and the brain, leading to a bell ringing in the brain corresponding to the sensation of pain. In fact, 

Descartes viewed the brain solely “as a bell to be rung by tugging on a string in the periphery”. 

Although this premise suggests that the brain is merely a passive receptor for pain, this dualistic 

supposition was ahead of its time and laid the foundation for a development of research into pain 

mechanisms. Within the late 18th century, this work was advanced by the lesser-known Pierre Jean 

Georges Cabanis who proposed three psychophysiological components involved in the experience 

of pain (Rey, 1998). Firstly, he insisted that pain does not represent a solely physiological reaction 

to an external stimulus but can be generated spontaneously in the brain. Secondly, he suggested 

that the perception of pain is reliant upon the mental activity of the perceiver, inclusive of 

emotional state. Thirdly, he viewed the conscious awareness of pain to be the product of a 

competitive model of external & internal feelings. Within this model, weaker feelings can be 
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absorbed within stronger ones, and therefore, the sensory experience of pain would need to be 

potent enough to overrule the experience of internal feelings to become consciously experienced. 

Conversely, the sensation elicited by a nociceptive stimulus can be overridden by a compelling 

internal state. Within this body of work, it could be said that the concept of pain modulation was 

created, providing the foundation for modern scientific descriptions of pain mechanisms. 

 

Arguably, the most prominent of the original pain scientists were Ronald Wall & Patrick Melzack. 

Not only has their work been critical in focussing the progression of pain science, but has also been 

of utility in subdivisions of science such as medicine, veterinary science, art & humanities and 

social sciences (Katz & Rosenbloom, 2015). Melzack & Wall’s magnum opus is said to be their 

1965 publication introducing the “Gate Control Theory of Pain” (Melzack & Wall, 1965). 

Fundamentally, they proposed that pain is transmitted via a peripheral nerve through the spinal 

cord and is subject to modulation intrinsically via nerves, or via control in the brain. Their theory 

detailed that a nociceptive signal was transmitted up the spinal cord and into the brain via a 

transmission gate and that the extent to which this gate was open, facilitated a heightened 

experience of pain. However, the key component was that the brain can transmit signals which can 

close the gate to reduce or prevent signals from being sent to the brain (lower pain sensitivity) or 

the opposite, to open the gate and increase the signal (higher pain sensitivity). They also postulated 

that passive factors can contribute to closing the gate (distraction, positive mode, deep breathing, 

etc) and opening the gate (catastrophisation, anxiety, fear, etc). 
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Figure 1. Schematic drawing for The Gate Control Theory of Pain. L: Large-diameter fibres, S: Small-

diameter fibres, SG: Substantia Gelatinosa, T: Central-transmission cells. From “Pain Mechanisms: A new 

theory” by R. Melzack and P. D. Wall, 1965, Science, 150(3699), p. 971-978. Reprinted with permission 

from AAAS 

 

As well as a concept, Melzack & Wall also proposed a potential mechanism underlying this 

function (Figure 1) (Melzack & Wall, 1965). Stimulation of the skin at the periphery leads to the 

signal being transmitted via one of two types of neurons; small- or large- diameter fibres. This 

signal is received within the dorsal horn of the spinal cord by the substantia gelatinosa (SG) & 

central-transmission cells (T-cells). The former is seen as a modulatory region which can regulate 

the afferent signal before it influences the T-cells which, in turn, are responsible for co-ordinating 

the response and perception to the painful event. Regarding the two types of fibres, activity within 

large fibres can increase the inhibitory effect of the SG, whereas small fibre activity decreases this 

effect. As a product of this mechanism, there is also a central control mechanism, triggered by 

afferent activity, which activates selective brain processes to further influence the modulatory 

properties within the gate control mechanism. Crucially, at the terminus of this ascending 

mechanism, once the T-cell has transmitted the post-modulatory signal up the spinal cord towards 
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this brain, this signifies the start of the modulatory process, not the end. At this point, the brain 

continues to be involved in processing the signal and the abstraction of the information.    

 

While the specifics of this mechanism have been altered over the decades, many say that the theory 

has stood the test of time (Dickenson, 2002; Mendell, 2014) and has been critical to the 

development of modern pain science & uncovering the reality of pain mechanisms. In line with 

Melzack & Wall’s proposition, the current perspective views the experience of pain to be an 

emergent property of the combination of an ascending & descending pain signal, via the input of 

multiple types of fibres, with further input provided from specific regions within the brain.  

 

One concept which was missing from Melzack & Wall’s model was the presence of a “pain-

specific” neuron. The principle held within Gate Theory was that the control system allowed for 

multiple peripheral neurons to discharge, forming an accumulative response to intense stimulation, 

which superseded the requirement of a specific high-threshold afferent fibre. However, while the 

term “nociceptor” was first coined at the turn of the 20th century (Sherrington, 1906), it wasn’t until 

1967 that the first study was published demonstrating electrophysiological evidence of their 

existence (Burgess & Perl, 1967). This study demonstrated that out of 513 primary afferent fibres, 

74 of them only responded to damaging mechanical stimulation and these were classified as 

nociceptors. This was later followed up with the identification of polymodal nociceptors, which 

responded across different modalities (heat, cold & ischemia) (Bessou & Perl, 1969). Later, as the 

research within this field developed, it was found that nociceptors project towards the dorsal horn, 

where they synapse amongst marginal cells which are specialised for noxious stimuli (Christensen 

& Perl, 1970). At this point, the signal then transcends into the spinothalamic tract (Willis, Zhang, 

Honda, & Giesler, 2001), a sensory pathway from the skin to the thalamus, which would provide 

access to cortical processes. The nature of this nociception-specific pathway, from receptor via 

marginal cells up to the spinothalamic tract, initially appeared to contradict the core premise of gate 

theory. However, subsequent investigation into the dorsal horn identified that, while the marginal 
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cells are specific for nociception, wide dynamic cells process both nociceptive & non-nociceptive 

input (Mendell, 1966), thus facilitating the integration of Gate Theory and the discovery of 

nociceptors (Mendell, 2014).  

 

Today, our current understanding of pain mechanisms has stemmed from these developments, 

although the complexities of human cell biology mean a full understanding of this process is a long 

way off (Purves et al., 2001). The ascending pain pathway is initiated within the periphery when a 

nociceptor is stimulated via an aversive thermal, mechanical or chemical stimulus. There are 

primarily two different types of axon associated with these nociceptors; a-fibres (mostly Aδ) or c-

fibres (Woolf & Ma, 2007). The speed of action potential transmission is directly correlated with 

myelination & the diameter of the axon. A-fibres are large & myelinated allowing for the 

transmission of action potentials between 5-30 metres/sec (Dubin & Patapoutian, 2010). 

Stimulation of a-fibres represents the first stage of the pain experience, which is sharp, nearly 

instantaneous & intense. C-fibres are smaller, unmyelinated neurons with a much slower 

transmission rate (~2m/s) and are associated with slower, duller & less intense feelings of pain. 

Each type of fibre is also associated with a predominant modality type; a-fibres are usually heat- or 

mechanosensitive, while c-fibres are usually polymodal (Tracey, 2017). These excitatory 

nociceptors release glutamate, amongst other peptides such as substance P, and synapse to first 

order neurons within the dorsal root ganglion (DRG). This axon then transitions and penetrates the 

spinal cord, via the dorsal root, ultimately terminating within the dorsal horn. From here, the signal 

can deviate across multiple pathways depending on which area of the dorsal horn the axons 

terminate in (D’Mello & Dickenson, 2008). In relation to the spinothalamic tract, the first order 

neuron projects to a second order neuron, which decussates across the midline of the spinal cord 

and ascends contralaterally towards the thalamus & brainstem (Figure 2). The neurons ultimately 

synapse with third order neurons in the ventral posterolateral (VPL) nucleus of the thalamus, and 

from here, signals can be transmitted across the cortex. 
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Figure 2. Transmission of nociceptive signal into the ascending pain pathway. Adapted from “Neural 

Circuits of Pain” by C. Piers and R.P Seal, 2016, Science, 354(6312), 578-584. Reprinted with permission 

from AAAS. 

 

In addition to ascending pathways, it is also crucial to understand the presence of descending pain 

pathways, originating from the brain and descending the spinal cord. When nociceptive information 

enters the dorsal horn, it’s subject to modulation from numerous mechanisms. This is due to the 

premise that the brain is not a passive endpoint for sensory information, instead it can process and 

interpret information, and make adjustments when required. The role of the brain in the pain 

experience can be observed intuitively across a range of situations we have likely all experienced. 

Attention can be directed away from pain actively, such as when finishing up a strenuous workout 

or preparing to rip a plaster off a wound. But this influence can also be seen passively, such as 

when someone is completing garden-work and observing that they had cut yourself but didn’t 

notice at the time as they were busy focussing on the task at hand. Outside of the mundane & 

everyday experiences, we can also presuppose that from an evolutionary perspective, this 

mechanism would have benefitted survival instincts by allowing the brain to suppress the salience 

of pain to facilitate escape or defence whilst injured.  
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There has also been research in both animals & humans indicating that the efficiency of the 

descending pathway may be related to those who are susceptible to developing chronic pain (De 

Felice et al., 2011; Granovsky, 2013; Granovsky & Yarnitsky, 2013; Lewis, Heales, Rice, Rome, & 

McNair, 2012; Sevcik et al., 2006; Yarnitsky, Granot, Nahman-Averbuch, Khamaisi, & 

Granovsky, 2012). This has stimulated growth within mechanistic pain research to identify the 

pathways involved in descending modulation, as well as trying to better understand how they relate 

to psychological processes & individual differences. This work was started in the early 20th century 

when Charles Sherrington identified the involvement of the brain in the experience of pain 

(Sherrington, 1906). Sherrington observed that the severance of the spinal cord in mice led to an 

enhanced nociceptive reflex with exposed to a painful stimulus. He hypothesised that this was due 

to an active involvement of the brain in the interpretation and modulation of the painful signal 

(Sherrington, 1906). This work was later developed via pharmacological & electrophysiological 

work in animals, which identified that the stimulation of the periaqueductal grey (PAG) facilitated 

an analgesic (or pain-relieving) response, and that subcortical structures, namely the PAG & 

Rostroventral Medulla (RVM), are involved in the descending modulation of spinal nociceptive 

processing (Millan, 2002). Lastly, using diffuse tensor imaging (DTI), these subcortical brainstem 

regions were found to be integrated with higher order regions such as the amygdala, hippocampus 

and somatosensory & prefrontal cortices (Hadjipavlou, Dunckley, Behrens, & Tracey, 2006). 

 

The expansive involvement of a wide-range of psychological processes in the interpretation of pain 

presents a major challenge for clarifying the brains involvement, but a basic opioidergically-

sensitive descending modulatory network has thought to be identified. As described, the primary 

juncture for ascending and descending signals is within the dorsal horn of the spinal cord and, as 

such, is seen as the terminus for the descending pathway. Cortical input represents the starting 

point for descending modulation and will be discussed in full in section 1.2.2, but this information 

is thought to be first integrated within the PAG. The PAG is thought to be the source of opioid-

mediated descending pain inhibition (Waters & Lumb, 1997; Yeung, Yaksh, & Rudy, 1977) and 
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was originally demonstrated to endogenously modulate pain when stimulated via electrode 

(Reynolds, 1969; Tsou & Jang, 1964).  

 

Importantly, the PAG has been shown to project and receive descending input from higher/cortical 

regions, such as the prefrontal cortex, somatosensory cortex and amygdala (Helmstetter, Tershner, 

Poore, & Bellgowan, 1998; Ossipov, Dussor, & Porreca, 2010), as well as ascendingly from lower 

brainstem/spinal regions, such as parabrachial nuclei & dorsal horns (Gauriau & Bernard, 2002; 

Waters & Lumb, 1997). This indicates that the PAG is able to modulate pain, both, centrally and 

via the spinal cord. While a key node within the descending modulatory system, the PAG itself has 

few projections directly to the dorsal horn (Vasquez & Vanegas, 2000; Xie, Huo, & Tang, 2009) 

and is thought to stimulate a modulatory effect via the raphe neurons (serotonergic), rostral 

ventromedial medulla (RVM; opioidergic), the ventral tegmental area (VTA; dopaminergic) and 

locus coeruleus (LC; noradrenergic) (Cui et al., 1999; Omelchenko & Sesack, 2009; Ossipov et al., 

2010; Vasquez & Vanegas, 2000; Westlund & Willis Jnr, 2012). Currently, the mechanistic 

perspective identifies the PAGs projections to the RVM being of interest. The RVM represents the 

final common relay in the descending pathway between the cortex and spinal cord (Ossipov et al., 

2010), and is known to exert a bidirectional effect capable of, both, inhibiting and facilitating the 

experience of pain (Heinricher, Tavares, Leith, & Lumb, 2009). The combination of the nodes 

within this pathway allow the incoming peripheral signal to be modulated within the spinal cord, 

thus influencing the perceived intensity, or unpleasantness, of the painful stimulus. 

 

Ultimately, our understanding of pain mechanisms has developed greatly over the last 100 years. 

We are now able to explain how the severity of an injury may not directly correlate with the felt 

sensation of pain. The globally-accepted definition of pain, via the International Association for the 

Study of Pain (IASP), states that pain is “An unpleasant sensory and emotional experience 

associated with actual or potential tissue damage, or described in terms of such damage” (Merskey 

et al., 2002). This definition describes a multi-faceted phenomenon involving emotions, 
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unpleasantness, verbal description and no requirement of tissue damage. Considering this, the 

interaction and combination of ascending and descending pain signals allows us to explain how 

situations, personalities or motivations are compulsory when evaluating our pain experience.  

However, while animal experimentation and electrophysiology have provided us with detail of the 

pathways, our understanding of the higher processes that influence the descending signal are still 

not fully understood. The brain, as a complex organ, still presents a black box to pain science and 

remains a key target for improving our understanding of the human experience, and struggle, with 

pain.   

 

1.2.2 Brian mechanisms 

Our understanding of the neural basis of pain has developed greatly since the invention of non-

invasive brain imaging, in particular, electroencephalography (EEG) & functional magnetic 

resonance imaging (fMRI). From these developments came the identification of the “pain matrix”- 

a collection of anatomically distinct brain regions joined together as a network, which are involved 

in processing various dimensions of pain (Figure 3). These regions have been identified due to 

consistent activation across pain studies, as well as correlated activity associated with increased 

pain intensity (Legrain, Iannetti, Plaghki, & Mouraux, 2011). A large-scale review in 1999 

synthesised data from 68 studies on experimental & clinical pain and concluded that the main 

components of the pain network were the thalamus, primary and secondary somatosensory (S1 & 

S2), insular, anterior cingulate cortex (ACC) and prefrontal cortices (PFC) (Apkarian, Bushnell, 

Treede, & Zubieta, 2005). These regions have formed the foundation of the pain matrix, with later 

studies proposing the inclusion of the amygdala, parietal cortices and PAG, alongside other 

brainstem regions such as the RVM & locus coeruleus (May, 2009; Peyron, Laurent, & Garcia-

Larrea, 2000; Price, 2000; Tracey & Mantyh, 2007).   
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Figure 3. Primary nodes within the “pain matrix” activated in response to nociceptive stimulation & 

processing. 

 

Whilst this pattern of neural activity is reliably found when administering a nociceptive stimulus, 

years of neuroscientific research examining the specificity of the pain matrix have raised genuine 

concerns. This theory has been challenged on the basis that it may be a product of reverse inference 

(Iannetti & Mouraux, 2010; Salomons, Iannetti, Liang, & Wood, 2016). For example, it is a logical 

premise to state that when the band Motörhead played the Hammersmith Apollo, beer stocks within 

the local vicinity ran out. However, it is fallacious reasoning (upon the premise of reverse 

inference) to deduce that when beer stocks in Hammersmith run low, Motörhead must be playing at 

the Apollo. In relation to neuroscience, we can state that when in pain, the pain matrix is activated. 

We cannot, however, state that when the pain matrix is activated, the individual is experiencing 

pain. One highly influential study examined the neural basis of a variety of aversive and non-

aversive stimuli within fMRI, in an attempt to elucidate the specificity of the pain matrix 

(Mouraux, Diukova, Lee, Wise, & Iannetti, 2011). The results of this study provided a strong 

argument against the specificity of the pain matrix, demonstrating that nociceptive, non-

nociceptive, auditory & visual stimuli all activate regions within the pain matrix. Additionally, 
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empathy to pain (Singer et al., 2004; Valeriani et al., 2008) and social rejection (Eisenberger, 2003) 

have also been found to activate the pain matrix. Tellingly, pain matrix activation has even been 

shown to be intact following nociceptive stimulation in patients experiencing congenital 

insensitivity to pain (Salomons et al., 2016). Intuitively, we know the experience of pain to be a 

holistic & multi-faceted phenomenon, influenced by attentional, cognitive and emotive processes, 

alongside an array of other features. Therefore, when imaging the neural basis of this, it is logical 

to expect the utilisation of auxiliary or generic processes to be involved in the experience and, 

therefore, the mechanism.  So, while the pain matrix is not a redundant concept, as these regions 

are actively involved in processing pain, it is difficult to disentangle which areas are related 

specifically to pain (if any), as opposed to generic processes. Consequently, more specific 

hypotheses-driven research into pain mechanisms is now encouraged to expand upon this. 

 

In an attempt to breakdown the amorphous experience of pain, one approach is to examine separate 

features of the experience in isolation. For example, if someone were to stub their toe, we would 

expect the ‘pain matrix’ to be activated as they are processing nociceptively-related information 

(where did they hit it/how hard did they hit it/does it feel damaged etc), but also non-nociceptively-

related information (are they balanced/what did they hit/is anyone near them etc). Within an 

experimental setting this process remains the same, and the interaction of nociceptive and non-

nociceptive processing would lead to a heterogenous pattern of activation, whereby specific 

function is difficult to detangle. However, if we were to compare nociceptive stimulation in 

isolation, to the same stimulation in combination with a complex cognitive task, we would be able 

to target the experimental focus on the neural mechanism underpinning pain modulation, which is a 

core feature of interest in this current body of work. We know that a subjective experience of pain 

is formed via a combination of ascending and descending signals, the latter of which originating in 

the cortex (Ossipov et al., 2010). Not only would targeting our investigations to the influence of 

such cortical processes on this mechanism allow us to better understand the neural underpinnings 

of pain, but also help us understand apparent innate individual differences which facilitate 
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vulnerability to chronic pain. Therefore, mechanistically, one key area of focus is on the 

descending pain modulation system (DPMS).  

 

The DPMS is a network that ultimately regulates the nociceptive signal at the level of the spinal 

dorsal horn (Denk et al., 2014). Due to the number of varying processes which can contribute to 

this mechanism of action (for example, attentional vs emotional distraction), there is currently an 

array of identified descending modulatory regions and pathways, but each operates as a 

bidirectional loop between the cortex and the spinal cord, via the brainstem (Bushnell, Čeko, & 

Low, 2013; Millan, 2002). The bidirectional nature of this network facilitates or alleviates the 

experience of pain depending on the situation. For example, if an individual is interpreted to be in a 

fight or flight environment, it is beneficial to downregulate the nociceptive signal and decrease the 

experience of pain, thus facilitating the utilisation of resources towards escaping the situation 

(Williams, 2016). Conversely, the enhancement of the nociceptive signal would lead to a 

heightened and consistent pain state, which may be a contributing factor to chronic pain and pain 

sensitivity. For example, it has been proposed that persisting pain within nerve injury is associated 

with alterations in the function of the DPMS (Ossipov et al., 2010; Porreca, Ossipov, & Gebhart, 

2002). Within this study, chronic pain following nerve injury was associated with a reduction in 

inhibitory influences in the dorsal horn, alongside increases in facilitatory action. While the 

experience of pain is a product of multiple processes emanating from the cortex, the key areas are 

thought to be the ACC, insula, somatosensory and dorsolateral prefrontal cortices (dlPFC), the 

amygdala, thalamus and hypothalamus within the subcortex and the PAG and RVM in the 

brainstem (Denk et al., 2014). Processes within the amygdala, hypothalamus and prefrontal and 

cingulate cortices are associated with cognitive, attentional & emotional states that interact with the 

nociceptive processing (Bushnell et al., 2013). Therefore, activity within these regions is likely 

affect by the trait and state characteristics of the individual. 
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Ultimately, the pain experience is also impacted via psychological factors whose processes 

originate within the brain.  Influences such as emotion, attention and cognition can influence the 

final expression of pain and are each associated with a variety of distinct (yet overlapping) 

mechanisms. It’s been suggested that alterations in the amygdala-PFC network, via disturbances in 

sleep quality and mood control, impact how pain is modulated via nuclei in the brainstem (Denk et 

al., 2014). The associative effects on how the nociceptive stimulus is inhibited or facilitated via 

these processes could represent a vulnerability to the development and maintenance of chronic 

pain.  

 

1.2.3. Summary 

Early developments in our understanding of pain formulated the idea that pain and injury are not 

directly correlated and that the brain is involved in its interpretation. This provided Melzack & 

Wall with a foundation to propose their Gate Control Theory of Pain. They suggested that pain is 

transmitted via a peripheral nerve through the spinal cord where it is subject to modulation 

intrinsically via nerves, or via control in the brain. One key element of this theory was that the 

opening and closing of the gate could be facilitated by psychological factors, such as relaxation, 

anxiety or catastrophising. The discovery of nociceptors, specialised for detecting aversive stimuli, 

alongside Gate Theory, led to development of mechanistic breakdowns of the pain pathways. These 

can be classified into two groups; ascending and descending pathways. The ascending pathway 

begins via detection in the periphery, transmission into the dorsal horn of the spinal column, and 

then up the spine and into the brain (for example, via the spinothalamic tract). The descending 

pathway originates in the brain, projects through the PAG and then indirectly into the spinal cord, 

via a number of different regions, associated with a range of neurotransmitters. Investigation into 

structural pathways is highly suited to electrophysiological and animal experimentation, and as 

such, has been described in fine detail over the past 50 years. However, due to the complexity of 

the brain and human psychology, cortical involvement in the descending pathway, and how this 

contributes to pain modulation, still requires further research. Further examination of the brains 
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involvement in this process may help us understand how an individual’s capability to modulate the 

ascending signal of a noxious stimulus may be associated with how people manage chronic pain in 

clinical settings.  

 

Advances in brain research have led to the identification of a collection of brain regions that are 

involved in the processing of pain. These regions are often reported to be the thalamus, amygdala, 

periaqueductal grey (PAG), primary and secondary somatosensory (S1 & S2), insular, anterior 

cingulate (ACC), parietal and prefrontal cortices (PFC) (Apkarian et al., 2005). Originally, these 

regions were designated as the “pain matrix”. However, as activation of the pain matrix has shown 

to be active in patients with congenital sensitivity to pain, as well as in response to non-noxious 

stimuli, the specificity of the pain matrix has since been asserted to be a product of reverse 

inference.  

 

Ultimately, within the pain matrix, it is difficult to disentangle which areas are related specifically 

to pain (if any), as opposed to generic processes, such as attention, cognition, emotion or sensation. 

As such, more specific, targeted hypotheses are now encouraged for expanding on this. One 

concept of interest when examining intrinsic ability to manage pain is the concept of pain 

modulation. The combination of the ascending and descending pathways in pain processing elicit 

the experience of pain. Psychological factors associated with resilience are associated with cortical 

processes and examining how these cortical influences contribute to pain modulation is one method 

to investigate the psychology of innate individual differences in pain. For example. processes 

within the amygdala, hypothalamus and prefrontal and cingulate cortices are associated with 

cognitive, attentional & emotional states that interact with the nociceptive processing (Bushnell et 

al., 2013). This is especially pertinent as these areas are identified within the descending pain 

modulation system, which is a network of regions key to the process of modulating pain. 

Examining how individual differences related to pain processing may be associated with 
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underlying differences in the DPMS, is a good strategy for understanding how effective, intrinsic 

pain management may be represented neurologically.  

 

1.3. Pain Assessment 

As illustrated, pain is a complex, multi-faceted phenomena, with no direct causal link to 

nociception. It can vary wildly across individuals, time-points and locations. Even within chronic 

pain patients, pain can be known to fluctuate across the days, weeks and months, despite no known 

alterations in pathology (Schneider et al., 2012). Moreover, due to the lack of specificity in the 

neural markers underlying pain, there is currently no objective test available to detect or evaluate 

pain. The challenges in assessing pain, alongside the clear utility that accurate assessments would 

bring, have led to a range of different methods being proposed to quantify different aspects of the 

pain experience. The complexity of pain means that it cannot be accurately represented via the use 

of a single number, and for a detailed assessment, it must be evaluated across multiple levels. For 

clinical assessment, it has been proposed that diagnoses should be based on pain mechanism, not 

just symptom (Woolf, 2004). This is based on the premise that differences in clinical symptoms 

represent differences in the abnormalities of the underlying pathophysiological mechanisms of pain 

processing (Rolke et al., 2006). However, regarding our current understanding of these mechanisms 

our knowledge is incomplete and, within the methodology of assessment in particular, many issues 

remain to be addressed (Cruz-Almeida & Fillingim, 2014).  

 

For the purposes of description, pain assessment can be categorised into four domains; the 

periphery, descending pathways, psychology & the brain. One crucial note when attempting to 

designate distinct clusters is that these domains are not orthogonal towards one another. For 

example, when quantifying thresholds in the periphery and pain catastrophising via psychometrics, 

it is important to note that each is likely to affect the other. But, these tools can either be used in 



 

28 | P a g e  
 

combination to describe the amalgam of the entire pain experience, or individually, to isolate 

specific mechanisms within the experience of pain if required. 

 

1.3.1 The Periphery 

Assessment of pain in the periphery can be assessed using static quantitative sensory testing 

(sQST) and represents the simplest approach to describing an individual’s pain profile. 

Traditionally, sQST involves administering thermal (heat/cold) or mechanical stimuli 

(tactile/vibration/pressure) (Cruz-Almeida & Fillingim, 2014) and performing three main tests; 

sensory detection thresholds, pain thresholds & pain tolerance. The first two tests use supra- and 

super-threshold stimulation to provide a proxy for the intensity of a stimulus required to elicit 

either the detection of sensory stimulation (sensory detection) or painful stimulation (pain 

threshold). The latter test, quantifying pain tolerance, is completed via exposure to a noxious 

stimulus where the participant is required to maintain exposure until the pain becomes intolerable, 

at which point they can withdraw from the stimulus. Taken together, these sQST measures can 

provide a basic sensory profile for an individual consisting of sensory and nociceptive sensitivity 

(Figure 4). One clear advantage of this approach is that these tests are quick to complete, require 

little expertise for data collection and provide an impression of the basal state of the nociceptive 

system. Beneficially, these tests are associated with the good-excellent reliability, representing the 

most reliable of the psychophysical assessment tools (Marcuzzi, Wrigley, Dean, Adams, & Hush, 

2017). 
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Figure 4. Static QST assessments and their relation to sensory detection & pain sensitivity 

 

While sQST assessments require involvement of the entirety of the neuroaxis, from the periphery 

to the brain, their outcomes can be used to make direct observations of peripheral sensitivity. 

Within clinical research, thresholds can be used to detect sensory loss in peripheral nervous system 

disorders (Masson & Boulton, 1991; Ponirakis et al., 2016; Ziegler, Mayer, & Gries, 1988), 

compare intra-individual pain sensitivity (i.e. affected vs non-affected areas) (Coronado, Kindler, 

Valencia, & George, 2011; Coronado, Simon, Valencia, & George, 2014) or as pre-surgical acute 

pain assessment (Yang et al., 2019). Within research settings, pain thresholds provide an 

experimental variable that is a proxy for pain sensitivity. This can be used to investigate the impact 

of pain on various tasks (Dunbar et al., 2012; Nisbett & Schachter, 1966), to understand clinical 

conditions in relation to controls (Adler & Gattaz, 1993; Granges & Littlejohn, 1993) and to 

investigate associations between pain and underlying neurology (Coghill, Sang, Maisog, & 

Iadarola, 2017; Peyron et al., 2000), amongst many other applications. Pragmatically, these 

techniques can also be used to further increase the quality of other, more complex, behavioural 

assessments. For example, the calibration of pain thresholds and ratings of pain intensity to static 

stimuli are often required for the application of more complex psychophysical assessment used to 

investigate other mechanisms involved in pain. 
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1.3.2. Ascending & Descending Pathways 

One benefit of sQST methods is that the simplicity of the design allows an experimenter to direct 

their conclusions to the periphery. However, dynamic quantitative sensory testing (dQST) can use 

peripheral stimulation within more complex designs to provide insight about deeper mechanisms 

within the neuroaxis. Two common psychophysical tools within dQST are Conditioned Pain 

Modulation (CPM) and Temporal Summation (TS), which have been linked with mechanisms of 

descending modulation & ascending facilitation, respectively (Mackey, Dixon, Johnson, & Kong, 

2017).   

 

As mentioned within section 1.2.1, pain is a product of the combination of ascending and 

descending pathways. Those with effective descending modulatory mechanisms can better inhibit 

the ascending nociceptive signal, therefore reducing pain (Ossipov et al., 2010). CPM is a 

psychophysical test that is said to be a behavioural proxy for the efficiency of this circuitry, with 

high CPM being associated with more effective endogenous analgesia mechanisms (Yarnitsky et 

al., 2012). CPM is developed on the principle that “pain-inhibits-pain” i.e., the experience of pain 

can be inhibited by inducing pain at a proximally distal anatomical site, for example, via the 

application of a thermal test stimulus on the leg, and a hot water bath as a conditioning stimulus 

applied to the arm (Yarnitsky et al., 2008, 2012). Originally, this inhibitory phenomenon was 

identified in animals, and termed diffuse noxious inhibitory controls (DNIC) (Cadden, Villanueva, 

Chitour, & Le Bars, 1983; Le Bars, Dickenson, & Besson, 1979).  

 

Tests of TS consist of a participant providing subjective pain ratings to a painful consistent 

stimulus repeatedly delivered at a high frequency (Rolke et al., 2006). Generically, despite the pain 

stimuli being of a consistent intensity, the subjective pain ratings of the experience will increase. 

This has been attributed to a process of central sensitisation, whereby the central nervous system 

engages in a process of wind-up and progresses into a state of high reactivity (D’Mello & 

Dickenson, 2008). The repeated input of nociceptive input via c-fibres in the periphery appears to 
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lead to an increased frequency of secondary spinal firing from the dorsal horn, interpreted as an 

increased intensity of pain. Modern models of chronic pain have hypothesised that central 

sensitisation serves as a key maintenance factor in this condition (Latremoliere & Woolf, 2009; 

Woolf, 2004). This is based on the premise that when in a high state of reactivity, the central 

nervous system can misappropriate the interpretation of signals associated with pain.  

 

Two recognised instances of this misrepresentation of signal are allodynia and hyperalgesia. 

Allodynia is the phenomenon whereby a subthreshold peripheral stimulus can be interpreted as 

being painful (Sandkühler, 2009). For example, a common test for central sensitisation is the brush 

allodynia test, where a soft paintbrush is stroked across the site of stimulation to test whether the 

participant correctly interprets the stimulus as non-painful (Maracle et al., 2017). Similarly, 

hyperalgesia is a product of the amplification of a nociceptive signal so that a suprathreshold 

stimulus is perceived as being more painful than it usually is (Sandkühler, 2009). A common 

illustration of hyperalgesia is a sunburn. Before being burnt, a slap to the back may cause a mild, 

sharp pain which is easily tolerated. However, after sunburn, the intensity of the pain will be 

substantially increased, both to the site of sunburn itself (primary hyperalgesia) and even to the area 

around the sunburn (secondary hyperalgesia). Given the examples of allodynia and hyperalgesia, it 

is likely not surprising that central sensitisation has been found to be linked to acute and chronic 

pain within animal models (Cook, Woolf, Wall, & Mcmahon, 1987; Woolf & Wall, 1986; Woolf, 

1984; Woolf, 1983; Woolf & Salter, 2000), and that abnormalities in the behavioural proxy of TS 

are associated with a range of detrimental clinical outcomes. 

 

It has been suggested that via the combination of CPM and TS, it is possible for assessments to 

phenotype participants into profiles of nociceptive processing, based on their underlying 

mechanisms (Yarnitsky, Granot, & Granovsky, 2014). Yarnitsky proposed that the outcomes from 

CPM/TS indicate a balance of inhibitory/facilitatory mechanisms, and that this can be used to 

classify an individual as being pro- (high pain facilitation), eu- (no pain facilitation) or anti-
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nociceptive (low pain facilitation). The associative conclusions of this profiling system are that 

those who are pro-nociceptive are more likely to experience pain sensitivity and low pain 

modulation, and that these individuals are those at risk of detrimental outcomes for clinical pain. 

This proposal for nociceptive profiles would provide a method of metapsychophysical assessment, 

whereby the results from behavioural tests can be combined to stratify individuals into three 

subsets of pain profile, associated with varying degrees of vulnerability to pain. Recently, 

validation for this theory was provided indicating that, within a sample of knee osteoarthritis 

patients, a higher proportion met the criteria for a pro-nociceptive (27%), as opposed to an anti-

nociceptive profile (16%) (Bossmann, Brauner, & Horstmann, 2018). However, within this sample, 

the majority of patients were classified as a eu-nociceptive profile (57%) despite suffering from a 

chronic pain condition. Therefore, whilst CPM/TS can provide useful information regarding the 

underlying mechanisms of pain processing, assessments cannot rely on one level of inspection 

alone, as indicated by the presence of a eu-nociceptive majority within a chronic pain sample. 

Instead, to truly understand chronic pain, we must ideally evaluate the experience of pain using all 

levels known to affect pain processing.  

 

1.3.3. Psychology & Personality 

For many sufferers, chronic pain is a wholly negative experience characterised by distress, despair 

and hopelessness (Corbett et al., 2007). This condition is associated with multiple cognitive, 

emotional, social and attentional components and, therefore, it is not surprising that many 

psychological variables have already been identified as being associated with chronic pain (Bruce, 

Thornton, Powell, Johnston, Wells, Heys, Thompson, Smith, et al., 2014). Critically, the 

representation of chronic pain varies as a function of diagnosis. For example, cancer pain will 

likely be associated with an increased presence of fear and anxiety to mortality than fibromyalgia, 

which has no direct medical risk of death. However, the internalised perspective on fibromyalgia, 

with no known pathological cause or effective treatment, may be viewed differently in comparison 

to chronic knee pain that is associated with a simpler formal diagnosis and treatment pathway. 
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Therefore, while psychological factors are incredibly relevant to chronic pain, variability across 

conditions is a crucial factor to consider when calibrating assessments. 

 

Personality has long been linked to the instantiation, maintenance and experience of pain (Gamsa, 

1994). Within the 1800s, pain management started to emerge as a serious medical challenge, and 

this stimulated an investigation into personality in an attempt to explain pain in the absence of 

pathology (Tuke, 1884). Within the 20th century, the rise of psychoanalysis introduced a model that 

via trauma in development, detriments in personality led to emotional disturbance, which 

stimulated emergent expression via pain (Lesse, 1968; Merskey et al., 2002). This cumulated in the 

designation of a “pain-prone” personality type, related to a denial of emotions, failure in 

interpersonal communications and being within a “depressive-spectrum” (Blumer & Heilbronn, 

1981). It was presumed that as personality represents a stable trait, the implications of an 

individual’s personality would affect the mechanisms with which a person would respond to pain 

and manage their condition. However, the concept of a pain-prone personality type was later 

debunked as the evidence base for personality became more comprehensive, and multiple 

personality sub-types were associated with chronic pain (Naylor, Boag, & Gustin, 2017). 

Generally, chronic pain patients display normal patterns of personality, with no systematic 

variation in personality types (Wade, Dougherty, Hart, & Cook, 1992). 

 

Ultimately, the pursuit of a single pain-prone personality type proved to be a reductionist approach. 

The main criticisms of this pursuit revolved around the use of cross-sectional designs, preventing 

the identification of whether the personality factors disposed the individual to pain, or whether the 

detrimental presence of pain led to the identified personality characteristics (Wachleski et al., 

2008). Additionally, the lack of specificity of the identified personality characteristics to chronic 

pain, as opposed to anxiety (Wachleski et al., 2008), obsessive-compulsive disorder (Cruz-Fuentes, 

Blas, Gonzalez, Camarena, & Nicolini, 2004) or depression (Smith, Duffy, Stewart, Muir, & 

Blackwood, 2005), contradicted the concept of these individuals being prone specifically to pain. 
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Instead, modern approaches target trait-like psychological concepts as being more appropriate for 

assessment and provide more specificity than broad personality subtypes. While the existence of a 

pain-prone personality appears to be non-apparent, reoccurring psychological factors (that are often 

associated with axis 1 personality disorders, such as depression and anxiety) do appear to present as 

risk factors to the development and maintenance of pain (Gatchel, Polatin, & Kinney, 1995). 

 

For a comprehensive overview of the full range of psychological predictors for pain outcomes, 

there are a number of high quality reviews that cover this expansive field of research (Bruce, et al., 

2014; Thibault et al., 2008). However, specifically, depression and anxiety have consistently been 

identified as risk factors for the transition from acute to chronic pain (Linton, 2000; Theunissen, 

Peters, Bruce, Gramke, & Marcus, 2012) as well as being involved in the maintenance of the 

condition (Gaskin, Greene, Robinson, & Geisser, 1992). Levels of depression have been found to 

be predictive of the development of lower-back pain, as much as three years after an initial pain-

free assessment, with depressed patients being 2.3 times more likely to develop lower-back pain 

than patients without depression (Jarvik et al., 2005). It is estimated that up to 85% of patients 

diagnosed with chronic pain also suffer from severe depression (Diamond, 1964), so unsurprisingly 

the neurobiological & neuroplastic changes associated with these two conditions have a large 

degree of overlap (Sheng, Liu, Wang, Cui, & Zhang, 2017). These overlaps are known to exist over 

multiple levels, including similar inflammatory factors and receptor subtype activity changes, but a 

common theory postulates that each condition also impacts the descending modulatory system 

(Bair, Robinson, Katon, & Kroenke, 2003). In particular, the modulatory brainstem pathway 

engaged via the PAG, as well as limbic and cortical regions which co-ordinate affect and attention 

to peripheral stimuli, contains serotonergic, noradrenergic & opioidergic neurons (Omelchenko & 

Sesack, 2009; Stahl, 2002). Levels of these neurotransmitters are known to be depleted in 

depression (Cowen & Browning, 2015; Moret & Briley, 2011), which is a key reason why 

antidepressants, which increase these neurotransmitters, are used to treat chronic pain (Micó, 

Ardid, Berrocoso, & Eschalier, 2006). 
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Psychologically, symptoms of depression are associated with altered cognitive, emotional and 

attentional states (Fales et al., 2008; Goeleven, De Raedt, Baert, & Koster, 2006; Koster, De Raedt, 

Goeleven, Franck, & Crombez, 2005). These altered psychological states can also be associated 

with chronic pain and are valuable for assessment. For instance, distress, depression & fear-

avoidance have been shown to be correlated with the transition between acute pain and chronic 

pain in lower-back pain patients and were identified as the best predictors across 11-identified 

studies (Linton, 2000). Psychological distress is defined as emotional suffering caused by 

symptoms of depression and anxiety (Mirowsky & Ross, 2002) and high levels of psychological 

distress have been associated with unfavourable clinical outcomes in pain management (Pincus et 

al., 2002). Relatedly, pain catastrophising, a set of negative pain-themed cognitive biases, has also 

been identified as a predictor variable for poor clinical outcomes and the transition from acute to 

chronic pain (Edwards, Dworkin, Sullivan, Turk, & Wasan, 2016; Khan et al., 2011; Sullivan et al., 

2001; Theunissen et al., 2012). Utilisation of the highly validated Pain Catastrophising Scale 

(Sullivan, Bishop, & Pivik, 1995) in pain research has revealed that pain catastrophizing, as a trait, 

is associated with a wealth of negative chronic pain outcomes (Turner, Jensen, Warms, & 

Cardenas, 2002). It has been proposed that pain catastrophising may be characterised by an 

attentional processing bias, which exaggerates the experience of sensory and affective pain 

information (Eccleston, 1994). The detrimental mechanism of action is proposed to orientate 

around three main concepts; the magnification of the threat of pain, a failure to inhibit pain-related 

cognitions, with predisposition for ruminative thinking, and a feeling of helplessness in the context 

of pain (Sullivan et al., 1995).  

 

As a functional antithesis to the detrimental influence of catastrophising, mindfulness is a concept 

that has been associated with beneficial pain outcomes (Chiesa & Serretti, 2011; Kabat-Zinn, 

1982). Mindfulness is an attentional regulatory process, characterised by a present-focused 

awareness within the moment, in a curious, open and accepting manner (Bishop et al., 2004). 
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Pertinently, regarding assessment, mindfulness can be viewed as both a state and a trait. 

Administering mindfulness-based interventions (MBIs) to enhance an individual’s capacity for 

mindfulness (and therefore their state mindfulness), has been associated with increased pain 

thresholds and reduced negative pain-related biases, such as catastrophising (Turner et al., 2016; 

Zeidan, Gordon, Merchant, & Goolkasian, 2010; Zeidan, Grant, Brown, McHaffie, & Coghill, 

2012). However, when assessing for individual differences in intrinsic variations in pain 

processing, the use of the Five-Factor Mindfulness Questionnaire (Baer et al., 2008) can quantify 

an individual’s trait mindfulness, even in the absence of any exposure to MBIs. High trait 

mindfulness has been associated with higher pain thresholds and decreased pain catastrophising 

(Grant & Rainville, 2009; Mun, Okun, & Karoly, 2014). It has been suggested that this may be 

achieved via attentional regulation to sensory-discriminative processing, with reduced attention for 

cognitive reappraisal and rumination (Grant, Courtemanche, & Rainville, 2011; Salomons & 

Kucyi, 2011). These findings suggest that trait mindfulness would might be a useful assessment 

measure for evaluating how effective an individual’s ability to manage pain. 

 

The prospective capability of psychologically orientated assessment highlights the potential 

application for identifying intrinsic traits relating to an individual’s capability for managing pain. 

As well as this, psychometrics provide a potential strategy for the stratification of interventions, 

targeted towards the detrimental influence of specific psychological features. Psychological 

assessment can also be useful when attempting to predict how well a patient may fare with clinical 

pain outcomes or understanding why some patient’s pathological diagnosis does not match the 

described symptomology. The way in which psychological factors can influence how we attend, 

think and feel about pain can have an impact on how pain is managed and modulated. The use of 

psychometric assessment can illuminate hidden criteria, that may otherwise be missed, which could 

help us better understand how people are likely to respond to pain. 
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1.3.4. The Brain 

Multiple attributes associated with the brain have been identified that could help identify 

biomarkers for pain response. These can be acquired via multiple means, including MRI, EEG, 

transcranial magnetic stimulation (TMS), Magnetoencephalography (MEG) & Positron Emission 

Topography (PET). The differences in these neuroimaging techniques are associated with a series 

of strengths and weaknesses when compared to each other, especially regarding spatial and 

temporal resolution. There is a collection of high-quality reviews of pain biomarkers within EEG 

(Dos Santos Pinheiro et al., 2016; Leiser, Dunlop, Bowlby, & Devilbiss, 2011), TMS (Barr, Farzan, 

Davis, Fitzgerald, & Daskalakis, 2013; Nardone et al., 2015; Zaghi, Thiele, Pimentel, Pimentel, & 

Fregni, 2011) & MEG (Ploner & May, 2018), but for the purposes of this thesis, the focus of the 

synopsis will be on MRI.  

 

It is evident that nociceptive stimulation consistently elicits BOLD activation within certain areas 

of the brain (see section 1.2.2), and that the magnitude of this activity covaries with increases in the 

intensity of the stimulus (Derbyshire et al., 1997). In combination with an increase in popularity of 

fMRI research and ambitions of an objective measure of pain, this encouraged the pursuit of a 

neural marker for pain in the human brain. The advantages of such a tool would be numerous. 

Within the clinic, assessment of pain is still reliant on clear communication, presenting challenges 

when treating pre-communicative children, patients with no shared language or adults with learning 

disabilities or degenerative conditions. Within the age of the ‘opiate epidemic’ (Wilkerson, Kim, 

Windsor, & Mareiniss, 2016), there are also ongoing concerns of the duplicitous pursuit of opioids 

and due to the dangers associated with opioid abuse, a corroborative measure is highly desired.  

 

While the motivations for an objective measure of pain are valid, the application of a neural 

signature of pain is still incomplete. As described in section 1.2.2, the original BOLD signature 

across the pain matrix is not specific to the experience of pain (Mouraux et al., 2011). Modern 

analytical methods, namely multi-variate pattern analysis (MVPA), have facilitated the 
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development of more advanced neural representations of pain. Namely, Tor Wager’s neurological 

signature is more sensitive and specific to physical pain, and has better discriminatory power for 

noxious stimulation, than other aversive stimuli (Wager et al., 2013). Their approach consisted of 

using machine learning to identify patterns of activity associated with thermal pain, which were 

identified across key pain processing regions such as the thalamus, PAG, somatosensory, insula & 

ACC. The specificity and sensitivity of this machine learning was then tested against warm (non-

noxious) stimulation, social pain (via images relating to social rejection) and tested its response to 

analgesic relief. The resulting findings for this signature were highly promising with a high degree 

of sensitivity & specificity shown across all comparisons, and at the least, improved upon the 

original models identified using simple contrast analyses. 

 

While there are benefits to MVPA, many of the original criticisms of such a signature remain. The 

neurological signature was developed using healthy controls, stimulated in a forced-choice design 

(on vs off), using peripheral thermal stimulation applied to the same body site. Whether this would 

possess the ecological validity to transition into the clinic remains unlikely, and the substantial 

increase in degrees of freedom encountered when adopting this across multiple clinical sites, with 

multiple chronic pain conditions & the variability inherent within these patients, would be highly 

challenging. Based on this, an IASP task force investigated the ethical & moral implications behind 

using brain imaging for pain assessment and concluded that “the use of brain imaging findings to 

support or dispute a claim of chronic pain- effectively as a pain lie detector- is not warranted” 

(Davis et al., 2017, p. 1). However, the review also stated that imaging provides a great potential 

for other clinical advances, such as investigating the neural underpinning of chronic pain and its 

development, as well as predicting treatment outcomes and the pursuit of personalised pain 

medicine. 

 

One such approach that uses fMRI effectively for these targets is resting-state fMRI (rs-fMRI) and 

connectivity analysis. Although evoked-response fMRI can help identify regions that are involved 
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when experiencing pain, it is less capable of explaining how these regions function within larger 

networks and allows us to examine participants at rest with no task, to understand aspects about 

who they are as individuals (Cabral, Kringelbach, & Deco, 2014). Connectivity analysis provides 

us with more detail on this macro level and reveals how nodes within a network communicate 

during a task or when at rest (Greicius, Krasnow, Reiss, & Menon, 2003). This approach also 

enables us to take a neural ‘snapshot’ of who an individual is at rest, and we can use this to 

investigate individual differences in connectivity to establish how underlying neural mechanisms 

may provide innate resilience or sensitivity to the experience of pain (Schmidt-Wilcke et al., 2014; 

Yu et al., 2014). This approach can address, for example, how chronic pain may develop by 

examining changes in connectivity before and after the development of chronic pain (Chapman & 

Vierck, 2017). This is especially useful for chronic postsurgical pain, where the risk for developing 

chronic pain via surgery is identified and can be predicted, as opposed to conditions such as lower-

back pain, where the condition may emerge over the course of years, with no discernible trigger. 

Rs-fMRI can also be used to predict treatment outcomes, before they’ve undergone the treatment 

itself, by comparing baseline pre-treatment connectivity with eventual treatment outcomes, to 

potentially identify biomarkers for poor outcomes (Tétreault et al., 2016).  

 

Resting state fMRI is an approach that can assess the functional connectivity of spatially distinct 

regions of the brain (Greicius et al., 2003). This is achieved using spontaneous fluctuations in 

BOLD response, which is used as a proxy for neural activity within regions (Karl, 1994). Resting 

state connectivity aims to evaluate how spatially distinct regions may share co-activation patterns 

in slow oscillatory activity (less than 0.1Hz (Friston, 1994)), thus representing synchronisation and 

functional connectivity. Similarly, this approach can also identify inverse functional connectivity 

by identifying regions that are asynchronous, representing more independent functions associated 

with the two comparative regions. This can provide insight for how brain areas combined to form 

networks, and how the efficiency of connectivity within networks can function to formulate an 

experience of pain, or pain modulation (Denk et al., 2014).  
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While we know that exposure to noxious stimuli elicits a neural response across a number of 

distinct areas that coalesce to formulate the experience of pain, these areas do not act in isolation of 

each other (Baliki et al., 2012; Kucyi & Davis, 2015; Napadow et al., 2010). Networks such as the 

default mode network (DMN), descending pain modulation system (DPMS) and salience network 

have all been implicated in the chronification of pain and the prediction of treatment response 

(Apkarian, Baliki, & Farmer, 2013; De Felice et al., 2011; Ren & Dubner, 2002). Therefore, by 

using connectivity analysis, we can evaluate how these areas are connected to one another, and 

whether there are systematic associative variations in these connections that facilitate better or 

worse pain management. For example, chronic pain is associated with deficiencies in descending 

pain modulation (Davis & Moayedi, 2013; De Felice et al., 2011; Lewis, Rice, & McNair, 2012; 

Potvin & Marchand, 2016; Yarnitsky et al., 2014) and attentional biases to the sensation of pain 

(Crombez, Viane, Eccleston, Devulder, & Goubert, 2013; Eccleston, 1994; McCracken, 1997). 

Resting state can allow us to examine how individual differences in the DMN (attention) or DPMS 

(modulation) can contribute to the chronification of pain, maintenance of chronic pain or 

vulnerability to developing this condition in the first place.  

 

This approach can also be used with predictor variables, or individual differences variables, to 

understand how psychological or behavioural factors can be associated with variations in functional 

connectivity. This can allow insight for how individual differences may be associated with 

underlying neural mechanisms, and how these variations in mechanism can provide benefit or 

detriment to an individual when dealing with future instances of pain. In line with the 

recommendations of the IASP task force, this approach has great potential for assessment via the 

identification of robust indicators of pain sensitivity or treatment response. An associative benefit 

to this approach is that, if a predictor variable, such as a specific psychometric, can predict neural 

responses that relate to treatment response, then this can allow a non-imaging metric to be used to 
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predict treatment response. This has crucial clinical implications, as it could potentially identify 

those at risk of pain while eliminating the need for expensive fMRI scanning.  

 

Based on this premise, a number of potential biomarkers for pain chronification or vulnerability to 

pain have already been proposed. For instance, it has been found that the DMN is disrupted by 

chronic pain and it was subsequently proposed that this may contribute to underlying cognitive and 

behavioural impairments that are associated with chronic pain (Baliki, Geha, Apkarian, & Chialvo, 

2008). This DMN disruption has been noted in a wide-range of chronic pain conditions, including 

diabetic neuropathic pain, migraine, fibromyalgia, lower-back pain and temporomandibular 

disorder (Cauda et al., 2009; Napadow et al., 2010; Rocca et al., 2010; Tagliazucchi, Balenzuela, 

Fraiman, & Chialvo, 2010; Weissman-Fogel et al., 2011). To investigate this, a study was 

completed whereby lower-back pain patients & controls were scanned at baseline and after an 

intervention aimed at exacerbating the subjective intensity of pain (Loggia et al., 2013). 

Interestingly, the extent to which the interventions exacerbated their pain was predicted by baseline 

DMN connectivity & baseline connectivity between the DMN and right insula cortex, a key pain 

processing region. This is one example of rs-fMRI being used to identify an underlying mechanism 

associated with chronic pain, but also provides insight for interventional predictions, and may 

suggest this neural indicator could be applied to stratifying patients towards personalised treatment 

pathways, especially if a behavioural correlate for the mechanism is uncovered. 

 

Regarding the DMN, it has previously been shown that chronic pain patients are more likely to 

possess an attentional bias towards pain (Crombez et al., 2013), and that even in healthy controls, 

this bias is related to the disruptive influence of pain on cognitive performance (Kucyi, Salomons, 

& Davis, 2016). Empirical literature has highlighted that when individuals are less focused on pain, 

and when their mind is wandering away from pain, the DMN and DPMS are both engaged (Kucyi, 

Salomons, & Davis, 2013).  Consistent with this, it has also been found that patients with lower-

back pain have less intra-DMN connectivity than healthy controls, but that this connectivity is 
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substantially restored after pain relieving acupuncture is administered to the LBP patients (Li et al., 

2014). This finding is promising as it suggests that, not only is abnormal DMN connectivity related 

to the maintenance of a chronic pain condition, but also that reversal of this connectivity is 

associated with clinical improvements. Being able to track clinical outcomes or the subjective pain 

experience of a patient may enable us to evaluate treatment outcomes, or better yet, predict the 

onset of a condition, or recovery from the condition, by imaging the underlying mechanism.  

 

As stated by the IASP taskforce, one of the main objections to using neural signatures to assess the 

presence of pain is that we cannot be confident in the sensitivity of our tools to be able to 

appropriately detect it. One reason behind this assertion is that, in their view, we are currently in 

the “discovery stage” of brain imaging, and our findings do not represent a finished product (Davis, 

2019, p. 1). As such, whilst we are beginning to identify potential biomarkers, the ability to apply 

them predictively is still limited. For example, one promising study has highlighted that functional 

connectivity between the medial prefrontal cortex and nucleus accumbens was able to predict the 

transition from acute to chronic backpain (Baliki et al., 2012).  It has also been noted that decreased 

pain sensitivity in experienced Zen-meditators can be predicted by reductions in functional 

connectivity between the anterior cingulate and DLPFC (Grant et al., 2011), indicating that this 

reduction in connectivity may be an indicator of a heightened ability to manage pain. Lastly, the 

response to placebo analgesia has also been predicted separately by functional connectivity 

between the insula and prefrontal cortices (Hashmi et al., 2013) and connectivity between the 

medial midfrontal gyrus and the rest of the brain (Tétreault et al., 2016). Whilst these findings are 

promising, they present a starting-point in the pursuit of clinically applicable predictive 

assessments for treatment. Understanding how these conditions develop, and who is likely to 

develop them is crucial for improving our knowledge of chronic pain. However, finding 

psychological or behavioural correlates of these resting state findings is essential for transitioning 

towards the clinic and real-world application, where access to MRI is limited and highly expensive.  
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1.4. Principle Questions 

This thesis aims to contribute to the literature examining how psychology influences the way in 

which pain is modulated and how this may relate to intrinsic variability in processing pain. As 

reviewed above, pain represents a challenge both within the clinic and within the laboratory. 

Examples such as Beecher’s famous observations of soldiers on the battlefield ascribing no pain to 

severe injuries (Beecher, 1946) or clinical observations of painful symptomology in the absence of 

underlying pathology (Brinjikji et al., 2015) serve to demonstrate the importance of psychology in 

pain processing. The literature highlights that psychological processes are associated with cortical 

activity which influence the way in which the ascending nociceptive signal can be modulated. We 

know that stable traits exist which may contribute to how effectively an individual can manage 

their pain, such as the efficiency of descending modulatory circuitry (as measured by CPM) 

(Granovsky & Yarnitsky, 2013; Lewis, Rice, et al., 2012; Yarnitsky et al., 2014) and psychological 

components such as depression or mindfulness (Diatchenko, Nackley, Slade, Fillingim, & Maixner, 

2006; Grant & Rainville, 2009). However, pain still presents a substantial problem for the clinic 

where variability in pain outcomes still remains a mystery in certain clinical domains (Abbott et al., 

2011). While the influence of psychology on pain is growing in the clinic and laboratory, with 

support from large bodies such as the National Institute of Clinical Excellence (NICE), 

International Association for the Study of Pain (IASP) and the World Health Organisation (WHO), 

our understanding of this interaction is still limited. As such, further clinical, psychological and 

neuroscientific research is required to expand on an area with great potential for tackling one of the 

largest global health problems in the 21st century. 

 

Do some patients experience severe pain within a medical procedure, while others do not? Are 

pain management strategies sufficient for managing these patients? 

As reviewed above, even without a pathological indicator of injury or damage, subsets of patients 

will likely still experience pain. This disconnect between symptomology and pathology can present 

a serious clinical challenge. In chapter 2, we aimed to investigate the emergence of severe pain in a 
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subset of patients who underwent hysteroscopy; a diagnostic medical procedure described as being 

associated with no pain or a little discomfort (Appendix C). Within this study, we evaluated 

subjective ratings of pain within 801 hysteroscopy patients to investigate the emergence of severe 

pain within a subset of these patients. Within these assessment variables, we analysed whether 

clinicians were able to accurately estimate the intensity of pain being experienced by their patients. 

This was of interest because pain management, via the administration of local anaesthetic, was 

determined based on the clinician’s subjective judgement of their patients’ pain. Therefore, chapter 

2 aimed to investigate the experience of pain within patients after a procedure deemed to elicit low-

or-no pain and examined current clinical assessment techniques to understand the implications for 

pain management. We hypothesised that hysteroscopy would be a procedure associated with a 

range of pain intensities, and patients who experienced less intense pain during the operation would 

consider their expectations of the hysteroscopy matched or surpassed.   

 

How is intrinsic trait mindfulness associated with pain, and what is the underlying mechanism? 

As described within section 1.3.3, mindfulness-based interventions are associated with beneficial 

pain processing. But, as well as being conceptualised as a state (via short-term changes), 

mindfulness can also be viewed as a trait. Within chapter 3, data was collected from 40 healthy 

controls, who were naïve to mindfulness, meditation and MBIs. We used the Five Factor 

Mindfulness Questionnaire (FFMQ) to quantify the degree to which they were intrinsically mindful 

and calculated sensory pain thresholds and pain catastrophising using the Pain Catastrophising 

Scale (PCS) (Baer et al., 2008; Sullivan et al., 1995). This allowed us to investigate how untrained, 

trait mindfulness may provide an innate marker of effective pain management, and whether it was 

able to yield this benefit across sensory and cognitive dimensions of pain. We also completed a rs-

fMRI scan to understand how participants resting state connectivity was associated with trait 

mindfulness, in order to decipher the neurological underpinnings of trait mindfulness at rest and to 

help clarify how this mechanism may provide a beneficial influence for managing pain. As 

mindfulness is known to be an attentional regulation process, we used seed-based connectivity 
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analysis to attempt to evaluate activity of the precuneus, a core node within the DMN. The DMN is 

an attentionally-relevant resting state network associated with ruminative and self-reflectory 

processes that represent the anti-thesis for mindfulness. Understanding how attentional regulation 

may be variably connected with other cortical regions may help explain how trait mindfulness 

provides a positive influence for the processing of pain. We hypothesised that trait mindfulness 

would elicit similar pain-related benefits as reported in the interventional mindfulness literature, 

and that this would be achieved via attentional regulation. 

 

What can individual differences in conditioned pain modulation (CPM) inform us about the 

underlying connectivity of pain modulation? 

CPM is a psychophysical assessment that is viewed as a proxy for the efficiency of an individual’s 

descending pain modulation circuitry (Lewis, Rice, et al., 2012; Yarnitsky et al., 2014). CPM 

represents a method of “pain inhibits pain”, and the higher the CPM score, the greater an 

individual’s ability to modulate a peripheral nociceptive stimulus. CPM has also been utilised as a 

predictive clinical assessment tool, and poor CPM has been associated with a range of detrimental 

outcomes across multiple clinical domains, such as surgeries for multiple conditions (Wilder-Smith 

& Robert-Yap, 2007; Yarnitsky et al., 2008), analgesia efficacy (Yarnitsky et al., 2012), and is also 

associated with the persistent maintenance of chronic pain conditions (Daenen et al., 2013; 

Mlekusch et al., 2016). However, it is unclear why this basic psychophysical tool can predict such a 

range of varied clinical outcomes, and what neural aspects of pain individual differences in CPM 

may be associated with. Within chapter 4, we targeted our analysis to the PAG, as being a key 

modulatory region, heavily associated with the descending modulatory pathway that relays signals 

between the cortex and the brainstem (and ultimately spinal cord). Using rs-fMRI and resting state 

data from 40 healthy controls, we used seed-based connectivity analysis to target the PAG and 

understand how functional connectivity between the PAG and the cortex may be associated with 

individual differences in CPM. We predicted that higher CPM, and therefore more effective pain 
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modulation, would be associated with heightened integration of the PAG with other regions 

involved in the processing of pain.   



 

47 | P a g e  
 

1.5. References 

Abbott, C. A., Malik, R. A., Van Ross, E. R. E., Kulkarni, J., & Boulton, A. J. M. (2011). Prevalence and characteristics 

of painful diabetic neuropathy in a large community-based diabetic population in the U.K. Diabetes Care, 34(10), 

2220–2224. https://doi.org/10.2337/dc11-1108 

Adler, G., & Gattaz, W. F. (1993). Pain perception threshold in major depression. Biological Psychiatry, 34(10), 687–

689. https://doi.org/10.1016/0006-3223(93)90041-B 

Alford, D. P., German, J. S., Samet, J. H., Cheng, D. M., Lloyd-Travaglini, C. A., & Saitz, R. (2016). Primary Care 

Patients with Drug Use Report Chronic Pain and Self-Medicate with Alcohol and Other Drugs. Journal of General 

Internal Medicine, 31(5), 486–491. https://doi.org/10.1007/s11606-016-3586-5 

Apkarian, A. V., Baliki, M. N., & Farmer, M. A. (2013). Predicting transition to chronic pain. Current Opinion in 

Neurology, 26(4), 360–367. https://doi.org/10.1097/WCO.0b013e32836336ad 

Apkarian, A. V., Bushnell, M. C., Treede, R. D., & Zubieta, J. K. (2005). Human brain mechanisms of pain perception 

and regulation in health and disease. European Journal of Pain, 9(4), 463–484. 

https://doi.org/10.1016/j.ejpain.2004.11.001 

Asmundson, G. J. G., & Katz, J. (2009). Understanding the co-occurrence of anxiety disorders and chronic pain: State-of-

the-art. Depression and Anxiety, 26(10), 888–901. https://doi.org/10.1002/da.20600 

Baer, R. A., Smith, G., Lykins, E., Button, D., Krietemeyer, J., Sauer, S., … Williams, J. M. G. (2008). Construct validity 

of the five facet mindfulness questionnaire in meditating and nonmeditating samples. Assessment, 15(3), 329–342. 

https://doi.org/10.1177/1073191107313003 

Bair, M. J., Robinson, R. L., Katon, W., & Kroenke, K. (2003). Depression and Pain Comorbidity. Archives of Internal 

Medicine, 163(20), 2433. https://doi.org/10.1001/archinte.163.20.2433 

Baliki, M. N., Geha, P. Y., Apkarian, A. V., & Chialvo, D. R. (2008). Beyond Feeling: Chronic Pain Hurts the Brain, 

Disrupting the Default-Mode Network Dynamics. Journal of Neuroscience, 28(6), 1398–1403. 

https://doi.org/10.1523/JNEUROSCI.4123-07.2008 

Baliki, Marwan N., Petre, B., Torbey, S., Herrmann, K. M., Huang, L., Schnitzer, T. J., … Apkarian, A. V. (2012). 

Corticostriatal functional connectivity predicts transition to chronic back pain. Nature Neuroscience, 15(8), 1117–

1119. https://doi.org/10.1038/nn.3153 

Banks, S. M., & Kerns, R. D. (1996). Explaining high rates of depression in chronic pain: A diathesis-stress framework. 

Psychological Bulletin, 119(1), 95–110. https://doi.org/10.1037/0033-2909.119.1.95 

Barr, M. S., Farzan, F., Davis, K. D., Fitzgerald, P. B., & Daskalakis, Z. J. (2013). Measuring GAB aergic inhibitory 

activity with TMS-EEG and its potential clinical application for chronic pain. Journal of Neuroimmune 

Pharmacology, 8(3), 535–546. https://doi.org/10.1007/s11481-012-9383-y 

Beecher, H. K. (1946). Pain in Men Wounded in Battle. Annals of Surgery, 123(1), 96–105. Retrieved from 

http://www.ncbi.nlm.nih.gov/pubmed/17858731 

Bessou, P., & Perl, E. R. (1969). Response of cutaneous sensory units with unmyelinated fibers to noxious stimuli. 

Journal of Neurophysiology, 32(6), 1025–1043. https://doi.org/10.1152/jn.1969.32.6.1025 

Bishop, S. R., Lau, M., Shapiro, S., Carlson, L., Anderson, N. D., Carmody, J., … Devins, G. (2004). Mindfulness: A 

proposed operational definition. Clinical Psychology: Science and Practice, 11(3), 230–241. 

https://doi.org/10.1093/clipsy/bph077 

Blumer, D., & Heilbronn, M. (1981). The pain-prone disorder: A clinical and psychological profile. Psychosomatics, 

22(5), 395–397. https://doi.org/10.1016/S0033-3182(81)73509-6 

Bossmann, T., Brauner, T., & Horstmann, T. (2018). Differences in pain intensity in anti- and pro-nociceptive pain 

profile subgroups in patients with knee osteoarthritis. Pain Management, 8(1), 27–36. https://doi.org/10.2217/pmt-

2017-0039 

Breivik, H., Collett, B., Ventafridda, V., Cohen, R., & Gallacher, D. (2006). Survey of chronic pain in Europe: 

Prevalence, impact on daily life, and treatment. European Journal of Pain, 10(4), 287–333. 

https://doi.org/10.1016/j.ejpain.2005.06.009 

Brinjikji, W., Luetmer, P. H., Comstock, B., Bresnahan, B. W., Chen, L. E., Deyo, R. A., … Jarvik, J. G. (2015). 

Systematic Literature Review of Imaging Features of Spinal Degeneration in Asymptomatic Populations. 

American Journal of Neuroradiology, 36(4), 811–816. https://doi.org/10.3174/ajnr.A4173 

Bruce, J., Thornton, A. J., Powell, R., Johnston, M., Wells, M., Heys, S. D., … Scott, N. W. (2014). Psychological, 

surgical, and sociodemographic predictors of pain outcomes after breast cancer surgery: A population-based cohort 

study. Pain, 155(2), 232–243. https://doi.org/10.1016/j.pain.2013.09.028 

Bruce, J., Thornton, A. J., Powell, R., Johnston, M., Wells, M., Heys, S. D., … Scott, N. W. (2014). Psychological, 

surgical, and sociodemographic predictors of pain outcomes after breast cancer surgery: A population-based cohort 

study. Pain, 155(2), 232–243. https://doi.org/10.1016/j.pain.2013.09.028 

Bunzli, S., Watkins, R., Smith, A., Schütze, R., & O’Sullivan, P. (2013). Lives on hold: a qualitative synthesis exploring 

the experience of chronic low-back pain. The Clinical Journal of Pain, 29(10), 907–916. 

https://doi.org/10.1097/AJP.0b013e31827a6dd8 

Burgess, P. R., & Perl, E. R. (1967). Myelinated afferent fibres responding specifically to noxious stimulation of the skin. 

The Journal of Physiology, 190(3), 541–562. https://doi.org/10.1113/jphysiol.1967.sp008227 

Bushnell, M. C., Čeko, M., & Low, L. A. (2013). Cognitive and emotional control of pain and its disruption in chronic 

pain. Nature Reviews Neuroscience, 14(7), 502–511. https://doi.org/10.1038/nrn3516 

Cabral, J., Kringelbach, M. L., & Deco, G. (2014). Exploring the network dynamics underlying brain activity during rest. 

Progress in Neurobiology, 114, 102–131. https://doi.org/10.1016/j.pneurobio.2013.12.005 

Cadden, S. W., Villanueva, L., Chitour, D., & Le Bars, D. (1983). Depression of activities of dorsal horn convergent 



 

48 | P a g e  
 

neurones by propriospinal mechanisms triggered by noxious inputs; comparison with diffuse noxious inhibitory 

controls (DNIC). Brain Research, 275(1), 1–11. https://doi.org/10.1016/0006-8993(83)90412-2 

Campbell, C., & Guy, A. (2007). `Why Can’t They Do Anything for a Simple Back Problem?’. Journal of Health 

Psychology, 12(4), 641–652. https://doi.org/10.1177/1359105307078171 

Cauda, F., Sacco, K., Duca, S., Cocito, D., D’Agata, F., Geminiani, G. C., & Canavero, S. (2009). Altered Resting State 

in Diabetic Neuropathic Pain. PLoS ONE, 4(2), e4542. https://doi.org/10.1371/journal.pone.0004542 

Chapman, C. R., & Vierck, C. J. (2017). The Transition of Acute Postoperative Pain to Chronic Pain: An Integrative 

Overview of Research on Mechanisms. The Journal of Pain, 18(4), 359.e1-359.e38. 

https://doi.org/10.1016/j.jpain.2016.11.004 

Chiesa, A., & Serretti, A. (2011). Mindfulness-based interventions for chronic pain: a systematic review of the evidence. 

Journal of Alternative and Complementary Medicine, 17(1), 83–93. https://doi.org/10.1089/acm.2009.0546 

Christensen, B. N., & Perl, E. R. (1970). Spinal neurons specifically excited by noxious or thermal stimuli: marginal zone 

of the dorsal horn. Journal of Neurophysiology, 33(2), 293–307. https://doi.org/10.1152/jn.1970.33.2.293 

Coghill, R. C., Sang, C. N., Maisog, J. M., & Iadarola, M. J. (2017). Pain Intensity Processing Within the Human Brain: 

A Bilateral, Distributed Mechanism. Journal of Neurophysiology, 82(4), 1934–1943. 

https://doi.org/10.1152/jn.1999.82.4.1934 

Cohen, S. P. (2005). Sacroiliac joint pain: A comprehensive review of anatomy, diagnosis and treatment. Anesthesia and 

Analgesia, 101(5), 1440–1453. https://doi.org/10.1213/01.ANE.0000180831.60169.EA 

Cook, A. J., Woolf, C. J., Wall, P. D., & Mcmahon, S. B. (1987). Dynamic receptive field plasticity in rat spinal cord 

dorsal horn following C-primary afferent input. Nature, 325(6100), 151–153. https://doi.org/10.1038/325151a0 

Coole, C., Drummond, A., Watson, P. J., & Radford, K. (2010). What concerns workers with low back pain? Findings of 

a qualitative study of patients referred for rehabilitation. Journal of Occupational Rehabilitation, 20(4), 472–480. 

https://doi.org/10.1007/s10926-010-9237-5 

Corbett, M., Foster, N. E., & Ong, B. N. (2007). Living with low back pain-Stories of hope and despair. Social Science 

and Medicine, 65(8), 1584–1594. https://doi.org/10.1016/j.socscimed.2007.06.008 

Coronado, R. A., Kindler, L. L., Valencia, C., & George, S. Z. (2011). Thermal and Pressure Pain Sensitivity in Patients 

with Unilateral Shoulder Pain: Comparison of Involved and Uninvolved Sides. Journal of Orthopaedic & Sports 

Physical Therapy, 41(3), 165–173. https://doi.org/10.2519/jospt.2011.3416 

Coronado, R. A., Simon, C. B., Valencia, C., & George, S. Z. (2014). Experimental Pain Responses Support Peripheral 

and Central Sensitization in Patients With Unilateral Shoulder Pain. The Clinical Journal of Pain, 30(2), 143–151. 

https://doi.org/10.1097/AJP.0b013e318287a2a4 

Cousins, M. J., & Lynch, M. E. (2011). The Declaration Montreal: Access to pain management is a fundamental human 

right. Pain, 152(12), 2673–2674. https://doi.org/10.1016/j.pain.2011.09.012 

Cowen, P. J., & Browning, M. (2015). What has serotonin to do with depression? World Psychiatry, 14(2), 158–160. 

https://doi.org/10.1002/wps.20229 

Croft, P., Blyth, F., & van der Windt, D. (2010). The global occurrence of chronic pain: an introduction. In P. Croft, F. 

Blyth, & D. van der Windt (Eds.), Chronic Pain Epidemiology from Aetiology to Public Health (pp. 9–18). 

Oxford: Oxford University Press. 

Croft, P. R., Papageorgiou, A. C., Ferry, S., Thomas, E., Jayson, M. I., & Silman, A. J. (1995). Psychologic distress and 

low back pain. Evidence from a prospective study in the general population. Spine, 20(24), 2731–2737. Retrieved 

from http://www.ncbi.nlm.nih.gov/pubmed/8747252 

Crombez, G., Viane, I., Eccleston, C., Devulder, J., & Goubert, L. (2013). Attention to pain and fear of pain in patients 

with chronic pain. Journal of Behavioral Medicine, 36(4), 371–378. https://doi.org/10.1007/s10865-012-9433-1 

Cruz-Almeida, Y., & Fillingim, R. B. (2014). Can Quantitative Sensory Testing Move Us Closer to Mechanism-Based 

Pain Management? Pain Medicine, 15(1), 61–72. https://doi.org/10.1111/pme.12230 

Cruz-Fuentes, C., Blas, C., Gonzalez, L., Camarena, B., & Nicolini, H. (2004). Severity of obsessive-compulsive 

symptoms is related to self-directedness character trait in obsessive-compulsive disorder. CNS Spectrums, 9(8), 

607–612. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/15273653 

Cui, M., Feng, Y., Adoo, D. J. M. C., Willis, W. D., McAdoo, D. J., & Willis, W. D. (1999). Periaqueductal Gray 

Stimulation-Induced Inhibition of Nociceptive Dorsal Horn Neurons in Rats is Associated With the Release of 

Norepinephrine, Serotonin, and Amino Acids. The Journal of Pharmacology and Experimental Therapeutics, 

289(2), 868–876. 

D’Mello, R., & Dickenson, A. H. (2008). Spinal cord mechanisms of pain. British Journal of Anaesthesia, 101(1), 8–16. 

https://doi.org/10.1093/bja/aen088 

Daenen, L., Nijs, J., Roussel, N., Wouters, K., Van Loo, M., & Cras, P. (2013). Dysfunctional pain inhibition in patients 

with chronic whiplash-associated disorders: An experimental study. Clinical Rheumatology, 32(1), 23–31. 

https://doi.org/10.1007/s10067-012-2085-2 

Davis, K. D. (2019). Imaging vs quantitative sensory testing to predict chronic pain treatment outcomes. PAIN, 160(5), 

S59–S65. https://doi.org/10.1097/j.pain.0000000000001479 

Davis, K. D., Flor, H., Greely, H. T., Iannetti, G. D., Mackey, S., Ploner, M., … Wager, T. D. (2017). Brain imaging tests 

for chronic pain: medical, legal and ethical issues and recommendations. Nature Reviews Neurology, 13(10), 624–

638. https://doi.org/10.1038/nrneurol.2017.122 

Davis, K. D., & Moayedi, M. (2013). Central mechanisms of pain revealed through functional and structural MRI. 

Journal of Neuroimmune Pharmacology, 8(3), 518–534. https://doi.org/10.1007/s11481-012-9386-8 

De Felice, M., Sanoja, R., Wang, R., Vera-Portocarrero, L., Oyarzo, J., King, T., … Porreca, F. (2011). Engagement of 

descending inhibition from the rostral ventromedial medulla protects against chronic neuropathic pain. Pain, 

152(12), 2701–2709. https://doi.org/10.1016/j.pain.2011.06.008 

Demyttenaere, K., Bruffaerts, R., Lee, S., Posada-Villa, J., Kovess, V., Angermeyer, M. C., … Von Korff, M. (2007). 

Mental disorders among persons with chronic back or neck pain: Results from the world mental health surveys. 



 

49 | P a g e  
 

Pain, 129(3), 332–342. https://doi.org/10.1016/j.pain.2007.01.022 

Denk, F., McMahon, S. B., & Tracey, I. (2014). Pain vulnerability: a neurobiological perspective. Nature Neuroscience, 

17(2), 192–200. https://doi.org/10.1038/nn.3628 

Derbyshire, S. W. G., Jones, A. K. P., Gyulai, F., Clark, S., Townsend, D., & Firestone, L. L. (1997). Pain processing 

during three levels of noxious stimulation produces differential patterns of central activity. Pain, 73(3), 431–445. 

https://doi.org/10.1016/S0304-3959(97)00138-3 

Diamond, S. (1964). Depressive Headaches. Headache: The Journal of Head and Face Pain, 4(3), 255–260. 

https://doi.org/10.1111/j.1526-4610.1964.hed0403255.x 

Diatchenko, L., Nackley, A. G., Slade, G. D., Fillingim, R. B., & Maixner, W. (2006). Idiopathic pain disorders - 

Pathways of vulnerability. Pain, 123(3), 226–230. https://doi.org/10.1016/j.pain.2006.04.015 

Dickenson, A. H. (2002). Gate control theory of pain stands the test of time. British Journal of Anaesthesia, 88(6), 755–

757. https://doi.org/10.1093/bja/88.6.755 

Dickenson, J., Berkman, E. T., Arch, J., & Lieberman, M. D. (2013). Neural correlates of focused attention during a brief 

mindfulness induction. Social Cognitive and Affective Neuroscience, 8(1), 40–47. 

https://doi.org/10.1093/scan/nss030 

Dieppe, P. A., & Lohmander, L. S. (2005). Pathogenesis and management of pain in osteoarthritis. The Lancet, 

365(9463), 965–973. https://doi.org/10.1016/S0140-6736(05)71086-2 

Dos Santos Pinheiro, E. S., De Queirós, F. C., Montoya, P., Santos, C. L., Do Nascimento, M. A., Ito, C. H., … Baptista, 

A. F. (2016). Electroencephalographic patterns in chronic pain: A systematic review of the literature. PLoS ONE, 

11(2), 1–26. https://doi.org/10.1371/journal.pone.0149085 

Dubin, A. E., & Patapoutian, A. (2010). Nociceptors : the sensors of the pain pathway Find the latest version : Review 

series Nociceptors : the sensors of the pain pathway. Journal of Clinical Investigation, 120(11), 3760–3772. 

https://doi.org/10.1172/JCI42843.3760 

Dunbar, R. I. M., Baron, R., Frangou, A., Pearce, E., van Leeuwen, E. J. C., Stow, J., … van Vugt, M. (2012). Social 

laughter is correlated with an elevated pain threshold. Proceedings of the Royal Society B: Biological Sciences, 

279(1731), 1161–1167. https://doi.org/10.1098/rspb.2011.1373 

Eccleston, C. (1994). Chronic pain and attention: A cognitive approach. British Journal of Clinical Psychology, 33(4), 

535–547. https://doi.org/10.1111/j.2044-8260.1994.tb01150.x 

Edwards, R. R., Dworkin, R. H., Sullivan, M. D., Turk, D. C., & Wasan, A. D. (2016). The Role of Psychosocial 

Processes in the Development and Maintenance of Chronic Pain. The Journal of Pain, 17(9), T70–T92. 

https://doi.org/10.1016/j.jpain.2016.01.001 

Eisenberger, N. I. (2003). Does Rejection Hurt? An fMRI Study of Social Exclusion. Science, 302(5643), 290–292. 

https://doi.org/10.1126/science.1089134 

Elliott, A. M., Smith, B. H., Penny, K. I., Smith, W. C., & Chambers, W. A. (1999). The epidemiology of chronic pain in 

the community. Lancet (London, England), 354(9186), 1248–1252. Retrieved from 

http://www.ncbi.nlm.nih.gov/pubmed/10520633 

Fales, C. L., Barch, D. M., Rundle, M. M., Mintun, M. A., Snyder, A. Z., Cohen, J. D., … Sheline, Y. I. (2008). Altered 

Emotional Interference Processing in Affective and Cognitive-Control Brain Circuitry in Major Depression. 

Biological Psychiatry, 63(4), 377–384. https://doi.org/10.1016/j.biopsych.2007.06.012 

Friston, K. J. (1994). Functional and effective connectivity in neuroimaging: A synthesis. Human Brain Mapping, 2(1–2), 

56–78. https://doi.org/10.1002/hbm.460020107 

Gamsa, A. (1994). The role of psychological factors in chronic pain. I. A half century of study. Pain, 57(1), 5–15. 

Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/8065796 

Gaskin, M. E., Greene, A. F., Robinson, M. E., & Geisser, M. E. (1992). Negative affect and the experience of chronic 

pain. Journal of Psychosomatic Research, 36(8), 707–713. https://doi.org/10.1016/0022-3999(92)90128-O 

Gatchel, R. J., McGeary, D. D., McGeary, C. A., & Lippe, B. (2014). Interdisciplinary chronic pain management: Past, 

present, and future. American Psychologist, 69(2), 119–130. https://doi.org/10.1037/a0035514 

Gatchel, R. J., Polatin, P. B., & Kinney, R. K. (1995). Predicting Outcome of Chronic Back Pain Using Clinical 

Predictors of Psychopathology: A Prospective Analysis. Health Psychology, 14(5), 415–420. 

https://doi.org/10.1037/0278-6133.14.5.415 

Gauriau, C., & Bernard, J. (2002). Pain pathways and parabrachial circuits in the rat. Experimental Physiology, 87(2), 

251–258. 

Goeleven, E., De Raedt, R., Baert, S., & Koster, E. H. W. (2006). Deficient inhibition of emotional information in 

depression. Journal of Affective Disorders, 93(1–3), 149–157. https://doi.org/10.1016/j.jad.2006.03.007 

Granges, G., & Littlejohn, G. (1993). Pressure pain threshold in pain‐free subjects, in patients with chronic regional pain 

syndromes, and in patients with fibromyalgia syndrome. Arthritis & Rheumatism, 36(5), 642–646. 

https://doi.org/10.1002/art.1780360510 

Granovsky, Y. (2013). Conditioned Pain Modulation: A Predictor for Development and Treatment of Neuropathic Pain. 

Current Pain and Headache Reports, 17(9), 361. https://doi.org/10.1007/s11916-013-0361-8 

Granovsky, Y., & Yarnitsky, D. (2013). Personalized Pain Medicine: The Clinical Value of Psychophysical Assessment 

of Pain Modulation Profile. Rambam Maimonides Medical Journal, 4(4), 1–8. 

https://doi.org/10.5041/RMMJ.10131 

Grant, J. A., Courtemanche, J., & Rainville, P. (2011). A non-elaborative mental stance and decoupling of executive and 

pain-related cortices predicts low pain sensitivity in Zen meditators. Pain, 152(1), 150–156. 

https://doi.org/10.1016/j.pain.2010.10.006 

Grant, J. A., & Rainville, P. (2009). Pain sensitivity and analgesic effects of mindful states in zen meditators: A cross-

sectional study. Psychosomatic Medicine, 71(1), 106–114. https://doi.org/10.1097/PSY.0b013e31818f52ee 

Greicius, M. D., Krasnow, B., Reiss, A. L., & Menon, V. (2003). Functional connectivity in the resting brain: a network 

analysis of the default mode hypothesis. Proceedings of the National Academy of Sciences, 100(1), 253–258. 



 

50 | P a g e  
 

https://doi.org/10.1073/pnas.0135058100 

Hadjipavlou, G., Dunckley, P., Behrens, T. E., & Tracey, I. (2006). Determining anatomical connectivities between 

cortical and brainstem pain processing regions in humans: A diffusion tensor imaging study in healthy controls. 

Pain, 123(1–2), 169–178. https://doi.org/10.1016/j.pain.2006.02.027 

Hamelsky, S. W., & Lipton, R. B. (2006). Psychiatric comorbidity of migraine. Headache, 46(9), 1327–1333. 

https://doi.org/10.1111/j.1526-4610.2006.00576.x 

Hashmi, J. A., Baliki, M. N., Huang, L., Baria, A. T., Torbey, S., Hermann, K. M., … Apkarian, A. V. (2013). Shape 

shifting pain: chronification of back pain shifts brain representation from nociceptive to emotional circuits. Brain, 

136(9), 2751–2768. https://doi.org/10.1093/brain/awt211 

Heinricher, M. M., Tavares, I., Leith, J. L., & Lumb, B. M. (2009). Descending control of nociception: Specificity, 

recruitment and plasticity. Brain Research Reviews, 60(1), 214–225. 

https://doi.org/10.1016/j.brainresrev.2008.12.009 

Helmstetter, F. J., Tershner, S. A., Poore, L. H., & Bellgowan, P. S. F. (1998). Antinociception following opioid 

stimulation of the basolateral amygdala is expressed through the periaqueductal gray and rostral ventromedial 

medulla. Brain Research, 779(1–2), 104–118. https://doi.org/10.1016/S0006-8993(97)01104-9 

Holloway, I., Sofaer, B., & Walker, J. (2016). The Transition from Well Person to “Pain Afflicted” Patient: The Career of 

People with Chronic Back Pain. Illness, Crisis & Loss, 8(4), 373–387. 

https://doi.org/10.1177/105413730000800403 

Iannetti, G. D., & Mouraux, A. (2010). From the neuromatrix to the pain matrix (and back). Experimental Brain 

Research, 205(1), 1–12. https://doi.org/10.1007/s00221-010-2340-1 

Jarvik, J. G., Hollingworth, W., Heagerty, P. J., Haynor, D. R., Boyko, E. J., & Deyo, R. A. (2005). Three-year incidence 

of low back pain in an initially asymptomatic cohort: Clinical and imaging risk factors. Spine, 30(13), 1541–1548. 

https://doi.org/10.1097/01.brs.0000167536.60002.87 

Kabat-Zinn, J. (1982). An outpatient program in behavioral medicine for chronic pain patients based on the practice of 

mindfulness meditation: Theoretical considerations and preliminary results. General Hospital Psychiatry. 

https://doi.org/10.1016/0163-8343(82)90026-3 

Karl, J. F. (1994). Functional and effective connectivity in neuroimaging: A synthesis. Human Brain Mapping, 2(1–2), 

56–78. Retrieved from http://dx.doi.org/10.1002/hbm.460020107 

Katz, J., & Rosenbloom, B. N. (2015). The golden anniversary of Melzack and Wall’s gate control theory of pain: 

Celebrating 50 years of pain research and management. Pain Research and Management, 20(6), 285–286. 

https://doi.org/10.1155/2015/865487 

Kessler, R. C., Berglund, P., Demler, O., Jin, R., Koretz, D., Merikangas, K. R., … National Comorbidity Survey 

Replication. (2003). The epidemiology of major depressive disorder: results from the National Comorbidity 

Survey Replication (NCS-R). JAMA, 289(23), 3095–3105. https://doi.org/10.1001/jama.289.23.3095 

Khan, R. S., Ahmed, K., Blakeway, E., Skapinakis, P., Nihoyannopoulos, L., MacLeod, K., … Athanasiou, T. (2011). 

Catastrophizing: A predictive factor for postoperative pain. American Journal of Surgery, 201(1), 122–131. 

https://doi.org/10.1016/j.amjsurg.2010.02.007 

Koster, E. H. W., De Raedt, R., Goeleven, E., Franck, E., & Crombez, G. (2005). Mood-congruent attentional bias in 

dysphoria: Maintained attention to and impaired disengagement from negative information. Emotion, 5(4), 446–

455. https://doi.org/10.1037/1528-3542.5.4.446 

Krames, E. S., & Olson, K. (1997). Clinical realities and economic considerations: Patient selection in intrathecal 

therapy. Journal of Pain and Symptom Management, 14(3), S3–S13. https://doi.org/10.1016/S0885-

3924(97)00166-8 

Kucyi, A, Salomons, T. V, & Davis, K. D. (2013). Mind wandering away from pain dynamically engages antinociceptive 

and default mode brain networks. PNAS, 110(46), 18692–18697. https://doi.org/10.1073/pnas.1312902110 

Kucyi, Aaron, & Davis, K. D. (2015). The dynamic pain connectome. Trends in Neurosciences, 38(2), 86–95. 

https://doi.org/10.1016/j.tins.2014.11.006 

Kucyi, Aaron, Salomons, T. V., & Davis, K. D. (2016). Cognitive behavioral training reverses the effect of pain exposure 

on brain network activity. Pain, 157(9), 1895–1904. https://doi.org/10.1097/j.pain.0000000000000592 

Latremoliere, A., & Woolf, C. J. (2009). Central Sensitization: A Generator of Pain Hypersensitivity by Central Neural 

Plasticity. The Journal of Pain, 10(9), 895–926. https://doi.org/10.1016/j.jpain.2009.06.012 

Le Bars, D., Dickenson, A. H., & Besson, J. M. (1979). Diffuse noxious inhibitory controls. I. Effects on dorsal horn 

convergent neurons in the rat. II. Lack of effect on nonconvergent neurons, supraspinal involvement and 

theoretical implications. Pain, 6(3), 305–327. https://doi.org/10.1016/0304-3959(79)90049-6 

Legrain, V., Iannetti, G. D., Plaghki, L., & Mouraux, A. (2011). The pain matrix reloaded: A salience detection system 

for the body. Progress in Neurobiology, 93(1), 111–124. https://doi.org/10.1016/j.pneurobio.2010.10.005 

Leiser, S. C., Dunlop, J., Bowlby, M. R., & Devilbiss, D. M. (2011). Aligning strategies for using EEG as a surrogate 

biomarker: A review of preclinical and clinical research. Biochemical Pharmacology, 81(12), 1408–1421. 

https://doi.org/10.1016/j.bcp.2010.10.002 

Lesse, S. (1968). The multivariant masks of depression. The American Journal of Psychiatry, 124(11), 35–40. 

https://doi.org/10.1176/ajp.124.11S.35 

Lewis, G. N., Heales, L., Rice, D. A., Rome, K., & McNair, P. J. (2012). Reliability of the conditioned pain modulation 

paradigm to assess endogenous inhibitory pain pathways. Pain Research and Management, 17(2), 98–102. 

https://doi.org/10.1155/2012/610561 

Lewis, G. N., Rice, D. A., & McNair, P. J. (2012). Conditioned pain modulation in populations with chronic pain: A 

systematic review and meta-analysis. Journal of Pain. https://doi.org/10.1016/j.jpain.2012.07.005 

Li, J., Zhang, J. H., Yi, T., Tang, W. J., Wang, S. W., & Dong, J. C. (2014). Acupuncture treatment of chronic low back 

pain reverses an abnormal brain default mode network in correlation with clinical pain relief. Acupuncture in 

Medicine : Journal of the British Medical Acupuncture Society, 32(2), 102–108. https://doi.org/10.1136/acupmed-



 

51 | P a g e  
 

2013-010423 

Linton, S. J. (2000). A review of psychological risk factors in back and neck pain. Spine, 25(9), 1148–1156. 

https://doi.org/10.1097/00007632-200005010-00017 

Loggia, M. L., Kim, J., Gollub, R. L., Vangel, M. G., Kirsch, I., Kong, J., … Napadow, V. (2013). Default mode network 

connectivity encodes clinical pain: An arterial spin labeling study. Pain, 154(1), 24–33. 

https://doi.org/10.1016/j.pain.2012.07.029 

Lohman, D., Schleifer, R., & Amon, J. J. (2010). Access to pain treatment as a human right. BMC Medicine, 8. 

https://doi.org/10.1186/1741-7015-8-8 

Lovell, G. (1995). The Diagnosis of Chronic Groin Pain in Athletes: A review of 189 cases. The Australian Journal of 

Science and Medicine in Sport, 27(3), 76–79. 

Lynch, M. E., Campbell, F. A., Clark, A. J., Dunbar, M. J., Goldstein, D., Peng, P., … Tupper, H. (2007). Waiting for 

Treatment for Chronic Pain – a Survey of Existing Benchmarks: Toward Establishing Evidence-Based 

Benchmarks for Medically Acceptable Waiting Times. Pain Research and Management, 12(4), 245–248. 

https://doi.org/10.1155/2007/891951 

Lynch, M. E., Campbell, F., Clark, A. J., Dunbar, M. J., Goldstein, D., Peng, P., … Tupper, H. (2008). A systematic 

review of the effect of waiting for treatment for chronic pain. Pain, 136(1), 97–116. 

https://doi.org/10.1016/j.pain.2007.06.018 

Mackey, I. G., Dixon, E. A., Johnson, K., & Kong, J.-T. (2017). Dynamic Quantitative Sensory Testing to Characterize 

Central Pain Processing. Journal of Visualized Experiments, (120), 1–9. https://doi.org/10.3791/54452 

Magni, G., Caldieron, C., Rigatti-Luchini, S., & Merskey, H. (1990). Chronic musculoskeletal pain and depressive 

symptoms in the general population. An analysis of the 1st National Health and Nutrition Examination Survey 

data. Pain, 43(3), 299–307. https://doi.org/10.1016/0304-3959(90)90027-B 

Maher, C., Underwood, M., & Buchbinder, R. (2017). Non-specific low back pain. The Lancet, 389(10070), 736–747. 

https://doi.org/10.1016/S0140-6736(16)30970-9 

Maracle, E. C., Hung, L. Y., Fell, S. I., Osmond, M. R., Brown, S. H. M., & Srbely, J. Z. (2017). A Comparison of the 

Sensitivity of Brush Allodynia and Semmes–Weinstein Monofilament Testing in the Detection of Allodynia 

Within Regions of Secondary Hyperalgesia in Humans. Pain Practice, 17(1), 16–24. 

https://doi.org/10.1111/papr.12418 

Marcuzzi, A., Wrigley, P. J., Dean, C. M., Adams, R., & Hush, J. M. (2017). The long-term reliability of static and 

dynamic quantitative sensory testing in healthy individuals. Pain, 158(7), 1217–1223. 

https://doi.org/10.1097/j.pain.0000000000000901 

Masson, E. A., & Boulton, A. J. M. (1991). The Neurometer: Validation and Comparison with Conventional Tests for 

Diabetic Neuropathy. Diabetic Medicine, 8(S2), S63–S66. https://doi.org/10.1111/j.1464-5491.1991.tb02159.x 

May, A. (2009). New insights into headache: An update on functional and structural imaging findings. Nature Reviews 

Neurology, 5(4), 199–209. https://doi.org/10.1038/nrneurol.2009.28 

McCracken, L. M. (1997). “Attention” to pain in persons with chronic pain: A behavioral approach. Behavior Therapy, 

28(2), 271–284. https://doi.org/10.1016/S0005-7894(97)80047-0 

McGhie, J., & Grady, K. (2016). Where now for UK chronic pain management services? British Journal of Anaesthesia, 

116(2), 159–162. https://doi.org/10.1093/bja/aev447 

McGhie, Jon. (2014). Faculty of Pain Medicine: Workforce Update. Transmitter, 10–11. 

McWilliams, L. A., Cox, B. J., & Enns, M. W. (2003). Mood and anxiety disorders associated with chronic pain: an 

examination in a nationally representative sample. Pain, 106(1), 127–133. https://doi.org/10.1016/S0304-

3959(03)00301-4 

Melzack, R., & Wall, P. (1965). Pain Mechanism: A new Theory. Science. https://doi.org/10.1126/science.150.3699.971 

Mendell, L. M. (1966). Physiological Properties Projection of the Unmyelinated Spinal Fiber to spinal cord. 

Experimental Neurology, 16, 316–332. 

Mendell, L. M. (2014). Constructing and deconstructing the gate theory of pain. Pain, 155(2), 210–216. 

https://doi.org/10.1016/j.pain.2013.12.010 

Merskey, H., Addison, R. G., Beric, A., Blumberg, H., Bogduk, N., Boivie, J., … Watson, C. P. N. (2002). Classification 

of chronic pain: Descriptions of chronic pain syndromes and definitions of pain terms. Second edition. (H. 

Merskey & N. Bogduk, Eds.), IASP Press (Second). Seattle, WA: IASP Press. Retrieved from http://www.iasp-

pain.org/files/Content/ContentFolders/Publications2/FreeBooks/Classification-of-Chronic-Pain.pdf 

Micó, J. A., Ardid, D., Berrocoso, E., & Eschalier, A. (2006). Antidepressants and pain. Trends in Pharmacological 

Sciences, 27(7), 348–354. https://doi.org/10.1016/j.tips.2006.05.004 

Millan, M. J. (2002). Descending control of pain. Progress in Neurobiology, 66(6), 355–474. 

https://doi.org/10.1016/S0301-0082(02)00009-6 

Mirowsky, J., & Ross, C. E. (2002). Measurement for a human science. Journal of Health and Social Behavior, 43(2), 

152–170. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/12096697 

Mlekusch, S., Neziri, A. Y., Limacher, A., Juni, P., Arendt-Nielsen, L., & Curatolo, M. (2016). Conditioned pain 

modulation in patients with acute and chronic low back pain. Clinical Journal of Pain, 32(2), 116–121. 

https://doi.org/10.1097/AJP.0000000000000238 

Moret, C., & Briley, M. (2011). The importance of norepinephrine in depression. Neuropsychiatric Disease and 

Treatment, 7(Suppl 1), 9. https://doi.org/10.2147/NDT.S19619 

Moulin, D. E., Clark, A. J., Speechley, M., & Morley-Forster, P. K. (2002). Chronic pain in Canada--prevalence, 

treatment, impact and the role of opioid analgesia. Pain Research & Management, 7(4), 179–184. Retrieved from 

http://www.embase.com/search/results?subaction=viewrecord&from=export&id=L36215849 

Mouraux, A., Diukova, A., Lee, M. C., Wise, R. G., & Iannetti, G. D. (2011). A multisensory investigation of the 

functional significance of the “pain matrix.” NeuroImage, 54(3), 2237–2249. 

https://doi.org/10.1016/j.neuroimage.2010.09.084 



 

52 | P a g e  
 

Mun, C. J., Okun, M. A., & Karoly, P. (2014). Trait mindfulness and catastrophizing as mediators of the association 

between pain severity and pain-related impairment. Personality and Individual Differences, 66, 68–73. 

https://doi.org/10.1016/j.paid.2014.03.016 

Napadow, V., LaCount, L., Park, K., As-Sanie, S., Clauw, D. J., & Harris, R. E. (2010). Intrinsic brain connectivity in 

fibromyalgia is associated with chronic pain intensity. Arthritis and Rheumatism, 62(8), 2545–2555. 

https://doi.org/10.1002/art.27497 

Nardone, R., Höller, Y., Brigo, F., Orioli, A., Tezzon, F., Schwenker, K., … Trinka, E. (2015). Descending motor 

pathways and cortical physiology after spinal cord injury assessed by transcranial magnetic stimulation: a 

systematic review. Brain Research, 1619, 139–154. https://doi.org/10.1016/j.brainres.2014.09.036 

Naylor, B., Boag, S., & Gustin, S. M. (2017). New evidence for a pain personality? A critical review of the last 120 years 

of pain and personality. Scandinavian Journal of Pain, 17, 58–67. https://doi.org/10.1016/j.sjpain.2017.07.011 

Nisbett, R. E., & Schachter, S. (1966). Cognitive manipulation of pain. Journal of Experimental Social Psychology, 2(3), 

227–236. https://doi.org/10.1016/0022-1031(66)90081-3 

Omelchenko, N., & Sesack, S. R. (2009). Periaqueductal gray afferents synapse onto dopamine and GABA neurons in 

the rat ventral tegmental area. Journal of Neuroscience Research, 88(5), NA-NA. 

https://doi.org/10.1002/jnr.22265 

Osborn, M., & Smith, J. A. (1998). The personal experience of chronic benign lower back pain: An interpretative 

phenomenological analysis. British Journal of Health Psychology, 3(1), 65–83. https://doi.org/10.1111/j.2044-

8287.1998.tb00556.x 

Ossipov, M. H., Dussor, G. O., & Porreca, F. (2010). Central modulation of pain. Journal of Clinical Investigation, 

120(11), 3779–3787. https://doi.org/10.1172/JCI43766 

Penttinen, J. (1995). Back Pain and Risk of Suicide among Finnish Farmers. American Journal of Public Health, 85(10), 

1452–1453. 

Peyron, R., Laurent, B., & Garcia-Larrea, L. (2000). Functional imaging of brain responses to pain. Neurophysiologie 

Clinique = Clinical Neurophysiology, 30(5), 263–288. Retrieved from papers://40c68295-5659-4035-8dff-

71162e06882b/Paper/p420 

Pincus, T., Burton, A. K., Vogel, S., & Field, A. P. (2002). A Systematic Review of Psychological Factors as Predictors 

of Chronicity/Disability in Prospective Cohorts of Low Back Pain. Spine, 27(5), E109–E120. 

https://doi.org/10.1097/00007632-200203010-00017 

Ploner, M., & May, E. S. (2018). EEG and MEG in pain research – Current state and future perspectives. Pain, 159, 206–

2011. https://doi.org/10.1097/j.pain.0000000000001087 

Ponirakis, G., Odriozola, M. N., Odriozola, S., Petropoulos, I. N., Azmi, S., Ferdousi, M., … Malik, R. A. (2016). 

NerveCheck for the Detection of Sensory Loss and Neuropathic Pain in Diabetes. Diabetes Technology & 

Therapeutics, 18(12), 800–805. https://doi.org/10.1089/dia.2016.0279 

Porreca, F., Ossipov, M. H., & Gebhart, G. . (2002). Chronic pain and medullary descending facilitation. Trends in 

Neurosciences, 25(6), 319–325. https://doi.org/10.1016/S0166-2236(02)02157-4 

Potvin, S., & Marchand, S. (2016). Pain facilitation and pain inhibition during conditioned pain modulation in 

fibromyalgia and in healthy controls. Pain, 157(8), 1704–1710. https://doi.org/10.1097/j.pain.0000000000000573 

Price, D. D. (2000). Psychological and Neural Mechanisms of the Affective Dimension of Pain. Science, 288(5472), 

1769–1772. https://doi.org/10.1126/science.288.5472.1769 

Purves, D., Augustine, G. J., Fitzpatrick, D., Katz, Lawrence, C., LaMantia, A.-S., McNamara, J. O., & Williams, M. S. 

(2001). Neuroscience. Sunderland, MA: Sinauer Associates. 

Ren K, & Dubner R. (2002). Descending modulation in persistent pain: an update. Pain, 100, 1–6. 

Rey, R. (1998). The History of Pain. (J. Cadden & S. W. Cadden, Eds.). Boston: Harvard University Press. 

Reynolds, D. . (1969). Surgery in the Rat during Electrical Analgesia Induced by Focal Brain Stimulation. Science, 

164(3878), 444–445. 

Rocca, M. A., Valsasina, P., Absinta, M., Colombo, B., Barcella, V., Falini, A., … Filippi, M. (2010). Central nervous 

system dysregulation extends beyond the pain-matrix network in cluster headache. Cephalalgia, 30(11), 1383–

1391. https://doi.org/10.1177/0333102410365164 

Rolke, R., Baron, R., Maier, C., Tölle, T. R., Treede, R. D., Beyer, A., … Wasserka, B. (2006). Quantitative sensory 

testing in the German Research Network on Neuropathic Pain (DFNS): Standardized protocol and reference 

values. Pain, 123(3), 231–243. https://doi.org/10.1016/j.pain.2006.01.041 

Salomons, T. V., Iannetti, G. D., Liang, M., & Wood, J. N. (2016). The “Pain Matrix” in Pain-Free Individuals. JAMA 

Neurology, 73(6), 755. https://doi.org/10.1001/jamaneurol.2016.0653 

Salomons, T. V, & Kucyi, A. (2011). Does Meditation Reduce Pain through a Unique Neural Mechanism? Journal of 

Neuroscience, 31(36), 12705–12707. https://doi.org/10.1523/JNEUROSCI.2843-11.2011 

Sandkühler, J. (2009). Models and Mechanisms of Hyperalgesia and Allodynia. Physiological Reviews, 89(2), 707–758. 

https://doi.org/10.1152/physrev.00025.2008 

Sayar, K., Arikan, M., & Yontem, T. (2002). Sleep Quality in Chronic Pain Patients. The Canadian Journal of 

Psychiatry, 47(9), 844–848. https://doi.org/10.1177/070674370204700905 

Schmidt-Wilcke, T., Ichesco, E., Hampson, J. P., Kairys, A., Peltier, S., Harte, S., … Harris, R. E. (2014). Resting state 

connectivity correlates with drug and placebo response in fibromyalgia patients. NeuroImage: Clinical, 6, 252–

261. https://doi.org/10.1016/j.nicl.2014.09.007 

Schneider, S., Junghaenel, D. U., Keefe, F. J., Schwartz, J. E., Stone, A. A., & Broderick, J. E. (2012). Individual 

differences in the day-to-day variability of pain, fatigue, and well-being in patients with rheumatic disease: 

Associations with psychological variables. Pain, 153(4), 813–822. https://doi.org/10.1016/j.pain.2012.01.001 

Sevcik, M. A., Jonas, B. M., Lindsay, T. H., Halvorson, K. G., Ghilardi, J. R., Kuskowski, M. A., … Mantyh, P. W. 

(2006). Endogenous Opioids Inhibit Early-Stage Pancreatic Pain in a Mouse Model of Pancreatic Cancer. 

Gastroenterology, 131(3), 900–910. https://doi.org/10.1053/j.gastro.2006.06.021 



 

53 | P a g e  
 

Sheng, J., Liu, S., Wang, Y., Cui, R., & Zhang, X. (2017). The Link between Depression and Chronic Pain: Neural 

Mechanisms in the Brain. Neural Plasticity, 2017. https://doi.org/10.1155/2017/9724371 

Sherrington, C. S. (1906). The integrative action of the nervous system. New Haven, CT: Yale University Press. 

https://doi.org/10.1037/13798-000 

Singer, T., Seymour, B., O’Doherty, J., Kaube, H., Dolan, R. ., & Frith, C. . (2004). Empathy for Pain Involves the 

Affective but not Sensory Components of Pain. Science, 303(5661), 1157–1162. 

https://doi.org/10.1126/science.1093535 

Smith, D. J., Duffy, L., Stewart, M. E., Muir, W. J., & Blackwood, D. H. R. (2005). High harm avoidance and low self-

directedness in euthymic young adults with recurrent, early-onset depression. Journal of Affective Disorders, 

87(1), 83–89. https://doi.org/10.1016/j.jad.2005.03.014 

Stahl, S. M. (2002). Does depression hurt? Journal of Clinical Psychiatry, 63(4), 273–274. 

https://doi.org/10.4088/JCP.v63n0401 

Sullivan, M J, Bishop, S., & Pivik, J. (1995). Pain Catastrophizing Scale. Psychological Assessment, 7, 524–532. 

https://doi.org/10.1037/t01304-000 

Sullivan, M J, Reesor, K., Mikail, S., & Fisher, R. (1992). The treatment of depression in chronic low back pain: review 

and recommendations. Pain, 50(1), 5–13. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/1387469 

Sullivan, Michael J., Thorn, B., Haythornthwaite, J. A., Keefe, F., Martin, M., Bradley, L. A., & Lefebvre, J. C. (2001). 

Theoretical perspectives on the relation between catastrophizing and pain. Clinical Journal of Pain, 17(1), 52–64. 

https://doi.org/10.1097/00002508-200103000-00008 

Tagliazucchi, E., Balenzuela, P., Fraiman, D., & Chialvo, D. R. (2010). Brain resting state is disrupted in chronic back 

pain patients. Neuroscience Letters, 485(1), 26–31. https://doi.org/10.1016/j.neulet.2010.08.053 

Tétreault, P., Mansour, A., Vachon-Presseau, E., Schnitzer, T. J., Apkarian, A. V., & Baliki, M. N. (2016). Brain 

Connectivity Predicts Placebo Response across Chronic Pain Clinical Trials. PLoS Biology, 14(10), 1–22. 

https://doi.org/10.1371/journal.pbio.1002570 

Theunissen, M., Peters, M. L., Bruce, J., Gramke, H. F., & Marcus, M. A. (2012). Preoperative anxiety and 

catastrophizing: A systematic review and meta-analysis of the association with chronic postsurgical pain. Clinical 

Journal of Pain, 28(9), 819–841. https://doi.org/10.1097/AJP.0b013e31824549d6 

Thibault, P., Loisel, P., Durand, M. J., Catchlove, R., & Sullivan, M. J. L. (2008). Psychological predictors of pain 

expression and activity intolerance in chronic pain patients. Pain, 139(1), 47–54. 

https://doi.org/10.1016/j.pain.2008.02.029 

Thomas, E., Mottram, S., Peat, G., Wilkie, R., & Croft, P. (2007). The effect of age on the onset of pain interference in a 

general population of older adults: Prospective findings from the North Staffordshire Osteoarthritis Project 

(NorStOP). Pain, 129(1–2), 21–27. https://doi.org/10.1016/j.pain.2006.09.027 

Toye, F., & Barker, K. (2010). “Could i be imagining this?” - The dialectic struggles of people with persistent 

unexplained back pain. Disability and Rehabilitation, 32(21), 1722–1732. 

https://doi.org/10.3109/09638281003657857 

Tracey, I., & Bushnell, M. C. (2009). How Neuroimaging Studies Have Challenged Us to Rethink: Is Chronic Pain a 

Disease? Journal of Pain, 10(11), 1113–1120. https://doi.org/10.1016/j.jpain.2009.09.001 

Tracey, I., & Mantyh, P. W. (2007). The Cerebral Signature for Pain Perception and Its Modulation. Neuron, 55(3), 377–

391. https://doi.org/10.1016/j.neuron.2007.07.012 

Tracey, W. D. (2017). Nociception. Current Biology, 27(4), R129–R133. https://doi.org/10.1016/j.cub.2017.01.037 

Treede, R.-D., Rief, W., Barke, A., Aziz, Q., Bennett, M. I., Benoliel, R., … Wang, S.-J. (2015). A classification of 

chronic pain for ICD-11. PAIN, 156(6), 1. https://doi.org/10.1097/j.pain.0000000000000160 

Tsou, K., & Jang, C. S. (1964). Studies on the site of analgesic action of morphine by intracerebral microinjection. 

Scientia Sinica, 13, 1099–1109. 

Tu, F. F., As-Sanie, S., & Steege, J. F. (2005). Musculoskeletal causes of chronic pelvic pain: A systematic review of 

existing therapies: Part II. Obstetrical and Gynecological Survey, 60(7), 474–483. Retrieved from 

http://ovidsp.ovid.com/ovidweb.cgi?T=JS&CSC=Y&NEWS=N&PAGE=fulltext&D=emed10&AN=40934877%0

Ahttp://gw2jh3xr2c.search.serialssolutions.com?url_ver=Z39.88-

2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rfr_id=info:sid/Ovid:emed10&rft.genre=article&rft_id=info: 

Tuke, D. (1884). Illustrations of the Influence of the Mind upon the Body in Health and Disease. Designed to elucidate 

the action of the imagination (2nd Ed). Philadelphia: Henry C. Lea Son & Co. 

Turk, D. C., Wilson, H. D., & Cahana, A. (2011). Treatment of chronic non-cancer pain. The Lancet, 377(9784), 2226–

2235. https://doi.org/10.1016/S0140-6736(11)60402-9 

Turner, J. A., Anderson, M. L., Balderson, B. H., Cook, A. J., Sherman, K. J., & Cherkin, D. C. (2016). Mindfulness-

based stress reduction and cognitive behavioral therapy for chronic low back pain. Pain, 157(11), 2434–2444. 

https://doi.org/10.1097/j.pain.0000000000000635 

Turner, J. A., Jensen, M. P., Warms, C. A., & Cardenas, D. D. (2002). Catastrophizing is associated with pain intensity , 

psychological distress , and pain-related disability among individuals with chronic pain after spinal cord injury. 

Pain, 98, 127–134. 

U.S. Bureau of the Census. (1998). Population Profile of the United States: 1997. Current Population Reports. 

Washington. 

Valeriani, M., Betti, V., Le Pera, D., De Armas, L., Miliucci, R., Restuccia, D., … Aglioti, S. M. (2008). Seeing the pain 

of others while being in pain: A laser-evoked potentials study. NeuroImage, 40(3), 1419–1428. 

https://doi.org/10.1016/j.neuroimage.2007.12.056 

van Hecke, O., Torrance, N., & Smith, B. H. (2013). Chronic pain epidemiology and its clinical relevance. British 

Journal of Anaesthesia, 111(1), 13–18. https://doi.org/10.1093/bja/aet123 

Vasquez, E., & Vanegas, H. (2000). The antinociceptive effect of PAG-microinjected dipyrone in rats is mediated by 

endogenous opioids of the rostral ventromedial medulla. Brain Research, 854(1–2), 249–252. 



 

54 | P a g e  
 

https://doi.org/10.1016/S0006-8993(99)02303-3 

Wachleski, C., Salum, G. A., Blaya, C., Kipper, L., Paludo, A., Salgado, A. P., & Manfro, G. G. (2008). Harm avoidance 

and self-directedness as essential features of panic disorder patients. Comprehensive Psychiatry, 49(5), 476–481. 

https://doi.org/10.1016/j.comppsych.2008.03.003 

Wade, J. B., Dougherty, L. M., Hart, R. P., & Cook, D. B. (1992). Patterns of normal personality structure among chronic 

pain patients. Pain, 48(1), 37–43. https://doi.org/10.1016/0304-3959(92)90129-Y 

Wager, T. D., Atlas, L. Y., Lindquist, M. A., Roy, M., Woo, C.-W., & Kross, E. (2013). An fMRI-Based Neurologic 

Signature of Physical Pain. New England Journal of Medicine, 368(15), 1388–1397. 

https://doi.org/10.1056/nejmoa1204471 

Walker, J., Holloway, I., & Sofaer, B. (1999). In the system: The lived experience of chronic back pain from the 

perspectives of those seeking help from pain clinics. Pain, 80(3), 621–628. https://doi.org/10.1016/S0304-

3959(98)00254-1 

Waters, A. J., & Lumb, B. M. (1997). Inhibitory effects evoked from both the lateral and ventrolateral periaqueductal 

grey are selective for the nociceptive responses of rat dorsal horn neurones. Brain Research, 752(1–2), 239–249. 

Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/9106463 

Weissman-Fogel, I., Moayedi, M., Tenenbaum, H. C., Goldberg, M. B., Freeman, B. V., & Davis, K. D. (2011). 

Abnormal cortical activity in patients with temporomandibular disorder evoked by cognitive and emotional tasks. 

Pain, 152(2), 384–396. https://doi.org/10.1016/j.pain.2010.10.046 

Westlund, K. N., & Willis Jnr, W. D. (2012). Pain System. In J. K. Mai & G. Paxinos (Eds.), The Human Nervous System 

(Third Edition) (pp. 1144–1186). Academic Press. 

White, S., & Seibold, C. (2008). Walk a mile in my shoes: An auto-ethnographic study. Contemporary Nurse, 30(1), 57–

68. https://doi.org/10.5172/conu.673.30.1.57 

Wilder-Smith, C. H., & Robert-Yap, J. (2007). Abnormal endogenous pain modulation and somatic and visceral 

hypersensitivity in female patients with irritable bowel syndrome. World Journal of Gastroenterology, 13(27), 

3699–3704. https://doi.org/10.3748/wjg.v13.i27.3699 

Wilkerson, R. G., Kim, H. K., Windsor, T. A., & Mareiniss, D. P. (2016). The Opioid Epidemic in the United States. 

Emergency Medicine Clinics of North America, 34(2), e1–e23. https://doi.org/10.1016/j.emc.2015.11.002 

Williams, A. C. D. C. (2016). What can evolutionary theory tell us about chronic pain? PAIN, 157(4), 788–790. 

https://doi.org/10.1097/j.pain.0000000000000464 

Willis, W. D., Zhang, X., Honda, C. N., & Giesler, G. J. (2001). Projections from the marginal zone and deep dorsal horn 

to the ventrobasal nuclei of the primate thalamus. Pain, 92(1–2), 267–276. https://doi.org/10.1016/S0304-

3959(01)00268-8 

Woolf, C J, & Wall, P. D. (1986). Relative effectiveness of C primary afferent fibers of different origins in evoking a 

prolonged facilitation of the flexor reflex in the rat. The Journal of Neuroscience, 6(5), 1433–1442. Retrieved from 

http://www.ncbi.nlm.nih.gov/pubmed/3711988 

Woolf, Clifford J. (1984). Long term alterations in the excitability of the flexion reflex produced by peripheral tissue 

injury in the chronic decerebrate rat. Pain, 18(4), 325–343. https://doi.org/10.1016/0304-3959(84)90045-9 

Woolf, Clifford J. (2004). Dissecting out mechanisms responsible for peripheral neuropathic pain: Implications for 

diagnosis and therapy. Life Sciences, 74(21), 2605–2610. https://doi.org/10.1016/j.lfs.2004.01.003 

Woolf, Clifford J., & Ma, Q. (2007). Nociceptors-Noxious Stimulus Detectors. Neuron, 55(3), 353–364. 

https://doi.org/10.1016/j.neuron.2007.07.016 

Woolf, Clifford J. (1983). Evidence for a central component of post-injury pain hypersensitivity. Nature, 306, 686–688. 

Woolf, Clifford J, & Salter, M. W. (2000). Neuronal plasticity: increasing the gain in pain. Science (New York, N.Y.), 

288(5472), 1765–1769. Retrieved from http://www.sciencemag.org/cgi/content/abstract/288/5472/1765 

Xie, Y. F., Huo, F. Q., & Tang, J. S. (2009). Cerebral cortex modulation of pain. Acta Pharmacologica Sinica, 30(1), 31–

41. https://doi.org/10.1038/aps.2008.14 

Yang, M. M. H., Hartley, R. L., Leung, A. A., Ronksley, P. E., Jetté, N., Casha, S., & Riva-Cambrin, J. (2019). 

Preoperative predictors of poor acute postoperative pain control: A systematic review and meta-analysis. BMJ 

Open, 9(4). https://doi.org/10.1136/bmjopen-2018-025091 

Yarnitsky, D., Crispel, Y., Eisenberg, E., Granovsky, Y., Ben-Nun, A., Sprecher, E., … Granot, M. (2008). Prediction of 

chronic post-operative pain: Pre-operative DNIC testing identifies patients at risk. Pain, 138(1), 22–28. 

https://doi.org/10.1016/j.pain.2007.10.033 

Yarnitsky, D., Granot, M., & Granovsky, Y. (2014). Pain modulation profile and pain therapy: Between pro- and 

antinociception. Pain, 155(4), 663–665. https://doi.org/10.1016/j.pain.2013.11.005 

Yarnitsky, D., Granot, M., Nahman-Averbuch, H., Khamaisi, M., & Granovsky, Y. (2012). Conditioned pain modulation 

predicts duloxetine efficacy in painful diabetic neuropathy. Pain, 153(6), 1193–1198. 

https://doi.org/10.1016/j.pain.2012.02.021 

Yeung, J., Yaksh, T., & Rudy, T. (1977). Concurrent mapping of brain sites for sensitivity to the direct application of 

morphine and focal electrical stimulation in the production of antinociception in the rat. Pain, 4(1), 23–40. 

Yu, R., Gollub, R. L., Spaeth, R., Napadow, V., Wasan, A., & Kong, J. (2014). Disrupted functional connectivity of the 

periaqueductal gray in chronic low back pain. NeuroImage: Clinical, 6, 100–108. 

https://doi.org/10.1016/j.nicl.2014.08.019 

Zaghi, S., Thiele, B., Pimentel, D., Pimentel, T., & Fregni, F. (2011). Assessment and treatment of pain with non-

invasive cortical stimulation. Restorative Neurology and Neuroscience, 29(6), 439–451. 

https://doi.org/10.3233/RNN-2011-0615 

Zeidan, F., Gordon, N. S., Merchant, J., & Goolkasian, P. (2010). The Effects of Brief Mindfulness Meditation Training 

on Experimentally Induced Pain. Journal of Pain, 11(3), 199–209. https://doi.org/10.1016/j.jpain.2009.07.015 

Zeidan, F., Grant, J. A., Brown, C. A., McHaffie, J. G., & Coghill, R. C. (2012). Mindfulness meditation-related pain 

relief: Evidence for unique brain mechanisms in the regulation of pain. Neuroscience Letters, 520(2), 165–173. 



 

55 | P a g e  
 

https://doi.org/10.1016/j.neulet.2012.03.082 

Ziegler, D., Mayer, P., & Gries, F. A. (1988). Evaluation of thermal, pain, and vibration sensation thresholds in newly 

diagnosed type 1 diabetic patients. Journal of Neurology, Neurosurgery & Psychiatry, 51(11), 1420–1424. 

https://doi.org/10.1136/jnnp.51.11.1420 

 

  



 

56 | P a g e  
 

Chapter 2. Evaluating the clinical assessment of pain during hysteroscopy and 

the implications for the administration of local anaesthetic 

 

  



 

57 | P a g e  
 

Evaluating the clinical assessment of pain during hysteroscopy and the 

implications for the administration of local anaesthetic 

 

 

 

Richard Harrison1, Bill Kuteesa2, Atul Kapila2, Deepak Ravindran2, Mark Little2, Wiebke 

Gandhi1, Tim V. Salomons1,3*, 

 

 

1. University of Reading, School of Psychology and Clinical Language Sciences, Reading, 

UK 

2. Royal Berkshire NHS Foundation Trust, Reading, UK. 

3. Queen’s University, Department of Psychology, Kingston, ON, Canada 

*Corresponding Author 

 

 

24 pages; 2 figures, 2 tables 

 

 

 

 

 

 

Disclosures 

• Richard Harrison’s studentship is funded by a joint UK National Health Service-University 

of Reading CASE studentship.  

• Tim Salomons was funded by a Marie Curie International Incoming Fellowship and a British 

Academy/Leverhulme Small Grant. 

• Wiebke Gandhi is funded by a Leverhulme Early Career Fellowship. 

• The authors have no conflict of interest to declare. 



 

58 | P a g e  
 

2.1 Abstract 

Hysteroscopy is a diagnostic medical procedure used to inspect for pathological conditions in the 

uterine cavity. Multiple sources in the UK describe this procedure as usually being associated with 

no pain, although this description is being challenge by public campaigns and ex-patients who 

suggest that hysteroscopy can be intensely painful. To determine whether this procedure can elicit 

such intense pain, we evaluated surgical data from 804 hysteroscopy patients. We primarily 

focused on patient’s retrospective ratings of intraoperative pain. We also compared these ratings to 

the clinician’s estimates of patient pain, and to the dosage of anaesthetic applied. This was 

especially relevant as the administration of analgesia is currently based solely upon clinical 

judgement. We also investigated how the experience of pain may be associated with the patient’s 

evaluation of their expectations for the comfort of the surgery. It was found that hysteroscopy is 

associated with a wide range of pain intensities (Mrating= 3.97, s.d. =2.45), with only a small subset 

of patients experiencing no pain at all (7.8%). On average, most patients found their comfort to 

match their expectations, although higher pain experienced during the procedure was associated 

with a negative evaluation of the procedure regarding their expectations (R2(20)= .32, p<.0001). 

Interestingly, clinician estimates were inversely correlated with patient pain ratings (rs(714)= -.525, 

p<.0001). Regarding anaesthetic dose, patients who received the highest dose of analgesia 

described the most pain. However, clinicians viewed these patients as being in the least pain, 

potentially indicating an overestimation of the efficacy of the analgesia. These findings indicate 

that hysteroscopy should be described as potentially causing intense pain in a subset of patients and 

methods of pain assessment could be applied to test whether it aids clinician judgement for 

prescribing intraoperative pain relief.   
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2.2. Introduction 

Hysteroscopy is a medical procedure used to inspect for pathological conditions within the uterine 

cavity. This procedure utilises endoscopy which involves the insertion of a hysteroscope, into the 

cervix. The hysteroscope contains optical fibres which allow the operator to examine the inner 

uterine cavity and can also be fitted with operational tools such as electrical loops for operative 

hysteroscopy when required. Hysteroscopy is a common medical procedure, often used to 

investigate symptoms such as abnormal bleeding in relation to periods, pelvic pain or difficulty in 

getting pregnant or to formally diagnose fibroids or polyps. Traditionally, hysteroscopy required 

the use of general anaesthetic as part of an in-patient care service, although modern hysteroscope 

design can now facilitate the use of local anaesthetic and an outpatient pathway. There are many 

advantages associated with this development, including dramatically decreased completion times, 

no adverse patient symptoms due to general anaesthetic, lower clinical costs & reduced resource 

utilisation (beds/nursing etc) (Anderson, Walls, & Canelo, 2017; Bajaj, Sethi, Carr, & Knight, 

2009; Darwin & Chung, 2013; Marsh, Rogerson, & Duffy, 2006). It’s been estimated that within a 

similar medical procedure, uterine polyp treatment, the transition from in-patient to outpatient 

pathway could save £9421 per patient (Clark et al., 2015). However, while the pursuit of a 

streamlined medical service is a crucial requirement for a modern nationalised health service, 

maintaining high patient satisfaction should continue to remain a high priority.  

 

Within hysteroscopy, the main patient concern of outpatient admission is the risk of pain and 

discomfort (Marsh et al., 2006), while this risk is obviously abolished via sedation. The amount of 

pain that occurs in the absence of general anaesthesia, however, is more contentious. Numerous 

services advertise the procedure as being either pain-free or low pain (Tylko-Hill, 2018), with the 

clinic identified in this study only advertising the potential for “discomfort and occasional period-

like pains during the test” (Appendix C). However, subsets of patients sometimes report 

experiencing intense or unpleasant pain as a result of the procedure, with one clinic reporting that 

17% of patients aborting the procedure due to intolerable pain (Tylko-Hill, 2018). In instances of 
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severe pain, local anaesthetic can be administered, but this does not always guarantee effective pain 

management (Meechan, 2017). There are multiple medical complications that can potentially cause 

pain, including uterine perforation or excessive insufflation leading to risk of serious complications 

via distension. However, instances of complications occurring during hysteroscopy are reportedly 

low (0.13%), thus not sufficiently explaining all instances of painful hysteroscopies (Jansen et al., 

2000), especially when it has since been reported that up to 25% of women undergoing 

hysteroscopy across Britain report severe pain (Tylko-Hill, 2018). Clinically, there are methods 

available to manage and reduce this pain, however due to the reputation of hysteroscopy being a 

routine procedure, pain management is often not considered to be an area of influence or 

importance. Preceding 2013, NHS Choices described a hysteroscopy by indicating that “it should 

not hurt” and that “woman may want to take a pain killer, such as ibuprofen, beforehand”. 

Likewise, a national audit identified multiple institutions providing patient leaflets wherein the 

risks of severe pain are minimally address or absent (Tylko-Hill, 2018). 

 

In 2013, a Parliamentary initiative helped instigate a campaign to “End barbaric NHS 

hysteroscopies with inadequate pain relief” (Falkner & Tylko, 2019), with a variety of targets 

including: 1) All hysteroscopists must have advanced training in pain medicine, 2) Improved 

communication & information pre-surgically, listing full risks & benefits breakdown, 3) Patients 

may choose from a range of analgesic options from none, up to general anaesthetic. These changes 

focus on improving pain management and address pre-surgical knowledge & expectation, which 

are likely to improve the operative experience for the patient. However, it is still unclear why such 

a disconnect exists between the clinical view of hysteroscopy as a low-pain procedure, and the 

reports of frequent severe pain being reported by patients. It is possible that, for some, 

hysteroscopy is a routine and painless procedure, whilst for others it is one that can elicit severe 

pain. This may represent a disconnect between how the patient and clinician views the painfulness 

of the procedure or, alternatively, these perspectives may be congruent and it is simply an 

inaccurate description being provided via the patient-informatics services, via leaflets or websites, 

outside of the scope of the direct clinical team. Additionally, in line with the parliamentary 
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initiative, one critical area may be within the strategies of intraoperative pain management, and 

whether we are appropriately targeting this towards the patients that are likely to be vulnerable to 

severe pain.  

 

Therefore, this study will evaluate hysteroscopy outcome data from the Royal Berkshire Hospital’s 

obstetrics & gynaecology department to better understand the experience of pain across all patients 

who undergo this procedure. Currently, within routine treatment decisions about analgesia dose are 

made based upon the clinical judgement of the consultant performing the hysteroscopy. Therefore, 

we will aim to evaluate the strategy for analgesia administration and examine the strategy for pain 

management regarding the patient’s experience of pain and the clinician’s perception of this pain. 

This is the first known study of its kind to use a large sample with both patient and clinician ratings 

of accounts of the hysteroscopy to empirically investigate this issue. Secondarily, we will also 

investigate how the pain of the operation influenced patients’ interpretation of the procedure and 

whether the comfort of the hysteroscopy ultimately matched their expectations. Regarding this, we 

hypothesise that those patients who experienced a pain-free or low-pain hysteroscopy will consider 

their expectations matched or surpassed, whereas the experience of pain would be detrimental to 

patient’s perspectives on hysteroscopy. 

  

2.3. Methods 

2.3.1. Participants 

Between 2009 and 2017, data was recorded from 804 hysteroscopy patients (Mage= 51.8 years, 

s.d.=12.17) within the obstetrics and gynaecological department at the Royal Berkshire Hospital.  

2.3.2. Materials 

Data collection consisted of two separate questionnaires and verbal pain reports from patients. The 

first questionnaire was a post-operative clinical report including demographics, findings of the 
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hysteroscopy, any complications encountered during the procedure and how many ampules of 

anaesthetic was administered (0-3 ampules) (Appendix A). This questionnaire also recorded the 

clinician’s estimate of the intensity of pain experienced during the procedure. This item was record 

on a 5-point descriptive scale (none; discomfort; mild; moderate; severe). The second questionnaire 

was completed post-operatively by the patient and consisted of 11-items asking them about their 

satisfaction with the procedure, such as whether the comfort of the procedure was better or worse 

than they expected or whether their experience was better or worse than their previous 

hysteroscopy (Appendix B). The patient also verbally reported the level of pain experienced during 

surgery, between 0-10, retrospectively after the hysteroscopy, with 0 representing no pain, and 10 

corresponding to the most severe pain they have ever experienced.  

2.3.3. Rating Procedure 

Pain ratings for, both, patients and clinicians were recorded retrospectively after the hysteroscopy. 

Clinicians ratings were provided immediately after the conclusion of the procedure, on a 

standardised clinical form (Appendix A). This rating was recorded by circling one entry on a 5-

item scale, from none to severe. After the procedure, the patient returned to the waiting room, and 

was shown a 10-point Likert scale and verbally asked to indicate their level of pain while the 

hysteroscopy was being performed. Both the patient and clinician remained blinded to the other’s 

rating. After the patient’s pain rating has been recorded, a satisfaction questionnaire (Appendix B) 

was then completed by the patient, to conclude data collection. 

2.3.4. Hysteroscopy Procedure 

The medical procedure for each patient consisted of a diagnostic hysteroscopy administered as part 

of an outpatient procedure without the use of general anaesthetic. During the procedure, patients 

could be administered up to 3 ampules (units) of anaesthetic (a combinative dose of 3% citanest & 

octapressin) if pain behaviour was observed by the clinician that indicated the presence of pain. 

During the diagnostic hysteroscopy, the clinician would indicate any instances of abnormal 

pathology, presence of polyps or scarring. A subset of patients underwent an endometrial biopsy 

whereby a sample of endometrial tissue would be collected via pipelle (a thin straw-like device 
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which uses suction to extract a tissue sample). After the completion of the biopsy, the patient was 

then dressed and returned to a waiting room. During this time, the clinician completed their clinical 

report, while the patient completed their post-procedure questionnaire and verbally recollected how 

much pain was experienced during surgery.  

2.3.5. Data Analysis 

For the purpose of addressing the research questions, analysis was restricted to the responses to 

four variables; Clinician’s retrospective rating of patient pain during the procedure (0-5), patient’s 

retrospective rating of their own pain during the procedure (0-10), number of ampules of 

anaesthetic applied intra-surgically (0-3 ampules) and whether the comfort of the procedure was 

better or worse than expected (better/same/worse). To firstly examine the distribution of patient’s 

expectations of comfort reported after the procedure, a chi-square goodness of fit was calculated, 

with comfort experience as a test statistic across three levels (as expected/better than 

expected/worse than expected). To understand whether pain experienced during the procedure may 

predict patient’s post-surgical evaluation of whether the procedure met their expectations in terms 

of comfort, a multinomial logistic regression model was created with patient’s  retrospective pain 

rating as a predictor variable and whether the level of comfort experience during surgery was 

better, same or worse than expected as the outcome variable. To investigate the validity of clinician 

pain estimates, correlations were completed between these estimates and the patients pain ratings 

using Spearman’s rank-order correlation coefficient. Lastly, to investigate how pain assessment is 

associated with analgesia administration, correlations were also completed between clinician pain 

estimates, patient pain ratings and analgesia dose using spearman’s rank-order correlation 

coefficient. Spearman’s rank, as a non-parametric statistical test, was used due to its specialisation 

for ranked ordinal data, and the absence of a pattern of normal distribution in the raw data.  
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2.4. Results 

2.4.1. Patient Expectations & Pain Intensity 

On average, patients retrospectively reported their comfort during the hysteroscopy to be as 

expected (n=190), as opposed to better (n=174) or worse (n=117) and the distribution of responses 

was found to be significantly different to an equal distribution (χ2(2)= 18.37, p=.001), indicating 

that more patients found comfort to be better or equal to their expectations than we would expect 

by chance. To investigate how a patient’s perceived comfort was influenced by pain, their pain 

ratings were used to predict their evaluated comfort expectations. It was found that patient’s 

retrospective pain ratings significantly predicted whether the comfort of the procedure met their 

expectations (R2(20)= .32, p=.000103)1, with higher pain ratings representing a greater likelihood 

that the patient viewed the comfort during the hysteroscopy to be worse than they had expected. 

2.4.2. Pain Assessment & Analgesia Administration 

The average retrospective pain rating recorded from patients during their hysteroscopy was 3.97 

(s.d.= 2.45; median= 4) on an 11-point scale, with 17.6% of patients reporting a 7 or higher on the 

pain scale (n=126) and only 7.8% being pain-free (n=64). The clinician’s retrospective estimate of 

the patients pain during surgery was 3.92 (s.d.= 1.00; median= 4), their ratings were considered 

within a 5-point scale, representing that doctors perceived higher levels of pain in patients than the 

patients had reported. By way of comparison, patients rated their pain as 36% of the maximum 

intensity of pain, whereas clinician ratings equate to 78.4%.   

 

Table 1a: Distribution of clinician pain rating estimates during hysteroscopy, with 1 representing 

no pain and 5 severe pain  

 
1 Due to the use of multinomial logistic regression, the effect size used was Nagelkerke Pseudo-R2 representing a Cox and 

Snell R2 value, adjusted for categorical data. 

 1 2 3 4 5 

Number of 

responses 

20 64 83 343 211 
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Table 1b: Distribution of patient pain ratings during hysteroscopy, with 0 representing no pain 

and 10 most severe pain they’ve experienced.  

 

As reflected via standard deviation, the variation in mean clinician ratings was low with a large 

proportion of the ratings being provided for the top two ratings (table 1a), as opposed to patient 

ratings (table 1b). Patient retrospective pain ratings were negatively correlated with the clinician’s 

retrospective estimates of patient’s pain (rs(714)= -.525, p<.001), indicating that patients who 

reported experiencing more pain during the hysteroscopy were estimated to be in less pain by 

clinicians (Figure 1).  

 

Figure 1: Association between patient’s pain ratings and the estimated rating of the patient’s pain 

provided by the clinician that completed the hysteroscopy. Stacked bars indicate the proportion of 

clinician ratings for each unit of patient ratings. 

 

 

Clinicians retrospective estimates of the overall pain patients experienced during surgery was 

negatively correlated with anaesthetic dose (rs(678)= -.213, p<.001. This indicates that patients 

who received more ampules of anaesthetic during surgery were perceived by clinicians as having 

experienced less pain during hysteroscopy (Figure 2). However, patient pain ratings were positively 
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correlated with anaesthetic dose (rs(673)= .110, p=.007), representing the opposite, that patients 

who received more ampules of anaesthetic during surgery retrospectively reported having 

experienced high levels of pain during surgery. Regarding the dispersion of anaesthetic dose, the 

majority of patients received no anaesthetic (n=328; 40.8%), 235 patients received 1 dose (29.2%), 

150 patients received 2 doses (18.7%) and only 14 patients received a maximum dose of 3 ampules 

(1.7%). 

 

 

Figure 2: Estimated clinician pain ratings associated with number of ampules of anaesthetic 

applied intrasurgically. Stacked bars indicate the proportion of clinician ratings for each unit of 

administered anaesthetic. 

 

2.5. Discussion 

Hysteroscopies are a common diagnostic & interventional procedure that are now commonly 

performed as an in-patient procedure, without the need for general anaesthetic. Originally, without 

general anaesthetic, the procedure was described as eliciting low-pain, or being a pain-free 

operation. This has been challenged in recent years by governmental and grass-root campaigns, 

which suggest that, based on multiple case-studies, hysteroscopies can yield significant severity of 

pain (Tylko-Hill, 2018). This concept has been identified by clinicians within a local 
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gynaecological department who were anecdotally encountering problematic levels of acute pain 

during the procedure. To investigate this, we analysed a large sample of hysteroscopy patients who 

had undergone this procedure where patient and clinician pain ratings were recorded after the 

procedure, alongside information regarding analgesia administration and patient expectations. 

Regarding the pain experienced during hysteroscopy, we were able to confirm that, on average, 

only 7.8% of patients reported being pain-free and that clinicians estimated the pain to be, on 

average, 3.9 out of 5. Regarding these assessments, clinician ratings had less variation than 

patients’, with the majority of ratings being allocated the top two points on their rating scale and 

overall ratings were negatively correlated with their patient rating counterparts. Clinicians’ pain 

estimates were also negatively correlated with anaesthetic dose, with higher dose being associated 

with lower pain estimates. This was the inverse within patients whose ratings were positively 

correlated with anaesthetic dose. Lastly, the intensity of pain experienced during the procedure 

significantly predicted the degree to which the comfort of the hysteroscopy met patients’ 

expectations post-operatively. Patients who experienced higher pain were likely to be those who 

felt the comfort of the procedure was worse than they anticipated.  

 

Ultimately, one conclusion based on our findings is that hysteroscopy should no longer be 

described as a painless procedure or being a procedure that will elicit low pain. Within this sample, 

92.2% of patients reported experiencing pain during the procedure. Additionally, variability of pain 

ratings across patients was large with a significant subset of patients rating a 7-10 on the pain scale 

(17.6%). This suggests that more attention is needed to determine why pain may vary, and which 

patients are likely to be those that experience severe pain during hysteroscopy. In reality, a 

hysteroscopy patient will likely experience intra-operative pain, and the intensity of this pain can 

vary across patients. This provides support for recent initiatives launched to raise awareness of the 

presence of pain within hysteroscopy, who wish to provide more accurate descriptions of the 

procedure to potential patients. We also noted that when expectations of the comfort of the 

procedure were not met, this was associated with higher pain during the hysteroscopy. This could 

potentially lead to reluctance or fear to attend again in the future, which is not ideal due to the 
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diagnostic potential of the procedure, especially with conditions such as uterine cancer or 

endometriosis. Although this hypothesis would require empirical follow-up to test, providing better 

descriptions of the procedure, raising awareness of the risk of pain and improving our assessments 

to improve our pain management are all strategies raised by the implications of our results which 

can improve the conduct of hysteroscopies. Scientifically, we also know expectations to be 

intrinsically linked to the experience of pain with negative expectations facilitating the 

amplification of pain, whereas positive expectations yield a beneficial modulatory effect (Koyama, 

McHaffie, Laurienti, & Coghill, 2005; Price, 2000; Robinson, Gagnon, Riley, & Price, 2003). This 

has even been identified on a neurological level, where expectations can exert a strong influence 

upon nociceptive processing in the central nervous system and key pain processing regions in the 

brain (Atlas & Wager, 2012). This indicates that expectations should be suitably managed to 

achieve the maximal clinical outcomes for our patients. The benefits to an outpatient hysteroscopy 

procedure, without general anaesthetic, are substantial for patient and clinician alike. However, 

ensuring that we effectively manage the pain of the operation and maximise the comfort of 

hysteroscopy patients is an essential requirement in the pursuit of quality duty of care.  

 

As proposed by the campaign to “End barbaric NHS hysteroscopies with inadequate pain relief” 

(Falkner & Tylko, 2019), the strategies behind pain management are a key target to reduce the 

instances of intensely painful hysteroscopy. We were interested in whether pain assessment is a 

suitable starting point for improving clinical pain management. Interestingly, regarding effective 

assessment of pain, patients’ retrospective ratings of pain during surgery were negatively correlated 

with clinicians’ retrospective estimates of patient pain during surgery. This suggests that the 

patients who were experiencing higher levels of pain, were being viewed as being in less pain than 

they were. This finding could have special significance due to the administration of local 

anaesthesia within this clinic being calculated based on clinical judgement and this result could be 

interpreted that those patients who are in greatest need of analgesia may not have been receiving it. 

Intuitively, clinicians within this study reported that as the dose of anaesthetic increased, the 

patient’s pain was managed, and their ratings were estimated to decrease, whereas in fact, patients 
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who received the more analgesia reported higher ratings of pain. However, this interpretation 

represents the worst-case scenario for the implications of pain management and may be better 

explained by examining methodological weaknesses in the design. The instructions given when 

collecting pain ratings from clinicians and patients were vague and asked to “indicate the level of 

pain experienced during the hysteroscopy”. To be able to clarify on this in the future, more 

consideration should be given to the specificity of the rating instructions and asking everyone to 

rate the “peak” pain experienced during the procedure could reduce the influence of anaesthetic of 

the clinician’s judgement 

 

Ultimately, it was found that patients who rated higher pain were given more ampules of 

anaesthetic, and these patients were rated as being in less pain by their clinicians. If the clinicians 

believed that the anaesthetic was sufficiently managing their patient’s pain, they would intuitively 

lower their pain ratings for these patients, which could explain this deviance in results. It is worth 

noting, however, that in this instance the patients who received more anaesthetic were still 

experiencing pain, and the clinicians may have been incorrectly overestimating the effectiveness of 

the pain management. This overestimation of analgesia efficacy could be a key weakness in 

hysteroscopy pain management. Clinician decision making towards analgesia is a burgeoning area 

for research, especially considering the opioid epidemic in North America (Wilkerson, Kim, 

Windsor, & Mareiniss, 2016). As clinical decisions often require quick, reflexive reactions, they 

likely rely upon heuristics, and as such, examining biases can be informative when understanding 

intraoperative pain management (Klein, 2005). It’s previously been reported that clinicians can be 

predisposed to overinflated beliefs of their own clinical skills, which can lead to pain assessment 

being more focused on their own beliefs, rather than patient statements (Lander, 1990) and can also 

be erroneously confident regarding the effectiveness of their pain management (Larue, Colleau, 

Fontaine, & Brasseur, 1995; Weis, Sriwatanakul, Alloza, Weintraub, & Lasagna, 1983). 
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Additionally, a recent Cochrane review into analgesic pain relief during hysteroscopy reported that, 

while local anaesthetic does reduce pain scores during the procedure, these changes are minimal 

and unlikely to be clinically meaningful (Ahmad et al., 2017). This may help explain why patients 

who received the highest dose of analgesia were associated with lower clinician pain estimates, due 

to overestimates of the efficacy of anaesthetic, whilst reporting higher pain intensity themselves, 

due to minimal analgesic relief. One prevalent explanation for poor pain management is a 

deficiency in clinical pain education (Green, Wheeler, & LaPorte, 2003), which is especially 

relevant as British medical doctorates lack a pain education specialism (“Specialities,” 2018) and 

the lack of suitable curricula being identified as a barrier to effective pain treatment in the United 

States (Darnall et al., 2016). 

 

One of the more surprising findings to emerge from the data was the inverse relationship between 

patient ratings & clinician pain estimates. One explanation for this statistical result is that while 

patients demonstrated a wide variety of pain reports, clinicians’ estimates were biased towards 

higher pain estimates with 68.9% of reports being restricted to the highest two points on the pain 

scale. As such, this lack of variability could have led to the emergence of specific incongruence 

between low pain patients, and high clinician estimates, which may facilitate a negative correlation. 

As the basis of analgesia administration is primarily founded upon clinical judgement, the inverse 

relationship between clinician and patients views on pain may facilitate inaccuracies within the 

prescription of local anaesthetic. These results may indicate that patients who experience low pain 

intensity during their procedure may be administered unnecessary analgesia, as they are estimated 

to be in more pain than they actually are. The lack of specificity in clinician estimates could also 

mean that a subset of patients experiencing severe pain are not being appropriately tagged as such, 

as may be receiving insufficient pain management. This assertion is supported by findings that, 

while clinicians estimated that patients who receive higher doses of analgesia were in less pain, this 

was not replicated in the patient’s own pain ratings, with those who received high doses of 

analgesia experiencing worse pain. Given that only 1.7% of patients received the maximum dose of 

anaesthetic, it is possible that patients who received two ampules of anaesthetic, in particular, could 
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have been experiencing severe pain, but were not estimated as such by the clinicians, and therefore 

did not receive an extra dose of analgesia. 

 

Assessment is one of the most challenging obstacles in pain management. The global body for 

pain, International Association for the Study of Pain (IASP) have multidimensional pain 

assessment as being one of the key factors to substantially improve pain treatment worldwide 

(Merskey et al., 2002). Clinical assessment of pain in others is known to be extremely challenging. 

It has been proposed that accurate pain assessment is dependent on multi-dimensional evaluation, 

including psychological, cognitive and social measures (Manias, Botti, & Bucknall, 2002) and 

should be validated within the patient-sample that are being assessed (Breivik et al., 2008). For 

example, it has been found that supplementing paracetamol with codeine provides no additional 

benefit to those undergoing c-section for those with low acute pain at baseline but does provide 

additional relief for patients with severe baseline pain (Bjune, Stubhaug, Dodgson, & Breivik, 

1996). Although it would require empirical follow-up, this could indicate that pre-operative pain 

ratings (before the insertion of a hysteroscope) may be a useful variable in the consideration of 

analgesia administration. Fundamentally however, these results alongside the background literature 

do illustrate the complex challenge that is facing medical professionals when trying to manage pain 

in the midst of an operation, and supplementing the clinician estimates of pain with auxiliary 

assessment items is a suitable approach for improving pain management within a procedure likely 

to be associated with acute pain.  

 

One approach which could benefit patient & clinician alike is to improve the quality of pre-surgical 

assessments to identify these patients before a hysteroscope is picked up. As an example, within 

our dataset we found that within the subset of patients who received the highest dose of analgesia, 

pain ratings were highly varied. This high variance may be a product of the relatively low sample 

size within this subset, which could in turn be related to the erroneous view of hysteroscopy being a 

minimally painful procedure, whereby as a result, few patients were given the highest dose at all 



 

72 | P a g e  
 

(n=14). Clearly however, within this sub-group of patients there were a wide range of pain 

experiences. This could indicate that some of these patients were experiencing the full benefit of 

the anaesthetic dose, while others were not receiving pain relief. In this instance, identifying the 

patients that will not respond to this method of pain management beforehand could increase the 

clinician’s specificity of analgesia use and stratify the patient sample into those whose pain is better 

managed pharmacologically, and those who may require alternative pain management strategies. It 

has been previously shown that quantitative sensory testing is one such assessment strategy that 

could be applied towards predictive pain management. Conditioned pain modulation (CPM) is a 

psychophysical assessment that is seen as a proxy for effective inhibitory brain mechanisms 

(Yarnitsky et al., 2008) and represents the degree to which the brain can utilise circuitry associated 

with modulating pain. Interestingly, CPM has previously been shown to be able to predict the 

efficacy of analgesia within individuals (Edwards et al., 2016; Yarnitsky, Granot, Nahman-

Averbuch, Khamaisi, & Granovsky, 2012). Therefore, the application of CPM before hysteroscopy 

could help stratify responders and non-responders to intra-surgical analgesia. Whether this 

assessment tool would be a better predictor of analgesia response than clinical judgement is a valid 

empirical question worth addressing. However, this strategy to bolster the limited pre-surgical 

assessment currently in place would provide us with a better impression of who these patients are 

and could help guide the intra-surgical assessments made by the clinician. 

 

As well as psychophysics, another method to improve the current clinical assessment strategy is 

psychometrics. Within this sample, psychological concepts were limited to a post-surgical 

satisfaction questionnaire and were further limited to investigating how their pre-surgical 

expectations were met after the surgery have concluded. While this is essential for reviewing the 

quality of care delivered and identifying areas where satisfaction was low, it provides little benefit 

to the clinician pre-surgically and enhancing their perspective on how their patient is likely to fare. 

A large proportion of the literature available focuses on predicting chronic post-surgical pain 

(CPSP), rather than intra-surgical pain, often due to the utilisation of general anaesthetic. 

Therefore, although these studies have identified that depression, catastrophisation, psychological 
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distress, sleep quality, expectations, or anxiety (Bruce et al., 2014; Gandhi, Davey, & Mahomed, 

2009; Khan et al., 2011; Mamie, 2004; Theunissen, Peters, Bruce, Gramke, & Marcus, 2012) are 

predictors of CPSP, we cannot be certain that these would also predict sensitivity to pain during an 

operation. If the development of CPSP and the emergence of intense pain during hysteroscopy 

emerge as a product of a similar intrinsic quality (e.g. the ability to modulate pain), then we may 

expect these psychological variables to be equally predictive of both clinical problems. If so, it can 

be postulated that they would also benefit pre-surgical assessments to predict pain processing 

during the procedure itself. Support for this approach comes from findings that certain pre-surgical 

predictors seem to be consistent across surgical models and may be quantifying aspects of pain 

processing mechanisms which are utilised regardless of a specific medical approach (Masselin-

Dubois et al., 2013). As with psychophysics, by incorporating psychometrics into our assessment 

battery, we may provide our clinicians with a better perspective on their patients, which may be 

able to improve the accuracy of their intuitions and help provide guidance when making judgments 

of analgesia administration. 

 

In summary, these findings provide useful insight towards the experience of pain during 

hysteroscopies. The data also provides support for campaigns aimed at raising awareness of pain 

within this procedure, with 17.6% of patients reporting a 7 or higher for pain during the procedure 

and only 7.8% reporting no pain at all. This means that, on average, patients are likely to 

experience pain during their procedure, and the descriptions provided to our patients should reflect 

this. These findings also suggest that the pain is likely to be variable across patients, with some 

experiencing more severe pain than others. Alongside this perspective, we also identified an 

inverse relationship between patient pain ratings and clinician estimates of the same pain. 

Considered together, this represents a serious challenge inherent within the assessment of pain. The 

clinical pain assessment of hysteroscopy is currently not best equipped to be able to assist our 

clinicians in making accurate estimates of pain, and as such, the prescription of intra-operative 

anaesthetic, which is currently calibrated based solely on their judgement. We propose that via the 

application of psychometric & psychophysical assessment, we may be able to identify pre-surgical 
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predictive markers for individual differences in pain sensitivity, although this is yet to be 

empirically tested within hysteroscopy and would require follow-up investigation. Transitioning 

hysteroscopy from an inpatient admittance procedure to outpatient is a beneficial medical 

development for clinicians and patients alike. However, ensuring that we are sufficiently managing 

pain within hysteroscopy is a crucial step in being able to facilitate this transition. Fortifying our 

current clinical assessments to stratify patients into those who are likely to remain pain-free, and 

those at risk of severe pain, may be one such strategy in being able to meet this step.  
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2.7. Appendices 

2.7.1. Appendix A: Post-surgical Clinician Hysteroscopy Report 

OPD Hysteroscopy Proforma 

 

 

 Patient ID sticker      Date: 

        Hysteroscopist:  

        Grade: 

        Referral source:  

Age:    LMP:    Consent obtained: Y / N 

    

P/Complaint:  PMB  IMB Heavy P.      Irreg P.    Lost IUD Cx Smear: …... -ve / +ve 
Fertility Ix      Sterilisation request    

     

Past Rx. for this complaint:     PMHx: 

      

PGHx:       Parity:   No. of C/S 

 

 

Misoprostol/Cervigem Oral/vaginal  Dose: ..…… When given: ..……  Mins. 

 

HRT/Contracept:     BMI:     

 

Hormone duration:      Drugs: 

 

USS findings:    

 

EE: …….. mm 

 

Hysterosc. procedure:    Hysterosc./Exam findings: 

Bx type: …………………………………… 

 

F/Up:         GP   GOPD Uni clin. OPH       Other ……………… 

 

 

Indication for OPH, DSU, or GOPD F/up   …………………………………….. 

 

Recommendations: 
       

Adverse events:          

       

 

(page 2) OPD Hysteroscopy Proforma 

         Cx Smear score 

Venesection score 
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Dr’s Pain 

Assessment: None   Discomfort    Mild pain      Moderate pain       Severe pain 

 

 

Coding:  Diagnostic    Therapeutic    Mirena inserted    Obese /Co-morbid:…….. 

 

 

Detailed Findings: 

 

Uterus: Size:  Position:  Adnexae: 

 

 

Cervix:  Normal Stenosed  Polyp  Suspicious lesion 

 

 

Pre-OPH:  Ibuprofen?  Paracetamol?  When taken?............Hours ago 

 

 

Anaesthetic:  No/Yes  Octapressin   .….Ampules 

 

 

Dilate Cx:  No/Yes  Hagar……    Difficult/easy       Vaginoscopy 

 

View:  Good / Unsatisfactory: (Reason)……………………………………………… 

 

 

Instruments used: Pipelle  Scissors   Vulsellum  Bx forceps  Diathermy  

   

Other: ………………………………………..……………. 

 

 

Complications:      None  Bleeding         Vasovagal      Perforation    False passage   

  

Other: ……..……………………………………………………. 

 

 

Procedure stopped:   Cx stenosis Bleeding        Pain         Complication   

Other: ……..…………………………………………………….. 
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2.7.2. Appendix B: Post-surgical Patient Satisfaction Questionnaire 

RBH/WBCH Satisfaction Questionnaire 

Your Post code …….. ……..      Date ……………… 

 

1. If necessary, would you have hysteroscopy in outpatients again? 

    Yes definitely  Yes probably  No definitely  Not sure 

 

2. Was the comfort during hysteroscopy more or less than you expected? 

     More comfortable   Less comfortable  The same as I expected 

 

3. Were you satisfied with the overall experience during the hysteroscopy? 

    Very satisfied             Satisfied    Unsatisfied   Very unsatisfied 

 

Is there anything about the hysteroscopy appointment you did not like? (please list) 

1………………………………………………………………………………. 

2………………………………………………………………………………. 

3………………………………………………………………………………. 

 

4. Would you recommend this hysteroscopy procedure to a friend or relative? 

     Yes definitely Yes probably  No definitely   Not sure 

 

5. Were you anxious / nervous about the hysteroscopy before you came today? 

    Very nervous  Slightly nervous  Not nervous 

 

6. If you were anxious / nervous about hysteroscopy what were your worries? 

1………………………………………………………………………………. 

2………………………………………………………………………………. 

3………………………………………………………………………………. 

 

7. Have you had a hysteroscopy under general anaesthetic (while asleep) or in outpatients 

(awake) before today? 

    Never before  General anaesthetic     Outpatients  Cant remember 

 

8. If you had a hysteroscopy with a general anaesthetic before, how does your experience 

compare with today’s hysteroscopy? Today’s hysteroscopy was….. 

    Better  About the same       Worse  Can’t remember 

 

9. If today’s hysteroscopy was better or worse than your previous hysteroscopy please 

explain why below. 

………………………………………………………………………………. 

………………………………………………………………………………. 

 

10. Did the written hysteroscopy information you received before today make you feel 

anxious, nervous or scared? 

Very anxious    Slightly anxious    Not at all    Did not receive leaflet    Did not read it  

 

Were you given the chance to ask any questions during your hysteroscopy appointment? 

Yes    No         Too nervous to ask questions   I had no questions  
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2.7.3. Appendix C: Royal Berkshire Hospital Daycase Hysteroscopy Information Leaflet  
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3.1. Abstract 

Mindfulness-based training reduces pain in clinical and experimental settings. Evidence suggests 

these beneficial effects are facilitated via increased focus on the present moment, and reduced 

emotional enhancement of pain. The majority of the existing literature has focused on mindfulness 

as a learned skill, and on the neural mechanisms that underlie the acquisition of this skill. It is 

unknown whether similar mechanisms are associated with trait mindfulness in the absence of 

training and whether these mechanisms confer the ability to cope with pain. To determine this, we 

measured trait mindfulness and pain responsivity in 40 healthy volunteers naive to mindfulness 

meditation. As a feature of interest, we targeted the default mode network (DMN); a network of 

interacting brain regions associated with processes such as introspective thought, mind-wandering 

and rumination. As extant studies have implicated the DMN, in the beneficial effects of 

mindfulness, we examined resting state connectivity of the precuneus, a core DMN node. Higher 

trait mindfulness was associated with higher pain thresholds (r=.43, p=.007) and lower pain 

catastrophising (r=-.51, p<.0001). Consistent with the neural mechanisms of trained mindfulness, 

higher trait mindfulness was associated with decreased connectivity between nodes of the DMN. It 

was also associated with increased connectivity between the DMN and somatosensory cortices. 

These findings are consistent with processes taught in formal meditation training, namely increased 

focus on sensory experience and decrease in emotional appraisal processes, indicating that 

behavioural and neurological mechanisms described in the interventional mindfulness literature 

also underlie trait mindfulness prior to any formal training.  
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3.2. Introduction 

Mindfulness training reduces pain in clinical and laboratory settings (Cherkin et al., 2016; Kabat-

Zinn, 1982; Morone et al., 2016; Reiner, Granot, Soffer, & Lipsitz, 2016; Teixeira, 2010; Zeidan et 

al., 2011). Similarly, long term meditative practice mitigates sensory (Grant, Courtemanche, 

Duerden, Duncan, & Rainville, 2010; Grant, Courtemanche, & Rainville, 2011; Grant & Rainville, 

2009) and emotional (Brown & Jones, 2013; Gard et al., 2012; Perlman, Salomons, Davidson, & 

Lutz, 2010) components of pain. Several studies have shown that mindfulness attenuates pain by 

enhancing attentional focus on the present moment and regulating associated emotional responses 

(Bishop et al., 2004; Ludwig & Kabat-Zinn, 2008; Salomons & Kucyi, 2011). A growing body of 

work documents neural activations associated with the effects of mindfulness training on pain. 

Decreases in pain following mindfulness-based training are frequently associated with greater 

activation in brain areas associated with sensory and/or salience processing (Gard et al., 2012; 

Lutz, McFarlin, Perlman, Salomons, & Davidson, 2013; Zeidan et al., 2011), alongside decreases 

in the prefrontal cortical regions linked to evaluative and/or emotional responses (Hölzel et al., 

2011; Zeidan, 2012).  

 

These neural findings suggest that mindfulness alters pain through a unique mechanism 

simultaneously involving increased attention to sensory input but reduced evaluative and negative 

affective responses (Reiner, Tibi, & Lipsitz, 2013; Salomons & Kucyi, 2011; Zeidan & Vago, 

2016). Growing evidence demonstrates that training of attentional focus is accompanied by altered 

activation in areas related to cognitive control and, in particular, brain networks supporting self-

referential processing, such as the default mode network (DMN) (Creswell et al., 2016; Kucyi & 

Davis, 2014; Zeidan, 2012; Zeidan et al., 2011). Trained mindfulness is associated with decreased 

activation across DMN nodes (including the medial prefrontal cortex (mPFC) and precuneus) 

following both short term (<1 month) mindfulness-based interventions (Dickenson, Berkman, 

Arch, & Lieberman, 2013; Farb et al., 2007) and long term meditative practice (Brewer et al., 2011; 

Taylor et al., 2011). These findings have been interpreted in terms of a top-down control of 
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ruminative and self-referential processes (Farb et al., 2007; Taylor et al., 2011). In particular, the 

precuneus has been repeatedly associated with the processes of self-referential processing, 

autobiographical reflection, self-centred mental imagery and rumination (Cavana & Trimble, 2006; 

Cooney et al., 2015; Lois & Wessa, 2016; Nejad, Fossati & Lemogne, 2013; Sheline, Price, Yan, & 

Mintun, 2010) and may represent the most appropriate node within the DMN for investigating trait 

mindfulness. However, while these associations have been extensively documented in studies of 

mindfulness training (Zeidan, Grant, Brown, McHaffie, & Coghill, 2012), little is known about the 

neural mechanism of untrained dispositional mindfulness and its potential role in pain reactivity. 

 

Higher dispositional mindfulness is associated with lower chronic pain severity (McCracken, 

Gauntlett-Gilbert, & Vowles, 2007; Mun, Okun, & Karoly, 2014; Petter, Chambers, McGrath, & 

Dick, 2013), lower frequency of rumination (Paul, Stanton, Greeson, Smoski, & Wang, 2013) and 

lower levels of pain catastrophising (Prins, Decuypere, & Van Damme, 2014). Determining the 

neural mechanisms that underlie these differences can provide key insight into why some 

individuals appear to be intrinsically vulnerable to pain while others seem to possess innate 

protective mechanisms.    

 

Here we investigate whether untrained trait mindfulness is associated with differential responses to 

pain stimuli prior to any meditative training, and whether these intrinsic differences reflect 

differential patterns of resting state functional connectivity. Based on previous work (Cavada, 

Compañy, Tejedor, Cruz-Rizzolo, & Reinoso-Suárez, 2000; Grant & Rainville, 2009; Perlman et 

al., 2010; Reiner et al., 2013; Zeidan, Gordon, Merchant, & Goolkasian, 2010), we hypothesize that 

individuals high in trait mindfulness will have higher pain thresholds and lower emotional 

reactivity to pain. Secondly, consistent with mindfulness training studies, higher trait mindfulness 

will be associated with lower intrinsic default mode connectivity (Brewer et al., 2011; Hasenkamp, 

Wilson-Mendenhall, Duncan, & Barsalou, 2012; Taylor et al., 2013) consistent with a reduced 

tendency towards ruminative processes (Christoff, Smallwood, Smith, Gordon, & Schooler, 2009). 
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Finally, individual differences in pain coping behaviour will be associated with higher connectivity 

between attentional and sensory/salience regions, consistent with elevated attention to the ongoing 

sensory environment.  

 

3.3. Methods 

3.3.1. Participants 

Forty healthy study volunteers were recruited from the University of Reading and screened for this 

present study. Four participants were excluded. One participant was missing questionnaire data and 

was unable to return to correct this. Two participants were excluded for excessive motion artifacts 

during resting state based on a cut-off of 2.5mm for peak movement artifacts (7mm & 10mm, 

respectively) and one participant was excluded because of insufficient scan data quality due to 

large artifacts which couldn’t be corrected and impacted on group analysis. This left a final sample 

of 36 participants (14 Female; mean age 22.83 years, SD=5.41). Participants were excluded if they 

had active or historical chronic pain disorder diagnoses, current instances of acute pain (e.g. serious 

cuts or bruises), current substance abuse or uncorrected visual impairment. All participants also 

confirmed that they had never practiced mindfulness meditation. All participants provided 

informed consent prior to the study, and the study was approved by the University of Reading’s 

University Research Ethics Committee.  

3.3.2. Materials 

3.3.2.1. Thermal Stimulation  

Noxious heat stimulation was generated by a MEDOC Pathway system (Medoc Medical Systems, 

Haifa, Israel) using a 30x30 Peltier thermode, applied to the lower right calf, which was placed into 

a customised wooden leg rest.  
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3.3.2.1. Questionnaires  

Pain catastrophising was measured using the Pain Catastrophising Scale (PCS) (Sullivan, Bishop, 

& Pivik, 1995). The scale includes 13 items scored on a 5-point Likert-Type scale (0=not at all, to 

4=all of the time). Total scores were used in this study, with higher scores indicating higher 

catastrophising (Appendix D). Trait Mindfulness was measured using the Five Facet Mindfulness 

Questionnaire (FFMQ) (Baer, Smith, Hopkins, & Toney, 2006). The scale includes 39 items scored 

on a 5-point Likert-type scale (1=never or rarely true to 5=very often or always true). Higher scores 

represent higher levels of mindfulness (Appendix E). The FFMQ is the most widely studied 

measure of trait mindfulness (Sauer et al., 2013) and possesses good psychometric properties (Baer 

et al., 2008; Bohlmeijer, ten Klooster, Fledderus, Veehof, & Baer, 2011).  

3.3.3. Design 

The current experiment is part of a larger study investigating the link between neural and 

psychophysical measures and cognitive/emotional modulation of pain, which took place over four 

sessions, counterbalanced for order of completion. Firstly, participants completed the FFMQ and 

PCS via a secure third-party website (https://www.surveymonkey.com). After this, they attended 

the first session, a psychophysical assessment, followed by a neuroimaging session that took place 

no more than seven days after the initial session. The final two sessions examined cognitive and 

emotional pain modulation tasks unrelated to this study, which are not described further.  

3.3.4. Procedure 

3.3.4.1. Pain Threshold Assessment 

We used two assessments to measure pain threshold. Both methods utilised a visual analogue scale 

(VAS) (Price, Bush, Long, & Harkins, 1994), displayed on a laminated A4 piece of paper. The 

minimum rating of 0 was described as “No pain at all” and the highest anchor of 10 was anchored 

with “most intense pain imaginable”. To investigate how mindfulness may be associated with the 

sensory experience of sensory pain, ratings for pain intensity were recorded, rather than pain 

unpleasantness, which, although tightly coupled, is reported to reflect a more emotive and affective 

rating of the pain experience (Fields, 1999). The first assessment was via method of limits, starting 



 

97 | P a g e  
 

at a 32°C baseline rising by 0.5°C /s until the participant indicated that the stimulus was painful. 

There were 4 trials with an 8s inter-stimulus interval. The average of the final 3 trials was taken as 

the limits threshold.   

In the method of levels design, stimuli were initiated at a 32°C baseline, and increased by 8°/s to a 

40°C peak, where it remained for 8s. The participant was primed to indicate on a mouse whether 

the stimulus was painful.  If they indicated “no”, the subsequent trial increased by 2°C. If they 

indicated yes, the temperature decreased at half the interval size and the same pattern continued 

until 4 reversals of direction had been reached, and which point the programme terminated. The 

average of the final two trials was used as the individual’s levels threshold. The products of each 

threshold method were highly correlated (r(37)=.786, p<.01), and the mean of the limits and levels 

threshold was used as the participant’s threshold. 

3.3.4.2. Behavioural Data Analysis  

Pearson’s correlations were used to examine associations between trait mindfulness, pain 

catastrophising and pain threshold. Significance was set at p<.05. All statistical analysis was 

completed using SPSS. To investigate the specific interaction between these three variables, an 

additional analysis was performed with pain catastrophising and threshold as independent variables 

and trait mindfulness as a dependent variable. This was used to examine the differential and 

combined variance of these variables on mindfulness, to test whether each was significantly 

predictive of trait mindfulness, or whether the effect is driven by one variable over the other. 

3.3.4.3. fMRI Acquisition  

Functional images were acquired using a 3T Siemens TRIO MRI scanner with a 32-channel head 

coil. The MRI session consisted of an initial localiser, followed by a 10-minute resting-state scan. 

Two runs of an event-related functional task (not described here) were completed, either side of a 

T1-weighted structural scan. A field map was collected as the last item within the scan protocol. 

For resting-state, participants were instructed to close their eyes and not to move. The protocol 

consisted of 30 interleaved 3.5mm sagittal T2* weighted gradient echo echo-planar imaging (EPI) 
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slices. All functional images were prepared as 4D NIFTI images (TE=28ms, TR=2000ms, flip 

angle=90°, 1mm interslice gap; 128x128 matrix, field-of-view (FOV)=240mm).  

Anatomical images were then acquired within an 8-minute T1-weighted inversion recovery fast 

gradient echo-high resolution structural scan (176 volumes, TE=2.9ms, TR=2000ms, FA= 90°, 

voxel size= 1x1x1; 256x256 matrix, FOV=250mm).  

3.3.5. fMRI Data Analysis 

3.3.5.1. ROI Selection 

The precuneus is a core DMN node and an anatomical target for examining DMN processing 

(Sheline et al., 2009; Utevsky, Smith, & Huettel, 2014). The precuneus has often been associated 

with processes such as self-referential thinking, rumination and autobiographical reflection 

(Cavana & Trimble, 2006; Cooney et al., 2015; Lois & Wessa, 2016; Nejad, Fossati & Lemogne, 

2013; Sheline, Price, Yan, & Mintun, 2010), and as such is a pertinent seed within the DMN for 

investigating trait mindfulness. A region within the precuneus cortex was selected for seed-based 

whole brain connectivity analysis (Sheline, Price, Yan, & Mintun, 2010). For the purpose of 

preparing this seed region, a 2mm sphere was projected around the co-ordinates supplied (X=-8, 

Y=-64, Z=18). As there were no hypothesised differences in relation to lateralisation, these seed 

co-ordinates were bilateralised when creating the seed. 

3.3.5.2. Pre-Processing 

Analysis was performed using the FSL analysis package (FSL Version 6.00; 

www.fmrib.ox.ac.uk/fsl), (Jenkinson, Beckmann, Behrens, Woolrich, & Smith, 2012). The Brain 

Extraction Tool (BET) (Smith, 2002) was used for skull stripping. The first 5 volumes were 

removed to allow for signal equilibration effects. An interleaved slice-timing correction was 

applied. Data was smoothed with a 5mm full-width half-maximum (FWHM) Gaussian spatial 

smoothing kernel. MCFLIRT was used for motion correction and data were visually inspected for 

motion artifacts and registration accuracy (Jenkinson, 2002). 

http://www.fmrib.ox.ac.uk/fsl
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FSL’s FAST module (Zhang, Brady, & Smith, 2001) was used to segment grey matter from white 

matter (WM) and cerebrospinal fluid (CSF). WM and CSF maps were thresholded at 0.99 to 

minimize overlapping signal from grey matter prior to time series extraction. Time series of WM 

and CSF were entered into a general linear model along with motion parameters. Residuals from 

this nuisance analysis were normalised and bandpass filtered (0.1/0.01 Hz) to reduce the influence 

of low frequency drift (inclusive of scanner drift), and high frequency interference such as cardiac 

or respiratory confounds.  

3.3.5.3. Resting State Analysis  

The mean time series of all voxels within the precuneus seed region were extracted and included as 

a regressor in a whole-brain functional connectivity analysis. Contrast images were then entered 

into a second higher level analyses in which participant’s demeaned FFMQ scores were entered as 

a regressor. This analysis examined brain regions where connectivity of the precuneus was 

significantly correlated with trait mindfulness. All fMRI analyses were corrected for multiple 

comparisons using Gaussian random field theory (Z<2.3; p<.05).  

To ensure that results were not driven by outliers, and to investigate whether connectivity patterns 

associated with trait mindfulness were also associated with pain reactivity, parameter estimates 

from regions where functional connectivity with the precuneus was significantly correlated with 

trait mindfulness were extracted using FEATQuery (Jenkinson et al., 2012), an FSL module used 

for extracting statistics, such as BOLD activity, from a given image or input. To allow for more 

anatomically specific inferences, these clusters were constrained using meta-analysis masks 

generated from the NeuroSynth database (Yarkoni, Poldrack, Nichols, Van Essen, & Wager, 2011). 

In line with our hypotheses that connectivity patterns associated with trait mindfulness would be 

consistent with a tendency to attend to sensory aspects of pain without emotional evaluation, the 

map of regions positively correlated with trait mindfulness were masked with a reverse inference 

mask of the terms “pain” and “painful”, while the map of regions negatively associated with trait 

mindfulness was masked with a mask of the terms “emotion” and “emotional”. While these masks 

are not specific to the named processes, the advantage of this approach is that it constrains findings 
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to areas known to be relevant to these processes. Although the use of these meta-analysis masks 

aided inference, results were not dependent on their use, as similar results were obtained from the 

larger unmasked clusters. 

 

3.4. Results 

3.4.1. Mindfulness and Pain 

Higher trait mindfulness was significantly associated with higher pain thresholds (r=.43, p=.004) 

and lower pain catastrophising (r= -.59, p=.0001) (Figure 1). Pain catastrophising and pain 

threshold were not significantly correlated (r= -.22, p=.103).  

 

 

 

 

 

 

 

 

 

Figure 1. Association between trait mindfulness and threshold (left) and pain catastrophizing 

scores 

 

To examine the overlap in predictive variance, we included both threshold and pain catastrophising 

in a regression model with FFMQ as dependent measure (Table 1). Whilst otherwise a predictive 

variable, this allowed the examination of relationship between catastrophising and threshold, and 

mindfulness. Pain catastrophising & threshold were significantly predictive of trait mindfulness. 

(F(2,33)= 12.96, p<0.001).  Both variables remained significantly associated with FFMQ within the 

model. 
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Table 1. Statistical output from behavioural regression model investigating the association 

between pain catastrophising and pain threshold on trait mindfulness 

3.4.2. Seed-based DMN Connectivity  

A thresholded map of precuneus functional connectivity confirmed that the precuneus ROI 

effectively probed the DMN (Figure 2). There were two significant clusters of activation where 

precuneus connectivity was positively correlated with trait mindfulness. These included the 

primary and secondary somatosensory cortices (cluster 1&2; Figure 2 & Table 2), as well as 

adjacent areas within the precuneus cluster 7).  

 

Table 2. Statistical peaks in MNI space of clusters associated with FFMQ scores 

Variable Standardised Beta 

Coefficient 

Significance Zero order 

correlations 

Partial 

correlations 

Part correlations 

Pain 

Catastrophising 

-.516 .000 -.585 -.558 -.504 

Threshold .320 .022 .432 .385 .313 

Anatomical Region Brodmann Areas Direction of 

correlation 

Max Z-Stat MNI Co-

ordinates (mm) 

X Y Z 

1. R. Parietal/ Motor/ Somatosensory 

Cortex 

BA2, BA3a, BA4, 

BA40 

Positive 4.61 32 -18 38 

2. L. Parietal/ Motor/ Somatosensory 

Cortex 

BA1, BA2, BA3a, 

BA4, BA7, BA40 

Positive 3.77 -10 -46 52 

3. L. Parietal/Somatosensory Cortex BA1, BA2, BA3a, 

BA3b, BA4, BA6 

Positive 3.28 14 -32 44 

4. Medial Prefrontal Cortex/ Perigenual 

ACC 

BA32, BA10 Negative 5.24 -2 44 6 

5. L. Superior Frontal Gyrus/Pre-motor BA6 Negative 4.13 -10 36 54 

6. R. Superior Frontal Gyrus/Pre-motor BA6 Negative 4.2 6 22 66 

7. Posterior Cingulate Cortex/Precuenus BA29 Negative 4.65 -10 -50 26 
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Figure 2. Isolated clusters (numbered in relation to clusters in table 2) in MNI space positively and 

negatively correlated with FFMQ scores (thresholded at Z> 2.3, p=.05 corrected). Also displayed 

are DMN activation (yellow) and precuneus seed region (green). Images displayed according to 

neurological orientation conventions, with slice numbers 

 

Due to the bilateral symmetry of the two positively correlated clusters, these were merged to a form 

a single bilateral cluster for the purpose of extraction. The association between trait mindfulness 

and connectivity between precuneus and somatosensory cortices (BA1, BA2, BA3) are plotted in 

Figure 3.

Figure 3. The relationship between trait mindfulness, and extracted mean time series connectivity 

values between the precuneus and somatosensory cluster 

 

There were five clusters where precuneus connectivity was negatively correlated with trait 

mindfulness, including the medial prefrontal cortex (mPFC; cluster 3), confirming our hypothesis 
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that trait mindfulness would be associated with reduced connectivity of key DMN nodes. The 

association between trait mindfulness and connectivity between these DMN nodes is plotted in 

Figure 4.  

 

 

Figure 4. The relationship between trait mindfulness scores, and extracted mean time series 

connectivity values between the precuneus and dorsal medial prefrontal cluster 

 

Connectivity between our precuneus seed and both the somatosensory (Figure 5) and prefrontal 

clusters (Figure 6) were significantly correlated with pain threshold (r=.46, p=.003; r= -.34, p=.023 

respectively) and pain catastrophising (r= .50, p=.001; r= .31, p= .034 respectively).  

 

Figure 5. The relationship between pain catastrophising and stimulus threshold, and extracted mean 

time series connectivity values between the precuneus and pain-related regions of the bilateral 

somatosensory cluster 
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Figure 6. The relationship between pain catastrophising and stimulus threshold, and extracted 

mean time series connectivity values between the precuneus and pain-related regions of the 

prefrontal cortex cluster  

 

3.5. Discussion 

Numerous studies have shown that mindfulness practice attenuates pain (Cherkin et al., 2016; 

Chiesa & Serretti, 2011; Morone et al., 2016; Reiner et al., 2013; Zeidan et al., 2011) but less is 

known about whether dispositional mindfulness confers the ability to cope with pain in the absence 

of training or explicit mindful practice. This study examined the relationship between dispositional 

mindfulness and pain reactivity, and the neural mechanisms that underlie these relationships. As 

hypothesised, trait mindfulness was associated with higher pain thresholds and lower pain 

catastrophising. These findings are similar to observations following increases in mindfulness via 

training (Kingston, Chadwick, Meron, & Skinner, 2007; Schütze, Rees, Preece, & Schütze, 2010; 

Turner et al., 2016; Zeidan et al., 2010). Mindfulness based interventions and long term 

contemplative practice are associated with increases in sensory pain thresholds (Kingston et al., 

2007; Reiner et al., 2016; Schütze et al., 2010; Zeidan et al., 2010), as well as decreases in 

maladaptive pain-related cognitions, such as pain catastrophising (Schütze et al., 2010; Turner et 

al., 2016). It is worth nothing that pain catastrophising was not significantly correlated with pain 

threshold. This surprising result may reflect the use of a controlled, experimental pain stimulus, in a 
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context where participants are reassured that the stimulus presents no threat of damage, and can be 

stopped immediately at any time.  Regardless of the explanation, the fact that trait mindfulness 

correlates with both variables even though they do not correlate with each other reinforces the 

assertion that it reflects both sensory and emotional responsivity. This is further supported by the 

regression model, where both threshold and catastrophising were significantly associated with trait 

mindfulness, even after accounting for shared variance.     

 

We also found that higher trait mindfulness was associated with stronger functional connectivity of 

a key default mode network node (precuneus) and somatosensory cortices, as well as weaker 

connectivity between the precuneus and another DMN node, the medial prefrontal cortex. Previous 

research has linked meditative practice with deactivation of these DMN nodes (Brefczynski-Lewis, 

Lutz, Schaefer, Levinson, & Davidson, 2007; Brewer et al., 2011; Farb et al., 2007; Taylor et al., 

2013). This deactivation is associated with a decreased tendency towards maladaptive cognitive 

processes like rumination and mind-wandering, where attention is drawn away from the present 

moment (Baliki, Geha, Apkarian, & Chialvo, 2008; Kucyi et al., 2014; Kucyi & Davis, 2015; 

Taylor et al., 2013). Our findings suggest that trait mindfulness might function as a marker for 

these processes, even in the absence of a previous mindfulness-based intervention or long-term 

meditative practice. Taken together with the positive correlation observed between trait 

mindfulness and functional connectivity of DMN and somatosensory cortices, these findings are 

consistent with decoupling of sensory and evaluative processes and with  characterisation of 

mindfulness as  “…a state of awareness that attends towards immediate experience and is free of 

rumination or apprehension” (Bishop et al., 2004). Therefore, this pattern of associative 

connectivity that has been identified may facilitate the processes that are inherent within the 

concept of mindfulness. The ability to decouple sensory and evaluative processes and direct your 

attentional focus more towards the tactile, present-moment experience of a noxious stimulus, rather 

than a ruminative, or overtly indirect cognitive representation of pain, may underly the beneficial 

relationship between mindfulness and pain experience.   
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To investigate whether these patterns of activation characterise pain reactivity, we tested whether 

connectivity of precuneus with regions associated with, either, sensory/salience processing and 

emotional or evaluative processes was associated with individuals’ sensory and affective pain 

responses. Consistent with sensory/affective decoupling described in interventional literature (Gard 

et al., 2012; Grant et al., 2010; Kam & Handy, 2013) we found that connectivity between the 

precuneus and both somatosensory cortices and mPFC were significantly correlated with pain 

threshold and pain catastrophising. We have previously proposed that meditative training 

influences pain perception through a unique neural mechanism, characterized by increased 

activation of  regions associated with sensory/salience-discrimination and decreased activation in 

areas involved in regions associated with affective/evaluative processing (Salomons & Kucyi, 

2011; Zeidan & Vago, 2016), consistent with increased attention to sensory aspects of pain but 

reduction in negative cognitive and affective responses. Our findings are in line with this proposed 

mechanism, but with two critical distinctions. First, we observed correlations between pain 

reactivity and resting state functional connectivity, rather than pain-evoked neural responses. 

Second, these associations were found in individuals prior to any mindfulness training. Together, 

these findings suggest that trait mindfulness might function as a marker for dispositional individual 

differences in the ability to cope with pain and that the mechanism of these individual differences is 

similar to that observed in individuals with both short- and long-term mindfulness training. It is 

important to note that independent replication is necessary to more accurately characterize the size 

and reliability of these effects. Also, the addition of a task-based design would allow us to more 

directly characterize the specific processes that these patterns of connectivity are engaging in, and 

how they contribute to the ability to cope with pain. 

 

A dispositional marker of pain reactivity, particularly one like trait mindfulness that does not rely 

on previous experience with pain (as constructs like pain catastrophising do) could have clinical 

utility. While the FFMQ does not query pain behaviour, or current mental health symptoms, our 
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findings suggest that mindfulness could provide information about how individuals cope with pain. 

As such, it could be used to identify individuals who might benefit from additional pain coping 

training in the wake of a painful event such as surgery, where poor coping can confer increased risk 

of developing chronic pain. These data do not speak to whether mindfulness training would be 

effective in such a setting, to the efficacy of mindfulness interventions more generally or to 

whether this decoupling process would apply to patients with long-term chronic pain. Instead, we 

demonstrate that even in the absence of any kind of formal mindfulness training, practice or 

intervention, trait mindfulness is associated with individual differences in pain responsivity. A 

critical area for further research is understanding the relationship between trait mindfulness and 

responsiveness to mindfulness-based interventions. Repeated increases in state mindfulness can 

lead to increased trait mindfulness (Kiken, Garland, Bluth, Palsson, & Gaylord, 2015), indicating 

that trait mindfulness is not immutable. It is less clear, however, whether high or low trait 

mindfulness is associated with optimal response to mindfulness-based interventions. Preliminary 

research indicates that participants high in trait mindfulness experience greater increases in 

mindfulness, subjective well-being and empathy in response to a mindfulness intervention, with 

larger decreases in perceived stress after a year (Shapiro, Brown, Thoresen, & Plante, 2011). The 

generalizability of these findings to pain responsivity, however, has yet to be investigated. 

 

In summary, this study took a novel approach to studying mindfulness by examining dispositional 

mindfulness in individuals naïve to mindfulness-based practices or interventions. We demonstrated 

that even in the absence of any kind of formal mindfulness training, practice or intervention, trait 

mindfulness is associated with individual differences in pain responsivity, and characteristic 

patterns of functional connectivity. Mirroring the interventional literature, we found that trait 

mindfulness was positively associated with pain threshold, and inversely associated with pain 

catastrophising. Resting state analysis revealed that this pattern of pain reactivity was associated 

with lower connectivity of the default mode network and greater synchronization of the DMN with 

somatosensory regions, consistent with a disposition to attend to immediate sensory aspects of 

experience and disengage from ruminative and evaluative cognitive processes.   
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3.7. Appendices 

3.71. Appendix D: Five-Factor Mindfulness Questionnaire 

Five Facet Mindfulness Questionnaire  

Description:  

  

This instrument is based on a factor analytic study of five independently developed mindfulness 

questionnaires.  The analysis yielded five factors that appear to represent elements of mindfulness 

as it is currently conceptualized.  The five facets are observing, describing, acting with awareness, 

non-judging of inner experience, and non-reactivity to inner experience.  More information is 

available in:  

  

  Please rate each of the following statements using the scale provided.  Write the number in the 

blank that best describes your own opinion of what is generally true for you.  

  

               1                               2    3       4                                      5  

never or very rarely true      rarely true sometimes true        often true         very often or always 

true                     

   

_____ 1.  When I’m walking, I deliberately notice the sensations of my body moving.  

_____ 2.  I’m good at finding words to describe my feelings.  

_____ 3.  I criticize myself for having irrational or inappropriate emotions.  

_____ 4.  I perceive my feelings and emotions without having to react to them.  

_____ 5.  When I do things, my mind wanders off and I’m easily distracted.  

_____ 6.  When I take a shower or bath, I stay alert to the sensations of water on my body.  

_____ 7.  I can easily put my beliefs, opinions, and expectations into words.  

_____ 8.  I don’t pay attention to what I’m doing because I’m daydreaming, worrying, or                  

otherwise distracted.  

_____ 9.  I watch my feelings without getting lost in them.  

_____ 10. I tell myself I shouldn’t be feeling the way I’m feeling.  

_____ 11. I notice how foods and drinks affect my thoughts, bodily sensations, and                    

emotions.  

_____ 12. It’s hard for me to find the words to describe what I’m thinking.  

_____ 13. I am easily distracted.  

_____ 14. I believe some of my thoughts are abnormal or bad and I shouldn’t think that                    

way.  

_____ 15. I pay attention to sensations, such as the wind in my hair or sun on my face.  

_____ 16. I have trouble thinking of the right words to express how I feel about things 

 _____ 17. I make judgments about whether my thoughts are good or bad.  

_____ 18. I find it difficult to stay focused on what’s happening in the present.  

_____ 19. When I have distressing thoughts or images, I “step back” and am aware of the                      

thought or image without getting taken over by it.  

_____ 20. I pay attention to sounds, such as clocks ticking, birds chirping, or cars passing.  

_____ 21. In difficult situations, I can pause without immediately reacting.  

_____ 22. When I have a sensation in my body, it’s difficult for me to describe it because I can’t       

find the right words.  

_____ 23. It seems I am “running on automatic” without much awareness of what I’m                    

doing.  

 _____24. When I have distressing thoughts or images, I feel calm soon after.  

_____ 25. I tell myself that I shouldn’t be thinking the way I’m thinking.  

_____ 26. I notice the smells and aromas of things.  
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_____ 27. Even when I’m feeling terribly upset, I can find a way to put it into words.  

_____ 28. I rush through activities without being really attentive to them.  

_____ 29. When I have distressing thoughts or images I am able just to notice them                     

without reacting.  

_____ 30. I think some of my emotions are bad or inappropriate and I shouldn’t feel them.  

_____ 31. I notice visual elements in art or nature, such as colors, shapes, textures, or                    

patterns of light and shadow.  

_____ 32. My natural tendency is to put my experiences into words.  

_____ 33. When I have distressing thoughts or images, I just notice them and let them go.  

_____ 34. I do jobs or tasks automatically without being aware of what I’m doing.  

_____ 35. When I have distressing thoughts or images, I judge myself as good or bad,                     

depending what the thought/image is about.  

_____ 36. I pay attention to how my emotions affect my thoughts and behavior.  

_____ 37. I can usually describe how I feel at the moment in considerable detail.  

_____ 38. I find myself doing things without paying attention.  

_____ 39. I disapprove of myself when I have irrational ideas.  

 

 

Scoring Information:  

  

Observe items:  

1, 6, 11, 15, 20, 26, 31, 36  

  

Describe items:  

2, 7, 12R, 16R, 22R, 27, 32, 37    

  

Act with Awareness items:  

5R, 8R, 13R, 18R, 23R, 28R, 34R, 38R  

  

Nonjudge items:  

3R, 10R, 14R, 17R, 25R, 30R, 35R, 39R  

  

Nonreact items:  

4, 9, 19, 21, 24, 29, 33  
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3.7.2. Appendix E: Pain Catastrophising Scale 
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Chapter 4. Conditioned Pain Modulation (CPM) is associated with heightened 

connectivity between the periaqueductal grey (PAG) and the descending pain 

modulation network. 
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4.1. Abstract 

Chronic pain is a challenging condition to assess and treat in the clinic. Within chronic lower-back 

pain, some symptomatic patients present no pathological cause, while asymptomatic patients can 

demonstrate substantial spinal damage. Ultimately, it appears that concerning chronic pain, some 

people are vulnerable to the experience of pain. Conditioned Pain Modulation (CPM) is a 

psychophysical assessment that is known to be a proxy for the efficiency of an individual’s 

descending pain modulation circuitry. Less efficient CPM has been associated with higher 

incidences of chronic postsurgical pain, lower analgesia efficacy and the presence of chronic pain 

conditions. By viewing CPM as an individual differences measure, we can help to understand how 

some people appear to possess an innate ability to manage pain. We were interested in how CPM 

may be associated with the neural networks underlying pain processing and modulation. To 

determine this, we measured CPM and collected resting state data for 40 healthy controls. We 

targeted our investigations of resting state connectivity to the periaqueductal grey (PAG), a region 

known to be important in the modulation of pain. Higher CPM, represent more efficient 

modulation, was associated with increased connectivity between the PAG and the somatosensory, 

premotor, motor and dorsolateral prefrontal cortices. All clusters identified in the connectivity 

analysis are areas known to be involved in processing pain. These findings suggest that those with 

higher CPM appear to have more integration between the processing of pain, and the PAG, which 

is actively involved in the modulating a noxious stimulus. This may represent a neural indicator for 

effective pain modulation, with this more integrated mechanism underlying individual differences 

in CPM, which has previously been associated with beneficial clinical outcomes for pain.  
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4.2. Introduction 

Original Cartesian models of pain posited that there was a direct relationship between noxious 

input, and the perceived level of pain. In the wake of Melzack & Wall’s Gate Theory of Pain 

(Melzack & Wall, 1965), we have learned that pain is not just a reflection of injury, but can be up- 

or down- regulated endogenously on the basis of various contextual factors (Ossipov, Morimura, & 

Porreca, 2014; Rainville, 2002). The traditional medical approach of matching injury to 

symptomology (and vice versa) appears increasingly inappropriate within chronic pain diagnostics. 

For example, chronic lower-back pain (LBP) is likely to affect up to two-thirds of people across 

their life-span (Walker, 2000) and is the leading cause of pain-related disability worldwide (March 

et al., 2014), but is poorly linked to peripheral pathology, with spinal degeneration being present in 

a large proportion of asymptomatic patients, and pain often present without pathology (Brinjikji et 

al., 2015). The “variable link” between pain and peripheral pathology necessitates study of why 

some patients with sub-diagnostic pathology are vulnerable to chronic pain, while others appear to 

be more resilient.  

 

One approach to understanding this vulnerability is to assess the efficiency of an individual’s 

endogenous modulatory mechanisms. One psychophysical paradigm that has been used to do this is 

Conditioned Pain Modulation (CPM; Yarnitsky et al., 2008). This paradigm is used to test a 

specific mechanism in humans, based on a similar mechanism originally identified in animals (Le 

Bars, Dickenson, & Besson, 1979; Le Bars, Chitour, Kraus, Dickenson, & Besson, 1981) and 

termed diffuse noxious inhibitory control (DNIC). DNIC is based on the premise that “pain 

experienced in one part of the body is inhibited by the application of a noxious stimulus to another 

part of the body. This mechanism utilises a spinobulbospinal loop whereby processes within the 

brain can influence the inhibition of a noxious stimuli in the dorsal horn (Le Bars et al., 1979). 

Originally, it was discovered that CPM can be used to predict the development of chronic post-

surgical pain (CPSP) in thoracotomy patients (Yarnitsky et al., 2008).  From here, less efficient 

CPM has since been associated with a range of chronic pain conditions (Arendt-Nielsen et al., 
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2010; Fillingim et al., 2009; Lewis, Rice, & McNair, 2012; O’Brien, Deitos, Triñanes Pego, Fregni, 

& Carrillo-de-la-Peña, 2018; Rabey et al., 2015; Valencia, Kindler, Fillingim, & George, 2012) and 

post-surgical outcomes (Wilder-Smith, Schreyer, Scheffer, & Arendt-Nielsen, 2010; Yarnitsky et 

al., 2008), as well being able to predict the efficacy of analgesics for treating pain symptoms 

(Edwards et al., 2016; Grosen, Fischer, Olesen, & Drewes, 2013; Yarnitsky et al., 2012). Although 

the clinical predictive utility of CPM is promising, the underlying neural mechanism that facilitates 

these clinical outcomes regarding pain is still unclear. By improving our understanding of the 

individual differences in CPM, we could elucidate how this psychophysical assessment tool is 

associated with such a wide range of clinical outcomes and how this be associated with the 

efficiency of an individual’s descending modulatory system.  

 

Specifically, early developmental work on DNIC was completed using animals and provided a 

good foundation of research into the underlying spinal mechanisms of this effect (Cadden, 

Villanueva, Chitour, & Le Bars, 1983; Le Bars et al., 1979; Morton, Maisch, & Zimmermann, 

1987; Willer, Roby, & Le Bars, 1984). However, when investigating CPM in humans, the specifics 

of how cortical input & psychological processes influence this mechanism remain unclear. In 

event-related designs, the associative decrease in pain ratings, via concurrent stimulation from test 

and conditioning stimuli, is paralleled with decreased BOLD responses in key pain processing 

regions, such as the thalamus, somatosensory cortex and dorsolateral prefrontal cortex (dlPFC) 

(Goffaux, Redmond, Rainville, & Marchand, 2007; Piche, Arsenault, & Rainville, 2009; Wilder-

Smith, Schindler, Lovblad, Redmond, & Nirkko, 2004) with an enhanced BOLD response 

identified within the anterior cingulate cortex (ACC) (Sprenger, Bingel, & Büchel, 2011). This may 

indicate that the mechanism underlying CPM utilises a process whereby modulatory regions are 

engaged to decrease the activation of regions which are actively involved in the processing of the 

noxious signal. When conceptualising a perspective on individual differences in CPM, a primary 

target for evaluating intrinsic ability to modulate pain could therefore be a region associated with 

this ability to modulate the activity of pain processing areas.  
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The mechanism of DNIC, alongside models of supraspinal endogenous pain modulation, specify 

regions within the brainstem to be critical in descendingly modulating pain via dorsal horn 

inhibition (Brooks & Tracey, 2005; Millan, 2002; Ossipov et al., 2014). The periaqueductal grey 

(PAG) is one brainstem region known to be involved within the mechanism of CPM (Bouhassira, 

Villanueva, & Le Bars, 1992; Le Bars et al., 1981; Sprenger et al., 2011), capable of endogenously 

modulating spinal cord input (Brooks & Tracey, 2005; Gauriau & Bernard, 2002; Ong, Stohler, & 

Herr, 2019; Xie, Huo, & Tang, 2009) and is a key node within the descending pain modulation 

network (May, 2009; Millan, 2002; Ossipov et al., 2014). Importantly, while the descending 

properties of the PAG are pertinent to how our participants modulate pain, we know that the PAG 

is bidirectionally connected to cortical regions, including the dlPFC, amygdala, anterior cingulate 

and insula cortices, thalamus, precuneus & primary visual cortices (Faull & Pattinson, 2017; Kong, 

Tu, Zyloney, & Su, 2010) and that input from the cortex influences how the PAG modulates the 

ascending nociceptive signal (Xie et al., 2009). To appropriately investigate intrinsic variation in 

pain modulation, and how this is associated with CPM, the use of rs-fMRI allows us to examine 

individuals at rest, with no added confound of explicit task-related instructions, and an a-priori seed 

selection allows us to target the scope of our analysis to a modulatory region. Investigating how 

CPM is associated with connectivity between the PAG (a key modulatory region) and the cortex 

may help elucidate how individual differences in the intrinsic ability to modulate pain are 

associated with pain modulation and how this is associated with resting patterns of functional 

connectivity.  

 

This current study aims to use rs-fMRI with healthy controls to analyse how the intrinsic 

connectivity of a key modulatory brain region, the PAG, is related to individual differences in 

supraspinal mechanisms of pain modulation. We predict that CPM will be associated with higher 

connectivity between PAG and regions within the descending modulatory pain network. 
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4.3. Methods 

4.3.1. Participants 

This study utilises the same sample as described in chapter 3. Therefore, 40 healthy individuals 

were recruited and screened. Three participants were excluded (3 could not tolerate the 

conditioning stimulus within the CPM paradigm, 2 had excessive motion artifacts during resting 

state (>2.5mm)), leaving a final sample of 35 participants (14 Female; Mage=22.83 years, SD=5.53). 

Participants were recruited from the University of Reading and were excluded if they had active or 

historical chronic pain disorder diagnoses, current substance abuse, uncorrected visual defects or 

left-hand dominance. All participants provided informed consent prior to the study, and the study 

was approved by the University of Reading’s University Research Ethics Committee (UREC).  

4.3.2. Materials 

4.3.2.1. Pain Stimulation 

Noxious heat stimulation was administered via a MEDOC Pathway system (Medoc Medical 

Systems, Ramat Yishai, Israel) with a 30x30 Peltier thermode applied to the lower right calf, which 

was placed into a custom-made wooden leg rest. The leg was chosen due to recommendations from 

the standardised methodology for CPM (Yarnitsky et al., 2014), as well as practical considerations 

such as the use of a custom-made leg rest and the application of thermal stimulation in the MRI 

being better suited for leg, rather than arm. The test stimulus was calibrated to represent a 6/10 pain 

intensity rating for each participant (see below for calibration method). The conditioning stimulus 

was elicited by a Julubo TW20 water bath set at 46.5°C. 

4.3.3. Design 

This experiment was completed as part of a larger 4-session study. One session was a 

psychophysical assessment, a separate neuroimaging session was completed no more than seven 

days after this initial session. Lastly, two sessions consisting of cognitive and emotional pain 

modulation tasks (not described here) were run. Within the neuroimaging session, an rs-fMRI scan 

was run immediately after an initial localiser. Additionally, four runs of an event-related functional 
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task (not described here) were completed, with a T1-weighted structural scan placed halfway 

between. This dataset has previously been analysed and findings regarding trait mindfulness 

(Harrison, Zeidan, Kitsaras, Ozcelik, & Salomons, 2019), emotional modulation of pain (Gandhi, 

Rosenek, Harrison, & Salomons, 2019) and the influence of gender role on study recruitment bias 

(Mattos Feijó et al., 2018) are reported elsewhere.  

4.3.4. Procedure 

4.3.4.1. Pain Threshold Assessment 

To calibrate each participant’s pain threshold for noxious heat stimulation, we used a combination 

of two separate techniques. Both methods utilised the same visual analogue scale (VAS) (Price, 

McGrath, Rafii, & Buckingham, 1983). The minimum rating of 0 was described as “No pain at 

all”, while the highest rating of 10 was anchored with “most intense pain imaginable”, and the scale 

was displayed to the participant using a piece of laminated A4 paper. Pain intensity was chosen, 

rather than unpleasantness, in line with recommendations for standardised practice of CPM 

(Yarnitsky et al., 2014). The premise underlying CPM is that the intensity of a noxious stimulus 

can be reduced via the application of a distal noxious stimulus applied elsewhere. As such, 

implications for pain unpleasantness are not a central concept within this experimental paradigm. 

The first assessment was via method of limits, starting at a 32°C baseline rising by 0.5°C/s until the 

participant indicated that the stimulus was painful. There were 4 trials with an 8s inter-stimulus 

interval. The average of the final 3 trials was taken as the limits threshold.   

The second measure used followed a method of levels design. Stimuli began at a 32°C baseline and 

increased by 8°/s to a 40°C peak, where it remained for 8s. The participant was provided a mouse 

to indicate whether the stimulus was painful.  An indication of “no”, led to the subsequent trial 

being increased by 2°C. If they indicated yes, the temperature decreased at half the interval size and 

the same pattern continued until 4 reversals of direction had been reached. The average of the final 

two trials was recorded as the individual’s levels threshold.  The participant’s threshold was 

calculated via the average of the limits and levels threshold. 
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4.3.4.2. Temperature Calibration 

To calibrate the CPM test stimulus, the next stage of the assessment consisted of a ranged-

temperature stimulus response curve. A total of nine ranges were available, with median points 

between 42.5-46.5°C (at 0.5°C intervals). Each range consisted of eight different temperatures. 

Temperature were separated by 0.75°C, with four temperatures above the median point and three 

below (i.e. Mid-2.25°C, Mid-1.50°C, Mid-0.75°C, Mid, Mid+0.75°C, Mid+1.50°C, Mid+2.25°C, 

Mid+3°C). After the calibration of pain threshold, the median-point closest to this threshold was 

selected and this range was used for the participant’s stimulus response curve. Each temperature 

within the range was presented three times, equalling a total of 24 stimuli. Participants were told to 

rate the intensity of each stimulus using the same 0-10 VAS scale as before. The stimuli were 

presented for 8 seconds, after which a rating was collected. Each temperature was separated by an 

inter-stimulus duration of 20 seconds to limit the influence of habituation or sensitisation on the 

proceeding stimuli. 

Once all ratings had been recorded, the pairings of temperature and pain ratings was entered into an 

online linear regression calculator (Arcidiacono, 2009). The model generated from the stimulus 

response curve data allowed us to interpolate which temperature best matched each participant’s 

indicated 6 out of 10, based on their pain ratings to all temperatures within their range. 

4.3.4.3. Conditioned Pain Modulation 

Our CPM paradigm was based on previously published material (Granot et al., 2008; Yarnitsky et 

al., 2008, 2012). This method uses the Peltier thermode as a test stimulus, with a warm water 

(46.5°) bath as a conditioning stimulus. The interpolated temperature for the participant’s 6/10 was 

designated as the test stimulus. The first trial consisted of the test stimulus in isolation for 30 

seconds, with a total of 3 pain intensity ratings provided by the participant at 10s intervals. The 

second trial started with the participant submerging their left hand into the water bath where they 

provided 3 ratings of the pain intensity of the conditioning stimulus at 10s intervals. Once these 30 

seconds had elapsed, the participant continued to keep their hand in the water bath, while the test 

stimulus was administered for another 30 seconds. The participant provided three more test 
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stimulus pain intensity ratings at equal 10s intervals. Finally, the participant provided a 

conditioning stimulus pain rating once the test stimulus has ended. CPM is calculated as a 

difference between the test stimulus rating in isolation and the test stimulus ratings during 

submersion in the water bath. A positive CPM score represents better inhibition. 

 

 

Figure 1: Method for calculating CPM scores. TS= Test Stimulus, CS= Conditioning Stimulus; R= Rating 

 

4.3.4.4. fMRI Acquisition 

Brain images were acquired using a 3T Siemens (Siemens, Erlangen, Germany) TRIO MRI 

scanner with a 32-channel head coil. For the 10-minute resting-state scan, participants were 

instructed to keep their eyes closed. The protocol consisted of 30 interleaved 3.5mm sagittal T2* 

weighted gradient echo echo-planar imaging (EPI) slices (TE=28ms, TR= 2000ms, flip angle 

(FA)= 90°, 1mm interslice gap; 128x128 matrix, field-of-view (FOV)= 240mm). Consequently, 

300 volumes were acquired and then prepared as 4D NIFTI images Structural images were then 

acquired within an 8-minute T1-weighted inversion recovery fast gradient echo-high resolution 

structural scan (176 volumes, TE=2.9ms, TR=2000ms, FA= 90°, voxel size= 1x1x1; 256x256 

matrix, FOV=250mm).  
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4.3.5. fMRI Data Analysis 

4.3.5.1. ROI Selection 

 

Figure 2: Hand-drawn Periaqueductal Grey ROI (red) (Y=-32, X=0, Z=-10) 

 

For the purpose of preparing this seed region, our PAG seed was hand-drawn onto the MNI 

template in the grey matter surrounding the cerebral aqueduct within the tegmentum of the 

midbrain, which coalesces with the area previously described and reported for the human PAG 

(Ezra, Faull, Jbabdi, & Pattinson, 2015). The PAG was chosen due to its prominent role in the 

descending modulation of pain (Denk, McMahon, & Tracey, 2014; Eippert et al., 2009; Linnman, 

Moulton, Barmettler, Becerra, & Borsook, 2012).  

4.3.5.2. Pre-Processing 

Analysis was performed using the FSL analysis package (FSL Version 6.00; 

www.fmrib.ox.ac.uk/fsl), (Jenkinson et al., 2012). The Brain Extraction Tool (BET) (Smith, 2002) 

was used for skull stripping. The first 5 volumes were removed to allow for signal equilibration 

effects. An interleaved slice-timing correction was applied. Data was smoothed with a 5mm full-

width half-maximum (FWHM) Gaussian spatial smoothing kernel. MCFLIRT was used for motion 

correction (Jenkinson, 2002) and data were visually inspected for motion artifacts and to confirm 

registration accuracy. 
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To isolate a grey matter mask, grey matter was segmented from white matter (WM) and 

cerebrospinal fluid (CSF) using FSL’s FAST module (Zhang et al., 2001). To minimize 

overlapping signal from grey matter prior to time series extraction, WM and CSF maps were 

thresholded at 0.99. Time series of WM and CSF were added to a general linear model (GLM) 

along with motion parameters. Residuals from this nuisance analysis were normalised and 

bandpass filtered (0.1/0.01 Hz) to reduce the influence of low frequency drift (inclusive of scanner 

drift), and high frequency interference such as cardiac or respiratory confounds.  

4.3.5.3. Resting State Analysis 

The mean timeseries of all voxels within our PAG seed were extracted and included as a regressor 

in a whole-brain functional connectivity analysis. Contrast images were then entered into a second 

higher level analysis with participant’s demeaned CPM scores entered as a regressor. This analysis 

sought regions where connectivity with the PAG was significantly associated with CPM. All fMRI 

analyses were corrected for multiple comparisons using Gaussian random field theory (Z>2.3; 

p<0.05). For the purposes of graphical presentation of our results, parameter estimates from regions 

where functional connectivity with the PAG was significantly correlated with CPM were extracted 

using FEATQuery. 

 

4.4. Results 

4.4.1. Conditioned Pain Modulation 

Participants rated the pain intensity of the thermode in isolation to be 5.93 (s.d.=1.49) and the bath 

in isolation at 4.80 (s.d.=2.17). When combined with a conditioning stimulus, the rating for the 

thermode decreased to 4.27 (s.d.=2.0) indicating a significant reduction of 1.65 (s.d.=1.38) in pain 

intensity (t(33)=6.97, p=.011). Each individual’s difference score was used as their CPM score. 
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Figure 3: Isolated clusters (numbered in relation to clusters in table 1) in MNI space positively correlated 

with CPM (thresholded at Z>2.3, p<.05). Clusters in legend relate to co-ordinates displayed in Table 1 

(below). 

 

4.4.2. Resting-state connectivity & CPM 

In total, there were four clusters of activation where connectivity with the PAG was positively 

correlated with participants’ CPM scores (figure 3 & table 1). These included the bilateral primary 

& secondary somatosensory clusters (clusters 1&3), as well as the right motor & premotor cortices 

(cluster 3) and the right dorsolateral prefrontal cortex (cluster 2).  

 

Table 1: Statistical peaks in MNI space associated with positive connectivity to the PAG and CPM 

scores. Co-ordinates provided at site of maximum Z-stat. 

Anatomical Brain region Brodmann Areas MNI coordinates Max Z-Stat 

 X Y Z  

1. Somatosensory cortex 1 (S1) & 2 (S2), Inferior 

Parietal & Anterior Intraparietal Sulcus (aIPS) 

BA1, BA2, BA3b -44 -34 44 4.46 

2. Dorsolateral Prefrontal Cortex (dlPFC) BA44, BA46 44 20 42 4.53 

3. Primary motor & premotor cortices, S1 & S2 BA3a,BA3b,BA4

a, BA4p, BA6 

56 -2 30 4.22 

4. Visual cortex, V1 & Superior Parietal  BA17 & BA18 -22 -82 30 3.48 
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The association between CPM and all four extracted clusters is plotted in Figure 4. Due to the 

presence of a single outlier that scored highly on CPM, all correlations were re-tested with the 

anomaly excluded, and all correlations remained significant.  

  

 

Figure 4: Connectivity of the PAG and all extracted clusters correlated with CPM scores (p<.001). Y-axis 

units are parameter estimates of connectivity; higher CPM score represents more efficient modulation. 

Figures are graphical representation of cluster 1 (top-left), cluster 2 (top-right), cluster 3 (bottom-left) and 

cluster 4 (bottom-right) in table 1. 

 

4.5. Discussion 

Conditioned pain modulation (CPM) is a quantitative sensory testing technique using a “pain 

inhibits pain” paradigm, involving simultaneous noxious stimulation applied to peripherally 

distinct locations on the body. Exposure to a noxious conditioning stimulus in the design often 

leads to a reduction in the perceived painfulness of a noxious test stimulus. CPM has also been 

used as a predictive assessment for post-surgical outcomes, analgesic efficiency and the risk of 

developing neuropathic pain (Edwards et al., 2016; Granovsky, 2013; Yarnitsky et al., 2008, 2012), 

suggesting that it can be used as a clinically meaningful measure of the efficiency of an 
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individual’s descending modulatory circuitry (Yarnitsky et al., 2008). The method of CPM is said 

to be related to DNIC, a process of modulation in the dorsal horn via regions in the brainstem. 

However, the neural basis underlying individual differences in CPM, or why CPM appears to serve 

as a proxy for more effective pain management, is still unclear. This study investigated intrinsic 

resting state connectivity in healthy controls and how connectivity of the PAG (a key pain 

modulatory region) was associated with CPM. As hypothesised, we found that CPM was associated 

with heightened integration of the PAG and pain processing regions. Specifically, higher CPM 

score was associated with higher connectivity between the PAG and the somatosensory cortices, 

premotor and motor cortices and the dorsolateral prefrontal cortex (dlPFC); all regions associated 

with descending pain modulation network (Denk et al., 2014; Millan, 2002; Ossipov, Dussor, & 

Porreca, 2010) and the processing of pain (Brooks & Tracey, 2005; Carmon, Mor, & Goldberg, 

1976; Garcia-Larrea, Frot, & Valeriani, 2003). Based on this, our findings indicate that those with 

higher CPM have stronger functional connections within the descending pain modulation network. 

The synchronicity of BOLD response between the PAG and pain processing regions identified 

within this finding may indicate that these spatially distal regions are functioning more cohesively 

in those participants within higher CPM scores. This functional connectivity may be one of the 

aspects that facilitates more effective modulation of pain processing in these individuals, which 

reflect their higher CPM scores, and possibly their exposure to pain in the real-world outside of the 

laboratory. 

 

These findings suggest that individuals who are efficient modulators have greater functional 

connectivity between the PAG, and regions involved in processing pain. The PAG is known to be a 

key region in the modulation of pain (Ossipov et al., 2014) and the cortex and PAG have a 

bidirectional relationship which can affect the modulatory process itself (Cheriyan & Sheets, 2018; 

Xie et al., 2009). The PAG has previously been shown to be functionally connected with the 

dorsolateral prefrontal, motor and somatosensory cortices at rest (Faull & Pattinson, 2017), with 

each of these known to be involved in the processing of pain. The somatosensory cortex has been 

implicated in the sensory aspects of pain, such as localisation and discrimination, and is known to 
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be highly modulated by attentional and cognitive processes (Bushnell et al., 1999; Jones, Kilgour, 

& Comtois, 2007). The dlPFC has been shown to exert control over pain perception, by modulating 

regions involved in attention towards pain (Lorenz, Minoshima, & Casey, 2003). Lastly, the motor 

cortex is known to process the intensity of a painful stimulus, and via transcranial magnetic 

stimulation, stimulation of the motor cortex can alleviate pain in chronic pain patients (Coghill, 

Sang, Maisog, & Iadarola, 1999; Tsubokawa, Katayama, Yamamoto, Hirayama, & Koyama, 1991). 

Taken together, and our results may indicate that when functional connectivity between these 

regions and the PAG is better synchronised, people are able to more effectively modulate their 

pain. This influence is likely to be bidirectional, as the PAG not only modulates the ascending 

signal at the level of the spinal cord, but also is involved in preparing the body to deal with noxious 

stimuli (Silva & McNaughton, 2019). This may involve communication with sensory, cognitive 

and motor areas, better enabling the individual to attend to the stimuli itself.  

 

While comparable literature is sparse, our findings do partially complement previous findings using 

similar approaches. CPM score has previously been shown to be associated with higher resting 

connectivity between the PAG and cortical pain processing regions, the insula & anterior cingulate 

cortex (Harper et al., 2018). Although our findings did not unanimously coalesce with this study, in 

particular regarding the specific cortical regions identified, it is worth nothing that key differences 

may exist in the methodology of each study. Harper et al’s study consisted of all female 

participants, with only 12 healthy controls in total. This was complicated further by a lack of 

inhibitory CPM effect being identified within healthy controls, with no significant reduction of the 

test stimulus elicited by exposure to the conditioning stimulus. This may potentially be due to CPM 

being less efficient in females than males (Popescu, Leresche, Truelove, & Drangsholt, 2010). 

Additionally, this study was completed using a different CPM methodology (mechanical vs thermal 

stimuli), which could contribute to the variation in specific cortical regions identified. Lastly, 

functional connectivity between the PAG and cortical regions was only identified when patients 

and healthy controls were analysed together. This is an important analytical feature because this 

study reported that patients and controls demonstrated variations in PAG connectivity, as well as 
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differences in grey matter density of the PAG, which was lower within chronic pain patients than 

controls. Therefore, one another potential cause for the discrepancies between the specific pain-

processing regions identified across studies may be due, in part, to variations in the modulatory 

mechanisms underlying healthy controls and chronic pain patients. This is especially true regarding 

fibromyalgia, which is frequently associated with inefficient, or non-existent, CPM (Julien, 

Goffaux, Arsenault, & Marchand, 2005; Lautenbacher, Kunz, Strate, Nielsen, & Arendt-Nielsen, 

2005; Potvin & Marchand, 2016). When analysed together as a group, these differences may 

coalesce, which could explain the variation in results between our study using solely healthy 

controls. This is an important distinction when investigating how CPM may relate to intrinsic 

ability to manage pain in healthy individuals who are not experiencing chronic pain, although it is 

promising that the results between both studies report a similar mechanism. 

 

While rs-fMRI cannot provide any additional information about the real-time mechanisms 

underlying CPM, a strength of this approach is that we can use CPM as a proxy for efficient pain 

modulation to investigate individual differences in the intrinsic ability to modulate pain. The 

benefit of using a sample of healthy controls is that this may allow us to identify  neural 

mechanisms associated with effective pain management , as a product of efficiency of their 

modulatory circuitry, and could provide insight into why some individuals can appear predisposed 

towards chronic pain conditions. Contrastingly, the challenges of imaging CPM with an event-

related design are substantial. Typically, the standardised methodological approaches for testing 

CPM use equipment that is restrictive or unusable in an MRI environment (e.g. water baths, 

thermal stimulators, metallic algometers etc). Moreover, the combinative stimulation of test & 

conditioning stimulus can make isolating the pure influence of modulation difficult.  

 

Promisingly, our findings do also complement the limited evidence available regarding the neural 

mechanism underlying the process of CPM itself. Within the available literature, it’s been found 

that during concurrent conditioning & test stimuli presentation, the dorsolateral prefrontal, 
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premotor and primary and secondary somatosensory cortices show reductions in BOLD response in 

parallel to reductions in pain intensity elicited by the CPM effect (Bogdanov et al., 2015; Goffaux 

et al., 2007; Piche et al., 2009; Sprenger et al., 2011; Wilder-Smith et al., 2004; Youssef, 

Macefield, & Henderson, 2016). This informs us that the regions identified within our findings are 

known to associated with pain processing and are pertinent to CPM. Ideally, these imaging 

strategies could be combined to benefit from the strengths of each approach. For example, 

comparing patterns of neural activity in healthy controls while completing a pain task, and then 

following up by investigating whether resting connectivity between these regions varies as a 

function of a variable associated with beneficial pain responses (such as CPM). This allows for an 

a-priori mask from one analysis to be utilised in another to inform about pain processing 

mechanisms, as well as intrinsic neural connectivity, thus improving a design using two imaging 

pathways.  

 

Importantly, across both event-related and rs-fMRI designs, it appears that connectivity between 

pain modulatory regions, and pain processing regions is a feature of CPM. Our findings suggest 

that by using CPM as an individual difference variable, we can view this connectivity as a potential 

feature of effective pain modulation and beneficial pain responses. This could help us to understand 

why CPM has been identified as a potential predictive assessment across a variety of medical 

domains and clinical outcomes, ranging from the development of CPSP in thoracotomy patients, to 

the efficacy of non-steroidal anti-inflammatory drugs (NSAIDS) for osteoarthritis of the knee. By 

using CPM as an individual difference variable, we may be gaining an understanding of whether a 

person is likely to be able to effectively manage their pain in the future, as a feature of their ability 

to modulate nociceptive signals. This relative efficiency in the descending pain modulation 

network may help elaborate on the implications for CPM across the breadth of medical disciplines 

reported in the literature (Granovsky & Yarnitsky, 2013; Ram, Eisenberg, Haddad, & Pud, 2008; 

Wilder-Smith & Robert-Yap, 2007; Yarnitsky et al., 2012) and provide insight into why multiple 

chronic pain conditions are associated with deficiencies in CPM (Lewis et al., 2012). Individuals 
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with higher CPM (more efficient modulatory circuitry) have an increased integration of pain 

processing regions in the cortex and the PAG.  

 

Previous literature has indicated that pain modulation may be associated with increased activity in 

modulatory regions alongside decreased activity in regions processing the noxious signal. It’s 

possible that those who lack this function will not experience the reduction in processing of 

nociception and may be more impacted by their pain as a result. Ultimately, chronic pain is thought 

to be a condition partly maintained via deficiencies in descending modulation (Bushnell, Čeko, & 

Low, 2013; Olesen et al., 2010; Ossipov et al., 2014) and the variations in PAG connectivity and 

grey matter density may contribute to this lack of modulatory capacity. As our findings suggest that 

healthy controls with greater functional connectivity of the PAG to key pain processing regions are 

associated with more effective pain modulation, this provides support for the importance of PAG 

connectivity when evaluating effective pain modulation and may represent a predictive indicator of 

ability to effectively manage pain. 

 

One question for future research into individual differences in CPM is whether we can intervene 

with our patients to modify this neural mechanism. While an increase in CPM score presents little 

benefit to a chronic pain patient, if this in fact indicates that the improvement correlates with an 

enhancement of functional connectivity in pain modulation, this may facilitate a beneficial 

associative effect on managing pain clinically. The recent development in pre-clinical pain 

assessments has helped develop measures which can be used to identify patients at high-risk of 

poor outcomes, and the application of these stands to improve the efficacy of our clinical 

assessments. However, the next step that is currently lacking empirical support is what to do once 

we’ve identified these patients. For example, if we stratify a group of high-risk patients before 

elective surgery, how do we reduce this risk to ensure our patients can still undergo the surgery and 

experience positive clinical outcomes? For example, it’s been found in fibromyalgia patients that a 

mindfulness-based intervention enhances functional connectivity between the medial prefrontal 
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cortex and PAG, which are similar to the clusters identified within our study associated with better 

CPM (Harvey et al., 2018). Although in need of empirical investigation, it would be pertinent to 

explore whether the enhancement of functional connectivity in this case was also associated with 

improvements in CPM. If so, this may represent a potential approach to improve the CPM of high-

risk pre-surgical patients, and to observe whether this would reduce the incidence of chronic post-

surgical pain as a result.  
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Chapter 5. General Discussion 

5.1. Overview of Results 

The overall aim of this thesis was to investigate individual differences in pain  and expand on the 

literature examining how intrinsic psychological processes can influence the way we modulate 

pain. As reviewed in section 1.2, the mechanisms of pain modulation have received a great deal of 

research interest over the last couple of decades.  However, how innate individual differences in 

psychology may inherently predispose people to degrees of vulnerability  to future instances of 

pain is still an area of great importance, with limited empirical basis. To address the problems 

outlined, three studies were conducted. This general discussion will review the findings, before 

considering the strengths and limitations, theoretical and practical implications as well as future 

directions for this area of research. 

 

5.1.1. Chapter 2: Evaluating the clinical assessment of pain during hysteroscopy and the 

implications for the administration of local anaesthetic  

Chapter 2  aimed to investigate the scope of the problem of pain vulnerability within the real-

world, by examining a surgical procedure that was associated with a wide range of variability in its 

perceived painfulness. Hysteroscopy is described as a low-pain medical procedure (Appendix C) 

but has attracted public attention due to the emergence of patients who reported experiencing 

severe and, sometimes, excruciating pain (Tylko-Hill, 2018). We analysed pain reports across a 

large clinical sample that had undergone hysteroscopy to investigate the patterns in pain intensity 

associated with this procedure. We also compared patient reported pain scores to clinical estimates 

of their patients pain during the operation. Lastly, we investigated how patient’s expectations were 

shaped as a result of the pain that they experienced during their hysteroscopy. We hypothesised that 

hysteroscopy would be a procedure associated with a range of pain intensities, and patients who 

experienced less intense pain during the operation would consider their expectations of the 

hysteroscopy matched or surpassed.   
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Our results suggest that hysteroscopy is not a low-pain procedure, and for some patients the pain 

elicited is severe. This could indicate the presence of individual differences across the patient 

sample that allowed some to experience a pain-free hysteroscopy, whilst others may possess 

vulnerabilities that predisposes them to a risk of intense pain. Interestingly, we also noted that 

clinician estimates of pain were inversely correlated with the patient’s own views of their pain. 

This had special significance as, within this clinic, the quantity of analgesia administered was 

decided based upon clinical judgement. Based upon this, it was noticed that within the patients who 

received the highest dose of anaesthetic, the clinician pain estimates were the lowest, whereas the 

patient pain ratings were the highest. This may indicate that these patients were the ones who were 

most vulnerable to pain, and that, despite the clinical view that anaesthetic was decreasing their 

pain, their pain was not being managed appropriately.  

 

5.1.2. Chapter 3: Trait mindfulness is associated with lower pain reactivity and connectivity of the 

default mode network 

In attempting to understand how these individual differences may manifest, and how they may 

relate to the mechanisms with which pain is modulated in the brain, chapters 3 and 4 both 

investigated psychological concepts related to pain perception, and the association with underlying 

neural resting state connectivity. Within chapter 3, we investigated trait mindfulness as a concept 

that may facilitate resilience towards the experience of pain. Mindfulness has previously been 

shown to be a useful intervention for pain management and is associated with beneficial 

experimental and clinical pain outcomes (Cherkin et al., 2016; Kabat-Zinn, 1982; Morone et al., 

2016; Reiner, Granot, Soffer, & Lipsitz, 2016; Teixeira, 2010; Zeidan et al., 2011). However, by 

investigating mindfulness as a trait, and not a state, we aimed to understand how intrinsic 

mindfulness, in the absence of exposure to mindfulness-based interventions, may provide an innate 

benefit to processing sensory and cognitive dimensions of pain. We hypothesised that trait 

mindfulness would elicit similar pain-related benefits as reported in the interventional mindfulness 

literature, and that this would be achieved via attentional regulation. As such, we also investigated 
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how mindfulness could influence pain via variations in how attention is processed in the brain, and 

specifically within the default mode network, using the precuneus as a seed.  We found that trait 

mindfulness provides a psychological influence towards the processing of cognitive and sensory 

dimensions of pain. We also identified that trait mindfulness was associated with variations in 

functional connectivity between regions associated with attentional processes (precuneus), and 

cognitive (prefrontal cortex) and sensory processes (somatosensory cortices). Based upon findings 

within interventional literature, it was concluded that trait mindfulness involves an attentional 

regulation which involves heightened awareness of sensory elements within the environment, with 

decreased ruminative reappraisal. This functional disconnect between attentional focus on 

cognitive and sensory aspects may be beneficial in reducing negative cognitive biases, such as 

catastrophising, and that by evaluating a nociceptive stimulus as more of a simple sensory 

experience, it may make the experience of pain less emotionally aversive and more tolerable.  

 

5.1.3. Chapter 4: Conditioned Pain Modulation (CPM) is associated with heightened connectivity 

between the periaqueductal grey (PAG) and the descending pain modulation network. 

In chapter 4, we investigated a psychophysical assessment tool, CPM. This quantitative sensory 

testing (QST) assessment is described as a proxy for the efficiency of an individual’s descending 

modulation circuitry (Yarnitsky et al., 2008) and has been associated with a range of beneficial 

clinical outcomes (Edwards et al., 2016; Granovsky & Yarnitsky, 2013; Yarnitsky, Granot, & 

Granovsky, 2014; Yarnitsky, Granot, Nahman-Averbuch, Khamaisi, & Granovsky, 2012). As CPM 

has been shown to provide resilience to pain across a wide range of medical domains, we 

investigated it as an innate individual difference’s marker  and examined how it related to 

underlying neural mechanisms of pain modulation. A key pain modulatory region is the PAG, 

which is involved in processing the descending and ascending pain signal and is connected to 

regions in the cortex associated with the processing of pain (Brooks & Tracey, 2005; Millan, 2002; 

Ossipov, Morimura, & Porreca, 2014). We predicted that higher CPM, and therefore more effective 

pain modulation, would be associated with heightened integration of the PAG with other regions 
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involved in the processing of pain. We found that better CPM was associated with increased 

connectivity between the PAG and the somatosensory, premotor, motor and dorsolateral prefrontal 

cortices (dlPFC); all regions involved in processing pain (Brooks & Tracey, 2005; Carmon, Mor, & 

Goldberg, 1976; Garcia-Larrea, Frot, & Valeriani, 2003). We concluded that CPM is likely to be a 

suitable marker for beneficial pain response, and that as an assessment, it may serve to quantify the  

efficacy of an individual’s ability to modulate pain. Our results indicated that heightened 

integration of pain processing regions with a key modulatory region may facilitate more effective 

modulation of pain, which may in turn, may benefit an individual when dealing with pain in the 

real world.  

  

5.1.4. Consolidating results between Chapters 3 and 4 

As both studies across these chapters utilised regressors that can serve as individual differences 

markers, and used resting-state functional magnetic resonance imaging (rs-fMRI), they each 

provide useful information towards innate beneficial influences regarding the experience of pain. 

As described in section 1.2, pain is a multi-faceted experience, involving multiple levels of 

processing which coalesce to form an amalgam experience. The way in which we attend to our own 

body state, as well as elements within our environment can shape the way in which we experience 

pain, as described when discussing mindfulness in chapter 3. Beecher’s classic observations of 

soldiers in the battlefield not noticing severe injuries until they were out of danger demonstrates the 

powerful influence of environmental context on pain (Beecher, 1946). Relatedly, the active 

influence of modulatory regions within our brain to tone-down the nociceptive signal is likely to be 

a core evolutionary function, allowing an organism to adhere to the premise of fight-or-flight, 

despite potential grievous injury.  

 

Taken in concert, chapters 3 and 4 provide us with an interesting basis for examining these 

examples of intrinsic influences of pain processing. The former may suggest that individuals who 

are dispositionally mindful, in relation to their personality and who they are as people, are likely to 
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be able to better manage their pain. Importantly, this is not solely in relation to the sensory 

experience of a pain stimulus, but also regarding negative cognitive biases that relate to pain; trait 

mindfulness provides a protective influence against both sensory and cognitive dimensions of pain 

experience. When examining how our participants brains “ticked over” at rest, we were able to 

extract an interesting underlying mechanism beneath this attentional concept. Participants who 

were more mindful were associated with an increased connectivity between an attentional node and 

the somatosensory cortex, perhaps indicating they are better equipped to relay and attend to the 

tactile experience of their environment. Additionally, they were associated with decreased 

connectivity between the same node and the medial prefrontal cortex (mPFC); an area previously 

associated with reappraisal and rumination (amongst a swathe of other processes) (Fuster, 2008). 

This may relate to the “present-moment-ness” of a mindful individual, existing within a moment 

and being aware of it, rather than being consumed by over-evaluation, apprehension or rumination.  

 

Interestingly, in chapter 4, the prefrontal cortex was also identified within another mechanism of 

pain, namely that of pain modulation, associated with individual differences in CPM. As a simple 

psychophysical assessment, CPM is described as a proxy for the efficiency of descending 

modulatory circuitry (Yarnitsky, 2008). Regarding the evolutionary basis above, this would be a 

representation of the basal ability of a brain to influence the ascending signal from the periphery. 

The more effective this system is, the better able a person may be at disregarding or persisting 

despite the presence of a painful experience. Within this context, it is easier to understand how 

CPM is associated with a range of beneficial clinical outcomes and is not limited to any one 

specific clinical domain. Our findings highlighted that higher CPM was associated with a general 

increase in connectivity within the descending pain modulation system (DPMS). The integration 

this modulatory mechanism appears to benefit individuals when completing a CPM assessment, but 

may equally benefit them in everyday domains of their life. 
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Within chapter 3, we found that lower connectivity between the mPFC and precuneus may 

facilitate beneficial pain responses, potentially as a product of decreased attention towards 

cognitive reappraisals. Within chapter 4, we found that higher connectivity between the dlPFC and 

PAG may facilitate more efficient pain modulation, by integrating a pain processing region with 

one that actively modulates noxious ascending signals. Crucially, the prefrontal cortex has been 

associated with a colossal range of cognitive, emotional and affective processes (Fuster, 2008). 

Therefore, the variations in function between the mPFC and dlPFC are likely to be substantial. 

Subsequently, the evidence within chapters 3 and 4 may in fact represent two distinct mechanisms 

that each provide a beneficial influence for processing pain. In the case of chapter 3, the 

mechanism represents variations in attentional regulation, that may benefit an individual’s ability to 

process and manage pain. More specifically, connectivity of the PFC to an attentional seed 

(precuneus) was theorised to represent a reduced tendency towards ruminative or apprehensive 

thought. Whereas in chapter 4, the mechanism involving the PAG may be a feature of regulating 

the combination of ascending and descending signals, with the PFC connectivity indicating more 

efficient integration of pain processing (PFC) and pain modulating (PAG) regions. Clearly, the 

processes underlying activity within these distinct regions of the PFC are likely to serve different 

functions, but it does inform us of the importance of the PFC when evaluating neural mechanisms 

associated with pain, and represents that these two results may serve as two distinct indicators of 

effective pain management. Each neural mechanism could be trait-like psychobehavioural markers 

which benefit an individual, both in the lab and the real-world. These studies have each provided 

insight towards how individual differences in trait mindfulness and CPM are represented within the 

brain and provide potential insights to two different neural mechanisms that are associated with 

more effective mechanisms for managing pain.   

 

Regarding comparisons between the concepts described within chapters 3 and 4 directly, the 

empirical basis underlying mindfulness and CPM is still limited. One strength of evaluating these 

distinct psychological concepts within the same sample of participants, is we can make direct 

comparisons between these two variables in the same people. Interestingly, CPM and FFMQ scores 
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did not correlate within our sample (R(36)=-.209, p=.11), with only the subscale of Mindful 

awareness nearing significance (R(36)=-.229, p=.089). This finding is supported in the literature 

which indicates that mindfulness may reduce pain via a unique mechanism (Zeidan et al., 2012), 

which is not mediated by endogenous opioids (Zeidan et al., 2016), unlike the proposed 

endogenous inhibitory pain pathways which underlying CPM (Lewis et al., 2012; Yarnitsky, 2015).  

 

Therefore, the mechanisms identified within chapters 3 and 4 within this body of work may reflect 

two unique processes that facilitate a beneficial response to pain. Within this perspective, 

mindfulness is associated with a functional disconnect attentional processing of sensory and 

cognitive information. Regarding pain, this allows an individual to attend to the tactile experience 

of a noxious stimulus, with a reduced tendency towards affective reappraisal, rumination or 

apprehension of the stimulus itself. This attentional mindset may benefit an individual when 

managing pain by facilitating a more accurate interpretation of the stimulus, without negative 

emotional or cognitive biases influencing their processing of the pain. However, the mechanism 

identified within chapter 4 is perhaps indicative of the process of pain modulation, rather than the 

interpretation and processing of a noxious stimulus in isolation. The functional connectivity of the 

PAG with regions known to be involved in processing pain may indicate that this individual’s 

modulatory circuitry is more cohesive and integrated, which allows for more effective endogenous 

modulation of the noxious signal, via descending modulatory circuitry. This interpretation would 

indicate that trait mindfulness and CPM may both provide a beneficial influence to an individual 

when managing pain, but that they are not necessarily associated with one another and are 

associated with unique mechanisms. Whether mindfulness and CPM elicit a combined effective, 

which coalesce would be a valid follow-up empirical question, that would require additional 

experimentation to examine.  
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5.2. Clinical Considerations 

Chapter 2 examined hysteroscopy patients, and their experience of undergoing a procedure that is 

described as low-pain or pain-free. The primary clinical implication from this study is that 

hysteroscopy should no longer be described as such. Streamlining and cost-cutting are compulsory 

ventures within a 21st century National Health Service (NHS) and one targeted strategy to 

accomplish this is the transition from in-patient procedures into an outpatient pathway (Department 

of Health, 2000). However, whilst this is a vital pragmatic goal, it is crucial that patients are fully 

informed about the risks of adverse effects from the procedure and the potential for severe pain is 

one such risk. The campaign to “end barbaric NHS hysteroscopies, with inadequate pain relief” is a 

movement dedicated to raising awareness of this risk, and our data provides support for their 

campaign. One consideration should be to update the leaflets informing patients about the risks of 

hysteroscopy within an outpatient pathway. The benefits of avoiding general anaesthetic and an 

overnight stay are aptly described (Anderson, Walls, & Canelo, 2017; Bajaj, Sethi, Carr, & Knight, 

2009; Darwin & Chung, 2013; Marsh, Rogerson, & Duffy, 2006), however with our result of just 

over 17% of patients reporting a 7 or higher on an 11-point scale, the description of the pain being 

akin to “discomfort” or “period-like” are not supported by the data. Similarly, within this 

description the requirement for analgesia is underplayed. Within the data, over half of patients 

received at least one ampule of anaesthetic, whereas the clinic’s leaflet states that “local anaesthetic 

[can be applied] to the cervix, although this is not usually necessary” (Appendix C, p. 3). Ensuring 

that an accurate portrayal of the procedure is provided to the patients could help ensure 

expectations and intraoperative anxiety is managed as best possible, but also fulfils ethical and 

moral obligations to ensure patients can make a fully informed decision for their health.  

 

As well as improving descriptions of the procedure, there are potential avenues available for 

improving pain management during the procedure. Chapter 2 identified two concerns regarding the 

clinicians estimates of their patients’ pain. Firstly, the estimates were very limited in their 

variability suggesting a lack of specificity or accuracy regarding the range of pain experienced 
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across all patients. Secondly, the clinician’s estimates were inversely correlated with the patient’s 

own ratings. Specific discussions of what this is likely to entail are detailed in chapter 2, but 

regarding the implications, this may suggest that the clinician’s assessment needs support and 

corroboration. Accurate pain assessment is one of the most difficult challenges facing clinicians 

and this challenge is likely to be even greater when having to assess during a precise medical 

procedure, with a time pressure upon their decision. However, when evaluating the evidence from 

this dataset, it is clear that some patients are vulnerable and experience intense pain, whereas others 

experience no discomfort or pain at all. Consequently, it would likely be beneficial to create and 

implement predictive assessment measures, delivered pre-surgically that are capable of stratifying 

patients into high or low risk pain categories. Based on the findings within this thesis, two 

candidates for such assessments are CPM and trait mindfulness measures, which may allow for the 

categorisation of patients into high-end and low-end subgroups. Within the context of 

hysteroscopy, the low-end subgroup would be more at risk of pain and extra care could be provided 

pre-surgically (expectation monitoring, information, anxiety management etc), as well as helping 

inform the operator of the likely requirement for pain management intraoperatively. Whilst this 

suggestion is outside the scope of this dataset, it is a valid hypothesis for empirical follow-up. 

 

Fundamentally, the scope of this clinical collaboration was targeted towards investigating the 

presence of severe pain within a subset of hysteroscopy patients. The motivation behind this 

investigation was strongly supported by the clinicians involved, as they were anecdotally struggling 

to understand or manage the pain in these patients. One further implication of our evidence is that 

the clinical team would likely benefit from specific pain management education as a part of their 

clinical training. As described in section 1.1, pain in a medical setting is becoming one of the core 

clinical challenges of the 21st century. Pain can be difficult to assess, treat and explain. Pain can 

also vary across time and individuals, as can the efficacy of analgesia designed to manage it. As 

such, the lack of pain management as a specialism within the medical training pathway will likely 

need addressing as we continue to struggle with pain in the clinic.  
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Whilst this represents an implication too ambitious for this body of work, one related suggestion 

would be to enhance clinical decision making, especially regarding the efficacy of analgesia for 

managing acute pain. As described, patients who received the highest dose of analgesia were those 

who experienced the most pain but were estimated to be in the least pain by their clinicians. This 

likely represents an overestimation of the efficacy of the analgesia, or even their own pain 

management abilities, which have previously been identified as chronic biases within clinicians 

(Lander, 1990; Larue, Colleau, Fontaine, & Brasseur, 1995). In fact, it has been reported that the 

actual reduction of pain scores via local anaesthetic during hysteroscopy is minimal and unlikely to 

be clinically meaningful (Ahmad et al., 2017). By normalising the actual effect of local anaesthetic 

on intraoperative pain, we may better focus the attention of the clinicians within a stressful 

environment by educating them that intense pain can still persist, even during maximal 

pharmacological pain management and alternative strategies or approaches will be required to 

manage the pain of these most vulnerable patients.  

 

5.3. Strengths and Limitations 

5.3.1. Clinical Dataset 

To our knowledge, the dataset described within chapter 2 is the first of its kind to, not only, 

investigate the experience of pain within outpatient hysteroscopy, but also to compare the ratings 

provided by patients to the equivalent estimate of pain from their clinician. The implications of this 

study provide much needed empirical support to ongoing public campaigns of the presence of pain 

during this procedure and will also provide insight towards the clinicians themselves regarding 

strategies for improving pain management. Forming a body of work across clinical and laboratory 

domains facilitates the uptake of modern research innovations into a real-world environment which 

may benefit from them. For example, within this study, it was identified that the current pain 

assessment employed within hysteroscopy may place too much emphasis on the importance of a 
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clinicians estimate, whereas chapters 3 and 4 may propose suitable individual differences measures, 

with empirical basis, that could potentially aid medical professionals in the clinic. Whilst this is a 

research question that would require empirical investigation to confirm, the potential for this 

approach was only made apparent by the completion of these studies. 

 

However, regarding the clinical dataset itself, there are limitations to the methodological design of 

the experiment which restricted the scope of our conclusions. Whilst we have identified that a 

subset of patients will likely experience severe pain during hysteroscopy, the lack of pre-surgical 

psychometrics hampered our ability to predict which patients these are likely to be. Therefore, the 

conclusions of chapter 2 remain that some patients are likely to experience substantial pain during 

this procedure, however, we are currently unable to predict who these are likely to be until the pain 

emerges. Currently, the presurgical assessment for hysteroscopy at the Royal Berkshire Hospital is 

limited to purely medical information. The addition of relevant psychometrics within this 

assessment, such as measures of state anxiety, sleep quality or pain catastrophising could help pre-

emptively predict those who are most vulnerable to the experience of pain, before the initiation of 

the procedure. However, whilst these psychological concepts have previously been linked to 

surgical outcomes (Cremeans-Smith, Millington, Sledjeski, Greene, & Delahanty, 2006; Granot & 

Ferber, 2016; Theunissen, Peters, Bruce, Gramke, & Marcus, 2012), these findings are restricted to 

post-operative pain, rather than intra-operative pain. As many studies investigating pre-surgical 

predictions focus on major surgeries that require general anaesthetic, there is a dearth of literature 

examining the emergence of intrasurgical pain. Therefore, whilst it is unclear whether 

psychometrics would be able to assist clinicians in identifying high-risk patients, this represents a 

research venture with great potential and a key clinical need.  

 

Moreover, the methods underlying the collection of patient pain ratings and clinician pain estimates 

have flaws which undermine the ability to make assured conclusions regarding our results. From an 

initial perspective, the existence of an inverse relationship between these two variables appears 
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illogical. There is little intuition associated with the concept that clinicians systematically rate high-

pain patients as being in no/little pain and vice versa. Upon further investigation, it was concluded 

that this was likely the product of clinicians administering maximal analgesia to those who they felt 

were in the most pain, but alongside an overconfidence in the management of pain, these patients 

were concluded to be in low pain, as a result of the anaesthetic. This narrative is founded upon the 

evidence but requires a degree of supposition to fulfil a logical standpoint and is likely a feature of 

inefficient methodological design. Firstly, the instructions provided alongside the collection of 

ratings and estimates were minimal and unguided. The clinician was given no instructions or 

framing and was given a choice of five verbal indicators under the heading of “Dr’s Pain 

Assessment” (Appendix A). The patient was asked for their rating verbally and asked to rate “the 

level of pain experienced during the surgery”. One simple alteration to this design, that would 

likely help account for the influence of analgesia, is for both clinicians and patients to be asked to 

rate their peak/highest pain rating experienced during the surgery. This would allow us to 

strengthen the scope of our conclusions, as we can be assured that they are rating pain using similar 

framing, whereas in this dataset, our interpretation indicates that patients were rating the peak pain, 

whilst clinicians were estimating an approximation of the average pain, taking into account the 

effect of the anaesthetic.  

 

Relatedly, although studies comparing pain ratings across visual and numeric rating scales report 

similarity of inter-scale ratings, they are often subject of a degree of variance (DeLoach, Higgins, 

Caplan, & Stiff, 1998; Hjermstad et al., 2011). Importantly, these studies uniformly compare these 

two scales with the same degree of sensitivity, for example, two 11-point scales, rather than a 5-

point scale vs a 11-point scale. Therefore, whilst the literature suggests the use of the two scales is 

likely to be similar, the utilisation of varying sensitivity across the scales reduces the certainty with 

which we can be confident in their direct comparison. Follow-up investigation into this area should 

standardise the instructions and rating scales used across both the clinician and patient and 

indicates the importance of having multidisciplinary work, whereby clinicians and researchers 

collaborate to conduct high quality research.    
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Lastly, it is unclear what influence retrospection would have on the decision-making of the pain 

ratings in this study. Rather than taking ratings during the procedure, this study elected to collect 

the pain ratings as soon as possible after the completion of the hysteroscopy. Interestingly, studies 

examining retrospective vs real-time pain ratings during surgery have found substantial variation in 

the pain that was remembered by patients during surgical procedures. For instance, patients 

undergoing colonoscopy and lithotripsy procedures recorded their pain in real-time, as well as 

providing a retrospective rating after the operation (Ntomaris & Bakirtzis, 2015). It was found that 

retrospective ratings were subject to bias and were generally correlated with the peak intensity of 

pain in their real-time ratings, as well as indicating a recency bias towards the final 3 minutes of the 

operation. The implications of this reaffirm the importance of calibrating standardised instructions 

for pain rating collection, as the variation will only likely confound the results if one rating is 

focused on peak intensity, and the other not. If clinicians and patients are each asked to 

retrospectively rate/estimate the peak intensity of pain experienced during the procedure, the 

literature seems to confirm that this judgement is likely to be reliable.  

 

Alternatively, the modelling of real-time pain ratings would provide interesting and accurate 

insight towards the progression of pain throughout the procedure. This would also facilitate 

inspection of the effect of anaesthetic administration on pain ratings, at the moment that it is 

applied. However, the acquisition of real-time ratings would increase the burden upon clinicians in 

an environment that is already stressful. The practical requirements of high intensity data recording 

during the medical procedure would likely require additional staffing, and as such, the utilisation of 

retrospective ratings, alongside standardised instructions, is likely to be the most appropriate 

methodological improvement for this study.  

 

5.3.2. Resting State and Functional Connectivity 

Event-related fMRI designs are well-equipped to derive knowledge regarding specific functions of 

regions associated with a participant’s response to a stimulus. However, when examining 
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individual differences, rs-fMRI is a powerful tool which can monitor intrinsic fluctuations in 

BOLD signal in a participant at rest, with no task or agenda. By utilising this approach, rs-fMRI 

can be used to estimate the functional architecture of an individual’s brain. By applying 

connectivity analysis to rs-fMRI, an experimenter can then compare across a sample to identify 

idiosyncrasies in the connectivity between regions that are associated with variables or conditions 

of interest. Furthermore, by applying a seed-choice to this connectivity analysis, researchers can 

specify the scope of their analysis and apply this towards an a-priori hypothesis; for example, using 

the PAG to specify a hypothesis towards the modulation of pain.  

 

There are multiple strengths associated with the use of rs-fMRI. The characteristic resting state 

networks (RSNs), such as the default mode network (DMN), sensorimotor network or salience 

network (Beckmann, Deluca, Devlin, & Smith, 2005) have been shown to be consistent across 

participants, sessions and even non-human primates or small mammals (Damoiseaux et al., 2006; 

Hutchison et al., 2011; Lu et al., 2012). This confirms that the recorded fluctuations in BOLD 

response do not represent random fluctuations, and that there is characteristic structure to brain 

connectivity at rest. The investigation of variations in these consistent networks has provided a 

useful tool for learning more about clinical conditions, whereby the resting state connectivity of 

patients can be compared to controls (Zhang & Raichle, 2010). An added benefit of rs-fMRI within 

the clinical domain is that the circumvention of a task-based design facilitates the participation of 

all types of patients and people, regardless of cognitive, verbal or physical function. Regarding the 

pursuit of developmental models, for example the transition towards chronic pain, this would allow 

the modelling of children and adolescents which can often be challenging or burdensome within 

task-based designs, but provides vital insight towards how this transition can manifest itself 

neurologically. Given this, as well as the increasing access to imaging tools and the non-invasive 

nature of fMRI, it is likely not surprising that the application of rs-fMRI has been growing in 

popularity within both clinical and research environments over the past two decades (Lv et al., 

2018). 
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However, the development of rs-fMRI techniques, as well as its increase in popularity, has seen a 

similar rise in criticisms of the approach which must be taken into consideration. From a 

methodological perspective, the detrimental influence of movement and physiological artifacts has 

been targeted as a core vulnerability within the design. Tellingly, it has been reported that not only 

can participant movement create spurious functional connectivity correlations, but these 

correlations can be systematic with longer-distance correlations being weakened and shorter-

distance ones being strengthened (Power, Barnes, Snyder, Schlaggar, & Petersen, 2012). 

Worryingly, these artifacts cannot be corrected by current pre-processing movement correction 

techniques; once the data has been collected, the influence of movement is locked into the data. 

Head movement has long been targeted as a core concern within the acquisition of fMRI data 

(Johnstone et al., 2006; Karl, 1994), with movement as small as 0.5mm being able to bias 

correlation estimates (O’Connor & Zeffiro, 2019; Parkes, Fulcher, Yücel, & Fornito, 2018). The 

acquisition within fMRI requires a high degree of spatial accuracy, as well as the maintenance of 

specific temporal magnetic gradients. As the scale of this accuracy is in the realm of milliseconds 

and millimetres, the movement of a head can shift the brain in space, and disrupt magnetic 

gradients (and ultimately, the resulting BOLD output). These influences are not limited to simple 

movement of the head and can also emerge as a feature of non-neuronal physiological movement 

such as respiration and cardiac activity (Murphy, Birn, & Bandettini, 2013). As these influences 

often fluctuate within a repetitive and frequent synchronicity (i.e. heartbeat), these can be very 

challenging to control for in pre-processing and to distinguish from the oscillatory patterns within 

the fMRI time-course. These features are also likely to vary across clinical patients and healthy 

controls, raising concerns about rs-fMRI designs such as these (Griffanti et al., 2016).  

 

To date, there are several options available for managing motion-related artifacts, although none of 

them have been found to wholly effective (Parkes et al., 2018). However, some papers have 

proposed new guidelines for processing the data, which can provide maximal confidence in the 

conclusions of rs-fMRI (Brahms & Wardrip, 2013; Murphy et al., 2013; Smitha et al., 2017). These 

can often be grouped into two categories; 1) External physiology measurements during acquisition 
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and 2) Use of data-based post-acquisition clean-up. Unfortunately, regarding chapters 3 and 4 

within this body of work, the former was not possible as physiological data was not acquired 

during the collection of resting state. This criticism is notably influential within chapter 4 which 

utilised a brainstem seed (PAG) as the brainstem is more susceptible to breathing and cardiac 

movements than the cortex (Brooks, Faull, Pattinson, & Jenkinson, 2013). Within our lab, this 

correction has since been made and physiological data collection has been applied to future 

research projects, but consideration should be given towards the implications of movement artifacts 

on our findings.  

 

While connectivity analysis is a useful analytical tool for evaluating resting state data, it is 

important to note the limitations for the implications of the results. Regarding chapter 4, the data 

supports a conclusion that activity in the PAG was more synchronised with activation in other pain 

processing regions in participants with higher CPM scores. This provides us with a degree of 

insight about how functional connected, yet anatomically distal, regions may operate more 

cohesively, and be associated with a beneficial response. For example, the functional connectivity 

of the PAG with pain processing regions may bely a more synchronised network of pain processing 

and modulation, which facilitates more effective CPM. However, based on this premise alone, we 

are unable to conclude a temporal relationship between these identified clusters and our seed, ergo, 

whether the PAG is operating more efficiently as part of a top-down process, as opposed to 

disseminating more efficiently into the cortex. To be able to address this, analytical tools such as 

dynamic causal modelling (DCM) would be an appropriate strategy to target this research question 

(Friston, Kahan, Biswal, & Razi, 2014). To further investigate the relationship of the PAG within 

descending pain modulation, as associated with CPM, the use of DCM could help elaborate on the 

nature of this relationship. For example, it would help to understand whether the PAG is receiving 

more synchronised input from the somatosensory cortex to facilitate modulation, or alternatively, 

whether the modulation is benefited from efficient detailing of the ascending signal, from the PAG 

to the somatosensory cortex. Ultimately, the result could indicate that the integration is benefiting 
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the relationship between these areas bidirectionally, but the use of a different analytical tool could 

help elaborate on this empirical question. 

 

5.3.3. Conditioned Pain Modulation 

One of the conclusions raised from the results of chapter 2 is that clinical assessments could benefit 

from more comprehensive assessments which may help identify, pre-surgically, those at risk of 

pain sensitivity. CPM is one such assessment, and chapter 4 is able to corroborate this assertion, by 

indicating that individuals with better CPM are associated with heightened integration of pain 

processing and modulation regions. As described in section 1.3.2, CPM has already been identified 

as a useful pre-surgical assessment, associated with outcomes related to surgery (Landau et al., 

2010; Wilder-Smith, Schreyer, Scheffer, & Arendt-Nielsen, 2010; Yarnitsky et al., 2008), analgesia 

efficacy (Edwards et al., 2016; Grosen, Fischer, Olesen, & Drewes, 2013; David Yarnitsky et al., 

2012) and the maintenance of chronic pain conditions (Arendt-Nielsen et al., 2010; Lewis, Rice, & 

McNair, 2012; O’Brien, Deitos, Triñanes Pego, Fregni, & Carrillo-de-la-Peña, 2018; Rabey et al., 

2015). However, criticisms are beginning to emerge regarding its reliability and replicability which 

require addressing to enhance the efficacy of these assessments. Inter-rater reliability has been 

found to fluctuate wildly, with interclass correlation coefficients (ICCs) reported between 0.10-0.76 

(Bossmann et al., 2016). As such, understanding the basis of this lack of reliability is crucial, 

especially if the ultimate goal is clinical application, where it could be expected that a selection of 

different healthcare professionals will be required to assess patients. Test-retest reliability has also 

shown to fluctuate within the literature, with ICCs ranging from 0.34 to 0.69 (Cathcart, Winefield, 

Rolan, & Lushington, 2009; Kennedy, Kemp, Ridout, Yarnitsky, & Rice, 2016; Lewis, Heales, 

Rice, Rome, & McNair, 2012; Wilson, Carvalho, Granot, & Landau, 2013).  

 

Two main proposals have been suggested to attempt to explain this variability. The first is that 

when assessing CPM with a short time interval, the reliability appears to be high, whereas this 

decreases as the interval between tests gets longer (Gehling et al., 2016). The second is that, despite 
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CPMs growing popularity and literature base, the standardisation of the methodology is still 

lacking, with a variety of test or conditioning stimuli employed interchangeably. One specific issue 

with the methodology, is that the original publication which first identified the predictive 

capabilities of CPM adopted a standardised procedure involving thermal test and conditioning 

stimuli (as used within this current body of work) (Yarnitsky et al., 2008). These seminal findings 

motivated a swell of research, using the same method, which were vital for the development of our 

understanding regarding CPM as a clinical assessment (Moont, Crispel, Lev, Pud, & Yarnitsky, 

2011; Moont, Pud, Sprecher, Sharvit, & Yarnitsky, 2010; Nir, Yarnitsky, Honigman, & Granot, 

2012; Yarnitsky et al., 2012). Since then, work has been completed investigating the influences of 

stimulus medium on reliability and the combination of two heat stimuli was associated with the 

lowest test-retest reliability (ICC= 0.34-0.39; (Granovsky, Miller-Barmak, Goldstein, Sprecher, & 

Yarnitsky, 2016; Wilson et al., 2013)), indicative of a classification of poor reliability (Koo & Li, 

2016). To counter this, a CPM consensus meeting was held at a meeting of the European Pain 

Federation (EFIC), where principles for a standardised methodology were proposed, in order to 

promote reliable application of this tool (Yarnitsky et al., 2015).  

 

Based upon these reviews, there are several steps that can be taken to increase the reliability of a 

CPM paradigm, especially if applied to a clinical environment. Firstly, as stability of the CPM 

effect appears to weaken with time, assessments should be completed within a consistent and short 

time frame of the procedure or invention they are required for. Within chapter 4, the duration 

between the sensory pain assessment and MRI was kept to a maximum of 7 days, and this 

consistent and short interval may have benefited the implications of our results. Secondly, new 

studies should consider adopting the EFIC standardised guidelines for CPM by adopting the use of 

mechanical and thermal test stimuli, cold-water conditioning stimuli and the repetition of each test 

stimuli twice with a 10-minute inter-stimulus interval. Lastly, whilst the variation in inter-rater 

reliability is so high, it is unclear how much of an influence this would represent if the initial two 

corrections were made to the design. However, until further empirical work is completed to 
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elaborate on this relationship, an ideal CPM design would utilise the same experimenter across the 

timeline of a trial or experiment. 

 

5.4. Broader Implications and Future Directions 

5.4.1. Enhancing clinical pain assessment 

As described within sections 1.2 and 1.4, clinical pain assessment embodies a core medical 

challenge and the development of multi-faceted assessments are likely to be a suitable strategy for 

improving our current techniques. This thesis represents part of a larger body of work developing 

such an assessment battery, termed the Modulatory Capacity Assessment Battery (MCAB) (See 

Appendix F for overview).  

 

Chapters 3 and 4 both provide initial empirical basis for the inclusion of CPM, trait mindfulness, 

pain thresholds, pain catastrophising and resting state within the MCAB. An empirical 

investigation on emotional modulation and associations with resting-state connectivity of amygdala 

has also been published using this data, to provide support for the use of this in understanding 

individual differences in emotional regulation and pain., (Gandhi, Rosenek, Harrison, & Salomons, 

2019) . Additionally, data has already been published on how gender roles, as measured using the 

Bem Sex-Role Inventory (Bem, 1977), may introduce a recruitment bias in experimental studies, 

with an underrepresentation of males who identify with traditional feminine traits (Mattos Feijó et 

al., 2018). Lastly, the MCAB is currently part of a large-scale project examining whether responses 

of healthy controls to cognitive interventions can be predicted via our assessment, and whether we 

can find neural predictors of sensitisation to pain. This is an essential translational project that will 

help us understand how the MCAB functions predictively regarding psychological interventions 

and would represent an important steppingstone towards clinical application. 
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Although, further work is required to fully validate the battery towards an application within a 

clinical setting, the sensory and psychometric component is already being utilised within an 

experimental clinical trial investigating a new form of embolization surgery for treating knee 

osteoarthritis (Harrison, Little, Gandhi, Kapila, & Salomons, in prep). The initial findings reported 

in chapters 3 and 4 provide a positive start in the validation of this multi-faceted assessment, and 

due to their neuroscientific component, have potentially identified distinct mechanisms of effective 

pain management, specifically regarding pain modulation. The completion of the embolization 

study will hopefully provide clinical insight towards the development of chronic postsurgical pain, 

and ultimately, the MCAB can be used to bolster routine clinical assessments.  

 

5.4.2. Mindfulness and pain 

As concluded from the findings in chapter 3, trait mindfulness may represent a beneficial 

psychological trait for managing pain. Mindfulness-based interventions (MBIs) have also been 

shown to be an effective strategy for improving pain outcomes in the clinic (Kabat-Zinn, 1982; 

Morone et al., 2016). However, within a recent trial examining feasibility, tolerability and 

acceptability of MBIS, it was reported that 22% of patients attended under half of the sessions for 

mindfulness meditation (Day et al., 2018). While ratios of dropout, acceptability and attendance 

were acceptable, the suitability of MBIs for all patients is not comprehensive. Overall, those who 

adhere to a programme within MBIs are likely to experience benefits regarding pain intensity, 

depression, physical function and pain interference (de Jong et al., 2018; Kabat-Zinn, 2003; 

Williams, Eccleston, & Morley, 2012). However, like with all psychological interventions, MBIs 

are not suitable or acceptable for every patient and not all those that complete MBIs experience 

pain relief (Veehof, Trompetter, Bohlmeijer, & Schreurs, 2016; Williams et al., 2012). Developing 

processes to stratify patients based on suitability for the intervention would be of benefit to health 

care providers and, most importantly, the patients themselves. 

 

One research question that this perspective raises, is whether the neural mechanism identified 

within chapter 3 provides any insight towards suitability for MBIs. These participants were naïve to 
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MBIs and meditation, yet those with higher trait mindfulness were associated with variations in 

connectivity which may relate to the way they attend to sensory and cognitive information. 

Therefore, theoretically, are these individuals likely to not gain further benefit for the attentional 

training within MBIs (as they already have this attentional regulatory focus)? Alternatively, is the 

ability to functionally disconnect attentional focus to sensory and cognitive stimuli a prerequisite 

for adhering to the training of MBIs? Will those that lack this mechanism struggle to adapt to this 

attentional disconnect?  

 

One key benefit of using rs-fMRI as in chapter 3, is that it allows us to investigate individual 

differences and to associate our observations with a behavioural marker. Within a clinical setting, it 

is wildly unrealistic to propose assessment that requires access to MRI and the training to evaluate 

resting state connectivity. However, findings from chapter 3 suggest that scores on the Five-Factor 

Mindfulness Questionnaire (FFMQ) are associated with this neural mindfulness mechanism, and as 

such, pre-clinical assessments could be completed using the FFMQ. Based on this, an interesting 

follow-up to chapter 3 would be to investigate whether trait mindfulness serves as a useful 

predictor for outcomes, feasibility and acceptability to MBIs in the clinic. Additionally, we could 

investigate this mechanism further by utilising pre/post rs-fMRI resting to understand if this pattern 

of neural connectivity can be altered via exposure to MBIs. For example, will those that are low in 

trait mindfulness, wherein this mechanism is less pronounced, be able to enhance their attentional 

focus and alter the underlying neural processes? If so, are those who are high in trait mindfulness 

able to further enhance this attentional regulation and further depolarise the functional disconnect 

of attentional regulation of sensory and cognitive information? 

 

5.4.3. Evaluating outpatient surgeries 

As described in chapter 2, increasing pressure on resources within the NHS will necessitate the 

translation of more surgical procedure from in-patient to outpatient pathways. The ability to make 

this transition is a positive indicator of technological and medical advances that facilitate the 
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avoidance of general anaesthetic. However, evidence from chapter 2 indicates that caution should 

be taken and that we need to consider the experience of patients within this decision. The first clear 

implication of this evidence is that hysteroscopy cannot be described as uniformly associated with 

no pain, or even low pain; outcomes are varied, and a subset of patients will likely experience 

severe pain. This study provides support for the campaign to “end barbaric NHS hysteroscopies, 

with inadequate pain relief” (Falkner & Tylko, 2019) by suggesting that patients should be warned 

of the risk of severe pain and that improvements to intraoperative pain management are required to 

curtail the risk and incidence of such pain.  

 

However, while outside the scope of chapter 2, these findings do have broader implications 

regarding other surgeries which are transitioning away from general anaesthetic to outpatient 

pathways. Through the development of flexible, non-metallic surgical instruments, many types of 

surgery or diagnostics are now possible without the need for sedation (Bailey et al., 2019). 

Alongside a target that 75% of elective surgeries in the UK should be completed via outpatient 

pathway (Department of Health, 2000), this will lead to an emerging reliance upon local 

anaesthetic and, as such, pain management will become a critical area of importance.  

 

Procedures such as cystoscopy (diagnosis via insertion into the urethra), carotid endarterectomy 

(removal of plague via insertion into the neck) and laparoscopic cholecystectomy (removal of 

gallbladder via keyhole surgery) all no longer require sedation, but are associated with a risk of 

intraoperative pain (Bailey et al., 2019; Calleary, Masood, Van-Mallaerts, & Barua, 2007; Luchetti, 

Canella, Zoppi, & Massei, 2008; McCutcheon, Orme, Scott, Davies, & McGlade, 2006). One 

follow-up experiment that emerged from the findings of chapter 2 is whether it could be predicted 

which of the patients are those that are likely to experience severe pain during the procedure. 

However, another related question is whether the risk factors that predispose hysteroscopy patients 

to the experience of severe pain during the procedure would also predispose them to pain within 

other surgical procedures. As described in chapter 4, CPM is a psychophysical assessment that 
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quantifies the efficiency of modulatory circuitry in the brain, hence, it can be utilised across a 

variety of medical domains and is not specific to a type of procedure. Whether we could develop a 

similar assessment for intra-operative pain and apply it across multiple outpatient procedures is a 

valid scientific question worth addressing.  

 

5.5. Conclusions 

The body of work contained within this thesis aimed to expand on the available literature regarding 

psychological variables associated with the concept of innate ability to manage pain, and how this 

relates to underlying neural mechanisms. Firstly, we investigated hysteroscopy, a medical 

procedure described as being associated with low pain, or no pain at all (Appendix C). This 

assertion has been queried by clinical collaborators, as well as public campaigns (Falkner & Tylko, 

2019). We investigated outcome data from the Royal Berkshire Hospital’s gynaecological 

department, and found that hysteroscopy was, in fact, associated with a range of varying pain 

intensities, with a minority of patients experiencing no pain. Interestingly, clinical estimates of pain 

were inversely correlated with patient pain ratings, which was a result of special significance, as 

decisions regarding analgesic dose during routine care in this clinic are made based on clinical 

judgement alone.  Our results concluded that the advertisement of hysteroscopy should include 

sufficient warning of the risks of intraoperative pain and that improvements should be made to the 

way pain is managed intra-operatively. This is especially important given the potential presence of 

clinical overconfidence in the efficacy of anaesthetic for pain management.  

 

One of the conclusions from this study was that a pre-surgical assessment for individual differences 

may help identify patients who are likely to be vulnerable to the experience pain. In chapters 3 and 

4, we examined two such individual measures associated with effective pain management. In 

chapter 3, we examined trait mindfulness in healthy controls who were naïve to mindfulness. Our 

results indicated that even with this naivety, intrinsic mindfulness provides a similar beneficial 
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influence regarding cognitive and sensory dimensions of pain as observed in studies investigating 

MBIs and pain outcomes. Trait mindfulness was also associated with heightened connectivity 

between a seed associated with self-referential and attentional processing  and the somatosensory 

cortex  and decreased connectivity between the same seed and the prefrontal cortex. The beneficial 

pain response may emerge via a functional disconnect of attentional regulation between sensory 

and cognitive features of pain, which enables a more present-focussed, active processing of the 

noxious stimulus with a reduced tendency towards ruminative reappraisal.  

 

In chapter 4, CPM was examined, a psychophysical assessment that is described as a proxy for the 

efficiency of descending pain modulation circuitry in the brain. CPM has previously been 

associated with beneficial clinical pain outcomes and may represent an intrinsic beneficial 

influence for pain, via the ability to modulate the ascending noxious stimulus. Our data shows that 

those with higher CPM were associated with heightened connectivity between a key pain 

modulatory region, and multiple areas of the brain known to be associated with the processing of 

pain. This integration of pain processing regions, with a region involved in modulating the 

nociceptive signal, may enable more efficient pain modulation, which could provide a protective 

influence when dealing with pain in the real-world.  

 

Based on our findings, future research should investigate the prediction of intraoperative pain 

within medical procedures performed under local anaesthetic. Regarding hysteroscopy, the way in 

which the procedure is described should be changed to inform of the risk of severe pain. The 

inclusion of predictive measures may facilitate improved intraoperative pain management and 

could potentially help stratify patients into risk categories. Empirically, the identification of two 

distinct mechanisms that appear to provide intrinsic benefit for managing pain is promising. 

However, investigating how to best manage these patients still requires further work. For example, 

follow-up studies should examine whether trait mindfulness can be used as a behavioural marker 

for treatment suitability, and whether there are implications for the use of MBIs in the clinic. This 
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type of improvement would potential help clinical teams manage the on-going challenge of pain 

treatment, but importantly, could also help chronic pain patients find a suitable treatment quicker, 

and help them deal with the burdensome implications of a life with pain.  
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6. Appendices 

Appendix F: Overview of the Modulatory Assessment Capacity Battery (MCAB)  

 

The MCAB consists of four-sessions, alongside the administration of psychometrics, and attempts 

to quantify multiple aspects of an individual’s ability to process and modulate pain. The timeline of 

the MCAB is standardised and presented below (Figure 1). 

 

 

Figure 1. Graphical representation of the timeline and content for the Modulatory Capacity Assessment 

Battery (MCAB), with multiple session breakdown.  

 

The foundation for the MCAB is based upon the initial sensory assessment, during which multiple 

psychophysical tests are completed to calibrate an individual’s pain profile. This pain profile 

contains information about a participant’s pain threshold, as well as the degree of thermal heat that 
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elicits a suitable intensity of pain (usually 6/10 on a numeric rating scale) for use in future tasks. 

One such task is within the brain imaging session that occurs no more than 1 week after the sensory 

assessment. During this task, the participant is administered a range of temperatures around their 

threshold and is asked to provide ratings for pain intensity and sensation for each temperature. The 

aim of this task is to investigate pain processing mechanisms within participants and to understand 

how variations in these neural mechanisms may be associated with individual differences in pain 

processing taken from other components of the MCAB. Within the imaging session, this is also 

where resting state data is collected, as well as a detailed T1 anatomical scan. 

 

After the fMRI session, the participant completes an emotional and cognitive assessment, 

dependent upon a counterbalanced order.  The cognitive assessment consists of a numeric Stroop 

task (Figure 2), whereby the inhibition of a distractor digit is required to provide the correct 

answer.  

 

Figure 2. Numeric Stroop task within the cognitive modulation session of the MCAB. The participant is 

asked to respond with the highest number of digits across any of the three cards. Within this image, 7 is the 

distractor number, and the participant is required to answer 9 (the number of digits on the middle card).  

 

The participant completes a series of trials, with half including the administration of a painful 

stimulus. The difference between pain and no-pain conditions, regarding accuracy and reaction-

time, provide a metric for the efficiency of their cognitive modulatory ability. For the emotional 
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assessment, participants are asked to view a collection of negative and neutral images from the 

International Affective Picture System (IAPS; (Lang, Bradley, & Cuthbert, 1997)). During 

presentation of these images, the participant is administered a painful stimulus and then asked to 

rate the intensity and unpleasantness of the stimulus. The difference between a participant’s ratings 

within neutral and negative conditions provide an estimate of how emotions influence their 

perception of pain. Lastly, throughout the duration of the MCAB, a participant completes a series 

of questionnaires (Figure 1), aimed at quantifying aspects of their psychology which may influence 

their mechanisms of pain processing and modulation. 

 


