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ABSTRACT
We present a method to estimate spatially and temporally variable uncertainty of areal precipitation data.
The aim of the method is to merge measurements from different sources, remote sensing and in situ, into a
combined precipitation product and to provide an associated dynamic uncertainty estimate. This estimate
should provide an accurate representation of uncertainty both in time and space, an adjustment to additional
observations merged into the product through data assimilation, and flow dependency. Such a detailed
uncertainty description is important for example to generate precipitation ensembles for probabilistic
hydrological modelling or to specify accurate error covariances when using precipitation observations for
data assimilation into numerical weather prediction models. The presented method uses the Local Ensemble
Transform Kalman Filter and an ensemble nowcasting model. The model provides information about the
precipitation displacement over time and is continuously updated by assimilation of observations. In this
way, the precipitation product and its uncertainty estimate provided by the nowcasting ensemble evolve
consistently in time and become flow-dependent. The method is evaluated in a proof of concept study
focusing on weather radar data of four precipitation events. The study demonstrates that the dynamic areal
uncertainty estimate outperforms a constant benchmark uncertainty value in all cases for one of the
evaluated scores, and in half the number of cases for the other score. Thus, the flow dependency introduced
by the coupling of data assimilation and nowcasting enables a more accurate spatial and temporal
distribution of uncertainty. The mixed results achieved in the second score point out the importance of a
good probabilistic nowcasting scheme for the performance of the method.

Keywords: data assimilation, precipitation measurements, uncertainty estimate, rain radar, nowcasting

1. Introduction

Precipitation information with an accurate uncertainty
estimate is highly relevant for research areas with special
interest in areal precipitation information. The uncer-
tainty information is needed for example to generate
precipitation ensembles as input for probabilistic hydro-
logical modelling (e.g. Krajewski and Ciach, 2006;
Germann et al., 2009; Rico-Ramirez et al., 2015; Park
et al., 2016) or nowcasting (e.g. Atencia and Zawadzki,
2015; Dai et al., 2015). Furthermore, precipitation obser-
vations are a valuable source of information for data

assimilation in numerical weather prediction (e.g. Dowell
et al., 2011; Chang et al., 2014; Bick et al., 2016). Recent
studies stress the importance of correctly specifying errors
in this context (e.g. Waller et al., 2016, 2017).

To assess the reliability of any observation, it is crucial
to know its uncertainty. For precipitation observations,
accurate measurements as well as a reliable estimate of
their uncertainty are an ongoing topic of research.
Observations from weather radars are of particular inter-
est because they provide valuable areal precipitation
information with high spatial and temporal resolution, in
contrast to in situ observations. However, radar measure-
ments are affected by numerous sources of error that
diminish the accuracy of the provided precipitation quan-
tification, e.g. calibration errors, noise, interferences, clut-
ter, and attenuation. Despite the use of correction
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algorithms and filters on radar measurements, residual
error remains inherent to the data. In addition, the esti-
mation of rainfall intensity from radar data requires a
relation between measured reflectivity and rain rate which
is empirical and uncertain. Therefore, accurate rainfall
precipitation quantification is not possible with radar
measurements only. An extensive review of uncertainty
sources in single polarisation radar measurements is given
in Villarini and Krajewski (2010) and citations therein.

Improvements in the precipitation estimate are achieved
by combining measurements from different sources, e.g.
radar and rain gauge data, to take advantage of as much
information as possible. Since no observation is error-free,
they must be weighted with their respective uncertainty in
order to obtain a statistically sound combined precipitation
product. Many studies investigate the statistical combination
of precipitation data. They rely on computing the optimal
estimate of precipitation by minimising its error variance.
The majority of the applied techniques focus on a static, i.e.
time-independent, merging approach, where precipitation
measurements are combined for every available time step
independently. Most merging approaches use kriging or
cokriging schemes to spatially merge radar and rain gauge
data (e.g. Krajewski, 1987; Creutin et al., 1988; Haberlandt,
2007; Berndt et al., 2014). Kriging methods acknowledge
the fact that precipitation observation errors are spatially
correlated by the specification of variograms. These vario-
grams are modelled based on theoretical considerations, and
do not consider the temporal structure of the errors. Less
commonly used are variational data assimilation methods
that describe the correlation between observation errors
through covariance matrices. These methods can easily be
extended to include further observations. For example,
Bianchi et al. (2013) use a variational approach to estimate
precipitation from radar, gauge and microwave link data.

Some studies additionally take into account the tem-
poral correlation of precipitation measurement errors
while merging radar and gauge data. The temporal struc-
ture of the errors can be considered either by modelling
spatio-temporal variograms in the kriging approach (e.g.
Sideris et al., 2014, Pulkkinen et al., 2016) or by using
Kalman filtering that combines knowledge on error var-
iances from previous time steps for the current weighting
of observations (e.g. Smith and Krajewski, 1991;
Chumchean et al., 2006). The latter approach is also used
by Grum et al. (2005) with the addition of microwave
link data. Even though these methods consider temporal
error structures in the merging process, the continuous
evolution of the precipitation system is not represented.

Very few studies include a forecast model that evolves
the system’s state to take advantage of previous know-
ledge of the system. The coupling of a forecasting model
can be done using Kalman filtering or variational data

assimilation methods. In addition to the merging of
observations, the forecasting component allows for the
extrapolation of information to data-void regions.
Advection is commonly used as an approximation for the
evolution of precipitation systems. Zinevich et al. (2009)
and Mercier et al. (2015) present frameworks to estimate
areal precipitation from microwave and television satellite
links, respectively. Fielding et al. (2014) retrieve three-
dimensional cloud properties from cloud radar and radi-
ance observations. These studies integrate the temporal
evolution of the system into the statistical merging of
observations with a focus on retrieving the optimal com-
bined estimate of the system’s state. However, they do
not focus on an assessment of the uncertainty associated
with the resulting precipitation field.

Considering radar precipitation data, uncertainty esti-
mation is extensively studied outside the context of com-
bined precipitation products. Numerous studies address
the quantification of precipitation data uncertainty to
overcome the deterministic view on radar precipitation
measurements. The basis for the description of areal pre-
cipitation measurement errors mostly is an empirical,
statistical study of radar and reference surface measure-
ments. Some methods only provide static information
(Krajewski and Ciach, 2006), while more recent
approaches also allow for the description of the spatial
and temporal structure of the errors through the descrip-
tion of the error covariance (e.g. Ciach et al., 2007;
Germann et al., 2009; Villarini and Krajewski, 2009; Dai
et al., 2014). Such spatial uncertainty description allows
for a probabilistic assessment of precipitation information
suitable for applications. However, the resulting error
description is neither dynamical nor flow-dependent.

Here, we present a method that connects both aspects: pre-
cipitation data merging and probabilistic uncertainty assess-
ment. The method allows for the combination of
precipitation observations considering their respective uncer-
tainty and takes advantage of the additional information pro-
vided by the temporal evolution of the system. At the same
time, the method yields an areal uncertainty estimate for the
resulting precipitation product. Because of the included tem-
poral evolution, the uncertainty estimate is variable both in
space and time and is flow-dependent. Thus, this method
aims at providing both an accurate precipitation product and
an improved areal and dynamical uncertainty estimate.

Our approach uses data assimilation as a tool to merge
precipitation observations. This study considers radar
data with different spatial resolution, but the method can
be extended to incorporate any additional source of pre-
cipitation observation. Data assimilation techniques allow
for statistically combining all available information con-
sidering its uncertainty within a temporal evolution
model. The Local Ensemble Transform Kalman Filter
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(LETKF, Bishop et al., 2001; Ott et al., 2004; Hunt
et al., 2007) used here is especially suited for the purpose
of this study. Its main feature is the description of uncer-
tainty through covariance matrices estimated by an
ensemble approach. The additional use of localisation in
the LETKF reduces the required number of ensemble
members to adequately represent the covariances.
Through both the use of an ensemble and the localisa-
tion, the LETKF is computationally much more afford-
able for our problem size than the standard Kalman filter
approach (Kalman, 1960; Kalman and Bucy, 1961;
Talagrand, 1997). Furthermore, the ensemble approach
can handle non-linear forecast models. In the presented
setup, the LETKF is coupled to an ensemble nowcasting
model to provide information about the displacement of
precipitation over time.

The added value of the presented method is demon-
strated in four experiments with observations from an X-

band radar network. The method’s functioning, including
the LETKF and the coupled nowcasting scheme, is pre-
sented in Section 2, Section 3 briefly presents the data.
The performed experiments are introduced in Section 4
and the obtained precipitation product is evaluated in
Section 5.

2. Method

The combination of a data assimilation method with a
nowcasting method introduces flow dependency to the
areal uncertainty estimate, as known uncertainty is
propagated in time and space. In this way, the method
yields a situation-dependent uncertainty estimate whose
structure follows the evolution of the system. The overall
functioning of the method is outlined in the flowchart in
Fig. 1. The ensemble data assimilation cycle allows for
obtaining a combined precipitation product and a

Fig. 1. Flowchart illustrating the data assimilation cycle of the method for uncertainty estimation. Combined precipitation product
and uncertainty estimate are obtained from the analysis ensemble mean and spread, respectively.
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corresponding uncertainty estimate from the ensemble
mean and spread, respectively. The data assimilation
scheme (LETKF) and the coupled nowcasting scheme are
introduced in the following.

2.1. The LETKF

Data assimilation aims at combining different sources of
information about an observed system, weighted by their
respective uncertainty, in order to get the best possible
estimate of the system’s true state. The data assimilation
method used here is the LETKF that allows to work with
an ensemble of moderate size through a localisation
approach. It was first introduced by Hunt et al. (2007)
based on previous work by Bishop et al. (2001) and Ott
et al. (2004). The complete set of LETKF equations (see
Hunt et al., 2007 for a complete derivation), consisting of
the analysis and forecast steps, are given as

Analysis: x̂a
k ¼ x̂b

k þ Kk yok�Hkx̂b
k

h i
Za

k ¼ Zb
kT

LETKF
k

TLETKF
k ¼ Ck In þDk½ ��1=2CT

k

xak;i ¼ x̂a
k þ

ffiffiffiffiffiffiffiffi
l�1

p
Za

k;i

Forecast: xbkþ1;i ¼ M xak;i
� �

with Kk ¼ ~P
b
kH

T
k Hk

~P
b
kH

T
k þ Rk

h i�1

and Za;b
k ¼ 1ffiffiffiffiffiffiffiffi

l�1
p xa;bk;1�x̂a;b

k xa;bk;2�x̂a;b
k . . .xa;bk;l�x̂a;b

k

� �
;

(1)

where Ck is the matrix of eigenvectors of
ZbT

k HT
kR

�1
k HkZb

k and Dk is a diagonal matrix with the
corresponding eigenvalues. In order to get the analysis
ensemble mean after the update, x̂a

k; the background

ensemble mean before the update, x̂b
k; is corrected by a

term formed of the gain matrix Kk and the innovation
vector yok�Hkx̂b

k: The gain matrix Kk weights the infor-
mation by taking into account the Gaussian observation
and background model error covariance matrices, Rk and
~P
b
k; respectively. In the context of the LETKF, ~P

b
k is the

sample covariance matrix obtained from the background
ensemble perturbations, i.e. the deviations from the
ensemble mean. The innovation vector holds the differen-
ces between observations yok used for assimilation in the
considered time step and the ensemble mean x̂b

k in obser-
vation space. Hk is the observation operator mapping
model variables to observation space for comparison.
The scaled analysis ensemble perturbations Za

k are
obtained from the background ensemble perturbations Zb

k

and the transformation matrix TLETKF
k : The derivation of

TLETKF
k is comprehensively described in Hunt et al.

(2007) and Livings et al. (2008). The analysis model
ensemble after the update, xak;i with i ¼ 1; . . . ; l denoting
the member, is obtained by adding the new analysis per-
turbations, Za

k;i; to the analysis ensemble mean. The per-
formed steps are summarised in Fig. 1. The analysis is
performed independently at each grid point to increase
the degree of freedom of the analysis otherwise limited by
the low-rank approximation of the ensemble. After per-
forming the analysis step, the data assimilation cycle is
completed by running a forecast until the next update
time step. The forecast is performed by applying the fore-
cast model M on every model ensemble member separ-
ately, which allows for non-linear forecast processes. In
the case of the presented study, the system to be
described is areal precipitation information, the forecast
model used to predict the areal precipitation evolution is

Fig. 2. Example of input precipitation images for template-matching for the 3 July 2013. (a) 15:23:00 UTC and (b) 15:26:00 UTC and
resulting displacement vector field, thinned out to every tenth pixel in each direction in this representation.
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the ensemble nowcasting scheme introduced in the follow-
ing section.

2.2. Ensemble nowcasting

The nowcasting scheme used for the proof of concept
study is a simple approach based on template-matching
between time-lagged precipitation images. The original
algorithm, the Automated Precipitation Extrapolator
(APEX), was developed by van Horne (2003) and is
adopted here with some modifications.

The algorithm considers two consecutive precipitation
images and computes an estimate of the precipitation dis-
placement from the first to the second image. A correl-
ation is calculated between the second image and
spatially shifted versions of the first image. The spatial
shift is performed in every direction and with different
amplitudes and the shift yielding the best correlation
allows for estimating the displacement of the precipitation
structure between both images. The resulting displace-
ment vector field indicates the precipitation motion direc-
tion and speed, as demonstrated in Fig. 2. The computed
displacement between both images is then used to
extrapolate the precipitation structure to its position at
future time steps.

The complete displacement vector field (one vector per
pixel in the precipitation field) is used to compute the
precipitation forecast. Displacement vector lengths are
scaled to the desired forecast time step and the future
position of the precipitation field in the second image is
predicted accordingly. In order to get a smooth,

continuous precipitation field after the advection, a 3� 3
window of pixels around each pixel is shifted to its new
position. If more than one precipitation value is attrib-
uted to a pixel of the forecasted precipitation field, values
are averaged, as illustrated in Fig. 3. The APEX algo-
rithm computes a hierarchical correlation analysis consid-
ering first the whole domain of the images and then
smaller subregions. Due to the computation of local dis-
placement vectors at each pixel covered with precipita-
tion, some divergence and rotation is allowed in the
vector field. The original precipitation can therefore be
distorted during the forecasting process, accounting for
some internal variability in the structure of the precipita-
tion field. Precipitation intensity can change compared to
the initial field due to the averaging in the forecasting
step, but for the sake of simplicity no cell growth and
decay model is integrated in the nowcasting scheme. The
prediction of the internal evolution of precipitation sys-
tems is complex. More elaborated probabilistic nowcast-
ing methods which explicitly try to account for the
uncertainty arising from growth and decay of precipita-
tion cells exist (e.g. Bowler et al., 2006; Atencia and
Zawadzki, 2014). In a further step subsequent to this
study, it is possible to extend the presented nowcasting
method to include this aspect, or even to replace it with a
method of choice.

To create an ensemble forecast from the deterministic
nowcasting scheme, we generate an ensemble of displace-
ment vector fields from the deterministic field by ran-
domly perturbing its x- and y-components. The
perturbations are multiplicative and drawn from a

Fig. 3. Schematic representation of the forecasting step for three pixels, exemplary. 3� 3 windows of pixels (initial position left) are
shifted according to the local motion vectors calculated for the middle pixel. If these pixel windows overlap in the forecast (new position
right), pixel values (precipitation intensity or motion velocity) are averaged to get the forecasted field. In this example, light grey pixels
are averages over two values, dark grey over three values.
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Gaussian distribution with mean 1 and variance 0.4. The
aim of the ensemble generation process is to produce a
smooth perturbation of the displacement vector field.
Therefore, the random noise from which the perturba-
tions are built must be spatially correlated to avoid fuzzy
and inconsistent displacement vectors. To create the pat-
tern of the spatial correlation, areas with high wind
speeds are assumed to behave similarly, i.e. perturbations
applied to vectors with large displacement magnitude are
strongly correlated. In this way, the structure of the pre-
cipitation field is reflected in the correlation of the
applied random noise. The ensemble size for this study is
50 (results with smaller or larger ensemble size do not dif-
fer qualitatively from the results presented here). The
detailed procedure as well as a sensitivity study for the
chosen variance of the Gaussian noise is described in
Merker (2017).

3. Data

This study uses radar reflectivity data from a research
radar network. Both the network and the data are thor-
oughly described in Lengfeld et al. (2014), together with
all applied post-processing algorithms (including calibra-
tion and attenuation correction). The radar network com-
prises four X-band radars with a range of 20 km. Data
are available as single radar product with 1� azimuthal,
60m radial and 30 s temporal resolution, and in the form
of a network composite product. The composite data
have the same temporal resolution as the single radar
data and a spatial resolution of 250m� 250m on a
quasi-Cartesian grid, with a total of 297� 213 pixels. The
quasi-Cartesian grid is computed on rotated spherical

coordinates with rotated pole at 36.0625� E, 170.415� S
(refer to Lengfeld et al., 2014 for details on the composite
generation). The location of the four radars, the domain
covered by the radar composite and the position of add-
itional micro rain radars (MRR) and gauges for reference
purposes are indicated in Fig. 4.

The Cartesian composite radar data are used to initial-
ise the nowcasting method presented in Section 2.2. For
simplicity and because the coordinate system is irrelevant
to the presented study, all figures will be presented in
rotated coordinates.

Observations considered for assimilation in this study
are taken from single radar measurements (X-band radar
MOD in Lengfeld et al., 2014, lower centre circle in Fig.
4). Observations are thinned to a 5000m� 5000m grid
(20� 20 grid boxes in the nowcasting domain) within the
reach of X-band radar MOD, resulting in 52 observation
locations (Fig. 5). Each reflectivity observation is selected
from the radar’s polar grid by using the nearest neigh-
bour method. These observations are illustrative for any
additional information about the system and could be
extended by e.g. data from a rain gauge network in a fur-
ther development. In the setup of this study, observations
are treated similarly to radar data, which is most com-
monly thinned or superobbed on a spaced, regular grid
for direct radar data assimilation. This is done to reduce
computational costs and representativity disparity and
especially to avoid correlation of observation errors (e.g.
Alpert and Kumar, 2007; Simonin et al., 2014; Bick
et al., 2016; Waller et al., 2016). In addition, thinning of
dense observations is needed to obtain an analysis ensem-
ble not completely dominated by the amount of observed
values, and to prevent collapsing of the ensemble spread.

Fig. 4. Map of the radar network. X-band radar locations and maximum range in black, MRR locations in orange. X-band radars
and associated MRRs are installed at BKM, HWT, MOD and QNS sites. Three MRRs are installed between X-band radars, at sites
WST, MST, and OST, from west to east respectively, together with reference rain gauges.
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Ground observations are not used here to avoid issues
induced by point-to-area differences and the empirical
relation between precipitation intensity and radar reflect-
ivity. Both would add additional uncertainty to the study
and increase the complexity of results to a level that is
beyond the scope of the intended proof of concept.

Observation errors on the thinned 5000m� 5000m
grid are assumed to be uncorrelated and with constant
error variance. This is a simplifying assumption, espe-
cially for radar data. The estimation of the full radar
observation error statistics is a complex and ongoing
topic of research (e.g. Xu et al., 2007; Berenguer and
Zawadzki, 2008; Waller et al., 2016). Recent studies show
the benefits of more sophisticated error models, which
allow for less thinning or superobbing of the data and
can significantly improve the quality of the analysis as
shown for example in Jacques and Zawadzki (2014,
2015). However, the use of uncorrelated error statistics
still is a state-of-the-art procedure (e.g. Chung et al.,
2009; Simonin et al., 2014; Bick et al., 2016) and will also
be applied here. The error variance of the radar data is
estimated by comparing data from the network presented
in Lengfeld et al. (2014) to reference measurements from
MRR in order to get an error variance specific to the
radar data used. The error variance is found to
be 11.32 dB2.

We focus on reflectivity data to avoid additional
uncertainty coming from the empirical conversion from
reflectivity to rain rate. The logarithmic reflectivity unit
dBZ is used throughout the study. For reference, a differ-
ence of 1 dB translates approximately to a factor 1.25,
and 2 dB to a factor 2 difference in non-logarithmic

reflectivity Z. For rain rate in mm h–1, these differences
correspond to roughly a factor of 1.15 and 1.54, respect-
ively. Following the example of Bick et al. (2016), the ‘no
rain’ value is set to 5 dBZ, approximately 0.07mm h–1,
and all reflectivity data are thresholded accordingly
throughout the study.

4. Experiments

To assess the uncertainty estimate obtained by the
method introduced in Section 2, we run coupled nowcast-
ing-assimilation experiments using reflectivity data pre-
sented in Section 3. The experiment setup and the
detailed evaluation of the method in the following
Section 5 is first presented based on a precipitation event
monitored by the radar network on 3 July 2013 between
15:30:00 UTC and 16:00:00 UTC (case 1), in which a
non-stratiform cell passes through the radar network
area. Thereafter, results from three additional precipita-
tion events are included in the evaluation to cover rele-
vant regimes. Stratiform rain dominates on the 11 August
2013 (18:30:00 UTC–19:00:00 UTC, case 2), convective
precipitation characterise the event on the 13 August
2013 (09:30:00 UTC–10:00:00 UTC, case 3) and the last
case on the 17 August 2013 (03:30:00 UTC–04:00:00
UTC, case 4) features a frontal passage. An impression
of these precipitation events is given in Fig. 6.

As presented in Section 3, the ensemble forecast for
the data assimilation experiment is initialised with radar
composite data. Considering the first case of the study,
forecast start is 15:26:00 UTC. The displacement vector
field for the forecast is computed between composite

Fig. 5. Locations of thinned precipitation observations created for assimilation from data of the X-band radar at MOD site (Lengfeld
et al., 2014) on a 5000m� 5000m grid (dots) and locations for verification on a 5000m� 5000m grid shifted by 2500m north and
east (crosses).

ESTIMATING THE UNCERTAINTY OF AREAL PRECIPITATION 7



Fig. 6. X-band radar network composite reflectivity data (Lengfeld et al., 2014) for the four cases presented in the study: Case 1 on
the 3 July 2013 15:23:00 UTC (a) and 15:26:00 UTC (b), case 2 on the 11 August 2013 18:30:00 UTC (c), case 3 on the 13 August 2013
09:30:00 UTC (d) and case 4 on the 17 August 2013 03:30:00 UTC (e).
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radar images at 15:23:00 UTC (Fig. 6a) and 15:26:00
UTC (Fig. 6b). The determined global displacement is
three pixels towards the east and four pixels towards the
north, i.e. u ¼ 4.2m s–1 and v ¼ 5.6m s–1 respectively.
The speed of the precipitation cell is thus estimated to be
7m s–1. The forecast is performed for 50 ensemble mem-
bers until 16:00:00 UTC in time steps of 2min.

Observations used for assimilation are selected from
single radar data and thinned to a 5000m� 5000m grid,
as indicated in Section 3. We assimilate observations at
the 52 locations resulting from the radar data thinning
every 4min, i.e. every two time steps, from 15:30:00 UTC
to 16:00:00 UTC. This assimilation frequency is similar
to the temporal resolution of 5min of the C-band radar
data made available operationally by the German
Meteorological Service (DWD) and the assimilation fre-
quency used in Bick et al. (2016). The data assimilation
cycle ends with a new ensemble nowcast started after the
analysis step. For this new nowcast, we compute displace-
ment vector fields from the precipitation fields at the cur-
rent and the previous analysis time for each ensemble
member, without applying additional perturbations.

The LETKF further requires the specification of an
observation influence radius. During the analysis step,
model grid points are affected by all observations within
the influence radius. Other observations are ignored. We
use an influence radius of 4000m, which ensures a com-
plete coverage of grid points within X-band radar MOD
reach. Therefore, every grid point in this area is affected
by the update during data assimilation which favours a
smooth precipitation analysis. An analysis of the sensitiv-
ity of the system with respect to different observation
influence radii can be found in Merker (2017).

To illustrate the system’s behaviour, the performed
data assimilation cycle is shown in Fig. 7 for one arbi-
trary observation point in the model domain, indicated
by a cross in Fig. 8. The uncertainty of the ensemble

mean is indicated by the ensemble spread, which is
defined here as the ensemble standard deviation. During
the data assimilation cycle, the analysis ensemble spread
depends on the forecast uncertainty described by the
background error covariance matrix, and on the observa-
tion uncertainty described by the observation error
covariance matrix. The forecast uncertainty results from
the errors associated with the extrapolation scheme used
for the precipitation forecast. The ensemble spread is zero
at the beginning of the forecast because all ensemble
members are initialised with the same reflectivity field
(Section 2.2). After one time step, ensemble members
start to diverge and the standard deviation of reflectivity
at the considered location increases. At time steps where
observations are available, the assimilation pulls the
ensemble mean towards the observation and reduces the
ensemble spread at grid points influenced by the observa-
tions. The flow-dependent background error covariance
matrix ~P

b
and the observation error covariance matrix R

(Eq. 1) determine the effect of this new information on
the ensemble at affected grid points. The observation
error covariance used for assimilation is constant in this
study and was derived from statistical data analysis
(Section 3). After the assimilation step, the ensemble
evolves according to the forecast model until the next
assimilation is performed. The model ensemble and its
spread are subject to the forecast and therefore the uncer-
tainty information contained in the ensemble spread
develops a flow dependency. In this way, the presented
method allows for a physically consistent propagation of
uncertainty in time.

5. Verification

The spatial structure and temporal evolution of the
uncertainty information is the main asset of the method
presented here. The structure and evolution of the

Fig. 7. Reflectivity ensemble mean evolution (dark blue line) and uncertainty range (light blue envelope, ± one ensemble standard deviation)
throughout the data assimilation cycle at observation grid point 0.041�E, – 0.053�N (indicated by a cross in Fig. 8) and observations (orange
whiskers, ± observation error standard deviation).
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uncertainty is described by the ensemble spread at ana-
lysis time, which is shown together with the ensemble
mean as an example for two time steps in Fig. 8. The
potential of this uncertainty estimate is demonstrated in
the following. The new uncertainty estimate is shown to
be more accurate than a constant benchmark value,
which assumes a constant uncertainty to be representative
for the precipitation system. Prior to that, a short verifi-
cation of first-order statistics is performed based on pre-
cipitation case 1.

Verification is performed at locations selected on a
5000m� 5000m grid, similar to the assimilation loca-
tions. The verification grid is shifted by 2500m in each
direction with respect to the assimilation grid in order to
select independent observation locations for assimilation

and verification (Fig. 5). The verification grid consists of
47 grid points within X-band radar MOD range.
Reflectivity forecasts and observations are compared at
verification grid points at each of the eight assimilation
time steps, after the update step. Thus, the comparison
comprises 376 data points in total.

The overall root mean square error (RMSE) of the
forecast ensemble mean for case 1 amounts to 4.49 dB
and the bias, defined here as the mean error of the
ensemble mean compared to the observations, to 1.54 dB.
These forecast statistics can be improved slightly using
the probabilistic ensemble information and applying a
80% precipitation probability threshold to the forecast
data, i.e. setting the ensemble mean for grid points with
precipitation probability lower than 80% to the ‘no rain’

Fig. 8. Spatial distribution of the reflectivity ensemble mean (with contour highlighting the region in which 80% of the ensemble
members show precipitation above 5 dBZ, top row) and spread (bottom row), i.e. ensemble standard deviation, for the analysis at (a, c)
15:34:00 UTC and (b, d) 15:46:00 UTC on the 03 July 2013. Circles indicate observation influence radii, the cross indicate the location
of the observation location used as an example in Fig. 7.
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value of 5 dBZ. Then, RMSE and bias decrease to
4.44 dB and 1.14 dB, respectively, showing a slight
improvement over using model ensemble mean without
integrating probabilistic information. The bias indicates
an overestimation of precipitation by the forecast model.
This is an expected feature considering the simple
extrapolation scheme used for the study. Cells can be
spread over different regions among the ensemble

members. Especially cell maxima then lead to an overesti-
mation of the precipitation by the ensemble mean com-
pared to colocated observations. The bias is small
compared to the random uncertainty reflected by the
RMSE and will have little impact on the results of the
proceeding data assimilation experiments. The RMSE of
4.44 dB is approximately 1 dB larger than the estimated
accuracy of the original radar data of 3.36 dB (Section 3).

Fig. 9. Comparison of absolute precipitation product (model ensemble mean) error and ensemble spread (model ensemble standard
deviation) at the available 47 verification grid points and eight analysis time steps for (a) case 1, (b) case 2, (c) case 3 and (d) case 4.
Ensemble spread values are divided into bins of 0.5dB width, boxes indicate the median (blue line) and the first and third quartiles.
Data distribution is shown in frequency histograms, the solid grey lines show the cumulative distribution function.
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Considering the simplicity of the nowcasting scheme used
here and the forecast range of 30minutes, results of the
forecast ensemble mean are found to be reasonable.

To characterise the quality of the areal uncertainty
estimate of the combined precipitation, we analyse the
statistical relation between forecasted uncertainty, i.e. the
ensemble standard deviation, and the actual error, i.e. the
deviation between forecasted and observed reflectivity. In
a so-called spread-skill diagram, the perfect relation
between forecast uncertainty and forecast error is a one-
to-one relation. The uncertainty forecast perfectly
describes the uncertainty of the system if, statistically, the
actual forecast error equals its forecasted uncertainty
(Leutbecher and Palmer, 2008). For all verification grid
points, absolute forecast error and corresponding ensem-
ble spread are compared in a spread-skill diagram (Fig.
9). Ensemble spread is binned into classes of 0.5 dB width
from 0 to 8 dB. Statistics of the absolute forecast error
distribution within these classes are described by the
median and the first and third quartiles.

Most data points show ensemble spread and absolute
product error below 0.5 dB. This category is dominated
by grid points without precipitation, both in the forecast
and the observations. Overall, there is a clear correlation
between ensemble spread and absolute product error,
especially for cases 1 and 3, hinting at a good uncertainty
representation by the ensemble spread. In the range
between 0 and 3 dB ensemble spread, the forecast model
ensemble is overdispersive because ensemble spread is
substantially larger than the median of the absolute prod-
uct error distributions (median below the one-to-one
line). This is due to non-zero model forecast values at
grid points outside the observed (true) location of the

precipitation cell. Most of the ensemble members cor-
rectly predict no precipitation for those grid points, but
some have higher reflectivity values because of the differ-
ently predicted displacements of the cell. The ensemble
standard deviation is more strongly impacted by these
few high reflectivity values than the ensemble mean.
Therefore, the ensemble standard deviation is larger than
the deviation between ensemble mean and observation.

Two scores are defined to quantify the potential of the
ensemble spread to correctly represent the uncertainty of
the precipitation product in time and space. The aim is to
prove that the spatial and temporal structure of the
uncertainty estimate is not random, but actually provide
valuable additional information. The first score indicates
the amount of data points for which the absolute product
error falls within the uncertainty range predicted by the
ensemble spread—the percentage of ‘hits’. The ensemble
spread is interpreted as the tolerated margin of error. The
score

REL ¼ 100
N

XN
i¼1

1; ifei � ri

0; otherwise

�
(2)

represents the reliability of the product uncertainty esti-
mate, where ei and ri are the absolute forecast error and
the uncertainty estimate for each available verification
data point i, respectively. The second score measures the
deviation from the perfect spread-skill relation, i.e. from
a one-to-one relationship. It is calculated following the
definition of the root mean square deviation between
ensemble spread and absolute model error at the verifica-
tion grid points,

DEV ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN
i¼1

ei�rið Þ2
vuut : (3)

To assess the areal uncertainty estimate for the com-
bined precipitation product, above scores are computed
with the spatially and temporally variable product uncer-
tainty described by the ensemble spread after the update
step at all available verification grid points. The reliability
RELvar is computed with ri ¼ rvar;i; where rvar;i is the
product ensemble spread, and ei; the corresponding abso-
lute difference between forecast ensemble mean and
observations from X-band radar MOD at the same grid
points and time. For the spread-skill deviation DEVvar; it
is taken into account that the relation between ensemble
spread and forecast skill is a statistical one. Therefore,
the ensemble spread rvar;i is binned into j classes of
0.5 dB width with class centre rbin;j; as shown in Fig. 9.
DEVvar is then computed using rbin;j and the median of
the model error distributions in each class, ebin;j: This
also reduces the effect of outliers on the DEV score.

Table 1. Results for REL (%) and DEV (dB) scores for variable
uncertainty estimate rvar and the constant benchmark value �r:

Scores Results

RELvar 77.13
Case 1 RELconst 56.38
�r ¼ 2.71 dB DEVvar 1.25

DEVconst 3.17
RELvar 69.68

Case 2 RELconst 58.24
�r ¼ 3.10dB DEVvar 2.55

DEVconst 1.44
RELvar 79.23

Case 3 RELconst 72.87
�r ¼ 2.37 dB DEVvar 4.56

DEVconst 7.93
RELvar 74.20

Case 4 RELconst 68.35
�r ¼ 3.28 dB DEVvar 2.76

DEVconst 2.01
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The benchmark against which the spatially and tem-
porally variable uncertainty estimate gained by the flow-
dependent ensemble spread is evaluated is a constant
uncertainty estimate valid for all grid points at all-time
steps. Constant uncertainty information still is most com-
mon for precipitation data from radar or other sources
(e.g. Tong and Xue, 2005; Bick et al., 2016). To facilitate
the comparison, the constant uncertainty should conserve
the total amount of uncertainty given by the variable
uncertainty estimate among the considered data points.
In this way, the focus of the analysis is on the ability of
the presented method to correctly distribute the available
amount of uncertainty information in space and time.
Therefore, the chosen reference uncertainty estimate is a
mean ensemble spread of the system, �r; calculated as an
average over the ensemble standard deviation at verifica-
tion grid points, including all analysis time steps. In order
to compare the spatially and temporally variable uncer-
tainty estimate of the combined precipitation product
rvar;i to the benchmark, RELconst and DEVconst are com-
puted from Eqs. 2 and 3 by replacing ri by the constant
value for �r:

Both scores are summarised in Table 1 for the four
precipitation events introduced in Section 4: case 1 with
�r ¼ 2.71 dB (convective), case 2 with �r ¼ 3.10 dB (strati-
form), case 3 with �r ¼ 2.37 dB (convective) and case 4
with �r ¼ 3.28 dB (frontal). The reliability REL of the
uncertainty forecast improves for all four cases when
using the areal uncertainty estimate provided by the data
assimilation cycling method compared to using constant
benchmark uncertainty estimates. RELvar improves by
36.80 (19.64, 8.73, 8.56) percentage points compared to
RELconst for case 1 (case 2, case 3, case 4). This means
that estimate rvar;i provides a more accurate distribution
of uncertainty among the system than the reference �r:
The resulting information on the reliability of the precipi-
tation product is therefore improved in all analysed cases,
i.e. the tolerated margin of error represented by ri is sat-
isfied more often.

The results of the DEV score do not show such a clear
signal. DEVvar is reduced by 1.92 dB (3.37 dB), i.e. by
more than a factor of two (one and a half), compared to
DEVconst for case 1 (case 3). For case 2 (case 4), the DEV
score does not perform better when using rbin;j instead of
�r: This is due to areas where the ensemble is overdisper-
sive, i.e. where large uncertainty is predicted (ensemble
spread) but the error of the precipitation product is mod-
erate (exemplarily in the right half of Fig. 9b for case 2).
These values occur in a minority of cases but have a large
impact on the DEV score after the binning. The large
spread among the ensemble members in those few cases
may be due to the fact that both events presented in cases
2 and 4 cover a large part of the considered area and

have moderate spatial gradients in the measured precipi-
tation fields, which complicates the derivation of displace-
ment vectors for the nowcast. An improvement of the
results is therefore expected by using a more physically-
based probabilistic nowcasting scheme that yields more
adequate ensemble members.

6. Summary and conclusions

This article presents a method to estimate spatially and
temporally variable uncertainty for a combined areal pre-
cipitation product. The method makes use of data assimi-
lation to merge precipitation measurements from different
sources and an ensemble nowcasting method to evolve
the uncertainty estimate over time. The potential of the
areal uncertainty estimate provided by the method is
demonstrated in a proof of concept study.

Requirements for this improved uncertainty estimate
are an accurate representation of the actual error of the
initial product, an adjustment to additional observations
merged into the product through data assimilation, and
flow dependency. In this study, a research network of
four X-band weather radar provides reflectivity data for
four precipitation cases. Reflectivity can be converted to
rain rate using empirical relations that are not part of
the analysis.

An ensemble data assimilation method, the LETKF, is
used to statistically merge precipitation observations and
is coupled to an extrapolation-based nowcasting scheme.
The implemented nowcasting scheme computes the cross-
correlation between subsequent radar composite images
and extrapolates the evolution of the precipitation field
using the deduced displacement. The nowcast is started
from composite data of the research radar network and a
probabilistic forecast is generated using an ensemble tech-
nique. The ensemble is generated by stochastic perturb-
ation of the computed precipitation displacement vectors.

Four data assimilation experiments are performed to
test the presented method with emphasis on its potential
to provide an improved spatial and temporal uncertainty
estimation. We use an ensemble precipitation nowcast
and continuously merge observations into the forecast
using the LETKF, generating a combined precipitation
product. The uncertainty of the precipitation product is
estimated by the ensemble spread of the nowcast after
each update step of the data assimilation cycle. Two
scores are introduced for the assessment of the method.
Both are based on the definition of a perfect uncertainty
estimate, for which the actual observed error statistically
corresponds to the predicted uncertainty. The first score
describes the reliability, REL; of the uncertainty estimate.
It indicates the percentage of cases in which the actual
error of the precipitation product lies within the

ESTIMATING THE UNCERTAINTY OF AREAL PRECIPITATION 13



estimated uncertainty range. The second score measures
the deviation of the uncertainty estimate from a perfect
spread-skill relation, DEV; as a root mean square devi-
ation between actual error and uncertainty estimate.

The scores are computed at verification grid points
selected on a regular grid and for all available analysis
time steps. The potential of the obtained areal uncertainty
estimate rvar;i is assessed by comparison to a benchmark
which must be outperformed. The benchmark for this
study is defined as the mean spread of the system. In this
way, the ability of the method to correctly distribute the
available mean uncertainty of the system over time and
space can be studied.

The reliability of the uncertainty forecast, REL; is
improved by the presented method. The number of hits,
i.e. how often the error of the precipitation product is
within the tolerated margin of error dictated by the pre-
dicted uncertainty range, is increases in all analysed cases.
The spread-skill deviation, DEV; is improved in two out
of four cases. This score yields unsatisfying results when
the spread of the forecast ensemble is large compared to
the error of the obtained precipitation product. The large
ensemble spread is most likely caused by difficulties in
predicting a good sample of displacement fields and large
gradients in the precipitation at the edges of the cells in
some cases. We expect the results to improve for those
cases with a more elaborated probabilistic nowcasting
scheme. Despite mixed results for the DEV score, the
clear improvement of the uncertainty forecast visible
throughout the analysed precipitation events already
show that the presented areal uncertainty estimate allows
for a more accurate spatial and temporal distribution of
the uncertainty information. Since we assume a large
impact of the nowcasting scheme on the results for the
DEV score, we therefore see potential for further
improvement by implementing a more sophisti-
cated scheme.

The evaluation of both considered scores demonstrates
that the provided areal uncertainty estimate outperforms
constant benchmark uncertainty values, but that the
method is sensitive to the quality of the probabilistic
nowcasting. In subsequent work, the next logical step
would therefore be the use of a more sophisticated now-
casting tool. Nevertheless, the proof of concept shows the
potential of the developed method and establishes the
groundwork for further studies. The possible applications
of the method are numerous in hydrology, nowcasting or
data assimilation. It provides the combination of areal
and point measurements for comprehensive precipitation
products and additionally yields probabilistic information
allowing for the estimation of the product reliability and
ensemble generation.
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