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I. Abstract 

Cocoa seed storage proteins play an important role in flavour development as 

aroma precursors are formed from their degradation during fermentation. Major 

proteins in the beans of Theobroma cacao are the storage proteins belonging to 

the vicilin and albumin classes. Although both these classes of proteins have been 

extensively characterised, there is still limited information on the expression and 

abundance of other proteins present in cocoa beans.  This work is the first attempt 

to characterize the whole cocoa bean proteome by nano-LC-ESI MS/MS analysis 

using tryptic digests of cocoa bean protein extracts. The results of this analysis 

showed that over 1000 proteins could be identified using a species-specific 

Theobroma cacao database. The majority of the identified proteins were involved 

with metabolism and energy. Albumin and vicilin storage proteins showed the 

highest intensity values among all detected proteins. A comparison of MS/MS data 

searches carried out against larger non-specific databases confirmed that using a 

species-specific database can increase the number of identified proteins, and at 

the same time reduce the number of false positives. 

The proteomic profiles of cocoa beans from four genotypes with different genetic 

background and flavour profiles have also been analysed employing a bottom-up 

label-free UHPLC-MS/MS approach. From a total of 430 identified proteins, 61 

proteins were found significantly differentially abundant among the four cocoa 

genotypes analysed with a fold change of 2 or more. PCA analysis allowed a clear 

separation of the genotypes based on their proteomic profiles. Interestingly, 

proteases which degrade storage proteins during fermentation have been found 

differentially abundant in some of the genotypes analysed. These proteins are 

involved in the release of flavour precursors, and therefore might play a key role 

in the shaping of the final flavour profile. Different genotype-specific levels of other 
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enzymes which generate volatiles compounds that could potentially lead to flavour-

inducing compounds have also been detected. Overall, this study shows that 

UHPLC-MS/MS data can differentiate cocoa bean varieties, and thus might be 

linked to differences in their flavour profile. 

Finally, a method to identify and quantify free peptides from fermented cocoa 

beans by UHPLC-MS/MS analysis has been developed. A total of 155 peptides could 

be identified and quantified in fermented cocoa beans using this approach. The 

vast majority of these peptides were associated to vicilin and a 21 kDa albumin, 

which are the most abundant proteins in cocoa beans. This methodology could be 

applied to assess the free peptides profiles of cocoa beans at different stage of 

fermentation. 
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1 INTRODUCTION 

1.1 General information on cocoa and chocolate 

The cocoa tree, Theobroma cacao (family Sterculiacae), is native to the Amazon 

and Orinoco valleys and its natural habitats are the tropical areas of South and 

Central America [1]. The length of the cocoa tree can vary from 8 to 15 m. However 

trees subjected to an intensive cultivation are usually pruned to reduce their length 

to 2.5-3 m [2], see Figure 1.  

 

Figure 1. Theobroma cacao tree with mature pods 

Mature fruits (pods) are thick-walled and contain 30-40 seeds, also called beans. 

Each bean consists of two cotyledons and an embryo (radicle) surrounded by a 

seed coat (testa), and is enveloped in a sweet, white mucilaginous pulp (see Figure 

2). The name of the genus “Theobroma” was given by the Swedish botanist 

Linnaeus and is derived from the Greek words “Theo” (meaning god) and “Broma” 

(meaning food), referring to the Mayan and Aztec popular belief that chocolate 
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was the food of the gods. It was Hernando Cortés who introduced this cultivar to 

Spain in 1520, and thereafter it spread to other European colonies in Africa and 

Asia, where it could find optimal habitat for its growth.  

 

 

Figure 2. Internal view of a ripe cocoa pod with beans surrounded by pulp 

Chocolate is made from the processing of cocoa beans. Traditionally, Theobroma 

cacao has been divided into three main genetic groups, Forastero, Criollo and 

Trinitario, which is a hybrid of the first two genetic groups. Two other cultivars 

have also been described: Amelonado which is considered a subvariety of 

Forastero mainly cultivated in West Africa, and Nacional, a cultivar native to 

Ecuador. However, this classification is quite broad as hybridization has occurred 

over time which has given rise to differentiation within the same genetic groups, 

especially Forastero. A study carried out by Motamayor et al. [3] who genotyped 

1,241 cocoa samples from different geographic origin, has resulted in the 

identification of ten genetically distinct clusters. Based on these results the 

Forastero group has been differentiated into eight varieties: Amelonado, 

Contamana, Curaray, Guiana, Iquitos, Maranon, Nanay, and Purus.  This new 

classification has not affected Criollo and Nacional varieties, as they have 

maintained their original terms. 
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Forastero trees have a very high yield and are relatively resistant to pest and 

diseases. Nowadays most populations cultivated in the world are locally adapted 

Forastero varieties, improved with the creation of related genotypes [2]. These 

varieties are regarded as “bulk cocoa in trade” and make up almost 95 % of the 

cocoa’s total worldwide production [2]. Chocolate milk, cocoa butter and cocoa 

powder are manufactured using the beans of this variety. Forastero beans are flat, 

astringent and have a high content of anthocyanins which gives a purple colour to 

the mature pod [2]. 

The Criollo variety is derived from the native population indigenous to North, South 

and Central America. The beans of this variety show a white to ivory or a pale 

colour, which is caused by the presence of an anthocyanins inhibitor gene. The 

cultivation of Criollo is limited to few regions in Central America and Asia, as this 

population is susceptible to diseases and has a very low yield [2]. 

The Trinitario type is native to Trinidad and includes all hybridisation combinations 

of the Criollo and Forastero varieties. The colour of the beans is variable, although 

it is very rarely white, and this variety’s susceptibility to diseases is intermediate 

between Forastero and Criollo. Both the Trinitario and the Criollo varieties produce 

the “fine flavour” cocoas, which account for less than 5% of the total cocoa’s world 

production [2].These cocoas are used to make high quality dark chocolate [2]. 

The total cocoa’s worldwide production as of 2017 was 4.552 million tonnes [4]. 

Africa is by far the largest cocoa-producing region in the word with an output of 

3.37 million tonnes accounting for 74% of the total cocoa worldwide production 

[4]. Other important cocoa-producing region are the Americas, Asia and Oceania. 

Ivory Coast is the main cocoa-producing country in the world with a share of the 
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total cocoa’s worldwide production of 42 %, followed by Ghana and Nigeria, whose 

shares are 19 and 7%, respectively [4], as shown in Figure 3.   

 

Figure 3. Cocoa’s worldwide production in 2017 [4]. 

 

1.2 Cocoa beans fermentation 

Fermentation is an essential process for the development of cocoa flavour. Seeds 

inside the ripe pod are microbiologically sterile [5]. The pulp gets contaminated 

with microorganisms when the pods are opened with a knife. This microflora can 

originate from different sources such as the workers’ hands, knives, bags used to 

transport the beans, residual mucilage left from previous fermentation on the wall 

of boxes or on the banana leaves used for heap fermentation [5]. Due to this 

microbial variability, differences in flavour characteristics between beans from the 

same cultivar fermented under similar conditions can be observed [6]. The pulp 

walls are broken down with the release of juice in a process called ‘sweating’. The 

sugars from the pulp are fermented to ethanol and organic acids, causing the death 

of the bean. Storage proteins in the bean are degraded and reducing sugars are 
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released from the hydrolysis of sucrose, leading to the formation of flavour 

precursors, which generate the characteristic cocoa aroma upon roasting [7]. 

Unfermented and under-fermented beans do not contain an appropriate amount 

of flavour precursors. Therefore, they do not generate cocoa flavour upon roasting. 

The duration of fermentation varies according to the cocoa variety, geographic 

origin and local practices [8]. Varying fermentation conditions can lead to 

differences in flavour profile of cocoa from the same varieties, confirming the 

crucial role of this process in the cocoa flavour generation [8]. 

Harvested pods are split in half usually with a machete, and the beans removed 

either manually or mechanically. Fermentation is started naturally and is carried 

out in heaps or boxes. The “heaps” method consists of piling up beans underneath 

plantain leaves, covering the surface and bottom of the pile, see Figure 4. The 

heaps can be 60-120 cm in diameter and  are manually turned after 2-3 days to 

allow aeration of the mass and favour the growth of aerobic microorganisms.  

 

Figure 4. Beans piled up into “heaps” 

The ‘box’ method involves fermentation of beans in large hardwood boxes holding 

up to 1.5 tonnes of beans, see Figure 5. These boxes have slatted bases or holes 

on the sides and base, which allow the sweating to drain away and aid access of 

air. Often these boxes are stacked in a descending order to allow easy transfer of 
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beans to the box below and at the same time favour aeration of the cocoa mass. 

At the end of fermentation, the moisture content of the beans is reduced to less 

than 8% by drying. This process can be done naturally in the sun with regular 

turning, or with artificial dryers in closed rooms with temperatures not exceeding 

60˚C. 

 

Figure 5. Boxes used for fermentation 

 

1.2.1 Fermentation substrate and microbial succession 

The fermentation substrate is the pulp surrounding the beans after removal from 

the pods. Cocoa pulp is a rich medium for microbial growth as it is characterised 

by a sugar content of around 9-13 % (w/w), high acidity due to the presence of 

diverse organic acids, and a protein content in the range of 0.4-0.6 % (w/w) [9]. 

The composition of the pulp for West African Amelonado cocoa is listed in Table 1, 

which may vary according to variety, origin and farming conditions. 
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Table 1. Composition of West African Amelonado cocoa pulp [9] 

Component % (w/w) 

Water  82.60 

Glucose and fructose 6.80 

Sucrose 4.35 

Plant and cell wall polymers 2.81 

Citrate 1.31 

Protein/peptides 0.57 

Free amino acids 0.15 

Fat 0.45 

Metals 0.24 

Vitamins  0.05 

 

Microorganisms play a very important role in cocoa fermentation and up to 30 

different species of bacteria have been found in fermented cocoa beans [10]. 

Fermentation carried out in aseptic conditions does not cause any significant 

biochemical changes in the cocoa mass, with no production of flavour precursors, 

leading to poor quality products, and thus, confirming the importance of the 

microflora in this process [10]. The acidic pH of the pulp (pH 3.6) and the low level 

of oxygen create a favourable environment for the growth of yeasts, as these 

microorganisms can metabolise the carbohydrates from the pulp under both 

aerobic and anaerobic conditions by mainly converting sugars into ethanol and CO2 

[5]. Yeasts release pectinolytic enzymes that break down the cement between the 

walls of the pulp cells resulting in the release of juice that drains away as 

“sweating” and formation of void spaces into which air percolates. Their growth is 

inhibited by an increase in pH due to citric acid metabolism and a high level of 

ethanol [5]. Lactic acid bacteria find a favourable environment in these conditions, 

and their growth reaches a peak around 36 hours after the fermentation has 

started [5]. These bacteria metabolise glucose with the release of lactic acid, 

ethanol, acetic acid, glycerol, mannitol and CO2. As the oxygen level increases due 

to disappearance of the pulp and the temperature rises above 37° C, acetic acid 
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bacteria become the main microorganism and they reach their maximum number 

at around 88 hours after the start of fermentation [5]. These bacteria oxidise 

ethanol to acetic acid and further oxidise this compound to CO2 and water. The 

exothermic reactions of acetic acid bacteria cause the temperature of the 

fermenting mass to raise up to 50º C or more. The penetration of acetic acid into 

the beans kills the embryo and lowers the pH. The number of these bacteria starts 

to fall after 3 days of fermentation, and they completely disappear after 5 days 

[5]. Aerobic, spore-forming bacteria can be found during the first three days of 

fermentation, and they subsequently grow to become the dominant 

microorganisms in the fermenting mass, representing over 80% of the whole 

microflora [5]. Filamentous fungi are present at low levels throughout the 

fermentation, mostly on the surface of the fermenting mass where there is a 

greater air circulation and cooler temperatures. Under fermentation conditions 

compounds such as 2,3-butanediol, pyrazines, acetic and lactic acid are produced 

by these bacteria. It is thought that they may be responsible for the acidity and 

off-flavours of fermented cocoa beans [5]. A graph showing the microbial 

succession during cocoa bean fermentation is shown in Figure 6 

 

 

 

 

 

 

 

Figure 6. Microbial succession in cocoa bean fermentation [5] 
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The pulp amount dictates the duration of fermentation, as cocoa varieties with a 

low amount of pulp, such as Criollo, require a shorter fermentation which last 

usually 2-3 days, while Forastero varieties which have a high amount of pulp are 

fermented for 5-7 days. The amount of pulp can also vary during the main harvest 

seasons, and if it is too high can lead to over-fermented beans. 

1.2.2 Flavour generation and chemical changes in the cocoa bean 

Water and fat are the main components of unfermented cocoa beans. A significant 

amount of carbohydrates, proteins and polyphenols is also present. These values 

differ according to variety, season and farming conditions. The general composition 

of cocoa beans is shown in Table 2.  

Table 2. Composition of unfermented cocoa beans [11]  

Component % w/w 

Water  32.0-39.0 

Sugars 2.0-3.0 

Fat 30.0-32.0 

Protein 7.0-10.0 

Polyphenols 5.0-7.0 

Starch 4.0-6.0 

Acids 1.0 

Cellulose 2.0-3.0 

Theobromine 2.0-3.0 

Caffeine 1.0 

 

The major classes of seed proteins in unfermented cocoa beans are the vacuolar 

storage proteins albumins and globulins [12]. The globulins fraction is degraded 

by endogenous aspartic endoproteases and carboxypeptidases with the release of 

hydrophilic peptides and hydrophobic amino acids [7]. The albumins fraction acts 

as a protease inhibitor and therefore is only marginally degraded during 

fermentation [12]. Hydrophobic amino acids and hydrophilic peptides react with 

reducing sugars during roasting to generate cocoa aroma compounds. The pH 
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plays a very important role in fermentation. At pH values of around 3.8 (the 

optimum for aspartic endopeptidases), the release of hydrophobic oligopeptides is 

favoured, while the production of free amino acids is negatively affected [5]. On 

the other hand, when the pH is close to 5.8 (the optimum for serine 

exopeptidases), an increase in hydrophilic oligopeptides and hydrophobic amino 

acids is observed. If the pH drops below 4.5 too soon, the production of flavour 

precursors is reduced and an over-acidic product is formed [5]. Sucrose is 

hydrolysed by an endogenous invertase to glucose and fructose. The amount of 

these reducing sugars can increase up to three-fold during fermentation [13]. The 

optimum pH for the activity of invertase is 4.5 [14], further confirming the 

importance of pH during fermentation. 

Polyphenols in cocoa beans can be classified into three main groups: catechins or 

flavan-3-ols (ca. 37%), anthocyanins (ca. 4%) and proanthocyanidins (ca. 58%) 

[8]. Anthocyanidins are hydrolysed to cyanidins by the action of glycosidase 

enzymes, which results in bleaching of the purple colour and release of reducing 

sugars which are considered as important flavour precursors [2]. As the oxygen 

levels in the cotyledon increase, the endogenous polyphenol oxidase is activated 

resulting in the oxidation of polyphenols leading to the production of quinones, 

which can polymerise with other polyphenols or form complexes with amino acids 

and proteins [2]. As a result of these processes, the beans acquire a brown colour, 

and astringency and bitterness of the beans is reduced due to the formation of 

high-molecular-weight insoluble compounds. 

Starch levels do not change during fermentation [15]. The concentration of citric 

acid decreases during this process, while the levels of lactic and malic acid are 

higher after fermentation and drying. Tetramethyl pyrazines, volatile alcohols, 

esters and aldehydes are also formed during drying. These compounds can be 
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produced via microbial synthesis [2]. A schematic view of the chemical changes 

occurring in the beans during fermentation is shown in  

Figure 7: 

 

 

Figure 7. Chemical changes in cocoa beans during fermentation 

1.2.3 Degradation of cocoa beans storage protein during fermentation 

The levels of amino acids and peptides increase during fermentation due to partial 

degradation of cocoa bean storage proteins [16, 17]. During this process, a high 

amount of hydrophobic free amino acids such as leucine, phenylalanine, alanine 

and tyrosine are released, while the concentration of acidic amino acids is reduced 

[16-18]. Comparative 1D-SDS-PAGE analyses of fermented and unfermented 

beans have revealed that the amount of proteins is reduced during fermentation. 

The globulins are almost quantitatively degraded during fermentation, while the 

degradation of albumins is less pronounced during this process [12, 19, 20], as 

these proteins act as protease inhibitors. However, there is some discrepancy as 
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to the extent of albumin degradation during fermentation reported in the literature 

[12, 19, 20]. Proteolysis of storage proteins occurs in the early stage of 

fermentation and after three days the majority of globulins are degraded [19]. 

After this initial phase, protein degradation is considerably reduced, probably due 

to the release of polyphenols and their subsequent complexation with the 

remaining proteins [19]. Proteins at 33, 17 and 11 kDa have shown increased 

levels during fermentation. However it has not been confirmed whether these 

peptides are synthesised during fermentation or are degradation products of larger 

polypeptides [19]. It has also been reported that proteins at 44.3, 46, 46.5 kDa 

may be formed from a 47.1 kDa protein in the globulins fraction during 

fermentation [20, 21]. The amino acid sequence of the protein at 44.3 kDa is 21 

residues shorter than the sequence of the protein at 47.1 kDa, confirming that the 

protein at 44.3 kDa is a degradation product of the globulin protein at 47.1 kDa 

[20]. The proteins at 44.3 and 31 kDa undergo glycosylation during fermentation, 

while phosphorylation on the 47.1 kDa globulin protein has been observed [20]. 

The HPLC-UV profile from unfermented and fermented beans has shown that 

hydrophilic peptides are released from the proteolysis of cocoa storage proteins in 

the first three days of fermentation [22]. The peptide profiles of under-fermented 

cocoa beans from days 1 to 3 of fermentation revealed similar patterns [22], 

suggesting that the main proteolytic activity occurs at early stage of fermentation, 

confirming previous findings from Lerceteau et al. [19]. 

Cocoa-specific aroma precursors can be generated from autolysis at pH 5.2 of 

cocoa acetone-dry powder extracted from unfermented cocoa seeds [7]. The 

HPLC-UV of these extracts showed that mostly hydrophobic free amino acids and 

hydrophilic peptides are produced under these conditions. Two different methods 

of proteolysis led to the detection of cocoa and/or chocolate aroma from the 
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roasting of the proteolysis products in the presence of reducing sugars [7]. The 

HPLC-UV chromatographic profile of in-vitro proteolysis products at pH 5.2 was 

similar to the chromatographic pattern of peptides extracted and partially purified 

from fermented cocoa seeds [7]. An endoprotease (an aspartic endoprotease with 

a pH optimum at 3.5) and a carboxypeptidase (pH optimum at 5.8) are present in 

ungerminated cocoa seeds. The pH plays an important role in the formation of 

cocoa flavour precursors, as there is no release of cocoa-specific flavour precursors 

from the incubation at pH 3.5 of acetone-dry powder extracted from unfermented 

cocoa bean [7]. Under these conditions many hydrophobic peptides were formed 

as a result of storage proteins degradation, while a small number of free amino 

acids were released. The digestion of these hydrophobic peptides with 

carboxypeptidase A from porcine pancreas generated mixtures of hydrophilic 

peptides and hydrophobic amino acids, which were similar to those obtained from 

the incubation at pH 5.2. As roasting of mixtures of amino acids with a distribution 

similar to the amino acids range present in fermented cocoa seeds did not generate 

any cocoa aroma, the authors concluded that “the essential cocoa-specific aroma 

precursors are among the hydrophilic oligopeptides” [7]. These results indicated 

that the endoprotease generates hydrophobic peptides which are turned into 

hydrophilic peptides by the action of the carboxypeptidase [7]. Therefore, cocoa 

aroma precursors are generated from the co-operative action of these two 

endogenous cocoa proteases.  

In-vitro digestion by the aspartic endoprotease and the carboxypeptidase of 

ungerminated cocoa seeds of globular storage proteins from different crops has 

confirmed that the specific amino-acids sequence and structure of globulins 

present in cocoa beans determines the generation of cocoa-specific aroma 

precursors [23]. The flavour profiles of proteolysis products of globulins from 
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hazelnut, sunflower and coconut roasted in the presence of sugars and deodorised 

butter evaluated by sensory analysis, showed significant differences from the 

typical aroma pattern generated by the proteolysis products of the globulins of 

cocoa seeds with the same proteases [23]. The amino acids and oligopeptides 

patterns resulting from the degradation of globulins from cocoa and different crops 

were considerably different [23]. Peptides with carboxyterminal arginine, lysine or 

proline are not easily cleaved by the cocoa seed carboxypeptidase [24].  

Carboxyterminal hydrophobic amino acids are preferentially released by this 

enzyme, while the cleavage rate is significantly affected by the side chains of the 

neighbouring amino acids. A hydrophobic side chain of the adjacent amino acid 

residue favours the release of the carboxyterminal amino acid, as the degradation 

of serine-alanine is slower than the one of alanine-alanine [24]. This enzyme has 

a similar specificity to the one of carboxypeptidase A from porcine pancreas. 

Hydrophobic amino acids are preferentially released from both cocoa and porcine 

pancreas carboxypeptidases, and cleavage of carboxyterminal prolyl or basic 

amino acid residues cannot be performed by these enzymes. Strong acidification 

considerably reduces the cleavage rate of hydrophobic amino acid residues, while 

the release of acidic amino acids is favoured in these conditions, resulting in an 

unbalanced accumulation of the cocoa-specific aroma precursors [24].  

Pepsin, chymotrypsin and an endogenous aspartic endoprotease can efficiently 

degrade vicilin extracted from cocoa seeds [25]. However, the reverse-phase 

HPLC-UV chromatographic pattern of the obtained proteolysis products showed 

some differences between the three endoproteases. More hydrophilic oligopeptides 

were obtained with chymotrypsin compared to the other two proteases. However, 

the action of aspartic endoprotease and pepsin on cocoa globulin resulted in 

different oligopeptide profiles [25]. Treatment of all peptide mixtures with 
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carboxypeptidase A from porcine pancreas, released mainly hydrophobic amino 

acids. However, the amino acid profiles varied between the peptide mixtures 

digested by different proteases, as alanine and leucine were preferentially released 

from the cocoa globulins treated with pepsin and aspartic endoprotease, while a 

higher amount of aromatic amino acids were released from chymotryptic peptides 

[25]. Cocoa aroma was generated by the roasting of the proteolysis products of 

cocoa globulins treated with aspartic endoprotease and carboxypeptidase [25]. A 

less pronounced cocoa aroma was obtained by the roasting of peptic peptides post-

treated with carboxypeptidase, while the roasting of peptides treated with 

chymotrypsin and carboxypeptidase did not generate cocoa aroma [25]. These 

results confirmed that the generation of cocoa aroma is dependent on the amino 

acid sequence of cocoa globulins and the specificity of an endogenous aspartic 

endoprotease [25]. 

The cleavage sites of the cocoa aspartic endoprotease have been identified by in-

vitro digestion of cocoa vicilin in the presence of this protease and subsequent 

analysis of the proteolysis products by MALDI-TOF MS [26]. However, it is not 

possible to accurately predict the peptides generated by the action of this enzyme 

in fermented cocoa beans, as these peptides are modified by the endogenous 

carboxypeptidase [26]. The cocoa aspartic endoprotease is a protein complex that 

contains a 30.5 kDa aspartic proteinase polypeptide and an associated 20.5 kDa 

trypsin inhibitor polypeptide [27]. Two aspartic proteases encoded by two distinct 

genes (TcAP1 and TcAP2) have been identified [28]. These proteases are relatively 

different as they show a homology of only 73% in terms of amino acid sequences 

[28]. The protease encoded by the gene TcAP1 is observed at a higher level during 

germination, while developing seeds contain a higher proportion of the protease 

encoded by the gene TcAP2 [28]. It is not known whether these two enzymes are 
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both involved in the proteolytic activity during fermentation [28]. Cocoa bean 

storage proteins are degraded by this protease into peptides that range in size 

from 65 amino acids down to di- and tripeptides [27]. 

The complex HPLC-UV oligopeptide patterns generated by autolysis of acetone dry 

powder did not differ across six cocoa genotypes [29]. The use of an aspartyl 

protease inhibitor (Pepstatin A) suppressed oligopeptides production, thus 

confirming the key role of the aspartic endoprotease.  As HPLC-UV does not provide 

the molecular weight of the detected compounds, none of the oligopeptides were 

identified. Furthermore, the selectivity of this technique is limited by the fact that 

different compounds may co-elute and therefore cannot be distinguished.  

1.3 Post-fermentation processing and flavour formation 

Cocoa beans may undergo alkalisation after fermentation and drying [1]. During 

this process an alkaline solution such as potassium or sodium carbonate solution 

is sprayed on the beans to raise the pH from 5.2-5.6 to near neutrality at 6.8–7.5. 

The aims of this process are primarily to change the colour and flavour of the cocoa 

powder or cocoa liquor, and at the same time provide an improved dispersibility 

or suspension of the cocoa solids in water [1]. Roasting of cocoa beans is carried 

out at temperatures between 120 and 150º C, for a period that varies from 5 to 

20 minutes, depending on the nature of the beans and the required products. To 

remove the husks, winnowing is carried out on the beans. During this process the 

beans are poured into a machine which uses air and vacuum to separate the husks 

from the entire cotyledons. A series of chemical reactions also takes place in the 

roasting process resulting in further development of the original cocoa aroma [5]. 

Peptides and amino acids react with sugars during roasting through the Maillard 

reaction, generating a range of carbonyls which by fission or cyclisation can give 
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rise to volatile compounds such as acetaldehyde, diacetyl and 5-hydroxymethyl 

furfural. 

After roasting, a fluid paste (cocoa liquor) is obtained by grinding the nibs several 

times at high temperatures. On cooling, this paste solidifies into a cocoa mass, 

which is a dark material with astringent flavour deriving from polyphenols and 

tannins [5]. Cocoa butter and cocoa cake are obtained from pressing the cocoa 

mass after roasting. Cocoa butter is a pale-yellow fatty liquid with no cocoa flavour, 

while the cocoa cake is a strong-flavoured dark brown residue which is not 

palatable due to its high astringency and bitterness. This product is subsequently 

milled to obtain cocoa powder used by confectionary industries. Finished chocolate 

products are made by adding sugars, sweeteners, milk products, emulsifiers and 

cocoa butter to the cocoa mass. The amount of these added ingredients depends 

on the requirement of the final product [5]. In order to obtain high quality 

chocolate, conching is also required. This process is carried out at temperatures 

between 50 and 60° C for several hours, although it can last up to 5 days for 

specialist chocolate [5]. This process reduces the moisture level of the cocoa mass 

and removes certain undesirable flavour-active volatiles such as acetic acid, 

enhancing interactions between disperse and continuous phases [1]. Thanks to the 

prolonged mixing at elevated temperatures, conching promotes flavour 

development, resulting in a partly caramelised flavour in non-milk crumb 

chocolate. The particle size and the viscosity of refiner pastes are reduced 

throughout the process [1]. 
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1.4 Proteomics 

Proteins are large biomolecules which are composed of amino acid residues joined 

together by covalent bonds to form polymeric chains of varying length. The amino 

acid sequence of a protein is encoded in the genome of a cell or organism and is 

translated from messenger RNAs. Proteins play a crucial role in the life of an 

organism as these molecules participate in and regulate virtually every process 

within the cell. Each protein has its unique amino acid sequence which is a major 

determinant for the protein’s conformational structure and function.  

The term proteome refers to the whole content of proteins, which are present in a 

sample (organism, cell, culture, tissue) at a specific time, under defined conditions. 

Proteomics is the science that studies a specific proteome at large scale, providing 

information on protein abundances, their structure and functions, post-

translational modifications (PTMs) and variations. Performing any kind of 

proteomic analysis is a very challenging task, as the proteome varies between 

individuals of the same species and developmental stages, and in response to 

external factors. Besides, many proteins show some form of PTM [30]. These 

modifications can be permanent such as deamidation and oxidation, or temporary 

and reversible such as phosphorylation or methylation. PTMs cannot be predicted 

by the gene sequence but constitute a very important mechanism of functional 

regulation for living organisms or cells [30]. Proteins are biomolecules which show 

a very high degree of complexity, resulting from the different combinations of 

amino acid sequences within the protein structure. As a result, there is no universal 

buffer which can solubilise all proteins of a cell or organism. 
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1.5 Proteins separation techniques 

1.5.1 SDS-PAGE 

“The term electrophoresis refers to the movement of charged molecules in 

response to an electric field, resulting in their separation” [31]. In classical 

electrophoresis, when subjected to an electric field, proteins travel toward the 

electrode of opposite charge. Their migration rate (in units of cm2/Vsec) depends 

on the physical characteristics of both the electrophoresis system and the proteins 

themselves. Protein migration in electrophoresis is affected by temperature, 

composition and concentration of the buffer, charge, size and shape of the proteins 

[31]. Polyacrylamide gels work as size-selective filters when electrophoresis is 

carried out, allowing smaller proteins to migrate faster than larger proteins, when 

subjected to an electric field. Small proteins and oligopeptides are best separated 

on gels with a high percentage of acrylamide, while the optimal separation 

conditions for larger proteins are achieved by decreasing the percentage of 

acrylamide in the gel. For mixtures of small and large proteins, gels with an 

acrylamide percentage gradient are also available. The gel is typically mounted 

between two buffer chambers in a vertical orientation, and the samples are applied 

on sample wells generated on the top of the gel, see Figure 8 [31].  
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Figure 8. Schematic view of electrophoretic separation in a polyacrylamide gel [31] 

In the presence of SDS and other denaturing agents, proteins become denatured 

and as a result lose their complex conformation (secondary and tertiary 

structures). Moreover, SDS binds non-covalently to proteins imparting an overall 

negative charge and a similar charge-to-mass-ratio to all proteins in a mixture 

[31]. SDS-bound proteins assume a rod-like shape instead of a complex tertiary 

conformation, see Figure 9. As a result, these proteins migrate in gels mainly 

according to their size, enabling molecular weight estimation by comparison with 

reference protein markers. After the electrophoretic run, gels are stained with dyes 

that bind to proteins so that protein bands can be visualised. 

 

Figure 9. Effect of SDS on the conformation and charge of a protein [31] 
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1.5.2 Liquid chromatography 

Chromatography is a physical separation method in which the compounds to be 

separated are distributed between two phases, one of which is fixed (stationary 

phase), while the other (mobile phase) moves in a defined direction [32].  

The choice of the mobile phase is aimed at maximising the selective distribution of 

the compounds in a sample mixture between the mobile and stationary phase. 

Those components that strongly interact with the stationary phase move at a 

relatively slow rate through a chromatographic column. In contrast, components 

which have a weak affinity for the stationary phase spend more time in the mobile 

phase and as a result travel rapidly through the chromatographic column [32]. 

These differences in mobility result in the separation of sample components into 

discrete bands that can be analysed qualitatively and/or quantitatively (see Figure 

10). 

 

Figure 10. Chromatographic separation process for liquid chromatography 

In liquid chromatography the mobile phase is a liquid whose composition can 

change (gradient) or remain constant (isocratic) over the analytical run. The 

stationary phase can be either liquid (partition chromatography) or solid 

(adsorption chromatography). The most common stationary phases used for 
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proteomics analysis are C18 or C8 alkyl chains bonded to the silica surface of the 

column, which constitute non-polar, “reverse phase” stationary phases. When 

using these stationary phases, the separation is mainly based on the 

hydrophobicity of the compounds analysed, with the most polar analytes eluting 

earlier than the less polar ones. Standard HPLC columns have internal diameters 

of 2.1-4.6 mm and flow rates of 0.2-1.0 ml/min. For proteomics applications, 

nano-LC columns with internal diameter of 75 µm are commonly employed. Thanks 

to the small internal diameter of these columns the analytes bands are more 

concentrated resulting in a dramatic increase in sensitivity. Ionisation in ESI is also 

much more efficient and sensitive at the typical low flow rates of nano-columns 

(150-300 nl/min). 

1.6 Mass spectrometry 

Mass spectrometry is a technique that “separates ions according to their mass-to-

charge ratio (m/z ) and detects them qualitatively and quantitatively by their 

respective m/z  and abundance” [33]. The main components of a mass 

spectrometer are an ion source to generate gas-phase ions, a mass analyser to 

separate the gas-phase ion and a detector. The ion source can operate at 

atmospheric pressure or under vacuum, depending on the ionisation mechanism, 

while the mass analyser and the detector operate under high vacuum conditions. 

For this project, a Thermo Scientific Q Exactive and a Fusion orbitrap mass 

analysers have been used. Both instruments incorporate an orbitrap mass 

analyser, while the sample ionisation is carried out by ESI. 
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1.6.1 ESI 

ESI is an ionisation technique which is part of a group of methodologies known as 

atmospheric pressure ionisation. In ESI, ions in a liquid eluent are 

sprayed/transferred into the gas phase prior to entering the mass analyser. For 

example, LC eluents enter a capillary metallic tube called “sprayer” which has an 

internal diameter of approximately 0.1 mm. A high voltage (usually between 2 to 

6 kV) is applied to the capillary and as a result a potential difference between the 

sprayer and the sampling cone is formed [34]. The voltage creates an 

electrochemical cell in the interface which causes charge separation in the liquid 

droplets and accelerates the charged droplets from the sprayer towards the 

sampling cone. Based on the structure of the analyte of interest, positive and/or 

negative ions can be formed. The voltage applied to the capillary has typically the 

same polarity as the ionisation mode selected, while the sampling cone has an 

inverse polarity to the capillary, to attract the formed ions. 

As the charge density in the charged droplets increases due to solvent evaporation, 

coulombic forces are also raised up. The point when these forces match the surface 

tension of the eluent is named the “Rayleigh Instability Limit”. As the number of 

same-charge ions further increases, coulombic repulsion overcomes the Rayleigh 

limit and droplet fission occurs. According to Dole et al. [35], further coulombic 

explosions occur in the product droplets, which result in the formation of smaller 

and smaller droplets until individually charged analyte ions are formed. An 

alternative mechanism, the “ion evaporation model” [36] suggests that as the 

droplet reaches a certain radius the field strength at the surface of the droplet 

becomes large enough to assist the field desorption of gas phase molecular ions. 

These ions are then directed into the mass analyser through a series of focusing 

lenses. 
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ESI is a soft ionisation technique, which brings about only little fragmentation. 

Small molecules (<500 Da) are usually singly charged, while multiply charged ions 

are formed from larger molecules like proteins and peptides. A schematic view of 

the ESI process is shown in Figure 11. 

 

 

Figure 11. Schematic view of the ESI process [34] 

 

1.6.2 Full scan mode data acquisition (MS) 

A mass spectrum shows the intensity of the ions on the ordinate versus the m/z 

on the abscissa. The height of the ions or peaks is directly proportional to their 

abundance. In a full scan acquisition mode the mass spectra are continuously 

acquired over a defined m/z range for a pre-set period of time, and a number of 

data points are acquired for each m/z. Instruments which can achieve a unit-mass 

resolution require a low number of data points per m/z, while high-resolution 

instruments acquire far more data points per m/z in order to provide a high 

resolution and accuracy. The data can also be acquired in centroid mode where 

only the centre of the peak is saved, to significantly reduce the size of the data 

file. 
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The term mass accuracy refers to “how close the mass measured by the mass 

spectrometer comes to the calculated exact mass of an ion” [33] and is calculated 

using the following equation: 

Equation 1: 

𝑀𝑎𝑠𝑠 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 (𝑝𝑝𝑚) =
𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝑒𝑥𝑎𝑐𝑡 𝑚𝑎𝑠𝑠 − 𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑 𝑒𝑥𝑎𝑐𝑡 𝑚𝑎𝑠𝑠

𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑 𝑒𝑥𝑎𝑐𝑡 𝑚𝑎𝑠𝑠
× 106 

The mass accuracy which can be achieved depends on the resolution of the 

instrument which is defined as follows: 𝑅 =
𝑀

∆𝑀
 where M is the mass of an observed 

ion and ΔM is the peak width of the ion, and it refers to the ability of an instrument 

to separate narrow mass spectral peaks. 

The software can calculate possible elemental compositions for an ion based on its 

accurate mass. As the mass accuracy increase the number of theoretical formulae 

which can be assigned to an ion decrease rapidly. As the mass of ions increases, 

a higher mass resolution is required to separate two ions with very similar masses. 

The number of hits can be reduced by considering the isotopic pattern of the ions, 

as the relative abundance of ions with m/z of M+1, M+2, M+3 can indicate the 

presence and number of specific elements such as Cl, S and Br. The number of C 

in a molecule can also be estimated from the relative abundance of the M+1 peak. 

1.6.3 Tandem mass spectrometry (MS/MS) 

Tandem mass spectrometry can provide further information on the elucidation of 

the molecular structure of a compound. With this technique the ions of interest 

(precursors ions) are isolated and fragmented, to produce fragment (product) ions. 

An MS/MS spectrum ideally shows the precursor ions together with the product 

ions. The most common dissociation mechanism is called CID. With this technique 

ions accelerated through the application of an electrical potential are collided with 
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an inert gas. The high kinetic energy of the ions resulting from the collision with 

the gas is converted into internal energy which can break chemical bonds 

generating fragmentation of the molecular ions. HCD is a variation of CID as it 

uses a higher RF voltage to keep the fragment ions in a C-trap and is specific to 

Orbitrap mass analysers. An advantage of HCD is that this fragmentation technique 

allows detection of low m/z  ions, which are usually not detected when using CID 

[37]. The fragmentation ions generated are recorded and an MS/MS spectrum is 

obtained. 

The fragmentation pattern of a molecule reflects its molecular structure, as 

chemical bonds which require lower energy are more easily broken, and fragments 

which are more thermodynamically stable are preferentially formed. As a result, 

the interpretation of the MS/MS spectrum provides useful information for the 

confirmation and identification of the analytes of interest. This is especially useful 

for peptides, as these compound are cleaved at preferential sites, see Figure 12 

[38], which allows the determination of their amino acid sequences. The main 

fragment ions in a CID MS/MS spectrum are usually b-type ions which retain the 

charge on the N-terminus, or y-type ions which retain the charge on the C-

terminus, see Figure 12 for nomenclature/definition. However, the peptides 

fragmentation pattern depends on the fragmentation technique, the mass 

analyser, and the peptide structure. 
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Figure 12. Peptide backbone fragmentation sites and nomenclature of the resulting    

fragment ions [38] 

 

1.6.4 Orbitrap mass analyser 

The orbitrap mass analyser was invented by Makarov and is based on a ‘Knight-

style’ Kingdon trap with specially shaped inner and outer electrodes [39]. The 

orbitrap consists of two electrodes: an outer electrode, which is split in half by an 

insulating ceramic ring and a central electrode called the “spindle” around which 

ions are forced to move in a spiral trajectory [40], see Figure 13. 

 

Figure 13. Orbitrap cell and ion trajectories [40] 

The orbitrap operates in a pulsing mode, therefore a C-Trap is required to store 

ions generated from a continuous source such as a liquid chromatography. Ions 

produced in the API source are transferred into the C-Trap through a series of 
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lenses which can focus the ion beam thanks to the application of RF and DC 

voltages [40]. Ions trapped in the C-Trap are pushed through a slot in the inner 

electrode which is located orthogonally to the curved axis [40]. Ion ejection is 

achieved by ramping up the RF voltage and applying voltage pulses to the 

electrodes.  

Ions enter the orbitrap as short packets at a position offset from its equator, and 

they start oscillating coherently around the central electrode. The frequency ω of 

the oscillations of the ions along the z axis is not dependent on initial energy, 

angles and positions, but only on the mass-to-charge ratio m/z and the 

instrumental constant k according to the following equation: 

Equation 2:                  ω = √
𝐳

𝐦
× 𝐤 [40] 

 

The oscillating ions generate an image current on the two split halves of the outer 

electrode, encapsulating the orbitrap analyser, which can be detected. The 

oscillation frequencies for ions with different masses are translated into high-

resolution and accurate readings of m/z by the application of a Fourier transform.  

A schematic view of a Q Exactive mass analyser is shown in Figure 14. 
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Figure 14. Schematic view of an orbitrap mass analyser [40] 

  

Both the Q Exactive and Fusion orbitrap can measure the m/z value of an ion with 

an accuracy below 1 part per million (ppm). The Q Exactive can reach a resolution 

of up to 140,000 while the Fusion can achieve a resolution of up to 500,000. The 

high resolution and mass accuracy achieved by these mass analysers allows 

identification of compounds based on their accurate masses.  

In order to carry out MS/MS analysis on the Q Exactive and Fusion orbitrap, the 

ions stored on the C-Trap can be transferred into an HCD cell and fragmented 

through an HCD mechanism. In this case helium gas is introduced in the cell and 

the ions are accelerated toward the gas by applying an electrical potential, which 

cause fragmentation of the molecular ions as described in paragraph 1.6.3.   
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1.6.5 Time of Flight (TOF) mass analysers 

The working principle of TOF mass analysers is relatively simple when compared 

to other mass analysis devices. In this case ions generated from the ionisation 

source are directed towards an empty tube of known length and accelerated by 

the application of a voltage. Ions fly through the field-free path of the tube, and 

the time required to cover the whole length of the tube is dependent on their mass 

(m) and charge (z). A representation of the scheme of a linear TOF instrument is 

shown in Figure 15.  

 

Figure 15. Linear TOF mass analyser [41] 

For singly charged ions, the higher the mass the slower is the speed at which the 

ions travel through the tube to reach the detector. It is necessary that the ions 

reach the mass analyser as “packets”, so that they can start flying at the same 

time so as to calculate the differences in arrival time. 

The kinetic energy of each ion may be expressed as: Ekin=mv2/2=zeV1=ezU [33], 

where m is the mass of the ion, v the final velocity, e the charge of an electron, z 

the number of charges on the ion. The velocity of an ion (v) can be calculated 

based on the length of the path (l) and the time (t) taken to cover such a distance 
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using the following equation: v=l/t. Therefore, the m/z ratio can be measured as 

follows: 

m/z=(2eU/l2)t2 [33] 

The distribution of kinetic energy is not homogenous among all ions generated in 

the source, therefore ions with the same m/z but different kinetic energies will fly 

at different speeds, affecting negatively the resolution of the mass analyser. To 

overcome the loss of resolution due to the uneven distribution of kinetic energy of 

the ions, a reflectron is employed. This device consists of a series of rings at 

increasing potential, which create a retarding field with the same polarity of the 

generated ions, placed either before the ions are accelerated in the field-free tube 

or at the end of the ions path. Ions with higher kinetic energy will penetrate the 

reflectron deeper than ions with lower kinetic energy, allowing focusing of isobaric 

ions with different kinetic energy which would result in a much-improved 

resolution. A graphical view of a TOF with a reflectron is shown in Figure 16: 
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Figure 16. Reflectron TOF mass analyser [41] 

 

TOF mass analysers can separate ions with m/z ratio up to 100,000 and can reach 

resolution of up to 12,000 [41]. 

1.6.6 Mass spectrometry applied to proteomics 

Mass spectrometry is a key analytical technique in proteomics. The main 

approaches employed in MS-based proteomics are bottom-up and top-down. In 

the bottom-up approach, proteins initially extracted from a sample or purified from 

a complex biological matrix, are digested with a highly specific enzyme, and the 

proteolysis products are chromatographically separated and analysed by mass 
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spectrometry [42]. The initial task in this approach is to break the disulphide bonds 

within the protein chains to unfold the protein and aid denaturation. Once the 

protein is unfolded the protease can more easily access the entire chain of amino 

acids. Disulphide bonds are reduced by employing DTT, while the subsequent 

addition of IAA prevents the reformation of these bonds. The most common 

protease used for protein digestion is trypsin due to its specificity and low cost. 

This protease is highly effective on both native and denatured proteins, generates 

peptides of optimal size for mass spectrometry analysis, can work well in the 

presence of medium level of denaturing agents and detergents, which are the most 

common chemicals used to extract proteins. Trypsin is a serine protease, which 

cleaves the peptide bond at the C-terminal side of lysine and arginine amino acid 

residues. However, the cleavage will not occur if a proline residue is on the 

carboxyl side of the cleavage site. 

After proteolysis, each peptide is then isolated and fragmented, and an MS/MS 

spectrum is acquired. When analysing samples with large mixtures of unknown 

proteins, peptides are usually analysed by MS/MS using a DDA method. In this 

case, the instrument performs an initial full MS scan, and subsequently peptide 

ions that are detected above a set threshold are isolated and fragmented. The 

most abundant ions are selected for DDA experiment, and the precursors ions are 

fragmented in order of decreasing intensity. A dynamic exclusion window is also 

employed to avoid redundant selection of ions which have already been selected 

for MS/MS fragmentation. Using this approach, the detection of low abundant ions 

co-eluting with other high intensity compounds is made possible. The duration of 

the windows is subjective to the width of the peak, as broader peaks require a 

larger dynamic exclusion time.  Employing a DDA approach presents some 

limitations, as due to the stochastic nature of this acquisition the reproducibility of 
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the detection of low abundant ions can be negatively affected. Next, MS/MS 

fragment ions information is recorded and uploaded into a software [38].  The 

masses of the peptides resulting from the in silico digestion of each entry in the 

database are calculated by the software, based on the specificity of the selected 

enzyme [38].  

As previously mentioned in paragraph 1.6.3, peptides sequences can be easily 

determined from their matches to data obtained from protein database entries 

based on their specific fragmentation pattern, see Figure 12. 

If there is a match between a calculated peptide and a detected one, the software 

calculates the masses of the expected fragment ions of the in silico peptide and 

compares these values to the experimental ones [38]. Since each MS/MS spectrum 

is related to one single peptide, it makes no difference whether the analysed 

sample is a single protein or a mixture. However, a peptide can be matched to 

more than one protein, unless the peptide is unique to a specific protein. Peptides 

shared by more than one protein are ranked according to their score which is based 

on the probability that the identified peptide is not a random event. Usually a 

minimum of two matched peptides is required to identify a protein with enough 

confidence. The bottom-up approach is preferable for complex samples whose 

protein composition is not known.  A typical workflow for bottom-up identification 

of proteins by mass spectrometry is shown in Figure 17: 
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Figure 17. Typical workflow for protein identification and characterisation using MS/MS 

data [38]  

In top-down proteomics, intact protein ions or large protein fragments are ionised 

and fragmented in the gas-phase for mass spectrometry analysis directly with no 

prior enzymatic digestion [42]. A chromatographic or electrophoretic separation 

stage may also be involved at protein level. The masses of the protein fragment 

ions are compared to expected masses calculated from database entries.  

1.6.7 Quantitative proteomics 

Carrying out quantitative analyses in proteomics poses some challenges. The 

number of proteins in a plant or a biological sample is very large, and the type of 

the proteins present in these mixtures is not always known. As a result, 

quantitation with external calibration using reference proteins standards for large 
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mixtures of unknown proteins it is not feasible, due to the complexity of the sample 

and the lack of reference standards for each of the proteins present in the sample. 

Using a single reference standard to perform absolute quantitation of all proteins 

in a mixture is also not appropriate, as the response factor would vary for each 

different protein. In order to overcome these constraints, computational methods 

have been developed to carry out protein quantitation by mass spectrometry. In 

this study, label-free protein quantitation was performed. This methodology can 

be divided into two types. The first is based on the changes in the intensity of the 

ion signals, while the second is based on the spectral count of identified peptides 

after LC-MS/MS analysis [43]. 

In the method based on the ion signal intensity, the areas of each detected peptide 

ion peak from the extracted ion current chromatograms are measured, and the 

intensity of a protein is measured as the sum of the areas of the peptides within 

that protein. The relative concentration of a proteins is determined as the ratio of 

the protein intensity between different samples.   

In the spectral counting approach, the relative quantitation of proteins is carried 

out by comparing the number of identified MS/MS spectra from the same protein 

in each of the samples analysed by LC-MS/MS. This is made possible because as 

the protein concentration increases, a higher number of peptides belonging to that 

protein are detected, which then results in more spectra recorded for the same 

protein. Label-free protein quantitation methods can also be used to determine 

absolute protein abundance. One such approach is based on the protein abundance 

index or “PAI”, which is defined as: 

𝐏𝐀𝐈 =
𝐍𝐨𝐛𝐬

𝐍𝐭𝐡𝐞𝐨

 Equation 3 
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where Nobs is the number of detected peptides and Ntheo is the number of theoretical 

peptides for a given protein [44]. The PAI index can be converted to the emPAI 

value defined as: 

emPAI=10PAI – 1 
Equation 4 

         

Using this approach Ishihama et al. [44], could determine the absolute amount of 

46 proteins in a mouse cell lysate. However, this quantitative method presents 

also some limitations, as although the number of identified sequences for a certain 

protein increases with his concentration, there may be proteins which are present 

at different levels but show the same number of identified peptides. 

Other methods for quantitative proteomics include in vivo metabolic labelling such 

as SILAC or employing isobaric tags such as ITRAQ. SILAC methodology requires 

that cell cultures or plant of a specific group are grown in a metabolic medium that 

contains 13C6-lysine and/or 13C6-arginine, as trypsin cleaves at the C-terminus of 

these amino acids, resulting in all tryptic peptides from cultures grown in SILAC 

medium having at least one labelled amino acid [30]. Therefore, a constant mass 

increment will be observed in labelled samples versus non-labelled ones. This 

approach reduces considerably the error related to sample preparation and 

instrumentation, however, it cannot be applied to cultures, plant or other living 

organisms which cannot be grown in a medium. 

Isobaric tag can be applied to samples which are not amenable to metabolic 

labelling, as these reagents are added to the samples after extraction and 

digestion. Tag include a mass reporter (tag) that has a unique number of 13C 

substitutions and a mass normalizer that has a unique mass that balances the 

mass of the tag to make all of the tags equal in mass [30]. Isobaric mass tags also 

have a reactive moiety that crosslinks to primary amines or cysteines (depending 
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on the product used). These tags are designed so that the mass tag is cleaved at 

a specific linker region upon high-energy CID (HCD), yielding the different sized 

tags that are then quantitated by LC-MS/MS. Using this methodology, a higher 

sensitivity and reproducibility of the quantitative results can be achieved. However, 

reagents are expensive and additional steps in sample preparation are required 

when compared to label-free quantitation. 

1.7 Biomolecular analysis of cocoa beans  

This chapter provides a review of the proteomics techniques applied to characterise 

the cocoa beans proteome, and references to proteomic analysis of other parts of 

the cocoa tree such as cocoa husk and embryo. 

1.7.1 DNA sequencing of storage proteins and characterisation by 

electrophoretic techniques 

During their development, plant seeds accumulate large amounts of storage 

proteins that serve as a source of nitrogen, sulphur and carbon compounds during 

seed germination. The major cocoa seed proteins are albumins (water soluble) and 

globulins (salt soluble). According to Voigt et al. [12], albumins and globulins 

fractions represent 52 and 43% of the total cocoa seed proteins. Other authors, 

however, have stated that the globulins storage proteins represent 23% of the 

soluble seed proteins, and the albumins 14.1 % [19]. The globulins fraction 

includes several polypeptides with different molecular weights [12, 19]. The 

predominant components of this fraction are polypeptides with apparent molecular 

weights of 47 kDa, 31 kDa and 14.5 kDa, as shown by SDS-PAGE analysis of the 

cocoa beans’ globulins fraction [12, 19, 20]. It has also been reported that 

globulins prepared in the absence of an aspartyl protease inhibitor, pepstatin A, 

degrade to form two additional polypeptides with apparent molecular sizes of 28 
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kDa and 16 kDa, respectively [12]. However, there is a debate whether these two 

polypeptides are degradation products formed during extraction or genuine 

components of the globulins fraction, as Lerceteau et al.. [19] have stated that 

there is no evidence that the polypeptide of 16 kDa is cleaved off from globulins 

during extraction. Therefore, this polypeptide may be an authentic component of 

the globulins fraction. “The polypeptides of 47 and 31 kDa are derived from a 

common cDNA precursor that translates to give a 566 amino acids polypeptide of 

65 kDa in size” [45]. The N-terminus of this precursor contains a hydrophobic 

sequence with a site of cleavage which is predicted to be located 20 amino acids 

after the start. Next to this site, a high hydrophilic domain of ∼110 amino acids is 

located, which is predicted to be cleaved off leaving a domain of approx. 47 kDa, 

consistent with the molecular weight of the polypeptide observed in the cocoa 

globulins fraction. The polypeptide sequence shows homology to globulins storage 

proteins in legumes and cotton [45]. Polypeptides at 47 and 31 kDa are also 

present in the globulins fraction of Theobroma bicolor and grandiflorum analysed 

by SDS-PAGE [46]. The intensity of both these bands was higher in Theobroma 

bicolor compared to Theobroma cacao. The light globulin chain at 31 kDa was the 

predominant polypeptide of the globulins fraction of Theobroma grandiflorum [46]. 

The globulins band at 47 kDa was only slightly detected in this species, whereas 

this band represented most of the globulins fraction of Theobroma bicolor and 

cacao. It has been suggested that these findings indicate a lower potential to 

produce flavour precursors for Theobroma grandiflorum and a higher potential for 

the generation of flavour precursors in Theobroma bicolor, compared to 

Theobroma cacao [46].  

The 1D and 2D gel electrophoresis profiles of globulins from cocoa cotyledons 

belonging to genetically distant varieties and genotypes which had been reported 
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to produce genotype-specific flavour characteristics have not shown significant 

visual differences [47]. Similar results were obtained from the 1D SDS-PAGE 

analysis of the globulins fractions of 43 cocoa seeds from different origins and 

genotypes [48]. According to the analytical methods used in these studies, the 

cotyledon storage proteins from various genetically different cocoa varieties are 

the same. It has been suggested that rather than the genetic background, other 

factors such the pulp composition could be related to aroma differences after 

fermentation [47]. However, although total protein contents of various cocoa 

genotypes have not shown major differences, the relative amount of each 

polypeptide in the samples analysed is not reported. In addition, gel 

electrophoresis shows only the apparent molecular weight of a protein and does 

not provide additional information on the amino acids sequence or post-

translational modifications. This information can be obtained by mass 

spectrometry. 

A polypeptide with apparent molecular weight of approximately 21 kDa has been 

shown to be the main component of the cocoa albumins fraction analysed by 1D 

SDS-PAGE [12, 19]. This polypeptide is derived from a cDNA precursor that 

translates to give a 221-amino-acid polypeptide of 24 kDa [49]. A hydrophobic 

signal sequence of 26 amino acids is located before the mature start of this 

precursor, and the molecular weight of the mature polypeptide would be 21 kDa 

[49]. The polypeptide sequence shows homology with sequences of the Kunitz 

protease and the α-amylase inhibitor family, and it is thought that its main function 

is to inhibit degradation of cocoa seed storage proteins from digestive enzymes of 

invading pests [49]. The albumin band at 20 kDa has also been detected in the 1D 

SDS-PAGE analysis of albumins from Theobroma bicolor and grandiflorum, 
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although this band was less intense in Theobroma bicolor and its apparent 

molecular weight was also slightly lower in this species [46]. 

1.7.2 Enzyme activities in Theobroma cacao and related species 

Cocoa endoproteases are stable during fermentation as only 50% of their activity 

is lost during this process [14], indicating a continuous proteolytic activity of these 

enzymes throughout fermentation. These findings provide an explanation as to the 

proteolytic activity observed in over-fermented beans. Aminopeptidases are 

considerably inactivated by fermentation, as their activity is reduced to only 5 % 

of the initial value after 2 days of fermentation. These enzymes are stable to sun 

and artificial drying. Carboxypeptidases remain active after sun and artificial 

drying. However, approximately 50 and 85% of their activity is lost after 3 and 4 

days of fermentation, respectively. Cotyledon invertases are almost completely 

inactivated after 2 days of fermentation. The accumulation of sugars during 

fermentation might be limited by the low invertase activity and stability. The 

activity of polyphenol oxidases is reduced considerably during fermentation. These 

enzymes are also inactivated by sun and artificial drying. β-galactosidases, α-

arabinosidases and α-mannosidases are not inactivated during fermentation or 

sunlight exposure and artificial drying [14]. 

Aspartic endopeptidases and carboxypeptidases in Theobroma bicolor and 

Theobroma grandiflorum have similar activities to those of Theobroma cacao [46]. 

Carboxypeptidases have a specificity for hydrophobic amino acids which does not 

significantly differ across the three species. However, a lower optimal pH for these 

enzymes is found in Theobroma bicolor compared to the other two species.  

Although the enzyme activities among certain genotypes differ significantly, there 

is not a clear link between the key enzyme activities of under-fermented beans 
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and their flavour potentials [50]. Therefore, the formation of flavour precursors 

during fermentation is not limited by the level of enzyme activities present in 

unfermented beans [50]. 

1.7.3 Characterisation of cocoa proteins by MS 

An analysis of the proteomic profile of Theobroma cacao pod husk was carried out 

by initial separation of intact proteins using 2D gel electrophoresis and subsequent 

de novo sequencing of 4-sulfophenyl isothiocyanate-derivatized tryptic peptides of 

the excised gel bands using MALDI-TOF/TOF MS/MS [51]. Most of the identified 

proteins could be related to metabolism and energy, and a significant proportion 

was linked to pod growth and development processes [51]. A similar procedure 

was employed to perform proteomic analysis of Theobroma cacao embryos [52]. 

In this case the majority of the identified proteins were involved in genetic 

information processing, carbohydrate metabolism and stress response [52]. 

Two-dimensional electrophoresis is a technique which separates mixtures of 

proteins based on two distinct properties of proteins. In the first dimension, 

proteins are separated based on their isoelectric point, while in the second 

dimension the separation is achieved according to the molecular size of the 

proteins. This methodology provides a higher resolution when compared to one- 

dimensional electrophoresis, however, the whole protocol is considerably longer 

as two separation mechanisms are required, and each sample must be run on a 

dedicated gel, while multiple samples can be analysed on the same gel for one- 

dimensional electrophoresis. The use of specific software to spot differences 

between samples is also required for two-dimensional gel electrophoresis. 

More than 1300 proteins were identified in white and translucent somatic embryos 

of Theobroma cacao analysed by LC-ESI MS/MS using a bottom-up shotgun 
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approach [53]. A total of 25 proteins, among which β-glucosidase, NAD(P)-linked 

oxidoreductase and electron transfer flavoprotein were detected at a higher level 

in the white somatic embryos, whereas 35 proteins including cytochrome P450 and 

pathogenesis-related proteins were upregulated in the translucent somatic 

embryos [53]. A similar approach was employed to evaluate the proteomic profile 

of cocoa beans during development [54]. The authors reported a total of 887 

identified proteins, although it is not clear whether this value refers to the 

combined list of proteins identified in all samples analysed. Cell division, ATP 

synthesis, RNA processing, amino acid synthesis and activation, protein synthesis, 

sucrose transportation and degradation-associated proteins were upregulated in 

young beans compared to mature beans. Proteins involved in defence and stress 

were present at a higher level in mature seeds. Although a list of all detected 

proteins is provided in the supplementary file, the classification of the cocoa seeds 

proteins based on their function and abundance has not been carried out [54]. 

The amino acid sequence of the cocoa globulin subunit polypeptides detected by 

1D SDS-PAGE at apparent molecular masses of 47 kDa, 31 kDa and 15 kDa could 

be localised on their common 66-kDa precursor sequence [55]. The 

characterisation of these polypeptides was carried out by MALDI-TOF MS analysis 

of tryptic digests of the bands excised from the gel. A similar procedure was used 

by Kumari et al.. [20] to assess the amino acid sequences of vicilin subunits. The 

amino acid sequence of cocoa albumin has been characterised by MALDI-TOF MS 

and was found to be nine amino acid residues shorter than expected from its 

encoded DNA [56]. The molecular weight of this protein (20,234 Da) was identical 

in seven different genotypes representing the four cocoa varieties Criollo, 

Forastero, Nacional and Trinitario [56]. A polypeptide with a molecular weight of 

8,515 Da was identified by LC-MS in unfermented cocoa beans [57]. The sequence 
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of this polypeptide closely matched the internal sequence of the 2s albumin 

precursor, suggesting that the 9 kDa polypeptide is an albumin (fragment) from 

Theobroma cacao. Some degree of homology was found between this polypeptide 

and albumins of cotton, Brazil nut and sweet protein [57]. 

A large number of proteins with molecular weights ranging from 8 to 13 kDa and 

a cluster of peaks centred at 21 kDa, which was attributed to albumin, were 

observed in the mass spectra of the protein profile of the seed of Theobroma cacao 

obtained by MALDI-TOF MS [58]. The protein MS profiles of different cocoa 

varieties were similar. No proteins were detected in the husks, suggesting that this 

part of the bean does not contain water-soluble proteins. Albumin was present in 

both apical and cortical parts, at a higher level in the former. An increase in the 

average molecular weight of these proteins was observed during roasting, which 

could be a result of sugar addition through the Maillard reaction. The protein 

extraction in this study was carried out using a low ionic strength buffer, which 

does not solubilise membrane proteins and globulins, therefore the protein MS 

profile obtained for the sample analysed is limited to water-soluble proteins only. 

The findings of this study focus on qualitative protein profiles only, furthermore, 

the low resolving power of the mass spectrometer did not allow a clear separation 

of the glycated proteins.  

The proteomic profiles of non-fermented cocoa beans from various origins and 

varieties have been characterised by 2D gel electrophoresis and subsequent 

analysis by MALDI-TOF MS/MS of a total of 49 spots identified on the 2D gel [59]. 

The authors reported differences in the proteomic profiles of samples from 

different varieties,  and samples from the same varieties grown in different 

countries. According to the authors, a vicilin subunit was specific to samples of 

CCN51 hybrids and the German Forastero cacao variety CD03 [59]. Two protein 
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spots, which were identified as a degraded 17 kDa albumin subunit and the internal 

15 kDa vicilin subunit, allowed differentiation of samples by MANOVA analysis 

based on geographical origin and variety. The authors stated that these proteins 

could be used as markers to assess the geographical origins and the different 

varieties [59]. This study evaluated only a limited number of proteins among the 

different samples, therefore did not provide a comprehensive characterisation of 

the proteomic profiles of the various samples analysed. The differences observed 

in the proteomic profiles of cocoa samples from different origins could also be due 

to environmental factors and agricultural practices used in different countries. 

1.7.4 MS characterisation of peptides formed during fermentation 

Buyukpamukcu et al. [60] claimed that two peptides with m/z values of 902 and 

621 are formed during fermentation of cocoa beans. These peptides were detected 

by LC-MS analysis of fermented cocoa extracts and gave matches to sequences in 

cocoa globulins. The ion at m/z 621 was reported to be a hexapeptide (sequence 

SPGDVF) formed during fermentation from the ion at m/z 902, which was identified 

as a nonapeptide with the sequence APLSPGDVF. One of the limitations of the 

analytical method used by the authors is that the separation mechanism was not 

optimal for the separation of amino acids and peptides with slight differences in 

molecular size. As a result, products formed during fermentation might not have 

been visualised due to co-elution with other compounds. 

Other short chain peptides formed during fermentation have also been identified 

by LC-MS [61]. The levels of these peptides were reduced after roasting, 

suggesting that these compounds might have reacted with sugars through the 

Maillard reaction, and undergone a series of further rearrangements ultimating in 

the production of volatile compounds. Among these peptides, 18 could be linked 
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to sequences derived from both globulin and albumin, while 25 had sequences 

which matched albumin only. The authors claimed that these compounds are 

flavour precursors formed during fermentation, which could be added to food 

products to reproduce chocolate aroma. However, this claim has not been 

confirmed with a panel test or PAC (principal aroma compounds) analysis. 

Further, peptides formed during fermentation have been identified and semi-

quantified in cocoa beans of different geographic origin analysed at various 

fermentation stages [62]. The samples were analysed by reverse phase LC-ESI 

MS. Among these peptides, 25 could be matched to the sequence of globulins and 

14 to albumins. Peptides which were not related to either globulins or albumins 

were also detected. This study showed that the level of peptides varied among the 

same cocoa varieties grown in different geographic locations, and among different 

varieties grown in the same geographic location. The quantitative data, however, 

are only semi-quantitative and were obtained by comparison to a dipeptide internal 

standard. Moreover, it is not clear whether the cocoa pods were grown and 

processed under controlled conditions. Therefore, the differences detected may be 

due to external parameters rather than genetic variations among the analysed 

genotypes. 

A similar approach was employed by Caligiani et al. [63] to assess the effect of 

fermentation level and geographical origin on the distribution of peptides in 

fermented and unfermented cocoa beans from different varieties and geographical 

origins. Low amounts of peptides were found in slaty and under-fermented beans 

[63]. The authors stated that the ratio of vicilin to albumin peptides is higher in 

partially fermented beans compared to fully fermented beans, and therefore this 

ratio could be used as a fermentation marker to assess the quality of commercial 

beans. In this work, however, only a limited list of 35 peptides were evaluated in 



47 

all samples analysed and a comprehensive characterisation of the peptide profiles 

of the fermented beans was not provided.  

Recently, a procedure for the fractionation and concentration of aroma precursor 

extracts from well-fermented cocoa beans has been developed by Voigt et al. [64]. 

Cocoa aroma was produced when these extracts were roasted in the presence of 

sugars and deodorised butter, confirming that the extracts contained aroma 

precursors. MALDI-TOF MS and LC-MS analysis of the fractions producing cocoa 

aroma have revealed the presence of several peptides, whose amino acid 

sequences could be linked to cocoa globulins [64]. These peptides were mostly 

hydrophilic confirming the finding of previous works, which had reported that 

hydrophilic peptides were important cocoa flavour precursors [7]. The same 

authors have shown that the pH can affect significantly the type of peptides 

released from cocoa vicilin, as proteolysis carried out at pH 5.2 produced peptides 

with longer residues than at pH 4.8 [65]. 

Analysis of free peptides by LC-MS/MS of cocoa bean samples at different 

fermentation stages have revealed that peptides generated from the degradation 

of cocoa vicilin during fermentation are localised in different regions of the amino 

acids sequence of this protein [20]. The majority of the peptides were released 

during early stages of fermentation, and proteolytic activity could be observed up 

to 72 h from the start of fermentation. Several peptides which shared the same N-

terminus but showed a different C-terminal were observed, confirming activity of 

endogenous carboxypeptidases [20]. 

Oligopeptides formed from the degradation of cocoa proteins during spontaneous 

fermentation have been extensively characterised by Souza et al. [66] employing 

LC-MS/MS. The results showed that during the early stage of fermentation longer 
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peptides were predominantly released and subsequently degraded to shorter 

peptides as the fermentation progressed. The identified peptides could be linked 

to the action of both endo- and exopeptidases degrading mostly albumin and vicilin 

at both protein termini. The authors claimed to have identified over 800 peptides 

when combining the results of all samples analysed at different fermentation 

stages. This work focused on one variety of cocoa beans only and included di and 

tri-peptides as well. 

A similar methodology was used to assess differences in terms of peptide profiles 

between 25 samples of different geographic origin and various degree of 

fermentation [59]. The authors stated that the number of identified peptides was 

correlated to the fermentation stages, as poorly fermented beans showed a lower 

number of peptides compared to fully fermented beans. The degree of 

fermentation was the factor that led to the main differences in the peptide profiles 

of the samples analysed, while no significant differences were found when taking 

into account the geographic origin only [59]. However, the authors did not report 

specific peptides markers that could be used to assess the quality of the fermented 

beans. In addition, there is no information as to the protocol used for fermentation 

of the samples analysed and treatment of the cocoa trees bearing the cocoa pod 

prior to fermentation. Therefore, the differences found could also be due to 

environmental factors or variation in fermentation practices among the different 

origins of the samples analysed. 

Lab-based fermentation of cocoa beans carried out in sterile glass bottles has very 

recently allowed the identification of 449 peptides by LC-MS, ranging from 4 to 23 

amino acid residues [67]. A total of 9 peptides derived from proteolysis of cocoa 

vicilin and formed only in the late fermentation stages showed a significant loss 
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after roasting, which would suggest according to the authors that these peptides 

may be responsible for the generation of cocoa aroma [67]. 

1.8 Aims and objectives 

The main aims of this project are to characterise the cocoa bean proteome and 

understand whether differences in flavour characteristics between cocoa beans 

from different varieties are also reflected in their proteomic profiles.  

The initial phase of the project was based on the development of a methodology 

that would allow a comprehensive characterisation of the proteomic profile of 

cocoa beans using mass spectrometry-based techniques. 

There are cocoa varieties, which produce different flavour profiles, however, it is 

not known whether differences in flavour profiles are also reflected in the 

proteomic profile. Therefore, the second phase of the project focused on the 

analysis of cocoa varieties with contrasting flavour characteristics and assessed 

whether qualitative and quantitative differences in the proteomic profiles of these 

varieties can be found. To minimise variability of the protein expression due to 

external factors, the cocoa varieties to be analysed would have to be grown under 

controlled conditions in terms of water intake, fertilisation, sun exposure and soil 

structure. A collaboration with the University of West Indies (UWI) was sought as 

this institution has the facilities to grow cocoa trees under controlled conditions. A 

total of four different genotypes were selected for the second phase of this project. 

The choice of genotypes was made based on the following criteria: 

• Varieties available at UWI 

• Varieties belonging to different genetic groups 

• Varieties which show differences in flavour profile 
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• Varieties which cover the range of raw material used by commercial 

chocolate producers 

Another objective of this project was to understand how proteins are degraded 

during fermentation, and what proteolysis products are formed during this process. 

As a result, a method was developed to extract and characterise free peptides from 

fermented cocoa beans by LC-MS/MS analysis. This methodology can be used for 

future work aimed at carrying out the characterisation and quantitation of free 

peptides released from cocoa beans proteins during fermentation. 
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2 MATERIALS AND METHOD 

2.1 Chemicals and solutions 

Petroleum ether 40-60 was obtained from Fisher Scientific, Loughborough, UK. All 

other chemicals and solvents were obtained from Sigma-Aldrich, Gillingham, UK, 

except where stated otherwise. Buffer 1 was an aqueous solution containing 5 mM 

sodium ascorbate, 2 mM EDTA and 10 mM Tris-HCl adjusted to pH 7.5±0.2 with 

the addition of aqueous 1 M NaOH (Fisher Scientific). Buffer 2 consisted of a 0.5-

M NaCl solution containing 5 mM sodium ascorbate, 2 mM EDTA and 10 mM Tris-

HCl adjusted to pH 7.5±0.2 with the addition of aqueous 1 M NaOH. The 

solubilisation solution consisted of aqueous 7 M urea, 2 M thiourea and 20 mM 

dithiothreitol. The wash solution was made up of cold (~4˚ C) aqueous acetone 

(80%; v/v) containing 5 mM sodium ascorbate. 

2.2 Plant materials 

2.2.1 Method development and characterisation of cocoa proteome 

Cocoa seeds were from West African Amelonado ripe pods harvested at the Cocoa 

Research Centre of the University of West Indies, St. Augustine, Trinidad. The pods 

were stored at room temperature after harvest and air-freighted within four days 

to Reading, UK. The temperature of the pods was not controlled during shipping. 

Upon arrival, seeds were removed from pods, washed with sand and water to 

remove the pulp and stored at -80˚ C prior to analysis. Approximately 240 beans 

from 6 pods were combined. 

2.2.2 Proteomics analysis of cocoa genotypes 

Cocoa seeds were from four different genotypes of Theobroma cacao and a variety 

of Theobroma speciosum, harvested at the Cocoa Research Centre of the 

University of West Indies, St. Augustine, Trinidad, as described in Table 3: 



52 

Table 3.  Selected genotypes for the initial phase of the project 

Accession code  Genetic group Flavour attributes 

ICS 1  Trinitario 
Fresh and brown fruity 

[68, 69] 

ICS 39 With a strong Criollo ancestry 
Nutty and caramel 

[70] 

IMC 67 Forastero of Iquitos origin Fruity [68, 69] 

SCA 6 Contamana 
Floral and fruity [68, 

69] 

Negative control Theobroma speciosum No cocoa flavour  

 

To assess the effect of a different location on the proteomic profile of cocoa beans, 

samples from the genotype IMC 67 grown in two different fields were also 

provided. Samples from Theobroma speciosum were also selected to be used as 

negative control, since this species belongs to the same genus as Theobroma 

cacao, but its beans do not generate cocoa aroma. The main phenotypic traits of 

the Theobroma cacao genotypes selected for this project are listed in Table 4. 

Table 4. Main phenotypic traits of selected genotypes  

Accession Origin Yield Bean Pod 

ICS 1  Trinidad 
Low-

medium 

Purple colour with an 

elliptical shape. Average 

dry weight 1.27 g. Seed 

index* 58 [71]. 

Elliptical shape, 

moderate rugosity and 

moderate anthocyanin 

colour. Pod index* 

19.6 [71]. 

ICS 39 Trinidad High 

Purple colour with an 

ovate shape. Average 

dry weight 1.16 g. Seed 

index 68 [71]. 

Angoleta shape, 

moderate rugosity and 

anthocyanin absent 

colour. Pod index 21.3 

[71]. 

IMC 67 Peru Low 

Dark purple colour with 

an ovate shape. 

Average dry weight 

1.04 g. Seed index 109 

[71]. 

Obovate shape, 

moderate rugosity and 

anthocyanin absent 

colour. Pod index 24.9 

[71]. 

SCA 6 

Upper 

Amazonian 

Forest 

Very low 

Purple colour with an 

oblong shape. Average 

dry weight 0.51 g. Seed 

index 133 [71]. 

Angoleta shape, 

moderate rugosity and 

anthocyanin absent 

colour. Pod index 35.2 

[71]. 

*The seed index is the number of seeds required to produce 100 g of dried beans, while 

the pod index is the number of pods required to produce 1 Kg of dried beans. 
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Cocoa pods were harvested from 6 different trees for each genotype. A detailed 

list of the number of trees and pods for each genotype is provided in Table 5: 

Table 5. List of biological replicates provided for each cocoa genotype  

Genotype Tree No. of pods Genotype Tree No. of pods 

SCA 6 

T1 6 

IMC 67 
 ICGT 

T2 6 

T5 6 T3 6 

T10 6 T5 6 

T12 6 T6 6 

T14 7 T10 6 

T15 5 T13 6 

Total 36 Total 36 

      

Genotype Tree No. of pods Genotype Tree No. of pods 

IMC 67 
CAMPUS 

TREE A 6 

ICS 1 

T3 6 

TREE B 6 T5 6 

TREE D 6 T7 6 

TREE F 5 T8 6 

TREE I 6 T11 6 

TREE J 6 T12 6 

Total 35 Total 36 

      

Genotype Tree No. of pods Genotype Tree No. of pods 

ICS 39 

T1 6 

Theobroma 
Speciosum 

TREE C 3 

T2 6 TREE D 3 

T3 6 TREE E 3 

T4 6 TREE H 6 

T5 5 TREE I 6 

T7 6 TREE J 6 

Total 35 Total 27 

 

Each pod of the same cocoa genotype was considered a biological replicate within 

the specified cocoa variety. Pods were stored refrigerated for no longer than 3 

days after being harvested. The beans were removed from the pods and the pulp 

manually removed with the aid of a scalpel. Depulped beans were stored at -20˚ 

C and subsequently freeze-dried for 24 hours. After the freeze-drying step, the 

beans were stored at -20˚ C prior to shipping.  The freeze-dried beans were air-

freighted to Reading with no control of the temperature during the shipment. Upon 

arrival, the beans were stored at -20˚ C prior to analysis. In order to obtain a 

representative sample for each cocoa variety, approximately 2 g of beans from 
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each biological replicate within the same genotype were combined, and the 

remainder of the beans were left in their original container. The harvest time for 

the collected biological replicates spanned over a period of six months from 

November 2016 to May 2017 as shown in Figure 18. 

 

Figure 18. Graphical visualisation of harvest time for all biological replicates analysed to 

investigate the proteome changes dependent on genotypes 

 

2.2.3 Method development for analysis of free peptides  

Beans of the Amelonado variety were naturally fermented in cocoa farms in Ghana 

with the heaps method as described in section 1.2 and sun-dried after 

fermentation. The dried beans were stored at room temperature and shipped to 

Reading with no control over the temperature. Upon arrival, the beans were stored 

at -20˚ C prior to analysis.  
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2.3 Fat and polyphenol removal 

2.3.1 Characterisation of cocoa proteome 

The seeds were freeze-dried for 12-14 hours, snap-frozen using liquid nitrogen 

and subsequently ground using a mortar and pestle. These samples were used for 

all subsequent analyses. Fat from aliquots of approximately 500 mg were extracted 

with 10 ml of petroleum ether (boiling point 40-60˚C) for 20 minutes in a vertical 

shaker. The suspensions were subsequently centrifuged at 3100 g for 5 minutes 

and the supernatants were discarded. The extraction was repeated twice, and the 

precipitates were dried under a stream of nitrogen. In order to prevent the 

formation of polyphenol-protein complexes during extraction [12], this class of 

compounds was removed following a slight modification of a published method 

[23]. In brief, polyphenols were extracted from the defatted seeds with 10 ml of 

wash solution. The suspensions were vortexed for 1 minute and centrifuged at 

3100 g for 10 minutes at 4˚ C. The supernatant was discarded and the extraction 

repeated twice. Residual water was removed by extraction with 10 ml of cold 

acetone. The sample was then dried under a stream of nitrogen, resulting in 

acetone-dried powder (ACDP). Taking into account that the fat and polyphenols 

content of dried cocoa beans is around 40% and 10% [11], respectively, it can be 

estimated that approximately 250 mg of ACDP was obtained from 500 mg starting 

material.  

2.3.2 Method development and proteomic analysis of cocoa genotypes 

Initial analyses were carried out on samples prepared as described in section 2.3.1. 

Defatting and polyphenols removal was also performed on aliquots of 

approximately 600 mg of freeze-dried cocoa powder, using the same procedure as 

described in section 2.3.1. 
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To optimise the extraction process and reduce the amount of sample required to 

carry out protein analysis, samples aliquots were reduced to approximately 160 

mg of freeze-dried cocoa beans. Fat and polyphenols removal was performed as 

described in section 2.3.1, however, in this case the extraction volumes were 

scaled down from 10 to 3.5 ml.   

2.3.3 Peptidomic analysis  

The seeds were freeze-dried for 12-14 hours, snap-frozen using liquid nitrogen 

and subsequently ground using a grinder. These samples were used for all 

subsequent peptidomic analyses. Fat from aliquots of approximately 200 mg were 

extracted with 3.5 ml of petroleum ether (boiling point 40-60˚ C) for 20 minutes 

in a vertical shaker. The suspensions were subsequently centrifuged at 3100 g for 

5 minutes and the supernatants were discarded. The extraction was repeated twice 

and the precipitates were dried under a stream of nitrogen. 

2.4 Proteins extraction 

2.4.1 Characterisation of cocoa proteome 

Albumin and vicilin fractions were extracted following a slightly modified method 

reported in the literature [23]. To obtain the albumin fraction 13.5 ml of buffer 1 

was added to the ACDP. The suspension was stirred at 250 rpm for 1 hour at           

4˚C and subsequently centrifuged at 3100 g for 20 minutes at 4˚C. The extraction 

was repeated, and all the supernatants collected. The combined supernatant 

solutions were centrifuged at 3100 g for 20 minutes and their supernatant was 

transferred into a 50 ml centrifuge tube. To precipitate the albumin fraction, TCA 

was added to this solution to get a final concentration of 10% (w/v). The solution 

was stored at -20˚ C for 60 minutes and subsequently centrifuged at 3100 gf for 

20 minutes. The supernatant was discarded and the pellet was washed three times 
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with 15 ml of cold acetone. After each acetone wash, the suspension was 

centrifuged at 4000 rpm for 15 minutes at 4˚ C. Residual acetone was removed 

under a stream of nitrogen. 

In order to obtain the vicilin (globulin) fraction, the precipitate obtained following 

the albumin extraction with buffer 1 was extracted with 13.5 ml of buffer 2. The 

extraction was performed by TCA precipitation as described for the albumin 

extraction above. 

Proteins from the pellet obtained following the albumin and vicilin fractionation 

steps were extracted with 14.0 ml of solubilisation solution. The suspension was 

stirred at 250 rpm for 1 hour at room temperature and subsequently centrifuged 

at 4000 rpm for 15 minutes at 4 ˚ C. The supernatant was collected and stored at 

-20˚ C. 

For the total protein extraction from the unfractionated ACDP, 14.0 ml of 

solubilisation solution was added to this sample, and the suspension was stirred at 

250 rpm for 1 hour at room temperature and subsequently centrifuged at 4000 

rpm for 15 minutes at 4˚ C. 

2.4.2 Method development and proteomic analysis of cocoa genotypes 

Initial experiments were carried out on unfractionated samples prepared as 

described in section 2.4.1. The ACDP obtained from the 600 mg aliquots were 

extracted following the same procedure described in section 2.4.1 for the 

unfractionated workflow. However, the volume of solubilisation solution was 

reduced to 12.0 ml in this case.  

To the ACDP obtained from the 160 mg aliquots, 3.5 ml of solubilisation solution 

were added. The suspensions were vortexed for 1 minute and subsequently 

extracted for 1 hour at room temperature in a vertical shaker at 700 rpm. The 



58 

suspension was subsequently centrifuged at 3100 g for 10 minutes at 20° C. The 

supernatant was removed and stored at -80° C prior to analysis. 

2.5 Peptide extraction 

For the initial experiments, approximately 25-30 mg of PVPP (Fisher, UK) were 

added to the defatted cocoa beans and subsequently 4 ml of a methanol:water 

70:30 (v/v) solution were added. The samples were vortexed for 1 minute and 

then extracted for 1 hour at room temperature in a vertical shaker at 700 rpm. 

The suspension was subsequently centrifuged at 3100 g for 10 minutes at 20˚ C. 

The supernatant was removed and stored at -80˚ C prior to analysis. An aliquot of 

0.2 ml of the peptides solutions was transferred into a 0.5 ml EppendorfTM 

centrifuge tube, dried down in a Genevac MIVACTM duo concentrator and 

reconstituted in 0.2 ml of a 0.1% TFA solution in water. These solutions were 

transferred into HPLC vials for LC-MS/MS analysis. 

Additional analyses were performed using 0.5% TFA in water and 0.5% TFA in 

water:methanol 80:20 (v/v) as extraction solutions, using the same volumes and 

protocol as described above. For every extraction, approximately 20-25 mg of 

PVPP were added to the defatted cocoa beans. 

2.6 Desalting of peptides solutions 

The peptide solutions extracted with 0.5% TFA in water were desalted with SOLAμ 

HRP 96 Well Plate 2 mg sorbent mass SPE cartridges (Thermo Scientific, Waltham, 

MA, USA). The cartridges were initially conditioned with 0.2 ml of methanol and 

subsequently equilibrated with 0.2 ml of aqueous 0.5% (v/v) TFA. After loading an 

aliquot of 0.4 ml of the samples solutions, the cartridges were washed with 0.2 ml 

of 0.5% TFA, and then eluted with 2x 25 µl of 0.1% TFA in acetonitrile:water 75:25 
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(v/v) solution. The SPE eluates were dried down in a speed vacuum and 

reconstituted in 0.1 ml of aqueous 0.1% TFA prior to LC-MS/MS analysis.  

The peptide solutions extracted with 0.5% TFA in water:methanol 80:20 (v/v) 

were also desalted with SOLAμ HRP 96 Well Plate 2 mg sorbent mass SPE 

cartridges following the same protocol described above. However, in this case, an 

aliquot of 0.4 ml of each peptide extract solution was diluted to a final volume of 

2 ml with 0.5% aqueous TFA and the whole solution loaded on the SPE cartridges. 

2.7 SDS-PAGE 

2.7.1 Method development 

Protein extracts obtained from 600 mg aliquots as described in section 2.4.2 were 

diluted with water to have a final concentration of approximately 1.9 or 3.0 mg/ml 

of protein. An aqueous 8.7-mg/ml BSA solution was diluted with water to have an 

approximate concentration of 1.8 or 0.4 mg/ml. Samples and BSA solutions were 

subsequently diluted with 1 volume of Laemmli Buffer containing mercaptoethanol 

and incubated for 10 minutes at 70˚ C. Precision Plus Protein™ (BIO-RAD) markers 

which cover a range of 10-250 kDa were used to assess the molecular weight of 

the electrophoretic bands. Samples and standards (10 µl) were loaded onto a 12% 

Mini-PROTEAN® TGX™ gel (BIO-RAD) and the electrophoresis analysis was carried 

out on a Mini PROTEAN Tetra Cell (BIO-RAD) at a constant voltage of 300 or 250 

V. The running buffer was 25 mM Tris, 192 mM glycine, 0.1% SDS. The gels were 

subsequently stained with Bio-Safe Coomassie Stain (BIO-RAD).  Images of the 

gels were acquired on a BIO-RAD Molecular Imager® Gel Doc™ XR System with 

Quantity One Software version 4.6.9. 
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2.7.2 Analysis of cocoa genotypes 

Protein extracts obtained from 160 mg aliquots as described in section 2.4.2 were 

diluted with water to have a final concentration of approximately 3.0 mg/ml. An 

aqueous BSA solution (8.7 mg/ml) was diluted with water to have an approximate 

concentration of 0.4 mg/ml. Samples and BSA solutions were reacted with Laemmli 

Buffer and analysed on a Mini PROTEAN Tetra Cell with the same conditions as 

described in section 2.7.1, setting the voltage at 250 V for the whole duration of 

the run. Images of the gels were acquired as described in section 2.7.1. 

2.8 Protein quantitation and trypsin digestion 

2.8.1 Characterisation of cocoa proteome 

A volume of 3.0 ml of solubilisation solution was added to the albumin and globulin 

TCA precipitation pellets and the pH was adjusted to 8.5-9.0 with the addition of 

10 µl of a 1-M NaOH solution. The pellets were incubated for 30 minutes at 30˚ C 

and subsequently vortexed until complete dissolution. The solutions were then 

centrifuged at 4000 rpm for 15 minutes at 4˚ C. The supernatant was collected 

and stored at -20˚ C prior to further analysis. The protein concentration in each 

sample was assessed with the Bradford assay [72]. BSA was used as reference 

standard for quantitation purposes. 

Aliquots of each sample solution containing a total amount of 10 µg of proteins 

based on the Bradford assay were transferred into 1.5-ml microcentrifuge tubes 

and spiked with 7 µl of an aqueous 10-mg/l BSA solution. A volume of 10 µl of an 

aqueous 200-mM DTT solution was added to each tube, and the final concentration 

of DTT was adjusted to 10 mM by adding 160-180 µl of 50 mM aqueous ammonium 

bicarbonate. The solutions were incubated for 30 minutes at 37˚ C. A volume of 

23 µl of an aqueous 200-mM IAA solution was then added to each sample solution 
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in order to obtain a final IAA concentration of 20 mM. After keeping these solutions 

in the dark at room temperature for 30 minutes, 40 µl of a 50-mM aqueous 

ammonium bicarbonate solution was also added to reduce the concentration of 

urea below 1 M. The pH of each solution was measured to ensure it was around 8. 

To each sample tube a volume of 1 µl of a 0.2-µg/µl trypsin (Promega, 

Southampton, UK) solution was added to obtain a 1:50 trypsin-to-protein ratio, 

and the solutions were incubated for approximately 16 hours at 37˚C. After 

incubation, the digestion was stopped by lowering the pH to below 3 with the 

addition of 10 µl of a 10% (v/v) solution of aqueous TFA to each sample tube. The 

sample solutions were dried down under vacuum using a centrifugal evaporator 

and stored at -20˚C. Prior to MS/MS analysis, the tryptic digests were defrosted 

and solubilised with 10 µl of 0.1% (v/v) TFA in water and desalted using ZipTips 

(Merck Millipore, Watford, UK) with 0.6 µl C18 resin according to the 

manufacturer’s protocol. The ZipTip eluates were diluted to a final volume of 20 µl 

with the addition of 0.1 % (v/v) TFA in water. 

2.8.2 Method development and proteomic analysis of cocoa genotypes 

Aliquots of unfractionated protein extracts prepared as described in section 2.4.1 

containing a total amount of 10 µg of protein based on the Bradford assay were 

digested following the protocol outlined in section 2.8.1. Some of these aliquots 

were desalted using ZipTip as described in section 2.8.1. A desalting step was also 

carried out on STRATA X 96 Well Plate 2 mg sorbent mass SPE cartridges 

(Phenomenex, Macclesfield, UK) with a sorbent mass of 2 mg. In this case the 

cartridges were initially conditioned with 0.2 ml of methanol and subsequently 

equilibrated with 0.2 ml of 0.4% v/v TFA in 50 mM aqueous ammonium 

bicarbonate. After loading the whole tryptic digest solutions, the cartridges were 

washed with 0.2 ml of a water:methanol 97:3 (v/v) solution, and then eluted with 
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3x 25 µl of 1% TFA in acetonitrile:water 75:25 (v/v) solution. The eluates were 

dried down under vacuum using a centrifugal evaporator and stored at -20˚ C. 

Prior to MS/MS analysis, the tryptic digests were diluted to a final volume of 50 µl 

with 0.1% TFA in water.  

Aliquots of unfractionated protein extracts solution obtained from approximately 

600 mg of cocoa beans (see section 2.4.2), containing a total amount of 160 µg 

of proteins based on the Bradford assay, were transferred into 0.5-ml 

microcentrifuge tubes and spiked with 30 µl of an aqueous 10-mg/l BSA solution. 

A volume of 13 µl of an aqueous 200-mM DTT solution was added to each tube, 

and the final concentration of DTT was adjusted to 10 mM by adding 170 µl of 86 

mM aqueous ammonium bicarbonate. The solutions were incubated for 30 minutes 

at 37˚ C. A volume of 22 µl of an aqueous 200-mM IAA solution was then added 

to each sample solution to obtain a final IAA concentration of 20 mM. To each 

sample tube a volume of 20 µl of a 0.15-µg/µl trypsin solution was added to obtain 

a 1:50 trypsin-to-protein ratio, and the solutions were incubated for approximately 

16 hours at 37˚ C. After incubation, the digestion was stopped by lowering the pH 

to below 3 with the addition of 10 µl of a 10% (v/v) aqueous solution of TFA to 

each sample tube. A volume of 20 µl of the tryptic peptide solutions was 

transferred into 0.2 ml microcentrifuge tubes, dried down under vacuum using a 

centrifugal evaporator and stored at -20˚ C. Prior to MS/MS analysis, the tryptic 

digests were defrosted and solubilised with 10 µl of 0.1% (v/v) TFA in water and 

desalted using ZipTip with 0.6 µl C18 resin according to the manufacturer’s 

protocol. The ZipTip eluates were diluted to a final volume of 20 µl with the addition 

of 0.1 % (v/v) TFA in water. The tryptic digest solutions which were left in the 0.5 

ml tubes after removing the aliquots for desalting with ZipTip, were desalted with 

SOLAμ HRP 96 Well Plate 2 mg sorbent mass SPE cartridges (Thermo Scientific, 
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Waltham, MA, USA). The cartridges were initially conditioned with 0.2 ml of 

methanol and subsequently equilibrated with 0.2 ml of 0.2% (v/v) TFA in 50 mM 

aqueous ammonium bicarbonate. After loading the sample solutions, the 

cartridges were washed with 0.2 ml of 0.2% TFA in water:methanol 97:3 (v/v), 

and then eluted with 3x 25 µl of 0.2% TFA in acetonitrile:water 50:50 (v/v) 

solution. The SPE eluates were diluted with 0.225 ml of 0.1% TFA in water and 

stored at -80 ˚ C prior to LC-MS/MS analysis. 

Aliquots of protein extracts obtained from 160 mg of cocoa beans (see section 

2.4.2), containing approximately 160 µg of proteins based on the Bradford assay 

were transferred into 0.5 ml microcentrifuge tubes and spiked with 30 µl of an 

aqueous 10-mg/l BSA solution. A volume of 20 µl of an aqueous 200-mM DTT 

solution was added to each tube, and the final concentration of DTT was adjusted 

to 10 mM by adding 290 µl of 77 mM aqueous ammonium bicarbonate. The 

solutions were incubated for 30 minutes at 37˚ C. A volume of 43 µl of an aqueous 

200-mM IAA solution was then added to each sample solutions to obtain a final 

IAA concentration of 20 mM. Samples were diluted with a 7-M urea solution to give 

a final concentration of urea of 0.6-0.7 M. To each sample tube a volume of 20 µl 

of a 0.15-µg/µl trypsin solution was added to obtain a 1:50 trypsin-to-protein ratio, 

and the solutions were incubated for approximately 16 hours at 37˚ C. After 

incubation the digestion was stopped by lowering the pH to below 3 with the 

addition of 20 µl of a 5% (v/v) solution of TFA to each sample tube. Prior to MS/MS 

analysis, the whole tryptic digest solutions were desalted employing the same 

protocol with Thermo Sola SPE cartridges as described above. 
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2.9 Nano-UHPLC-ESI MS/MS analysis 

2.9.1 Characterisation of cocoa proteome 

The desalted tryptic digests were analysed on a nano-UHPLC-ESI MS/MS system 

consisting of an Orbitrap Fusion (Thermo Scientific, Waltham, MA USA) mass 

spectrometer coupled to a Dionex Ultimate 3000 nano-RSLC (Thermo Scientific) 

nano-UHPLC system. The injection volume for each sample was 1 µl. The nano-

UHPLC system was kept at 40˚ C and the column configuration included an Acclaim 

PepMap C18 100 μm × 2 cm 3 µm particle size trap column (Thermo Scientific) 

and an Acclaim PepMap C18 75 μm × 25 cm 3 µm particle size analytical column 

(Thermo Scientific). The chromatographic separation of the tryptic digests was 

carried out under a linear gradient elution using 0.1 % (v/v) formic acid in water 

as solution A and 0.1 % (v/v) formic acid in acetonitrile as mobile phase B with a 

flow rate of 300 nl/min. The gradient conditions were as follows: 4% B at 0-4 

minutes, 50% B at 144 minutes, 90% B at 180-185 minutes, 4% B at 186-196 

minutes. The nano-ESI source was operated in positive ion mode. MS analysis was 

carried out using the Orbitrap mass analyser, setting the resolution at 120,000 

and the AGC target at 400,000 with a maximum injection time of 100 ms. The MS 

scan covered an m/z range between 300 and 1500. For MS/MS analysis a data 

dependent experiment was performed with the Quadrupole mass analyser as the 

initial filter, setting the isolation window width at m/z 1.6. For this experiment, the 

resolution of the Orbitrap was set to 30,000 with an AGC target of 5,000 and a 

maximum injection time of 35 ms. Fragmentation was performed by HCD with a 

normalized collision energy of 32% and an activation q value of 0.25. Dynamic 

exclusion was enabled in order to reduce the occurrence of redundant sequencing. 

MS peaks detected more than once over a 30 s window were not automatically 
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fragmented for 40 s. The threshold for triggering a data-dependent scan was set 

to 5,000 and only ions with a charge state between 2 and 7 were selected. 

2.9.2 Method development for quantitative proteomic analysis 

The same instrumentation, trap column, mobile phases and MS parameters 

described in paragraph 2.9.1 were employed. Analyses were carried out an Acclaim 

PepMap C18 75 μm × 50 cm analytical column (Thermo Scientific). The 

temperature of the column oven was set at 50˚ C. The following gradient 

conditions were employed: 4% B at 0-4 minutes, 30% B at 150 minutes, 60% B 

at 160 minutes, 90% B at 180-185 minutes, 4% B at 186-196 minutes. The flow 

rate was set at 300 nl/min and the injection volume was 1 µl. 

2.10 Microflow UHPLC-ESI MS/MS analysis 

2.10.1 Method development 

The desalted tryptic digests were analysed on a UHPLC-ESI MS/MS system 

consisting of an Orbitrap Q Exactive (Thermo Scientific) mass spectrometer 

coupled to a Dionex Ultimate 3000 (Thermo Scientific) UHPLC system. The 

injection volume varied between 10 and 15 µl. The UHPLC system was kept at 50˚ 

C and the column configuration included an Acquity Peptide CSH C18 150 mm × 

0.1 mm ID (1.7 µm particle size) analytical column (Waters, Elstree, UK). The 

chromatographic separation of the tryptic digests was carried out under a linear 

gradient elution using 0.1 % (v/v) formic acid in water as mobile phase A and 0.1 

% (v/v) formic acid in acetonitrile as mobile phase B with a flow rate of 0.1 ml/min. 

The gradient conditions were as follows: 2% B at 0-5 minutes, 30% B at 80 

minutes, 60% B at 90 minutes, 90% B at 100-110 minutes, 2% B at 115-125 

minutes. Injection volumes of 10 and 15 µl were evaluated. The ESI source was 

operated in positive ion mode. MS analysis was carried out using the Orbitrap mass 
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analyser, setting the resolution at 70,000 and the AGC target at 1,000,000 with a 

maximum injection time of 200 ms. The MS scan covered an m/z range between 

200 and 2400. For MS/MS analysis a data dependent experiment selecting the 10 

most abundant precursor ions was performed, using the Quadrupole mass analyser 

as the initial filter, and setting the isolation window width at m/z 2.0. For this 

experiment, the resolution of the Orbitrap was set to 17,500 with an AGC target 

of 100,000. Maximum injection time of 200 and 300 ms were evaluated. 

Fragmentation was performed by HCD with a normalised collision energy of 28%. 

Dynamic exclusion was enabled setting the filter at 15 seconds. The threshold for 

triggering a data-dependent scan was set to 67,000 and only ions with a charge 

state between 2 and 5 were selected.  

2.10.2 Proteomic analysis of cocoa genotypes 

The same instrumentation, column, mobile phases and MS parameters described 

in section 2.10.1 were employed. The injection volume for all samples analysed 

was 15 µl, and the injection time for MS/MS analysis was 300 ms. 

2.10.3 Peptides analysis 

The same instrumentation, and MS parameters described in section 2.10.1 were 

employed. For the MS/MS analysis injection times of 200 and 300 ms were 

evaluated. The injection volume for all samples analysed was 10 µl. 

2.11 Data analysis 

2.11.1 Characterisation of cocoa proteome 

All MS/MS spectra were processed using Mascot Distiller software (Matrix Science 

Ltd, London, UK; Version 2.5.1.0) to convert the raw LC-MS/MS data into peak 

lists suitable for database searching using the Mascot search routine (Matrix 

Science Ltd; Version 2.4.1). Mascot searches were carried out against the Cacao 
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Matina 1-6 Genome v1.1 Theobroma cacao database (http: 

//www.cacaogenomedb.org/ Tcacao_genome_v1.1#tripal_analysis-downloads-

box; accessed on 31st May 2015; 59,577 sequences; 23,720,084 residues), The 

cacao Criollo genome v2.0 Theobroma cacao database [73] (downloaded on 25th 

July 2018; 30,655 sequences; 14,782,063 residues) the NCBInr database 

(downloaded on 16th June 2015; 67,841,823 sequences; 24,324,060,020 residues 

), the Uniprot database (downloaded on 31st March 2014; 542,782 sequences; 

193,019,802 residues), a custom NCBInr database with entries restricted to 

Theobroma cacao only (downloaded on 7th July 2015; 43,683 sequences; 

19,146,837 residues) and a custom Uniprot database with entries restricted to 

Theobroma cacao only (downloaded on 1st July 2015; 40,941 sequences; 

17,501,566 residues). Searches were performed using the following parameters: 

peptide mass tolerance, 10 ppm; MS/MS tolerance, 0.3 Da; peptide charge, +2, 

+3, +4; missed cleavages, 2; fixed modification, Carbamidomethyl (C); variable 

modification, Oxidation (M) and Acetyl (N); enzyme, trypsin. The false discovery 

rate (FDR) for all searches was adjusted to 1%, which resulted in various 

significance thresholds for the different searches. However, the p-value was <0.05 

for all searches. Taxonomy of viridiplantae was specified when searching against 

the NCBInr and Uniprot databases. The Mascot protein reports were exported as 

.csv files using Report Builder within Mascot with a filter of at least 2 ‘significant 

sequences’. The data were subsequently processed using Excel software for 

protein differential analysis based on the emPAI value of each protein normalized 

against BSA which had been added to the samples as an internal standard. The 

emPAI value is calculated using the following equation: emPAI = 10
𝑁 𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑

𝑁 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑏𝑙𝑒 − 1, 

where N observed is the number of experimentally observed peptides and N 

observable is the calculated number of observable peptides for each protein [44]. 
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The amino acid sequence of BSA was added to the Theobroma cacao databases. 

Functional annotation was carried out by matching the protein accession codes 

from the Cacao Matina 1-6 Genome v1.1 Theobroma cacao to the GoMapMan 

database (http://protein.gomapman.org/).  

2.11.2 Method development and proteomic analysis of cocoa genotypes 

All MS/MS spectra were processed using Mascot Distiller software as described in 

section 2.11.1. Mascot searches were carried out against the Cacao Matina 1-6 

Genome as described in section 2.11.1 and a custom-made database (70 

sequences; 31,845 residues) containing the most common contaminants. For 

method development and the evaluation of the effect of harvest time and tree, 

Mascot Server Version 2.4.1 was used, while the analysis of the different cocoa 

genotypes was carried out employing the Mascot Server Version 2.6 (Matrix 

Science Ltd). Label-free quantitation was carried out using a replicate protocol with 

Mascot Distiller software. The FDR was adjusted to 1% for all searches related to 

quantitative experiments. Normalisation of the proteins’ intensities was carried out 

against BSA. Protein quantitation was performed using the median of the ion signal 

intensity ratios from all peptide for each protein, for which a minimum of two 

peptides were detected. For statistical analyses, JMP Pro 13.0 and XLSTAT 2108.5 

software were used. 

2.11.3 Peptide analysis 

All MS/MS spectra of the peptide extract raw files were processed using Proteome 

Discoverer software (Version 2.1) to obtain peaks lists from the LC-MS/MS raw 

files which were subsequently loaded onto the Mascot server (Version 2.4.1). 

Searches were carried out against a custom-made database which contained the 

100 most abundant proteins listed in Appendix 1 (100 sequences; 43,226 
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residues), the Cacao Matina 1-6 Genome v1.1 Theobroma cacao database 

(http://www.cacaogenomedb.org/Tcacao_genome_v1.1 

#tripal_analysis-downloads-box; accessed on 31st May 2015; 59,577 sequences; 

23,720,084 residues), a custom-made database (897 sequences; 374,606 

residues) containing the 897 proteins which had been identified during the 

characterisation of the cocoa proteome using a custom-made Uniprot\Tremble 

database with entries restricted to Theobroma cacao only, as described in section 

3.1. Only peptides with an FDR and a q-value <= 0.01 were selected. 
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3 Results  

3.1 In-depth characterisation of the cocoa bean proteome by LC-MS  

Cocoa seeds were from ripe pods of the West African Amelonado variety harvested 

at the Cocoa Research Centre of the University of West Indies, St. Augustine, 

Trinidad. Approximately 240 beans from 6 different pods were combined. Cocoa 

beans have a fat content of around 30-40% w/w [11]. Therefore, it is advisable to 

extract the fat fraction and thus to remove highly hydrophobic compounds which 

can negatively affect the protein extraction yield and cause interferences in 

chromatographic separation. The most common procedure to extract fat involves 

the use of a Soxhlet apparatus and petroleum ether as extraction solvent. 

However, this procedure requires overnight extraction at a temperature ranging 

between 30-40˚ C which could lead to protein degradation. As a result, a quicker 

method for the removal of fat was devised for this study, involving three quick 

extractions with petroleum ether. The data from this quicker fat removal protocol 

showed that the amount of fat extracted was similar to the Soxhlet method, while 

substantially reducing the extraction time. 

As mentioned in section 2.3, polyphenols can form insoluble complexes with 

proteins during extraction [12]. Therefore, this class of compounds was also 

removed prior to protein extractions, employing aqueous acetone as extraction 

solvent [23]. 

Two samples were then taken, one for a sample preparation workflow with 

fractionation and another for a workflow without fractionation. In the workflow 

with fractionation, albumin and vicilin fractions were extracted with a low and high 

ionic strength buffer, respectively. Membrane and hydrophobic proteins are not 

highly soluble in aqueous buffer, therefore a solubilisation solution containing 
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chaotropic and denaturing agents was employed to extract these proteins from the 

cocoa powder remaining after the extractions with the low and high ionic strength 

buffers. This solution was also used for the protein extraction of the cocoa powder 

in the workflow without fractionation. 

The majority of the peptides detected in the BPC chromatograms of the samples 

analysed were eluted in a range of 20-90 minutes, which corresponds to a 

percentage of organic solvent from approximately 10 to around 30%, see Figures 

19-22. The rise in the baseline at the end of the gradient is due to strongly retained 

compounds present either in the sample solution or in the mobile phases. Some 

differences could be observed in the peptide elution patterns of these samples, 

specifically in the chromatogram of the unfractionated tryptic digest which showed 

a higher number of peaks compared to the chromatograms of the fractionated 

extracts, see Figures 19-22. 

 

Figure 19. BPC chromatogram of full MS scan of salt-soluble fraction extracted from 

Amelonado cocoa beans with a high ionic strength buffer (0.5 M NaCl, 5 mM sodium 

ascorbate, 2 mM EDTA, 10 mM Tris), and analysed on the Orbitrap Fusion 
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Figure 20. BPC chromatogram of full MS scan of water-soluble fraction extracted from 

Amelonado cocoa beans with a low ionic strength buffer (5 mM sodium ascorbate, 2 mM 

EDTA, 10 mM Tris), and analysed on the Orbitrap Fusion 

 

 

 

Figure 21. BPC chromatogram of full MS scan of urea-soluble fraction extracted from 

Amelonado cocoa beans with a solution consisting of 7 M urea, 2 M thiourea, 10 mM DTT 

and analysed on the Orbitrap Fusion 
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Figure 22. BPC chromatogram of full MS scan of the unfractionated sample of Amelonado 

cocoa beans extracted with a solution consisting of 7 M urea, 2 M thiourea, 10 mM DTT 

and analysed on the Orbitrap Fusion 

 

Overall, the searches against the Cacao Matina 1-6 Genome database published 

by Motamajor et al. [74] of the MS/MS data obtained from the tryptic digests 

returned a total of 906 and 704 proteins hits for the fractionated and 

unfractionated sample, respectively, see Figure 23. About 86% of the proteins 

detected in the unfractionated sample (607 hits) were also detected in the 

fractionated sample, while 97 proteins were identified in the unfractionated sample 

only, see Figure 23. A total of 1003 proteins were identified when the entries from 

the fractionated and unfractionated samples were combined. A graphical 

representation of the proteins detected in both the fractionated and unfractionated 

sample is shown in Figure 23: 
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Figure 23. Venn diagram of proteins detected in the fractionated and unfractionated 

samples searched against the Cacao Matina 1-6 Genome database published by Motamajor 

et al. [74] 

As for the fractionated sample, 590 protein identifications were recorded when the 

identifications of the water-soluble and salt-soluble fractions were combined, of 

which 376 were also present in the urea-soluble fraction, see Figure 22. A higher 

number of proteins were detected in the urea-soluble fraction compared with the 

water- and salt-soluble fractions. The distribution of the proteins detected in the 

fractionated sample is depicted in the Venn diagram shown in Figure 22. 

 
 

Figure 24. Venn diagram showing the numbers of proteins identified in the fractionated 

T. cacao sample searched against the Cacao Matina 1-6 Genome database published by 

Motamajor et al. [74]. The protein fractions are labelled as follows: WS, water-soluble 

fraction; SS, salt-soluble fraction; US, urea-soluble fraction. 
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In order to assess whether searching different databases would yield a higher 

number of protein hits, searches using NCBInr and Uniprot\Swissprot databases 

with taxonomy Viridiplantae, and custom databases containing only Theobroma 

cacao entries from Uniprot\Tremble and NCBInr were also carried out. The 

Uniprot\Tremble version was chosen for the custom database as the 

Uniprot\Swissprot version accessed on 7th July 2015 returned only 7 hits 

(Endochitinase 1, CHI1_THECC; Arginine decarboxylase, CHI1_THECC; Casparian 

strip mebrane protein, SPE2_THECC; Vicilin, VCL_THECC; Maturase K, 

MATK_THECC; 21 kDa seed protein, ASP_THECC; Coat protein, COAT_CAYMV) 

when filtered for the keyword Theobroma cacao . The results of these searches are 

shown in Table 6. 

Table 6. Number of identified proteins by nano-UHPLC-ESI MS/MS at 1% FDR for data 

searches using the search engine Mascot and different protein sequence databases 

Database 

No. of 

Sequences in 

Database 

No. of 

Identified 

Proteins 

Cacao Matina 1-6 

Genome 

(T. cacao) 

59,577 906 

Uniprot\Swissprot 

(Viridiplantae) 
34,907 364 

NCBInr 

(Viridiplantae) 
3,047,619 759 

Uniprot\Tremble 

(T. cacao) 
40,941 897 

NCBInr 

(T. cacao) 
43,683 870 

 

The highest number of identified proteins (906) was obtained when searching the 

Cacao Matina 1-6 Genome database. A slightly lower number of proteins were 

detected in the Uniprot/Tremble database (897) and the NCBInr database (870) 

when restricted to Theobroma cacao entries. Only 364 proteins could be identified 

from a search using the Uniprot\Swissprot database with the taxonomy set to 
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Viridiplantae, while 759 proteins were identified when searching the same data 

against the NCBInr atabase with taxonomy Viridiplantae. Searches against the 

recently sequenced cacao Criollo Genome database [73] were also carried out. 

However, in this case only 781 proteins were identified. 

Proteins were also classified according to their main biological function using the 

results from the search of the Cacao Matina 1-6 Genome database of the 

fractionated sample (906 protein identifications). The biological process for each 

protein was obtained by loading the protein accessions on the GoMapMan 

database. If the information provided by this database was ambiguous, the 

proteins sequences were searched against Uniprot for homology using BLAST to 

gain information on the function of the specific protein. A graphical overview of the 

proteins classification is shown in Figure 25 with two representations, providing 

the abundance-weighted and unweighted percentage for each protein class 

(function group). The percentage of each protein function for the abundance-

weighted classification was calculated by summing the normalised emPAI 

responses of each protein within the same function detected in all three fractions. 

The following function definitions were employed to classify proteins based on their 

function: 

Table 7. Function definitions for the classification of proteins based on their biological 

processes, based on the results obtained from the characterisation of the proteome of 

Theobroma cacao beans 

Biological process Function 

Cell organisation 

CS 

Cell structure 

Cell vescicle transport 

Cell wall modification/pectinesterase activity 

Cell wall proteins/glucosyl transferase activity 

Cell wall structure 

Constituent of cytoskeleton 

Endoplasmic reticulum 

Outer membrane constituent 

Structural molecular activity 

Chitin hydrolase/response to stress DFS 
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Defence response 

Response to stress 

Senescence  

Tumor reversion/response to stress 

DNA binding 

DNA 
DNA repair 

DNA repair/DNA recombination 

DNA synthesis 

Embryo development GD 

Acid phosphatase activity 

ME 

Amidase activity 

Amino acid metabolism 

Amino acid metabolism/oxidation reduction process 

ATP binding/phosporylation 

ATP hydrolysis/proton transport 

ATP synthesis/proton transport 

Biodegradation of xenobiotics 

Biosynthetic process/strictosidine synthase activity 

Calcium-dependent phospholipid binding 

Carbohydrate metabolic process 

Carbonate dehydratase activity 

Catalytic activity 

Chlorophyll catabolic process 

Copper ion binding/electron carrier activity 

Cyanate metabolic process 

Decarboxilase activity/phospholipid biosynthetic process 

Desphosporylation 

Electron transport 

Electron transport/ATP synthesis 

Endopeptidase inhibitor activity 

Gluconeogenesis 

Glucose catabolic process 

Glycerol metabolic process 

Glycolytic process 

Hormone metabolism 

Hydration of carbon dioxide 

Hydrolase activity 

Iron binding 

Iron binding/iron sulphur assembly 

Isomerase activity 

Kinase activity/phosporylation/ATP binding 

LIPIDS metabolism 

LIPIDS metabolism/oxidation reduction process 

Lypase actvity/cellular modified amino acid biosynthetic process 

Metabolic process 

Metabolic process/catalytic activity 

Metabolic process/oxidation reduction process 

Metabolic process/transferase activity 

Metabolism formate-tetrahydrofolate ligase 

Metal handling chelation and store 

Methyltransferase activity 

Monolayer-surrounded lipid storage body 

Nitrogen compound process/hydrolase activity 

Nucelotide metabolism 
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Oxidation-reduction process 

Pectinesterase inhibitor activity 

Protease inhibitor 

Protein methabolic process/oxidation reduction 

Proteolysis 

Proton transport/hydrolase activity/ATP binding 

Regulation of protein catabolic process 

Ribulose-bisphosphate carboxylase activity/carbon fixation /plastid 

Selenium binding 

Strictosidine synthesis 

TCA cycle 

Transaminase activity 

Transferase activity 

Vitamin metabolism/catalytic activity 

Anion transport/transmembrane transport 

MT 

Membrane transport 

Metabolite transport 

Potassium transport 

Protein transport 

Protein transport through membrane 

Sterols carrier 

GTPase activity/protein synthesis/elongation factor 

PSP 

mRNA binding 

Negative regulation of translation 

Proteasome assembly 

Protein binding 

Protein folding 

Protein glycosylation 

Protein phosphorylation 

Protein polymerization 

Protein postranslational modification 

Protein synthesis 

Protein synthesis/translation 

Protein phosphorylation 

Protein synthesis and translation 

Protein folding 

RNA binding 

RNA processing 

RNA regulation 

RNA transcription regulation 

Transcription regulation 

Transcription regulation/protein metabolic process 

Translation/RNA binding 

T-RNA ligase activity 

T-RNA ligase activity/TRNA binding 

T-RNA synthesis 

Endopeptidase inhibitor/storage protein 

SP Nutrient reservoir activity 

Protease inhibitor/seed storage 

Signalling ST 

Unspecified biological process UN 
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The functions are labelled as follows: ME, metabolism and energy; PSP, protein synthesis 

and processing; SP, storage proteins; MT, membrane transport; ST, signal transduction; 

UN, unclassified; CS, cell structure; DNA, DNA synthesis and processing; GD, growth and 

development; DFS, defence and stress. 

A list of all proteins identified in the fractionated sample searched against the 

Cacao Matina1-6 genome database is provided in Appendix 1. 

 

 
 

Figure 25 Classification of cocoa bean proteins based on their function. The percentages 

in the upper pie chart represent the number of proteins in each function group relative to 

the total number of proteins. Each function group is also labelled with the number of 

proteins. The lower pie chart provides the sums of the BSA-normalized emPAI values of 

the proteins in each function group relative to the total sum of the BSA-normalized emPAI 

values of all proteins. 
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3.2 Method development for quantitative proteomic analysis by LC-MS 

3.2.1 Improvement of the desalting step and chromatographic 

separation for the Fusion Orbitrap analysis 

The linear gradient employed for the chromatographic separation of the tryptic 

digests of the samples analysed for the characterisation of the cocoa bean 

proteome, generated a chromatographic pattern where the majority of the 

peptides were eluted within 90 minutes, see Figures 19-22, which would translate 

to a final percentage of acetonitrile of approximately 30%. To improve the 

chromatographic separation of the tryptic peptides, a shallower linear gradient was 

employed, reducing the gradient steepness from 0.33%/minute to 0.18%/minute 

increase in the percentage of the organic modifier, and doubling the column length 

from 25 to 50 cm. This gradient was labelled as ’long gradient’ and is described in 

detail in section 2.9.2. The BPC chromatogram of an unfractionated sample 

analysed on the Fusion Orbitrap with the optimised long gradient is shown in Figure 

26. In this case most of the peptides peaks were eluted between 20 and 170 

minutes, see Figure 26.   
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Figure 26. BPC chromatogram of an unfractionated sample of Amelonado cocoa beans 

extracted with urea 7 M, thiourea 2 M and 10 mM DTT and analysed with the ‘long gradient’ 

on the Dionex Ultima 3000 nano-RSLC coupled to the Fusion Orbitrap 

An unfractionated sample was injected 10 times on the Dionex Ultima 3000 nano-

RSLC coupled to the Fusion Orbitrap with the long gradient method to assess the 

reproducibility of the instrumentation in terms of the number of identified proteins. 

The results showed that an average of 880 proteins were identified in the 10 

replicate injections searching the Cocoa Matina 1-6 database, which is considerably 

higher than the number of proteins (704) identified in the same sample analysed 

using a steeper gradient, see section 3.1. The number of identified proteins in each 

replicate sample are shown in Table 8. 
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Table 8. Number of proteins identified in 10 replicate injections of the same sample 

Replicates No of proteins Average RSD % 

1 836 

880 2.0 

2 903 

3 897 

4 885 

5 886 

6 864 

7 867 

8 896 

9 889 

10 881 

 

To assess whether the identified proteins could be reproducibly quantified, a label-

free quantitative proteomic analysis on replicate samples number 2 to 5 from Table 

8 was carried out. In this case Mascot Distiller software with replicate protocol was 

employed. A total of 880 proteins were quantified in all the four replicate samples, 

of which 837 (95%) showed an RSD between the replicates <20%. The RSD is 

expressed as the relative standard deviation of the intensity of each protein in the 

four replicate samples analysed. Protein abundance was normalised against BSA 

which had been added to the samples as internal standard prior to trypsin 

digestion. 

To evaluate the reproducibility of the trypsin digestion and desalting step, four 

aliquots of the unfractionated sample extract solution containing 10 µg of proteins 

were digested separately, and the resulting tryptic peptides were desalted using 

C18 ZipTips. The desalted samples were analysed using the Dionex Ultima 3000 

nano-RSLC coupled to the Fusion Orbitrap LC-MS and label-free quantitative 

proteomic analysis with replicate protocol was carried out. A total of 714 proteins 

could be quantified in all four aliquots. However, only 90 of these proteins had an 

RSD <20% between the four aliquots analysed, indicating that these results were 

not reproducible. 
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An additional experiment was carried out using a different desalting protocol. In 

this case four aliquots from an unfractionated sample extract containing each 10 

µg of proteins were digested separately. The resulting tryptic digests were desalted 

using a Phenomenex Strata SPE 96 well plate. The desalted peptides were analysed 

using the Dionex Ultima 3000 nano-RSLC coupled to the Fusion Orbitrap LC-MS 

and a label-free quantitative proteomics analysis was performed with replicate 

protocol as described above. The results of this analysis showed that 435 proteins 

were quantified in all the four aliquots, of which 210 (48%) had an RSD <20% 

between the four aliquots. 

To understand whether the poor reproducibility of the results was mainly due to 

the trypsin digestion step, an aliquot of the unfractionated sample containing 60 

µg of protein was digested. After digestion, six separate aliquots containing each 

10 µg of peptides were taken from the tryptic digest solution and desalted 

separately on a Phenomenex Strata SPE 96 well plate. The LC-MS analysis of the 

desalted peptides and data processing for protein quantitation was carried out as 

previously described. The result of this experiment showed that a total of 505 

proteins could be quantified in all the six aliquots, and 293 proteins (58%) had an 

RSD<20% between the six different aliquots. 

Desalting tryptic peptides with the Phenomenex Strata SPE protocol resulted in a 

higher reproducibility for proteins quantification when compared to the results 

obtained with C18 ZipTips. However, a significant drop in sensitivity using the 

STRATA SPE protocol was observed, as the number of identified and quantified 

proteins was lower compared to the initial experiments carried out on tryptic 

digests desalted with C18 ZipTips. Therefore, to understand whether the drop in 

sensitivity was due to the desalting step or could be ascribed to issues with the 

instrumentation, eight aliquots of an unfractionated sample containing each 10 µg 
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of proteins were digested separately, and then four of the digested aliquots were 

desalted with C18 ZipTips and the remaining four aliquots were desalted with 

Phenomenex Strata SPE 96 well plate. The desalted aliquots were analysed using 

the Dionex Ultima 3000 nano-RSLC coupled to the Fusion Orbitrap within the same 

sequence batch. A total of 681 proteins were quantified in the four aliquots 

desalted with Strata SPE, of which 557 (82%) showed an RSD<20% between the 

four aliquots. A lower number of proteins (571) were quantified in the aliquots 

desalted with C18 ZipTips. The reproducibility for these samples was considerably 

lower compared to the aliquots desalted with Strata SPE, as only 95 proteins 

(17%) had an RSD <20% between the four aliquots analysed. These results 

indicated that the reduced sensitivity in terms of number of identified proteins was 

not related to the use of Strata SPE for the desalting step. 

To assess whether the low reproducibility observed for samples desalted with both 

ZipTips and Strata SPE was due to the low amount of proteins used for digestion, 

a further experiment increasing the amount of digested proteins from 10 to 160 

µg was carried out. In this case proteins were extracted from approximately 600 

mg of freeze-dried samples as described in section 2.4.2. The average protein 

contents of four replicates extracted from the same cocoa powder based on the 

Bradford Assay was 11.55 % (w/w) with an RSD (expressed as the variation in the 

protein amount between the four replicates) of 4.0 %. After the trypsin digestion 

was completed, aliquots equivalent to approximately 10 µg of proteins were taken 

from each of the digested sample solutions and desalted with C18 ZipTips. The 

remaining solutions were desalted with a Thermo SOLA reverse phase SPE 

cartridges mounted on a 96 well plate. Unlike the SPE strata 96 well plate which 

had cartridges fixed to the plate, the cartridges on the SOLA plate could be freely 

removed and located in any of the 96 positions of the plate. For this experiment 
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the SPE cartridges used to desalt the tryptic digests were placed on the same 

positions of the well plate, and the solutions were desalted one at a time. Placing 

the SPE cartridges on the same position of the well plate would minimise variation 

in the flow rate of the solutions pushed through the cartridges, which may have 

occurred if the cartridges had been mounted on different positions of the well plate. 

A total of 511 and 484 proteins were quantified in the samples desalted with SPE 

SOLA and C18 ZipTips, respectively. The reproducibility of the quantified proteins 

was considerably improved in both experiments, as 96% of the quantified proteins 

in the sample desalted with SPE SOLA showed an RSD<20% in the four samples 

analysed, and 93% of the quantified proteins in the samples desalted with C18 

ZipTips showed an RSD<20%. Replicate protocol with Mascot Distiller software 

was used in this case for the quantitative proteomics analysis. 

To assess whether scaling down the amount of sample extracted and the volume 

of extraction solution for the workflow with no fractionation would affect the 

reproducibility and yield of the extraction, six portions of approximately 160 mg of 

cocoa powder were extracted with 3.5 ml of solubilisation solution. An average 

protein amount of 9.6 % w/w based on the Bradford assay was obtained from the 

six replicate extractions with a RSD between the replicates of 4.8 %. 

3.2.2 Improvement of the LC-MS/MS method for the Q Exactive Orbitrap 

analysis 

For the improvement of the LC-MS/MS method using the Q Exactive Orbitrap, 

tryptic digests obtained from 160 mg of freeze-dried cocoa powder, with a final 

concentration of peptides of 0.5 mg/ml were analysed. These solutions were 

desalted on SOLA SPE prior to LC-MS/MS analysis. In order to assess the 

reproducibility of the method and the proteins extraction procedure, 6 replicates 
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of the same cocoa powder sample were extracted with no fractionation and 

digested as described in the materials and method section. In this case the 

injection volume was 10 µl and the injection time for the ions accumulated in the 

C-Trap prior to entering the Orbitrap for MS and MS/MS acquisition was 200 ms. 

The BPC chromatogram of an unfractionated sample aliquot analysed on the            

Q Exactive is shown in Figure 27.  

 

Figure 27. BPC chromatogram of an unfractionated tryptic digest of Amelonado cocoa 

beans extracted with urea 7 M, thiourea 2 M and 10 mM DTT sample analysed on the 

microflow Dionex Ultima 3000 UHPLC coupled to the Qexactive with an IT time of 200 ms 

and injection volume of 10 µl  

The most abundant peptides were eluted within 15 and 65 minutes, with minor 

peptides detected up to 100 minutes. The chromatographic separation of the 

tryptic digests using the Dionex Ultima 3000 UHPLC looked acceptable, therefore 

the gradient was not further optimised. The raw MS/MS data from the six replicates 

were processed with Mascot Distiller and searched against the Cacao Matina 1-6 

database. Label-free quantitation was carried out employing replicate protocol in 

Mascot Distiller. The results showed that a total of 419 proteins could be quantified 
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in all the six replicates, and 406 (97%) of the quantified proteins had an RSD of 

<20% among the six replicates, confirming that both the extraction and the 

acquisition method were reproducible. In this section the RSD is expressed as the 

relative standard deviation of the intensity of each protein in the replicate samples 

analysed, unless stated otherwise.  

To assess whether the length of the injection time for MS/MS analysis would have 

an impact on the number of identified proteins, a tryptic digest sample obtained 

from 160 mg of freeze-dried cocoa powder as described above was injected in 

triplicate with an injection time of both 200 and 300 ms. A total of 286 proteins 

were identified and quantified in the replicates analysed with an injection time of 

200 ms, while increasing the injection time to 300 ms allowed identification and 

quantitation of 348 proteins in three replicates of the cocoa tryptic digest sample. 

In both cases, 98% of the quantified proteins showed an RSD of <20% between 

the three replicates. Once it was determined that an injection time of 300 ms for 

the MS/MS scan would provide a higher number of identified proteins, an additional 

experiment was performed to evaluate whether increasing the injection volume 

from 10 to 15 µl would result in a higher number of identified and quantified 

proteins. In this case the same tryptic digest sample as described above was 

analysed in triplicate, with an injection volume of 15 µl and an injection time for 

MS/MS of 300 ms. A total of 503 proteins were identified and quantified in three 

replicates of this sample, of which 493 (98%) showed an RSD of <20% between 

the three replicates. These results confirmed that using an injection volume of 15 

µl and injection time of 300 ms for the MS/MS scan allowed a higher sensitivity in 

terms of identified and quantified proteins.  
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3.3 Quantitative proteomics analysis of cocoa genotypes by LC-MS 

Although the label-free quantitation method using the Obitrap Fusion mass 

analyser had been developed and the initial results were highly reproducible, 

several hardware related issues were experienced after the method was 

developed, which affected significantly the reproducibility of the quantitative 

results. Since these issues could not be resolved within the timeframe of this PhD, 

all the quantitative analyses to assess the effects of shipment, different trees, 

harvest time and the investigation of proteome changes dependent on the 

genotype were performed on the Orbitrap Q Exactive mass analyser using the 

label-free replicate protocol with Mascot Distiller software as described in sections 

2.10.2 and 3.2.2.  

3.3.1 Effect of sample shipment 

In order to understand whether the shipment would affect the proteomic profile of 

the cocoa bean samples, a portion of ground and freeze-dried cocoa beans from 

an Amelonado variety as described in section 2.2.1 was shipped back and forth 

from the University of Reading to Trinidad, while the remainder of the sample was 

stored at the University of Reading. A label-free quantitative proteomic analysis 

was carried out on the shipped and not-shipped sample to assess whether 

differences in the proteomic profile of the two samples could be found. Three 

portions of approximately 160 mg were taken from each sample and each of these 

portions were extracted and prepared separately as described in the material and 

method section 2.4.2, so as to have three analytical replicates for each sample. 

Each analytical replicate was injected only once when analysed by LC-MS/MS. A 

total of 450 proteins were identified and quantified in the two samples analysed. 

An S-adenosyl-L-methionine-dependent methyltransferases superfamily protein 
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was detected at a higher level in the shipped sample (1.6-fold difference), while 

no other protein showed a fold difference >1.5 between the two samples. 

3.3.2 Effect of harvest time and different trees 

To evaluate the effect of different trees on the proteomic profile of cocoa beans, 

four pods of the cocoa genotype IMC 67 harvested on the same day, one from four 

different trees grown in the ICGT field were selected. Three preparative replicates 

were prepared for each of these four biological replicates, and each preparative 

replicate was analysed by a single UHPLC-MS/MS run. The reproducibility of 

UHPLC-MS/MS analysis was previously checked and constantly monitored by 

quality control samples of the same standard cocoa bean protein extract analysed 

alongside the preparative replicates. For each quantified protein, the mean of the 

intensities in the three preparative replicates for each biological replicate 

(preparative sample mean) was calculated, and subsequently the average of the 

preparative sample means of the four biological replicates was calculated (overall 

mean). For each biological replicate the fold increase/decrease from the overall 

mean expressed as the ratio between the sample mean and the overall mean was 

calculated. 

Only proteins which were identified and quantified in at least three preparative 

replicates of a biological replicate were selected for comparative label-free 

quantitative proteomic analysis. A total of 511 proteins were detected in the four 

biological replicates with these filters, and only six proteins showed a fold 

increase/decrease from the overall mean >2 in at least one biological replicate, 

while none showed any increase/decrease from the overall mean of >2.7, see 

Table 9.  
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Table 9. Proteins with fold increase/decrease from the mean >2 in at least one biological 

replicate of the genotype IMC 67 analysed to evaluate the effect of different trees.  Fold 

increase/decrease from the overall mean is expressed as the ratio between the sample 

mean and the overall mean 

 

Accession Description Biological process 
Max fold 
increase/ 
decrease 

Thecc1EG042578t1 
S-adenosyl-L-methionine-dependent 
methyltransferases superfamily 
protein  

Hormone metabolism 2.69 

Thecc1EG025391t1 Beta-amylase 6  Carbohydrate metabolic process 2.67 

Thecc1EG000326t1 Salicylate O-methyltransferase  Hormone metabolism 2.64 

Thecc1EG026589t1 
Eukaryotic aspartyl protease family 

protein, putative  
Protein degradation 2.47 

Thecc1EG027146t1 
HSP20-like chaperones superfamily 
protein  

Stress 2.44 

Thecc1EG041163t1 Glycosyl hydrolase family protein  Cell wall 2.09 

 

Of these six proteins only, beta-amylase 6 showed this increase/decrease for two 

biological replicates, while the other five proteins showed this differential 

abundance for exactly one biological replicate, covering the entire set of the 

biological replicates. The number of proteins with a fold increase/decrease from 

the mean >2 in each biological replicate is shown in Table 10 

Table 10. Number of proteins with a fold increase/decrease from the mean >2 detected 

in each biological replicate (effect of different trees) 

Sample 

No of proteins 

with fold 

increase/decrease >2 

Accession Description 

T13-6 1 Thecc1EG027146t1 
HSP20-like chaperones 

superfamily protein 

T2-2 3 

Thecc1EG025391t1 Beta-amylase 6 

Thecc1EG000326t1 
Salicylate O-

methyltransferase 

Thecc1EG042578t1 

S-adenosyl-L-methionine-

dependent 

methyltransferases 

T5-3 1 Thecc1EG026589t1 
Eukaryotic aspartyl protease 

family protein 

T6-4 2 

Thecc1EG025391t1 Beta-amylase 6 

Thecc1EG041163t1 
Glycosyl hydrolase family 

protein  

 

The harvest time in this study covered a period of six months. Therefore, to 

evaluate the effect of harvest time on the proteomic profile of cocoa beans, four 
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pods from the same tree (genotype IMC 67; grown in the ICGT field) but harvested 

at different times (20th Dec 2016, 21st Feb 2017, 23rd March 2017, 17th May 

2017) were analysed. As before, three preparative replicates were prepared for 

each of the four biological replicates, and each preparative replicate was analysed 

by a single UHPLC-MS/MS run. Only proteins which were quantified in at least three 

preparative replicates of a biological replicate were evaluated 

A total of 502 proteins were detected in the four biological replicates analysed. 

Among these proteins, only nine entries showed a fold increase/decrease from the 

overall mean of >2 in at least one biological replicate, see Table 11. In this case, 

two proteins (Thecc1EG042149t1: serine carboxypeptidase-like 48; 

Thecc1EG047098t1: uncharacterised) fluctuated far more than any protein in the 

tree comparison experiment with a fold increase/decrease of >3 and up to 11. 

Table 11. Proteins with fold increase/decrease from the mean of >2 in at least one 

biological replicate (effect of different harvest times) Fold increase/decrease from the 

overall mean is expressed as the ratio between the sample mean and the overall mean 

 

Accession Description Biological process 
Max fold 
increase/ 
decrease 

Thecc1EG042149t1 Serine carboxypeptidase-like 48 Protein degradation 11.0 

Thecc1EG047098t1 Uncharacterized Unspecified process 5.0 

Thecc1EG025043t1 
Adenine nucleotide alpha 
hydrolases 

Stress 2.9 

Thecc1EG036608t1 Laccase 14 Secondary metabolism 2.7 

Thecc1EG026543t1 Lipoxygenase 1  Hormone metabolism 2.5 

Thecc1EG027146t1 
HSP20-like chaperones superfamily 
protein  

Stress 2.2 

Thecc1EG006498t1 Basic chitinase  Stress 2.1 

Thecc1EG005507t1 
N-terminal nucleophile 
aminohydrolases  

Protein degradation 2.0 

Thecc1EG016209t1 Osmotin 34  Stress 2.0 

  

The number of proteins with a fold increase/decrease from the overall mean >2 in 

each biological replicate was between three and five, see Table 12 
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Table 12. Number of proteins with a fold increase/decrease from the mean >2 detected 

in each biological replicate (effect of different trees) 

 

Sample No of proteins with >2-fold diff. from mean 

T10-1 3 

T10-3 4 

T10-5 4 

T10-6 5 

 

Biological processes to the proteins listed in Table 9 and Table 11 were assigned 

based on the output of the GoMapMan software. 

3.3.3 Investigation of proteome changes dependent on the genotype 

Cocoa pods were harvested from six different trees for each genotype grown in 

the ICGT field and for the six IMC 67 trees that were grown in the Campus field. A 

total of six pods were collected from each tree. Aliquots of approximately 160 mg 

of pooled samples containing an equal amount of all of the biological replicates 

from the same cocoa variety (Campus and ICGT grown IMC 67 pods were pooled 

separately) were prepared as described in the Materials and Methods section 2.4.2.  

The methodology used to extract proteins from cocoa pods was not suitable for 

beans of T. speciosum, as these samples formed a gel-like solution when extracted 

with the urea solution. As a result, protein extracts of T. speciosum could not be 

processed further and therefore a quantitative proteomic analysis on these 

samples was not performed. Details of these samples are provided in Table 3. 

To evaluate the proteome changes which are dependent on the genotype, a 

UHPLC-MS/MS label-free proteomic analysis was carried out on each of the cocoa 

genotypes. A total of four preparative replicates were prepared for each genotype 

sample, and each preparative replicate was analysed by UHPLC-MS/MS once. A 

reference sample was prepared by combining equal aliquots of all 20 preparative 
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replicates. The Distiller software calculated the ratios of the intensities of the 

proteins in each preparative replicate against the same proteins in the reference 

sample. Only proteins which were identified and quantified in at least three 

preparative replicates of a cocoa genotype were selected for comparative label-

free quantitative proteomic analysis. With this requirement a total of 430 proteins 

were identified and quantified (see Appendix 2). The mean of the ratios for the 

preparative replicates of the same cocoa genotype was calculated for each 

quantified protein. The fold differences between the cocoa genotypes are reported 

as the ratio of the highest mean versus the lowest mean for each quantified 

protein. 

Almost all the 430 proteins were detected in all genotypes apart from a 60S acidic 

ribosomal protein (accession number Thecc1EG005040t1) that was not detected 

in the genotype SCA 6. However, the abundance of this protein was not 

significantly different in the other genotypes. From all other identified and 

quantified proteins, a total of 61 proteins showed a significant fold difference of 

>2 (p-value <0.05 using the non-parametric Wilcoxon test) among the four cocoa 

genotypes. Among these proteins, those which showed a sum of the sample-to-

reference ion signal ratios outside the range of 75-125% from the theoretical value 

of 4 were further evaluated to assess their peptide ion signal intensities. In this 

case a total of four proteins showed a signal too weak for reliable quantitation, and 

therefore these proteins were not further investigated. A list of the differentially 

abundant proteins, including their biological process and function, is provided in 

Table 13. A pairwise comparison between the genotypes for each protein listed in 

Table 13 was also carried out, using the non-parametric Whitney Mann test to 

assess the significance of the differential expression (p <0.05).  A graphical 

representation of the proteins’ classification based on their biological processes 
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and functions is provided in Figure 28. Biological processes, for which only one 

protein was identified and quantified, are labelled as ’Others’ in Figure 28. 

 

 

Figure 28. Classification of the differentially abundant proteins listed in Table 13 based on 

their biological process (upper pie chart) and their function (lower pie chart). ‘Others’ in 

the upper pie chart refers to all biological process, for which only one protein was found. 

The function group labels are as follows: DFS, defence and stress; ME, metabolism and 

energy; PSP, protein synthesis and processing; SP, storage proteins; UN, unclassified.
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Table 13  Pair comparison of differentially abundant proteins among all genotypes obtained from the four cocoa genotypes analysed by 1 
label-free LC-MS/MS. The fold change is reported for significantly different proteins only. Proteins which were not significantly different for 2 
each pair have been labelled as "/".   3 

ID Accession Description Biological process Function 

ICS 1 
vs    

IMC 
67 

ICS 1 
vs    

SCA 6 

ICS 39 
vs     

IMC 
67 

ICS 39 
vs   

SCA 6 

ICS 1 
vs   

ICS 39 

SCA 6 
vs   

IMC 
67 

1 Thecc1EG029400t1  N-terminal nucleophile aminohydrolases  Protein degradation ME 6.82 6.95 5.70 5.81 / / 

2 Thecc1EG029392t1  Glutathione S-transferase family protein  Gluthatione S-transferase ME 5.28 / 5.11 / / 2.88 

3 Thecc1EG025391t1  Beta-amylase 6  Carbohydrate metabolism ME 2.33 4.90 / / 2.66 2.10 

4 Thecc1EG017184t1  Sulfite oxidase  S-assimilation ME 2.21 / / 3.87 4.26 2.01 

5 Thecc1EG038258t1  Molybdenum cofactor sulfurase Co-factor and vitamin metabolism ME / 2.20 / 4.12 / 2.59 

6 Thecc1EG030320t1  Ethylene-forming enzyme  Hormone metabolism ME / / 3.61 / 4.03 2.21 

7 Thecc1EG021639t1  PEBP  Unspecified biological process UN / 2.60 / 3.36 / / 

8 Thecc1EG020604t1  Primary amine oxidase   Oxidase ME / / / 3.25 2.41 / 

9 Thecc1EG047098t1  Uncharacterized protein  Unspecified biological process UN / 2.09 / 2.19 / 3.18 

10 Thecc1EG036433t1  HSP20-like chaperones protein  Stress DFS / / 2.95 2.66 3.15 / 

11 Thecc1EG026543t1  Lipoxygenase 1  Hormone metabolism ME 2.64 2.92 2.72 3.01 / / 

12 Thecc1EG026589t1  Eukaryotic aspartyl protease Protein degradation ME 2.91 / 2.88 / / / 

13 Thecc1EG042578t1 
 S-adenosyl-L-methionine-dependent 
methyltransferases protein  

Hormone metabolism ME / 2.30 2.85 / 2.30 2.85 

14 Thecc1EG019372t1 
 Bifunctional inhibitor/lipid-transfer 
protein/seed storage 2S albumin protein   

Protease inhibitor/seed 
protein/lipid transfer 

SP / 2.28 / / / 2.78 

15 Thecc1EG027146t1  HSP20-like chaperones protein  Stress DFS / 2.03 / / 2.77 / 

16 Thecc1EG026193t1  Threonine aldolase 1  Amino acid metabolism ME 2.66 / / / / / 

17 Thecc1EG037345t1  17.6 kDa class II heat shock protein  Stress DFS / 2.24 2.21 / 2.65 / 

18 Thecc1EG012673t1  21 kDa seed protein* 
Stress DFS / / 2.65 / / / 

19 Thecc1EG025860t2  Uncharacterized protein Unspecified biological process UN / / 2.26 / / 2.64 

20 Thecc1EG012662t1  21 kDa seed protein* Stress DFS / / 2.63 / / / 

21 Thecc1EG038931t1  Xyloglucan endotransglycosylase 6  Cell wall degradation ME / 2.57 / / / 2.49 

22 Thecc1EG006471t1  Flavin-dependent monooxygenase 1  Oxidase ME / / 2.55 / / / 

23 Thecc1EG030938t1  Cc-nbs-lrr resistance protein  Unspecified biological process UN 2.40 / / 2.41 2.53 2.29 

24 Thecc1EG036938t1  Aldolase-type TIM barrel   Nucleotide metabolism ME 2.12 2.47 / / 2.21 / 

25 Thecc1EG006154t1  Glycinamide ribonucleotide synthetase Nucleotide metabolism ME 2.45 / / / / / 

26 Thecc1EG041496t1  Stress responsive A/B Barrel Domain  Unspecified biological process UN / / 2.29 2.44 / / 

27 Thecc1EG030354t1  Fumarylacetoacetase  Amino acid metabolism ME / / / 2.06 / 2.40 

28 Thecc1EG019909t2  Carrot EP3-3 chitinase   Stress DFS / / / 2.39 / / 

29 Thecc1EG040975t1  Alpha/beta-Hydrolases  protein• Gluco.-gala.-mannosidase ME / 2.37 / / / / 

30 Thecc1EG020603t2  Primary amine oxidase  Oxidase ME / / / 2.36 / / 
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31 Thecc1EG016747t1  Acyl-CoA-binding protein 6  Lipid metabolism ME / / / / / 2.33 

32 Thecc1EG022426t1  Thioredoxin protein  Redox ME 2.33 / / / / 2.21 

     2.20 / 2.21 / / 2.30 

33 Thecc1EG008318t1  Aldolase-type TIM barrel   Oligopeptide transport system 
permease protein 

ME 
/ / / / / 2.28 

34 Thecc1EG022506t1  Monodehydroascorbate reductase seedling 
isozyme  

Redox ME 
/ 2.27 / / / / 

35 Thecc1EG047057t1  Cystathionine beta-synthase  Unspecified biological process UN / / / 2.21 / / 

36 Thecc1EG029923t1  Larreatricin hydroxylase  Unspecified biological process UN / / 2.20 / 2.05 / 

37 Thecc1EG000245t1  Serine carboxypeptidase S28   Protein degradation ME / 2.20 / / / / 

38 Thecc1EG021820t1  Tau class glutathione transferase GSTU45  Gluthatione S-transferase ME / / 2.20 / / / 

39 Thecc1EG025715t1  Uncharacterized protein  Unspecified biological process UN / / / / / 2.19 

40 Thecc1EG043707t1  Anti-oxidant 1  Metal handling ME 2.18 / / / / / 

41 Thecc1EG016386t1  6-Phosphogluconate dehydrogenase   Oligopeptide transport system 
permease protein 

ME 
/ / / / 2.17 / 

42 Thecc1EG014591t1  Malate synthase glyoxysomal  Gluconeogenesis ME / / 2.14 / / 2.16 

43 Thecc1EG042584t1  S-adenosyl-L-methionine-dependent 
methyltransferases protein  

Hormone metabolism ME 
/ 2.16 / / / / 

44 Thecc1EG034339t1  Dehydrin 2   Stress DFS / / / / / 2.16 

45 Thecc1EG035433t1  Alcohol dehydrogenase 1+  Fermentation ME / 2.13 / / / / 

46 Thecc1EG010364t2  Carbonic anhydrase 2 CA2  TCA/organic transformation ME / / / / / 2.11 

47 Thecc1EG006694t2  Triosephosphate isomerase  Photosynthesis ME / 2.10 / / / / 

48 Thecc1EG006498t1  Basic chitinase  Stress DFS / / 2.10 / / / 

49 Thecc1EG026326t2  Pathogenesis-related protein P2  Stress DFS 2.07 / / / / / 

50 Thecc1EG029913t1  Alpha/beta-Hydrolases protein• Gluco.-gala.-mannosidase ME / / / / 2.05 / 

51 Thecc1EG036604t1  Secretory laccase   Secondary metabolism ME / / / / / 2.05 

52 Thecc1EG015253t1  RNA binding Plectin/S10 domain-
containing protein  

Protein synthesis PSP 
/ / / / / 2.05 

53 Thecc1EG005533t1  Transketolase  Photosynthesis ME 2.03 / / / / / 

54 Thecc1EG000770t1  Acetamidase/Formamidase   Photosynthesis ME / 2.01 / / / / 

55 Thecc1EG014683t1  Hydroxysteroid dehydrogenase 1  Dehydrogenase ME / / / / / 2.01 

56 Thecc1EG001447t1  Alcohol dehydrogenase 1+ Fermentation ME / 2.00 / / / / 

57 Thecc1EG001141t1  Lipase/lipooxygenase PLAT/LH2   Unspecified biological process UN 6.82 6.95 5.70 5.81 / / 

 4 

DFS, defence and stress; ME, metabolism and energy; PSP, protein synthesis and processing; SP, storage proteins; UN, unclassified. In the 5 
genotype columns the average abundance ratio values relative to the reference sample of the preparative replicates are reported. *These 6 
protein entries have a 99.5% homology and can therefore be considered to be proteoforms of the same gene. +These protein entries have 7 
an 87% homology. •These protein entries have a 35% homology.8 
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The number of proteins listed in Table 13 whose intensity was highest and lowest 

in each genotype compared to the others are graphically represented in a 

histogram in Figure 29. 

 

 

Figure 29. Number of differentially abundant proteins (fold difference of >2) detected at 

the higher (UP) and lower (DOWN) level in each genotype analysed to investigate the 

proteome changes dependent on the genotype. 

To evaluate whether the proteomic data would allow a graphical differentiation of 

the four cocoa genotypes analysed, PCA analysis loading the ratios of the 

differentially abundant proteins listed in Table 13 as variables and the genotypes 

as observations was performed. In this case the data from all analytical replicates 

were used. The PCA score plot of the first two components which explained 61% 

of the total variance, could clearly separate the four cocoa genotypes (see Figure 

30). Each point in this graph represents a preparative replicate, and the replicates 

from the same genotype are displayed with the same colour. In order to assess 

which proteins were positively correlated to each genotype, a PCA loading plot of 

the differentially abundant proteins listed in Table 13 is also shown in Figure 30 

(lower plot). Using this plot, variables should be positively correlated to 

observations which are located in similar regions of the score plot. For instance, 



98 

the proteins with the ID 2, 19 and 22 are closest to the region in the score plot 

where the genotype IMC 67 is located and are greatly more abundant in the same 

genotype. 

 

Figure 30. PCA score plot (upper plot) of the 57 differentially abundant proteins listed in 

Table 1. Preparative replicates of the same genotype are displayed with the same colour. 

The lower plot shows the PCA loading plot. Each variable is labelled with the corresponding 

ID number as listed in Table 13. The blue and yellow oval in the loading plot indicate 

clusters related to IMC 67 and SCA 6, respectively. 
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Comparing the proteomic profiles of the cocoa genotype IMC 67 grown in two 

different fields allowed the identification and quantitation of 430 proteins in the 

two biological replicates. Among these proteins, only four proteins were 

significantly different with a fold change of >2 between the two samples, while a 

ribosomal protein and a secretory laccase were detected only in the IMC 67 

genotype grown in the ICGT field (see Table 14 ). The latter two proteins were 

detected at low levels while the others had a fold change of <3.4. 

Table 14. Differentially expressed cocoa bean proteins from IMC 67 trees grown in two 

different fields: Campus and ICGT. 

Accession Description 
Biological 
process 

Function 
Fold 

change Field* 

Thecc1EG029400t1 
N-terminal 
nucleophile 
aminohydrolases  

Protein 

degradation 
ME 3.39 Campus 

Thecc1EG030320t1 
Ethylene-forming 

enzyme  

Hormone 

metabolism 
ME 2.40 Campus 

Thecc1EG012246t1 
Oleosin family 
protein  

Lipids 
metabolism 

ME 2.23 ICGT 

Thecc1EG016994t2 Esterase GDSL lipase ME 2.12 Campus 

Thecc1EG036604t1 Secretory laccase 
Secondary 
metabolism 

ME 
Only in 
ICGT 

ICGT 

Thecc1EG005525t1 
Ribosomal protein 
S13A 

Protein 
synthesis  

PSP 
Only in 
ICGT 

ICGT 

* This column indicates in which field the protein is more abundant. 

ME, metabolism and energy; PSP, protein synthesis and processing; ICGT, International 

Cocoa Genebank Trinidad. 

 

3.4 Proteomic analysis by SDS-PAGE  

3.4.1 Method development 

Method development for the SDS-PAGE analysis was carried out using cocoa beans 

proteins extract from an Amelonado variety grown in Trinidad. Protein standards 

in the range 10-250 kDa were also employed for each analysis to assess the 

general purity and molecular weight distribution of the proteins extracted from 

cocoa bean. BSA solutions were also loaded on the gel as quality controls to 
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evaluate whether the migration distance on the gel was consistent with the 

molecular weight of the proteins detected.  

For the initial analysis four aliquots from the same protein extract solution with a 

final protein concentration of 1.9 mg/ml, and two aliquots of a 1.8 mg/ml BSA 

solution were analysed, setting the voltage of the Mini PROTEAN Tetra Cell to 300 

V. The four aliquots showed a similar electrophoretic pattern, with three main 

electrophoretic bands migrating at approximately 50, 30 and 20 kDa, see Figure 

31. Minor bands between 15 and 10 kDa were also observed, however, these bands 

were not well resolved. BSA was visualised between the 75 and 50-kDa markers, 

therefore, its migration distance was consistent with its actual molecular weight of 

66 kDa. BSA overloading was also observed. The protein markers could clearly be 

resolved over the range of 10-250 kDa. 

 
Figure 31. SDS-PAGE gel of protein markers (STD), cocoa protein extracts 1.9 mg/ml 

(ALQ 1-4) and BSA 1.8 mg/ml. For each sample and standards 10 µl of solution were 

loaded on a Mini Protean TGX 12% polyacrylamide gel. The gels were stained with Bio-

Safe Coomassie Stain 

 

An additional analysis was carried out reducing the concentration of the BSA 

solution to 0.4 mg/ml, and increasing the concentration of the cocoa protein 

extracts to approximately 3 mg/ml. In this case 5 aliquots of the same cocoa 
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proteins extract as described above were analysed. The voltage of the Mini 

PROTEAN Tetra Cell was set to 250 V for the whole duration of the run. A gel 

acquired with these conditions is shown in Figure 32. 

 
Figure 32 SDS-PAGE gel of protein markers (STD), cocoa protein extracts 3 mg/ml (ALQ 

1-5) and BSA 0.4 mg/ml. For each sample and standards 10 µl of solution were loaded on 

a Mini Protean TGX 12% polyacrylamide gel. The gels were stained with Bio-Safe 

Coomassie Stain 

 

Decreasing the BSA concentration from 1.8 to 0.4 mg/ml improved significantly 

the shape of the electrophoretic band of this protein, as in this case no overloading 

was observed, see Figure 32. The electrophoretic pattern of the cocoa protein 

extract was similar in the five aliquots analysed. The three main bands migrating 

at approximately 50, 30 and 20 kDa, were manually integrated and their intensities 

reported in Table 15. The RSD is expressed as the relative standard deviation of 

the areas of the bands in each aliquot. 

Table 15. Area of the major proteins bands detected in 5 aliquots of the cocoa proteins 

extracts described in Figure 32 

 

Band kDa 
Areas 

RSD % 
ALQ-1 ALQ-2 ALQ-3 ALQ-4 ALQ-5 

~ 50 23765 23700 28375 23937 23687 8.3 

~ 30 16251 16054 16948 16274 17293 3.2 

~ 20 18757 18557 20190 18789 19475 3.5 
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3.4.2 Effect of harvest time and different trees 

To evaluate the effect of different trees on the electrophoretic protein profile of 

cocoa beans, four biological replicates from the cocoa variety IMC 67 grown at the 

ICGT on different trees and harvested on the same day were analysed by SDS-

PAGE. The electrophoretic gel of these samples is shown in Figure 33. 

 

Figure 33. SDS-PAGE of proteins marker (STD), BSA and biological replicates (T13-6, T5-

3, T6-4 and T2-2) to assess the effect of different trees and a BSA standard solution. A 

total of 4 µg and 30 µg of BSA and cocoa samples, respectively were loaded on a Mini 

Protean TGX 12% polyacrylamide gel. The gels were stained with Bio-Safe Coomassie Stain 

 

  

Three main electrophoretic bands migrating at approximately 50, 30 and 20 kDa, 

were observed for all samples analysed, see Figure 33. These bands were 

integrated, and their intensities reported in Table 16 
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Table 16 Intensities of the main electrophoretic bands for the experiment to assess the 

effect of different tree. Fold change is the ratio between the highest and lowest intensity 

for each band 

Band kDa 
Intensities of the bands Fold 

change T2-2 T6-4 T5-3 T13-6 

~ 50 11596 9614 10204 12082 1.3 

~ 30 12577 7925 8591 7848 1.6 

~ 20 8100 7649 9304 12382 1.6 

 

Minor bands with an apparent molecular weight between 15 and 10 kDa were also 

detected. Since these bands were not properly resolved, their intensities could not 

be measured.  

Furthermore, four biological replicates from the cocoa variety IMC 67 grown at the 

ICGT filed on the same tree but harvested on different days, were analysed by 

SDS-PAGE with the aim to evaluate the effect of harvest time on the 

electrophoretic proteins profile of cocoa beans. The electrophoretic gel of these 

samples (see Figure 34) showed a pattern similar to the one observed for the 

biological replicates analysed to assess the effect of different trees (see Figure 33), 

with three main well resolved electrophoretic bands showing an apparent 

molecular weight of approximately 50, 30 and 20 kDa and a series of unresolved 

bands with a migration distance between 15 and 10 kDa, see Figure 34. 
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Figure 34. SDS-PAGE gel of protein markers (STD), cocoa protein extracts to assess the 

effect of harvest time (T10-1, T10-3, T10-5, T10-6) and a BSA standard solution. A total 

of 4 µg and 30 µg of BSA and cocoa samples, respectively were loaded on a Mini Protean 

TGX 12% polyacrylamide gel. The gels were stained with Bio-Safe Coomassie Stain 

 

The intensities of the electrophoretic bands between 20 and 50 kDa detected in 

the biological replicates analysed to assess the effect of different harvest time are 

listed in Table 17. Fold change is the ratio between the highest and lowest 

intensities for each band. 

Table 17. Intensities of the main electrophoretic bands for the experiment to assess the 

effect of different harvest time. Fold change is the ratio between the highest and lowest 

intensity for each band  

Band kDa 
Intensities of the bands Fold 

change T10-1 T10-3 T10-5 T10-6 

~ 50 14726 13144 15741 15771 1.2 

~ 30 8853 7785 7195 7523 1.2 

~ 20 6891 10960 9247 9430 1.6 
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3.4.3 Investigation of proteome changes dependent on the genotype by 

SDS-PAGE 

The same cocoa varieties described in section 3.3.4 were also analysed by SDS-

PAGE in order to assess whether differences in the proteomic profiles of these 

varieties would be detected using this technique. The electrophoretic gel profiles 

of the four different cocoa genotypes grown at the ICGT field and the genotype 

IMC 67 grown at the Campus field is shown in Figure 35. Three main, well resolved, 

electrophoretic bands with apparent molecular weights of approximately 50, 30 

and 20 kDa, and unresolved bands with a migrating distance between the 15 and 

10-kDa protein markers were observed in all samples analysed, see Figure 35. 

 

Figure 35. SDS-PAGE gel of protein markers (STD), protein extracts from different cocoa 

varieties (IMC 67 ICGT, IMC 67 CA, ICS 39 AND ICS 1) and BSA standard solutions. A total 

of 4 µg and 30 µg of BSA and cocoa samples, respectively were loaded on a Mini Protean 

TGX 12% polyacrylamide gel. The gels were stained with Bio-Safe Coomassie Stain 

 

The electrophoretic bands with apparent molecular weight of approximately 50, 30 

and 20 kDa were integrated and the intensities reported in Table 18. Fold change 

is the ratio between the highest and lowest intensities for each band. 
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Table 18. Intensities of the main electrophoretic bands for the experiment to assess 

changes in proteome dependent on genotype by SDS-PAGE. Fold change is the ratio 

between the highest and lowest intensity for each band 

Band kDa 

Intensities of the bands 
Fold 

change SCA 6 
IMC 67 

ICGT 

IMC 67 

CA 
ICS 39 ICS 1 

~ 50 38876 29527 30190 37779 33641 1.3 

~ 30 29195 19404 19007 29693 24110 1.5 

~ 20 43784 30263 27257 36607 32974 1.6 

 

3.5 Method development for analysis of free peptides by LC-MS 

Beans of Ghanaian origin fermented with the heaps method were used for 

developing a methodology to characterise and quantify free peptides in cocoa 

beans by LC-MS/MS. For the initial analysis described in section 2.5, approximately 

200 mg of fermented beans were defatted and subsequently extracted with a 

methanol:water 70:30 (v/v) solution containing PVPP, as this polymer binds 

polyphenols which could form complexes with peptides [75]. Injection of a solution 

with a high percentage of methanol on a reverse phase column could cause loss 

of very polar peptides which are poorly retained on this column, and peak shape 

distortion as well. As a result, an aliquot of 200 µl of the methanolic peptide 

extracts solution was dried down under a stream of nitrogen and reconstituted in 

aqueous 0.1% (v/v) TFA. For this analysis three portions of the same sample were 

extracted separately to give three preparative replicates. The peptide extracts 

were analysed using the microflow Dionex Ultima 3000 UHPLC coupled to the           

Q Exactive Orbitrap with a DDA experiment. Each replicate was injected only once. 

The raw files were initially searched against the Cacao Matina 1-6 genome 

database published by Motamajor et al. [74]. Since the aim of this experiment was 

to identify and quantify free peptides, the samples were not digested and ‘no 

enzyme’ was selected for protein digestion in the search parameters. The results 

of this analysis show that a total of 14 peptides were detected in all three replicates 
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analysed, of which 12 could be identified as proteolysis products of a 21 kDa 

albumin, and the remaining two peptides shared amino acids sequences with cocoa 

vicilin. The same raw files were also searched against a custom-made protein 

database containing the 100 most abundant cocoa proteins as listed in Appendix 

1, see section 3.1 and Table 6 for more details. A total of 82 peptides were detected 

in all three replicates searched against this database. As shown in Table 19, the 

vast majority of these peptides were assigned to a 21 kDa albumin and a cocoa 

vicilin. 

Table 19. Free peptides detected in fermented beans extracted with a methanol:water 

70:30 (v/v) solution and searched against a database containing the 100 most abundant 

cocoa beans proteins as listed in Appendix 1 

Accession Protein description 
No. of 

peptides 

Empai 

value 

Thecc1EG012658t1 21 kDa seed protein  32 39.73 

Thecc1EG020665t1 Vicilin-A  28 19.66 

Thecc1EG030267t1 Peroxygenase 2  7 2.55 

Thecc1EG029926t1 
Saposin-like aspartyl protease family 

protein  
3 1.13 

Thecc1EG041714t1 Larreatricin hydroxylase  2 1.50 

Thecc1EG015612t1 
HSP20-like chaperones superfamily 

protein  
2 1.53 

Thecc1EG042785t1 
UDP-Glycosyltransferase superfamily 

protein  
2 0.51 

Thecc1EG041085t1 
Pyrophosphate-fructose 6-phosphate 

1-phosphotransferase      
2 2.10 

Thecc1EG026589t1 RmlC-like cupins superfamily protein 1 6.31 

Thecc1EG036433t1 
Eukaryotic aspartyl protease family 

protein 
1 1.76 

Thecc1EG020975t1 
HSP20-like chaperones superfamily 

protein  
1 3.46 

Thecc1EG000075t1 Catalase 2  1 0.43 

 Total 82  

 

The drying step to remove methanol and the reconstitution in an aqueous buffer 

prior to LC-MS/MS analysis can result in loss or degradation of peptides during this 

process. Therefore, an additional experiment was performed using aqueous 0.5 % 

(v/v) TFA as extraction solution. The amount of fermented and defatted beans and 
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the volume of the extraction solution were not changed, and the same amount of 

PVPP was also added to the extraction solution. In this case 400 µl of the peptide 

extracts were loaded on SPE cartridges. The eluate was dried down and re-

dissolved in 100 µl of aqueous 0.1% (v/v) TFA. Although a drying step was also 

required with this approach, in this case the volume to be dried down was reduced 

from 200 to 50 µl, shortening the drying time from approximately 4 hours to 

around 2 hours, minimising as a result loss or degradation of peptides during this 

process. Using SPE cartridges allowed the removal of salts and other high polar 

interferences from the peptides extracts, and the concentration of the peptides 

solutions by a factor of 4. Three preparative replicates were prepared for this 

experiment and analysed by LC-MS/MS. Each replicate was injected once. The 

results of this analysis showed that a total of 123 peptides originating mainly from 

a 21 kDa albumin and vicilin were detected in all three replicates analysed, as 

shown in Table 20: 
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Table 20. Free peptides detected in fermented beans extracted with a 0.5% TFA solution 

by searching the LC-MS/MS data against a home-made database of the 100 most abundant 

proteins in cocoa beans 

Accession Protein description 
No. of 

peptides 

emPAI 

value 

Thecc1EG020665t1 Vicilin-A 60 19.66 

Thecc1EG012658t1 21 kDa seed protein 45 39.73 

Thecc1EG020975t1 Peroxygenase 2 4 3.46 

Thecc1EG041714t1 
HSP20-like chaperones superfamily 

protein 
3 1.50 

Thecc1EG022427t1 Enolase 2 2.71 

Thecc1EG030267t1 
Saposin-like aspartyl protease family 

protein 
2 2.55 

Thecc1EG026326t2 Pathogenesis-related protein P2 2 1.32 

Thecc1EG015612t1 
UDP-Glycosyltransferase superfamily 

protein 
1 1.53 

Thecc1EG017080t2 
Glyceraldehyde-3-phosphate 

dehydrogenase C2 
1 6.49 

Thecc1EG026589t1 
Eukaryotic aspartyl protease family 

protein, putative 
1 6.31 

Thecc1EG034805t1 

Pyrophosphate--fructose 6-

phosphate 1-phosphotransferase 

subunit alpha 

1 3.43 

Thecc1EG037346t1 Heat-shock protein 1 5.03 

 Total 123  

 

The same data were also searched against a larger database consisting of 897 

proteins which had been identified during the characterisation of the cocoa 

proteome using a custom-made Uniprot\Tremble database with entries restricted 

to Theobroma cacao only, see Table 6. In this case a total of 130 peptides were 

detected in all three replicates analysed. A list of the proteins associated with these 

peptides is provided in Table 21. 
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Table 21. Free peptides detected in fermented beans extracted with a 0.5% TFA solution 

by searching the LC-MS/MS data against a database consisting of 897 proteins from a 

custom-made Uniprot\Tremble database (see section 3.1 and Table 6 for database details) 

Accession Protein description 
No. of 

peptides 

Empai 

value 

A0A061EM85 Vicilin-A, putative 57 19.66 

A0A061G2K6 21 kDa seed protein 46 39.73 

A0A061EMW3 Peroxygenase 2 isoform 1 4 3.46 

A0A061F2P1 Lipoxygenase  4 0.23 

A0A061GFX2 
Saposin-like aspartyl protease family 

protein  
3 2.55 

A0A061F2B4 
Pathogenesis-related protein P2 

isoform 2 (Fragment)  
2 1.32 

A0A061GZI5 RmlC-like cupins superfamily protein 2 2.10 

A0A061FVK5 21 kDa seed protein 2 4.41 

A0A061FEW0 
Pyrophosphate--fructose 6-

phosphate 1-phosphotransferase 
2 3.43 

A0A061GKC6 Heat-shock protein, putative  2 5.03 

A0A061GFY7 Larreatricin hydroxylase isoform 1  1 1.13 

A0A061F3Y1 
Eukaryotic aspartyl protease family 

protein 
1 6.31 

A0A061DK50 
Glutathione S-transferase PHI 9 

isoform 1 
1 0.49 

A0A061F0S7 Enolase  1 0.48 

A0A061ECJ8 
Glyceraldehyde-3-phosphate 

dehydrogenase  
1 6.49 

A0A061FKT5 
HSP20-like chaperones superfamily 

protein  
1 1.76 

 Total 130  

 

To evaluate whether increasing the length of the injection time for the LC-MS/MS 

analysis would result in a higher number of identified peptides, analysed with 

injection times of 200 and 300 ms were performed out using the peptide extract 

obtained with aqueous 0.5% TFA. A total of 139 peptides were detected when 

increasing the injection time for the LC-MS/MS analysis to 300 ms, while only 94 

peptides were detected when the same samples were analysed with an injection 

time of 200 ms. 

Peptides with hydrophobic amino acids may not be highly soluble in aqueous TFA, 

therefore the addition of an organic modifier may be required to increase the 

solubility of these peptides. To assess whether adding an organic solvent to the 
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extraction solution would yield a higher number of extracted peptides, three 

portions of approximately 200 mg of fermented beans were extracted with an 

aqueous 0.5% TFA:methanol (80:20; v:v) solution containing PVPP. Prior to 

desalting with SPE, 400 µl of the aqueous 0.5% TFA:methanol extracts were 

diluted to a final volume of 2 ml with aqueous 0.5% TFA. The number of peptides 

detected in the experiments to assess the injection time and addition of organic 

modifier are shown in Table 22. 

Table 22. Number of peptides detected in files searched against Uniprot\Tremble database 

containing 897 entries 

Extraction solution 
IT time for MS/MS 

injection 

No. of peptides 

detected in all 

replicates 

Aqueous 0.5 % TFA 300 ms 139 

Aqueous 0.5 % 

TFA:methanol (80:20; 

v:v) 

300 ms 155 

Aqueous 0.5 % TFA 200 ms 94 

 

The results listed in Table 22 indicate that using aqueous 0.5 % TFA:methanol 

(80:20; v:v) as extraction solution, and increasing the injection time for the 

MS/MS analysis from 200 to 300 ms resulted in the highest number of identified 

peptides. A higher proportion of peptides originating from vicilin was detected 

using these conditions, as shown in in Table 23. The complete list of these peptides 

including their amino acid sequences and intensities is provided in Appendix 3. 
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Table 23. Free peptides detected in fermented beans extracted with an aqueous 0.5 % 

TFA:methanol (80:20; v:v) solution by searching the LC-MS/MS data against a database 

including 897 proteins from a custom-made Uniprot\Tremble database (see section 3.1 for 

database details) 

Accession Protein description 
No. of 

peptides 

emPAI 

value 

A0A061EM85 Vicilin-A 80 19.66 

A0A061G2K6 21 kDa seed protein  55 39.73 

A0A061EMW3 Peroxygenase 2 isoform 1  5 3.46 

A0A061GFX2 

Saponin-like aspartyl protease family 

protein  4 
2.55 

A0A061F2P1 Lipoxygenase  3 0.23 

A0A061F2B4 

Pathogenesis-related protein P2 

isoform 2 (Fragment)  2 
1.32 

A0A061GZI5 RmlC-like cupins superfamily protein  2 2.10 

A0A061GKC6 Heat-shock protein, putative  2 5.03 

A0A061DK50 

Glutathione S-transferase PHI 9 

isoform 1  1 
0.49 

A0A061F3Y1 

Eukaryotic aspartyl protease family 

protein 1 
6.31 

 Total 155  

 

The vast majority of the free peptides detected in all experiments carried out were 

associated with sequences of vicilin and a 21 kDa seed albumin. As the samples 

extracted with the aqueous 0.5 % TFA:methanol solution returned the highest 

number of detected peptides when searched against a custom-made 

Uniprot\Tremble database containing 897 proteins, only the peptides detected in 

these samples were further evaluated with respect to the sequence coverage and 

cleavage sites on vicilin and the 21 kDa albumin. A sequence coverage of 69% was 

observed for the 21 kDa albumin, and a total of 55 cleavage sites were localised 

in the sequence of this protein, see Figure 36.  
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Figure 36 Sequence of 21 kDa cocoa albumin. Identified peptides sequences are 

highlighted. Cleavage sites are indicated by a small triangle. 

 

The amino sequences of the combined free peptides originating from vicilin 

covered only 39% of the sequence of this protein, and a total of 68 cleavage sites 

were found in the sequence of this protein, see Figure 37.  
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Figure 37 Sequence of cocoa vicilin. Identified peptides sequences are highlighted. 

Cleavage sites are indicated by a small triangle. 
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4 Discussions 

4.1 In-depth characterisation of the cocoa bean proteome by LC-MS 

(results section 3.1)  

The chromatographic profiles of the fractionated and unfractionated tryptic digests 

showed a series of peaks eluting between 20 and 90 minutes, corresponding to a 

percentage of organic modifier ranging from 10 to 30 %. These results indicate 

that most of the detected peptides are moderately hydrophilic, since a low 

percentage of organic modifier was required to elute these compounds from a 

reverse phase C18 chromatographic column. 

This work is the first attempt to characterise the whole cocoa bean proteome by 

nano-UHPLC-ESI MS/MS analysis using tryptic digests of cocoa bean protein 

extracts. The results obtained in this study show that the genome of Theobroma 

cacao published by Motamayor et al. [74] provides a relatively comprehensive 

protein database for proteomic analyses, as more than 1000 proteins were 

identified when the entries from the fractionated and unfractionated samples were 

combined. A similar approach was employed by Wang et al. [54] to quantify and 

identify proteins in cocoa beans, as described in section 1.7.3. However, although 

the authors provided a list of all identified proteins in cocoa beans, only 887 

proteins were identified, which is considerably lower when compared to the over 

1000 proteins found in this PhD project. In addition to that, classification of 

proteins based on their functions and abundances was not reported. More 

importantly, results related to this PhD project were initially presented at a BSPR 

conference in July 2015, which took place several months before the work by Wang 

et al. [54] was published. Therefore, to the best of my knowledge the statement 

about the originality of the presented approach to characterise the cocoa bean 
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proteome is still valid. Approximately 30 % more proteins were identified in the 

fractionated sample compared to the unfractionated one. Due to the stochastic 

nature of DDA acquisition, the precursor ions of low abundant peptides selected 

for MS/MS fragmentation will vary each time the same sample is re-injected. 

Therefore, a higher number of replicates for the same sample will result in a higher 

number of identified proteins. Considering that the entries for the fractionated 

sample resulted from merging the results of three separate raw files, while only 

one raw file was used for the unfractionated sample, the increased number of 

identified proteins observed for the fractionated sample could also be ascribed to 

the higher number of raw files processed for this sample compared to the 

unfractionated sample.  

Most of the proteins detected in the unfractionated sample were also present in 

the fractionated one, indicating a high degree of overlap between the two samples 

sets. Some degree of overlap was also observed between the fractions of the 

fractionated sample. The highest number of proteins were detected in the urea-

soluble fraction, as this fraction was extracted with a solution which can cover a 

higher range of protein solubility. The salt-soluble fraction represented the fraction 

with the lowest number of identified proteins. 

Searches carried out using different databases showed that the three Theobroma 

cacao-specific databases led to the search results with the highest numbers of 

proteins being identified, confirming previous plant proteomic results [76] and 

showing that the use of a more species-specific database can increase the number 

of identified proteins. 

The majority of the identified proteins were linked to the function group 

metabolism and energy with 521 entries which accounted for 57.4% of the total 
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number of identified proteins. The most abundant proteins within this function 

group belonged to the oleosins family. There is a direct correlation between the 

content of oil in seeds and the level of oleosin [77]. However, the exact role of 

oleosins in oil accumulation has not yet been elucidated [77]. Several 

phosphoglycerate kinases and glyceraldehyde-3-phosphate dehydrogenases, two 

enzyme families which play an important role in glycolysis and the Calvin cycle, 

were among the most abundant proteins linked to metabolism and energy. 

Proteins belonging to the aldolases family were also present at significant levels 

among the proteins involved with metabolism and energy. 

Proteins involved with protein synthesis and processing accounted for 19.7% of 

the total number of identified proteins (179 entries). A cyclophilin peptidyl-prolyl 

cis-trans isomerase showed the highest abundance within this group. Cyclophilins 

are present in all organisms which have been studied so far and have a common 

domain of 109 amino acids [78]. This class of proteins reduce the energy state of 

the peptidyl-prolyl bond in the sterically unfavoured cis form, increasing the 

conversion rate of the cis-trans isomerization of this peptide bond [78]. A high 

number of molecular chaperones were found within the protein synthesis and 

processing group. This class of proteins interacts with the non-native state of other 

protein molecules and plays a crucial role in the folding of newly synthesized 

polypeptides and assembly of structures with multiple units, keeping proteins in 

unfolded states suitable for translocation across membranes, and ensuring that 

proteins remain unfolded during cellular stress [79]. Several ribosomal proteins 

were also detected within this category. These proteins are responsible for 

translating RNA code into amino acid sequences during protein synthesis [80]. A 

significant number of identified proteins (64 entries and 7.1% of the total protein 

number) could be linked to defence and stress. Several heat-shock proteins and 
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chitinases were also found within this function group. Heat-shock proteins are 

synthesised when the plant is exposed to adverse environmental factors and 

therefore determine the ability of plants to survive under such unfavourable 

conditions [81]. These proteins keep other proteins in an unfolded state when the 

plant is subjected to elevated temperatures, ensuring that irreversible aggregation 

and denaturation does not occur in these conditions [81]. Chitinases play a crucial 

role in plant defence against pathogens as they hydrolyse chitin, which is a 

structural component of the cell wall of many phytopathogenic fungi [82]. 

Vicilin and albumin were classified as storage proteins and showed the highest 

BSA-normalised emPAI value among all detected proteins, although only eight 

entries could be linked to this function group. However, if the relative percentages 

of the classified proteins are based on the sum of the BSA-normalised emPAI 

values of all proteins within the same function group, storage proteins are the 

second most abundant protein group after metabolism and energy (Figure 25, 

lower pie chart). The ratio albumin/vicilin in the water-soluble and salt-soluble 

fractions were 3.5 and 0.9, respectively, indicating that fractionation resulted in 

an enrichment of vicilin in the salt-soluble fraction. The ratio albumin/vicilin in the 

urea-soluble fraction was 4.3. The relative amounts of vicilin and albumin 

compared to the total protein amount in the whole fractionated sample were 3.9 

and 11.5 %, respectively. These levels are lower than the reported values of 

between 43 and 23 % for vicilin [12, 19], and 52 and 14 % for albumin [12, 19] 

reported in the literature. However, these values have been calculated based on 

selective solubilisation of proteins [12, 19], or by quantifying the bands of these 

proteins in SDS-PAGE gels [12, 19]. Separation of specific protein classes into 

different fractions using selective extraction solutions may be inefficient, as 

complete isolation of the proteins of interest into distinct fractions may not be 
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achieved, which can lead to an overestimation of the protein amount. Protein 

bands in a SDS-PAGE gel usually contain several different proteins, therefore, 

using this technique to quantify specific proteins can result in an overestimation in 

the quantitation of specific proteins. 

A total of four entries were identified within the albumin protein class, while only 

one vicilin was detected. Among the albumin class, three entries were identified 

as 21 kDa seed proteins whose gene function is associated with an endopeptidase 

inhibitor activity, and the remaining entry was described as a 2S storage albumin 

with a nutrient reservoir activity. Two of the 21 kDa seed albumins contained 219 

residues while the other entry was composed of 221 residues. The 21 kDa seed 

albumins with 219 residues showed a homology of 99.5 %, as they differed only 

by the presence of an aspartic acid residue at the N-terminal position 157 and an 

asparagine residue at the same position. As a result, these two proteins are likely 

to be expressed from the same gene. However, a homology of only 80% was 

observed between the two 21 kDa albumins with 219 residues and the one with 

221 residues, indicating that there were some differences between the sequences 

of these albumins. The 21 kDa seed albumin with 221 residues was detected at a 

much higher level compared to the other two entries. Two proteins belonging to 

the cupins family proteins with nutrient reservoir activity were also detected within 

the storage proteins function. 
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4.1.1 Conclusions 

More than 1000 proteins could be identified in tryptic digests of cocoa bean protein 

extracts analysed by nano-UHPLC-ESI MS/MS. The highest number of proteins 

were identified with searches carried out using the three Theobroma cacao-specific 

databases showing that the use of a more species-specific database can increase 

the number of identified proteins.  

The majority of the identified proteins were linked to the function group 

metabolism and energy and protein synthesis and processing. The storage proteins 

vicilin and albumin showed the highest abundance among the identified proteins. 

The presented methodology may benefit from further optimisation in terms of 

protein extraction and chromatographic separation. However, its current 

performance and the dataset obtained already provide a good platform for studies 

aimed at gaining a better understanding of the proteomic profile of cocoa beans 

and present the largest proteome dataset for cocoa beans to date. 

4.2 Method development for quantitative proteomic analysis by LC-MS 

(results section 3.2)  

4.2.1 Improvement of the desalting step and chromatographic 

separation for the Fusion Orbitrap analysis (results section 3.2.1) 

The initial gradient employed for the characterisation of the cocoa bean proteome 

produced a chromatographic pattern for the tryptic peptides which was 

compressed between 20 and 90 minutes, see Figures 19-22. Reducing the 

steepness of the gradient and doubling the column length at the same time 

resulted in a wider peptide elution pattern ranging from 20 to 170 minutes, which 

also improved considerably the chromatographic separation of the tryptic peptides, 

see Figure 26, when compared to the chromatographic profile of the peptides 
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analysed for the initial characterisation of the cocoa beans proteome, see Figures 

19-22. The improved chromatographic conditions allowed a higher sensitivity of 

the method in terms of identified proteins, as in this case an average of 880 

proteins were identified in an unfractionated sample, while 704 proteins had been 

identified in the same sample analysed with the initial method. As the 

chromatographic separation of the method is improved, the number of co-eluted 

peptides is reduced, which in turn decreases ion suppression in the ESI source due 

to signal saturation, as a lower number of peptides are simultaneously ionised, 

reducing therefore charge competition in the ESI process. Data dependent 

acquisition is also more efficient, as a higher number of MS/MS spectra can be 

acquired for low abundant peptides, if these are chromatographically separated 

from the high abundant ones. A high level of reproducibility was achieved in terms 

of protein identification, as an average of 880 proteins was identified in 10 replicate 

injections of the same sample with an RSD of 2%, expressed as the variation in 

the number of identified proteins between the replicates, see Table 8. The method 

was also highly reproducible for label-free quantitation using replicate protocol 

with Mascot Distiller, as most of the proteins quantified in 4 replicate injections of 

the same sample (837 out of 880), showed an RSD expressed as protein 

abundances between the replicates within 20%. 

Although the method delivered reproducible quantitative results for replicate 

injections of the same sample, the reproducibility of four aliquots of the same 

sample extract containing 10 µg of proteins digested and desalted separately using 

C18 ZipTips® was poor, suggesting that either the digestion or desalting step were 

contributing to the variability of the results. Replacing C18 ZipTips with Strata SPE 

reverse phase cartridge resulted in an increased reproducibility of the label-free 

quantitation method, although the results were still not optimal. Additional 
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experiments confirmed that the digestion process was not affecting the 

reproducibility of the method, as the results from the quantitative analysis of six 

aliquots taken from the same tryptic digest solution and desalted separately were 

similar to those obtained from aliquots digested and desalted separately. A drop 

in sensitivity in terms of identified proteins was observed in the instrument during 

method development. This issue could not be ascribed to the replacement of C18 

ZipTips with Strata SPE cartridges, as when aliquots desalted with both protocols 

were analysed within the same sequence, a slightly high number of proteins were 

identified in the aliquots desalted with Strata SPE compared to C18 ZipTips.  

A higher reproducibility was obtained increasing the amount of digested proteins 

from 10 to 160 µg, keeping the ratio proteins:trypsin 50:1. For the desalting step 

carried out with C18 ZipTips, the amount of peptides loaded was kept to 10 µg as 

this is the maximum capacity of these tips. As the digested solutions had a 

concentration of peptides of approximately 0.5 µg/µl, only 20 µl of this solution 

were aliquoted, dried down and reconstituted into 10 µl of 0.1% TFA prior to 

loading on the ZipTip. This solution had a much lower concentration of salts and 

chaotropic agents due to the reduced volume which had to be dried down, resulting 

in a lower viscosity. This made it easier to pipette the solutions in and out of the 

ZipTip which may have accounted for the improved reproducibility of the results. 

The higher concentration of digested proteins also minimised the loss of peptides 

due to absorption to the tube walls which could have negatively affected the 

reproducibility of the results. The combining effect of replacing Strata SPE 

cartridges with SOLA reverse phase cartridges and increasing the amount of 

digested proteins from 10 to 160 µg, considerably improved the reproducibility of 

the results. The fact that SOLA cartridges were placed on the same position of the 

well for each desalted solution, may have increased the reproducibility of the 
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results, as in this case the flow rates for the various steps involved in the desalting 

protocol could be better controlled. A similar protocol was employed for the three 

clean-up cartridges. 

4.2.2 Improvement of the LC-MS/MS method for the Qexactive Orbitrap 

analysis (results chapter 3.2.2) 

The chromatographic separation of the tryptic digests with an injection volume of 

10 µl was considered satisfactory for the analytical column used for this test, see 

Figure 27. It was not possible to evaluate the performance of the column with a 

greater length, as 15 cm is the maximum available length for 0.1 mm ID columns. 

The tryptic digests were desalted using SOLA reverse phase cartridges, as this 

desalting protocol proved to be the optimal one when method development with 

the Fusion Orbitrap was performed. The method improvement then focused on the 

injection time for MS/MS acquisition and the injection volume of tryptic digests on 

column. Increasing the injection time for MS/MS acquisition allows accumulation 

of a larger number of ions on the C-Trap before the AGC target is reached, which 

in turn may favour the acquisition of low abundant peptides by increasing their 

signal to noise ratio above the threshold set in the method. This may explain why 

more proteins were identified when the injection time for MS/MS acquisition was 

increased from 200 to 300 ms. By increasing the injection volume, a higher amount 

of peptides is loaded on the column. However, if this amount is too high and 

exceeds the column capacity, overloading will occur, which would result in a 

distorted peak shape and a loss of resolution. Increasing the injection volume from 

10 to 15 µl allowed the identification of a high number of proteins, and it neither 

affected the peak shape of peptides nor caused a loss of resolution. Based on these 

results the parameters for the LC-MS/MS method which allowed the identification 
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of the highest number of proteins were an injection time for the MS/MS acquisition 

of 300 ms, and an injection volume of 15 µl.  

4.2.3 Conclusions 

Reducing the steepness of the gradient and doubling the column length increased 

considerably the number of identified proteins in unfractionated cocoa beans 

extracts analysed on the Orbitrap Fusion. 

The most reproducible quantitative results were obtained when digesting a total of 

160 µg of proteins keeping the ratio protein:trypsin at 50:1, and carrying out the 

desalting step on Sola Thermo reverse phase SPE cartridges.  

The highest number of identified proteins on the Qexactive Orbitrap were achieved 

by increasing the injection time for the MS/MS analysis to 300 ms and the injection 

volume for the tryptic digest to 15 µl. The comparison of the proteomic profile of 

cocoa beans from different genotypes was carried out on the Qexactive as this 

instrument showed a higher reproducibility compared to the Orbitrap Fusion for 

quantitative proteomic analysis, although the sensitivity of the Qexactive in terms 

of the number of identified proteins was lower when compared to the Fusion. 
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4.3 Quantitative proteomics analysis of cocoa genotypes by LC-MS 

(results section 3.3) 

4.3.1 Effect of shipment, different trees and harvest time (results section 

3.3.1-3.3.2) 

Cocoa beans for all the analyses carried out in this part of the project were provided 

by the University of West Indies in Trinidad and air-freighted to Reading. It was 

not known whether the shipment would cause changes to the abundance of 

proteins in cocoa beans. Therefore, an experiment to evaluate the effect of 

shipment on the proteomic profile of cocoa beans was performed. As described in 

section 3.3.1 a portion of ground and freeze-dried cocoa beans from an Amelonado 

variety was shipped back and forth from the University of Reading to Trinidad, 

while the remainder of the sample was stored at the University of Reading. When 

this sample arrived in Trinidad, it was held in customs for several days before being 

sent to the University of West Indies. It took around 10 days for the sample to be 

shipped back and forth from Reading to Trinidad. Although the abundance of a S-

adenosyl-L-methionine-dependent methyltransferases superfamily protein was 

1.6-fold higher in the shipped sample, no other protein was detected with a fold 

difference higher than 1.5-fold between the shipped and not-shipped sample. 

These results indicate that the proteins’ distribution and levels in the cocoa bean 

samples were not affected by the shipment to and from Trinidad, even though the 

temperature of the shipped sample was not controlled during the shipment. The 

high stability of the cocoa proteins was probably due to the fact that the samples 

had been freeze-dried prior to shipping, which minimised protein degradation. 

As mentioned in the material and methods section 2.2.2, biological replicates from 

the four selected cocoa varieties were grown on different trees and harvested at 
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different times. As there was no prior knowledge about differences in the proteomic 

profiles of biological replicates from the same genotype, experiments to evaluate 

the effect of different trees and harvest time on the proteomic profile of biological 

replicates from the cocoa genotype IMC 67 grown in the ICGT field were carried 

out. It was decided to select this genotype for the assessment of the effects of 

harvest time and different trees, as it provided a selection of biological replicates 

grown on the same tree but with different harvest time, and biological replicates 

harvested on the same day and grown on different trees. The results of these 

experiments are reported by descriptive statistics only.  

The vast majority of the proteins detected in the assessment of the effect of 

different trees did not show considerable variation between the four biological 

replicates evaluated for this experiment, as only 6 proteins out of a total of 511 

were detected with a fold increase/decrease from the mean >2, see Table 9. A 

beta-amylase, salicylate O-methyltransferase and a S-adenosyl-L-methionine-

dependent methyltransferases were detected in the biological replicate T2-2 with 

a fold increase/decrease  >2 from the overall mean, while the biological replicate 

T6-4 showed a beta-amylase and a glycosyl hydrolase with a fold 

increase/decrease from the mean >2, see Table 10. A HSP20-like chaperone and 

an eukaryotic aspartyl protease were detected with a fold increase/decrease from 

mean >2 in the biological replicates T13-6 and T5-3, respectively.  

A total of 502 proteins were quantified in the four biological replicates analysed to 

evaluate the effect of harvest time, of which 9 were detected with a fold 

increase/decrease from the mean >2, see Table 11, confirming that also for this 

experiment most of the detected proteins were consistent between the biological 

replicates analysed. A serine carboxypeptidase and an uncharacterised protein 

showed the highest variation with fold increase/decrease of 11 and 5, respectively. 
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All the other proteins listed in Table 11 had fold increase/decrease values <3. The 

biological replicate T10-6 showed the highest number of proteins with a fold 

increase/decrease from the mean >2 with 5 entries, see Table 12. A total of 4 

proteins with a with a fold increase/decrease from the mean >2 were detected in 

the biological replicates T10-3 and T10-5, while 3 proteins with a value >2 were 

found in the biological replicate T10-1, see Table 12. These results showed that 

the distribution of proteins with a fold increase/decrease from the mean >2 was 

similar in the biological replicates analysed to assess the effect of harvest time. 

4.3.2 Investigation of proteome changes dependent on the genotype 

(results section 3.3.1-3.3.2) 

The analysis of the proteomic difference with respect to genotype revealed a high 

variability with more than 60 proteins showing a significant fold change of >2 for 

at least one pairwise genotype comparison. The overall highest fold difference in 

this comparison was found for an aminohydrolase (ID 1, see Table 13). This protein 

was detected at significantly higher levels in both ICS genotypes, while it was 

found at much lower abundance in the genotypes IMC 67 and SCA 6. A blast search 

of the amino acid sequence of this protein returned a 100% match to a 20S 

proteasome alpha subunit which is part of the N-terminal nucleophile hydrolase 

superfamily. This class of proteins is involved in the hydrolysis of the amide bonds 

in either proteins or small molecules [83]. The active site is the N-terminal amino 

group which accepts a proton during the hydrolysis activating as a result either 

the nucleophilic hydroxyl in a Ser or Thr residue or the nucleophilic thiol in a Cys 

residue [83]. 

The next highest fold change was recorded for a glutathione S-transferase (GST) 

family protein (ID 2) which was found at a much higher level in the genotype IMC 
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67 compared to all other genotypes. GST family proteins catalyse the conjugation 

of a variety of substrates to the reduced form of glutathione and therefore are 

involved in detoxification processes [84]. 

A 60S acidic ribosomal protein was not detected in any of the preparative replicates 

of the genotype SCA 6, while it was found in all other genotypes without any 

significant abundance differences. This class of proteins regulates the translation 

of mRNA in protein synthesis [85]. 

With respect to the 57 proteins in Table 13, the highest number of less abundant 

proteins was found in the genotype IMC 67, and only 5 proteins were detected in 

this genotype at a higher level compared to the other genotypes (see Figure 29). 

The highest relative number of more abundant proteins compared to less abundant 

proteins (19 vs 9) was found for the genotype ICS 1. 

The PCA score plot of the differentially abundant proteins for the four genotypes 

analysed shows that the individual genotypes are located in different quadrants of 

the plot and can be clearly separated from each other (see Figure 30, higher plot). 

Both ICS 1 and ICS 39 belong to the same genetic group Trinitario, which 

originates from hybridisations between Criollo and Forastero. Therefore, the 

positive correlation of these genotypes in the PCA score plot could result from their 

closer genetic background compared to the other genotypes. IMC 67 and SCA 6 

are genotypes from the genetically distant varieties Forastero and Contamana, 

respectively, of which both have a different genetic background from Trinitario [3]. 

Therefore, the separation pattern observed on the PCA score plot reflects the 

differences in genetic background among the four genotypes evaluated. Based on 

these findings, the PCA score plot of the differentially abundant proteins can be 

used as a tool to differentiate cocoa genotypes. 
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Loading the differentially abundant proteins as variables on a PCA loading plot 

allows a graphical visualisation of the proteins positively correlated to each 

genotype. The majority of the proteins more abundant in IMC 67 and SCA 6 form 

respective clusters in the bottom left and bottom right corner of the PCA loading 

plot (see Figure 30, lower plot), reflecting the separation of these genotypes 

observable in the PCA score plot. The genotypes ICS 1 and ICS 39 showed a high 

degree of correlation in the PCA score plot. Therefore, the proteins found at a 

higher level in each of these genotypes cannot be separated in the PCA loading 

plot and form a single large cluster located at the top centre of the PCA loading 

plot. The location of this cluster is consistent with the position of these genotypes 

in the PCA score plot. 

The highest number of the differentially abundant proteins could be associated to 

metabolism and energy. This function class generally encompasses the majority of 

the proteins expressed in cocoa beans as shown in a previous study [86], and 

includes two primary amine oxidases (ID 30 and ID 8 in Table 13) and two alcohol 

dehydrogenases identifications (ID 45 and ID 56 in Table 13), of which the latter 

are highly homologous (87% homology). Primary amine oxidases catalyse the 

oxidation of alkylamines to aldehydes with the release of ammonia and hydrogen 

peroxide [87], while alcohol dehydrogenases catalyse the oxidation of primary and 

secondary alcohols to the corresponding aldehydes and ketones [88]. It has been 

reported that both aldehydes and ketones are formed during roasting of fermented 

cocoa beans as a result of the Maillard reaction and Strecker degradation, and both 

classes of compounds contribute to the cocoa flavour [89]. These reactions are 

endothermic as they require high temperatures to be activated and are not 

catalysed by enzymes. Aldehydes and ketones can also be produced from oxidation 

of amines and alcohols during fermentation catalysed by amine oxidases and 
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alcohol dehydrogenases, as both these enzymes have been linked to the 

production of volatile compounds responsible for the aroma of other plants [90, 

91]. However, it is not known whether these enzymes are activated during 

fermentation, and whether there is a relation between their concentration and the 

generation of cocoa flavour. The primary amine oxidase ID 30 was significantly 

more abundant in the genotype SCA 6 compared to ICS 39, while the other primary 

amine oxidase was significantly higher in the genotype SCA 6 versus ICS 39, and 

in the genotype ICS 1 versus ICS 39. Both alcohol dehydrogenase identifications, 

IDs 45 and 56, were significantly more expressed in the genotype SCA 6 compared 

to IMC 67, reflecting their high homology and indicating that two proteoforms of 

the same gene were detected.  

The flavour profile of the genotype SCA 6 includes a floral flavour note which is 

not present in the other genotypes selected for this project, see Table 3. This 

flavour attribute has been associated to both aldehydes and ketones [89], 

therefore its presence in the genotype SCA 6 could be linked to a higher amount 

of primary amine oxidase and alcohol dehydrogenase found in this genotype, as 

these enzymes could release aldehydes and ketones which could induce floral 

flavour notes. 

A total of 9 proteins involved in stress response were differentially abundant. Four 

of these proteins (ID 10, 15, and 17 in Table 13) were heat shock proteins by 

name which are linked to the response of the plant to stress conditions [81]. There 

are no significant differences in the abundances of these proteins in ICS 1 versus 

IMC 67 and SCA 6 versus IMC 67 but they were significantly more abundant in ICS 

1 compared to ICS 39. Both these genotypes belong to the Trinitario variety which 

is originally from Trinidad and includes all hybridisation combinations of the Criollo 

and Forastero varieties. Criollo varieties are more susceptible to disease and 
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adverse environmental factors. The genotype ICS 39 has a stronger Criollo 

ancestry compared to ICS 1, which could explain why heat shock proteins are more 

abundant in ICS 1 compared to ICS 39. It has been reported that the amount of 

proteins involved in defence and stress increases as the cocoa bean ripens [54]. 

A eukaryotic aspartyl protease (ID 12 in Table 13) was significantly more abundant 

in the genotypes ICS 1 and ICS 39 compared to IMC 67 (fold difference of 2.9). 

Eukaryotic aspartyl protease is a cocoa endogenous protease which has an 

optimum pH of around 3.8 and is active during early stage of fermentation, 

cleaving internal peptides bonds with the release of mainly hydrophobic peptides 

[7]. The abundance of this protease was not consistent in the biological replicates 

of IMC 67 harvested from different trees on the same day. Therefore, the low 

amount found in the pooled sample may be due to natural variations amongst 

biological tree replicates. 

A serine carboxypeptidase (ID 37 in Table 13) was detected at a significantly 

higher level in ICS 39 compared to the other genotypes. Carboxypeptidase is an 

exopeptidase which cleaves off C-terminal amino acids from mainly hydrophobic 

oligopeptides formed by the action of aspartyl protease during fermentation with 

the preferential release of hydrophobic amino acids and hydrophilic peptides [24]. 

These compounds are important flavour precursors which react with sugars during 

roasting to form volatile compounds which contribute to the cocoa aroma. A higher 

amount of aspartyl protease and carboxypeptidase could result in an increase in 

the generation of flavour precursors during fermentation, which could lead to 

changes in the flavour profiles of roasted cocoa beans. However, it is not known 

what flavour precursor can be linked to specific flavour notes for the cocoa 

genotypes selected for this project. 



132 

Sensory analysis of cocoa beans to evaluate the aroma and flavour are performed 

by a series of trained panellists who can assess flavour profile based on their 

experience in recognizing characteristic notes and attributes. Even though the 

panel members are properly trained, and the results of their assessment are 

subjected to statistical test to validate the data, human bias cannot always be 

eliminated in these tests. Another tool often employed to provide a more robust 

assessment of the flavour profile is the PAC (potent aroma compounds) analysis. 

In this case the cocoa beans are analysed by GC-MS in order to quantify volatile 

compounds which can be linked to flavour. Since this analysis is based on the 

quantification of aroma compounds against reference standards, the human bias 

is removed, and the results are more accurate. However, specific flavour 

characteristic cannot always be linked to the amount of aroma compound 

quantified with this technique, therefore, sensory analysis is also required when 

assessing flavour profiles of cocoa beans. 

A β-amylase was detected at a significantly higher level in the genotype SCA 6 

compared to ICS 1 and IMC 67 (ID 3 in Table 13). β-amylases are part of the 

glycoside hydrolase family, which are a group of enzymes catalysing the cleavage 

of the glycosidic bond in polysaccharides with release of maltose units [92]. This 

disaccharide can react with nitrogen containing compounds such as amino acids 

and peptides during roasting through the Maillard reaction which results in the 

generation of volatile compounds [93]. Therefore, the release of maltose can be 

affected by the levels of β-amylase present in cocoa beans, which in turn could 

influence the flavour profile of roasted cocoa beans. However, the abundance of 

this specific β-amylase was not consistent in the biological replicates of IMC 67 

harvested from different trees on the same day. Therefore, the low amount found 
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in the pooled sample may be due to natural variations amongst biological tree 

replicates. 

Two 21 kDa seed albumins were present at a significant higher level in the 

genotype ICS 39 compared to IMC 67 (ID 18 and 20 in Table 13). These albumins 

are storage proteins with endopeptidase inhibitor activity, which contain 219 amino 

acids residues, and can be considered to originate from the same gene as they are 

99.5% homologous. Due to this high homology, these two proteins would generate 

the same tryptic peptides, and therefore can be regarded as one single entry. The 

main 21 kDa seed albumin in cocoa beans is a protein with 221 residues which 

shares a homology of 80% with the albumins ID 19 and 21 listed in Table 1. The 

221-residues albumin showed no abundance difference between the cocoa 

genotypes analysed (see Appendix 2). LC-MS/MS identifications of free peptides 

released from this protein during fermentation have been reported by several 

authors [62, 63, 66]. However, so far there is no evidence that the 219-residues 

albumins are also degraded during this process. As a result, the shorter chain 

albumins may not play a role in the generation of cocoa flavour. 

In another study, two proteins identified as a degraded albumin subunit at 17 kDa 

and an internal vicilin subunit at 15 kDa were detected at significant different levels 

in cocoa beans of different origins and varieties by 2D gel electrophoresis and 

subsequent MALDI-TOF-MS analysis of the digested spots [59]. Even though the 

proteomic analysis performed for this PhD project should provide a deeper dataset 

with a higher amount of identified proteins, these two entries are subunits of larger 

proteins, and therefore cannot detected with a bottom-up approach employed for 

this analysis, as the peptides generated from the subunits would be considered as 

part of the larger proteins. Moreover, the cocoa varieties analysed by the authors 

of this work differed from those evaluated for this PhD project. 
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A 2S albumin was significantly more abundant in the genotypes ICS 1 and IMC 67 

compared to SCA 6 (see ID 14 in Table 13). This albumin is a seed storage protein 

with protease inhibitor activity which is also involved in the transfer of 

phospholipids and fatty acids through the cell membrane [94]. Degradation of this 

protein during fermentation has not been reported in the literature. 

4.3.3 Conclusions 

Shipment did not have a significant impact on the proteomic profile of cocoa beans, 

even though there was no control over the temperature of the sample shipped 

back and forth from Reading to Trinidad. The high stability of the cocoa proteins 

was probably due to the fact that the samples had been freeze-dried prior to 

shipping, which minimised protein degradation. 

The experiment to assess the effect of different trees on the proteomic profile of 

cocoa beans showed that only 6 proteins were detected with a fold 

increase/decrease from the mean >2 in at least one biological replicate.  These 

results indicate that no significant differences were found in the proteomic profile 

of biological replicates harvested on the same date but grown on different trees. 

Similar results were obtained for the experiment to evaluate the impact of harvest 

time on the proteomic profile of cocoa beans from different biological replicates. 

In this case, 9 proteins were present with a fold increase/decrease of >2 from the 

mean in at least one biological replicate, confirming that the harvest time did not 

have a significant impact on the proteomic profile of the biological replicates 

analysed either. 

This work has shown that UHPLC-MS/MS can be employed to characterise 

qualitative and quantitative differences in the proteomic profiles of cocoa beans 

from various genotypes. The PCA analysis has allowed separation of the cocoa 
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genotypes from different varieties and has shown a correlation between close 

genotypes and their genetic background. Using this approach, it was also possible 

to graphically visualise proteins positively correlated with each genotype. This 

methodology could be employed as a platform to build larger datasets of proteins 

which could allow traceability of cocoa beans from different varieties. 

Proteases which degrade storage proteins during fermentation with the release of 

flavour precursors have been found with differential abundance in some of the 

genotypes analysed. Changes in the amount of these proteases could be related 

to variation in the flavour profiles of cocoa varieties. Different genotype-specific 

levels of primary amino oxidases and alcohol dehydrogenases, enzymes that could 

potentially lead to flavour-inducing compounds, have been detected. These 

enzymes could be linked to the characteristic floral flavour note reported for the 

genotype SCA 6 only. Thus, further experiments should be performed to assess 

whether the different amounts of these enzymes, present during fermentation, 

affect the final flavour profiles obtained.  

4.4 Proteomic analysis by SDS-PAGE (results section 3.4) 

4.4.1 Method development (results section 3.4.1) 

The electrophoretic bands with a migration point close to the 20-kDa marker can 

be attributed to cocoa albumins, see Figure 32, as a polypeptide with a similar 

molecular weight has been previously reported to be a main component of this 

protein class [12, 19]. Polypeptides detected in gel bands at 47 and 31 kDa were 

identified with vicilin fractions of cocoa seeds [12, 19], suggesting that the 

electrophoretic bands with apparent molecular weights of approximately 50 and 

30 kDa detected here can be assigned to vicilin polypeptides, see Figure 32. The 

unresolved electrophoretic bands migrating between 10 and 15 kDa can also be 
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assigned to vicilin, as polypeptides with similar molecular weights have been 

previously found in vicilin fractions [12, 19].  

4.4.2 Effect of harvest time and different trees (results section 3.4.2) 

A similar electrophoretic pattern was observed between the samples analysed to 

assess the effect of different trees on the proteome of the biological replicates for 

the variety IMC 67 grown in the ICGT field, see Figure 33, even though the bands 

for T13-6 and T5-3 were slightly wider than the other two biological replicates 

analysed for this experiment. There was minimal variation in the intensities of the 

bands at an apparent molecular weight of approximately 50 kDa between the 

biological replicates analysed for this experiment. A higher variability was observed 

for the intensities of the 30-kDa bands, as the fold change between the biological 

replicates with the highest (T2-2) and lowest (T13-6) intensities for this band was 

1.6, see Table 16. The same fold change was observed for the 20-kDa bands, 

however in this case the biological replicates which showed the highest and lowest 

intensities were T13-6 and T6-4, respectively, see Table 16.   

A similar electrophoretic pattern was observed among the four biological replicates 

analysed to assess the effect of harvest time, see Figure 34. The electrophoretic 

bands at 50 and 30 kDa showed similar intensities between the biological 

replicates, see Table 17. The intensity of the band at 20 kDa was lower in the 

biological replicate T10-1 compared to the other samples analysed, however the 

fold change for this band was only 1.6 when compared to the highest values 

observed for the biological replicate T10-3, see Table 17. These results indicate 

that the effect of different trees and harvest time did not have a significant impact 

on the proteomic profile of the cocoa beans analysed by SDS-PAGE.  
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4.4.3 Investigation of proteome changes dependent on the genotype by 

SDS-PAGE (results section 3.4.3) 

No visual differences were observed between the electrophoretic pattern of the 

cocoa varieties analysed to assess the proteome changes dependent on the 

genotype by SDS-PAGE, see Figure 35. The electrophoretic bands at apparent 

molecular weights of 50 and 30 kDa could be attributed to vicilin polypeptides, 

while the band at 20 kDa could be assigned to albumin. These intensities of these 

bands were lower in the cocoa genotype IMC 67 grown at both the ICGT and 

Campus fields compared to the other genotypes, see Table 18. The cocoa 

genotypes SCA 6 and ICS 39 showed the highest intensities for both the vicilin 

bands at 50 and 30 kDa, and the albumin band at 20 kDa, see Table 18. The 

intensities of the vicilin and albumin bands in the genotype IMC 67 grown in two 

different fields were very similar, see Table 18. The albumin band at 20 kDa 

showed the highest fold change (1.6) between the different cocoa genotypes, 

followed by the globulin bands at 30 and 50 kDa, with values of 1.5 and 1.3, 

respectively, see Table 18. Based on these results there were no significant 

changes in the proteomic profile of the cocoa varieties analysed by SDS-PAGE. 

Besides, growing the same cocoa variety in two fields did not have an impact on 

the proteomic profile either. No significant differences have ever been reported in 

the proteomic profiles of cocoa beans of different varieties and origin analysed by 

SDS-PAGE [47, 48]. With this technique only the most abundant proteins such as 

albumin and vicilin can be detected. These class of proteins did not show significant 

differences in the samples analysed by LC-MS/MS, confirming the results obtained 

by SDS-PAGE. 
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4.4.4 Conclusions 

Three main electrophoretic bands at approximately 50, 30 and 20 kDa were 

observed. The band at 20 kDa was attributed to albumin, while the remaining 

bands at 50 and 30 kDa were assigned to vicilin polypeptides. 

The analysis of biological replicates harvested at different times and grown on 

different trees showed that these two variables did not have a significant impact 

on the electrophoretic pattern of the biological replicates evaluated for these 

experiments. 

The bands’ distributions and intensities of the protein extracts of cocoa beans from 

different genotypes were similar, indicating that there were no detectable 

differences in the proteomic profile of these sample analysed by SDS-PAGE. 

Similarly, growing the same cocoa genotype in two different fields did not cause 

changes in the electrophoretic pattern. 

4.5 Method development for the analysis of free peptides by LC-MS 

(results section 3.5) 

Searches of the MS/MS data from the initial analysis of free peptides extracted 

with a methanol:water 70:30 (v/v) solution against the Cacao Matina 1-6 genome 

database [74] returned a low number of identified peptides. However, when the 

same MS/MS data were searched against a database including the 100 most 

abundant proteins identified in non-fermented cocoa beans, see Appendix 1, a 

significantly higher number of peptides were detected, see Table 19. When 

carrying out searches on protein databases, a peptide score threshold for peptide 

identifications is defined as the probability that an identified peptide is not a 

random event. This threshold increases proportionally with the size of a database, 

therefore weaker matches with lower scores are lost and not detected when using 
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larger databases. Since only the most abundant proteins from cocoa beans are 

likely to be fermented, it was reasonable to reduce the size of the database to the 

proteins identified in cocoa beans, in particular the most abundant ones. Using 

aqueous TFA as an extraction solution and concentrating the peptides extracts by 

SPE resulted in an increased number of identified peptides, see Table 20, as this 

step allows loading a higher amount of peptides on the column and at the same 

time removes salts and strongly polar compounds from the peptide extracts. To 

cover a wider range of proteins, the MS/MS data of the peptide solutions extracted 

with aqueous TFA and concentrated by SPE were also searched against a database 

containing the 897 proteins detected in unfermented cocoa beans protein extracts 

searched against Uniprot\Tremble database restricted to Theobroma cacao entries 

only, see Table 21. A similar number of peptides originating from vicilin and 

albumin were detected when using the databases with 100 and 897 proteins, see 

Tables 20-21, however, with the larger database additional peptides originating 

from a higher number of proteins were identified. Adding methanol to the peptide 

extraction solution and increasing the injection time for the MS/MS acquisition from 

200 to 300 ms achieved the highest number of identified peptides, see Table 22. 

The addition of an organic modifier may have favoured the extraction of 

hydrophobic peptides which are not highly soluble in a 100% aqueous buffer. By 

increasing the injection time for the MS/MS acquisition, a higher number of ions 

are stored in the C-Trap before being transferred into the mass analyser, improving 

the signal to noise and enabling the acquisition of higher quality spectra 

particularly for low abundant peptides. 

With these improved conditions a total of 155 peptides were identified and 

quantified in all three technical replicates of fermented beans of Ghanaian origin. 

Over 800 peptides were identified by D’Souza et al. [66] by LC-MS/MS analysis of 
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cocoa beans at different stages of fermentation. However, in this case, the list of 

identified peptides resulted from combining entries in samples from 7 fermentation 

stages and included peptides with two and three residues as well. The results 

reported in this PhD project were obtained from the analysis of cocoa beans at the 

final fermentation stage only and were limited to peptides with a minimum of 4 

residues, as the software cannot identify peptides shorter than 4 residues. 

Therefore, all peptides generated at the initial fermentation stages and the di and 

tri-peptides could not be identified, which could explain why the number of 

peptides reported in this project is considerably lower compared to the results 

published by D’Souza et al. [66]. 

The vast majority of the detected peptides originated from vicilin and a 21 kDa 

albumin with 221 amino acids, although a few peptides released from other 

proteins such as aspartyl proteases, peroxygenases and lipoxygenases were also 

detected, see Table 23. As vicilin and albumin are the most abundant proteins in 

cocoa seeds, see Appendix 1, it is expected that cocoa endogenous proteases 

degrade more of these proteins compared to other proteins present in cocoa beans. 

A considerably higher number of peptides originating from vicilin compared to 

peptides from the 21 kDa albumin were detected, see Table 23, as the sequence 

of vicilin is 566 residues, while the 21 kDa albumin is only 221 residues. It has 

been reported that vicilin is the protein which release the highest number of free 

peptides in fermented beans [66], followed by albumin. Therefore the results of 

this work are in agreement with previously published papers [66]. 

It has been reported in the literature that the 21 kDa cocoa albumin undergoes 

little or no degradation during fermentation of cocoa beans [12, 19, 20], due to its 

inhibitor properties towards endoproteases. However, LC-MS/MS analysis of free 

peptides from fermented beans have shown that proteolysis product generated 
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from this protein are released during fermentation [61-63, 66]. Besides, it has 

been demonstrated that although the 21 kDa albumin can inactivate trypsin and 

chymotrypsin, other proteases such as serine proteases, aspartic proteases, 

pepsin and cocoa endoproteases are not inhibited by this albumin [56]. The free 

peptides originating from the 21 kDa albumin covered 69% of the sequence of this 

protein and were localised in specific zones spread throughout the sequence except 

around the initial 26 residues at the N-terminal, see Figure 36. These results were 

in agreement with findings from previous studies [26, 62], suggesting that the N-

terminal region of the 21 kDa albumin is not degraded during fermentation. No 

peptides were detected in regions of the sequence localised at the amino acid 

residues 68-73, 106-116, 151-153, 169-180.  

Peptides from the C-terminal region at 213-221 were not present either, although 

a cleavage site at amino acid residue 212 was identified. It is possible that the 

peptides at the C-terminal with sequence IKQVVNAKH may have been further 

degraded to smaller peptides which cannot be detected with the methodology used 

for this experiment. Free peptide rich zones were localised in the region of the 

sequence at amino acid residues 27-67, 74-105, 117-150 154-168 and 180-212. 

A total of 7 peptides were detected in the region localised at position 27-67, see 

Appendix 3. A peptide with sequence ANSPVLDTDGDELQTGVQYYVL at position 27-

48 was further degraded into three smaller peptides sharing the same N-terminus, 

suggesting carboxypeptidase enzyme activity, see Appendix 3. Another peptide 

with sequence SSISGAGGGGLALGRATGQ located at position 49-67 was cleaved at 

the C-terminus into a smaller peptide, providing additional evidence of the action 

of a carboxypeptidase, see Appendix 3. 

The region of the 21 kDa albumin covering the amino acid residues at positions 

74-105 yielded the highest number of peptides for this protein, as a total of 23 
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peptides with amino acid sequences from these positions were detected, see 

Appendix 3. Carboxylase activity was also found in peptides generated from this 

region, for example the peptide at positions 89-103 and amino acid sequence 

SNADSKDDVVRVSTD which was further cleaved into four smaller peptides sharing 

the same N-terminus, see Appendix 3. Peptides sharing the same C-terminus at 

position 105 were also detected in the region at positions 89-105, indicating that 

the action of an aminopeptidase may also be present, see Appendix 3. 

A peptide located at positions 117-134 with the amino acid sequence 

STSTVWRLDNYDNSAGKW was further cleaved at the N-terminus into 9 smaller 

peptides sharing the same C-terminus, indicating that these cleavages were also 

the results of the action of an aminopeptidase, see Appendix 3. It was interesting 

to note that no carboxypeptidase activity was observed in this region of the 21 

kDa albumin. However, carboxypeptidase activity was observed in the region of 

the 21 kDa albumin covering the residues 181-212, which included a total of 10 

detected peptides, see Appendix 3. The cleavage sites resulting from the actions 

of aspartic proteases, aminopeptidases and carboxypeptidases for the peptides 

originating from the 21 kDa albumin were mapped on the sequence of this protein, 

and a total of 55 sites were localised, see Figure 36. The majority of the cleavage 

sites resulting from the action of cocoa aspartic proteases were in agreement with 

the work carried out by Janek et al. [26] who evaluated the cleavage specificity of 

the cocoa aspartyl proteases by in vitro degradation of cocoa storage proteins. 

Although a higher number of peptides originating from the vicilin were identified 

compared to the peptides originating from the 21 kDa albumin, see Table 23, the 

combined sequences of all peptides originating from vicilin provided a coverage of 

only 39% for this protein, which is considerably lower than the sequence coverage 

observed for the 21 kDa albumin, see Figure 37. 
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No peptide sequences localised in the N-terminal region between 1-130 of the 

cocoa vicilin were identified, indicating that this N-terminus is not degraded during 

fermentation, as reported in previous studies [20, 62, 64]. Since the oligopeptide 

at positions 1-130 of the cocoa vicilin has never been identified, it has been 

suggested that the annotation of vicilin at the N-terminus may not be correct [20]. 

Almost half of the identified peptides originating from vicilin were localised in the 

region between amino acid residues 131-153, see Appendix 3. A peptide with 

sequence RSEEEEGQQRNNPYYFPKRRSFQ located at positions 131-153 was 

cleaved at the C-terminus into 6 peptides with lower molecular weights, suggesting 

activity of a carboxypeptidase, see Appendix 3. This peptide was most likely 

cleaved by the action of aspartic protease into smaller peptides which underwent 

further degradation at both the C-terminus and N-terminus, indicating activity of 

both carboxypeptidases and aminopeptidases, see Appendix 3.  

Only single vicilin peptides were identified in the regions of the sequence at 

positions 170-183, 218-243, 273-286, 296-306, 314-322, 354-366, see Appendix 

3. A peptide at positions 158-167 with the sequence DEEGNFKILQ identified in this 

study, was also found in beans fermented in a lab-scale fermentation and lost after 

roasting [67]. This peptide released the C-terminal amino acid to form the peptide 

DEEGNFKIL. A peptide at positions 188-198 with the sequence EANPNTFILPH was 

cleaved at the N-terminal amino acid residue, see Appendix 3. A total of three 

peptides were identified in the regions of the vicilin sequence between positions 

390-405. In this case, only activity of aspartyl protease was observed. A peptide 

located at positions 491-499 with sequence NAQNNQRIF was cleaved at the first 

Q residue from the N-terminus by the action of the cocoa aspartyl protease to form 

a smaller peptide with sequence NNQRIF, see Appendix 3. The peptide with 

sequence NAQNNQRIF was also cleaved at the N-terminal residue indicating 
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activity of an aminopeptidase. The region of the amino acid positions 432-465 was 

particularly rich in peptides, as a total of 15 peptides resulting from the putative 

activities of carboxypeptidases, aminopeptidases and aspartyl proteases were 

identified within this region, see Appendix 3. A peptide APLSPGDVF localised at the 

amino acid sequence 457-465 which had been previously reported as a potential 

flavour precursor [60] was also detected. A total of 11 peptides were identified in 

the cocoa vicilin region within the amino acid positions 519-538. Peptides cleaved 

at both the C-terminus and N-terminus were detected in this region, indicating 

carboxypeptidase and aminopeptidase activities. A total of 69 cleavage sites 

potentially resulting from the actions of aspartic proteases, aminopeptidases and 

carboxypeptidases were localised on the sequence of cocoa vicilin, see Figure 37. 

Most of the cleavage sites of the aspartic proteases matched the results published 

by Janek et al. [26]. 

4.5.1 Conclusions  

A method to identify and quantify free peptides from fermented cocoa beans by 

LC-MS/MS analysis has been developed. The extraction conditions which provided 

the highest number of identified peptides were achieved using a water:methanol 

80:20 (v/v) solution acidified with TFA as extraction solvent, and subsequently 

desalting the peptides extracts on Thermo Sola reverse phase SPE cartridges. 

Setting the injection time for MS/MS analysis to 300 ms resulted in an increased 

number of identified peptides. 

The highest number of identified peptides was obtained when the data files were 

searched against a custom database contained 897 proteins previously identified 

using a Uniprot\Tremble database specific to Theobroma cacao only. The majority 

of these peptides were related to vicilin and a 21 kDa albumin, which are the most 
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abundant proteins in cocoa beans. These results confirmed that the 21 kDa 

albumin is extensively degraded during fermentation although this protein has 

endopeptidase inhibitory activity. 

An evaluation of the sequences of the identified free peptides showed activity of 

carboxypeptidases, aspartyl proteases and aminopeptidases on both vicilin and 21 

kDa albumin. The combined sequences of the peptides cleaved from the 21 kDa 

albumin covered 69% of the sequence of this protein, while a protein sequence 

coverage of only 39% was obtained from the combined peptides sequences 

cleaved from vicilin. The cleavage sites for the activity of the aspartic proteases in 

both these proteins were mainly in agreement with results previously reported in 

the literature [26]. 

This methodology can be applied to assess the free peptides profiles of fermented 

cocoa beans from varieties showing different flavour characteristic in order to 

understand whether similar peptides are released in these cocoa beans during 

fermentation. 
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5 Future work 

5.1 Proteomic and peptidomic analyses of cocoa beans at different 

stages of fermentation 

Cocoa beans from selected cocoa genotypes could be fermented under controlled 

conditions and sampled at different stages of fermentation, to get a better 

understanding of the impact of this process on the proteomic profile of cocoa 

beans. Protein and free peptide analyses by LC-MS/MS could be carried out on 

these samples to evaluate what proteins are degraded during fermentation and 

what proteolysis product are generated during this process. These experiments 

would also be useful to understand whether proteins breakdown and release of 

peptides during fermentation is similar in cocoa beans from genotypes showing 

different flavour characteristics.  

5.2 Roasting and sensory evaluation of fermented beans 

Fermented beans from cocoa genotypes evaluated in this PhD project could be 

roasted and cocoa liquor produced. Sensory analysis could be performed on these 

liquors to assess the cocoa flavour profiles of these cocoa genotypes and evaluate 

whether the changes in the levels of proteases and enzymes producing flavour-

inducing compounds can be linked to the flavour notes of the roasted beans. A 

potent aroma compound analysis on the roasted beans could also be carried out 

to assess whether volatile compounds responsible for the cocoa flavour are 

detected at different levels among the selected genotypes. 

Analysis of free peptides of fermented cocoa beans prior and after roasting, would 

allow to get a better understanding of what peptides react with sugars through 

Maillard reaction during roasting leading to the formation of volatiles compounds 

responsible for the cocoa flavour. 



147 

5.3 Proteogenomics on the MS/MS data 

The characterisation of the cocoa bean proteome carried out in this project has 

allowed identification of over 1000 proteins, which provides a sufficient proteome 

coverage to perform proteomics aiding genome annotation using these data [95]. 

In this case, the MS/MS data generated for the characterisation of the cocoa beans 

proteome could be searched against genome sequence databases specific for 

Theobroma cacao. The results of this search could then be used to map the 

identified peptides to the existing gene annotation model, providing valuable 

evidence of protein translation, and thus improving the accuracy of the algorithm 

employed to predict gene prediction for the Theobroma cacao genome. 
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