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h i g h l i g h t s

• We explored whether temperature derivatives traded on CME are suitable to China.
• Cluster analysis in form of model parameters from the AR-EGARCH model is used to classify temperature data.
• Asymmetry of the volatility of the temperature is confirmed according to the AR-EGARCH model.
• HDD and CAT in Europe and CAT∗ in Japan can be used directly in Nanjing of China.
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a b s t r a c t

In this paper, we assessed the suitability of temperature derivatives for China through
modeling. We assumed that if the physical dynamics of temperature of some cities are
identical, then the same types of temperature derivatives can be used in these cities.
Nearly twenty years temperature data of forty-seven cities with traded temperature
derivatives on the Chicago Mercantile Exchange Group (CME) and seven Chinese cities
were collected and analyzed in a two-step approach. Firstly, the AR-EGARCH model
capturing the shock asymmetry of the volatility of temperature is used to simulate
the dynamics of temperature of the cities. Secondly, the temperature of the cities are
classified through cluster analysis based on model parameters from the AR-EGARCH
model. The results showed that the fitting effect of the AR-EGARCH model is very good,
and only a few cities did not display the shock asymmetry. The model for Nanjing fitted
well into one of the categories of the cities in the CME; but the other six Chinese cities
belong to new categories, which are different from the cities in the CME. We concluded
that HDD and CAT in Europe and CAT∗ in Japan can be used directly in Nanjing, but
the existing temperature derivatives in CME were unsuitable for the other six Chinese
cities. Recommendations for the establishment of weather derivatives market in China
have been proposed.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

In recent decades, extreme weather has occurred frequently across the world, which seriously impedes the develop-
ment of world economies. Countries are therefore actively taking measures to deal with climate changes for sustainability.
One of the financial instruments used to hedge weather risk is weather derivative [1–3]. In 1997, the United States
launched the first weather derivative. In 1999, weather derivatives were traded formally on the Chicago Mercantile
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Exchange Group (CME). Later, many countries such as Britain, France, Germany, Japan and many others also joined in.
However, until date, China has no weather derivatives. Although there are some weather insurance products and related
instruments of weather risk management in China, the weather derivatives market remains unexploited.

In general, weather risk is divided into catastrophic weather events and non-catastrophic weather events [4]. For
catastrophic weather events, which cover rare weather events such as extreme cold or heat, hurricanes and floods, the
solutions in China are usually availability of government bailout, social contributions and weather insurance products.
In contrast, weather derivatives are designed to cover non-catastrophic weather events. Rainy or dry and warm or cold
periods, which are expected to occur frequently, can reduce the economic revenue of a sector by affecting the volume
of sales. Weather derivatives are mainly used to avoid the volume risk of weather. The weather changes in China are
quite different in different regions so that non-catastrophic weather events frequently occur. However, there are no
management tools for volume risk of weather events for the various economic sectors. Therefore, it is necessary for China
to introduce weather derivatives. However, the introduction of weather derivatives into China requires an assessment of
its suitability. Studies on weather derivatives related to climate conditions in China have not been fully developed [5,6],
especially on the types of weather derivatives suitable for China.

While the direct adoption of mature weather derivatives in CME may be the most convenient way for China, an initial
assessment of its suitability for China through Modelling techniques would provide practical indications of its feasibility.
Most weather derivatives contracts are traded in the CME. According to CME, there are many types of weather derivatives
including but not limited to temperature derivatives, hurricane derivatives, frost derivatives, and snowfall derivatives
among others. Weather derivatives have a strong regional feature and its applicability could be context specific [7,8]. For
example, weather derivatives in a city may not be suitable for other cities. Therefore, the purpose of this paper is to study
whether the existing temperature derivatives on the CME can be used in China.

This paper is based on one key assumption. For the convenience of the research, we assumed that when temperatures
in two cities have the same dynamic evolution, the two cities can use the same types of temperature derivatives. Cluster
analysis was used to classify the temperature data of all the cities, which have weather derivatives on the CME, and seven
cities in China. Consequently, we identified and grouped similar class members of the temperature data; and determined
whether the seven Chinese cities should introduce temperature derivatives and if so, the types of temperature derivatives.
Given that ordinary cluster analysis is only suitable for static data, and temperature data is a time series dynamic data,
which has high dimensional feature, we used cluster analysis based on the AR-EGARCH model to classify the temperature
data. At first, we used the AR-EGARCH model to fit the temperature data, and then classify the temperature data based
on the model parameters through cluster analysis. The AR-EGARCH model used to model the dynamics of temperature
is an improvement of the AR-GARCH model proposed by Campbell and Diebold [9]. Compared with the GARCH model,
EGARCH model can capture the asymmetry of the volatility of time series. Studies show that many financial time series
have the asymmetry of the volatility [10,11]. That is, the impact of good news and bad news on the volatility is not the
same. The temperature fluctuation also has the asymmetry [12,13], consequently extreme cold and heat have different
impact on the volatility of temperature.

The organization of this paper is as follows. In Section 2, we reviewed the related literature on weather derivatives;
in Section 3, we introduce the data and methodology used in this paper. Section 4 is the data analysis and results, and
Section 5 outlines our conclusions and recommendations.

2. Literature review

Pricing of weather derivatives is a task. In contrast to other assets, the underlying asset of weather derivatives is
not tradable, and the corresponding market is relatively illiquid. So, the traditional non-arbitrage pricing theory (such as
Black–Scholes pricing model) cannot be applied directly [14,15]. Almost all weather derivatives are based on temperature
indices [16]. As a result, many pricing methods of temperature derivatives have been proposed in literature.

The actuarial method and the historical burn analysis (HBA) proposed earlier derive the price of derivatives by
calculating the average (discounted) payoff of the historical performance of a temperature derivative. The actuarial method
and the historical burn analysis are not based on the dynamics of the temperature itself [17]. Another method called
‘‘Index Modelling’’ [18,19], can model directly the temperature index, such as HDD, CDD, and CAT, to derive the pricing
of derivatives. However, the shortcoming of Index Modelling is that different indices need different models. Therefore,
Daily Modelling is proposed, which can model directly the daily temperature for pricing derivatives, no matter what kind
of index [20]. Ahčan [21] held that under the assumption that market price of risk is zero; Daily Modelling can get the
no-arbitrage pricing model of derivatives.

There are two methods proposed for modeling daily temperature: one assumes a continuous process of the temper-
ature; another, a discrete process [22]. The continuous process uses a diffusion stochastic differential equation, such as
a mean-reverting form, as used by Alaton et al. [23], Benth [24], Benth and Saltyte-Benth [25,26], Benth et al. [27,28],
Zapranis and Alexandridis [29–31]. However, when one estimates the model parameters, the temperature has to be
discretized. Moreno [32] thought a discrete process should be more reasonable, because temperature does not change
continuously, as we know.

For a discrete process, many researchers make use of a general autoregressive moving average framework (e.g. GARCH).
For example, Tol [33] used the GARCH model to capture the systematic variation of the volatility of temperature from the
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Table 1
Cities which introduced temperature derivatives in CME.
Country/Region United States Europe Canada Australia Japan

City

24 Cities- 11 Cities- 6 Cities- 3 Cities- 3 Cites-
Atlanta Las Vegas Amsterdam Calgary Brisbane Hiroshima
Baltimore Little Rock Barcelona Edmonton Melbourne Osaka
Boston Los Angeles Berlin Montreal Sydney Tokyo
Chicago Minneapolis Essen Toronto
Cincinnati New York London Vancouver
Colorado Springs Philadelphia Madrid Winnipeg
Dallas Portland Oslo
Des Moines Raleigh Paris
Detroit Sacramento Prague
Houston Salt Lake City Rome
Jacksonville Tucson Stockholm
Kansas City Washington D.C.

Table 2
Temperature derivatives in CME.
City locations Index used-winter Index used-summer Time frames for contracts

United States HDD CDD Weekly,Monthly,Seasonal Srip:October through April for
Winter, April through October for Summer

Europe HDD CAT Monthly, Seasonal Strip:Same as U.S. contracts
Canada HDD CAT,CDD Monthly, Seasonal Strip:Same as U.S. contracts
Australia HDD CDD Monthly, Seasonal Strip:Same as U.S. contracts
Japan CAT∗ CAT∗ Monthly, Seasonal Srip:October through April for

Winter, April through October for Summer

Note: this form is from www.cmegroup.com/weather.

Netherlands. Franses et al. [12] proposed a non-linear GARCH model for the weekly temperature from the Netherlands.
Taylor and Buizza [34,35] expanded the works of Tol [33] and Franses et al. [12] and used a low-order Fourier series to
model the seasonality of temperature.

Cao and Wei [36] also built their unique framework, which is different from the stochastic differential equation.
However, their model probably cannot forecast for long time periods. Campbell and Diebold [9] expanded the model
of Cao and Wei [36]. They use a low-order Fourier series with autoregressive lags to model the seasonal mean and the
conditional variance. However, the model needs large datasets for parameters estimation to reveal a long memory in
dynamics of the temperature because the maximum number of lags in the model could be as high as 25. Bellini [37] think
large datasets probably deteriorate the quality of the time trend. Similarly, Caporin & Preś [38] used an ARFIMA-GARCH
model to measure the long memory of the temperature. They observed that fitting ARFIMA model needs a lot of time.

Svec and Stevenson [39] compared various models in modeling and forecasting Daily Average Temperature. These
models are the modification of the AR-GARCH model proposed by Campbell and Diebold [9]. The results show that the
modified models are better than the original model. In this paper, we also expanded the study of Campbell and Diebold [9].
However, differently with the above-modified models, we have incorporated a parameter, which captures the asymmetry
of the volatility of the temperature into the original model.

3. Data and methodology

3.1. Data

Data for the study was collected from all temperature derivatives and temperature data of the corresponding forty-
seven cities in CME. According to CME and [8], we tidy up the cities, which introduced temperature derivatives in
CME. Table 1 shows the forty-seven cities with traded temperature derivatives in CME and Table 2 shows the types of
temperature derivatives that every city used.

Temperature derivatives for winter (from October to April) and summer (from April to October) in the U.S. and Australia
are all based on the Heating Degree Day (HDD) index and the Cooling Degree Day (CDD) index. In Europe, there are HDD
and the Cumulative Average Temperatures (CAT); in Canada, there are HDD, CDD and CAT; and in Japan, there is CAT∗. Both
CAT and CAT∗ belong to the cumulative average temperature derivatives, but with different daily average temperature.
There are two kinds of daily average temperatures defined by CME. The first is the arithmetic average of daily maximum
temperature and minimum temperature (DAT1). The second is the arithmetic average of hourly temperature accumulated
over a 24-h period (DAT2). CAT index uses the first definition, while CAT∗ uses the second.

Based on our main assumption, we purposively selected seven cities in China with different socio-economic and
geographical characteristics. These are Harbin, Beijing, Jinan, Shanghai, Nanjing, Shenzhen and Sanya. To some extent,
the development of these cities is more easily affected by temperature changes. The seven cities are all located in the

http://www.cmegroup.com/weather
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East of China, but distributed from north to south so that the sample data between different cities are heterogeneous,
which is good for classification. Every city has its own characteristics. Harbin is an important central city located in the
Northeast part of China. Harbin is also a famous tourist city, and International Ice and Snow Cultural Festival is held there
every year. Beijing is the capital of China. Jinan is the capital of Shandong province, China. Shandong province is a big
agricultural province, whose GDP is the third in China. Temperature changes have an important influence on Agricultural.
Shanghai is the center of economy and finance of China. Nanjing is the capital of Jiangsu province, China. Jiangsu province
is one of the economically developed provinces in China. Shenzhen as an economic center is the window of opening up
of China. Sanya is a coastal and tourist city.

A lot of effort went into getting data of each city for nearly twenty years except Vancouver. For Vancouver, just four
years data are collected, but it is enough for estimating EGARCH model. Data interval and volume are shown in Table 3
and the 29th February of the leap year is removed from the sample. Although the data span of each city is different, it
does not affect the classified results because our classification is based on the model parameters, rather than the data
itself. This is the advantage of clustering in the form of model parameters, and it has enough robustness. For United
States, Europe, Canada, and Australia, we collected DAT1, for Japan, DAT2; and for the seven Chinese cities, DAT1 and
DAT2. It amounts to sixty-one sets of time series data. All the data for the study were sourced from the CME’s Website:
www.cmegroup.com/weather and the NOAA’s Website: www.noaa.gov.

Fig. 1 shows the original DAT1 distribution (oF) of selected cities from 1 January 2014 to 31 December 2015. The
temperature distribution of these cities has obvious seasonal variation. The variation of temperature in summer (peak)
is larger than that in winter (valley) in Bankstown, Melbourne and Amsterdam. That is, the volatility of temperature in
summer is greater than that in winter. On the other hand, the variation of temperature in winter (valley) is larger than
that in summer (peak) in Tucson, Shenzhen, and Sanya. That is, the volatility of temperature in winter is greater than that
in summer. It seems to imply that the variability of temperature is asymmetric.

3.2. The AR-EGARCH model

Franses et al. [12] avers that four characteristics of the temperature must be taken into account when constructing
the dynamic model of the temperature: (a) the seasonality of temperature itself; (b) the seasonality of the volatility; (c)
the aggregation of the volatility; and (d) the asymmetry of the volatility. Campbell and Diebold [9] proposed the AR-
GARCH model, which can reflect the first three characteristics of temperature changes but cannot catch the asymmetry
of the volatility. Therefore, we used the EGARCH model to replace GARCH model in AR-GARCH model. Cui et al. [40]
used AR-EGARCH model to study the temperature from individual cities in China and their result shows that AR-EGARCH
model can catch the asymmetry of the volatility of temperature, and the effectiveness of fitting and prediction with the
AR-EGARCH model is better than that of the AR-GARCH model.

AR-EGARCH model is as follows:

Tt = Trendt + Seasonalt +

L∑
l=1

ρt−lTt−l+σtεt (1)

ln σ 2
t = α0 +

Q∑
q=1

(
λc,q cos

(
2πq d(t)

365

)
+ λs,q sin

(
2πq d(t)

365

))
+

I∑
i=1

(
αi

|εt−i|
σt−i

+γi
εt−i
σt−i

)
+

J∑
j=1

βj ln σ 2
t−j (2)

where,

Trendt =

R∑
r=0

φr t r , εt ∼
i.i.d

N(0, 1)

Seasonalt =

P∑
p=1

(
δc,p cos

(
2πp d(t)

365

)
+ δs,p sin

(
2πp d(t)

365

))
Tt is a temperature variable. φr , δc,p, δs,p, ρt−l, λc,q, λs,q, αi, βj and γi are parameters. d(t) (t=1, . . . , 365) is a repeated
periodic function, excluding 29th February in leap year.

Eq. (1) is the conditional mean equation. Trendt is a time trend, reflecting the impact of global warming on temperature.
Seasonalt is a Fourier series used to describe the seasonality of temperature itself.

∑L
l=1 ρt−lTt−l shows the auto-regressive

characteristic of temperature. That is the temperature over the past few days will have an impact on the temperature
today.

Eq. (2) is the conditional variance equation. There is still a Fourier series used to describe the seasonality of the
volatility. γi is a parameter of the asymmetric effect. If εt−i > 0, the total effect of εt−i is (αi + γi) |εt−i|. If εt−i < 0,
the total effect of εt−i is (αi − γi) |εt−i|. Different symbol of γi reflects the asymmetric effects of positive and negative
information. For example, in a financial market, bad (negative) information usually brings greater impact on the volatility,
so γi is negative.

http://www.cmegroup.com/weather
http://www.noaa.gov
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Table 3
Data interval and volume of cities.

Region Cities name Date interval Data volume

U.S. (24 cities)

Atlanta 01/01/1997–27/09/2016 7210
Baltimore 01/01/1997–31/05/2016 7091
Boston 01/01/1997–31/05/2016 7091
Chicago 01/01/1997–27/09/2016 7210
Cincinnati 01/01/1997–27/09/2016 7210
Colorado Springs 01/05/2008–31/05/2016 2953
Dallas 01/01/1997–27/09/2016 7210
Des Moines 01/01/1997–31/05/2016 7091
Detroit 01/01/1997–31/05/2016 7091
Houston 01/01/1997–31/05/2016 7091
Jacksonville 01/05/2008–31/05/2016 2953
Kansas City 01/01/1997–31/05/2016 7091
Las Vegas 01/05/2008–27/09/2016 3075
Little Rock 01/05/2008–31/05/2016 2953
Los Angeles 01/05/2008–31/05/2016 2953
Minneapolis 01/01/1997–27/09/2016 7210
New York 01/01/1997–27/09/2016 7210
Philadelphia 01/01/1997–31/05/2016 7091
Portland 01/01/1997–31/05/2016 7091
Raleigh 01/05/2008–31/05/2016 2951
Sacramento 01/01/1997–27/09/2016 7210
Salt Lake City 01/01/1997–31/05/2016 7091
Tucson 01/01/1997–31/05/2016 7091
Washington D.C. 01/05/2008–31/05/2016 2953

EUROPE (11 cities)

Amsterdam 14/09/2006–27/09/2016 3670
Barcelona 16/11/2006–30/04/2016 3457
Berlin 16/11/2006–30/04/2016 3457
Essen 16/11/2006–30/04/2016 3457
London 10/09/2006–27/09/2016 3670
Madrid 16/11/2006–30/04/2016 3457
Oslo 01/05/2008–30/04/2016 2917
Paris 16/11/2006–30/04/2016 3457
Prague 01/01/2010–30/04/2016 2310
Rome 16/11/2006–30/04/2016 3457
Stockholm 16/11/2006–30/04/2016 3457

CANADA (6 cities)

Calgary 20/06/2001–27/09/2016 5579
Edmonton 01/01/1997–27/09/2016 7210
Montreal 01/01/1997–27/09/2016 7210
Toronto 11/01/1997–20/05/2015 6404
Vancouver 01/01/1997–27/09/2016 7210
Winnipeg 01/01/1997–27/09/2016 7210

AUSTRALIA (3 cities)
Bankstown 01/01/2009–09/27/2016 2827
Melbourne 01/01/2009–09/27/2016 2827
Sydney 01/01/2009–09/27/2016 2827

JAPAN (3 cities)
Hiroshima 01/01/1997–27/09/2016 7210
Osaka 01/01/1997–27/09/2016 7210
Tokyo 01/01/1997–27/09/2016 7210

CHINA (7 cities × 2)

Beijing 04/01/1998–31/12/2015 6573
Beijing2 04/01/1998–31/12/2015 6573
Harbin 01/01/1997–27/09/2016 7210
Harbin2 01/01/1997–27/09/2016 7210
Jinan 01/01/1997–27/09/2016 7210
Jinan2 01/01/1997–27/09/2016 7210
Nanjing 08/01/1998–31/12/2015 6569
Nanjing2 01/01/1997–27/09/2016 7210
Shanghai 01/01/2003–31/12/2015 4748
Shanghai2 01/01/2003–31/12/2015 4748
Shenzhen 01/01/1997–27/09/2016 7210
Shenzhen2 01/01/1997–27/09/2016 7210
Sanya 01/01/1997–27/09/2016 7210
Sanya2 01/01/1997–27/09/2016 7210
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Fig. 1. DAT1 of six cities.

If Eq. (2) is as follows:

σ 2
t = α0 +

Q∑
q=1

(
λc,q cos

(
2πq d(t)

365

)
+ λs,q sin

(
2πq d(t)

365

))
+

I∑
i=1

αiε
2
t−j +

J∑
j=1

βjσ
2
t−j,

it is AR-GARCH model by Campbell and Diebold [9], which cannot obviously catch the asymmetry of the volatility.

3.3. Cluster analysis

There are many clustering measures. Traditional clustering measures are mainly for static data, but temperature time
series varies with time, which belongs to dynamic data. It is therefore very complex to cluster them. In recent years, many
clustering measures for time series have come up, and can be divided into three types: clustering in the forms of raw data,
extracted feature, or model parameters [41]. Clustering in the forms of raw data is to cluster directly high dimensional
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Table 4
Iteration history.
Iteration Change in cluster centers

1 2 3 4 5

1 3.6421 4.6007 4.5653 0.7958 3.3928
2 0.0000 0.2229 0.2484 0.0000 0.0000
3 0.0000 0.2115 0.2912 0.0000 0.0000
4 0.0000 0.0000 0.0000 0.0000 0.0000

time series. Thus, time and space complexity of the algorithm are increased. Clustering in the form of extracted feature and
model parameters is to transform time series into static eigenvalues and model parameters, then use clustering measures
for static data to indirectly cluster the time series. Especially clustering in the form of model parameters considers that
similar time series should produce similar models, so the purpose of time series clustering can be achieved by comparing
the similarity between the models.

In this paper, clustering in the form of model parameters is used to classify temperature time series data of different
cities. There are two issues in this processing. One is to construct a proper model for temperature time series (see
3.2). Another is to use static clustering measure to classify the temperature data of different cities according to the
model parameters. There are three classical static clustering measures: two-step clustering, system clustering and K-mean
clustering. K-mean clustering is a widely classical clustering measure [42], which has the advantages of simple algorithm
and fast speed; hence, we choose the K-mean clustering method in this study.

4. Results

4.1. Parameters estimation of AR-EGARCH model

According to the AR-EGARCH model, we considered repeated attempts, and set R = 1, L = 3, P = Q = 2, I = J = 1
so that R2, F statistic, AIC and SC criteria can reach optimum state. Q-statistics with twelve lags by Box–Pierce test show
that standardized residuals squared have no significant autocorrelation, except for Atlanta, Baltimore and Chicago.

The data for the study showed that twenty-eight cities had no significant time trend under 5% significance level in the
mean Equation (1). It implies that people have taken effective measures to alleviate the phenomenon in the last twenty
years, although there is plenty of evidence to suggest that the rapid development of human society has brought about
global warming in recent decades. Parameters of Fourier series in the mean Equation (1) and the variance Equation (2)
are also significant under 5% significance level, indicating that there is a significant seasonality under 1% significance level
in both temperature itself and its volatility.

From the sixty-one sets of data, the asymmetry coefficients γi of only seven sets did not pass the 5% significance level.
They involve these cities: Colorado, Las Vegas, Winnipeg, Edmonton, Barcelona, Madrid and Rome. In the remaining fifty-
four sets of data whose asymmetry coefficients γi pass the significance test, there are six sets with negative γi. The cities
involved are Tucson, Beijing, Shenzhen, and Sanya. In these four cities, the impact of temperature drop on the volatility is
stronger than temperature rise. These results perhaps explain the phenomenon in Fig. 1; where the temperature volatility
of Tucson, Shenzhen and Sanya in winter is higher than in summer. It means the temperature more easily falls significantly
when the cold air strikes in winter, while a sharp drop in temperature will have a bigger impact on the volatility. Therefore,
in the form of expression, temperature fluctuation in winter will be more obvious than in summer. For the cities with
the positive γi, temperature fluctuation changing is opposite.

4.2. K-mean clustering

First, a classification of the forty-seven sets of data involving forty-seven cities, which have temperature derivatives
in CME, was carried out. Before doing that, the initial classified number and the initial cluster centers were determined.
After repeated attempts, the initial classified number was set to five. The initial cluster centers are determined by the
software according to the characteristics of the input data. In this way, one can avoid the subjective factors. One can see
the change history of the cluster center of each category in the iterative process from Table 4. After four iterations, the
algorithm converges. It means the initial cluster centers determined by the software are effective. Euclidean distances
between five new cluster centers and their corresponding initial cluster centers are respectively 3.6421, 4.6007, 4.5653,
0.7958, and 3.3928 after the first iteration. In the following three iterations, Euclidean distances between cluster centers
gradually decrease, and are zero in the last iteration.

Table 5 shows the number of cases in each cluster. The first category consists of three members. The second category
contains fifteen members; the third category contains twelve members; the fourth category contains three members; the
fifth category contains fourteen members. The number of valid data is forty-seven; the number of missing data is zero.

Table 6 shows the cluster membership and the distance between the cluster members and their corresponding cluster
centers. Compared with Table 7, it is found that the distance between each cluster member and the cluster center is less
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Table 5
Number of cases in each cluster.
Cluster 1 2 3 4 5

Number of cases 3 15 12 3 14
Valid 47
Missing 0

Table 6
Cluster membership.
Member Cluster Distance Member Cluster Distance Member Cluster Distance

Altanta 3 2.3366 New York 3 1.5498 Prague 5 6.6988
Baltimore 3 3.9906 Philadelphia 1 5.2834 Rome 5 1.3515
Boston 3 1.6898 Portland 2 2.9611 Stockholm 5 1.2614
Chicago 2 1.2065 Raleigh 3 2.6868 Winnipeg 2 1.3935
Cincinnati 2 1.2099 Sacramento 2 2.9315 Vancouver 2 1.4012
Colorado 3 2.7461 Salt Lake City 2 1.4910 Toronto 2 1.2439
Dallas 3 1.1740 Tucson 3 3.1191 Montreal 2 1.4622
Des Moines 2 1.3845 Washington 3 1.4349 Edmonton 2 3.3928
Detroit 2 1.0319 Amsterdam 5 .7958 Calgary 1 1.1375
Houston 3 3.8297 Barcelona 5 1.7159 Sydney 4 1.6070
Jacksonville 3 4.1950 Berlin 5 1.2201 Brisbane 4 1.0992
Kansas City 2 1.6043 Essen 5 5.0033 Melbourne 4 1.7558
Las Vegas 2 2.7260 London 5 3.0209 Osaka 5 3.3535
Little Rock 3 1.1690 Madrid 5 2.2949 Tokyo 5 3.8746
Los Angeles 2 4.3761 Oslo 5 2.9412 Hiroshima 5 2.7112
Minneapolis 1 3.6421 Paris 5 4.2139

Table 7
Distance of final cluster centers.
Cluster 1 2 3 4 5

1 9.6454 11.5422 12.9051 11.6848
2 9.6454 5.3267 15.1088 11.4582
3 11.5422 5.3267 12.0605 16.5488
4 12.9051 15.1088 12.0605 22.3322
5 11.6848 11.4582 16.5488 22.3322

than the distance between the cluster centers, which shows that the clustering result is effective. The United States is
divided into three categories: two cities belong to the first category; ten cities belong to the second category; and twelve
cities belong to the third category. Canada is divided into two categories. Except for Calgary, which belongs to the first
category, the other five cities belong to the second category. Three cities in Australia belong to the fourth category. All
the cities in Europe and Asia belong to the fifth category.

In Table 7, the minimum distance of cluster centers is 5.3267, which is between the second category and the third
category. This is reasonable because the cities of the second category and the third category are neighbors in the United
States. The maximum distance of cluster centers is 22.3322, which is between the fourth category and the fifth category.
The fourth category, Australia, is dominated by tropical deserts and grasslands climate. There are also subtropical monsoon
humid climate and tropical rainforest climate in Australia. Therefore, there is a big difference with the fifth category,
Europe and Japan, in their climate such that the distance of the cluster center is very big.

Finally, the validity of the whole model is further verified by ANOVA variance analysis. In Table 8, with the exception of
ρt−3 which did not pass the significance test and α1 which passed the 10% significance test, the other parameters passed
the 5% significance test.

Based on the classification of forty-seven cities in CME, fourteen sets of data from the other seven cities in China were
added into the classification. The software was still used to determine the initial cluster centers. In determining the initial
classified number, we started with five, and in turn, try six, seven . . . twelve to find the best-classified number. It turns out
that the sixty-one sets of data can be divided into eleven categories, and still maintain the original classified relationship
for forty-seven cities. As a result, the new fourteen sets of data belong to either the original categories of forty-seven
cities or a new category.

Table 9 shows the iteration history. The algorithm converges after three iterations. After the first iteration, Euclidean
distances between the new eleven cluster centers and the initial cluster centers are respectively 0.5067, 3.4490, 0.7958,
2.4459, 5.0002, 2.2893, 0.3103, 1.8531, 4.4226, 3.7763, and 4.5412. In the following two iterations, Euclidean distances
rapidly reduce to zero, and cluster iteration is over.

One can see the number of cases in each cluster from Table 10. The first category, the second category, the fourth
category, the sixth category, the seventh category and the tenth category include two cluster members respectively. The
third category includes three cluster members. The fifth category includes four cluster members. The eighth category
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Table 8
ANOVA variance analysis.
Variable Cluster Error F Sig.

Mean square df Mean square df

φ0*** 543.3433 4 3.9357 42 138.0565 0.0000
φ1** 0.0000 4 0.0000 42 2.3534 0.0493
δc,1*** 121.7976 4 1.8456 42 65.9933 0.0000
δs,1*** 13.2299 4 1.0849 42 12.1946 0.0000
δc,2** 0.0990 4 0.0426 42 2.3227 0.0323
δs,2*** 14.6085 4 0.8885 42 16.4409 0.0000
ρt−1*** 3.3221 4 0.1738 42 19.1194 0.0000
ρt−2*** 0.0607 4 0.0043 42 13.9783 0.0000
ρt−3 0.0037 4 0.0021 42 1.8116 0.1446
α0** 1.9862 4 0.5797 42 3.4261 0.0164
α1* 0.0130 4 0.0052 42 2.4886 0.0577
γ1*** 0.0292 4 0.0053 42 5.5321 0.0011
β1** 0.0482 4 0.0716 42 0.6734 0.0142
λc,1*** 0.1123 4 0.0172 42 6.5355 0.0003
λs,1*** 0.0416 4 0.0080 42 5.2247 0.0017
λc,2** 0.0099 4 0.0030 42 3.2609 0.0204
λs,2*** 0.0085 4 0.0013 42 6.5053 0.0004

Note:
F = Cluster mean square/Error mean square.
*10% significance level.
**5% significance level.
***1% significance level.

Table 9
Iteration history.
Iteration Change in cluster centers

1 2 3 4 5 6 7 8 9 10 11

1 0.5067 3.4490 0.7958 2.4459 5.0002 2.2893 0.3103 1.8531 4.4226 3.7763 4.5412
2 0.0000 0.0000 0.0000 0.0000 1.9206 0.0000 0.0000 0.0000 0.0000 0.0000 0.7015
3 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Table 10
Number of cases in each cluster.
Cluster 1 2 3 4 5 6 7 8 9 10 11

Number of cases 2 2 3 2 4 2 2 16 12 2 14
Valid 61
Missing 0

includes sixteen cluster members. In addition, the ninth category includes twelve cluster members. The eleventh category
includes fourteen cluster members. The number of valid data is sixty-one; the number of missing data is 0.

Table 11 shows the category each city belongs to and the distance between cluster members and their corresponding
cluster centers. Compared with Table 6, there are eleven categories in Table 11, and the classified result of the first forty-
seven cities is nearly the same, except for Las Vegas, Los Angeles, and Portland. The result suggests the latter clustering
is based on the previous clustering.

Because of the new numerical order, Table 12 shows the change of the first five numerical orders in Tables 6 and 11.
The fifth category in Table 11 corresponds to the first category in Table 6. The ninth category in Table 11 corresponds to
the second category in Table 6, and so on.

The United States is still divided into three categories: Three cities belong to the fifth category; seven cities belong to
the ninth category; and fourteen cities belong to the eleventh category. In Canada, except for Calgary, which belongs to
the fifth category, the other five cities belong to the ninth category. Three cities in Australia belong to the third category.
All cities in Europe and Japan belong to the eighth category.

In the other fourteen sets of the Chinese data, only two sets of data in Nanjing, which include Nanjing (DAT1) and
Nanjing2 (DAT2), belong to the eighth category, which is the same category as Europe and Japan, while the rest of six
cities belong to the different categories with the forty-seven cities in CME. Beijing and Beijing2 belong to the second
category. Harbin and Harbin2 belong to the seventh category; Jinan and Jinan2 belong to the first category; Shanghai and
Shanghai2 belong to the sixth category; Shenzhen and Shenzhen2 belong to the fourth category; and Sanya and Sanya2
belong to the tenth category. There are HDD and CAT in Europe and CAT∗ in Japan, so the three temperature derivatives
could be suitable for Nanjing, but not the other Chinese cities. CDD cannot be used directly in the seven Chinese cities.
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Table 11
Cluster membership.
Member Cluster Distance Member Cluster Distance Member Cluster Distance

Altanta 11(3) 1.9647 Sacramento 9(2) 3.5920 Calgary 5(1) 1.2415
Baltimore 11(3) 3.8875 Salt Lake City 9(2) 1.3948 Sydney 3(4) 1.4945
Boston 11(3) 1.8200 Tucson 11(3) 2.7446 Brisbane 3(4) 1.2092
Chicago 9(2) 1.0070 Washington 11(3) 1.8311 Melbourne 3(4) 1.8531
Cincinnati 9(2) 1.5564 Amsterdam 8(5) 0.7958 Osaka 8(5) 3.2368
Colorado 11(3) 2.4792 Barcelona 8(5) 1.7159 Tokyo 8(5) 3.7510
Dallas 11(3) 1.0198 Berlin 8(5) 1.2201 Hiroshima 8(5) 2.6129
Des Moines 9(2) 0.9572 Essen 8(5) 4.4226 Nanjing 8 2.1141
Detroit 9(2) 0.9119 London 8(5) 3.4315 Nanjing2 8 2.0218
Houston 11(3) 4.2014 Madrid 8(5) 2.1196 Beijing 2 3.4490
Jacksonville 11(3) 4.5653 Oslo 8(5) 2.5065 Beijing2 2 3.4490
Kansas City 9(2) 1.8228 Paris 8(5) 3.7259 Harbin 7 0.3103
Las Vegas 11(2) 3.2296 Prague 8(5) 6.3847 Harbin2 7 0.3103
Little Rock 11(3) 0.7519 Rome 8(5) 1.5097 Jinan 1 0.5067
Los Angeles 5(2) 4.9345 Stockholm 8(5) 1.3505 Jinan2 1 0.5067
Minneapolis 5(1) 4.4954 Winnipeg 9(2) 1.4640 Shanghai 6 2.2893
New York 11(3) 1.3958 Vancouver 9(2) 1.5387 Shanghai2 6 2.2893
Philadelphia 5(1) 5.7617 Toronto 9(2) 1.4162 Shenzhen 4 2.4459
Portland 11(2) 3.2821 Montreal 9(2) 1.4884 Shenzhen2 4 2.4459
Raleigh 11(3) 3.1766 Edmonton 9(2) 3.5541 Sanya 10 3.7763

Sanya2 10 3.7763

Note: the numbers in the brackets are the numerical orders of the previous clustering.

Table 12
Change of Tables 6 and 11 cluster.
Table 6 1 2 3 4 5
Table 11 5 9 11 3 8

Table 13
ANOVA variance analysis.
Variable Cluster Error F Sig.

Mean square df Mean square df

φ0*** 1374.7126 10 4.3721 50 314.4297 0.0000
φ1** 0.0000 10 0.0000 50 37.0070 0.0000
δc,1*** 1110.4773 10 1.5492 50 716.8029 0.0000
δs,1*** 78.4971 10 0.9691 50 81.0026 0.0000
δc,2*** 10.8445 10 0.0402 50 269.7731 0.0000
δs,2*** 6.0747 10 1.0716 50 5.6691 0.0000
ρt−1*** 0.9668 10 0.2263 50 4.2715 0.0003
ρt−2*** 0.0266 10 0.0050 50 5.3404 0.0000
ρt−3* 0.0028 10 0.0016 50 1.7555 0.0941
α0*** 6.5687 10 0.9563 50 6.8689 0.0000
α1** 0.0107 10 0.0049 50 2.1568 0.0367
γ1*** 0.0338 10 0.0047 50 7.1565 0.0000
β1** 0.1587 10 0.0734 50 2.1634 0.0361
λc,1*** 0.0754 10 0.0167 50 4.5216 0.0001
λs,1*** 0.0478 10 0.0074 50 6.4284 0.0000
λc,2** 0.0059 10 0.0026 50 2.3026 0.0259
λs,2*** 0.0110 10 0.0014 50 7.7720 0.0000

Note:
F = Cluster mean square/Error mean square.
*10% significance level.
**5% significance level.
***1% significance level.

Finally, the validity of the whole model is further verified by ANOVA variance analysis (Table 13) where α1 passed the
10% significance test, and the other parameters passed the 5% significance test.

5. Conclusion and recommendations

We used cluster analysis on temperature data to classify forty-seven cities in CME and seven cities in China. For
temperature time series, cluster analysis in the form of model parameters was better. Thus, the AR-EGARCH model was
applied to fit temperature data, and then cluster analysis. AR-EGARCH model is an extension of AR-GARCH model because
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it can factor in the asymmetry of the temperature fluctuation. The results show that asymmetry parameters γi of just seven
sets in the sixty-one sets of temperature data are not significant, and the fitting effect is good. γi is positive in some cities
and negative in other cities. It suggests that in some cities the heat wave had greater impact on temperature changes,
while in other cities the strong cold air had greater impact.

Based on the results of the AR-EGARCH model, K-mean clustering measure was used to classify the temperature data of
cities. A 2-step approach was used: first of all, temperature data of forty-seven cities with temperature derivatives in the
CME are classified to get basic classified criteria. Secondly, the temperature data of the seven Chinese cities were added
to the classified program based on the previous classified criteria. The results show that Harbin, Beijing, Jinan, Shanghai,
Shenzhen and Sanya cannot directly use all the existing temperature derivatives in the CME, but Nanjing can directly use
HDD, CAT and CAT∗. We concluded that temperature-index derivatives from the CME are not necessarily suitable for the
selected cities in China based on our assumptions and the model used. That notwithstanding, the relevance of weather
derivative market to the economy of China cannot be underestimated.

The following recommendations are therefore put forward for the establishment of China’s weather derivatives market:
(1) The introduction of weather derivatives into China is feasible

Weather derivatives market can attract social capital to participate in the dispersion of meteorological risk for
enterprises closely related to climate. It is the most convenient way for China to directly introduce a mature weather
derivative into its economy. However, weather derivatives have a strong regional characteristic, and products suitable
for foreign cities are not surely suitable for China. In this paper, we proposed a method for the determination of the
suitability of introducing weather derivatives into China. This research is a good proof. On the other hand, since the
reform and opening up, the Chinese economy has developed rapidly, and financial markets continue to improve, and the
Chinese market seems well prepared for the introduction of weather derivatives.
(2) Designing weather derivatives suitable for China’s climate

Existing weather derivatives are not surely suitable for China, which requires designing new products to adapt
to Chinese climate changes. The development of weather derivatives would not only enrich the types of investment
for investors, but also help to promote Chinese financial engineering innovation, and train financial engineers. At the
same time, it would also make it conducive for the Chinese financial industry to participate in the competition of the
international financial market.
(3) Policy makers should introduce relevant policies and regulations

The establishment of a perfect market of weather derivatives is supported by a highly developed and multi-level capital
market. At present, the scale of Chinese capital market is still not large enough, and the insurance market and the futures
and options market are not developed completely. Some weather derivatives are designed on the basis of agricultural
insurance and options. Therefore, the Chinese government should introduce relevant policies and regulations to promote
the development and improvement of the insurance market, the futures and options market.

We conclude by stating that in this paper, we made a key assumption that when temperatures in two cities have
the same dynamic evolution, the two cities can use the same types of temperature derivatives. From the perspective of
risk management, when the risk source is homogeneous and its dynamic evolution is the same, perhaps it is possible to
use the same types of risk management tools for hedging. This may seem more applicable to temperature risk because
temperature is an objective phenomenon and does not change with human behavior and ideas. The question as to whether
the temperature derivatives used in this study will be applicable to China still needs further probing through other
modeling techniques and test. This notwithstanding, our study provides contributes need to solve the problem that lack
of weather derivatives in China.
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