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While floods are among the most damaging natural hazards, they have helped shape human 

developments over the last millennia, fostering scientific understanding and technological 

advances in an attempt for their mitigation. We now more skilfully predict floods at 

increasing lead times, through probabilistic hydro-meteorological forecasting. But we are 

now facing new challenges.  

Have we reached the limits of predictability with seasonal streamflow forecasting? This 

thesis contributed to the implementation and design of operational seasonal streamflow 

outlooks, as part of the European and the Global Flood Awareness Systems. Openly 

available, they give users an overview of potential streamflow changes on sub-seasonal to 

seasonal timescales. The analysis of both systems highlighted current limits in seasonal 

predictability and the importance of initial hydrological conditions and the land surface 

memory. To tackle these limits of predictability, a sensitivity analysis was developed to 

guide developments for tangible future seasonal streamflow forecast improvements. 

Are technical and scientific advances increasing faster than the rate at which forecasts are 

usable for decision-making? As shown by the application of serious games and research 

interviews at the Environment Agency (to guide a successful transition to probabilistic 

forecasts for flood early warning in England), science (e.g. forecast skill) is not necessarily 

a limiting factor for decision-making. Improved communication between scientists and 

decision-makers, aimed for instance at understanding the complex landscape in which 

decision-makers operate, is key to a successful adoption of the latest science in practice. Art 

can help bridge the communication gap, and this thesis culminated in an art exhibition, 

‘Gambling with floods?’, at The Museum of English Rural Life (Reading, UK) from 1 to 15 

November 2019, created to reach a wide audience. 

Overall, this thesis has shown that a closer interaction between decision-makers, scientists 

and artists is urgently needed for a co-leadership on improving science for society. 

 

 

 

 

 

 

 

 

Abstract 



 
x 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
xi 

 

Declaration ............................................................................................................................................ iii 

Acknowledgements ........................................................................................................................... vii 

Abstract .................................................................................................................................................. ix 

Contents ................................................................................................................................................. xi 

 

1   Introduction ..................................................................................................................................... 1 

1.1 Wider context and motivation ............................................................................................................ 1 

1.2 Thesis objectives and structure ......................................................................................................... 3 

 

2   Insights from decision-making activities and serious games on the use of 

probabilistic hydrological forecasts for flood early warning ........................................ 6 

2.1 Background and aim ............................................................................................................................... 6 

2.2 Willingness-to-pay for a probabilistic flood forecast: a risk-based decision-making 

game .............................................................................................................................................................. 7 

2.2.1 Introduction ................................................................................................................................... 8 

2.2.2 Set-up of the decision-making game ................................................................................. 11 

2.2.3 Results ........................................................................................................................................... 20 

2.2.4 Discussion .................................................................................................................................... 34 

2.2.5 Conclusions ................................................................................................................................. 38 

2.2.6 Resources ..................................................................................................................................... 39 

2.2.7 Appendix ...................................................................................................................................... 40 

2.2.8    Lessons learnt for improvements in future serious games…………………………...41 

2.3 Stepping in the boots of a flood incident manager: an IMPREX serious game ............ 42 

2.3.1 Overview of the game storyline .......................................................................................... 42 

2.3.2 What scientific lessons does the game communicate? .............................................. 43 

2.3.3 In-depth game design.............................................................................................................. 43 

2.3.4 Feedback and game release .................................................................................................. 46 

2.4 Can seasonal hydrological forecasts inform local decisions and actions? A decision-

making activity ....................................................................................................................................... 47 

 

3   Operational seasonal hydro-meteorological forecasting: from the global to the 

local scale ........................................................................................................................................ 50 

3.1 Background and aim ............................................................................................................................ 50 

3.2 Skilful seasonal forecasts of streamflow over Europe? ......................................................... 52 

Contents 



 
xii 

3.2.1 Introduction .................................................................................................................................53 

3.2.2 Data and methods ......................................................................................................................56 

3.2.3 Hindcast evaluation strategy ................................................................................................58 

3.2.4 Results ............................................................................................................................................63 

3.2.5 Discussion .....................................................................................................................................69 

3.2.6 Conclusions ..................................................................................................................................76 

3.3 The EFAS and GloFAS operational seasonal hydrological outlooks ..................................78 

3.3.1 EFAS-Seasonal .............................................................................................................................78 

3.3.2 GloFAS-Seasonal .........................................................................................................................80 

3.4 The 2013/14 Thames basin floods: do improved meteorological forecasts lead to 

more skilful hydrological forecasts at seasonal time scales? ...............................................81 

 

4   Towards tangible seasonal streamflow forecast improvements ............................... 85 

4.1 Background and aim .............................................................................................................................85 

4.2 An efficient approach for estimating streamflow forecast skill elasticity ......................86 

4.2.1 Introduction .................................................................................................................................87 

4.2.2 Methods, data, and evaluation strategy ............................................................................91 

4.2.3 Results ............................................................................................................................................97 

4.2.4 Discussion .................................................................................................................................. 105 

4.2.5 Conclusions ............................................................................................................................... 109 

4.3 Scopes for improving EFAS-Seasonal ......................................................................................... 109 

4.4 The forecasting paradox: do better computing resources make us worse 

forecasters?............................................................................................................................................ 114 

4.4.1 Introduction .............................................................................................................................. 114 

4.4.2 A novel concept for improved seasonal streamflow forecasting ........................ 115 

4.4.3 Discussion .................................................................................................................................. 116 

 

5   Using probabilistic hydrological forecasts for flood early warning: a real-life case 

study .............................................................................................................................................. 119 

5.1 Background and aim .......................................................................................................................... 119 

5.2 “Are we talking just a bit of water out of bank? Or is it Armageddon?” Front line 

perspectives on transitioning to probabilistic fluvial flood forecasts in England .... 119 

5.2.1 Introduction .............................................................................................................................. 121 

5.2.2 Context: the Environment Agency’s flood incident management strategy .... 123 

5.2.3 Methods ...................................................................................................................................... 127 

5.2.4 Results ......................................................................................................................................... 129 

5.2.5 Discussion and recommendations ................................................................................... 143 

5.2.6 Conclusions ............................................................................................................................... 150 



 
xiii 

5.2.7 Appendix .................................................................................................................................... 151 

 

6   The science and art of predicting floods ........................................................................... 165 

6.1 Background ............................................................................................................................................ 165 

6.1.1 Why (not) combine science and art? .............................................................................. 165 

6.1.2 Art as a scientific process .................................................................................................... 166 

6.1.3 Science as an artistic inspiration ...................................................................................... 168 

6.2 ‘Gambling with floods?’ A science and art exhibition by L. Arnal ................................... 172 

6.2.1 My science and art practice .................................................................................................... 172 

6.2.2 Art exhibition ................................................................................................................................ 173 

 

7   Conclusions .................................................................................................................................. 177 

7.1 Lessons learnt ....................................................................................................................................... 178 

7.1.1 Objective 1: Decision-makers’ requirements when using probabilistic 

hydrological forecasts for flood early warning .......................................................... 178 

7.1.2 Objective 2: Current capabilities in seasonal hydrological forecasting on the 

global, continental and basin scales and operational implementation of a 

global and European seasonal streamflow outlook ................................................. 179 

7.1.3 Objective 3: A cost-efficient method for tangible seasonal streamflow forecast 

improvements .......................................................................................................................... 181 

7.1.4 Objective 4: Facilitating decision-makers’ use of probabilistic flood forecasts

 ........................................................................................................................................................ 183 

7.1.5 Objective 5: Art as a tool to bridge the gap between science and society ....... 184 

7.2 Key contributions ................................................................................................................................ 185 

7.3 Next steps ............................................................................................................................................... 186 

7.4 Closing remarks ................................................................................................................................... 188 

 

References ......................................................................................................................................... 189 

 

Appendix ............................................................................................................................................ 211 

A1: Willingness-to-pay for a probabilistic flood forecast: a risk-based decision-making 

game ......................................................................................................................................................... 212 

A2: Can seasonal hydrological forecasts inform local decisions and actions? A decision-

making 

activity……………………………………………………………………………………………………….…....233 

A3: Skilful seasonal forecasts of streamflow over Europe?.......................................................257 

A4: Developing a global operational seasonal hydro-meteorological forecasting system: 

GloFAS-Seasonal v1.0………………………………………………………………………………….……274 



 
xiv 

A5: The 2013/14 Thames basin floods: do improved meteorological forecasts lead to 

more skilful hydrological forecasts at seasonal time scales?.............................................295 

A6: An efficient approach for estimating streamflow forecast skill elasticity…..……......313 

A7: The sensitivity of sub-seasonal to seasonal streamflow forecasts to meteorological 

forcing quality, modelled hydrology and the initial hydrological conditions………..364 

A8: Flexible operational seasonal river flow forecasting………………………………..……...…510 

A9: “Are we talking just a bit of water out of bank? Or is it Armageddon?” Front line 

perspectives on transitioning to probabilistic fluvial flood forecasts in England….512 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



1 

 

Chapter 1. Introduction 

Chapter 1 

 

1.1 Wider context and motivation 

Floods are among the most damaging earthly natural hazards. According to the UN Office 

for Disaster Risk Reduction, floods have accounted for 40% of the total economic damages 

in Europe between 1989 and 2008 (UNISDR, 2009). Not to mention their direct impacts on 

lives and livelihoods. Floods have also shaped human developments over the last millennia, 

fostering scientific understanding and technological advances in an attempt for their 

mitigation. 

Around 4000 B.C., the Nile was dammed to manage flooding and increase agricultural 

yields. Towns of Mesopotamia were protected from flooding with high walls. And Chinese 

history is full of accounts of irrigation and flood control constructions. As time went by, the 

understanding of hydrology as a science developed.  

During the first century B.C., Marcus Vitruvius put forward a philosophical theory of the 

water cycle, describing how precipitation falling in the mountains infiltrated the Earth's 

surface and led to streams in the lowlands (Acworth, 2009). While hydrological concepts 

were known, their science remained qualitative and empirical until the 1930s, with the 

advent of the first quantitative hydrological models (Sherman, 1932; Horton, 1940). The 

widely used ‘bucket style’ rainfall–runoff models nowadays remain largely the same as 

when they were first developed in the 1970s (Hartmann et al., 2002; Pagano et al., 2013). 

The science and technology of weather forecasting, growing in parallel, led to the first 

mathematical computerised weather forecast in the 1950s, which could be produced for 

practical use soon after (Shuman, 1989). Combined with hydrological concepts and models, 

hydrological forecasting was born. Since the emergence of hydrological forecasting, and 

with an ever-growing scientific understanding and technological capabilities, one of the 

grand challenges in the field remains the production of better hydrological forecasts and at 

longer lead times. Extending hydrological predictability is a necessity for society for 

increased disaster preparedness and higher economic benefits (Emerton et al., 2016).  

Introduction 
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In the early 1900s, Church’s work on forecasting streamflow a season ahead paved the way 

for extending hydrological predictability to seasonal timescales (Linsley, 1967). Through 

his work and snow surveys, Church understood the importance of snowpack measurements 

in winter to infer streamflow for the following spring. This proved vital for power 

generation: “The heavy year of 1910–11 came with menace and fear. The Sierra Pacific 

Power Company begged the use of our snow data to determine how much moisture was 

latent on the watershed.” (Church, 1935). Whilst useful to an extent, drawbacks of more 

basic seasonal hydrological forecasting methods (such as the one used by Church) led to the 

incorporation of seasonal meteorological forecasts (being developed in parallel) to drive 

seasonal hydrological predictions (Pagano and Garen, 2006). Seasonal hydrological 

forecasts can indicate potential changes in streamflow in the following months, increasing 

the lead time at which managers can make decisions in a range of water sectors. 

But progress does not come without a cost. The longer the forecast lead time, the larger the 

forecast uncertainty. In the early twentieth century, Poincaré put forward the idea that 

small perturbations of the initial conditions of a non-linear system (like the weather and 

the water cycle) could lead to widely diverging outcomes. This idea of the propagation of 

uncertainty was subsequently studied quantitatively in the context of weather forecasting 

by Thompson and Lorenz (Bauer et al., 2015). Now widely known as the ‘chaos theory’, 

coined by its founder, Lorenz, it has shaped the way we produce hydro-meteorological 

forecasts today (Lorenz, 1963). Recognising that this uncertainty limits predictive skill of 

future weather conditions, scientists adopted an ensemble approach to try and characterise 

weather forecast uncertainty. This ensemble approach was later adopted in hydrology and 

for flood forecasting (Cloke and Pappenberger, 2009).  

This steady accumulation of knowledge and technological advances (coined the ‘quiet 

revolution’ by Bauer et al. (2015)) has led to improved ensemble hydro-meteorological 

forecasts at longer lead times (e.g. seasonal timescales). But as seasonal hydrological 

forecasts symbolise our technological and scientific progress, we are now faced with new 

challenges. 

Methods to improve ensemble seasonal hydrological forecasts are plentiful and include: 

increasing spatial and temporal resolutions, calibrating hydrological models to better 

represent reality, using better post-processing methods and running an increasing number 

of ensemble members. Yet, operational streamflow forecast quality has not significantly 

improved in the last decade, despite the costly research and operational developments they 
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are receiving (Pagano et al. 2004a; Welles et al. 2007). Have we reached the limits of 

predictability in seasonal streamflow forecasting? 

Societal needs have shaped science for the last millennia, but water managers and decision-

makers have had to deal with far from perfect forecasts. To this day, the application of 

ensemble (or probabilistic) hydrological forecasts for flood early warning remains a 

challenge. This is mainly due to the complexity of transforming probabilistic information 

into a binary decision with high stakes. On seasonal timescales, challenges may seem even 

bigger given the increase of forecast uncertainty with lead time. Yet, the potential of 

operational seasonal hydro-meteorological forecasts to give earlier indications of possible 

future flood events and increase the lead times at which we can prepare is immense, and a 

topic that deserves further attention. Given the challenges, it may appear as though 

computer capabilities and the production of scientific knowledge are increasing faster than 

the rate at which forecasts are usable for decision-making (Pielke, 1997). 

Due to climate change, the trend is for an increase in the risk of coastal (from sea level rise) 

and inland flooding (from an increase in the frequency and intensity of heavy precipitation 

events) in Europe in the future (UNISDR, 2009; IPCC, 2014). In this context, it is becoming 

vital to tackle these new challenges and reconnect science, practice and society. 

1.2 Thesis objectives and structure 

This thesis is part of the IMPREX (IMproving PRedictions and management of hydrological 

EXtremes) H2020 project and aligns itself with the project’s wider aim: to improve the 

predictability of hydrological extremes in Europe.  

This thesis guides the readers through the art of streamflow forecasting over Europe, 

presenting some of the latest challenges in operational hydro-meteorological forecasting. 

Namely, hydrological forecasting at longer lead times (i.e. seasonal timescales), the use of 

ensemble (or probabilistic) hydrological forecasts for flood early warning and bridging the 

gap between science and society. By targeting the full forecasting chain, from operational 

forecast development to forecast communication and use for decision-making, this thesis 

combines perspectives from science, practice and art to address the following objectives: 

1 Explore decision-makers’ requirements when using probabilistic hydrological 

forecasts for flood early warning. 

2 Investigate the current capabilities in seasonal hydrological forecasting on the 

global, continental and basin scales, and implement a global and European 

operational seasonal streamflow outlook. 
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3 Develop a cost-efficient method for tangible seasonal streamflow forecast 

improvements and apply it over Europe. 

4 Suggest ways to facilitate decision-makers’ intake of probabilistic flood forecasts. 

5 Explore art as a tool to bridge the gap between science and society. 

This thesis explores the above five objectives in a variety of ways, including: the co-creation 

of two serious games and a decision-making activity, the publication of four first-author (of 

which one is in review) and three co-author peer-reviewed published articles and a first-

author peer-reviewed published IMPREX deliverable, the co-development of two 

operational seasonal streamflow outlooks, research interviews and the creation of an art 

exhibition. 

The structure of this thesis follows an ‘end-to-end-to-end approach’, an iterative feedback 

process between decision-making and research (Morss et al., 2005). User perspectives are 

first reported (Chapter 2), followed by state-of-the-art research (Chapters 3 and 4), and the 

thesis finally closes with more user perspectives (Chapter 5) and science and art (Chapter 

6). All the elements that contribute to this thesis were reformatted as thesis chapters, 

including the published articles and deliverable (published versions of all first-author and 

co-author publications are provided in the thesis Appendix). Fig. 1 presents an overview of 

the structure of the results chapters of this thesis (Chapters 2 to 6).  

Chapter 2 addresses the first objective of this research through two serious games and a 

decision-making activity. These activities were designed to investigate users’ perceived 

challenges and opportunities associated with using short-term to seasonal probabilistic 

hydrological forecasts for flood early warning. One of the serious games was designed 

specifically to communicate these challenges and opportunities and introduce a wider 

audience to forecast-based decision-making for flood early warning. 

In Chapter 3, the second objective of this research is addressed. It presents two state-of-

the-art seasonal streamflow outlooks, co-designed operationally as part of this PhD. The 

European Flood Awareness System (EFAS)-Seasonal system is presented, and its 

performance is assessed over Europe as well as for the 2013/14 Thames river flood event. 

The Global Flood Awareness System (GloFAS)-Seasonal system is presented, and a quick 

overview of its performance over the global river network is given. 

Chapter 4 investigates the third objective of this thesis. This chapter presents a cost-

efficient sensitivity analysis method that enables the identification of the relative 

contributions of error sources in seasonal streamflow forecasts. This method is 
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subsequently applied to the EFAS-Seasonal forecasting system, for which results are 

presented. These findings inspired the idea of a novel seasonal hydrological forecasting 

system which reflects the system’s predictability sources, finally presented in this chapter. 

Chapter 5 contributes to the first and fourth research objectives, building on findings from 

Chapters 2, 3 and 4. Through research interviews, it explores the context in which UK 

Environment Agency (EA) decision-makers operate (objective 1) and provides 

recommendations to facilitate a smooth transition to probabilistic forecasts for flood early 

warning in England (objective 4). 

Finally, Chapter 6 addresses the last objective of this thesis, exploring the use of art to 

bridge the gap between science and society. The main element of this chapter is a science 

and art exhibition, created as part of this PhD on this thesis’ topic: seasonal streamflow 

forecasting and flood early warning in Europe. 

 

Figure 1. Overview of the result chapters of this thesis. 

As has become evident from this introduction, streamflow forecasting is an art in that it is 

a skill acquired through centuries of practice, which has emerged from the fruitful 

combination of several disciplines (such as philosophy, environmental and social sciences), 

each with their own creative contributions to the topic at heart. 
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2.1 Background and aim 

We live in a world in which the disconnect between scientists, decision-makers and society 

is hindering progress. The uptake of new science by decision-makers has far from mirrored 

the extent of scientific advancements. Scientific developments are not always reflecting 

user needs. And scientific and decision-making progresses are both affected by the rise of a 

post-factual society. This disconnect is perhaps even more noticeable for science and 

decision-making associated with high societal stakes, such as the anticipation of floods. 

In this disconnected world, tools and methods can be used to foster engagement and bridge 

the gap between scientists, decision-makers and society. Citizen science, the collection and 

analysis of data by members of the public as part of a collaborative project with scientists 

(e.g. the “weather rescue” project1), can for example help enhance engagement between 

scientists and society by building awareness about a specific scientific topic and creating a 

sense of ownership. Serious games are another very popular tool which can be used to this 

end. They are “games developed for a purpose beyond entertainment alone.” Serious games 

“address societal challenges (e.g., ecological, social, economic, environmental, or a 

combination thereof)” and “tend to combine elements of entertainment (e.g., fun, suspense, 

mystery, inquiry) with elements of learning (e.g., developing knowledge, insights, skills).” 

(Aubert et al., 2019). In the last decade, the amount of environmental serious games has 

soared up (e.g. see the Red Cross/Red Crescent Climate Centre2 and HEPEX3 online 

resources for examples). By providing a platform for sharing knowledge, serious games can 

build awareness and explain (e.g. the latest scientific developments), change views or offer 

an alternative perspective, enhance commitment and create “a sense of ownership of the 

                                                             
1 www.zooniverse.org/projects/edh/weather-rescue/ 
2 www.climatecentre.org/resources-games/games 
3 hepex.irstea.fr/resources/hepex-games 

Insights from decision-making activities and serious 
games on the use of probabilistic hydrological forecasts 
for flood early warning 
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decision”, giving players a chance to engage and give feedback on the serious topic at heart 

(Aubert et al., 2019).  

In this chapter, we present two serious games and a decision-making activity, co-developed 

as part of this PhD. The first section of this chapter presents results from a serious game co-

designed in collaboration with the HEPEX (ensemble hydrological forecasting) community. 

The second section introduces an online serious game co-designed with IMPREX project 

partners. The third section presents and summarises findings from a decision-making 

activity co-developed as part of IMPREX. While they were all designed with distinct 

storylines and for varied purposes, these serious games and activities all focus on flood 

early warning (from short to seasonal timescales). The aim of this chapter is to identify 

decision-makers’ requirements when using probabilistic hydrological forecasts for flood 

early warning. 

2.2 Willingness-to-pay for a probabilistic flood forecast: a risk-based 

decision-making game 

This section has been published in Hydrology and Earth System Sciences (HESS) with the 

following reference: 

Arnal, L., M.-H. Ramos, E. Coughlan de Perez, H. L. Cloke, E. Stephens, F. Wetterhall, S. J. van 

Andel, and F. Pappenberger, 2016: Willingness-to-pay for a probabilistic flood forecast: a 

risk-based decision-making game, Hydrol. Earth Syst. Sci., 20, 3109-3128, 

doi:10.5194/hess-20-3109-2016* 

The contributions of the authors of this paper are as follows: M.-H. Ramos (collaborator: 

IRSTEA), E. Coughlan de Perez (collaborator: Red Cross/Red Crescent Climate Centre, 

Institute for Environmental Studies, VU and International Research Institute for Climate 

and Society), H. L. Cloke (supervisor: academic), E.  Stephens (supervisor: academic), F. 

Wetterhall (collaborator: ECMWF), S. J. van Andel (collaborator: UNESCO-IHE) and F. 

Pappenberger (collaborator: ECMWF). L.A., M.-H.R., F.W., S.J.v.A. and F.P. designed the 

serious game. L.A. posed the research questions, designed and carried out the analysis, and 

wrote the paper. L.A., M.-H.R., H.L.C. and E.S. interpreted the results and commented on the 

                                                             
* ©2016. The Authors. Hydrology and Earth System Sciences, a journal of the European Geosciences Union 
published by Copernicus. This is an open access article under the terms of the Creative Commons Attribution 
License, which permits use, distribution and reproduction in any medium, provided that the original work is 
properly cited. 



8 

 

 Chapter 2. Insights from decision-making activities and serious games on the use of probabilistic hydrological 
forecasts for flood early warning 

manuscript. Overall, 70% of the game design, 90% of the research and 90% of the writing 

was undertaken by L.A. 

The published article can be found in the thesis Appendix A1 and the game can be played 

online (instructions and links on the HEPEX games resources page3, under “Pay-for-a-

forecast game”). 

Abstract. Probabilistic hydro-meteorological forecasts have over the last decades been 

used more frequently to communicate forecast uncertainty. This uncertainty is twofold, as 

it constitutes both an added value and a challenge for the forecaster and the user of the 

forecasts. Many authors have demonstrated the added (economic) value of probabilistic 

over deterministic forecasts across the water sector (e.g. flood protection, hydroelectric 

power management and navigation). However, the richness of the information is also a 

source of challenges for operational uses, due partially to the difficulty in transforming the 

probability of occurrence of an event into a binary decision. This paper presents the results 

of a risk-based decision-making game on the topic of flood protection mitigation, called 

“How much are you prepared to pay for a forecast?”. The game was played at several 

workshops in 2015, which were attended by operational forecasters and academics 

working in the field of hydrometeorology. The aim of this game was to better understand 

the role of probabilistic forecasts in decision-making processes and their perceived value 

by decision-makers. Based on the participants’ willingness-to-pay for a forecast, the results 

of the game show that the value (or the usefulness) of a forecast depends on several factors, 

including the way users perceive the quality of their forecasts and link it to the perception 

of their own performances as decision-makers. 

2.2.1 Introduction 

In a world where hydrological extreme events, such as droughts and floods, are likely to be 

increasing in intensity and frequency, vulnerabilities are also likely to increase (WMO, 

2011; Wetherald and Manabe, 2002; Changnon et al., 2000). In this context, building 

resilience is a vital activity. One component of building resilience is establishing early 

warning systems, of which hydrological forecasts are key elements. 

Hydrological forecasts suffer from inherent uncertainties, which can be from diverse 

sources, including the model structure, the observation errors, the initial conditions (e.g. 

snow cover, soil moisture, reservoir storages) and the meteorological forecasts of 

precipitation and temperature (Verkade and Werner, 2011; He et al., 2009). The latter 

variables are fundamental drivers of hydrological forecasts and are therefore major sources 
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of uncertainty. In order to capture some of this uncertainty, there has been a gradual 

adoption of probabilistic forecasting approaches, with the aim of providing forecasters and 

forecast users with additional information not contained in the deterministic forecasting 

approach. Whereas “a deterministic forecast specifies a point estimate of the predictand 

(the variate being forecasted)”, “a probabilistic forecast specifies a probability distribution 

function of the predictand” (Krzysztofowicz, 2001). For operational forecasting, this is 

usually achieved by using different scenarios of meteorological forecasts following the 

ensemble prediction approach (Buizza, 2008; Cloke and Pappenberger, 2009). 

Many authors have shown that probabilistic forecasts provide an added (economic) value 

compared to deterministic forecasts (Buizza, 2008; Verkade and Werner, 2011; 

Pappenberger et al., 2015). This is due, for example, to the quantification of uncertainty by 

probabilistic forecasting systems, their ability to better predict the probability of 

occurrence of an extreme event and the fact that they issue more consistent successive 

forecasts (Dale et al., 2014; Cloke and Pappenberger, 2009). This probability of occurrence 

makes the probabilistic forecasts useful in the sense that they provide information 

applicable to different decision thresholds, essential since not all forecast users have the 

same risk tolerance (Michaels, 2015; Buizza, 2008; Cloke and Pappenberger, 2009). 

Probabilistic forecasts therefore enable the quantification of the potential risk of impacts 

(New et al., 2007) and, as a result, they can lead to more optimal decisions for many 

hydrological operational applications, with the potential to realise benefits from better 

predictions (Verkade and Werner, 2011; Ramos et al., 2013). These applications are, for 

example, flood protection (Stephens and Cloke, 2014; Verkade and Werner, 2011), 

hydroelectric power management (García-Morales and Dubus, 2007; Boucher et al., 2012) 

and navigation (Meissner and Klein, 2013). Moreover, the continuous increase in 

probabilistic forecast skill is very encouraging for the end-users of the probabilistic 

forecasts (Bauer et al., 2015; Magnusson and Källén, 2013; Simmons and Hollingsworth, 

2002; Ferrell, 2009). 

However, the communication of uncertainty through probabilistic forecasts and the use of 

uncertain forecasts in decision-making are also challenges for their operational use (Cloke 

and Pappenberger, 2009; Ramos et al., 2010; Michaels, 2015; Crochemore et al., 2015). One 

of the reasons why the transition from deterministic to probabilistic forecasts is not 

straightforward is the difficulty in transforming a probabilistic value into a binary decision 

(Dale et al., 2014; Demeritt et al., 2007; Pappenberger et al., 2015). Moreover, decision-

makers do not always understand probabilistic forecasts the way forecasters intend them 

to (Handmer and Proudley, 2007). This is why it is essential to bridge the gap between 
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forecast production and hazard mitigation, and to foster communication between the 

forecasters and the end-users of the forecasts (Cloke and Pappenberger, 2009; Michaels, 

2015). 

As Michaels (2015) notes, “the extent to which forecasts shape decision making under 

uncertainty is the true measure of the worth of a forecast”. The potential added value of the 

forecast can furthermore only be entirely realised with full buy-in from the decision-

makers. However, how much are users aware of this added value? How much are they ready 

to pay for a forecast? These are questions that motivated the work presented in this paper. 

In order to understand how users perceive the value of probabilistic forecasts in decision-

making, we designed a risk-based decision-making game – called “How much are your 

prepared to pay for a forecast?” – focusing on the use of forecasts for flood protection. The 

game was played during the European Geophysical Union (EGU) General Assembly meeting 

2015 (Vienna, Austria), at the Global Flood Partnership (GFP) workshop 2015 (Boulder, 

Colorado), as well as at Bristol University (BU) in 2015. Games are increasingly promoted 

and used to convey information of scientific relevance. They foster learning, dialogue and 

action through real-world decisions, which allow the study of the complexities hidden 

behind real-world decision-making in an entertaining and interactive set-up (Mendler de 

Suarez et al., 2012). 

This paper presents the details of the game and the results obtained from its different 

applications. The participants’ perceived forecast value is analysed by investigating the way 

participants use the forecasts in their decisions and their willingness-to-pay (WTP) for a 

probabilistic forecast. The WTP is the amount an individual is inclined to disburse to 

acquire a good or a service, or to avoid something undesirable (Breidert et al., 2006; 

Leviäkangas, 2009). It is a widely and very commonly adopted method to make perceived 

value assessments and its use has been demonstrated in a meteorological context 

(Leviäkangas, 2009; Anaman et al., 1998; Rollins and Shaykewich, 2003; Breidert et al., 

2006). Breidert et al. (2006) present a complete overview of the methods available, 

organised by data collection types. According to their classification, there exist two main 

WTP measuring approaches: the “revealed preference” and the “stated preference”. The 

former describes price-response methods (such as market data analysis, laboratory 

experiments and auctions, amongst others), while the latter refers to surveys in general. 

This experiment combines both “revealed preference” and “stated preference” methods. 

The design of the game is described in Sect. 2.2.2 and justified in terms of the purpose and 

contribution of the different components of the game to its main aim. The results and the 
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discussion promoted by the latter are subsequently presented in Sects. 2.2.3 and 2.2.4 

respectively. 

2.2.2 Set-up of the decision-making game 

2.2.2.1 Experimental design 

This game was inspired by the table game “Paying for Predictions”, designed by the Red 

Cross/Red Crescent Climate Centre (http://www.climatecentre.org/resources-

games/paying-for-predictions). Its focus is however different. Here, our aim is to 

investigate the use of forecasts for flood protection and mitigation. Also, we strongly 

adapted the game to be played during conferences and with large audiences. 

The set-up of the game (illustrated in Fig. 1a) was the following: participants were told that 

they were competing for the position of head of the flood protection team of a company. 

Their goal was to protect inhabitants of a fictitious town bordering a fictitious river against 

flood events, while spending as little money as possible during the game. The participant 

with the highest amount of money at the end of the game was chosen as head of the flood 

protection team. Each participant was randomly assigned a river (river yellow, river blue 

or river green) for the entire duration of the game. Each river had distinct initial river levels 

and rates of flood occurrences (see Table 1). Participants worked independently and had a 

worksheet to take notes (see Appendix A). An initial purse of 20000 tokens was given to 

each player to be used throughout the game. 

Based on this storyline, the participants were presented the following sequence of events 

(illustrated in Fig. 1b): after being given their river’s initial level (ranging from 10 to 60 

included), each participant was asked to make use of a probabilistic forecast (see Fig. 1b) of 

their river level increment after rainfall (ranging from 10 to 80 included) to decide whether 

they wanted to pay for flood protection or not. The cost of flood protection was 2000 tokens. 

They were informed, prior to the start of the game, that a flood occurred if the sum of the 

initial river level and the river level increment after rainfall (i.e. the actual river level after 

rainfall) reached a given threshold of 90. The probabilistic forecasts were visualised using 

boxplot distributions. They had a spread of about 10–20 and indicated the 5th and 95th 

percentiles as well as the median (i.e. 50th percentile) and the lower and upper quartiles 

(i.e. 25th and 75th percentiles respectively) of the predicted river level increment after 

rainfall. Forecasts were given to participants case by case (i.e. when playing the first case, 

they could only see the boxplot distribution of forecast river increment for case 1). Once the 

participants had made their decisions using both pieces of information (i.e. river level 
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before rainfall and forecast of river level increment), they were given the observed (actual) 

river level increment after rainfall for their rivers. If a flood occurred and the participant 

had not bought flood protection, a damage cost (i.e. price paid when no protection was 

bought against a flood that actually happened) of 4000 tokens had to be paid. 

 

Figure 1. (a) Experiment set-up and (b) flow diagram of the game decision problem for one case. 

The monetary values (initial purse, price of flood protection and damage cost) were 

deliberately chosen. The price of a protection was set to 2000 tokens such that if a 

participant decided to buy flood protection every time during the game (i.e. two rounds of 

five cases each, thus ten times) they would have no tokens left in their purse at the end of 

the game. This was done in order to discourage such a behaviour. The damage cost was set 

to twice the flood protection cost as this was estimated to be a realistic relation between 

the two prices based on Pappenberger et al. (2015). The latter states that the avoided 

damages due to early flood warning amount to a total of about 40%. Here, for simplicity, we 

used a percentage of 50%. 

Once the context was explained, the participants were then told that they would first play 

one round of five independent cases, which would each be played exactly according to the 

sequence of events presented, and for which they would have to record their decisions on 

the worksheet they were provided (see Appendix A). The game had a total of two rounds of 

five cases each. This specific number of cases and rounds was chosen because of the time 

constraint to play the game during conferences (the game should last around 20–30 min 
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only). Table 1 presents the total number of flood events for each round and each river. The 

number of flood events was different for every river for each round as river level values 

were randomly generated for the purpose of the game. This allowed the exploration of the 

influence of different flood frequencies in round 1 on the participants’ WTP for a second 

forecast set. The number of flood events was however sampled to some extent in order to 

obtain decreasing (increasing) numbers of flood events between the two rounds for the 

blue (yellow) river, or constant throughout the two rounds for the green river. This was 

done to investigate the effect of the change (or not) in flood frequency between rounds 1 

and 2 on the participants’ strategies throughout the game. 

Table 1. Number of flood events for each round of the game and each river. 

 

During the first round of the game, the participants had forecasts of river level increments 

to help their decisions. These forecasts were however not available for all participants in 

the second round, but were sold between the two rounds through an auction. The purpose 

and set-up of each round and the auction are explained in the following paragraphs. 

2.2.2.1.1 Round 1 

The objective of the first round was to familiarise the participants with the probabilistic 

forecasts they were given to help them in their decisions, and to create a diversity amongst 

the decision-makers in terms of 

• their river behaviour: which is why different rivers, each with different flood 

frequencies and different initial levels, were assigned to the participants; 

• the money they would spend during this round and have in hand for the ensuing 

auction (before round 2); 

• the quality of their forecasts in the first round: to this end, different forecast sets 

were distributed to the players for round 1. 

This diversity was triggered in round 1 in order to analyse whether or not the WTP for a 

second forecast set, measured in the auction performed before round 2, was dependent on 
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any of the factors inherent to the first round (i.e. river-specific flood frequency, money left 

in purse, or quality of the forecasts). 

Before the start of the first round each participant was given a forecast set containing 

probabilistic forecasts of their river level increment after rainfall for the five cases of round 

1. Participants were however not aware that three different forecast sets were produced 

for each of the rivers. One set had only forecasts with a positive bias (forecast sets 1), the 

second set had only unbiased forecasts (forecast sets 2) and the third set only forecasts with 

a negative bias (forecast sets 3). There were therefore nine different sets of forecasts which 

were distributed randomly amongst the audience prior to the start of the game. The three 

different forecast types were obtained by varying the position of the observation inside the 

forecast distribution. The unbiased forecasts had the observations fall between the lower 

and upper quartiles of their distributions, while the biased forecasts had the observations 

fall outside of the lower and upper quartiles of their distributions, leading to over- 

(positively biased forecast sets) or under-predictions (negatively biased forecast sets) of 

the observations. 

The quality of each forecast set can be represented in terms of the number of correct 

forecast flood events (given a forecast percentile threshold) with respect to the number of 

observed flood events. For each forecast set type and each river, the number of forecast 

flood events during the first round was calculated by adding the median of the forecast river 

level increment to the initial river level for each case. A forecast is referred to as a false 

alarm if this sum forecasts a flood (i.e. it exceeds the flood threshold) but the flood is 

subsequently not observed. It is referred to as a hit if the sum forecasts the flood and the 

flood is subsequently observed. A miss is an observed flood that was not forecast. The 

numbers of hits, misses and false alarms are usually gathered in a contingency table as a 

matrix (e.g. Table 2): hits are placed on top, left, misses on bottom, left, and false alarms on 

top, right. The place on bottom, right is usually not considered in the evaluation of forecasts 

as it represents situations of low interest to a forecaster (i.e. when floods are neither 

forecast nor observed). Table 2 displays the nine contingency tables we obtain considering 

each forecast set type and each river. Each participant would find themselves in one of the 

contingency tables represented. We can see the higher number of total misses (false alarms) 

considering all rivers together in negatively (positively) biased forecast sets, and the 

absence of these in the unbiased forecast sets. 

After all the five cases of round 1 were played, participants were asked to rate their 

performance as a decision-maker and the quality of their forecast set for round 1 on a scale 
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from “very bad” to “very good” (the option “I don’t know” was also available) (see Appendix 

A). 

Table 2. Contingency table for each river and forecast set type for the first round (considering the 50th percentile, i.e. the 

median forecast). The numbers for a specific river-forecast set type represent, clockwise from the top left, hits (italics), false 

alarms (bold), correct negatives (–) and misses (regular). 

 

2.2.2.1.2 Auction 

The auction was carried out after round 1 in order to measure the participants’ WTP for a 

second forecast set and to evaluate its dependencies on any of the elements of the game in 

round 1. The auction was implemented as follows. 

At the end of the first round participants were asked to transfer the remaining tokens from 

round 1 to the second round. They were then told that the forecasting centre distributing 

the probabilistic forecasts now wanted the decision-makers to pay for the forecast sets if 

they wanted to have access to them for the second round. Furthermore, they were informed 

that only 30% of them could get a second forecast set for this round. This percentage was 

chosen in order to restrict the number of participants that could buy a forecast set (and 

create a competitive auction), while keeping a high enough number of participants playing 

with a forecast set in round 2 for the analysis of the results. 

Participants were then asked to make a sealed bid, writing down on their worksheets the 

number of tokens they were willing to disburse from their final purse of round 1 to obtain 

a set of probabilistic forecasts for all five cases of round 2. After the bids were made, a 

forecast set was distributed to the participants within the highest 30% of the bids. This was 

done through an auction. It was carried out by asking the participants whether any of them 

wrote down a bid superior or equal to 10000 tokens. If any participants did, they raised 

their hands, after which a forecast set – for the same river as the river assigned to them at 

the beginning of the game – was given to them. The auction continued by lowering the 
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number of tokens stated to the participants until all forecast sets for round 2 were 

distributed. Each participant having bought a forecast set for round 2 was then asked to 

disburse the number of tokens they paid for this forecast set from their remaining purse 

from round 1. 

We note that participants were not told that the forecasts for the second round were all 

unbiased forecasts. Once again, the quality of the forecasts was kept secret in order for the 

participants to assign a value to the second forecast set that would strictly be related to the 

conditions under which they played the first round. 

2.2.2.1.3 Round 2 

The second round was played in order to measure the added value of an unbiased forecast 

set, compared to no forecast set at all, to the decisions of the participants on protecting or 

not against floods. Moreover, as the winner of the game was determined by the number of 

tokens left in their purse at the end of the game, this round would give a chance to 

participants who bought a second forecast set to make up for the money spent with the 

auction, during round 2. 

The second round developed similarly to the first round, with five independent cases of 

decision-making, with the exception that only participants who bought a second forecast 

set could use it to make their decisions. Participants who did not buy a second forecast set 

did not have any forecasts on which to base their decisions. 

After the five cases were played, the participants were asked to once again answer a set of 

questions (see Appendix A). They were asked to rate their performance as a decision-maker 

in the second round, on a scale from “very bad” to “very good” (the option “I don’t know” 

was also available). Participants without a second forecast set were invited to provide a 

justification for not purchasing a set of forecasts for this round. Participants who had 

bought a second forecast set were also asked to rate the quality of their forecast set for 

round 2 (on a scale from “very bad” to “very good”; the option “I don’t know” was also 

available) and whether those were worth the price they had paid for them. If not, they were 

asked to provide a new price that they would have rather paid. 

The winner was finally determined by finding the player with the largest number of tokens 

in their purse at the end of the game. 

2.2.2.2 Objectives and evaluation strategy 
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The main aim of this paper is to investigate the participants’ WTP for a probabilistic forecast 

set in the context of flood protection, following the game experiment designed as presented 

in the previous paragraphs. It unfolds into two objectives that were pursued in the analysis 

of the results: 

1 to analyse how participants used the information they were provided (probabilistic 

forecast sets) in this risk-based decision-making context, and 

2 to characterise the participants’ WTP for a probabilistic forecast set for flood 

protection. 

We assess these objectives through six questions, which are presented below, together with 

the evaluation strategy implemented. 

2.2.2.2.1 Did the participants use their forecasts and, in this case, follow the 50th percentile 

of their forecast during the decision-making process? 

This first question was investigated using the results of the first round. We first wanted to 

know whether the players were actually using their forecasts to make their decisions. 

Moreover, we searched for clues indicating that the participants were following the 50th 

percentile (i.e. the median) of the probabilistic forecasts. This was done in order to see 

whether the 50th percentile was considered by the players as the optimal value to use for 

the decision-making process under this specific flood risk experiment. Additionally, this 

question relates to an intrinsic characteristic of the use of probabilistic forecasts for 

decision-making, which is the difficulty in transforming the probabilistic values into a 

binary decision (Dale et al., 2014; Demeritt et al., 2007; Pappenberger et al., 2015). The way 

in which probabilistic flood forecasts are used depends on attitudes of decision-makers 

towards risk, the uncertainty and the error in the information provided to them (Demeritt 

et al., 2007; Ramos et al., 2013), and decisions can vary from one participant to the next 

provided the same information (Crochemore et al., 2015). 

Question one was explored by looking at the worksheets collected in order to infer from the 

decisions taken by the participants whether or not they most probably used the median of 

their forecasts to consider whether the river level would be above, at or under the flood 

threshold. In cases where the decisions did not coincide with what the median forecast 

indicated, other factors that could also influence the decisions were considered, such as (a) 

the flood frequency of each river and their initial river levels, (b) the forecast set type each 

participant had (i.e. biased – positively or negatively – or unbiased) and (c) the familiarity 
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of the participants with probabilistic forecasts and decision-making (given their occupation 

and years of experience). 

2.2.2.2.2 Was there a correspondence between the way participants perceived the quality 

of their forecasts in round 1 and their “true” quality? 

A well-known effect, called the “cry wolf”, was studied for weather-related decision-making 

by LeClerc and Joslyn (2015). It describes the reluctance of users to comply with future 

alarms when confronted in the past with false alarms. This leads to the second question 

which was explored in this paper: was there a correspondence between the way 

participants perceived the quality of their forecasts in round 1 and their “true” quality? Our 

aim here is to investigate whether the participants were more sensitive to false alarms or 

misses. The participants’ answers to the question on their forecast set quality for the first 

round (see Appendix A) were analysed against their “true” quality. The latter was measured 

in terms of forecast bias, calculated from the hits, false alarms and misses presented in 

Table 2. A bias value was computed for each forecast set type of each river (i.e. each 

contingency table; there were therefore nine different bias values in total) with the 

following equation: 

Bias =  
hits+false alarms

hits+misses
                     (1) 

A bias value equal to one is a perfect value (which corresponds to unbiased forecasts), and 

a value less than (superior to) one indicates under- (over-)prediction. 

2.2.2.2.3 Did the participants’ perceptions of their own performance coincide with their 

“true” performance? 

We also looked at the perception the participants had of their own performance. The 

answers to the question “How was your performance as a decision-maker” (see Appendix 

A) were assessed against the participants’ “true” performances (in rounds 1 and 2), which 

were calculated in terms of the money participants spent as a consequence of their 

decisions. The following general formula (n being the round number) was used: 

Performance =  
Money spent round n

Optimal
            (2) 

The performance is expressed relatively to an optimal performance, which is the minimum 

amount a participant could have spent, given the river they were assigned, defined as 

Optimal = Protection cost × Number of floods in round n         (3) 
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A performance value of one indicates an optimal performance. Performance values greater 

than one indicate that participants spent more money than the minimum amount necessary 

to protect the city from the observed floods. The greater the value, the higher the amount 

of money unnecessarily spent. 

2.2.2.2.4 What was the participants’ willingness-to-pay for a probabilistic forecast set? 

The auction was incorporated into the experiment in order to explore the WTP of 

participants for a probabilistic forecast set, considering the risk-based decision-making 

problem proposed by the game. To characterise this WTP, the bids were analysed and their 

relationships with several other aspects of the game were explored to explain the 

differences (if any) in the bids. These aspects were the following. 

• The way participants used the forecasts. Here we try to learn about the effectiveness 

of the information on the user, which is an attribute of the value of information 

(Leviäkangas, 2009). It is assumed that a participant is not expected to be willing to 

disburse any money for information they are not using. The answers to question 

one (i.e. “Did the participants use their forecasts and, in this case, follow the 50th 

percentile of their forecast during the decision-making process?”) are used here. 

• The money available to participants after round 1 to make their bids. As participants 

were informed at the beginning of the game that the winner would be the player 

with the highest number of tokens in purse at the end of the game, the tokens they 

had in hand for the auction (after round 1) may have restricted them in their bids. 

The bids are thus also explored relative to the number of tokens in hand at the time 

of the auction. 

• The forecast set type. The bias of the forecasts during round 1 could also have been 

a potential determinant of participants’ WTP for a forecast set in round 2. 

• The river flood frequency. This was different for all the rivers in the first round and 

could be an element of the relevance of the information, another attribute of the 

value of information (Leviäkangas, 2009). Indeed, one could ask: “If my river never 

floods, why should I pay for forecasts?”. 

• The years of experience and occupation. This might influence the familiarity 

participants may have with the use of probabilistic forecasts for decision-making. 

2.2.2.2.5 Did participants with a forecast set perform better than those without? 

Round 2 was led by a central question: did participants with a forecast set perform better 

than those without? It was investigated by looking at the performance of participants in 
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round 2, calculated from Eq. (2). While we expect players with more (unbiased) information 

to make better decisions, other factors could have influenced the trust participants had in 

the information during round 2, such as, for instance, the quality of the forecasts 

experienced by participants in round 1 or the flood events observed in the river in round 2, 

compared to the experience participants had previously had in round 1. 

2.2.2.2.6 What were the winning and losing strategies (if any)? 

Finally, from the final results of the game, a question arose: what were the winning and 

losing strategies (if any)? This question was explored by looking at the characteristics (e.g. 

river assigned, forecast set type in round 1, performances in both rounds, purchase of a 

second forecast set) and decisions of the participants during the game, in order to 

distinguish common attributes for the winning and losing strategies. 

Furthermore, an “avoided cost” was calculated for each river based on the difference 

between the tokens spent by participants without a second forecast set and the tokens 

spent by participants with a second forecast set, during round 2. It represents the average 

number of tokens participants without a second forecast set lost by protecting when a flood 

did not occur or by not protecting when a flood did occur, compared to participants with a 

second forecast set. This “avoided cost” was measured and compared to the average bid of 

participants for each river in order to evaluate participants’ estimation of the value of the 

forecasts compared to their “true” value in terms of the money they enabled the participants 

with a second forecast set to save in the second round. An average “new bid” was also 

calculated by replacing the bids of participants who had said that their forecast set in the 

second round was not worth the price they had paid initially, with the new bids they would 

have rather paid (see Appendix A). This average “new bid” was compared to the “avoided 

cost” and the actual average bid obtained from the auction. 

2.2.3 Results 

The results are based on the analysis of 129 worksheets from the 145 worksheets collected. 

The remaining 16 worksheets were either incomplete or incorrectly completed and were 

thus not used. Table 3 shows the distribution of the 129 worksheets among the three 

forecast set types and the three rivers. 
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Table 3. Distribution of the 129 worksheets collected for the analysis per river (yellow, green and blue) and forecast set type 

(positively biased, unbiased and negatively biased). 

 

The game was played at the different events mentioned in the introduction. The 

participants present at those events displayed a diversity in terms of their occupation and 

years of experience. This was surveyed at the beginning of the game and is presented in Fig. 

2, for all the participants as well as for each river and forecast set type separately. 

Participants were mainly academics (postdoctoral researchers, PhDs, research scientists, 

lecturers, professors and students), followed by professionals (forecasters, operational 

hydrologists, scientists, engineers and consultants). The majority had less than 5 years of 

experience. 

 

Figure 2. Number of participants according to occupation and years of experience. The categories of occupations are 

academics (postdoctoral researchers, PhDs, research scientists, lecturers, professors and students), professionals 

(forecasters, operational hydrologists, scientists, engineers and consultants) and others. Top: overall participant distribution; 
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middle: distribution according to their river; bottom: distribution according to the forecast quality types (1: positively biased, 

2: unbiased and 3: negatively biased). 

2.2.3.1 Participants were using the forecasts, but consistent patterns of use are difficult to 

detect 

Figure 3 presents, on the one hand, the final purses of all the participants at the end of round 

1, according to their river and forecast set type (columns and rows respectively), and, on 

the other hand, the final purses that participants would have had if they had made their 

decisions according to the median of their forecasts. Participants in charge of the yellow 

river (first column) ended the first round with, on average, more tokens than the others. 

Participants playing with the blue river (last column) are those who ended round 1 with 

less money in purse, on average. This is due to the higher number of flood events for the 

blue river in round 1 (see Table 1). There are also differences in terms of final purses for 

the participants assigned the same river but given a different forecast set type. Overall, 

participants who had unbiased forecasts (middle row) ended the first round with on 

average more money than the other players. These results are an indication that the 

participants were using their forecasts to make their decisions. 

In order to see whether the participants were using the median values of the forecasts, a 

forecast final purse was computed considering the case where the participants followed the 

median of their forecasts for all the cases of the first round (red vertical lines shown in Fig. 

3). If the participants had followed the median values of the forecasts during the entire first 

round, their final purses would have been equal to this value. Although this is almost the 

case for participants with unbiased forecast sets (for all rivers), for participants with the 

yellow river and positively biased forecast sets and the green river and negatively biased 

forecast sets, it is not an overall generally observed behaviour. 
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Figure 3. Participants’ round 1 final purses for each river (from the leftmost to the rightmost column: the yellow, the green 

and the blue river) and for each forecast set type (from the top to the bottom row: positively biased, unbiased and negatively 

biased). The red lines show the final purses that the participants of a given river-forecast set type group would have gotten if 

they had followed the median of their forecasts for all five cases of the first round. 

Could some participants have discovered the bias in their forecasts and adjusted them for 

their decisions? Although it is hard to answer this question from the worksheets only, some 

of the decisions taken seem to support this idea. Figure 4 presents in more detail the results 

for the blue river in the first round. The forecast final levels are shown as boxplots for each 

forecast set type and for each of the five cases of round 1. These are the levels the river 

would reach if the initial level is added to the percentiles of the forecasts for each case. The 

bars at the bottom of the figure show the percentages of participants whose decisions 

differed from what the median of their forecast final level indicated (i.e. participants who 

bought (or did not buy) protection while no flood (or a flood) was predicted by the median 

of their forecast). 

When comparing cases 1 and 4, for which the initial river levels and the observed and 

forecast final river levels were the same, we would not expect any changes in the way 

participants were using their forecasts. This is however not true. Figure 4 shows that the 

percentages of participants not following their forecast median differs between the two 

cases. For instance, about 80% of the participants with negatively biased forecast sets 
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(under-predicting the increment of the river level) did not follow the median forecast in 

case 1, and did not protect against the predicted flood by their median forecast, while this 

percentage drops to about 20% in case 4. The fact that they were not consistently acting the 

same way may be an indication that they found out the bias in the forecasts and tried to 

compensate for it throughout round 1. We can also see that, in general, the lowest 

percentages of participants not following the median forecast are for the unbiased forecast 

set. This is especially observed in the cases where the forecast final levels given by the 

median forecast are well above or below the flood threshold (cases 1, 2, 4, 5). The fact that 

from case 1 to case 4, for unbiased forecast sets, we moved from about 10% of participants 

not following the median forecast to 0%, may also indicate that they built confidence in 

their forecasts (at least in the median value) along round 1, by perceiving that the median 

forecast could be a good indication of possible flooding or not in their river. 

Figure 4 also shows that some participants with unbiased forecasts did not always follow 

the median of their forecasts (for instance, cases 1, 3 and 5). Additional factors may 

therefore have influenced the way participants used their forecasts. A number of 

worksheets indicated that the distance of the initial river level to the flood threshold could 

have been influential. In a few cases where the median forecast clearly indicated a flood, 

while the initial river level was low, some players did not purchase any flood protection. 

This can be observed in Fig. 4 for case 1, for example, for participants with positively biased 

or unbiased forecast sets. The inverse situation (i.e. the initial river level was high, but the 

river level forecast by the median was low, below the flood threshold) was also observed 

and is illustrated in Fig. 4 for case 2 and negatively biased forecast sets. Hence, in some 

cases, the initial river level seemed to also play a role in the decisions taken. 

There are indications that the participants could also have used other percentiles of the 

forecast to make their decisions, especially in cases where the median of the forecast was 

marginally above or below the flood threshold. For example, in case 4, the entire unbiased 

forecast lies above the flood threshold and all the participants chose the same and correct 

action. In cases where the 5th or 95th percentiles of the forecast fell above or below the flood 

threshold, the participants showed less consistent decisions (e.g. case 3 for unbiased 

forecast sets). 
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Figure 4. Observed initial and final river levels for the blue river for each case of the first round. The boxplots show the forecast 

final river levels by each forecast set type (negatively biased, unbiased and positively biased). The bars display the percentages 

of participants whose decisions did not correspond to what their forecast median indicated. 

Other possible influencing factors, such as occupation and years of experience, were also 

investigated (not shown). No strong indications that these factors could have played a role 

in the participants’ decision-making were however found. 

2.2.3.2 Participants were overall less tolerant to misses than to false alarms in round 1 

Figure 5 displays the cumulative percentages of participants having answered that the 

quality of their forecast set in round 1 (see Appendix A) was “very bad” to “very good”, as a 

function of the “true” quality of the corresponding forecasts, measured by the forecast set 

bias (Eq. 1). While participants with forecast sets for which the bias equalled one (perfect 

value) mostly rated their forecasts “quite good” or “very good”, the percentage of negative 

perceptions of the quality of the forecasts increases with increasing or decreasing forecast 

bias. 

It is interesting to note that participants with forecasts biased towards over-prediction 

never rated their forecasts as “very bad”. Also noteworthy is the very good rating given by 

participants with the most negatively biased forecasts (bias of 0). These participants 

belonged to the yellow river and had negatively biased forecasts in round 1. There was only 

one flood event for river yellow in the first round, which occurred at the end of the round 

and which was missed by the negatively biased forecasts. During the analysis of the results, 
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it was observed that only about 25% of the yellow river participants given the negatively 

biased forecasts did not purchase flood protection for this flood. An explanation for this low 

percentage could be that participants had time to learn about their forecasts’ quality until 

the occurrence of the flood at the end of the first round. This low number of participants 

who actually suffered from their negative bias and the presence of only one miss out of the 

five cases of round 1 could therefore justify the good rating of their forecasts by those 

participants. 

Overall, forecasts exhibiting under-prediction seem to be less appreciated by the 

participants. This could be an indication that participants were less tolerant to misses, while 

they accepted better forecasts leading to false alarms (over-predictions). This is contrary to 

the “cry wolf” effect, and could be explained by the particular game set-up for which the 

damage cost (4000 tokens) was twice the protection cost (2000 tokens). 

 

Figure 5. Cumulative percentages of participants who rated their forecast quality from “very bad” to “very good”, as a function 

of the forecast set bias (“true” forecast quality; Eq. 1) in round 1. A bias equal to one indicates perfect forecasts; a bias less 

than (superior to) one indicates under- (over-)prediction. 

2.2.3.3 Participants had a good perception of their good (or bad) performance during the 

game and related it to the quality of their forecasts 

Figure 6a illustrates the answers to the question “How was your performance as a decision-

maker in round 1?” as a function of the participants’ “true” performance (calculated from 

Eq. (2), i.e. the ratio to an optimal performance). The figure shows the distribution of 
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participants across all perceived–actual performance combinations, for all rivers and 

forecast set types combined. The perceived decision-maker performance is presented on a 

scale from “very bad” to “very good”. An overall positive relationship between the 

participants’ perceived performance and their “true” performance is observed: the best 

performances (i.e. performance values of one or close to one) are indeed associated with a 

very good perception of the performance by the decision-makers and vice versa. The same 

analysis carried out for the answers concerning round 2 (not displayed) showed similar 

results: the ratings participants gave to their performance were similarly close to their 

“true” performance. 

Figure 6b looks at the relationship between the perceived decision-maker performance and 

the rating the decision-makers gave to their forecast set quality in round 1. A positive 

relationship can also be seen: the majority rated their performance and the quality of their 

forecast set as “quite good” and “very good”, while those who rated their performance “very 

bad” also considered their forecast set “very bad”. The rating participants gave to their 

performance was therefore closely connected to the rating they gave to their forecast set 

quality. This also contributes to the evidence that participants were using their probabilistic 

forecast sets to make their decisions. It is furthermore an indication that participants linked 

good forecast quality to good performance in their decision-making and vice versa. 

 

Figure 6. Number of participants having rated their performance as a decision-maker from “very bad” to “very good” in round 

1, as a function of (a) their “true” performance (calculated from Eq. 2), and (b) their perceived forecast set quality. A 

performance value of one denotes a “true” performance equal to the optimal performance (Eq. 3). The larger the performance 

value, the more distant from optimal the decisions were during round 1. The size and the colour of the point indicate the 
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number of participants that fall into a specific perceived–actual performance combination or perceived performance–forecast 

set quality combination. 

2.2.3.4 Several factors may influence the WTP for a forecast, including forecast quality and 

economic situation 

Given the evidence that most participants were using their forecasts to make their decisions 

in round 1 (see Sect. 2.2.3.1), we now investigate their willingness-to-pay (WTP) for a new 

forecast set to be used in round 2. 

Figure 7 shows the bids participants wrote on their worksheets prior to the auction, for a 

second forecast set, as a function of the number of tokens they had in their purses at the 

end of round 1. All bids are plotted and those from participants who succeeded in buying a 

second forecast set are displayed as red triangles in the figure. On average, participants 

were willing to pay 4566 tokens, which corresponds to 32% of the average number of 

tokens left in their purses. The minimum bid was zero tokens (i.e. no interest in buying 

forecasts for round 2), which was made by 10% of the players. Half of these players were 

participants who were assigned the blue river (the river for which players ended the first 

round with on average the lowest number of tokens in purse). The only three participants 

who never bought flood protection in the first round (i.e. who could be seen as “risk-

seeking” players) made bids of zero, 3000 and 4000 tokens. The highest bid made was 

14000 tokens, corresponding to 100% of the tokens left in that participant’s purse. 

However, this participant did not raise their hand during the auction to purchase a second 

forecast set. Nine participants (less than 10% of the total number of players) made a bid of 

10000 tokens or above, corresponding to, on average, 77% of the tokens they had left in 

their purses. The total cost of protecting all the time for round 2 being 10000 tokens, as 

indicated in Fig. 7 by the dashed black line, bidding 10000 tokens or more for a second 

forecast set was clearly pointless. Half of these participants were players to which the 

yellow river was assigned (the river that experienced the least number of floods in round 1 

and for which participants thus ended the first round with on average the highest number 

of tokens left in their purse) and eight out of these nine participants had a forecast set with 

a bias during the first round. These nine participants, who paid 10000 tokens or more for 

the second forecast set, were removed from the subsequent analyses of the auction results, 

as their bids suggest that they have not understood the stakes of the game. 

From Fig. 7, there is a clear positive relationship between the maximum bids within each 

value of tokens left in purse and the tokens left in purse, as the participants did not disburse 

more tokens than they had left in their purse during the auction. When we look at the 
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evolution of the median of the bids with the number of tokens in purse, in general, the more 

tokens one had left in purse, the higher their WTP for a forecast set. Nonetheless, the WTP 

seems to have a limit. It can be seen that from a certain number of tokens left in purse, the 

median value of the bids remains almost constant (in our game case, at about a bid of 6000 

tokens for participants with 12000 tokens or more in their purse). The number of tokens 

that the participants had in hand therefore only influenced to a certain extent their WTP for 

a second probabilistic forecast set. 

 

Figure 7. Bids declared by participants to purchase a forecast set for round 2, as a function of the number of tokens they had 

left in their purse at the end of round 1. The colour of the points indicates the number of participants that fall into a specific 

bid–tokens left in purse combination. 

We also investigated whether the way participants perceived the quality of their forecast 

set in the first round was a plausible determinant of their WTP for another forecast set to 

be used in round 2. Figure 8 shows the % bids (i.e. bids expressed as a percentage of the 

tokens participants had left in their purse at the time of the auction) as a function of the 

rating participants gave to their forecast set quality in round 1 (from “very bad” to “very 

good”; see Appendix A). Firstly, it is interesting to observe that three participants judged 

their first forecast set to have been of “very bad” quality but were nonetheless willing to 

disburse on average 50% of the tokens they had left in purse. Those bids were however 

quite low, 4000 tokens on average. Moreover, players who rated their first forecast set from 

“quite good” to “very good” were on average willing to disburse a larger percentage of their 
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tokens than candidates who rated their previous forecast set from “quite bad” to “neither 

good nor bad”. Therefore, the way participants rated the quality of their first forecast set 

was to a certain degree influential on their WTP for a second forecast set. 

 

Figure 8. Participants’ % bids, bids expressed as a percentage of the tokens participants had left in their purse at the time of 

the auction, as a function of the rating they gave to their forecast set quality in round 1 (from “very bad” to “very good”). The 

colour of the points indicates the number of participants that fall into a specific bid-perceived forecast set quality combination. 

During the auction following the closed bids, 44 forecast sets were distributed to the 

participants who made the highest bids, in order to be used in round 2. Table 4 shows that 

participants who purchased these second forecast sets were quite well distributed among 

the different forecast set types of round 1, with a slightly higher frequency of buyers among 

participants who had played round 1 with unbiased forecasts; 42% of all participants with 

unbiased forecasts purchased a second forecast set, while 30% (31%) of participants with 

positively biased (negatively biased) forecasts bought a second forecast set. Buyers also 

belonged more often to the group assigned river green (48%, or 41% of all green river 

participants), followed by rivers yellow (32%, or 36% of all yellow river participants) and 

blue (20%, or 23% of all blue river participants). The higher percentage of green river 

participants buying a second forecast set could have been due to a combination of the river 
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green flood frequency in round 1 (not as low as for the yellow river, making it more relevant 

for green river participants to buy a second forecast set) and of money left in purse (on 

average, not as low as for the blue river participants). The buyers of the second forecast sets 

are displayed as red triangles in Fig. 7. We note that these red triangles are not necessarily 

the highest bid values in the figure, since we plot results from several applications of the 

game (in one unique application, they would coincide with the highest bids, unless a 

participant had a high bid but had not raised their hand during the auction to buy a second 

forecast set). Differences in the highest bids among the applications of the game could be 

an indication that the size (or type) of the audience might have had an impact on the bids 

(i.e. the WTP for a probabilistic forecast). Our samples were however not large enough to 

analyse this aspect. 

Table 4. Distribution of the 44 forecast sets sold during the auction, per river (yellow, green and blue) and forecast set type 

(positively biased, unbiased and negatively biased). 

 

Participants who did not purchase a second probabilistic forecast set (85 players in total) 

stated their reason for doing so. The majority of them (66%, or 56 players) said that the 

price was too high (which means, in other words, that the bids made by the other 

participants were too high, preventing them from purchasing a second forecast set during 

the auction). Ten participants (12%) argued that the model did not seem reliable. Most of 

these participants were among those who had indeed received a forecast set with a bias in 

the first round. The rest of the candidates who did not purchase a second forecast set (22%, 

or 19 players) wrote down on their worksheet the following reasons. 

• Low flood frequency in the first round – a participant assigned the yellow river wrote: 

“Climatology seemed probability of flood = 0.2”. 

• Assessment of the value of the forecasts difficult – a participant wrote: “No 

information for the initial bidding line”; and another wrote: “Wrong estimation of 

the costs versus benefits”. 

• Preference for taking risks – “Gambling” was a reason given by a player. 



32 

 

 Chapter 2. Insights from decision-making activities and serious games on the use of probabilistic hydrological 
forecasts for flood early warning 

• Enough money left in purse to protect all the time during round 2 – which can be an 

indication of risk-averse behaviour coupled with economic wealth and no worries 

of false alarms. 

• Not enough money left in purse to bid successfully – a participant wrote: “The purse 

is empty due to a lot of floods”. 

2.2.3.5 Decisions are better when they are made with the help of unbiased forecasts, 

compared to having no forecasts at all 

The analysis of the results of round 2 allowed us to compare the performance of 

participants with and without a forecast set. Overall, participants without a second forecast 

set had an average “true” performance value of 3.1, computed as shown in Eq. (2) and over 

the five cases of round 2. The best performance was equal to the optimal performance 

(“true” performance value equal to 1) and the worst performance reached a value of 6. 

Comparatively, participants with a second forecast set had an average “true” performance 

of 1.2, thus much closer to the optimal performance than the average performance of 

participants without a second forecast set. The best performance in this group also equalled 

the optimal performance, while the worst performance value was 2.5, much lower (i.e. thus 

much closer to the optimal value) than the worst performance value of participants making 

their decisions without any forecasts. These numbers clearly indicate that the possession 

of a forecast set in the second round led to higher performances and to a lower spread in 

performances within the group of players with a second probabilistic forecast set 

(compared to players without forecasts in round 2). 

Does this conclusion however depend on the participants’ performances in round 1? Do you 

need to be a good decision-maker to benefit from the forecasts in hand? Our results suggest 

otherwise. All the participants with a bad performance in the first round and a forecast set 

in round 2 had a good performance in the second round. This indicates that even if those 

participants had a bad performance in round 1, they took advantage of the forecasts and 

had a good performance in round 2. Additionally, 57 out of 59 participants with a good 

performance in round 1 and no forecasts in round 2 had a bad performance in the second 

round. This therefore indicates that no matter how well the participants performed in 

round 1, the possession of a forecast set led to better decisions in round 2. 

All the participants without a second forecast set who were assigned the yellow river 

missed the first two floods in the second round. Some of these participants purchased flood 

protection for all or some of the subsequent cases, while the others never bought any 

protection. It could have been due to the low flood frequency of their river in the first round 
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(see Table 1). This behaviour was not observed for the green river participants without a 

second forecast set, for which a very diverse sequence of decisions was seen in the second 

round. As for the blue river participants without any second forecast set, most of them 

missed the first flood event that occurred in round 2 and, subsequently, purchased flood 

protection for a few cases where no flood actually occurred. These decision patterns were 

not observed for participants with a second forecast set within each river, who took more 

consistently right decisions. 

The large majority of participants with a second forecast set in round 2 (41 out of 44) rated 

their forecasts as either “quite good” or “very good”, which was expected since all the 

forecasts were unbiased in round 2. The three remaining participants said that their second 

forecast set was “neither good nor bad” or “quite bad”. These participants all had biased 

forecasts in the first round and their behaviour during round 2 suggested that they might 

have been influenced by the bias in their forecasts for round 1. 

2.2.3.6 Overall winning strategies would combine good performance with an accurate 

assessment of the value of the forecasts 

The average final purse at the end of round 2 was 3149 tokens (3341 tokens for participants 

without a second forecast set and 2778 tokens for participants with a second forecast set), 

remaining from the 20000 tokens initially given to each participant. The minimum final 

purses observed were zero tokens or less. Twenty-five participants, out of the total of 129 

players, finished the game with such amounts of tokens. Out of these 25 participants, 22 

had received a biased forecast set in the first round. From the analysis of the game 

worksheets, we could detect three main losing strategies followed by these 25 participants 

who finished with zero tokens or less in purse. 

• Eighteen participants, most of them blue river players, had an “acceptable to bad” 

performance in round 1 (performances ranging between 1.3 and 3), did not 

purchase a second forecast set, and performed badly in round 2 (performances 

ranging between 2.3 and 6). 

• Four players, mostly in charge of the yellow river, had a “good to bad” performance 

in round 1 (performances ranging between 1 and 3), purchased a second forecast 

set for 10000 tokens or higher, and performed very well in round 2 (performances 

of 1). 

• Three participants, all green river players, had a “good to acceptable” performance 

in round 1 (performances ranging between 1 and 1.5), bought a second forecast set 
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for 6000–8000 tokens, but performed badly in round 2 (performances ranging 

between 2 and 2.5). 

The winners of the game, six players in total, finished round 2 with 8000 or 12000 tokens 

in their purse. Half of these participants were assigned the green river and the other half 

the blue river. Apart from one participant, all had received a biased forecast set in the first 

round. Most participants had a “good to acceptable” performance in the first round 

(performances ranging between 1 and 1.7), did not purchase any forecast set and had a 

“good to bad” performance in the second round (performances ranging between 1 and 3). 

Their performance in round 2 did not lead to large money losses, as it did for yellow river 

participants, which can be explained by the fact that they did not have so many flood events 

in this round (see Table 1). 

The average “avoided cost”, the average bid for a second forecast set and the average “new 

bid” are presented in Table 5 for each river. By comparing the “avoided cost” with the 

average bid for each river, it is noticeable that the average bid was larger than the “avoided 

cost” of each river. On average participants paid 1000 tokens more for their second forecast 

set than the benefit, in terms of tokens spared in the second round, that they derived from 

having this forecast set. This could explain why none of the winners of the game had a 

forecast set in the second round. From the average “new bid”, it is evident that participants 

would have liked to pay less on average than what they originally paid for their second 

forecast set. For all the rivers, the average “new bid” is closer to the “avoided cost” than the 

average bid of participants during the auction. 

Table 5. Average values of “avoided cost” for round 2, average bid for a second forecast set and average “new bid” if forecasts 

were considered not worth the price originally paid. Values are in tokens and for the three different rivers. 

 

2.2.4 Discussion 

2.2.4.1 Experiment results and implications 

It was clear during the game that most participants had used the probabilistic forecasts they 

were given at the beginning of the game to help them in their decisions. This was an 
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important issue in our game since it was an essential condition to then be able to evaluate 

how the participants were using their forecasts and to understand the links between the 

way they perceived the quality of their forecasts and the way they rated their performance 

at the end of a round. There was evidence that participants were mostly using the 50th 

percentile of the forecast distributions, but, interestingly, the median alone could not 

explain all the decisions made. Other aspects of the game might have also shaped the 

participants’ use of the information, such as the discovery, during the first round, of the 

forecast set bias (i.e. two out of three forecast sets were purposely biased for round 1). This 

was also mentioned by some participants at the end of some applications of the game, who 

said that the fact of noticing the presence of a bias (or suspecting it, since they were not told 

beforehand that the forecasts were biased) led them to adjust the way they were using the 

information. This could suggest that forecasts, even biased, can still be useful for decision-

making, compared to no forecasts at all, if users are aware of the bias and know how to 

consider it before making a decision. 

Interestingly, in the analysis of the worksheets, there was an indication that the players had, 

however, different tolerances to the different biases. Indeed, a lower tolerance for under-

predictive forecasts than for over-predictive forecasts was identified. Biased forecasts were 

hence problematic for the users and indicative of the manner in which the information was 

used. This strongly indicates that there is an important need for probabilistic forecasts to 

be bias-corrected previously to decision-making, a crucial aspect for applications such as 

flood forecasting, for instance (Hashino et al., 2007; Pitt, 2008). 

There was additionally evidence that, in a few cases, some participants with unbiased 

forecasts did not use their forecasts (when considering the 50th percentile as key forecast 

information). The analysis suggested that the players’ risk perception, triggered by the 

initial river level or the proximity of the forecast median to the flood threshold, might have 

been a reason for this. This led to less consistent actions, where participants based their 

decisions on extremes of the forecast distribution (other percentiles of the forecast) or on 

no apparent information contained in the forecast distribution. A similar finding was 

reported by Kirchhoff et al. (2013) through a case study in America, where it was found that 

the perception of a risk was a motivational driver of a water manager’s use of climate 

information. There is a constant effort from forecasters to produce and provide state-of-

the-art probabilistic forecasts to their users. However, it was seen here that even 

participants with unbiased forecasts did not always use them. This is an indication that 

further work needs to be done on fostering communication between forecasters and users, 

to promote an enhanced use of the information contained in probabilistic forecasts. 
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From the results, it also appeared that the participants had an accurate perception of their 

decision-maker performance and related it to the quality of their forecasts. This implies that 

participants viewed their forecasts as key elements of their decision-making. This result is 

very encouraging for forecasters and also bears important implications for the real world. 

It could indeed suggest that decision-makers forget that their own interpretation of the 

forecasts is as important as the information held in the forecast itself, as there is a myriad 

of ways to interpret and use probabilistic forecasts for decision-making. The choice of the 

percentile on which the decisions are based is an example of such an interpretation. This 

could potentially mean that decision-makers will tend to blame (thank) the forecast 

providers for their own wrong (good) decisions. 

Many papers have shown, through different approaches, the expected benefits of 

probabilistic forecasts vs. deterministic forecasts for flood warning (e.g. Buizza, 2008; 

Verkade and Werner, 2011; Pappenberger et al., 2015; Ramos et al., 2013). However, many 

challenges still exist in the operational use of probabilistic forecasting systems and the 

optimisation of decision-making. This paper is a contribution to improve our understanding 

of the way the benefits of probabilistic forecasts are perceived by the decision-makers. It 

proposes to investigate it from a different perspective, by allowing, through a game 

experiment, decision-makers to bid for a probabilistic forecast set during an auction. The 

auction was used in this paper as an attempt to characterise and understand the 

participants’ WTP for a probabilistic forecast in the specific flood protection risk-based 

experiment designed for this purpose. Our results indicate that the WTP displays 

dependencies on various aspects. 

The bids were to a certain extent influenced by the participants’ economic situation. They 

were on average positively related to the money available to participants during the 

auction. Nonetheless, this was mainly a factor for participants who had little money left in 

their purses at the time of the auction. The participants’ perceived forecast quality was also 

a factor influencing their WTP for another forecast set. Players who had played the first 

round with biased forecasts were less prone to disburse money for another forecast set for 

the second round. There was moreover an indication that the flood frequency of the river 

might have influenced the WTP for a forecast set. Some players in charge of a river with 

only one flood event in the first round (i.e. low flood risk) did not consider beneficial the 

purchase of a forecast set for the second round. The participants’ risk perception was 

therefore an important element of their WTP for a probabilistic forecast. The more risk-

averse participants did not buy a second forecast set as they had enough money to protect 

all the time; “gambling” was also stated as a reason for not buying a second forecast set. 
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Seifert et al. (2013) have similarly shown that “the demand for flood insurance is strongly 

positively related to individual risk perceptions”. 

These results show that the perceived benefit of probabilistic forecasts as a support of 

decision-making in a risk-based context is multifaceted, and varies not only with the quality 

of the information and its understanding, but also with the relevance and the risk tolerance 

of the user. This further demonstrates that more work is needed not solely to provide 

guidance on the use of probabilistic information for decision-making, but also to develop 

efficient ways to communicate the actual relevance and evaluate the long-term economic 

benefits of probabilistic forecasts for improved decisions in various applications of 

probabilistic forecasting systems within the water sector. This could additionally provide 

insights into bridging the gap between the theoretical or expected benefit of probabilistic 

forecasts in a risk-based decision-making environment and the perceived benefits by key 

users. 

2.2.4.2 Game limitations and further developments 

This paper aimed to depict behaviours in the flood forecasting and protection decision-

making context. Although game experiments offer a flexible assessment framework, 

compared to real operational configurations, it is however extremely complex to search for 

general explanatory behaviours in such a context. This is partially due to the uniqueness of 

individuals and the interrelated factors that might influence decisions, which are both 

aspects that are difficult to evaluate when playing a game with a large audience. A solution 

to overcome this, as proposed by Crochemore et al. (2015), could be to prolong the game 

by incorporating a discussion with the audience or with selected individuals, aiming at 

understanding the motivations hidden underneath their decisions during the game. Having 

more time available to apply the game would also allow one to play more cases in each 

round, bringing additional information to the analysis and clarifying key aspects of the 

game, such as the effect of the bias on the participants’ use of the forecasts and on their WTP 

for more forecasts. Co-designing such an experiment with social anthropologists could 

bring to light many more insights into participants’ decision-making behaviours. 

Being set up as a game, this study also presents some limitations. As mentioned by Breidert 

et al. (2006), a source of bias in such studies is their artificial set-up. Indeed, under those 

circumstances, participants are not directly affected by their decisions, as they neither use 

their own money nor is the risk a real one. This might lead them to make decisions which 

they would normally not make in real life or in operational forecasting contexts. 
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Moreover, in our game, the costs given to both flood protection and flood damages were not 

chosen to represent the real costs that one encounters in real environments. First, real costs 

in integrated flood forecasting and protection systems are difficult to assess, given the 

complexity of flood protection and its consequences. Secondly, the external imposed 

conditions for playing our game (i.e. the fact that we wanted to play it during oral talks in 

conferences, workshops or teaching classes, with expected eclectic audiences of variable 

sizes, having a limited amount of time, and using paper worksheets to be collected at the 

end of the game for the analysis) were not ideal to handle any controversy on the realism 

(or absence of realism) of the game scenario. 

It is however arguable whether the game results could be a reflection of the experiment set-

up, and hence of the parameters of the game (the protection and damage costs, the number 

of flood events, etc.). For instance, the higher damage costs might have influenced the 

participants’ tolerance to misses and false alarms. Further developments could include 

testing the influence of the parameters of this experiment on its results as a means of 

analysing the sensitivity of flood protection mitigation to a specific decision-making setting. 

Additionally, the small sample size of this experiment limited the statistical significance of 

its results. Replicating it could ascertain some of the key points discussed, leading to more 

substantial conclusions, and improve our understanding of the effect of the professional 

background of the participants on their decisions. 

Finally, the experiment’s complex structure was its strength as well as its weakness. When 

analysing the game results, the chicken and egg situation arose. Several factors of the 

participants’ use of the forecasts and of their WTP for a forecast set were identified, but it 

was not possible to measure causalities. It would therefore be interesting to carry out 

further work in this direction, together with behavioural psychologists, by, for instance, 

testing the established factors separately. 

2.2.5 Conclusions 

This paper presented the results of a risk-based decision-making game, called “How much 

are you prepared to pay for a forecast?”, played at several workshops and conferences in 

2015. It was designed to contribute to the understanding of the role of probabilistic 

forecasts in decision-making processes and their perceived value by decision-makers for 

flood protection mitigation. 

There were hints that participants’ decisions to protect (or not) against floods were made 

based on the probabilistic forecasts and that the forecast median alone did not account for 
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all the decisions made. Where participants were presented with biased forecasts, they 

adjusted the manner in which they were using the information, with an overall lower 

tolerance for misses than for false alarms. Participants with unbiased forecasts also showed 

inconsistent decisions, which appeared to be shaped by their risk perception; the initial 

river level and the proximity of the forecast median to the flood threshold both led the 

participants to base their decisions on extremes of the forecast distribution or on no 

apparent information contained in the forecast. 

The participants’ willingness-to-pay for a probabilistic forecast, in a second round of the 

game, was furthermore influenced by their economic situation, their perception of the 

forecasts’ quality and the river flood frequency. 

Overall, participants had an accurate perception of their decision-making performance, 

which they related to the quality of their forecasts. However, there appeared to be 

difficulties in the estimation of the added value of the probabilistic forecasts for decision-

making, thus leading the participants who bought a second forecast set to end the game 

with a lower amount of money in hand. 

The use and perceived benefit of probabilistic forecasts as a support of decision-making in 

a risk-based context is a complex topic. The paper has shown the factors that need to be 

considered when providing guidance on the use of probabilistic information for decision-

making and developing efficient ways to communicate their actual relevance for improved 

decisions for various applications. Games such as this one are useful tools for better 

understanding and discussing decision-making among forecasters and stakeholders, as 

well as highlighting potential factors that influence decision-makers and that deserve 

further research. 

2.2.6 Resources 

This version of the game is licensed under CC BY-SA 4.0 (Creative Commons public license). 

It is part of the activities of HEPEX (Hydrologic Ensemble Prediction Experiment) and is 

freely available at www.hepex.org. This game was inspired by the Red Cross/Red Crescent 

Climate Centre game “Paying for Predictions” (http://www.climatecentre.org/resources-

games/paying-for-predictions). 

Acknowledgements. The authors gratefully acknowledge financial support from the 

Horizon 2020 IMPREX project (grant agreement no. 641811) (project IMPREX: 

www.imprex.eu). The authors would like to thank the participants of the game who very 

enthusiastically took part in this experiment. Furthermore, we would like to acknowledge 
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L. Crochemore, A. Ficchi, C. Poncelet and P. Brigode for their valuable help with the game 

preparation and worksheet distribution at EGU 2015. Finally, we would like to thank C. 

Bachofen and everyone who tested and gave suggestions to improve the game during its 

development. 

2.2.7 Appendix 

Appendix A. Example of a worksheet distributed to the game participants (here for river 

blue and the set 1 of positively biased forecasts: BLUE-1). 
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2.2.8 Lessons learnt for improvements in future serious games 

The HEPEX serious game described above provided an overview of participants’ 

willingness-to-pay for a probabilistic flood forecast and its underlying factors. However, the 

game’s design and application could benefit from further improvements. The game was 

designed with many interrelated factors, which effects on the participants’ strategies during 

the game could not be fully disentangled. Future game designs should aim to explore one or 

two factors at most for more significant findings. The participants’ strategies were inferred 

from the results of this game but could not be verified. Designing and running this serious 

game with a social scientist or an anthropologist could have shed light on participants’ 

reasoning throughout the game. This was to some extent captured using “empathy maps” 
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during the IMPREX decision-making activity (Sect. 2.4). Because this game was designed for 

exploratory purposes, its design was not memorable (unlike the design of the IMPREX 

online serious game; Sect. 2.3), and it contained no clear take-away message (i.e. the take-

away message could have been the fact that probabilistic flood forecasts are valuable for 

decision-making. However, here, the winner of the game was not always a participant who 

had purchased a second probabilistic forecast set). Allowing for ample discussion time at 

the end is a vital aspect of any exploratory serious game, as it allows to explore participants’ 

viewpoints and crystallise the game’s key messages. Finally, this serious game was a 

simplification of reality (e.g. the costs of taking action vs. damage costs). This should be 

designed with more care in the future as it could have influenced the participants’ 

strategies. 

2.3 Stepping in the boots of a flood incident manager: an IMPREX 

serious game 

In this section, we present an online serious game co-created as part of the IMPREX H2020 

project. This serious game was developed to engage with a broad non-expert audience 

(from high school students onwards) to let the player experience first-hand the 

opportunities and challenges associated with using probabilistic hydrological information 

for flood early warning. Featuring on the final webpage of the IMPREX project, this serious 

game serves as a hook, raising awareness about the real-world relevance of research and 

innovation projects such as IMPREX, and inviting players to find out more about the project 

after they have played the game. 

2.3.1 Overview of the game storyline 

In this game, the player is the protagonist of an interactive story, taking on the role of a flood 

incident commander who has to use 5-day probabilistic flood forecasts to make a series of 

decisions. The player’s goal is to manage a flood forecasting institute and its two teams (a 

team of forecasters and a flood response team) to ultimately protect a fictitious city against 

floods. The actions and decisions that the player can make are varied and include: looking 

at the latest flood forecast, asking forecasters questions about the forecast production, 

asking the flood response team what the situation looks like on the ground and ultimately, 

deciding whether to: do nothing, alert the public of an imminent flood and put up flood 

defences or evacuate the population.  
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2.3.2 What scientific lessons does the game communicate? 

By introducing and guiding the player through the operational world of forecast-based 

decision-making for flood preparedness, this online serious game shows how state-of-the-

art forecast products (available in and outside of IMPREX) can be used for local decision-

making. It highlights the opportunities and challenges associated with this by giving an 

overview of the range of actions and decisions that can be made (based on probabilistic 

information) ahead of a potential flood event. 

While this serious game was developed for the flood risk management sector, the concepts 

it communicates are relevant to decision-making processes in other water sectors 

addressed by the IMPREX project (e.g. navigation, reservoir management and agriculture). 

2.3.3 In-depth game design 

This game was designed collaboratively by IMPREX partners, with the aim to communicate 

these scientific lessons and guide the player through the operational forecasting chain 

(from forecast production to decision-making; see Fig. 9 for a flowchart of the game 

concept). In the game, the player has access to probabilistic flood forecasts, which they can 

use to make a decision (see Fig. 10, top row). However, the forecasts are not trivial to 

interpret, and the player is prompted to seek the help of a team of forecasters (forecast 

room) and flood responders (incident room) to understand, interpret and use the forecasts 

(see Fig. 10, second and third rows). In the incident room, the player can also find out about 

the current state of the river and ask for recommendations on what decision they should 

make (doing nothing, alerting the population, putting up flood defences or evacuating the 

population; see Fig. 10, fourth row). However, the flood response team is only here to guide 

the player and no clear answer is given to them as to what decision they should make. Using 

all the sources of information available to them in the game, the player has to make a 

decision alone.  

In the game, the player’s score is a measure of their popularity, which varies with the 

decisions they make. For example, evacuating the population while no flood occurs will 

cause a decrease in popularity, reflecting the costs of the evacuation, as well as the loss in 

public trust given the false alarm. Once in the game, the player can boost their popularity 

through public engagement (see Fig. 10, bottom row). This was designed to reflect the 

opportunities and challenges (monetary gains/losses and public trust/distrust) associated 

with flood forecast-based decision-making and public response. 
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This serious game was professionally designed into an online game by Arctik (IMPREX 

partner), to make it aesthetically pleasing and easily accessible by the target audience.  

 

Figure 9. Flowchart of the IMPREX online serious game concept. 
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Figure 10. Screenshots of the online IMPREX online serious game. From top to bottom: Example of probabilistic flood forecast 

available to player, forecast room, incident room, decision-making page and popularity boost page. 

2.3.4 Feedback and game release 

The beta version of this online serious game was released to a selected audience (a mix of 

forecasters, decision-makers and non-experts) to obtain some feedback regarding its 

appearance and the lessons it conveys. This feedback was then incorporated to design the 

final game version. 

This online serious game was released during the European Geoscience Union (EGU) 

General Assembly 2019. It was furthermore presented at the European Climate Change 

Adaptation (ECCA) conference 2019 and during the UK Flood Forecasting Centre (FFC) 10th 

year anniversary event. It is available to play online4. 

Acknowledgements. The original idea of the game was co-developed by Louise Arnal 

(ECMWF/University of Reading), Florian Pappenberger (ECMWF), Maria-Helena Ramos 

(IRSTEA) and Hannah Cloke (University of Reading).  It was further enhanced by the 

contributions from Louise Crochemore (SMHI), Matteo Giuliani (Politecnico di Milano) and 

Emma Aalbers (KNMI) with website design by Arctik for the IMPREX Risk Outlook. The 

game is part of a series of games that have been developed within the framework of the 

international community initiative HEPEX. 

                                                             
4 www.imprex.arctik.tech 
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2.4 Can seasonal hydrological forecasts inform local decisions and 

actions? A decision-making activity 

This section introduces a decision-making activity, created for an IMPREX stakeholder 

focus group for the West Thames (UK) on 6th November 2017. This focus group was co-

organised by the University of Reading and the Environment Agency, and supported by the 

European Centre for Medium-Range Weather Forecasts (ECMWF). The motivation behind 

the design of this activity was to create a platform to share new scientific research (on the 

topic of seasonal hydrological forecasting for flood early warning) with decision-makers of 

the water sector in the West Thames. Additionally, this provided space for discussions with 

local experts, highlighting potential factors that might influence decision-makers’ uptake of 

probabilistic seasonal hydrological forecasts and that deserve further attention. 

This is the summary of a paper, presenting a co-author contribution arising through 

collaboration during this PhD, and has the following reference: 

Neumann, J. L., L. Arnal, R. E. Emerton, H. Griffith, S. Hyslop, S. Theofanidi and H. L. Cloke, 

2018b: Can seasonal hydrological forecasts inform local decisions and actions? A decision-

making activity, Geosci. Commun., 1, 35-57, doi:10.5194/gc-1-35-2018* 

L.A.  co-designed the decision-making activity, co-organised the set-up of the focus group 

and took part in delivering it. Additionally, L.A. commented on the manuscript before and 

during publication. 

The published article can be found in the thesis Appendix A2. 

Seasonal hydrological forecasts indicate how the river and groundwater levels are expected 

to change in the coming months. While this is valuable for informing future flood or drought 

risk and water availability, studies investigating how seasonal hydrological forecasts can be 

used for decision-making are still limited. A decision-making activity was designed to 

capture how different water sector users (flood and drought forecasters, water resource 

managers and groundwater hydrologists in the West Thames, UK) (might) interpret and 

use probabilistic seasonal hydrological forecasts. It is important to note that while all users 

present at this focus group were familiar with seasonal hydrological forecasts, they do not 

all currently use them operationally. 

                                                             
* ©2018. The Authors. Geoscience Communication, a journal of the European Geosciences Union published by 
Copernicus. This is an open access article under the terms of the Creative Commons Attribution License, which 
permits use, distribution and reproduction in any medium, provided that the original work is properly cited. 
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For this activity, participants were given three sets of progressively confident and locally 

tailored seasonal hydrological hindcasts (a combination of operational – e.g. EFAS-Seasonal, 

see Chapter 3 for more information - and hypothetical products) for a flood event in three 

months’ time (i.e. the actual 2013/14 Thames river floods). The participants were asked to 

play with their “day-job” hat on and were not told whether the hindcasts represented a 

flood, drought, or business-as-usual scenario. We observed that participants increased their 

decision/action choice with more confident and locally tailored information, with clear 

differences in the choices made across the various water sector users. Forecasters and 

groundwater hydrologists were most likely to request further information about the 

situation, inform other organisations and implement actions for preparedness. On the other 

hand, water resource managers more consistently adopted a “watch and wait” approach. 

Local knowledge, risk appetite, and experience of previous floods were identified as key 

factors of the decision-making process. 

Further discussions highlighted that forecast uncertainty is not necessarily a barrier to use, 

if information about forecast quality is shared, but that seasonal hydrological forecasts need 

to be disseminated at a finer spatial scale to aid local decision-making. Additionally, 

seasonal hydrological forecast information communicated in a combination of different 

formats (e.g. maps, texts, hydrographs and tables), tailored to different user groups, was 

identified as being beneficial for interpretation and use. In summary, “engagement is user-

specific and seasonal hydrological forecasts have the potential to be more useful if they 

could be presented at a scale which matches that employed in decision-making” (Neumann 

et al., 2018b). A wider conclusion of this focus group was that an improved communication 

between scientists and users is necessary to ensure that users are kept up to date with 

scientific developments.  
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In Chapter 2, insights on factors that shape decision-makers’ use of probabilistic forecasts 

for flood early warning were captured through a HEPEX serious game and an IMPREX 

decision-making activity. 

Results from both activities suggested that probabilistic flood forecasts, even biased or 

uncertain, can still be useful for decision-making, if users are aware of the forecast quality.  

This hints that, as scientists and forecast providers, we have a responsibility to understand 

and adequately communicate the qualities and limitations of the forecasts we provide to 

users. As stated by Neumann et al. (2018b), “we do not want to be in the position whereby 

seasonal hydrological forecast skill has improved but the credibility and reliability of the 

information is questioned by decision-makers who have not been kept up to date with 

developments.”  

Chapter 3 addresses our current capabilities in terms of seasonal hydrological forecasting 

and flood early warning, from the global to the local scale. 



50 

 
 

 
Chapter 3. Operational seasonal hydro-meteorological forecasting: from the global to the local scale 

Chapter 3 

 

3.1 Background and aim 

Seasonal hydrological forecasts provide insights into the likely evolution of hydrological 

variables (e.g. streamflow, soil moisture, groundwater levels, etc.) over the next few 

months. They have the potential to inform a range of water sectors, from flood and drought 

early warning to reservoir management, navigation and agriculture. Yet, these forecasts are 

relatively recent in the world of operational hydro-meteorological forecasting and, as a 

result, their application still lags behind.  

The predictability of seasonal hydrological forecasts originates from two main sources. 

Notably, the knowledge i) of the initial hydrological states (e.g. initial streamflow, 

groundwater levels and snowpack, etc.) and ii) of the future meteorological conditions (i.e. 

temperature, precipitation and evaporation). The seasonal predictability of future 

meteorological conditions is driven by large-scale climate patterns, such as the El Niño–

Southern Oscillation (ENSO), the North Atlantic Oscillation (NAO) and the Pacific-North 

American (PNA) pattern (Yuan et al., 2015b). 

While there exist a number of seasonal hydrological forecasting studies (see Sect. 3.2 for 

references), operational systems are found in limited numbers. These include: the 

European Service for Water Indicators in Climate Change Adaptation (SWICCA; Copernicus, 

2019), the Australian Government Bureau of Meteorology Seasonal Streamflow Forecasts 

(Bennett et al., 2016), the United States’ National Hydrologic Ensemble Forecast Service 

(HEFS; Demargne et al., 2014) and the Hydrological Outlook UK (Prudhomme et al., 2017). 

Seasonal hydrological forecasting systems are different in their configurations, reflecting 

the wide range of climates and landscapes (and hence hydro-meteorological processes and 

predictability sources) for which they were designed. Their configuration additionally 

echoes the amount of resources (in terms of data, time and money) available for their 

development and (operational) maintenance. There exist two main branches of seasonal 

hydrological forecasting methods: statistical and physically-based (or model-based). 

Statistical seasonal hydrological forecasts are produced by regressing the hydrological 

Operational seasonal hydro-meteorological forecasting: 
from the global to the local scale 



51 

 

 Chapter 3. Operational seasonal hydro-meteorological forecasting: from the global to the local scale 

variable of interest on a range of predictors (e.g. historical meteorological observations, 

large-scale climate indices and teleconnection patterns, and initial hydrological conditions) 

(Robertson and Wang, 2012; Mendoza et al., 2017). Model-based seasonal hydrological 

forecasts are produced by forcing a hydrological model with meteorological data. These 

meteorological data can for example be historical meteorological observations (this 

forecasting method is referred to as ESP, which nowadays stands for Ensemble Streamflow 

Prediction) (Twedt et al., 1977; Day, 1985). Or they can be seasonal meteorological 

forecasts (interchangeably referred to as “seasonal climate forecasts” in this thesis), output 

from a general circulation model (Mo and Lettenmaier, 2014; Bennett et al., 2016; Greuell 

et al., 2018; Wanders et al., 2019). Hybrid statistical and model-based seasonal hydrological 

forecasting methods are a more recent endeavour (Slater et al., 2018). 

Statistical seasonal hydrological forecasting methods are relatively fast to run. However, 

they are not always reliable as the stationary nature of their statistical relationships can 

misrepresent changing temporal patterns in the seasonality of the hydrological variable of 

interest and shifts in the relationship between that variable and its predictors over time 

(Slater et al., 2018; for example, as can be expected from climate change). While model-

based seasonal hydrological forecasts can capture these shifting temporal patterns and 

physically represent coupled atmosphere-ocean-land interactions, they are more resource-

intensive. Additionally, until recently, their development and application has been hindered 

by limits in the seasonal meteorological forecast predictability, especially over Europe 

(Arribas et al., 2010; Doblas-Reyes et al., 2013). 

Yet, recent years have seen unprecedented improvements in seasonal meteorological 

forecasting (Scaife et al., 2014; MacLachlan, 2015; ECMWF, 2017b), encouraging the 

development of model-based seasonal hydro-meteorological forecasting systems. Given 

their design, these systems reflect the latest scientific findings in the field of seasonal hydro-

meteorological predictability, as well as technical advances in hydrological modelling and 

numerical weather prediction (including data assimilation and post-processing methods). 

As such, evaluating the performance of model-based seasonal hydro-meteorological 

forecasts can bring us closer to a complete understanding of state-of-the-art scientific and 

technical capabilities in seasonal hydro-meteorological forecasting.  

In the context of a changing climate, hydro-meteorological patterns and the occurrence of 

extreme hydro-meteorological events are changing (IPCC, 2014), rendering seasonal 

hydro-meteorological forecasting vital for decision-making. Indeed, understanding and 
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improving the predictability of extreme hydro-meteorological events on the seasonal to 

interannual timescale is a stepping stone to climate change adaptation. 

In this chapter, we present two recently operational model-based seasonal hydro-

meteorological forecasting systems: EFAS-Seasonal and GloFAS-Seasonal. These 

forecasting systems were developed as part of the Copernicus Emergency Management 

Service (EMS) European and Global Flood Awareness Systems (EFAS and GloFAS, 

respectively). In the first section of this chapter, EFAS-Seasonal is assessed in terms of its 

overall performance, as well as its potential usefulness for predicting lower and higher than 

normal streamflows months in advance in Europe.  The second section introduces the EFAS-

Seasonal and GloFAS-Seasonal operational outlooks and gives a brief overview of the 

performance of GloFAS-Seasonal on the global scale. The third section demonstrates the 

potential usefulness of EFAS-Seasonal for predicting the 2013/14 Thames basin floods. The 

aim of this chapter is to assess the current capabilities in terms of seasonal streamflow 

forecasting on the global, continental and basin scales, with a particular focus on flood early 

warning. 

3.2 Skilful seasonal forecasts of streamflow over Europe? 

This section has been published in Hydrology and Earth System Sciences (HESS) with the 

following reference:  

Arnal, L., H. L. Cloke, E. Stephens, F. Wetterhall, C. Prudhomme, J. Neumann, B. Krzeminski 

and F. Pappenberger, 2018: Skilful seasonal forecasts of streamflow over Europe?, Hydrol. 

Earth Syst. Sci., 22, 2057-2072, doi:10.5194/hess-22-2057-2018* 

The contributions of the authors of this paper are as follows: H. L. Cloke (supervisor: 

academic), E.  Stephens (supervisor: academic), F. Wetterhall (collaborator: ECMWF), C. 

Prudhomme (collaborator: ECMWF), J. Neumann (collaborator: academic), B. Krzeminski 

(collaborator: ECMWF) and F. Pappenberger (collaborator: ECMWF). F.W., B.K. and F.P. 

produced the seasonal streamflow hindcast dataset. L.A. conceived and posed the research 

questions, designed and carried out the analysis, and wrote the paper. L.A., H.L.C., E.S., F.W., 

C.P. and F.P. interpreted the results. H.L.C., E.S., F.W., C.P., J.N. and F.P commented on the 

manuscript. Overall, 100% of the research and 85% of the writing was undertaken by L.A. 

                                                             
* ©2018. The Authors. Hydrology and Earth System Sciences, a journal of the European Geosciences Union 
published by Copernicus. This is an open access article under the terms of the Creative Commons Attribution 
License, which permits use, distribution and reproduction in any medium, provided that the original work is 
properly cited. 
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The published article can be found in the thesis Appendix A3. An overview of EFAS-Seasonal 

was additionally written by L.A. and published as part of a book chapter written by Hirpa et 

al. (2018). 

Abstract. This paper considers whether there is any added value in using seasonal climate 

forecasts instead of historical meteorological observations for forecasting streamflow on 

seasonal timescales over Europe. A Europe-wide analysis of the skill of the newly 

operational EFAS (European Flood Awareness System) seasonal streamflow forecasts 

(produced by forcing the Lisflood model with the ECMWF System 4 seasonal climate 

forecasts), benchmarked against the ensemble streamflow prediction (ESP) forecasting 

approach (produced by forcing the Lisflood model with historical meteorological 

observations), is undertaken. The results suggest that, on average, the System 4 seasonal 

climate forecasts improve the streamflow predictability over historical meteorological 

observations for the first month of lead time only (in terms of hindcast accuracy, sharpness 

and overall performance). However, the predictability varies in space and time and is 

greater in winter and autumn. Parts of Europe additionally exhibit a longer predictability, 

up to 7 months of lead time, for certain months within a season. In terms of hindcast 

reliability, the EFAS seasonal streamflow hindcasts are on average less skilful than the ESP 

for all lead times. The results also highlight the potential usefulness of the EFAS seasonal 

streamflow forecasts for decision-making (measured in terms of the hindcast 

discrimination for the lower and upper terciles of the simulated streamflow). Although the 

ESP is the most potentially useful forecasting approach in Europe, the EFAS seasonal 

streamflow forecasts appear more potentially useful than the ESP in some regions and for 

certain seasons, especially in winter for almost 40% of Europe. Patterns in the EFAS 

seasonal streamflow hindcast skill are however not mirrored in the System 4 seasonal 

climate hindcasts, hinting at the need for a better understanding of the link between 

hydrological and meteorological variables on seasonal timescales, with the aim of 

improving climate-model-based seasonal streamflow forecasting. 

3.2.1 Introduction 

Seasonal streamflow forecasts predict the likelihood of a difference from normal conditions 

in the following months. Unlike forecasts at shorter timescales, which aim to predict 

individual events, seasonal streamflow forecasts aim at predicting long-term (i.e. weekly to 

seasonal) averages. The predictability in seasonal streamflow forecasts is driven by two 

components of the Earth system, the initial hydrological conditions (IHC; i.e. of snowpack, 

soil moisture, streamflow and reservoir levels, etc.) and large-scale climate patterns, such 
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as the El Niño–Southern Oscillation (ENSO), the North Atlantic Oscillation (NAO), the 

Pacific-North American (PNA) pattern and the Indian Ocean Dipole (IOD) (Yuan et al., 

2015b).  

The first seasonal streamflow forecasting method, based on a regression technique 

developed around 1910–1911 in the United States, harnessed the predictability from 

accurate IHC of snowpacks to derive streamflow for the following summer (Church, 1935). 

This statistical method recognized antecedent hydrological conditions and land surface 

memory as key drivers of streamflow generation for the following months.  

Alongside the physical understanding of streamflow generation processes came technical 

developments, such as the creation of the first hydrological models and the acquisition of 

longer observed meteorological time series, which led to the creation of the first operational 

model-based seasonal streamflow forecasting system. This system, called extended 

streamflow prediction (ESP; i.e. note that ESP nowadays stands for ensemble streamflow 

prediction, although it refers to the same forecasting method), was developed by the United 

States National Weather Service (NWS) in the 1970s (Twedt et al., 1977; Day, 1985). The 

ESP forecasts are produced by forcing a hydrological model, initialized with the current IHC, 

with the observed historical meteorological time series available. The output is an ensemble 

streamflow forecast (where each year of historical data is a streamflow trace) for the 

following season(s) (Twedt et al., 1977; Day, 1985). The quality of the ESP forecasts can be 

high in basins where the IHC dominate the surface hydrological cycle for several months 

(the exact forecast quality depending on the time of year and the basin’s physiographic 

characteristics; Wood and Lettenmaier, 2008).  

In basins where the meteorological forcings drive the predictability, however, the lack of 

information on the future climate is a limitation of the ESP forecasting method and might 

result in unskilful ESP forecasts. This drawback led to the investigation of the use of 

seasonal climate forecasts, in place of the historical meteorological inputs, to feed 

hydrological models and extend the predictability of hydrological variables on seasonal 

timescales (Pagano and Garen, 2006). This investigation was made possible by technical 

and scientific advances. Scientifically, seasonal climate forecasts were improved greatly by 

the understanding of ocean–atmosphere–land interactions and the identification of large-

scale climate patterns as drivers of the hydro-meteorological predictability (Goddard et al., 

2001; Troccoli, 2010). This was technically implementable with the increase in computing 

resources, making it possible to run dynamical coupled ocean–atmosphere–land general 

circulation models on the global scale at high spatial and temporal resolutions (Doblas-
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Reyes et al., 2013). An additional technical challenge, the coarse spatial resolution of 

seasonal climate forecasts compared to the finer resolution of hydrological models, had to 

be addressed. To tackle this issue, many authors have explored different ways of 

downscaling climate variables for hydrological applications (Maraun et al., 2010, and 

references therein).  

While climate-model-based seasonal streamflow forecasting experiments are more 

common outside of Europe, for example for the United States (Wood et al., 2002, 2005; Mo 

and Lettenmaier, 2014), Australia (Bennett et al., 2016), or Africa (Yuan et al., 2013a), they 

remain limited in Europe, with a few examples in France (Céron et al., 2010; Singla et al., 

2012; Crochemore et al., 2016), in central Europe (Demirel et al., 2015; Meißner et al., 

2017), in the United Kingdom (Bell et al., 2017; Prudhomme et al., 2017) and at the global 

scale (Yuan et al., 2015a; Candogan Yossef et al., 2017). This is because, although the quality 

of seasonal climate forecasts has increased over the past decades, there remains limited 

skill in seasonal climate forecasts for the extra-tropics, particularly for the variables of 

interest for hydrology, notably precipitation and temperature (Arribas et al., 2010; Doblas-

Reyes et al., 2013).  

In Europe, the NAO is one of the strongest predictability sources of seasonal climate 

forecasts; it is associated with changes in the surface westerlies over the North Atlantic and 

Europe, and hence with changes in temperature and precipitation patterns over Europe 

(Hurrell, 1995; Hurrell and Van Loon, 1997). It was shown to affect streamflow 

predictability, especially during winter (Dettinger and Diaz, 2000; Bierkens and van Beek, 

2009; Steirou et al., 2017), in addition to the IHC and the land surface memory. It was 

furthermore shown to be an indicator of flood damage and occurrence in parts of Europe 

(Guimarães Nobre et al., 2017).  

As the quality and usefulness of seasonal streamflow forecasts increase, their usability for 

decision-making has lagged behind. Translating the quality of a forecast into an added value 

for decision-making and incorporating new forecasting products into established decision-

making chains are not easy tasks. This has been explored for many water-related 

applications, such as navigation (Meißner et al., 2017), reservoir management (Viel et al., 

2016; Turner et al., 2017), drought-risk management (Sheffield et al., 2013; Yuan et al., 

2013a; Crochemore et al., 2017), irrigation (Chiew et al., 2003; Li et al., 2017), water 

resource management (Schepen et al., 2016) and hydropower (Hamlet et al., 2002), but 

seasonal streamflow forecasts have yet to be adopted by the flood preparedness 

community.  
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The European Flood Awareness System (EFAS) is at the forefront of seasonal streamflow 

forecasting, with one of the first operational pan-European seasonal hydrological 

forecasting systems. The aim of this paper is to bridge the current gap in pan-European 

climate-model-based seasonal streamflow forecasting studies. Firstly, the setup of the 

newly operational EFAS climate-based seasonal streamflow forecasting system is 

presented. A Europe-wide analysis of the skill of this forecasting system compared to the 

ESP forecasting approach is then presented, in order to identify whether there is any added 

value in using seasonal climate forecasts instead of historical meteorological observations 

for forecasting streamflow on seasonal timescales over Europe. Subsequently, the potential 

usefulness of the EFAS seasonal streamflow forecasts for decision-making is assessed. 

3.2.2 Data and methods 

3.2.2.1 EFAS hydrological simulation and seasonal hindcasts 

The data used in this paper include a streamflow simulation and two seasonal streamflow 

hindcasts (Fig. 1). Further information on these datasets is given below. 

 

Figure 1. Schematic of the EFAS-WB streamflow simulation and of the CM-SSF and ESP seasonal streamflow hindcast 

generation, where P is precipitation, T is temperature, E is evaporation and ETpot is potential evapotranspiration. The Lisflood 

model diagram was taken from Burek et al. (2013). 

3.2.2.2 Hydrological modelling and streamflow simulation 

The Lisflood model was used to produce all the simulations and hindcasts used in this 

paper. Lisflood is a GIS-based hydrological rainfall–runoff–routing distributed model 

written in the PCRaster Dynamic Modelling Language, which enables it to use spatially 

distributed maps (i.e. both static and dynamic) as input (De Roo et al., 2000; Van Der Knijff 

et al., 2010). The Lisflood model was calibrated to produce pan-European parameter maps. 

The calibration was performed for 693 basins from 1994 to 2002 using the Standard 
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Particle Swarm Optimisation 2011 (SPSO-2011) algorithm. The calibration was carried out 

for parameters controlling snowmelt, infiltration, preferential bypass flow through the soil 

matrix, percolation to the lower groundwater zone, percolation to deeper groundwater 

zones, residence times in the soil and subsurface reservoirs, river routing and reservoir 

operations for a few basins. The results were validated with the Nash–Sutcliffe efficiency 

(NSE) for the validation period 2003–2012. In validation (calibration), Lisflood obtained a 

median NSE of 0.57 (0.62). Basins with large discrepancies between the observed and 

simulated flow statistics were situated mainly on the Iberian Peninsula and on the Baltic 

coasts (see Zajac et al., 2013, and Smith et al., 2016, for further details).  

The Lisflood model is run operationally in EFAS, with the simulation domain covering 

Europe at a 5×5 km resolution. A reference simulation, called the EFAS water balance 

(EFAS-WB), is available on a daily time step starting from February 1990. Lisflood simulates 

the hydrological processes within a basin (most of which are mentioned above), starting 

from the previous day’s IHC (e.g. snow cover, storage in the upper and lower zones, soil 

moisture, initial streamflow, reservoir filling) and forced with the most recent observed 

meteorological fields (i.e. of precipitation, potential evapotranspiration and temperature; 

provided by the EFAS meteorological data collection centres). The observed meteorological 

fields are daily maps of spatially interpolated point measurements of precipitation (from 

more than 6000 stations) and temperature (from more than 4000 stations) at the surface 

level. These same data are used to produce interpolated potential evapotranspiration maps 

from the Penman–Monteith method (Alfieri et al., 2014). All meteorological variables are 

interpolated on a 5×5 km grid using an inverse distance weighting scheme and the 

temperature is first corrected using the elevation (Smith et al., 2016). 

The EFAS-WB is the best estimate of the hydrological state at a given time and for a given 

grid point in EFAS and is thus used as initial conditions from which the seasonal 

hydrological forecasts are started. 

3.2.2.3 Ensemble seasonal streamflow hindcasts 

In this paper, two types of ensemble seasonal streamflow hindcasts are used: the ensemble 

streamflow prediction (ESP) hindcast (hereafter referred to as ESP) and the System 4-

driven seasonal streamflow hindcast (hereafter referred to as CM-SSF (climate-model-

based seasonal streamflow forecast), following the notation from Yuan et al. (2015b)). 

They are both initialized from the EFAS-WB, on the first day of each month, to produce a 

new ensemble streamflow forecast up to a lead time of 7 months (215 days), with a daily 
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time step. Both hindcasts are generated from February 1990 for the same European domain 

as the EFAS-WB, at the same 5×5 km resolution. The unique difference between the ESP and 

the CM-SSF is the meteorological forcing used to drive the hydrological model, described 

below. 

The ESP is produced by driving the Lisflood model with 20 (the number of years of data 

available at the time the hindcast was produced) randomly sampled years of historical 

meteorological observations (i.e. the same as the meteorological observations used to 

produce the EFAS-WB, excluding the year of meteorological observations corresponding to 

the year that is being forecasted). A new 20-member ESP is thus generated at the beginning 

of each month and for the next 7 months. 

The CM-SSF is produced by driving the Lisflood model with the ECMWF System 4 seasonal 

climate hindcast (Sys4, i.e. of precipitation, evaporation and temperature). Sys4 has a 

spatial horizontal resolution of about 0.7° (approximately 70 km). It is re-gridded to the 

Lisflood spatial resolution using an inverse distance weighting scheme and the temperature 

is first corrected using the elevation. Sys4 is made up of 15 ensemble members, extended 

to 51 every 3 months (Molteni et al., 2011). From 2011 onwards the Sys4 forecasts were 

run in real time and all contained 51 ensemble members. A new 15- to 51-member CM-SSF 

is hence produced at the beginning of each month and for the next 7 months. Operationally, 

the CM-SSF forecasts are currently used in EFAS to generate a seasonal streamflow outlook 

for Europe at the beginning of every month. 

3.2.3 Hindcast evaluation strategy 

For this study, monthly region specific discharge averages of the hindcasts (CM-SSF and 

ESP) and EFAS-WB were used. The specific discharge is the discharge per unit area of an 

upstream basin. For this paper, the gridded daily specific discharge was calculated by 

dividing the gridded daily discharge output maps (of the hindcasts and the EFAS-WB) by 

the Lisflood gridded upstream area static map. Subsequently, the gridded daily specific 

discharge maps were used to calculate daily region averaged specific discharges (for each 

region in Fig. 2) by summing up the daily specific discharge values of each grid cell within a 

region, divided by the number of grid cells in that region. Finally, monthly specific discharge 

region averages were calculated for each calendar month. 
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Figure 2. Map of the 74 European regions (dark blue outlines) selected for the analysis of the CM-SSF and the ESP. 

The regions displayed in Fig. 2 were created by merging several basins together (basins 

used operationally in EFAS for the shorter timescale forecasts), while respecting 

hydroclimatic boundaries. They were chosen for the analysis presented in this paper for 

two main reasons. Firstly, they are the regions used operationally to display the EFAS 

seasonal streamflow outlook. Secondly, they were created in order to capture large-scale 

variability in the weather. 

The analysis of the hindcasts was performed on monthly specific discharge (hereafter 

referred to as streamflow) region averages for hindcast starting dates spanning February 
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1990 to November 2016 (included; approximately 27 years of data), with 1 to 7 months of 

lead time. In this paper, 1 month of lead time refers to the first month of the forecast (e.g. 

the January 2017 streamflow for a forecast made on 1 January 2017). Two months of lead 

time is the second month of the forecast (e.g. the February 2017 streamflow for a forecast 

made on 1 January 2017), etc. Monthly averages were selected for the analysis presented 

in this paper as it is a valuable aggregation time step for decision-makers for many water-

related applications (as shown in the literature for applications such as, for example, 

navigation (Meißner et al., 2017), reservoir management (Viel et al., 2016; Turner et al., 

2017), drought-risk management (Yuan et al., 2013a), irrigation (Chiew et al., 2003; Li et 

al., 2017) and hydropower (Hamlet et al., 2002)). 

Several verification scores were selected in order to assess the hindcasts’ quality. These 

verification scores were chosen to cover a wide range of hindcast attributes (i.e. accuracy, 

sharpness, reliability, overall performance and discrimination). All of these verification 

scores, except for the verification score selected to look at hindcast discrimination, are the 

same as chosen in Crochemore et al. (2016), and are described below. The EFAS-WB 

streamflow simulations were used as a proxy for observation against which the seasonal 

streamflow hindcasts were evaluated, hence minimizing the impact of model errors on the 

hindcasts’ quality. 

3.2.3.1 Hindcast accuracy 

Both hindcasts (CM-SSF and ESP) were assessed in terms of their accuracy, the magnitude 

of the errors between the hindcast ensemble mean and the “truth” (i.e. the EFAS-WB). For 

this purpose, the mean absolute error (MAE) was calculated for each region, target month 

(i.e. the month that is being forecast) and lead time (i.e. 1 to 7 months). The lower the MAE, 

the more accurate the hindcast. 

3.2.3.2 Hindcast sharpness 

Both hindcasts were also assessed in terms of their sharpness, an attribute of the hindcast 

only, which is a measure of the spread of the ensemble members of a hindcast. In this paper, 

the 90% interquantile range (IQR; i.e. the difference between the 95th and 5th percentiles of 

the hindcast distribution) was calculated for each region, target month and lead time. The 

lower the IQR, the sharper the hindcast. 

3.2.3.3 Hindcast reliability 
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Both hindcasts were additionally assessed in terms of their reliability, the statistical 

consistency between the hindcast probabilities and the observed frequencies. For this 

purpose, the probability integral transform (PIT) diagram was calculated for each region, 

target month and lead time (Gneiting et al., 2007). The PIT diagram is the cumulative 

distribution of the PIT values as a function of the PIT values. The PIT values measure where 

the “truth” (i.e. EFAS-WB) falls relative to the percentiles of the hindcast distribution. For a 

perfectly reliable hindcast, the “truth” should fall uniformly in each percentile of the 

hindcast distribution, giving a PIT diagram that falls exactly on the 1-to-1 diagonal. A 

hindcast that systematically under- (over-) predicts the “truth” will have a PIT diagram 

below (above) the diagonal. A hindcast that is too narrow (i.e. underdispersive; hindcast 

distribution smaller than the distribution of the observations) (large (i.e. overdispersive; 

hindcast distribution greater than the distribution of the observations)) will have a 

transposed S-shaped (S-shaped) PIT diagram (Laio and Tamea, 2007). 

In order to compare the reliability across all regions, target months and lead times, the area 

between the PIT diagram and the 1-to-1 diagonal was computed for all PIT diagrams 

(Renard et al., 2010). The smaller this area, the more reliable the hindcast. 

Furthermore, to disentangle the causes of poor reliability, the spread and bias of the 

hindcasts were calculated for all PIT diagrams, using two measures first introduced by 

Keller and Hense (2011): ß-score and ß-bias, respectively. By definition, a perfectly reliable 

hindcast (with regards to its spread) will have a ß-score of zero (to which a tolerance 

interval of ±0.09 was added), whereas a hindcast that is too narrow (large) will have a 

negative (positive) ß-score (outside of the tolerance interval). A perfectly reliable hindcast 

(with regards to its bias) will have a ß-bias of zero (to which a tolerance interval of ±0.09 

was added), whereas a hindcast that systematically under- (over-) predicts the “truth” will 

have a negative (positive) ß-bias (outside of the tolerance interval). 

3.2.3.4 Hindcast overall performance 

The hindcasts were furthermore assessed in terms of their overall performance from the 

continuous rank probability score (CRPS), calculated for each region, target month and lead 

time (Hersbach, 2000). The CRPS is a measure of the difference between the hindcast and 

the observed (i.e. EFAS-WB) cumulative distribution functions. The lower the CRPS, the 

better the overall performance of the hindcast. 

In this paper, the skill of the CM-SSF is benchmarked with respect to the ESP in order to 

identify whether there is any added value in using Sys4 instead of historical meteorological 
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observations for forecasting the streamflow on seasonal timescales over Europe. To this 

end, skill scores were calculated for the MAE, IQR, PIT diagram area and CRPS, using the 

following equation: 

Skill score = 1 − 
scoreCM−SSF

scoreESP
              (1) 

Skill scores were calculated for each region, target month and lead time and will be referred 

to as MAESS, IQRSS, PITSS and CRPSS, respectively. Skill scores larger (smaller) than zero 

indicate more (less) skill in the CM-SSF compared to the ESP. A skill score of zero means 

that the CM-SSF is as skilful as the ESP. Note that as the ESP is not a “naive” forecast, using 

it as a benchmark might lead to lower skill than benchmarking the CM-SSF against, for 

example, climatology. 

3.2.3.5 Hindcast potential usefulness 

For decision-making, the ability of a seasonal forecasting system to predict the right 

category of an event (e.g. above or below normal conditions) months ahead is of great 

importance (Gobena and Gan, 2010). In this paper, the potential usefulness of the CM-SSF 

and the ESP to forecast lower and higher than normal streamflow conditions within their 

hindcasts is assessed. 

To do so, the relative operating characteristic (ROC) score, a measure of hindcast 

discrimination (Mason and Graham, 1999), was calculated. The thresholds selected to 

calculate the ROC are the lower and upper terciles of the EFAS-WB climatology for each 

season. They were calculated for the simulation period (February 1990 to May 2017), by 

grouping together EFAS-WB monthly streamflows for each month falling in a season (SON: 

September–October–November, DJF: December–January–February, MAM: March–April–

May and JJA: June–July–August). For each season and each region a lower and upper tercile 

streamflow value was obtained, subsequently used as thresholds against which to calculate 

the probability of detection (POD) and the false alarm rate (FAR; with 0.1 probability bins) 

for both hindcasts, and for each region, season and lead time. Finally, the area under the 

ROC curve, i.e. the ROC score, was calculated for both hindcasts, for each region, season and 

lead time. The ROC score ranges from 0 to 1, with a perfect score of 1. A hindcast with a ROC 

score ≤0.5 is unskilful, i.e. less good than the long-term average climatology which has a 

ROC of 0.5, and is therefore not useful. 

Because the ROC score was calculated from a low number of events (i.e. approximately 27 

years × 3 months in each season × 1/3 (lower or upper tercile) = 27 simulated events), the 
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hindcasts were judged skilful and useful when their ROC score ≥0.6 instead of 0.5. 

Moreover, the CM-SSF was categorized as more useful than the ESP when the CM-SSF’s ROC 

score was at least 10% larger than the ESP’s ROC score. 

3.2.4 Results 

3.2.4.1 Overall skill of the CM-SSF 

In the first part of the results, the skill of the CM-SSF (benchmarked with respect to the ESP) 

is presented, in terms of the accuracy (MAESS), sharpness (IQRSS), reliability (PITSS) and 

overall performance (CRPSS) in the hindcast datasets. This will benchmark the added value 

of using Sys4 against the use of historical meteorological observations for forecasting the 

streamflow on seasonal timescales over Europe. 

As shown by the MAESS boxplots (Fig. 3), the CM-SSF appears on average more accurate 

than the ESP for the first month of lead time only, for all seasons excluding spring (MAM). 

Beyond 1 month of lead time, the CM-SSF becomes on average as or less accurate than the 

ESP. There are however noticeable differences between the different seasons. The CM-SSF 

shows the largest improvements in the average accuracy compared to the ESP in winter 

(DJF) and for the first month of lead time. For longer lead times (i.e. 2 to 7 months), the 

accuracy of the CM-SSF is on average quite similar to that of the ESP in autumn (SON) and 

winter, and on average lower in spring and summer (JJA). The boxplots for the CRPSS look 

very similar to the MAESS boxplots, the main difference being the lower average scores for 

2 to 7 months of lead time in autumn and winter (Fig. 3). 

The boxplots of the IQRSS show that the CM-SSF predictions are on average as sharp as 

those of the ESP for the first month of lead time (slightly sharper in autumn; Fig. 3). For 2 

to 7 months of lead time, in autumn and winter, the CM-SSF predictions are on average 

sharper than those of the ESP, whereas in spring and summer, the CM-SSF predictions are 

on average slightly less sharp than the ESP predictions. 

As shown by the boxplots of the PITSS (Fig. 3), the CM-SSF predictions are less reliable than 

the ESP predictions for all seasons and months of lead time. For the first month of lead time 

and all seasons, 10–20% of the ESP hindcasts and less than 5% of the CM-SSF hindcasts are 

reliable (Fig. 4; n.b. the percentages represent the portion of hindcasts meeting a certain 

criteria, with the total number of hindcasts in a given season represented by the hindcasts 

for all target months falling in this season and for all 74 European regions). About 40–60% 

of the ESP hindcasts are not reliable for the first month of lead time and all seasons due to 

the ensemble spread. Approximately half of these hindcasts are too large, while the other 
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half (slightly more in autumn and winter) are too narrow. Furthermore, 50–80% of the ESP 

hindcasts under-predict the simulated streamflow for the first month of lead time and all 

seasons. The percentage of reliable (unreliable) ESP hindcasts increases (decreases) with 

lead time, as the effect of the IHC fades away. About 70–90% of the CM-SSF hindcasts are 

too narrow for the first month of lead time and all seasons. With increasing lead time, the 

percentage of CM-SSF hindcasts that are too narrow (large) decreases (increases), 

especially in spring. Approximately 40–50% of the CM-SSF hindcasts over-predict the 

simulated streamflow in spring and summer for the first month of lead time (and 

increasingly over-predict with longer lead times). In autumn and winter, about 70% of the 

CM-SSF hindcasts under-predict the simulated streamflow for the first month of lead time 

(and increasingly under-predict with longer lead times). 

For all verification scores, the boxplots for autumn and winter are slightly smaller than for 

spring and summer, hinting at a smaller variability in the verification scores amongst 

regions and target months in autumn and winter than in spring and summer. Furthermore, 

the presence of the boxplots above the zero line (i.e. no skill line) for all lead times suggests 

that the CM-SSF is more skilful than the ESP for some regions and target months, beyond 

the first month of lead time. 
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Figure 3. Boxplots of the MAESS, CRPSS, IQRSS and PITSS (from the top to bottom rows) for all four seasons (SON, DJF, MAM 

and JJA from the left-most to right-most columns) as a function of lead time (i.e. 1 to 7 months). The boxplots contain the 

scores for all target months falling in a given season and all 74 European regions. For all scores, values larger (smaller) than 

zero indicate that the CM-SSF is more (less) skilful than the ESP (benchmark). Where the skill is zero, the CM-SSF is as skilful 

as the ESP for the hindcast period. Note that the PITSS plots have a different y-axis scale. 
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Figure 4. Plots of the percentage of the ESP (a) and the CM-SSF (b) hindcasts falling into each reliability category (reliable – in 

terms of both spread and bias, too large, too narrow, over-predicting and under-predicting) for all four seasons (SON, DJF, 

MAM and JJA from the left-most to right-most bars in each reliability category). The results are shown as bar charts for the 

first month of lead time and as circles for the seventh month of lead time. These lead times were selected for display to 

highlight the evolution of reliability between the first and last months of the hindcast. The percentages were calculated from 

hindcasts for all target months falling in a given season and all 74 European regions. 

3.2.4.2 Potential usefulness of the CM-SSF 

In the second part of the results, the potential usefulness of the CM-SSF compared to the 

ESP is described for decision-making. Here, potential usefulness is defined as the ability of 

the forecasting systems to predict lower or higher streamflows than normal, as measured 

with the ROC score. 

Generally, either of the two forecasting systems (CM-SSF or ESP) is capable of predicting 

skilfully whether the streamflow will be anomalously low or high in the coming months 

(Fig. 5). However, for a few seasons and regions, none of the two forecasting systems is 

skilful at predicting lower and/or higher streamflows than normal. This is especially 

noticeable in winter. 

For most seasons and regions, the ESP is more skilful than the CM-SSF at predicting lower 

and higher streamflows than normal. However, in winter for most regions and during other 

seasons for several regions, the CM-SSF appears more skilful than the ESP. Regions where 

the CM-SSF best predicts lower and higher streamflows than normal at most lead times are 

summarized in Table 1 for all four seasons and the lower and upper terciles of the simulated 

streamflow. 
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Table 1. Regions where the CM-SSF is more skilful than the ESP at predicting anomalously low (lower tercile; first column) or 

high (upper tercile; second column) streamflows for all four seasons (SON, DJF, MAM and JJA from the top to bottom rows). 

This is a summary of the information displayed in Fig. 5. 
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Figure 5. Maps of the best system (as measured with the ROC score) for all four seasons (SON, DJF, MAM and JJA) and the 

lower and upper simulated streamflow seasonal terciles (left-most and right-most columns, respectively) in each region from 

(a) to (h). The pie charts display the best system for each lead time (i.e. 1 to 7 months), as shown in the example pie chart on 

the bottom right of this figure. There are three possible cases: (1) neither the ESP nor the CM-SSF is skilful (red colours), (2) 

the ESP is skilful and better than the CM-SSF (yellow colours), and (3) the CM-SSF is skilful and better than the ESP (blue 

colours). 



69 

 

 Chapter 3. Operational seasonal hydro-meteorological forecasting: from the global to the local scale 

3.2.5 Discussion 

3.2.5.1 Does seasonal climate information improve the predictability of seasonal 

streamflow forecasts over Europe? 

On average over Europe and across all seasons, the CM-SSF is skilful (in terms of hindcast 

accuracy, sharpness and overall performance, using the ESP as a benchmark) for the first 

month of lead time only. This means that, on average, Sys4 improves the predictability over 

historical meteorological information for pan-European seasonal streamflow forecasting 

for the first month of lead time only. At longer lead times, historical meteorological 

information becomes as good as or better than Sys4 for seasonal streamflow forecasting 

over Europe. Crochemore et al. (2016) and Meißner et al. (2017) similarly found positive 

skill in the seasonal streamflow forecast (Sys4 forced hydrological model compared to an 

ESP) for the first month of lead time, after which the skill faded away for basins in France 

and central Europe, respectively. Additionally, on average over Europe and across all 

seasons, the CM-SSF is less reliable than the ESP for all lead times. This is due to a 

combination of too narrow and biased CM-SSF hindcasts, where the bias depends on the 

season that is being forecasted. As mentioned in Sect. 3.2.2, the ESP is not a “naive” 

benchmark, which might partially explain the limited predictability gained from Sys4. 

The predictability varies per season and the CM-SSF predictions are on average sharper 

than and as accurate as the ESP predictions in autumn and winter beyond the first month 

of lead time (and increasingly sharper with longer lead times). The CM-SSF however tends 

to systematically under-predict the autumn and winter simulated streamflow (and 

increasingly under-predicts with longer lead times). In spring and summer, the CM-SSF 

predictions are on average less sharp and less accurate than the ESP predictions, and they 

tend to systematically over-predict the simulated streamflow (and increasingly over-

predict with longer lead times). 

The added predictability gained from Sys4 was shown to lead to skilful CM-SSF predictions 

of lower and higher streamflows than normal for specific seasons and regions. The CM-SSF 

is more skilful at predicting anomalously low and high streamflows than the ESP in certain 

seasons and regions, and noticeably in winter in almost 40% of the European regions, 

mostly clustered in rainfall-dominated areas of western and central Europe. Several 

authors have discussed the higher winter predictability over (parts of) Europe, with 

examples in basins in France (Crochemore et al., 2016), central Europe (Steirou et al., 2017), 

the UK (Bell et al., 2017) and the Iberian Peninsula (Lorenzo-Lacruz et al., 2011). Bierkens 

and van Beek (2009) additionally showed that there was a higher winter predictability in 
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Scandinavia, the Iberian Peninsula and around the Black Sea. Our results are mostly 

consistent with these findings, except for Scandinavia, where the ESP is more skilful than 

the CM-SSF in winter. Bierkens and van Beek (2009) produced the seasonal streamflow 

forecast analysed in their paper by forcing a hydrological model with resampled years of 

historical meteorological information based on their winter NAO index. However, Sys4 has 

difficulties in forecasting the NAO over Europe (Kim et al., 2012), which could have led to 

these inconsistent results with the ones presented by Bierkens and van Beek (2009). 

In spring, the CM-SSF is more skilful than the ESP at predicting lower and higher 

streamflows than normal beyond 1 month of lead time in approximately 15% of the 

European regions, and mostly in regions of western Europe. This could be due to a 

persistence of the skill from the previous winter through the land surface memory (i.e. 

groundwater-driven streamflow or snowmelt-driven streamflow), as highlighted by 

Bierkens and van Beek (2009) for Europe, Singla et al. (2012) for parts of France, Lorenzo-

Lacruz et al. (2011) for the Iberian Peninsula and Meißner et al. (2017) for the Rhine. 

Moreover, it could be that most of the gained predictability occurs in March, a transition 

month between the more predictable winter (as mentioned above) and spring, as discussed 

by Steirou et al. (2017). The ESP is overall more skilful than the CM-SSF at predicting the 

spring streamflow in snow-dominated regions (e.g. most of Fennoscandia and parts of 

central and eastern Europe). This hints at the importance of the IHC (i.e. of snowpack) and 

the land surface memory for forecasting the spring streamflow in snow-dominated regions 

in Europe. 

The added predictability from Sys4 for forecasting lower and higher streamflows than 

normal is limited in summer and autumn for most regions. The CM-SSF is more skilful at 

predicting anomalously low and high streamflows than the ESP in about 10–20% of the 

European regions during those seasons. Other studies have found similar patterns for 

(parts of) Europe; these include less skill in summer than in winter overall for basins in 

France (Crochemore et al., 2016), less skill for the low flow season (July to October) for 

basins in central Europe (Meißner et al., 2017), negative correlations in summer and 

autumn seasonal streamflow forecasts in central Europe as the influence of the winter NAO 

fades away (Steirou et al., 2017), and less skill overall in summer than in winter in Europe 

(Bierkens and van Beek, 2009). The lower CM-SSF skill for predicting lower and higher 

streamflows than normal in summer could additionally be due to the convective storms in 

summer over Europe, which are hard to predict, and to the fact that it is the dry season in 

most of Europe, where rivers are groundwater fed. Therefore, in this season, the quality of 

the IHC controls the streamflow predictability. 
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While the CM-SSF is most skilful (in terms of hindcast accuracy, sharpness and overall 

performance, using the ESP as a benchmark) in autumn and winter and most potentially 

useful in winter, this does not appear to correlate with high performance in the Sys4 

precipitation and temperature hindcasts (as seen on the maps of correlation for Sys4 

precipitation and temperature for all four seasons (SON, DJF, MAM and JJA) and with 2 

months of lead time (as identified in this paper); available at 

https://meteoswiss.shinyapps.io/skill_metrics/, Forecast skill metrics, 2017). Over 

Europe, the Sys4 precipitation and temperature hindcasts are the most skilful in summer 

and the least skilful in autumn and winter. Moreover, the regions of high CM-SSF skill for 

predicting lower and upper streamflows than normal do not clearly correspond to regions 

of high performance in the Sys4 precipitation and temperature hindcasts. Weisheimer and 

Palmer (2014) looked at the Sys4 hindcasts reliability, and categorised temperature 

hindcasts as “marginally useful” in winter, with improved forecasts over Europe in summer. 

They categorised precipitation hindcasts as mostly “marginally useful”, with “not useful” 

forecasts for dry winters over Northern Europe and “dangerously useless” to “not useful” 

forecasts for dry summers. These reliability patterns do not appear to clearly correlate with 

patterns observed in the CM-SSF usefulness. Overall, differences between the streamflow 

and the meteorological predictability could be partially induced by the different benchmark 

used to evaluate the skill of the CM-SSF (i.e. the ESP) compared to the one used to look at 

the performance of the Sys4 precipitation and temperature hindcasts (i.e. ERA-Interim for 

both sources). However, these results clearly indicate that looking at the performance of 

the Sys4 precipitation and temperature hindcasts only does not give a good indication of 

the skill and potential usefulness of the seasonal streamflow hindcasts over Europe, and 

that marginal performance in seasonal climate forecasts can translate through to more 

predictable seasonal streamflow forecasts, and vice versa. The added predictability in the 

CM-SSF could be due to the combined predictability in the precipitation and temperature 

hindcasts, as well as a lag in the predictability from the land surface memory. 

In most regions and for most seasons, at least one of the two forecasting systems (CM-SSF 

or ESP) is able to predict lower or higher streamflows than normal. However, in winter, the 

number of regions and lead times for which none of the forecasting systems are skilful 

increases. This could be because in winter, many regions experience weather-driven high 

streamflows and the performance of Sys4 is limited at this time of year (as mentioned 

above). In those regions, the seasonal streamflow forecasts could be improved either by 

improving the IHC, through for example data assimilation, or by improving the seasonal 

climate forecasts. 
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Overall, the ESP appears very skilful at forecasting lower or higher streamflows than 

normal, showing the importance of IHC and the land surface memory for seasonal 

streamflow forecasting (Wood and Lettenmaier, 2008; Bierkens and van Beek, 2009; Yuan 

et al., 2015b). 

3.2.5.2 What is the potential usefulness and usability of the EFAS seasonal streamflow 

forecasts for flood preparedness? 

What appears like little added skill does not necessarily mean no skill for the forecast users 

and can in fact be a large added value for decision-making (Viel et al., 2016). The ability of 

a seasonal streamflow forecasting system to predict the right category of an event months 

ahead is valuable for many water-related applications (e.g. navigation, reservoir 

management, drought-risk management, irrigation, water resource management, 

hydropower and flood preparedness). From the results presented in this paper, it appears 

that either of the two forecasting systems (CM-SSF or ESP) is capable of predicting lower or 

higher streamflows than normal months in advance, thanks to the predictability gained 

from the IHC, the land surface memory and the seasonal climate hindcast in some regions 

and for certain seasons. 

However, as highlighted by White et al. (2017), there is currently a gap between usefulness 

and usability of seasonal information. What is a useful scientific finding does not 

automatically translate into usable information which will fit into any user’s decision-

making chain (Soares and Dessai, 2016). While several authors have already investigated 

the usability of seasonal streamflow forecasts for applications such as navigation (Meißner 

et al., 2017), reservoir management (Viel et al., 2016; Turner et al., 2017), drought-risk 

management (Sheffield et al., 2013; Yuan et al., 2013a; Crochemore et al., 2017), irrigation 

(Chiew et al., 2003; Li et al., 2017), water resource management (Schepen et al., 2016) and 

hydropower (Hamlet et al., 2002), its application to flood preparedness is still left mostly 

unexplored. One exception being Neumann et al. (2018a), who look at the use of the CM-

SSF to predict the 2013/14 Thames basin floods. This is partially due to the complex nature 

of flood generating mechanisms, still poorly studied on seasonal timescales beyond 

snowmelt-driven spring floods, as well as the fact that seasonal forecasts reflect the 

likelihood of abnormal seasonal streamflow totals, but without much skilful information on 

the exact timing, location and severity of the impact of individual flood events within that 

season. Coughlan de Perez et al. (2017) looked at the usefulness of seasonal rainfall 

forecasts for flood preparedness in Africa and highlighted the complexities behind using 

these forecasts as a proxy for floodiness (for a discussion on floodiness, see Stephens et al., 
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2015). Furthermore, decision-makers in the navigation, reservoir management, drought-

risk management, irrigation, water resource management and hydropower sectors are 

familiar with working on long timescales (i.e. several weeks to months ahead). In contrast, 

the flood preparedness community is currently mostly used to working on timescales of 

hours to a couple of days. 

The Red Cross Red Crescent Climate Centre has recently designed a new approach that 

harnesses the usefulness of seasonal climate information for decision-making for disaster 

management. This approach, called “Ready-Set-Go!”, is made up of three stages. The 

“Ready” stage is based on seasonal forecasts, where they are used as monitoring 

information to drive contingency planning (e.g. volunteer training). The “Set” stage is 

triggered by sub-seasonal forecasts, used as early-warning information to alert volunteers. 

Finally, the “Go!” stage is based on short-range forecasts and consists in the evacuation of 

people and the distribution of aid (White et al., 2017). Using a similar approach, seasonal 

streamflow forecasts could complement existing forecasts at shorter timescales and 

provide monitoring and early-warning information for flood preparedness. Such an 

approach however requires the use of consistent forecasts from short to seasonal 

timescales. In this context, moving to seamless forecasting is becoming vital (Wetterhall and 

Di Giuseppe, 2018). 

Soares and Dessai (2016) also identified the accessibility to the information, enhanced by 

collaborations and ongoing relationships between users and producers, as a key enabler of 

the usability of seasonal information. International projects, such as the Horizon 2020 

IMPREX (IMproving PRedictions and management of hydrological EXtremes) project (van 

den Hurk et al., 2016), alongside promoting scientific progress on hydrological extremes 

forecasting from short to seasonal timescales over Europe, gather together forecasters and 

decision-makers and can effectively demonstrate the added value of the integration of 

seasonal information in decision-making chains. The Hydrologic Ensemble Prediction 

EXperiment (HEPEX) is another international initiative that brings together researchers 

and practitioners in the field of ensemble prediction for water-related applications. It is an 

ideal environment for collaboration and fosters communication and outreach on topics 

such as the usefulness and usability of seasonal information for decision-making. 

3.2.5.3 Aspects for future work 

In this paper, terciles of the simulated streamflow are used. However, and because the 

application of the EFAS seasonal streamflow forecasts is of particular relevance for flood 

preparedness, the evaluation of the hindcasts for lower and higher streamflow extremes 
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(for example the 5th and 95th percentiles, respectively) would be more relevant and might 

give very different results. This was not done in this paper as the time period covered by 

the seasonal streamflow hindcasts (i.e. approximately 27 years) was not long enough for 

statistically reliable results for lower and higher streamflow extremes. The limited hindcast 

length is a common problem in seasonal predictability studies. Increasing the hindcast 

length back in time could lead to more stable Sys4 hindcasts and hence to more stable and 

potentially skilful seasonal streamflow hindcasts (Shi et al., 2015). 

Furthermore, in this paper, the hindcasts were analysed against simulated streamflow, used 

as a proxy for observed streamflow. This is necessary because it enables an analysis of the 

quality of the hindcasts over the entire computation domain, rather than at non-evenly 

spaced stations over the same domain (Alfieri et al., 2014). Further work could however 

include carrying out a similar analysis for selected river stations in Europe, in order to 

account for model errors in the hindcast evaluation. 

The calculation of the verification scores (excluding the ROC) was made by randomly 

selecting 15 ensemble members from the 51 ensemble members of the CM-SSF hindcasts, 

for starting dates for which the ensemble varies between 15 and 51 members (i.e. hindcasts 

made on 1 January, March, April, June, July, September, October and December; this is due 

to the split between 15 and 51 ensemble members in the Sys4 hindcasts, as described in 

Sect. 3.2.2.3 of this paper). In order to investigate the potential impact of this evaluation 

strategy on the results presented in this paper, the CRPSS was calculated for 15 and 51 

ensemble members of the CM-SSF hindcasts for starting dates for which 51 ensemble 

members are available for the full hindcast period (i.e. hindcasts made on 1 February, May, 

August and November). This is displayed in Fig. 6 for all hindcast starting dates, lead times 

(i.e. 1 to 7 months) and regions combined. Overall, it is apparent that while the effect of this 

evaluation strategy is small, it could have had significant impacts in terms of the skill 

differences shown in Fig. 3. Most points on Fig. 6 are situated marginally above the 1-to-1 

diagonal, signifying that the skill of the system might have been under-predicted to some 

extent in this analysis. 
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Figure 6. CRPSS calculated for the CM-SSF against the ESP (benchmark) for hindcasts made on 1 February, May, August and 

November, all lead times (i.e. 1 to 7 months) and all 74 European regions. The x-axis (y-axis) contains the CRPSS calculated 

from 15 (all 51) ensemble members of the CM-SSF. 

The next version of the ECMWF seasonal climate forecast, SEAS5, was released in November 

2017. Future work could include forcing the Lisflood model with SEAS5 and comparing the 

obtained seasonal streamflow hindcasts to the CM-SSF presented in this paper. This should 

indicate whether developments to the seasonal climate forecast translate through to better 

pan-European seasonal streamflow forecasts, which is of particular interest for regions and 

seasons when neither the ESP nor the CM-SSF is currently skilful. Additionally, alternative 

seasonal climate forecasting systems exist that may yield larger seasonal streamflow 

forecast improvements. For example, Scaife et al. (2014) reported that high levels of 

predictability were obtained for the European winter climate and the surface NAO using the 

Met Office Global Seasonal forecast System 5 (GloSea5). Forcing the Lisflood model with 

these improved GloSea5 forecasts would form valuable future research. 

The operational EFAS medium-range streamflow forecasts are currently post-processed as 

a means to improve their reliability (Smith et al., 2016, and references therein). Results 

from this paper have shown that the CM-SSF is mostly unreliable (with regards to the EFAS-

WB) and could hence benefit from post-processing of the seasonal climate forecast. 

However, post-processing techniques used for the EFAS medium-range streamflow 

forecasts might not be suitable for the CM-SSF, as the seasonal climate forecast used for the 

latter should be post-processed in terms of its seasonal anomalies rather than for errors in 

the timing, volume and magnitude of specific events. This is currently being considered for 
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operational implementation within EFAS and is an active area of discussion within the EFAS 

user community. 

For the analysis presented in this paper, the CM-SSF was benchmarked against the ESP. 

Several other techniques exist for seasonal streamflow forecasting, such as statistical 

methods using predictors ranging from climate indices to antecedent observed 

precipitation and crop production metrics, to mention a few (e.g. Mendoza et al., 2017; 

Slater et al., 2017). Further analysis could include benchmarking the CM-SSF against one or 

multiple statistical methods, to assess the relative benefits of various seasonal streamflow 

forecasting techniques. 

In this paper, the ability of both systems (CM-SSF and ESP) to forecast lower and higher 

streamflows than normal was explored, with several hypotheses made to link the 

streamflow predictability to regions’ hydro-climatic processes. This includes the higher 

potential usefulness of the ESP in forecasting the spring streamflow in snow-dominated 

regions and the summer streamflow in regions where rivers are groundwater fed. In these 

regions and for these seasons, the IHC and the land surface memory drive the predictability. 

The CM-SSF provides an added potential usefulness in winter in the rainfall-dominated 

regions of central and western Europe, where the skill appears to persist through to spring 

due to the land surface memory (i.e. groundwater-driven streamflow and snowmelt-drive 

streamflow). While further exploration of these hypotheses is outside of the scope of this 

paper, future work is required to disentangle the links between the added predictability 

from Sys4 and the basins’ hydro-climatic characteristics, for example, understanding the 

predictability in snow-dominated basins, arid regions and temperate groundwater-fed 

basins. 

In this context, additional work to further disentangle and quantify the contribution of both 

predictability sources (seasonal climate forecasts versus IHC) to seasonal streamflow 

forecasting quality over Europe could be carried out by using the EPB (end point blending) 

method (Arnal et al., 2017b). 

3.2.6 Conclusions 

In this paper, the newly operational EFAS seasonal streamflow forecasting system 

(producing the CM-SSF forecasts by forcing the Lisflood model with the ECMWF System 4 

seasonal climate forecasts (Sys4)) was presented and benchmarked against the ESP 

forecasting approach (ESP forecasts produced by forcing the Lisflood model with historical 

meteorological observations) for the hindcast period 1990 to 2017. On average, Sys4 
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improves the predictability over historical meteorological information for pan-European 

seasonal streamflow forecasting for the first month of lead time only (in terms of hindcast 

accuracy, sharpness and overall performance). However, the predictability varies per 

season and the CM-SSF is more skilful on average at predicting autumn and winter 

streamflows than spring and summer streamflows. Additionally, parts of Europe exhibit a 

longer predictability, up to 7 months of lead time, for certain months within a season. In 

terms of hindcast reliability, the CM-SSF is on average less skilful than the ESP for all lead 

times, due to a combination of too narrow and biased CM-SSF hindcasts, where the bias 

depends on the season that is being forecasted. 

Subsequently, the potential usefulness of the two forecasting systems (CM-SSF and ESP) 

was assessed by analysing their skill in predicting lower and higher streamflows than 

normal. Overall, at least one of the two forecasting systems is capable of predicting those 

events months in advance. The ESP appears the most skilful on average, showing the 

importance of IHC and the land surface memory for seasonal streamflow forecasting. 

Nevertheless, for certain regions and seasons the CM-SSF is the most skilful at predicting 

anomalously low or high streamflows beyond 1 month of lead time, noticeably in winter for 

almost 40% of the European regions. This potential usefulness could be harnessed by using 

seasonal streamflow forecasts as complementary information to existing forecasts at 

shorter timescales, to provide monitoring and early-warning information for flood 

preparedness. 

Overall, patterns in skill in the CM-SSF are however not mirrored in the Sys4 precipitation 

and temperature hindcasts. This suggests that using seasonal climate forecast performance 

as a proxy for seasonal streamflow forecasting skill is not adequate and that more work is 

needed to understand the link between meteorological and hydrological variables on 

seasonal timescales over Europe. 
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3.3 The EFAS and GloFAS operational seasonal hydrological outlooks 

The EFAS and GloFAS seasonal hydrological outlooks are operational products of the 

Copernicus EMS. Louise Arnal led the design of EFAS-Seasonal and helped with the design 

of GloFAS-Seasonal. Both outlooks were created to extend the lead time of EFAS and GloFAS 

services to the sub-seasonal to seasonal timescale. They show the likelihood of the 

European or global river network to be unusually dry or wet within the forecast horizon. 

EFAS-Seasonal and GloFAS-Seasonal have the potential to give earlier warnings of floods 

and droughts, for increased preparedness and disaster risk reduction. 

3.3.1 EFAS-Seasonal 

EFAS-Seasonal (introduced in Sect. 3.2; ECMWF, 2017a) was made operational in December 

2016, extending the lead time of EFAS forecasting products from about two weeks to eight 

weeks. It is one of the first operational pan-European sub-seasonal to seasonal hydrological 

outlooks. 

 EFAS-Seasonal shows a map (Fig. 7) of predicted streamflow anomaly and its probability 

of occurrence in the next eight weeks for 94 European river basins (note that the EFAS 

domain, and hence number of river basins, was extended since Sect. 3.2, and the 

corresponding paper, was written). Each river basin can be clicked on to call up a 

hydrograph (Fig. 8), showing the ensemble streamflow forecast river basin weekly 

averages, relevant climatological thresholds (10th and 90th yearly percentiles) and the 

current simulated streamflow (referred to as EFAS-WB in Sect. 3.2), once available. A new 

EFAS-Seasonal outlook is available at the start of each month. 
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The latest EFAS-Seasonal outlook is openly available via the EFAS web interface1. More 

information about EFAS-Seasonal can be found on the EFAS webpage2. 

 

Figure 7. EFAS-Seasonal example map. 

 

Figure 8. EFAS-Seasonal example hydrograph. 

                                                             
1 www.efas.eu 
2 www.efas.eu/en/seasonal-outlook 
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The EFAS-Seasonal streamflow forecasts are produced following the approach described in 

Sect. 3.2. However, ECMWF’s latest seasonal meteorological forecast version (SEAS5; 

ECMWF, 2017b) are now used for their production. 

EFAS-Seasonal was designed in close co-operation between UoR and EFAS scientists (from 

ECMWF and the JRC). It was presented at the EFAS annual meeting 2017, during which 

feedback was gathered from the users. This feedback helped shape GloFAS-Seasonal. 

3.3.2 GloFAS-Seasonal 

The design of GloFAS-Seasonal (along with a performance assessment of the system) is 

documented in a paper, presenting a co-author contribution arising through collaboration 

during this PhD, and has the following reference: 

Emerton, R., E. Zsoter, L. Arnal, H. L. Cloke, D. Muraro, C. Prudhomme, E. M. Stephens, P. 

Salamon and F. Pappenberger, 2018: Developing a global operational seasonal hydro-

meteorological forecasting system: GloFAS-Seasonal v1.0, Geosci. Model Dev., 11, 3327-

3346, doi:10.5194/gmd-11-3327-2018* 

L.A. co-designed the GloFAS-Seasonal operational product (led by Rebecca Emerton) and 

commented on the manuscript before and during publication. 

The following is a summary of the paper, fully available in the thesis Appendix A4. 

GloFAS-Seasonal (ECMWF, 2017a) became operational in Autumn 2017. Its design is very 

similar to EFAS-Seasonal, with the exception of a few additional elements, developed based 

on the feedback received about EFAS-Seasonal. 

GloFAS-Seasonal shows a map of the forecast for 305 major world river basins, highlighting 

the predicted streamflow anomaly and its probability of occurrence in the next 18 weeks 

(approximately four months), averaged over these river basins and displayed for each pixel 

of the global river network. When a station is clicked on, two products are shown: 

• A hydrograph, showing the ensemble streamflow forecast weekly averages and 

relevant climatological thresholds (20th and 80th weekly percentiles). 

                                                             
* ©2018. The Authors. Geoscientific Model Development, a journal of the European Geosciences Union 
published by Copernicus. This is an open access article under the terms of the Creative Commons Attribution 
License, which permits use, distribution and reproduction in any medium, provided that the original work is 
properly cited. 
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• A consistency diagram, displaying the probability of threshold exceedance for the 

latest four consecutive forecasts. 

A new GloFAS-Seasonal outlook is available at the start of each month. 

The latest GloFAS-Seasonal outlook is openly available via the GloFAS web interface3. More 

information about GloFAS-Seasonal can be found on the GloFAS webpage4. 

The GloFAS-Seasonal streamflow forecasts are produced by forcing the HTESSEL land 

surface model with ECMWF’s SEAS5 seasonal meteorological forecasts. The obtained runoff 

from HTESSEL is subsequently routed through the global river network using Lisflood. 

An initial evaluation of the performance of the system (presented in Emerton et al. (2018)) 

indicates that GloFAS-Seasonal streamflow forecasts are potentially useful (i.e. more skilful 

at predicting low and high streamflow events than a long-term average climatology) out to 

several months ahead over the global river network. Additionally, GloFAS-Seasonal 

forecasts are on average more reliable than climatology. The performance of the system 

however varies by region and season, and the forecasts were found to over-predict 

streamflow in general. 

3.4 The 2013/14 Thames basin floods: do improved meteorological 

forecasts lead to more skilful hydrological forecasts at seasonal 

time scales? 

In Sect. 3.2, we have seen that streamflow forecasts have limited skill on seasonal timescales 

over Europe. However, results indicated that seasonal meteorological forecasts can provide 

some added predictability for certain European regions, especially in winter, leading to 

potentially useful streamflow forecasts of higher than normal streamflows up to seven 

months ahead. Furthermore, the IMPREX decision-making activity presented in Chapter 2, 

Sect. 2.4, revealed that skill does not necessarily pose a barrier to use, but that hydrological 

forecasts need to be provided at a higher spatial resolution to support local decision-

making. This section presents an evaluation of the performance of EFAS-Seasonal for 

predicting the 2013/14 Thames basin floods. 

This is the summary of a paper, presenting a co-author contribution arising through 

collaboration during this PhD, and has the following reference: 

                                                             
3 www.globalfloods.eu 
4 www.globalfloods.eu/general-information/forecast-viewer-info 
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Neumann, J. L., L. Arnal, L. Magnusson and H. Cloke, 2018a: The 2013/14 Thames basin 

floods: Do improved meteorological forecasts lead to more skillful hydrological forecasts at 

seasonal time scales?, J. Hydrometeorol., 19, 6, 1059-1075, doi:10.1175/JHM-D-17-0182.1* 

L.A.  co-designed the analysis presented in this paper, provided some technical support for 

the analysis, including running forecasting experiments to produce seasonal hydrological 

hindcasts, analysing the quality of the hindcasts produced and providing guidance on 

plotting the data. Additionally, L.A. commented on the manuscript before and during 

publication. 

The published article can be found in the thesis Appendix A5. 

During the winter of 2013/14, the Thames river basin experienced 12 major Atlantic 

depressions, which led to extensive and prolonged fluvial and groundwater flooding. From 

atmospheric relaxation experiments (i.e. conditions within specified regions are relaxed 

toward a reanalysis; see method in Magnusson (2017)), this exceptional weather was found 

to coincide with highly anomalous meteorological conditions across the globe, through 

teleconnection patterns.  

Building on these findings, this study looked at whether improved seasonal meteorological 

forecasts translate to more skilful seasonal hydrological forecasts for this flood event. To 

this end, atmospheric relaxation experiments produced at ECMWF were applied through 

the Lisflood hydrological model to reforecast the 2013/14 Thames basin floods on a 

seasonal timescale. Results were investigated for three Thames sub-basins of distinct 

hydrogeological characteristics and compared to the default EFAS-Seasonal hydrological 

forecasts.  

Results highlighted that the tropics played an important role in the development of extreme 

conditions over the Thames river basin. While both the tropical Atlantic and tropical Pacific 

relaxation experiments captured seasonal meteorological flow anomalies, the greatest 

seasonal hydrological forecasting skill was found for the tropical Atlantic. The seasonal 

hydrological forecasts associated with the tropical Atlantic relaxation experiments could 

have indicated a potential flood event up to two months ahead. Surprisingly, the seasonal 

hydrological forecasts associated with the north-eastern Atlantic relaxation (closest 

relaxation region to the UK) were confident but largely under-predicted the hydrological 

extremes. All relaxation experiments produced more skilful seasonal hydrological forecasts 

                                                             
* ©2018. The Authors. Journal of Hydrometeorology, a journal of the American Meteorological Society. This is 
an open access article under the terms of the Creative Commons Attribution License, which permits use, 
distribution and reproduction in any medium, provided that the original work is properly cited. 
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than EFAS-Seasonal. The basins’ hydrogeological characteristics were additionally found to 

be an important factor of seasonal streamflow forecast skill. The streamflow was most 

skilfully forecasted for the Thames sub-basin with a large drainage area and a high peak 

flow. Permeable lithology and the basin’s antecedent conditions were both found to 

influence the skill of seasonal groundwater level forecasts.  

Atmospheric relaxation experiments can improve our understanding of global 

teleconnection patterns and the potential predictability of extreme events such as the 

2013/14 basin floods. While these experiments were conducted in retrospect, they indicate 

potentially achievable future improvements in operational hydro-meteorological 

forecasting. Results showed that seasonal hydrological forecasting skill differed from 

considering the meteorology alone, highlighting the need to consider both components 

jointly when investigating such high-impact hydro-meteorological events. 
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Chapter 3 explored the performance of the EFAS-Seasonal and the GloFAS-Seasonal 

operational hydro-meteorological forecasting systems over Europe and the globe, 

respectively. Findings showed that both systems could be potentially useful for predicting 

low and high streamflow events out to several months ahead. However, although seasonal 

hydrological predictability has improved over the last decades, the performance of EFAS-

Seasonal and GloFAS-Seasonal (and similar systems) remains limited.  

Chapter 4 presents a sensitivity analysis method which disentangles the relative 

contributions of predictability sources to seasonal streamflow forecasting skill. This 

method can easily be applied to any seasonal hydro-meteorological forecasting system to 

assess how to efficiently improve the forecasts it produces. 
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Chapter 4 

 

4.1 Background and aim 

Hydro-meteorological forecasts currently offer a limited predictability of events on the 

seasonal timescale (see Chapter 3). This barrier in predictability can arise from various 

parts of the forecasting chain, such as errors in the: i) hydrological model, ii) forecasts’ 

initial hydrological conditions, iii) seasonal meteorological forcings (i.e. forecasts, historical 

observations, etc.), and iv) due to the inherent chaos of nature and the growing 

uncertainties with time.  

Given the variety of these error sources, seasonal hydro-meteorological forecast 

developments are equally varied and include:  

i Hydrological modelling developments: through model calibration, 

improvements of the model physics, increase in the model’s spatial and 

temporal resolutions, or the combination of several hydrological models to 

better capture model uncertainties (Wanders et al., 2019). 

ii Initial hydrological conditions’ improvements: through data assimilation (Liu et 

al., 2012), initialising the hydrological model with multiple sets of initial 

hydrological conditions or more frequent forecast initialisations to better 

characterise the initial conditions’ uncertainty (Wetterhall and Di Giuseppe, 

2018). 

iii Reduction of seasonal meteorological forecasts’ errors: by improving the model 

physics, increasing the general circulation model’s spatial and temporal 

resolutions, increasing the number of meteorological ensemble members or 

combining multiple meteorological model outputs to better characterise 

uncertainty (Mo and Lettenmaier, 2014), or post-processing the meteorological 

forecasts (Crochemore et al., 2016). 

iv Improvements in the science of seasonal predictability through research 

experiments and case studies (Neumann et al., 2018a; see Chapter 3, Sect. 3.4). 

Towards tangible seasonal streamflow forecast 
improvements  
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Many of the methods mentioned above are applicable to hydro-meteorological forecasting 

on a range of timescales; only a few are unique to seasonal forecasting. While implementing 

these methods can be costly (in terms of time invested, computer-power and money), they 

might not lead to proportionate seasonal hydro-meteorological forecast improvements for 

predicting events of societal relevance. In fact, operational streamflow forecast quality has 

not significantly improved in the last decade, despite the costly research and developments 

they are receiving (Pagano et al., 2004a; Welles et al., 2007). Adding to this is the threat 

from the currently observed and future expected consequences of climate change (i.e. in 

Europe these are an increase in the risk of coastal and inland flooding, from sea level rise 

and from an increase in the frequency and intensity of heavy precipitation events, 

respectively; IPCC, 2014). In this context, it is vital to prioritise seasonal hydro-

meteorological forecast developments to maximise improvements in seasonal 

predictability of hydrological extremes for forecast users and society. 

In this chapter, we present a novel efficient sensitivity analysis method which can 

disentangle the dominant error sources (i.e. targeting sources ii) and iii) mentioned above) 

in seasonal streamflow forecasts. The first section of this chapter introduces the method, 

tested over 18 US basins (or catchments). In the second section, we present results of the 

method applied to EFAS-Seasonal. The third section presents the novel concept of a ‘flexible 

seasonal hydro-meteorological forecasting system’, inspired by the sensitivity analysis’ 

results. The aim of this chapter is to propose novel methods for tangible seasonal 

streamflow forecast improvements. 

4.2 An efficient approach for estimating streamflow forecast skill 

elasticity 

This section has been published in Journal of Hydrometeorology (JoHM) with the following 

reference: 

Arnal, L., A. W. Wood, E. Stephens, H. L. Cloke and F. Pappenberger, 2017b: An Efficient 

Approach for Estimating Streamflow Forecast Skill Elasticity, J. Hydrometeorol., 18, 1715–

1729, doi:10.1175/JHM-D-16-0259.1* 

The contributions of the authors of this paper are as follows: A. W. Wood (collaborator: 

NCAR), E.  Stephens (supervisor: academic), H. L. Cloke (supervisor: academic) and F. 

                                                             
* ©2017. The Authors. Journal of Hydrometeorology, a journal of the American Meteorological Society. This is 
an open access article under the terms of the Creative Commons Attribution License, which permits use, 
distribution and reproduction in any medium, provided that the original work is properly cited. 
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Pappenberger (collaborator: ECMWF). A.W.W. provided the dataset. L.A. and F.P. conceived 

the experiment. L.A. posed the research questions, designed and carried out the analysis, 

and wrote the paper. L.A., A.W.W., E.S., H.L.C. and F.P. interpreted the results and 

commented on the manuscript. Overall, 95% of the research and 90% of the writing was 

undertaken by L.A. 

The published article can be found in the thesis Appendix A6. 

Abstract. Seasonal streamflow prediction skill can derive from catchment initial 

hydrological conditions (IHCs) and from the future seasonal climate forecasts (SCFs) used 

to produce the hydrological forecasts. Although much effort has gone into producing state-

of-the-art seasonal streamflow forecasts from improving IHCs and SCFs, these 

developments are expensive and time consuming and the forecasting skill is still limited in 

most parts of the world. Hence, sensitivity analyses are crucial to funnel the resources into 

useful modeling and forecasting developments. It is in this context that a sensitivity analysis 

technique, the variational ensemble streamflow prediction assessment (VESPA) approach, 

was recently introduced. VESPA can be used to quantify the expected improvements in 

seasonal streamflow forecast skill as a result of realistic improvements in its predictability 

sources (i.e. the IHCs and the SCFs) – termed ‘‘skill elasticity’’ – and to indicate where efforts 

should be targeted. The VESPA approach is, however, computationally expensive, relying 

on multiple hindcasts having varying levels of skill in IHCs and SCFs. This paper presents 

two approximations of the approach that are computationally inexpensive alternatives. 

These new methods were tested against the original VESPA results using 30 years of 

ensemble hindcasts for 18 catchments of the contiguous United States. The results suggest 

that one of the methods, end point blending, is an effective alternative for estimating the 

forecast skill elasticities yielded by the VESPA approach. The results also highlight the 

importance of the choice of verification score for a goal-oriented sensitivity analysis. 

4.2.1 Introduction 

Unprecedented increases in computer capabilities have shaped the last several decades’ 

advances in numerical weather prediction (NWP), and with them, the development of 

environmental forecasting and modeling systems. This has led to a shift in the strategy of 

operational forecasting centers toward more integrated modeling and forecasting 

approaches, such as coupled systems and Earth system models (ESMs), with the final aim 

to extend the limits of predictability (i.e. from sub-seasonal to seasonal forecasting). These 

developments are supported by the assimilation of more and better-quality observation 
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data as well as the increase in model resolutions and complexity. However, such advances 

can be very expensive and data hungry and may not yield proportional improvements. 

Seasonal hydrological forecasts are predictions of the future states of the land surface 

hydrology (e.g. streamflow), up to a few months ahead. They are valuable for applications 

such as reservoir management for hydropower, agriculture and urban water supply, spring 

flood and drought prediction, and navigation, among others (Clark et al. 2001; Hamlet et al. 

2002; Chiew et al. 2003; Wood and Lettenmaier 2006; Regonda et al. 2006; Luo and Wood 

2007; Kwon et al. 2009; Cherry et al. 2005; Viel et al. 2016). They have the potential to 

provide early warning for increased preparedness (Yuan et al. 2015b). Traditionally, 

seasonal streamflow forecasts have relied upon land surface memory, the persistence in the 

land surface (e.g. catchment) initial hydrological conditions (IHCs; of soil moisture, 

groundwater, snowpack, and the current streamflow). IHCs are one of the most important 

predictability sources of seasonal streamflow forecasts and were thus the starting point for 

the development of the ensemble streamflow prediction (ESP) approach in the 1970s 

(Wood et al. 2016b). The ESP was first developed and used for reservoir management 

purposes. It is produced by running a hydrological model with observed meteorological 

inputs to produce current observed IHCs, from which the forecast is started, and the forcing 

over the forecast period is undertaken using an ensemble of historical meteorological 

observations (Day 1985). The ESP method assumes that the model states to initialize a 

forecast are perfectly estimated, while the future climate is completely unknown. However, 

the skill of the ESP decreases significantly after one to a few months of lead time over most 

parts of the world because of a decrease in the land surface memory with time. The 

achievable predictability from the ESP thus depends on the persistence of the IHCs, which 

can vary as a function of the season (i.e. the transition between dry and wet seasons can, for 

example, be hard to forecast) and the location and size of the catchment (i.e. the streamflow 

in a large catchment with a slow response time and/or situated in a region with negligible 

precipitation inputs during the forecast period will for example be easier to forecast; Wood 

and Lettenmaier 2008; Shukla et al. 2013; van Dijk et al. 2013; Yuan et al. 2015b). 

More recently, seasonal climate predictability derived from large-scale climate precursors 

[e.g. El Niño–Southern Oscillation (ENSO) and the North Atlantic Oscillation (NAO)] has 

been used to enhance seasonal streamflow forecasting (e.g. Wood et al. 2002; Yuan et al. 

2013b; Demargne et al. 2014; Mendoza et al. 2017). Such systems produce streamflow 

forecasts by initializing a hydrological model to estimate IHCs and forcing the model with 

inputs based on seasonal climate forecasts (SCFs; of temperature and precipitation) instead 

of historical observations. Their skill is also still limited because of the rapid decrease in 
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precipitation forecasting skill beyond two weeks of lead time, and the skill is variable in 

both space and time (Yuan et al. 2011; van Dijk et al. 2013; Slater et al. 2016). In Europe, for 

instance, the skill is higher in winter in regions where the winter precipitation is highly 

correlated with the NAO. Regions with high skill include the Iberian Peninsula, Scandinavia, 

and regions around the Black Sea (Bierkens and van Beek 2009). In the contiguous United 

States (CONUS), the skill is on average higher over (semi)arid western catchments, due to 

the persistence of the IHCs influence up to three months of lead time. The skill can be higher 

in some regions of the western CONUS (i.e. California, the Pacific Northwest, and Great 

Basin) in the winter and fall due to higher precipitation forecasting skill in strong ENSO 

phases (Wood et al. 2005). 

Increasing the seasonal streamflow forecast skill remains a challenge: one that is being 

tackled by improving IHCs and SCFs using a variety of techniques. Techniques include 

model developments and data assimilation and can vary in computational expense. 

However, over the past several decades, it has been shown that operational streamflow 

forecast quality has not significantly improved (Pagano et al. 2004a; Welles et al. 2007). 

This is the motivation for the use of sensitivity analysis techniques to guide future 

forecasting developments for seasonal streamflow forecasting and is the basis for this 

paper. 

It is in this context that the attribution of seasonal streamflow forecast uncertainty to the 

IHC and SCF errors has been researched extensively. Wood and Lettenmaier (2008) 

introduced a method based on two hindcasting end points: the ESP and the reverse-ESP. In 

contrast to the ESP, which only represents the uncertainty in the future climate, the reverse-

ESP only represents the uncertainty in IHCs by using an ensemble of initial model states 

taken from historical simulations to initialize a prediction forced by a single set of observed 

meteorological inputs. Typically, the input uncertainty attenuates over a period of months 

as the influence of the perfect future climate input increasingly determines model states. 

Comparing the skill of the ESP versus reverse-ESP seasonal streamflow forecasts allows one 

to identify the dominant predictability source (and conversely uncertainty source) of 

seasonal streamflow forecasting (i.e. the IHCs or the SCFs), and its evolution in both space 

and time. It was successfully used to disentangle the relative importance of initial 

conditions and boundary forcing errors on seasonal streamflow forecast uncertainties by 

several authors: for example, for catchments in the United States (Wood and Lettenmaier 

2008; Li et al. 2009; Shukla and Lettenmaier 2011), in France (Singla et al. 2012), in 

Switzerland (Staudinger and Seibert 2014), in China (Yuan et al. 2016; Yuan 2016), and in 
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the Amazon (Paiva et al. 2012), as well as for the entire globe (Shukla et al. 2013; Yossef et 

al. 2013; MacLeod et al. 2016). This work is instructive as it enables the dominant 

predictability source to be identified (i.e. where efforts and resources should be targeted) 

to focus improvement, which could potentially lead to more skillful seasonal streamflow 

predictions. 

This method was extended by Wood et al. (2016a, hereafter W16) via a method called 

variational ensemble streamflow prediction assessment (VESPA), which involves assessing 

intermediate IHC and SCF uncertainty points between the perfect and climatological points 

applied in ESP and reverse-ESP. The approach allows the calculation of a metric called ‘‘skill 

elasticity’’, that is, the sensitivity of streamflow forecast skill to IHC and SCF skill changes. A 

key drawback of the VESPA approach, however, is that it is computationally intensive. For 

each catchment and initialization month of a forecast, the response surface was defined 

through the use of dozens of multidecadal variable-skill ensemble hindcasts, ultimately 

amounting to millions of simulations. In contrast, the ESP and reverse-ESP skill can be 

estimated from a single set of ensemble hindcasts spanning a historical period. The IHC and 

SCF skill variation method was also highly specific to the particular model state 

configuration and involved a relatively simplistic linear blending procedure. The elasticity 

calculations were furthermore based only on a single verification score of forecast skill (i.e. 

coefficient of determination R2) for the analysis. An ensemble forecast has many attributes, 

for example, the skill, the reliability, the resolution, and the uncertainty of the forecast, 

among others. To obtain a complete picture of the forecast quality, the scores should 

encompass many of these attributes, as each verification score will give us different 

information about the forecast quality. 

The drawbacks of VESPA motivate us to assess two computationally inexpensive methods 

of estimating the forecast skill elasticities, using only the original ESP and reverse-ESP 

results that depend on the single hindcast series as mentioned above. The two methods are 

termed end point interpolation (EPI) and end point blending (EPB). In the first part of this 

paper, we compare results from the two methods tested on 18 catchments of the CONUS to 

the original results from the VESPA, using a single verification score. The objective of this 

part is to investigate whether the new methods can discriminate the influence of IHC and 

SCF errors on seasonal streamflow forecasting uncertainties and to assess the ability of 

those new methods to correctly estimate the forecast skill elasticities. In the second part, 

additional verification scores are applied for streamflow forecast verification, supporting 

the second objective of the paper, which is to explore the sensitivity of the results obtained 

from the two new methods and the VESPA approach to the choice of the verification score. 
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4.2.2 Methods, data, and evaluation strategy 

4.2.2.1 The VESPA approach 

In this work, as in W16, the term ‘‘perfect’’ refers to current observed meteorological data 

and the term climatological refers to the whole distribution of historical observed data. 

Figure 1 presents the ESP (Fig. 1a), the reverse-ESP (Fig. 1b), the climatology (Fig. 1c), and 

the VESPA forecast (Fig. 1d), as generated in W16. The ESP, the reverse-ESP, the perfect 

forecast, and the climatology are all end points of the uncertainty in the sense that the 

uncertainty in those forecasts is either perfect or climatological. They are the end points of 

the VESPA approach. 

VESPA aims to produce streamflow forecasts from IHCs and SCFs with an uncertainty 

situated between the perfect and the climatological uncertainty (Fig. 1d). Forecasts were 

generated by linearly blending the climatological and perfect IHCs (i.e. model moisture 

states) and the climatological and perfect SCFs (i.e. meteorological forcings of precipitation, 

evapotranspiration, and temperature), subsequently used to run the hydrological model. 

The weights used for blending the data were (w = 0, 0.05, 0.10, 0.25, 0.50, 0.75, 0.90, 0.95, 

1.0), applied so that a weight of zero is the perfect knowledge and unity is the climatological 

knowledge, with wIHC and wSCF denoting the weights used to blend the IHCs and the SCFs, 

respectively (W16). An ESP forecast results from the weights wIHC = 0 and wSCF = 1, the 

reverse-ESP from wIHC = 1 and wSCF = 0, the perfect forecast from wIHC = 0 and wSCF = 0, and 

the climatology from wIHC = 1 and wSCF = 1. 
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Figure 1. Schematic of (a) the ESP, (b) the reverse-ESP, (c) the climatology, and (d) the VESPA (this figure is adapted from Fig. 

3 in W16). 

To plot the skill of the VESPA forecasts as a function of the IHC and SCF skill, W16 used skill 

surface plots (Fig. 2), interpolating forecast skill results from different IHC and SCF 

weighting combinations. The axes represent the SCF and IHC skill, derived respectively 

from the blending weights wSCF and wIHC using the following equations (W16): 

SCF skill = 100 × (1 − wSCF
2 )  and           (1) 

IHC skill = 100 × (1 −  wIHC
2 )             (2) 

The SCF and the IHC skill values obtained from these equations are the percentage of 

climatological variance explained in the respective predictability source (i.e. SCF and IHC; 

W16). Each SCF skill–IHC skill combination corresponds to a specific VESPA forecast, the 

skill of which can be plotted on the skill surface plot (black plus signs in Fig. 2). The blue 

circles are the end points of the VESPA forecasts: the reverse-ESP (revESP in Fig. 2), the 

perfect forecasts, the ESP, and the climatology (climo in Fig. 2). The skill surface plots are 

hence a graphical representation of the response surface obtained from the VESPA 

sensitivity analysis. 



93 

 

Chapter 4. Towards tangible seasonal streamflow forecast improvements 

The VESPA seasonal streamflow forecasts were generated by W16 using lumped 

Sacramento Soil Moisture Accounting (SAC-SMA) and SNOW-17 catchment models for 

unimpaired catchments. The models were forced with daily inputs in precipitation, 

temperature, and potential evapotranspiration and were calibrated and validated against 

observed daily streamflow from the U.S. Geological Survey (USGS). Eighty-one skill 

variations of a 30-yr hindcast (from 1981 to 2010) were produced for 424 catchments in 

the CONUS, starting at the beginning of each month (i.e. forecast initialization dates), with 

lead times up to 6 months. 

 

Figure 2. Schematic of a skill surface plot. The y and x axes display the SCF and the IHC skill, respectively. They are expressed 

as a percentage of the climatological variance explained in the respective predictability source. The blending weights, wSCF 

and wIHC, from which the skill values are derived are shown in square brackets in the figure. 

4.2.2.2 Alternative methods to the VESPA approach 

In this paper we present two alternative methods of the VESPA approach, the EPI and the 

EPB. These methods aim to reproduce the response surface obtained from the VESPA 

approach by using the same 30-yr hindcast ensembles produced by W16, aggregated over 

the first three months with zero lead time for each initialization date (referred to as 3-

month streamflow forecast hereafter) and corresponding exclusively to the end points (i.e. 

the ESP, the reverse-ESP, the perfect forecast, and the climatology). 

The two new methods were tested for a subset of the CONUS-wide catchment dataset 

presented in W16 (Fig. 3), comprising 18 catchments from the large USGS Hydro-Climatic 

Data Network (HCDN; Lins 2012). The 18 selected catchments cover a large range of 
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hydrometeorological conditions, including the maritime climate regime of the U.S. West 

Coast catchments; the humid regime of the eastern United States (south of the Great Lakes) 

with rainfall-driven runoff and variable winter snow in the most northern catchments; and 

the Intermountain West and northern Great Plains regions, where streamflow is greatly 

influenced by the snow cycle. 

 

Figure 3. Map of the 18 catchments of the CONUS selected for the analysis and the HCDN regions (dark blue outlines). 

4.2.2.2.1 End point interpolation 

The EPI produces a response surface by interpolating the forecast skill of the end points 

throughout the skill surface plot. Both linear (i.e. linear barycentric interpolation) and cubic 

interpolation techniques were tested. However, results will be shown for the linear 

interpolation only as the cubic interpolation did not provide noticeable improvements to 

the linear interpolation given that the interpolation is based on only four points situated at 

the corners of the response surface. The linear EPI was performed for each forecast 

initialization date and for each catchment. 

4.2.2.2.2 End point blending 

The EPB generates hindcasts for each wSCF–wIHC combination (i.e. each plus sign in Fig. 2; 

wSCF and wIHC are selected to be the same blending weights used by W16, for the purpose of 

comparison). For each combination point, a new ensemble of 100 members was generated 

by blending the four end points, given a specific weighted average. The percentage of each 

end point used [EP(%); i.e. the number of members randomly selected from each end point], 

was calculated for each combination point using the following equation: 

EP(%) = (1 −  |xEP −  wIHC|) × (1 −  |yEP −  wSCF|)          (3) 
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where xEP and yEP are the wIHC and wSCF values of the end point for which the percentage is 

calculated, respectively. For example, if the wIHC and wSCF match the end point values, 100% 

of the EPB hindcast members are resampled from that end point (i.e. the end point skill is 

reproduced). This was done for each forecast initialization date and for each catchment. 

To produce the skill surface plots for the EPB method, the SCF and IHC skill was calculated 

using the same equations as in W16 [i.e. Eqs. (1) and (2), respectively]. 

4.2.2.3 The evaluation strategy 

The aim of this paper is to compare two computationally inexpensive alternative methods 

to the VESPA approach, the EPI and the EPB. To this end, the paper unfolds into two distinct 

objectives. First, we want to investigate whether the EPI and/or the EPB can discriminate 

the influence of IHC and SCF errors on seasonal streamflow forecasting uncertainties and 

reproduce VESPA skill elasticity estimates. This will validate the use of one or both methods 

as alternative to the VESPA approach. Second, we want to explore the sensitivity of the 

results obtained from the EPI, the EPB, and the VESPA methods to the choice of the 

verification score. This will be an attempt to demonstrate the importance of the choice of 

the verification score for forecast verification and communication. 

4.2.2.3.1 Can EPI and EPB discriminate the influence of IHC and SCF errors on seasonal 

streamflow forecast uncertainties? 

To explore the first objective of this paper, skill surface plots were produced for the EPI, the 

EPB, and the VESPA methods. As in W16, the seasonal streamflow forecast skill depicted in 

the skill surface plots was calculated from the R2 of forecast ensemble means with the 

observations, where perfect forecasts (model simulations driven by the observed 

meteorology) were treated as observations to calculate the R2. As discussed at length in 

W16, this choice deliberately excludes the model errors as a source of forecast uncertainty. 

The skill surface plots obtained from the EPI and the EPB methods were subsequently 

compared qualitatively and quantitatively to the skill surface plots obtained for the VESPA 

approach. The qualitative analysis consisted in visually inspecting the patterns contained 

in the skill surface plots, giving an indication of the dominant predictability source on the 

streamflow forecast skill. The quantitative analysis of the results was based on the 

calculation of the skill elasticities for the IHCs and the SCFs (EIHC and ESCF, respectively), for 

the EPI, the EPB, and the VESPA methods, averaged across three transects of a quadrant 

situated in the center of the response surface, according to the following equations: 
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EIHC = 100 ×
{

S(F[75,19])−S(F[19,19])

75%−19%
+  

S(F[75,44])−S(F[19,44])

75%−19%
+  

S(F[75,75])−S(F[19,75])

75%−19%
}

3
⁄        (4) 

ESCF = 100 ×
{

S(F[19,75])−S(F[19,19])

75%−19%
+  

S(F[44,75])−S(F[44,19])

75%−19%
+ 

S(F[75,75])−S(F[75,19])

75%−19%
}

3
⁄        (5) 

The numerators, expressed as S(F[∙]) - S(F[∙]), contain the gradients in the streamflow 

forecast skill between IHC skill (or SCF skill) values of 75% and 19% (the denominator). 

The values in between the square brackets of the numerator are the IHC skill followed by 

the SCF skill values, which indicates a certain wSCF–wIHC combination point in the example 

skill surface plot in Fig. 2. In the denominator, the IHC and SCF skill gradients are gradients 

in the percentage of the climatological variance explained in the respective predictability 

source. The skill elasticities (EIHC and ESCF) are positively oriented, where a skill elasticity of 

zero is obtained when the predictability source has no influence on the skill of the 

streamflow forecast, while positive (negative) elasticities mean that an improvement in the 

predictability source will lead to higher (lower) streamflow forecast skill. The skill 

elasticities were calculated for all three methods and for the 3-month streamflow forecasts 

produced for each catchment and forecast initialization date. 

The only difference between Eqs. (4) and (5) and the skill elasticities calculated in W16 is 

that they chose to calculate skill elasticities around the ESP point in the skill surface plots. 

Here, we choose to calculate skill elasticities across a quadrant within the skill surface plot 

(between 75% and 19% of the climatological variance explained in the IHC and the SCF) in 

order for the skill elasticity values calculated in this paper to reflect the forecast skill 

gradients within the response surface. This is done differently to W16 because the aim of 

this paper is to compare (qualitatively and quantitatively) the skill surface plots obtained 

from the EPI and the EPB methods to the VESPA approach. 

4.2.2.3.2 What is the sensitivity of the response surface to the choice of the verification 

score? 

To investigate the second objective of this paper, several verification scores were calculated 

for each method (i.e. the EPI, the EPB, and the VESPA approach). These scores were selected 

in order to cover key attributes of the forecasts verified, and they include 

• the mean absolute error (MAE) of forecast ensemble means, relative to the perfect 

forecasts and 

• the continuous rank probability score (CRPS) and its decomposition: 
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o the potential CRPS (CRPSpot), where CRPSpot = resolution - uncertainty, 

and 

o the reliability part of the CRPS (CRPSreli). 

The potential CRPS is the CRPS value that a forecast with perfect reliability would have. The 

uncertainty is the variability of the observations and the resolution is the ability of the 

forecast to distinguish situations with distinctly different frequencies of occurrence. The 

CRPS reliability is a measure of the bias and the spread of the system. 

The CRPS was chosen as it is a widely used score to assess the overall quality of an ensemble 

hydrometeorological forecast. The CRPS moreover has the advantage that it can be 

decomposed into different scores in order to look at the many different attributes of an 

ensemble forecast. The CRPS for a single forecast is equivalent to the MAE, which is why the 

latter was chosen. 

For all of the above verification scores, the corresponding skill scores were calculated for 

each point of the skill surface plots from 

skill scoreforecast = 1 −  
scoreforecast

scorereference
            (6) 

where the scorereference is the score of the climatology point, for each method, each 

initialization date, and each catchment. A perfect forecast results in a forecast skill score of 

unity and a forecast with equal quality as the reference forecast corresponds to a skill score 

of zero. Any forecasts of lower quality than the reference forecast produce negative skill 

score values. Skill scores were calculated in order to have a similar score range as the R2 

(i.e. a climatological score of zero and a perfect score of one), for comparative purposes. 

Skill elasticities were subsequently calculated for all the skill scores, using Eqs. (4) and (5), 

for all three methods and for the 3-month streamflow forecasts produced for each 

catchment and forecast initialization date. From these skill elasticity values, the influence 

of improvements in the IHCs and SCFs on the seasonal streamflow forecast skill can be 

assessed, in terms of the forecasts’ overall performance (considering the mean of the 

ensemble or the full ensemble spread, from the MAE and the CRPS, respectively), their 

resolution and uncertainty (CRPSpot), and their reliability (CRPSreli). 

4.2.3 Results 

4.2.3.1 Can EPI and EPB discriminate the influence of IHC and SCF errors on seasonal 

streamflow forecast uncertainties? 
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For the first part of this study, the Crystal River (Colorado; USGS gauge 009081600), a 

snowmelt-driven catchment, will be used as a test case to illustrate the skill surface plots 

obtained from the EPI and the EPB methods, compared to the VESPA approach. 

Precipitation is the highest in winter and spring in this catchment and falls as snow between 

November and April. In April, the snow starts melting and consequently the soil moisture 

and streamflow both increase. 

Figure 4 displays the skill surface plots obtained for the VESPA (Fig. 4a), the linear EPI (Fig. 

4b), and the EPB methods (Fig. 4c), from R2 for the 3-month streamflow forecast for the 

Crystal River, for initializations on the first of each month (each row in Fig. 4). 

Figures 4d and 4e show the differences between the skill surface plots obtained for the 

VESPA and EPI methods and the VESPA and EPB methods, respectively. A first visual 

comparison of the skill surface plots obtained from the linear EPI method (Fig. 4b) and the 

EPB method (Fig. 4c) with those obtained from the VESPA approach (Fig. 4a) for the Crystal 

River tells us that the skill surface plots obtained from all three methods are very similar. 

For each initialization date, the orientation of the gradients in streamflow forecast skill 

appears identical. The EPI and the EPB methods seem to correctly indicate the dominant 

predictability source on the 3-month streamflow forecast skill, for each initialization date 

for this catchment. Similar results were obtained for the other 17 catchments (see Figs. S1–

S17 in the supplemental material in thesis Appendix A6). Forecasts made on the first of 

February, March, and September show a sensitivity to the SCF skill (i.e. horizontal or near 

to horizontal orientation of the streamflow forecast skill gradients), while all other 

forecasts are dominantly sensitive to the IHC skill (i.e. vertical or near to vertical orientation 

of the streamflow forecast skill gradients). 

The gradients in streamflow forecast skill contained in the EPI skill surface plots (Fig. 4b) 

differ moderately from the gradients obtained from the VESPA approach (Fig. 4a). This can 

be observed in Fig. 4d, showing the differences between the skill surface plots obtained for 

both methods. The VESPA approach gives very strong gradients, causing a rapid decrease 

in streamflow forecast skill with a decrease in one of the predictability sources’ skill, 

depending on the initialization date. In comparison, the EPI method indicates a gradual 

decrease in streamflow forecast skill with a decrease in one of the two predictability 

sources, depending on the initialization date. The streamflow forecast skill gradients 

produced by the EPI method are a reflection of the interpolation method used (i.e. here 

linear), and because the corner points lack information about describing curvature of the 

surface at interior points, they cannot fully capture nonlinearities in the skill gradients 
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across the skill surface. For some interior points, this limitation of the EPI method could 

estimate very different skill elasticities than those obtained from the VESPA approach. 

The skill surface plots produced by the EPB method (Fig. 4c) show minor differences in the 

streamflow forecast skill gradients when compared to the skill surface plots generated by 

the VESPA approach (Fig. 4a). This can be seen in Fig. 4e, which shows the differences 

between the skill surface plots obtained for both methods. To further inspect those 

differences, they will be explored quantitatively (i.e. by comparing the skill elasticities) 

below. 
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Figure 4. Skill surface plots obtained for (a) the VESPA, (b) the linear EPI, and (c) the EPB methods. The skill is calculated from 

the R2 of the 3-month streamflow forecast ensemble means against the perfect forecasts, for hindcasts produced from 1981 

to 2010 for the Crystal River (USGS gauge 009081600), with forecast initializations on the first day of each month. Differences 

between the skill surface plots obtained for (d) the VESPA and linear EPI methods and (e) the VESPA and EPB methods are 

also shown. 
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To quantify the accuracy of the patterns contained in the EPI and the EPB skill surface plots 

compared to the patterns of the VESPA skill surface plots, IHC and SCF skill elasticities (i.e. 

EIHC and ESCF, respectively) were calculated across a quadrant situated within the response 

surface for all three methods, for the 18 catchments and each forecast initialization date, 

from Eqs. (4) and (5), respectively. Figure 5 presents the skill elasticities for nine of the 18 

catchments (the plots for the other nine catchments are shown in Fig. S18, in the 

supplemental material in thesis Appendix A6). Each plot corresponds to a catchment and 

shows the skill elasticities obtained from the VESPA, the linear EPI, and the EPB methods 

as a function of the forecast initialization date. From the nine different plots, the skill 

elasticities given by the EPB method appear almost identical to the VESPA approach, 

whereas the skill elasticities obtained from the EPI method differ in some places. This 

confirms that the patterns of the EPB method are very similar to the patterns of the VESPA 

approach, with it being the closest out of the two tested methods. 

The value of the SCF skill elasticity (i.e. ESCF) in relation to the value of the IHC skill elasticity 

(i.e. EIHC), for a given method, indicates the dominant predictability source on the 3-month 

streamflow forecast skill (here calculated from the R2). For a selected method, equal SCF 

and IHC skill elasticity values signifies that equal improvements in both the SCFs and the 

IHCs will lead to equal improvements in the streamflow forecast skill. If ESCF is superior 

(inferior) to EIHC, it reflects a larger potential increase in streamflow forecast skill by 

improving the SCFs (IHCs). Although the EPI method almost always indicates the same 

dominant predictability source as the two other methods, the degree of influence of changes 

in IHC and SCF skill on the streamflow forecast skill (i.e. the exact values of the skill 

elasticities) often differs. For many catchments and forecast initialization dates, the EPI 

appears to underestimate the skill elasticities produced by the VESPA method. 

The nine different catchments for which the skill elasticities are presented in Fig. 5 display 

three different types of behavior, best captured by the VESPA approach and the EPB 

method. For the three catchments in Fig. 5 (left), improvements in the IHCs would yield the 

highest improvements in the 3-month streamflow forecast skill for spring to summer 

initializations (April–August for the Crystal River, March–July for the Fish River, and 

March–June for the Middle Branch Escanaba River) and in the winter (October–January for 

the Crystal River, November–December for the Fish River, and in December for the Middle 

Branch Escanaba River). SCF improvements would lead to better 3-month streamflow 

forecast skill for forecasts initialized in the late winter and summer to fall (February–March 

and September for the Crystal River, February and August–October for the Fish River, and 

January–February and July–September for the Middle Branch Escanaba River). For the 
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three catchments in Fig. 5 (middle), a notable feature is that the 3-month streamflow 

forecast skill would benefit from SCF improvements for summer initializations (June–

September for the Chattooga and the Nantahala Rivers and July–September for the New 

River). Finally, for the three catchments in Fig. 5 (right), the 3-month streamflow forecast 

skill would benefit from improvements in the SCFs for all initialization dates. This is true 

with the exception of forecasts initialized in December for East Fork Shoal Creek. It is 

important to note that there is uncertainty around these estimates. However, this is a good 

first indication of the sensitivity of 3-month streamflow forecast skill (measured from the 

R2) to IHC and SCF errors for each forecast initialization date and each catchment. 

 

Figure 5. Streamflow forecast skill elasticities for the IHCs (i.e. EIHC, solid line) and the SCFs (i.e. ESCF, dashed line), calculated 

across a quadrant situated within the 3-month streamflow forecast skill surface plots for the VESPA (red), the linear EPI 

method (gray), and the EPB method [blue; using Eqs. (4) and (5)]. Each plot shows the evolution of the IHC and SCF skill 

elasticities with the initialization date for a given catchment. The climatological regions of the catchments are indicated in the 

plots’ headings. The skill surface plots from which these skill elasticities were calculated are presented in Fig. 4 and Figs. S1–

S17. 

The skill elasticities produced by the EPB method appear to be almost identical to the skill 

elasticities obtained from the VESPA approach, with occasional marginal differences. This 

suggests that the EPB method captures nearly exactly the degree of influence of changes in 

IHC and SCF skill on the streamflow forecast skill, obtained from the VESPA approach. Both 
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methods additionally indicate the same dominant predictability source: the predictability 

source which, once improved, could lead to the largest increase in 3-month streamflow 

forecast skill. The EPB method will therefore be used as an alternative to the VESPA 

approach to investigate the second objective of this paper. 

4.2.3.2 What is the sensitivity of the response surface to the choice of the verification score? 

To investigate the sensitivity of the response surface to the choice of the verification score, 

and therefore to the attribute of the forecast, several scores were computed to evaluate the 

streamflow forecast quality. The R2, the mean absolute error skill score (MAESS), and the 

continuous rank probability skill score (CRPSS) were calculated to evaluate the forecasts’ 

overall performance in terms of the ensemble mean and the entire ensemble. The potential 

CRPSS (CRPSSpot) was computed to look at the forecasts’ resolution and uncertainty, and 

the CRPSS reliability (CRPSSreli) was computed to look at the forecasts’ reliability. The 

Crystal River (USGS gauge 009081600) will here again be used as a test case to illustrate 

this part of the results. 

Figure 6 presents the IHC and SCF skill elasticities [i.e. EIHC and ESCF; in Fig. 6 (top) and Fig. 

6 (bottom), respectively] as a function of forecast initialization date for the Crystal River 

catchment. These are calculated from Eqs. (4) and (5), for all the mentioned verification 

scores, for the VESPA approach (Fig. 6a) and the EPB method (Fig. 6b). If we compare the 

skill elasticities obtained from the VESPA approach with the skill elasticities obtained from 

the EPB method, it appears that both methods produce very similar elasticities for the R2, 

the MAESS, and the CRPSS. This further confirms the results of the first part of the analysis, 

which highlighted the similarity of the EPB results to the VESPA results and extends it to 

multiple attributes of the seasonal streamflow forecasts. However, slight differences 

between the skill elasticities produced by the two methods can be observed for the 

CRPSSpot, and significant differences exist for the CRPSSreli. These dissimilarities are 

discussed further below. 

If we now compare the skill elasticities obtained for the various verification scores for both 

methods, it is clear that the R2, the MAESS, the CRPSS, and the CRPSSpot give very similar 

skill elasticities. This hints that those verification scores overall agree on the degree of 

influence of changes in IHC and SCF skill on the streamflow forecast skill. However, a few 

dissimilarities can be observed for some of the forecast initialization dates. This is, for 

example, the case for forecasts made in the spring and in summer, where the EIHC appears 

lower for the MAESS and the CRPSS (and the CRPSSpot for the VESPA approach) compared 

to the EIHC obtained for the R2 for both methods. It is also apparent for forecasts made on 
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the first of February, March, and September, where the ESCF calculated for the MAESS and 

the CRPSS (and the CRPSSpot for the VESPA approach) is lower than the ESCF obtained for 

the R2 for both methods. For both examples, it infers that improvements in the IHC and the 

SCF skill could lead to larger improvements in the streamflow forecast skill in terms of the 

R2 rather than in terms of the MAESS and the CRPSS (and the CRPSSpot for the VESPA 

approach). Overall, this indicates that the degree of influence of changes in IHC and SCF skill 

on the streamflow forecast skill differs relative to the choice of the verification score. 

While the R2, the MAESS, the CRPSS, and the CRPSSpot give a very similar picture, the skill 

elasticities obtained for the CRPSSreli appear very different, occasionally reaching negative 

values. These negative values indicate a loss in streamflow forecast skill (in terms of the 

forecast reliability) as a result of improvements in one of the two predictability sources, 

while all the other verification scores suggest a gain in streamflow forecast skill (in terms 

of the forecast ensemble mean and the ensemble overall performance, its resolution, and 

uncertainty) with improvements in one of the two predictability sources. 

 

Figure 6. Streamflow forecast skill elasticities for the (top) IHCs (i.e. EIHC) and (bottom) SCFs (i.e. ESCF) as a function of forecast 

initialization dates, for hindcasts produced from 1981 to 2010 for the Crystal River (USGS gauge 009081600). These skill 

elasticities were calculated across a quadrant situated within the 3-month streamflow forecast skill surface plots [from Eqs. 

(4) and (5)] for several verification scores (R2 in red, MAESS in blue, CRPSS in gray solid line, CRPSSpot in gray dashed line, 

and CRPSSreli in gray dotted line). The results are shown for (a) the VESPA approach and (b) the EPB method. 
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The substantial differences in skill elasticities obtained for the CRPSSreli from the VESPA 

versus EPB method suggest that there are limitations to the ability of EPB to reconstruct 

the full ensemble information present in VESPA, and of VESPA (applied with relatively small 

ensembles at the end points) to estimate sensitivities for complex verification scores such 

as reliability. The reliability verification score is influenced by the combination of bias, 

spread, and other ensemble properties and exhibits more noisy outcomes here than were 

obtained for other verification scores. A negative elasticity may occur because the ensemble 

spread has narrowed without sufficient improvements in bias, for instance. The behavior 

of the elasticity of reliabilities is even more difficult to diagnose, but we suspect that the 

presence of noise (erroneous local minima or maxima) or curvature in the associated 

VESPA skill surface greatly undermines the linear blending techniques. 

Overall, these results suggest that improvements in the skill of either of the two 

predictability sources will impact streamflow forecast skill differently depending on the 

attribute (i.e. verification score) of the forecast skill that is considered and whether the 

ensemble mean or the full ensemble is used. 

4.2.4 Discussion 

4.2.4.1 Implications and limitations of the results 

W16 introduced the VESPA approach, a sensitivity analysis technique used to pinpoint the 

dominant predictability source of seasonal streamflow forecasting (i.e. the IHCs and the 

SCFs), as well as quantifying improvements that can be expected in seasonal streamflow 

forecast skill as a result of realistic improvements in those key predictability sources. 

Despite being a powerful sensitivity analysis approach, VESPA presents two key limitations. 

1) It is computationally intensive, requiring multiple ensemble hindcasts to define the 

skill response surface (81 were used in the VESPA paper vs one for the EPB and the 

EPI techniques). 

2) It requires a complex state and forcing blending procedure that may introduce 

additional uncertainties, biases, or interactions between the predictability sources 

(Saltelli et al. 2004; Baroni and Tarantola 2014) that are not accounted for or 

difficult to quantify. This is not necessary in any of the end points required in the 

two approaches presented here, which rely instead on analyzing a single 

conventional hindcast dataset that is more likely to be feasible for forecasting 

centers. 
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The central aim of this paper was to address the first limitation of the VESPA approach by 

presenting two computationally inexpensive alternative methods: the EPI and the EPB 

methods. Both methods successfully identified the dominant predictability source of 3-

month streamflow forecasts for a given catchment and forecast initialization date (i.e. given 

by the orientation of the streamflow forecast skill gradients in the skill surface plots). 

However, the EPB was more successful in reproducing the VESPA skill elasticities—the 

exact streamflow forecast skill gradients situated within the skill surface plots (for skill and 

accuracy verification scores including the R2, the MAESS, the CRPSS, and the potential 

CRPSS to a certain extent). These skill elasticities indicate the influence of changes in IHC 

and SCF skill on streamflow forecast skill. 

The new methods, by differing in their setup from the VESPA approach, do not inherit the 

drawbacks specific to this approach and mentioned above. The EPI and the EPB methods 

nevertheless have their own limitations. 

The EPI (both for the linear and cubic interpolation methods; the latter was not shown) did 

not fully capture the VESPA skill elasticities because of the nature of the method that 

produces predefined gradients within the skill surface plots (i.e. defined by the 

interpolation method used). Additionally, curvature or local minima or maxima (if any) of 

the response surface cannot be represented by the EPI method. The EPB, on the other hand, 

performs better at reflecting curvature in the skill response surface, hence local elasticities 

between the end points. The EPB method aimed at reproducing VESPA elasticities only by 

manipulating the output of a single hindcast dataset (interpreted as ESP, reverse-ESP, the 

perfect forecast, and climatology). The EPB method cannot match exactly the forecasts 

created by the VESPA approach, as it does not account for the idiosyncrasies in model 

forecast behavior, such as interactions between the predictability sources. Furthermore, it 

is likely that the more the model investigated is nonlinear or exhibits skill response 

thresholds, the more the results obtained from the EPB method will differ from the ones 

obtained from the VESPA approach. These results overall allow that the EPB method can be 

used as an inexpensive alternative method to the VESPA approach, yet with the potential 

limitations of the method stated above. 

For the first part of the analysis, the streamflow forecast quality was evaluated in terms of 

the forecasts’ skill from the R2. The use of multiple verification scores is, however, essential 

to obtain a more complete perspective of forecast quality. Thus, we explored the 

performance of the two new methods and the VESPA approach for a range of additional 

verification scores. The results, presented for the EPB method and the VESPA approach, 
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showed differences in the response surfaces obtained for the various verification scores (i.e. 

the R2, the MAESS, the CRPSS, and its decomposition). This suggests distinct sensitivities of 

the seasonal streamflow forecast attributes (i.e. overall performance of the forecast 

ensemble mean and its full ensemble, forecast resolution, uncertainty, and reliability) to 

changes in the IHC and SCF skill. Ideally, a sensitivity analysis should be goal oriented, that 

is, it should be performed with prior knowledge of the intended use of the results (Saltelli 

et al. 2004; Pappenberger et al. 2010; Baroni and Tarantola 2014), which may favor using 

one verification score over another. 

This paper covered selected limitations of the work presented by W16. However, many 

areas were left unexplored and could be interesting topics in which to focus future research. 

First, a major area inherent to model-based sensitivity analyses is that their results are 

model dependent (Saltelli et al. 2000); thus, the extent to which they can be transferred to 

reality depends on the model fidelity. The results presented in this paper are specific to the 

forecasting system and similar systems on which this analysis was based and should be 

used as an indicator of catchment sensitivities. As noted in W16, an extension of the 

elasticity analysis to include observations and a model error component would provide 

valuable insights. Another possible approach could be to use the results from various 

forecasting systems as input to the sensitivity analysis, in order to achieve a multimodel 

consensus view of the skill. As shown in Cloke et al. (2017), a multimodel forcing framework 

can be highly beneficial for streamflow forecasting compared to a single model forecasting 

approach, provided the models are chosen judiciously so as to provide a rational 

characterization of forecasting uncertainty. Second, the dependence of blending technique 

performance versus VESPA on the characteristics of the skill surface (e.g. linear or 

nonlinear) bears further investigation. Finally, this sensitivity analysis leaves generic the 

concept of improvements in either of the predictability sources. Breaking down the IHC and 

the SCF into the different variables they represent is a point which merits further research. 

Additionally, the space–time nature of improvements may be consequential. This work 

could therefore be extended by studying the effect of degradations in the temporal and 

spatial accuracy of the input data, thereby indicating the relative value of improvements in 

the spatial or temporal predictability of a given variable, for a specific catchment and a 

specific time of the year. 

4.2.4.2 The wider context 

The new strategy of operational forecasting centers is to move toward more integrated 

operational modeling and forecasting approaches, such as land surface–atmosphere 
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coupled systems, and beyond that, Earth system models. These advances are enabled by the 

continuous growth of computing capabilities, a better understanding of physical processes 

and their interactions throughout all compartments of the Earth system, and the availability 

and use of more and better observation data (i.e. satellite data). Despite all these advances, 

most forecasts still reflect substantial uncertainty that grows with time and limits the 

predictability of observed events beyond a few weeks of lead time. The rapid progress has 

led our systems to be ever more data hungry as increases in model complexity and 

resolution are sought. These computationally expensive developments are not always 

feasible; hence, model developers must be creative and constantly weigh the costs and 

benefits of improving one aspect over another, such as increasing the resolution or 

complexity of the models (Flato 2011). 

In this context, sensitivity analyses appear more than ever as a natural tool to establish 

priorities in improving predictions based on Earth system modeling. Such analyses are a 

powerful and valuable tool to support the examination of uncertainty and predictability 

across spatial and temporal scales and for various applications. They can be used for a large 

range of activities, including examining model structure, identifying minimum data 

standards, establishing priorities for updating forecasting systems, designing field 

campaigns, and providing realistic insights into the potential benefits of efforts to improve 

a forecasting system to managers with prior knowledge of their costs (Cloke et al. 2008; 

Lilburne and Tarantola 2009; W16). 

However, sensitivity analyses must be easily reproducible to be effective in supporting each 

new model or forecast system update, and the results should easily be applied in order to 

constitute a ‘‘continuous learning process’’ (Baroni and Tarantola 2014).  

Furthermore, climate change is likely to generate changes in the drivers of seasonal 

predictability with time (e.g. recent research has shown that climate change is likely to 

increase the frequency of extreme El Niño events; Cai et al., 2015). This further strengthens 

the need for easily reproducible sensitivity analyses to guide seasonal forecast 

developments in a changing climate.   

As we balance the costs and benefits of forecast development, the wider context of the 

societal use of these forecasts must not be ignored. Indeed, an infinitely better hydro-

meteorological forecast for a phenomenon with no societal impacts is not necessarily 

worthy of the development costs they incurred. With this in mind, sensitivity analyses must 

be user-oriented for guiding forecast developments of benefit to society. 
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In conclusion, a sensitivity analysis should be a simple, tractable tool for addressing a 

multifaceted challenge. 

4.2.5 Conclusions 

This paper presents two computationally inexpensive alternative methods to the VESPA 

approach for estimating forecast skill sensitivities and elasticities. Of these, the end point 

blending (EPB) method provides a useful substitute to the VESPA approach. Despite the 

existence of some differences between the EPB and the VESPA outcomes, the EPB 

successfully identifies the dominant predictability source (i.e. IHCs and SCFs) of seasonal 

streamflow forecast skill, for a given catchment and forecast initialization date. The EPB 

method can additionally reproduce the VESPA forecast skill elasticities, indicating the 

degree of influence of changes in IHC and SCF skill on the streamflow forecast skill. The 

paper also draws attention to how the choice of verification score impacts the forecast’s 

sensitivity to improvements made to the predictability sources. With a good understanding 

of the limitations of the methods, such a sensitivity analysis approach can be a valuable tool 

to guide future forecasting and modeling developments. 
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4.3 Scopes for improving EFAS-Seasonal 

The EPB sensitivity analysis method presented in Sect. 4.2 was subsequently applied to 

EFAS-Seasonal (which performance over Europe was benchmarked in Chapter 3), as 

suggested in the future work section (Chapter 3, Sect. 3.2). The results were discussed in an 

IMPREX deliverable, of which this section presents a summary. 

This IMPREX deliverable was led by L.A. and arose through collaboration during this PhD. 

It has the following reference: 
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Arnal, L. et al.: “IMPREX D4.2 - The sensitivity of sub-seasonal to seasonal streamflow 

forecasts to meteorological forcing quality, modelled hydrology and the initial hydrological 

conditions”. Deliverable of EU H2020 project “IMPREX – Improving predictions and 

management of hydrological extremes” (contract n° 641811), 2017a* 

L.A.  collaborated on laying out the structure of the deliverable, gathered the information 

and results from IMPREX partners, contributed parts of the results, analysed and 

interpreted most of the results and wrote about 75% of the document. 

The full deliverable can be found in the thesis Appendix A7. 

This deliverable is structured in three parts. The first part is an intercomparison of the 

performance of five seasonal hydro-meteorological forecasting systems (from IMPREX 

partners) over Europe. All streamflow forecasts were produced using the same seasonal 

meteorological forecasts (ECMWF’s System 4, with or without post-processing), but a 

different hydrological model. This intercomparison revealed that differences in the 

forecasting systems’ set up (in terms of the presence of post-processing and the 

hydrological model used) leads to large differences in their seasonal streamflow forecast 

performance. This in turn influences the systems’ strengths and weaknesses for several 

applications of the water sector (such as flood early warning, navigation and agriculture).  

The second part of this deliverable is the application of the EPB sensitivity analysis method 

to EFAS-Seasonal and the German Federal Institute of Hydrology (BfG)’s seasonal 

streamflow forecasts, based on the forecasts’ CRPSS. The two forecasting systems displayed 

very similar results to one another; the rest of this summary focuses on the EFAS-Seasonal 

sensitivity analysis results (see Fig. 7). Overall, results suggested that, for the first month of 

lead time, the EFAS seasonal streamflow forecasts would more largely benefit from 

improvements to the initial hydrological conditions. After the first month of lead time, 

improving the seasonal meteorological forecasts would yield a higher seasonal streamflow 

forecast improvement. Results however varied by European region and forecast starting 

date, highlighting spatio-temporal differences in the seasonal streamflow generating 

mechanisms. Below is an overview of some of the key findings. For forecasts made in the 

summer (May to July), a larger number of European regions exhibited a streamflow 

sensitive to improving the initial hydrological conditions for the first month of lead time 

(compared to forecasts made in the winter). This could be due to the lower rainfall over 

Europe during the summer and groundwater-driven streamflow during those months. For 

                                                             
* This project has received funding from the European Union’s Horizon 2020 research and innovation 
programme under grant agreement No. 641811. 
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leeward Scandinavia, the initial hydrological conditions were found to dominate seasonal 

streamflow forecast quality for forecasts made in the winter through to the spring with up 

to three months of lead time. This is likely due to precipitation falling as snow during the 

winter, leading to groundwater-driven streamflow in the winter and snowmelt-driven 

streamflow in the following spring. For most of the Iberian Peninsula, a higher sensitivity 

to initial hydrological conditions was found for forecasts made in the summer (June to 

September) with up to three months of lead time. This might be caused by very low 

precipitation and groundwater-driven streamflow during those months. 
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Figure 7. Maps of the EFAS-Seasonal streamflow forecasts’ sensitivity to the seasonal meteorological forecast (SCF; in blue), 

the initial hydrological conditions (IHC; in green), or both (in blueish-green). The results are shown for each forecast starting 

date (rows) and for the first three months of lead time (columns). (Figure taken from IMPREX D4.2). 
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The third part of this deliverable aimed to identify key drivers (i.e. basins’ physiographic-

hydroclimatic characteristics) of seasonal hydrological forecasting skill over Europe (based 

on the Swedish Hydro-Meteorological Institute (SMHI)’s E-HYPE forecasting system). 

Results showed that seasonal hydrological forecast skill mainly depends on the basin’s 

hydrological regime and is limited for flashy river basins (i.e. basins with strong flow 

dynamics over the year and less land surface memory). Basins’ elevation and temperature 

biases were also identified to be important factors.  

This deliverable provided a benchmark of state-of-the-art seasonal hydro-meteorological 

forecasting systems’ performance over Europe. Additionally, it identified drivers of 

seasonal hydrological predictability and their impacts for a range of water sectors. 

4.4 The forecasting paradox: do better computing resources make us 

worse forecasters? 

This section introduces a novel concept for seasonal streamflow forecasting, presented at 

the European Geoscience Union (EGU) General Assembly 2017. The original poster can be 

found in the thesis Appendix A8. 

4.4.1 Introduction 

Our scientific understanding of hydro-meteorological predictably has improved 

considerably over the last decades. This has led to more diverse and improved operational 

hydrological forecasting methods. The coincidental growth in computer power over the 

years has rendered these improved methods technically implementable. Taking seasonal 

streamflow forecasting as an example, there now exist a wide range of operational 

forecasting methods, from statistical to dynamical, and a blend of both methods (see 

Chapter 3, Sect. 3.1). 

However, as operational hydrological forecasting has improved and diversified, a given 

system will usually run a unique forecasting method in space and time. The choice of the 

forecasting method is often made on the basis that it is: i) scientifically valid and overall 

more skilful than a benchmark (for seasonal streamflow forecasting, this is generally the 

streamflow climatology or an ensemble streamflow prediction (ESP)) and ii) technically 

and financially implementable and sustainable (contributing to a reliable system, able to 

generate forecasts operationally with no delays). These criteria reflect the resources 

available at the time the forecasting method is implemented. Often, a forecasting method, 

given that it meets the above criteria, will be selected for operational implementation 
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because it is already running in research mode in-house and/or easy to implement as all or 

most parts of the forecasting chain are easily or readily available.  

In addition, given the constant pressure faced by operational centres to demonstrate that 

they are advancing science, operational development might be driven by the 

implementation of ‘low hanging fruits’. These are plentiful and might include: increased 

representation of uncertainty with more ensemble members, higher resolution forecasts, 

longer lead times and the incorporation of an increasing amount of observation data. While 

these relatively easy gains might provide slight forecast improvements, they do not 

necessarily translate the complexity of our scientific findings into operations. 

As a result, the selected operational forecasting method might not be the most suitable (i.e. 

scientifically valid, useful for the community, implementable, sustainable and reliable) in all 

space and time dimensions, given the spatio-temporal variability of hydro-meteorological 

forecast predictability. This might in turn lead to a low forecast performance to generation 

cost ratio for certain river basins, temporal aggregations and forecast starting dates, where 

alternative (sometimes cheaper) forecasting methods could be more suitable. We argue 

that the variability of predictability sources in space and time should be reflected in the way 

we produce hydro-meteorological forecasts operationally (not only on seasonal 

timescales). 

4.4.2 A novel concept for improved seasonal streamflow forecasting 

Here, we introduce a novel concept for operational seasonal streamflow forecasting. A 

‘flexible seasonal hydro-meteorological forecasting method’ with the potential to produce 

forecasts that are more skilful, cheaper and faster to run operationally, compared to a 

unique forecasting method. This concept builds on the work presented in Chapters 3 and 4. 

Following this novel concept, the operational method adopted to produce each new 

seasonal streamflow forecast (for a given forecast starting date, river basin and output 

aggregation period and lead time) is chosen based on the decision tree illustrated in Fig. 8. 

Results of the EPB sensitivity analysis (performed beforehand; see Sect. 4.2) are first 

analysed. If they indicate that improving the initial hydrological conditions would lead to 

higher seasonal streamflow forecast improvements, the green branch of Fig. 8 is 

subsequently followed. In a second step, results of the comparison between the 

performance of seasonal streamflow forecasts produced 1) using seasonal meteorological 

forecasts as forcings (e.g. EFAS-Seasonal, ‘EFAS-Seas.’ on Fig. 8) and 2) using historical 

meteorological observations as forcings (e.g. ESP) are investigated (performed beforehand; 
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see Chapter 3, Sect. 3.2). The final operational method used is the one presenting the highest 

overall seasonal streamflow forecast performance, to which a data assimilation (DA) 

method is applied to improve the initial hydrological conditions. Going back a few steps, if 

improving the seasonal meteorological forcings would yield higher seasonal streamflow 

forecast improvements, the blue branch of Fig. 8 is subsequently followed. Looking at the 

comparison between EFAS-Seasonal and the ESP (in this example), the forecast with the 

highest overall performance is used operationally, with post-processing of the 

meteorological forcing to improve their quality. 

 

Figure 8. Decision tree of the ‘flexible seasonal hydro-meteorological forecasting’ novel concept, applied to EFAS-Seasonal. 

4.4.3 Discussion 

This flexible system balances the costs of operational forecast production (e.g. buying 

seasonal meteorological forecasts, running a data assimilation and a meteorological 

forecast post-processing) with forecast performance (knowledge gained from running an 

EPB sensitivity analysis and a hindcasts’ performance analysis). It is based on forecasts 

usually readily available at forecasting centres running seasonal hydrological forecasts and 
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based on methods which are easily implementable (i.e. EPB sensitivity analysis and 

hindcast performance analysis).  

This novel concept builds on the flexible modelling approach proposed by Clark et al. 

(2015a; 2015b), a Structure for Unifying Multiple Modeling Alternatives (SUMMA), 

extending it to seasonal streamflow forecasting. It is different from a multi-modelling 

forecasting approach (whereby multiple hydrological models and/or seasonal 

meteorological forecasts are used), in that it first aims to understand the drivers of seasonal 

hydro-meteorological forecast predictability, based on which it subsequently proposes a 

cost-effective operational forecasting method. Contrastingly, multi-model forecasting aims 

to run all the models available operationally, to produce a relatively costly forecast that 

combines the various systems’ strengths. 

The main limitation of this novel concept is the fact that the flexible system might have to 

be set up differently for each streamflow temporal aggregation and lead time – i.e. it cannot 

run seamlessly in time. This limitation could be partly tackled if the decision tree is driven 

by decision-makers’ requirements. Let us consider a decision-maker who needs a three-

monthly streamflow average for reservoir operations in their river basin. They want an 

operational system which can provide reliable forecasts, especially for high streamflow 

events. Given these decision-making criteria, the flexible system could be tuned to produce 

three-monthly streamflow averages, based on the EPB sensitivity analysis and hindcasts 

evaluation performed for the ROC score for the streamflow upper tercile (see Chapter 3, 

Sect. 3.2.3.5; carrying out the EPB sensitivity analysis with the ROC score however first 

requires further research, as per the limitations mentioned in Chapter 4, Sect. 4.2). In other 

words, only one flexible system configuration would need to be run for this decision-maker 

for their specific application in the river basin. This novel concept could therefore be 

improved further by integrating decision-makers in the decision tree, for a coupled human-

natural system approach (Li et al., 2017). 

Seasonal streamflow forecasting and the EFAS-Seasonal operational system were used for 

illustrative purposes. However, this concept could be extended to a range of operational 

hydro-meteorological forecasting systems. 
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So far, we have touched on several important elements of a probabilistic hydro-

meteorological forecasting chain. We discussed potential barriers and enablers of the use 

of probabilistic hydrological forecasts for flood early warning (Chapter 2). We then looked 

at the performance of state-of-the-art operational seasonal hydro-meteorological 

forecasting systems, with a particular focus on extending flood predictability on the 

seasonal timescale (Chapter 3). This chapter finally discussed methods to improve state-of-

the-art seasonal forecasting systems. 

However, as shown in Chapter 2, probabilistic forecast quality (and its improvement) is 

only one of the factors that influences their use in practice. To understand real-world 

opportunities and challenges associated with the uptake of state-of-the-art probabilistic 

flood forecasts in practice, the complex landscape in which decision-makers operate must 

be considered. Chapter 5 presents results from interviews at the UK Environment Agency 

(EA), carried out to understand the opportunities and challenges faced by the EA decision-

makers in view of a transition to probabilistic forecasts for flood early warning in England. 
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Chapter 5 

 

5.1 Background and aim 

In Chapter 2, insights were gained on the factors that shape decision-makers’ use of 

probabilistic forecasts for flood early warning, through a serious game and decision-making 

activity. While serious games and activities can foster the uptake of serious information and 

promote discussions through their engaging formats, they are a simplification of reality 

(Aubert et al., 2019). Thus, the conclusions that can be drawn from these serious activities 

are to some extent partial and should be supported by further research. 

Interviews can be an effective method to capture the full and complex landscape in which 

decision-makers operate in reality (Schoenberger, 1991; Pagano et al., 2004b). By providing 

interviewers with an understanding of the world from the perspective of the informants 

(i.e. decision-makers), they shed light on their unique perceptions (Sivle et al., 2014). 

The Environment Agency (EA), responsible for managing risks of flooding in England, is in 

the process of a transition to operational probabilistic fluvial flood forecasts. With the aim 

to get a complete understanding of the real-life challenges and opportunities associated 

with flood early warning based on probabilistic forecasts, interviews were carried out with 

EA decision-makers. Based on these interviews and literature findings, recommendations 

were made to the EA to help a successful transition to probabilistic forecasts in operation. 

This chapter presents the following study. 

5.2 “Are we talking just a bit of water out of bank? Or is it 

Armageddon?” Front line perspectives on transitioning to 

probabilistic fluvial flood forecasts in England 

This section is in open discussion in Geoscience Communication (GC) with the following 

reference:  

Arnal, L., L. Anspoks, S. Manson, J. Neumann, T. Norton, E. Stephens, L. Wolfenden, and H. L. 

Cloke, 2019: Are we talking just a bit of water out of bank? Or is it Armageddon? Front line 

Using probabilistic hydrological forecasts for flood 
early warning: a real-life case study  
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perspectives on transitioning to probabilistic fluvial flood forecasts in England, Geosci. 

Commun. Discuss., doi:10.5194/gc-2019-18, in review* 

The contributions of the authors of this paper are as follows: L. Anspoks (collaborator: EA), 

S. Manson (collaborator: EA), J. Neumann (collaborator: academic), T. Norton (collaborator: 

EA), E. Stephens (supervisor: academic), L. Wolfenden (collaborator: EA) and H. L. Cloke 

(supervisor: academic). H.L.C., L.An. and S.M. posed the original question. L.An., S.M., T.N. 

and L.W. brought L.Ar. up to speed about the EA and their decision-making practices. T.N. 

identified the interviewees. L.Ar., H.L.C., T.N. and E.S. designed the interviews. L.Ar. carried 

out the interviews and analysed the interview transcripts. L.Ar., J.N. and H.L.C. wrote the 

paper. H.L.C., S.M., J.N. and T.N. commented on the manuscript. Overall, 95% of the research 

and 85% of the writing was undertaken by L.Ar. 

The published article (currently under discussion) can be found in the thesis Appendix A9. 

Abstract. The inclusion of uncertainty in flood forecasts is a recent, important yet 

challenging endeavour. In the chaotic and far from certain world we live in, probabilistic 

estimates of potential future floods are vital. By showing the uncertainty surrounding a 

prediction, probabilistic forecasts can give an earlier indication of potential future floods, 

increasing the amount of time we have to prepare. In practice, making a binary decision 

based on probabilistic information is challenging. The Environment Agency (EA), 

responsible for managing risks of flooding in England, is in the process of a transition to 

probabilistic fluvial flood forecasts. A series of interviews were carried out with EA 

decision-makers (i.e. duty officers) to understand how this transition might affect their 

decision-making activities. The interviews highlight the complex and evolving landscape 

(made of alternative ‘hard scientific facts’ and ‘soft values’) in which EA duty officers 

operate, where forecasts play an integral role in decision-making. While EA duty officers 

already account for uncertainty and communicate their confidence in the system they use, 

they view the transition to probabilistic flood forecasts as both an opportunity and a 

challenge in practice. Based on the interview results, recommendations are made to the EA 

to ensure a successful transition to probabilistic forecasts for flood early warning in 

England. 

                                                             
* ©2019. The Authors. Geoscience Communication, a journal of the European Geosciences Union published by 
Copernicus. This is an open access article under the terms of the Creative Commons Attribution License, which 
permits use, distribution and reproduction in any medium, provided that the original work is properly cited. 
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We believe that this paper is of wide interest for a range of sectors at the intersection 

between geoscience and society. A glossary of technical terms is highlighted by asterisks in 

the text and included in Appendix A. 

5.2.1 Introduction 

One of the most recent and significant challenges in hydrology has been the inclusion of 

uncertainty information in flood forecasts. We live in a world where it is currently 

impossible to say with 100% certainty how the weather will evolve in the following days to 

months, or by how much exactly a river level is expected to change. This is due to the 

inaccurate measurement of hydro-meteorological observations*, errors in the 

mathematical models used to produce these forecasts (due to scientific and technical 

limitations) and, most importantly, nature’s intrinsic chaos* (Lorenz, 1969; Buizza, 2008). 

In this world, probabilistic estimates of potential future floods are vital. Probabilistic 

forecasts* give a range of likely possible future outcomes, contrary to deterministic 

forecasts*, which indicate a single future possibility (Buizza, 2008). Probabilistic flood 

forecasts are generally produced by forcing* a hydrological model* with an ensemble* of 

future meteorological scenarios (Cloke and Pappenberger, 2009). By giving an idea of the 

uncertainty surrounding a prediction, probabilistic forecasts can give an earlier indication 

of potential future extreme events, such as floods, increasing the amount of time decision-

makers have to prepare (Buizza, 2008; Stephens and Cloke, 2014). 

In practice however, probabilistic forecasts can be challenging to use for operational 

decision-making*, given their uncertain nature (Nicholls, 1999; Cloke and Pappenberger, 

2009; Demeritt et al., 2010; Nobert et al., 2010; Ramos et al., 2010; Stephens et al., 2019) . 

Having to translate a range of possible outcomes into a binary decision (such as sending out 

a flood warning) is intricate and requires careful interpretation, an understanding of 

probabilities, risk*, uncertainty* (Dessai and Hulme, 2004) and of the systems modelled. 

Furthermore, probabilistic forecasts are designed to capture scenarios that may not always 

realise, which in turn could lead to false alarms*. Decision-making can be based on a set of 

rules, such as threshold exceedance (Dale et al., 2013). It is, for example, possible to take 

decisions (e.g. send a flood warning) when a pre-defined threshold is reached with a 

minimum forecast probability (Thielen et al., 2009). However, the decision-making process 

is generally based on, and influenced by, several additional factors. These include the type 

of event considered (e.g. a localised small flood event vs. a large scale extreme flood event), 

the costs of taking action vs. not taking action, experience of past events, the decision-

maker’s trust in the forecast (which can be built up over time), their risk aversion, and the 



122 

 

 Chapter 5. Using probabilistic hydrological forecasts for flood early warning: a real-life case study 

cultural context in which decisions are made (Cloke et al., 2009; Arnal et al., 2016; Neumann 

et al., 2018b). 

The Environment Agency (EA)* is responsible for managing risks of flooding in England and 

their flood incident management strategy* is often shaped by major flood events (Werner 

et al., 2009; Stephens and Cloke, 2014; Pilling et al., 2016). In the 1990s and early 2000s, 

the UK policy shifted from a ‘flood defence’ to a ‘flood risk management’ strategy, on the 

back of the 1998 and 2000 floods (McEwen et al., 2012), which has led to more forecast-

based decision-making. The summer 2007 UK floods boosted the development of the 

National Flood Forecasting System and the Flood Forecasting Centre (FFC*; a UK Met Office 

and EA partnership), with the aim to improve national flood warning services (Pitt, 2008; 

Stephens and Cloke, 2014). The winter 2013/14 UK floods further demonstrated the value 

of the FFC and the use of ensemble surge forecasts* for flood preparedness* (Stephens and 

Cloke, 2014). It was also during the 2013/14 floods that the EA started using two fluvial (or 

river) flood scenarios* (a reasonable worst case* and a best estimate*, instead of a single 

prediction) for flood incident management. Following this, Defra (the UK government 

Department for Environment, Food & Rural Affairs)* published a National Flood Resilience 

Review (NFRR) in 2016 (HM Government, 2016; House of Commons - Environment, Food 

and Rural Affairs Committee, 2016). This review aimed at understanding and increasing the 

UK’s resilience to river and coastal flooding from extreme weather over the next ten years. 

The NFRR recommends a better integration of probabilistic weather forecasts into flood 

forecast products, for an improved characterisation of uncertainty and an enhanced 

communication of flood risk and likelihood to inform a range of flood management 

measures*. 

While catastrophic events can foster the uptake of state-of-the-art science (e.g. probabilistic 

forecasts) for decision-making, achieving a complete and successful transition relies on 

many elements. For example, the use of ensemble surge forecasts in 2013/14 might not 

have been possible without the prior shift to a flood risk management mindset and the 

creation of the FFC. Moreover, we do not want to be in a situation where we require a 

catastrophic event in order to begin implementing the best science into risk management 

practice; it is vital to understand a country’s and institution’s cultural landscape to ensure 

that science is not being under- or misused (Golding et al., 2017). In the case of probabilistic 

forecasts, making sure that they add value rather than uncertainty to operational decision-

making is key (Nobert et al., 2010). Interviews can be an effective method to capture an 

institution’s complex cultural landscape (Schoenberger, 1991; Pagano et al., 2004b). They 

can provide interviewers with an understanding of the world (in this case the institution 
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world) from the perspective of the informants, shedding light on their unique perceptions 

and information only known to them (Sivle et al., 2014). 

As outlined by the NFRR, the EA is in the process of a transition to probabilistic fluvial flood 

forecasts, from the two flood scenarios they currently use operationally (Orr and Twigger-

Ross, 2009; Sene et al., 2009). To capture the EA’s forecasting practice landscape and 

understand how this transition might affect their flood decision-making activities, a series 

of interviews were carried out in the summer 2018 with EA ‘Monitoring and Forecasting 

Duty Officers’ (MFDOs) and ‘Flood Warning Duty Officers’ (FWDOs). These two roles are at 

the heart of the EA’s flood risk management decision-making chain. The outcomes of these 

interviews were used as a basis for this paper, with the aim to highlight the potential 

opportunities and challenges that this transition might translate to for the duty officers, 

ahead of it happening. 

5.2.2 Context: the Environment Agency’s flood incident management strategy 

The Environment Agency (EA) is an executive non-departmental public body, sponsored by 

Defra. The EA has an operational responsibility to manage risks of flooding from rivers and 

the sea in England, by warning and informing the public and businesses about impending 

floods. Flood warnings are sent with a 2-hour minimum lead time*; however, different lead 

times have recently been introduced to take into account the type of flooding and catchment 

characteristics*; i.e. flash flooding vs. slow responding catchment. Under the Flood and 

Water Management Act 2010 (DEFRA, 2010), the EA takes a lead role on river and coastal 

flooding, whilst lead local flood authorities take a lead role on local flood risk (which covers 

flooding from other sources, including surface water, groundwater and minor 

watercourses). The EA also has a strategic overview role for all sources of flooding and 

works with lead local flood authorities by providing guidance, knowledge and support in 

responding to surface water flooding. The following schematic (Fig. 1) displays the EA’s 

institutional landscape, with a particular focus on the flood incident management (FIM) 

information flow to and from MFDOs and FWDOs. 
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Figure 1. Schematic of the EA’s institutional landscape and the FIM information flow between MFDOs, FWDOs and first-degree 

contact points (red arrows) (source: EA). 
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Historically, the EA was structured as a national body, delivering its work across England 

in six operational regional boundaries (i.e. regional boundaries were political delineations 

and were roughly aligned with the regional development fund boundaries). On 1st April 

2014, the EA changed its operating structure to adopt area boundaries (i.e. broadly based 

on catchment delineations, but some catchments span different areas, especially at the 

borders with Wales and Scotland). These were aligned in 2016 with the Natural England 

(non-departmental public body, sponsored by Defra, and responsible for ensuring the 

protection and improvement of England's natural environment) boundaries. The EA is now 

operating over 14 areas with 7 forecasting centres (hereafter referred to as ‘centres’; see 

Fig. 2). 

  

Figure 2. Map showing the geographical areas of the EA’s operations (green numbered areas), highlighting the three areas 

which the centres where interviews were carried out are responsible for (blue boxes) (source: EA). The works published in 

this journal are distributed under the Creative Commons Attribution 4.0 License. This licence does not affect the Crown 

copyright work, which is re-usable under the Open Government Licence (OGL). The Creative Commons Attribution 4.0 License 

and the OGL are interoperable and do not conflict with, reduce or limit each other. 

To help manage flood risk, the EA receive hydro-meteorological forecasts* produced by the 

Flood Forecasting Centre (FFC; see Fig. 1) on a daily basis (more or less frequently 

depending on the forecasting product* – see Sect. 5.2.4.1.1). The FFC is a partnership 

between the EA and the UK Met Office. It combines the hydrological and meteorological 

expertise from both institutes to provide hydro-meteorological forecasting products (for all 

© Crown copyright 

2019 
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natural forms of flooding, including river, surface water, coastal and groundwater flooding) 

to emergency responders: category 1 (e.g. police services, fire and rescue authorities, 

including the EA for England), category 2 (e.g. utilities, telecommunications, transport 

providers, Highways Agency), Natural Resources Wales (for Wales) and the Met Office (for 

England and Wales). 

The EA’s FIM is based on the principle: ‘think big, act early, be visible’ (EA, 2018). This is 

part of a wider move from incident response to risk anticipation, with the aim to ensure 

that resources are put in place early and that the EA is prepared to scale-up or -down (i.e. 

preparations for measures implemented or not closer to the potential incident; e.g. 

expanded incident rotas with duty officers on standby, instigating requests for mutual aid 

to a different area, requests for equipment to support preventative and/or repair work, 

such as temporary barriers and pumps). As part of this strategy, the FFC forecasts are 

currently (and since the UK winter floods of 2013/14) used to produce two deterministic 

fluvial flood scenarios with a five-day lead time at the EA, a ‘Best Estimate’ and a 

‘Reasonable Worst Case’.  

Several internal documents have been written to give guidance on how to use these 

scenarios to support decision-making for FIM activities, in line with the EA’s principle. In 

summary, the Reasonable Worst Case gives an indication of what ‘could’ happen and should 

be used for preparation, information and response to flooding. The Best Estimate gives an 

indication of what ‘should’ happen and should be used as the basis for planning for warning. 

Together, the two scenarios provide the scale and size of the incident for planning and 

response preparations (FFC, 2017). 

According to research done in the Thames river basin (UK), New et al. (2007) showed that 

probabilistic forecasts provide more informative results (enabling the potential risks of 

impacts to be quantified) than a scenario-based approach. The transition to the two 

scenarios can be seen as a stepping stone towards probabilistic fluvial flood forecasts. 

Ultimately, the EA would like to: 1) quantify uncertainty and communicate flood risk in a 

clear manner internally and externally, and 2) make decisions around incident preparation 

and escalation, operational activities and flood warnings effectively, intelligently and 

accurately. While the EA acknowledges that a potential benefit of probabilistic flood 

forecasts is the possibility to give earlier warnings, they question the extent to which 

probabilistic forecasts would reduce scientific and decision uncertainties in a FIM context 

(Orr and Twigger-Ross, 2009). 
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While work has already been done by the EA to investigate the technical feasibility of a 

transition to probabilistic fluvial flood forecasts (Orr and Twigger-Ross, 2009; Sene et al., 

2009, Dale et al., 2013), this paper focuses on exploring the perceptions of the EA duty 

officers on the subject matter. This work is important as it will ensure the appropriate use 

of fluvial flood probabilistic forecasts for FIM decision-making activities, once operational. 

It should be noted that the EA already uses coastal flood probabilistic forecasts (Flowerdew 

et al., 2009); this work focuses on fluvial flooding. To this end, a series of interviews were 

carried out with EA ‘Monitoring and Forecasting Duty Officers’ (MFDOs) and ‘Flood 

Warning Duty Officers’ (FWDOs), as they are the two roles at the heart of the EA’s internal 

forecast-led decision-making, building on the exchange between the MFDOs and the FFC 

(see Fig. 1; more information about their respective roles in Sect. 5.2.3.1 and 5.2.4.1). 

5.2.3 Methods 

5.2.3.1 Participants 

The EA has several MFDO and FWDO roles, fulfilled by a number of different people. These 

are voluntary roles, added to the staff’s day-to-day job, for which they follow relevant 

training. MFDOs receive, process and communicate forecast information to FWDO’s, who 

are responsible for interpreting the information and working out the potential impacts on 

the ground. The duty officers’ schedules are predetermined by a rota, and duty officers are 

on call for a period of one week at a time. During times of increased flood risk, when more 

forecasting or warning activities are required, additional rostering takes place. Duty officers 

receive a range of forecasts (nowcasting* products to monthly outlooks*) and are aware of 

potential situations from a month out. Five days ahead is when the activity really starts to 

build and is the focus of these interviews. 

A total of six EA MFDOs and FWDOs from three different EA centres (one pair per centre) 

were interviewed to capture a range of perspectives in relation to this topic, following best 

practice (Sivle et al., 2014; participant information sheet provided as supplementary 

material in the thesis Appendix A9). Forecasting and decision-making varies between EA 

centres due to different management approaches and different types of geography and 

catchment response. To protect anonymity, the three centres where interviews were 

carried out are shown in terms of the wider area they are responsible for: 1) the Yorkshire 

area (YOR) in the North (area 3), 2) the Thames area (THM) in the South East (area 11), and 

3) the Solent and South Downs area (SSD) in the South East (area 14) (Fig. 2). 
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MFDOs and FWDOs were interviewed in pairs as they are used to working together and the 

information they use sits between these two roles. The thought was that by talking to the 

MFDOs alone we would lose the element of “and so what?”, while talking to the FWDOs 

alone we would lose all the expertise about forecasting. All MFDOs and FWDOs interviewed 

had several years of experience and so were able to describe how current practice would 

change with a different type of forecast. 

Participants were selected by EA study co-developer I1 to meet the above criteria. For the 

purpose of anonymity, the interviewees will thereafter be reported using codes. The three 

MFDOs interviewed will be referred to as MFDO1, MFDO2 and MFDO3, and the three 

FWDOs interviewed as FWDO1, FWDO2 and FWDO3 (interviewed pairs are however 

represented by the same number). As well as those from the MFDOs and FWDOs, quotes 

from two EA study co-developers are reported in this paper, I1 and I2, who helped the 

interviewer (Louise Arnal) by providing some context about the EA’s organisational 

landscape, forecasting systems and MFDO and FWDO roles prior to the three interviews. 

5.2.3.2 Interviews 

By design, qualitative, semi-structured interviews are used to understand interviewees’ 

perspectives, allowing the exploration of a research question that does not necessitate 

quantifying information and creating generalisations from the interview transcripts. The 

strength of such studies (compared to other survey methods) is that they are more sensitive 

to historical and institutional complexity and can capture the influence of local context 

(Schoenberger, 1991; Pagano et al., 2004b). Moreover, they are flexible, allowing the 

interviewer to remodel questions throughout an interview and from one interview to the 

next, to follow up on new information discovered (Sivle et al., 2014). 

A fixed set of open-ended questions were prepared in advance to guide the discussion and 

allow for comparability across all three interviews. To prompt discussion, all three MFDO 

and FWDO pairs were asked the same opening question: “Could you please walk me through 

what you would do ahead of a potential flood event?” The following questions were also 

prepared in advance, but their order was changed, or they were skipped depending on 

whether the interviewees had already answered them: 

• “Could you tell me about the uncertainties in the information you said you used in 

this context?” 

• “How do you deal with these uncertainties?” 

• “Could you tell me about how you communicate these uncertainties to each other?” 
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• “How would your job be influenced by a transition to probabilistic forecasts?” 

Each interview lasted between 30 minutes and 1 hour 30 minutes. All interviews were 

conducted and digitally recorded by the first author (Louise Arnal) in meeting rooms at the 

corresponding EA centres. 

5.2.3.3 Data analysis 

All interviews were transcribed verbatim and transcripts were analysed qualitatively with 

respect to three main research questions. These research questions provide the structure 

for the results’ section of this paper (Sect. 5.2.4). 

1) What are the MFDOs’ and FWDOs’ roles and how do they interact with one another? 

2) Where are the forecasts currently situated amidst their decision-making process? 

3) Considering how the duty officers communicate confidence with one another at 

present, what might be the potential impacts of a transition to probabilistic 

forecasts on their roles? 

Although interpretations might have been communicated by many interviewees, no 

frequencies are provided as quantitative generalisations cannot be inferred from this small 

and purposive sample. Following best practice, the results contain a mix of interviewees’ 

perspectives, supported by quotes, and further interpretation of the interview transcripts 

by the authors, identifiable throughout the text (Davies et al., 2014). 

5.2.4 Results 

5.2.4.1 Roles and interactions between EA duty officers 

Below, we summarise the MFDOs’ and FWDOs’ roles in an incident response context, using 

the interviewees’ responses to the question: “Could you please walk me through what you 

would do ahead of a potential flood event?” It is worth noting that all interviewed pairs 

suggested the MFDO answer that question before the FWDO, indicating that the decision-

making process starts with the MFDO. 

“My role’s an MFDO so generally if there’s a flood event coming I should know before the 

FWDO, in theory” [MFDO2] 
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Figure 3. Roles and interactions between EA duty officers. Blue arrows and circles are for incoming information and green 

arrows and circles relate to outputs from either of the duty officers. 

5.2.4.1.1 The role of Monitoring and Forecasting Duty Officers 

“Ramping up to a flood event, the MFDO gathers that information, processes it 

and filters it, and passes that along to the area staff [FWDO].” [MFDO2] 

What information do they use? 

The MFDOs regularly receive FFC (Flood Forecasting Centre) national and county scale (i.e. 

area sub-divisions) flood risk forecasts and produce catchment/local scale flood forecasts, 

which they communicate with the FWDOs (see Fig. 3). The FFC generates three types of 

products: 

• Outlook products – annual, seasonal and monthly assessments of flood risk; 

• Flood Guidance Statement (FGS)* – a five-day forecast of flood risk for all sources 

of flooding, for England and Wales, at a county scale (see Appendix B, Fig. (a) for an 

example); 

• Hydro-Meteorological Services* – detailed products communicating flood 

forecast data, currently comprising a Hydro-Meteorological Guidance, Forecast 

Meteorological Data and Heavy Rainfall Alerts (see Appendix B, Fig. (b), (c) and (d), 

respectively, for examples). 

How do they use this information? 
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Based on this suite of information, the MFDOs decide whether they want to run the 

hydrological forecasting model, which sits in a separate system called the National Flood 

Forecasting System (NFFS; see Appendix B, Fig. (e) for an example). The decision can be 

triggered by the colours shown on the FGS (which communicates flood risk as a 

combination of likelihood and impact; e.g. high flood risk values on the FGS are more likely 

to lead to the MFDOs running the hydrological model). The NFFS allows users to explore 

the observed data (i.e. river levels and rainfall) and run hydrological and hydraulic models*. 

These models, forced with the FFC’s deterministic weather forecast, provide a single trace 

of past and future (i.e. for the next five days) river level for specific areas. This initial forecast 

scenario is usually referred to as the ‘Best Estimate’ scenario, showing what ‘should’ 

happen. What ‘could’ happen (i.e. the ‘Reasonable Worst Case’ scenario) may not always be 

run. 

“If there’s uncertainty in the forecast like if there’s showers […] especially when they’re 

thundery and they can give you really high totals in a very short space of time that’s 

when you start to run ‘What If’ scenarios” [MFDO1]  

‘What If’ scenarios (i.e. ‘Reasonable Worst Case’ scenarios) are additional forecasts run by 

the MFDOs by manually modifying the FFC’s deterministic weather forecast (usually 

through the use of predefined factors applied over an entire catchment; e.g. 200% of 

catchment rainfall totals in the next 6 hours). They then run this ‘modified weather forecast’ 

through the hydrological/hydraulic models to obtain a new river level forecast scenario, 

often referred to as the ‘Reasonable Worst Case’ scenario. The MFDOs choose which What 

If scenario to run based on the FFC Hydro-meteorological Guidance and their own expert 

knowledge, to estimate the likelihood of both scenarios (the ‘Best Estimate’ and the 

‘Reasonable Worst Case’). 

“[The FFC] might give us a number of different scenarios and we tend to pick the worst 

one and then see what that does” [MFDO1] 

A critical part of the MFDOs’ role is to interpret the different forecasting products, which 

might sometimes be inconsistent (e.g. differences between the national and local scale 

pictures). The MFDOs usually do this by applying expert judgement based on knowledge of 

model performance and catchment response* to make a coherent story and put the 

information into context for the FWDOs.  

The MFDOs decide when to pass the information on to the FWDOs, generally waiting for the 

forecast to be confident* before flagging a situation. The exact content of the 
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communication depends on each pair, but usually contains information about the scale of 

the event and their confidence in the forecast. 

“Which scenario is going through which threshold [and] how likely that is to happen” 

[MFDO1]. “Approximate […] scale of the event […] are we talking just a bit of water out 

of bank? Or is it Armageddon?” [MFDO2]  

The conversation can sometimes be bilateral, and the MFDOs might ask questions to the 

FWDOs.  

“Can they provide information […] in terms of local sensitivity […] and are works going 

on in that catchment? Is there a gauge out of play?” [MFDO2] 

5.2.4.1.2 The role of Flood Warning Duty Officers 

“The role of the FWDO is to make sense of all that forecasting information and 

try and work out potentially what the impacts could be of that on the ground 

and then make decisions as to whether or not [they] issue flood alerts, flood 

warnings or severe flood warnings.” [FWDO1] 

What information do they use? 

The FWDOs’ role is to combine several different types of information to decide whether to 

issue a flood alert or warning (see Fig. 3). The information available to them includes: 

• The processed hydro-meteorological forecast and interpretation from the 

MFDOs; 

• Factors within the catchment – factors that could influence river levels (e.g. 

blockage from a tree fallen down). This is ad-hoc information and comes from a 

variety of sources, including: information gathered from community contacts (flood 

wardens*, flood action groups*, etc.), from EA staff and duty officers, hydrometric 

data/CCTV images, details of consented works (i.e. work going on in a channel); 

• The situation on nowcasting meteorological products – e.g. rainfall radar; 

• Information about the communities that might be affected – e.g. have they been 

affected by many floods in the past; 

• Expert knowledge about catchment response. 

How do they use this information? 
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The FWDOs assess these various sources of information (e.g. in terms of their accuracy) to 

make a decision, knowing that they do not necessarily have all the information to make a 

judgement call. 

“I look at the river level forecasts and then what I want to know from the MFDO is, does 

this account for the rain we’ve had? So, do you think this is likely to change? Is the 

forecast I’m seeing on my screen a good river level forecast? Or do we think it’s not 

picked something up properly?” [FWDO2] 

According to an internal document on using the two flood scenarios in practice, the Best 

Estimate should be used as a basis to issue flood alerts or warnings. However, both 

scenarios are currently used for incident planning activities (e.g. resources needed for 

response) and communication with responders and communities, while flood alerts and 

warnings are mostly issued based on nowcasting products. This discrepancy could be due 

to the challenges associated with forecast accuracy* and lead time, specifically for surface 

water flooding* and rapid-response catchments*. This document does however encourage 

the use of the two scenarios for planning and flood warning activities whenever possible, in 

combination with expert judgement. 

“The scenarios are planning scenarios and at some point […] we move into operational 

now type forecasting. So normally we’d issue a flood warning with anywhere between 

30 minutes to […] six hours lead time, whereas these scenarios are generally two to five 

days ahead. So you wouldn’t normally […] come up with a simple statement that will 

issue flood warnings based on the best estimate […] and at some point we transition into 

something that’s more now that we use for operational decision making” [I1]  

5.2.4.1.3 Communication between MFDOs and FWDOs 

“The FWDO shouldn’t even really be thinking about anything until they’ve had a 

phone call from the MFDO […].  Some FWDOs do go a bit more proactive than 

that, I think particularly the ones with the forecasting backgrounds almost can’t 

help themselves looking into it. And it depends on personality as well, some 

people hate the idea of being surprised by anything. But it does also depend on 

the MFDO.” [FWDO2] 

There is usually a constant exchange of information between MFDOs and FWDOs, even 

when no major event is on the horizon. However, more recently, the level of activity in 

preparation for a potential event has increased. Since 2007 (this corresponds vaguely with 

the summer 2007 floods), the lead time for which forecasts are shown and on which MFDOs 



134 

 

 Chapter 5. Using probabilistic hydrological forecasts for flood early warning: a real-life case study 

and FWDOs can take action has increased from a few days to a few months ahead (based on 

the FFC’s outlook products mentioned in Sect. 5.2.4.1.1). This is consistent with findings 

from Neumann et al. (2018b), who report that the EA currently uses long-range* (i.e. 

seasonal) hydrological forecasts mainly as supporting information, while relying on the 

shorter-range forecasts* for action. 

“So even from a month out now we’re starting to become aware of potential situations 

[…], but […] because […] most of our products […] are […] based on that five-day forecast 

[…] that’s when the activity really starts to build” [MFDO1] 

The communication between MFDOs and FWDOs varies across people and EA centres. 

Factors that might influence communication – in terms of its trigger, frequency and content 

– include the duty officers’ personality, day-to-day job and level of experience. Some FWDOs 

are more proactive than others in obtaining the information needed to make a decision; 

some might wait to be contacted by the MFDOs with a processed forecast, and others 

monitor the situation on a daily basis (see quote from FWDO2 above). In some cases, the 

FWDO might contact the MFDO first to get more details about an area of concern to them. 

“[…] and […] then it’s […] liaising with regional forecasting [the MFDOs] so they can give 

us any more detail or certainty or if we’re concerned about an area they can watch it a 

bit more for us [the FWDOs]” [FWDO3] 

Duty officers’ level of experience can also influence the content and interpretation of the 

conversation. Knowing each other helps interpret and gauge the confidence from each 

other’s language, which MFDO2 refers to as ‘nuanced communication’. Working with new 

duty officers can lead to misinterpretations and you might have to justify your position 

further and prompt them to obtain the information you need.  

“I’ve known [FWDO1] for quite a while so when I’m on duty with [them] […] I can sense 

[…] what sort of questions [they] want to ask, where [they’re] coming from. I think with 

less experienced duty officers it’s often more tricky to do that. So […] the verbal 

communication that you go into with [FWDO1] for example might be a bit brief 

probably because I know that [they’ve] understood the message and interpreted the 

message well, whereas a new duty officer you might be spelling out […] your position 

more, spending more time explaining why the uncertainty is such and how that may 

impact on the ground” [MFDO1]  

“Knowing each other is really important because if I know it’s [MFDO2] on duty [they’ve] 

probably put that interpretation on already. If I get someone who’s reading off the 
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screen, I put the interpretation on and if we misjudge that and we both put it on we 

could end up getting it too low” [FWDO2] 

Other factors that influence communication include the context of the event, duty officers’ 

geographical proximities and a centre’s practice. In some areas, the FWDOs will make the 

final call of warning the public or not, while in other areas, the MFDOs will tell the FWDOs 

when they need to issue a warning. In addition, MFDOs and FWDOs do not always sit in the 

same building or town. MFDOs work from forecasting centres, while FWDOs are based in 

Area offices or Area incident rooms, which influences their (mode of) communication (in 

person vs. via phone or emails). 

“If these people [the FWDOs] were sitting geographically with these other people [the MFDOs], 

I think you’d get a better service” [I1] 

5.2.4.2 The forecast, a small cog in a much bigger wheel 

“Forecasting’s really important. It is, it should be really central to what we do […] 

but actually it’s a small cog in the middle of a much bigger wheel.” [I1] 

Forecasting supports incident response by providing a critical piece of information. 

However, duty officers have to consider a range of other sources of information and factors 

when making risk-based decisions.  

“We always implore people to try and look at different sources of information” [I2] 

These additional sources of information include river level correlations*, model 

performance*, local knowledge (i.e. knowledge of how a certain catchment behaves), 

personal experience, and internal and external considerations (see Fig. 4). This section 

gives a more detailed overview of these factors and their relevance for decision-making. 
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Figure 4. Complex decision-making landscape in which EA duty officers operate. 

5.2.4.2.1 River level correlations and model performance  

“The MFDO will be looking at how much rain is falling compared to what was 

forecast. You can check the river levels on the telemetry sites*, so you can see 

how fast they’re responding compared to the model and you can start to gauge 

how that catchment’s responding compared to what you thought it would do” 

[MFDO1] 

MFDOs might use several products to gain an understanding of model and forecast 

performance while the event unravels. More basic forecasting methods, like river level 

correlation tables, complement forecast information and aid the decision-making process. 

These correlations are based on a linear regression between peak levels upstream and 

downstream of a station. However, discrepancies between the forecasts and correlations 

can call into question the forecast accuracy.  

“If the model says you’re going to get flooding, the correlation says we’re going to get 

flooding, we’ve had more rainfall than any previous event, you know that that decision’s 

[…] a clear one. If the model says flooding, the correlation says no you’re fine, and we’ve 

had somewhere in the middle in terms of rainfall, that’s when it gets difficult, because 

those borderline calls are really tricky to make” [I2] 
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The MFDOs’ knowledge of the hydraulic/hydrological model performances, for certain 

types of events and catchments, is also key in interpreting the forecast. This is based on 

performance measures*, local feedback from real time river gauges*, experience and target 

lead times (i.e. the theoretical maximum lead time you have to send out a flood warning for 

a catchment before it floods, based on catchment size, gauge location and flood risk in that 

catchment). For certain types of events, such as convective rainfall events*, for which the 

duty officers know models are still limited, they might decide to issue a warning based on 

the ‘Reasonable Worst Case’, although it is “technically against procedure” [MFDO2]. 

The FFC meteorological products also communicate some sort of confidence, which the 

MFDOs can use to complement the hydrological models’ performance information. 

5.2.4.2.2 Local knowledge and personal experience 

“Whilst we are very data reliant on the information coming through, there’s also 

that experience that you know that certain watercourses are very slow 

responding and […] no matter how much money we spend on your forecast, it’s 

always not very good, you always delay it by a day and drop the peak by a bit. […] 

Data is very important but that local experience is as important if not more so in 

certain circumstances” [MFDO2] 

Local knowledge and personal experience are key ingredients for judgement, an important 

component of the decision-making process. This means duty officers can react 

appropriately to an event and add confidence to the forecast. As MFDO2 put it, “experience 

is the unwritten part of the value that each role has”.  

Local knowledge is so important to decision-making that the interviewees believe it cannot 

be replaced by training, written material or fully automated systems.  

“Some areas have very set triggers for a severe flood warning whereas other areas may 

just take it on a feel. […] And each area has done it for a good reason, it’s the local 

reasons for doing that but it isn’t nationally consistent” [MFDO2] 

“We have in the past looked at automated warnings […], we can’t automate them […], 

there’s a lot of personal interpretation and judgement [that] goes into it, and if a 

computer just hits a level and issues a warning, it’s going to go wrong” [FWDO2] 

This also manifests itself in perceptions about how successfully duty officers can transfer 

to other centres or areas to help during an important flood event. 
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“One of the things we’re trying to do at the moment is to get mutual aid sorted out so 

that if a flood event happens in [some of the Northern areas] and their MFDOs […] or 

the FWDOs are very […] stretched […] we can go […] there, use their tools, their systems 

and do the same job. But whenever we’ve tried it the local knowledge is the key thing. 

Like knowing that this river responds particularly quickly and that we need to deal with 

it first before we move on to other ones that’s the sort of thing that even if you’re picking 

it up whilst you’re working in a different centre it’s affecting your ability to deliver the 

role at the time” [MFDO1] 

Duty officers have access to tangible information about past flood events that can be useful 

for placing model information into context. The ‘Flood Intelligence Files’ compile 

information (e.g. highest events on record, what rainfall led to them, what the catchment 

state was at the time and any known impacts) for every gauge the EA is providing forecasts 

for. 

How information is interpreted, risk appetite and past experience, can all affect decisions 

taken. There is the danger of following instincts too much and becoming biased towards 

issuing too many (i.e. risk-averse) or not enough warnings (i.e. risk-hungry), while in some 

cases decisions might never be forecast-led. 

“Since the Boxing Day floods I think the next level of flooding after that there was some 

discrepancies amongst the area responses […] they were a bit […] jumpy […] to not be 

caught out again which is understandable” [MFDO2] 

“these kind of decisions about do we need to draw up a roster, do we need to be in the 

office overnight, a lot of that has probably been done on gut feel, probably this FWDO 

being the advisor. […] Do we need to do whatever based on judgement, experience, feel 

for it. […] I wouldn’t expect these people to actually be looking at any forecast and 

saying, based on this I will do” [I1] 

5.2.4.2.3 Internal and external considerations 

“There are lots of external pressures as well, particularly as FWDO you can come 

under pressure from all different types of sources to make decisions and perhaps 

not based on the evidence that you’ve got for political reasons, […] reputational 

reasons, organisation, in terms of being seen to be active, seen to […] act early” 

[FWDO1] 
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Decisions are not only dictated by the science, local knowledge or personal experience and 

differences, but might have to respond to internal and external considerations, especially 

during major events. 

At an internal level, some areas and duty officers might be more forecast-led while others 

are more reliant on a nowcasting type approach. Discrepancies amongst the area responses 

are partially due to historical differences across the different areas and EA centres. 

“There are definite differences between areas and […] between individual staff, so [town 

X] are far more likely to issue flood alerts […] purely on rainfall than [town Y] is, [town 

Y] will generally wait for a river level to rise and that develops I suppose out of slight 

historical differences and personalities involved” [FWDO2] 

“Some other areas will issue messages based on forecast whereas, we were always told 

to base it on what’s happening, so we kind of wait to see if the rain comes in and then if 

anything happens issue. And we get marked on messages that we send out, so one of the 

things is the timeliness and if you’ve issued one, did it actually flood afterwards? So if 

you’re obviously issuing on a forecast, then you’re probably going to get scored low 

because it doesn’t always happen, so it’s difficult” [FWDO3] 

There are exceptions to these procedures and FWDO3 mentions the possibility of issuing 

flood alerts based on the forecast when the impact is expected to occur overnight or if the 

forecast displays “rarely high confidence” of rainfall and “if it’s a more prolonged event” and 

“you know the catchment’s already wet”. 

The EA’s principle, “think big, act early, be visible”, is an example of an internal 

consideration, which might influence the duty officers’ decision-making (EA, 2018). In what 

ways does the EA’s statutory warning responsibilities and principle influence decision-

making? Does “act early” put the forecast in first place while “think big” and “be visible” 

move it to a secondary position? 

“Our mantra to incident response is think big, act early so sometimes […] there is a 

danger that you’re over responding. Somewhere you’re issuing alerts and warnings 

when actually the risk is low. So I think the role of the FWDO is to assimilate all that 

information, forecasting information and using it to help inform the instant response 

but also manage expectations” [FWDO1] 

There is usually a political element (external consideration) to the response immediately 

following a very major flood, as the EA puts a greater focus on demonstrating to 
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communities and the government that they are being proactive in warning, informing, etc. 

There is also the need for the EA to align its message with actions of lead local flood 

authorities and responders and to think about public response.  

“It’s managing expectations internally in terms of operational response and how this is 

going to potentially play out which […] can still be quite hard to do but it’s even harder 

to do it externally with [the] mood of the public or even some of our professional 

partners, so local authorities are also obviously geared up to respond to flooding” 

[FWDO1] 

To conclude this section, it is evident that the duty officers have to take different sources of 

information, besides the forecast, into consideration to make a decision. However, the 

forecast helps determine the timing of warning and response activities. Because the 

forecast plays a seemingly small part in a much bigger system, could that mean that the 

transition to a different type of forecast will have very minor impacts on the duty officers? 

Or on the contrary, could it unsettle this very complex machine? 

5.2.4.3 What could a transition to probabilistic forecasting mean in practice? 

5.2.4.3.1 Current practice: communicating confidence for decision-making at the EA 

“Uncertainty is present in everything that we do and every bit of communication, 

[…] I don’t think I’ve ever been able to say something with 100% confidence, 

ever.” [MFDO2] 

We have previously touched on the factors and uncertainties duty officers have to work 

with, including uncertainties in: the weather (and how it cascades down to the hydrological 

response), model performance, the different spatial scales of response (local vs. national), 

the situation on the ground (e.g. soil conditions prior to an event and river blockages), EA 

staff decisions and actions, and the public’s reaction to warnings. 

Duty officers currently adapt the language they use to communicate these uncertainties 

internally and externally, based on their confidence level. According to internal EA 

guidelines, the language used should change according to the scenario used so that duty 

officers “get used to the [..] way they're working around scenarios and probabilistic 

forecasting” [I1]. 

“If messages around a ‘Reasonable Worst Case’ use, could or […] is possible; if it’s a ‘Best 

Estimate’ use, we expect, it’s probable” [I1] 
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Between the MFDOs and the FWDOs, confidence and uncertainty appears to always be 

(based on these interviews) communicated, usually using the two flood forecast scenarios.  

“I don’t think we can withhold uncertainty. One, the key role for MFDO is providing the 

forecast. So it’s getting the forecast as accurate as you can and then communicating it 

in the clearest way possible. So that’s often about interpreting the uncertainty and 

communicating it. So we often use the ‘Reasonable Worst Case’ and the ‘Best Estimate’ 

to do that” [MFDO1] 

Messages to the public are also worded with care to communicate the appropriate level of 

risk and prompt appropriate response and also contain some information about confidence 

and uncertainty. These messages are usually free-text messages and will therefore vary 

across FWDOs.  

“The message starts off with this flood warning has been issued for this place then it 

runs on after a while into detail which is where you can communicate those shades of 

grey” [FWDO2] 

However, not all uncertainties are critical, and local knowledge and experience are key for 

the “interpretation of the uncertainties” [FWDO2] and their impact on the ground.  

“Uncertainty from the forecasting point of view is always prevalent but understanding 

how it will impact the […] area’s reaction is kind of the key thing” [MFDO2] 

There is currently space for the communication of confidence at the EA and externally. This 

is a step towards probabilistic forecasting. But how big of a step is it? And how big of a step 

is still needed to reach that full transition to probabilistic flood forecasts? 

5.2.4.3.2 The duty officers’ perceived opportunities and challenges 

“Whether it creates as many problems as it solves, maybe” [I2] 

The transition to probabilistic forecasts is a significant one, which appears to generate 

mixed feelings amongst the duty officers. It is undeniable that this transition will bring 

changes at the EA; as FWDO2 put it, “probabilistic forecasting is kind of a fresh start for 

everyone”. This section presents the interviewees’ perspectives on the changes that will 

ensue from this transition, in terms of perceived opportunities (left wordcloud on Fig. 5), 

challenges (right wordcloud on Fig. 5) and neutral changes. Table 1 outlines these 

perspectives, split into six main topics and supported by quotes reported in Appendix C. 
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Figure 5. Wordclouds of perceived opportunities (left) and challenges (right), based on the interview transcripts. 

Table 1. Interviewees’ perceived opportunities, challenges and neutral changes associated with a transition to probabilistic 

forecasts. Perspectives are split into six main topics (rows). Supporting quotes can be found in Appendix C. 

Language and 

communication 

Most interviewees agreed that this will probably be the biggest 

change. Some believe it might improve long-term communication and 

increase the MFDOs’ credibility and confidence (quote O1). This was 

also found by Thielen et al. (2006). Others believe that there is a 

potential for misunderstanding and that a lot more work is still 

needed on this topic (quotes C1 and C2). 

Uncertainty 

Probabilistic forecasts contain uncertainty which they openly display. 

Some interviewees thought that this would materialise the forecast 

uncertainty, otherwise sometimes hidden with the two scenarios 

(quote O2). This is in line with the EA’s 2009 science report (Sene et 

al., 2009). Many interviewees however questioned whether 

probabilistic forecasts would really help tackle the uncertainty they 

deal with while on duty (quotes N1 and C3). 

The forecasting 

system 

Some interviewees mentioned that the two scenarios, and the What If 

scenarios used to produce them, were sometimes challenging to play 

with and required a lot of expert judgment, thus making them 

inconsistent nation-wide. There were hints that a few MFDOs thought 

probabilistic forecasts might lead to more consistency across the EA 

centres (quote O3). It was however clear from the interviews that 
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things will need to change slowly to give duty officers time to build 

confidence in the new system (quote C4). 

Decision-

making 

A few interviewees mentioned the fact that probabilistic forecasts will 

not solve the fundamental need of decision-making to be binary and 

saw this as a challenge (quotes C5 and C6). Others saw this as an 

opportunity for early warning and long-term planning (quotes O4 and 

O5) 

Duty officers’ 

roles 

This transition was seen neither as an opportunity nor as a challenge 

by and for the MFDOs. They simply stated how things might change 

for them (quotes N2 and N3). A few of the FWDOs however thought 

that this might push more of the interpretation on to them (quotes C7 

and C8). It is worth noting that none of the interviewees mentioned 

worries concerning potential impacts of this future transition on the 

communication and interaction between duty officers. The worries 

seem to mostly lie outside of their interaction (quote O6). 

New staff 

training 

An interviewee mentioned that probabilistic forecasts could help with 

new staff training, by increasing their understanding of catchment 

response (quote O7). 

 

Some of the quotes reported in Appendix C might sound very extreme, which could be partly 

due to the way the questions that prompted them were phrased. However, it could also 

reflect personal resistance and should be explored further. 

5.2.5 Discussion and recommendations 

5.2.5.1 Considerations for a successful transition to probabilistic forecasts 

Probabilistic forecasts have a great potential to capture extreme events (Stephens and 

Cloke, 2014), and their benefits (compared to deterministic forecasts) for flood warning are 

evident (Verkade and Werner, 2011; Pappenberger et al., 2015). However, despite the 

increasing lead times at which we can confidently predict floods, the uncertainty inherent 

in the chaotic natural system being modelled grows with increasing lead times, posing new 

problems. As science and decision-making are both individually progressing, adapting to 

their respective internal and external changes, there still lacks an ideal framework for the 

incorporation of new and ‘uncertain’ science in decision-making practices, and, 
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respectively, the uptake of decision-makers’ perspectives in the design of scientific practice. 

Here, results from this study and relevant literature are joined to put forward elements that 

should be considered for a successful transition to probabilistic forecasts for flood warning 

in England. 

From these interviews and previous EA studies, it is apparent that forecasts are one element 

in the complex decision-making landscape within which EA duty officers operate (Orr and 

Twigger-Ross, 2009; Dale et al., 2014). This landscape includes alternative ‘hard scientific 

facts’ (e.g. correlations, model performance and local knowledge to an extent), and ‘soft 

values’ (dependent on culture and context, personal experience and internal and external 

considerations) (Morss et al., 2005; Cloke et al., 2009; Arnal et al., 2016; Neumann et al., 

2018b). Morss et al. (2005) found that “although flood management practitioners might 

appreciate more certain hydro-meteorological information, scientific uncertainty is often 

swamped by other factors [e.g. community perception, time, money and resource 

constraints] and thus is not a high priority.” When uncertainties are evident and decision 

stakes are high, as is the case for the uncertainty communicated by probabilistic forecasts 

for flood incident management, traditional decision-making pathways could become 

ineffective and soft values might become more important than hard scientific facts 

(Funtowicz and Ravetz, 1993). In this specific study for example, an uncertain probabilistic 

forecast could lead to some duty officers reverting to the ‘Best Estimate’ and the river level 

correlations to make a decision, ignoring low probabilities of extreme events which could 

have ultimately led to an earlier flood warning. 

Facing constantly evolving soft values, some decision-makers may find familiarity with the 

scientific methods they use reassuring, reducing their personal willingness to adopt new 

scientific methods (Morss et al., 2005; Ishikawa et al., 2011). This personal willingness was 

captured in the range of responses (perceived challenges and opportunities) obtained 

during the interviews. An institute’s operating practice should reflect the complex 

landscape in which decision-makers operate, where the forecast plays an integral role in 

decision-making. To this end, the co-design of forecasting systems by both forecasters and 

users is necessary. 

To do that, clear communication between forecasters and users is needed. However, 

language is perhaps one of the biggest barriers between scientists and decision-makers. It 

has been observed that “the way scientists referred to and discussed uncertainty sometimes 

confused practitioners” (Morss et al., 2005). Similarly, there is a lot of research done on the 

impacts of graphical representation of uncertainty in hazard forecasts on decision-making. 
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These have shown that great care has to be taken when designing and communicating 

uncertain information, as it can impact the nature of the actions taken (Bruen et al., 2010; 

Joslyn and Savelli, 2010; Stephens et al., 2012; Pappenberger et al., 2013; Sivle et al., 2014). 

There is the common misconception amongst the scientific community that decision-

makers want 100% certain information (Demeritt et al., 2013; Michaels, 2014). In reality, 

as shown in this paper, decision-makers appreciate that scientific information is uncertain, 

not unlike other types of information they use. Decision-makers want to see that 

uncertainty, which they do not necessarily perceive as a barrier to use (Morss et al., 2005; 

Bruen et al., 2010; Neumann et al., 2018b). One reason for this misconception might be the 

different ways scientists and decision-makers approach forecast uncertainty. Scientists see 

(the reduction of) forecast uncertainty as an end goal and “often deal with uncertainty by 

attempting to reduce, quantify, analyze, and/or assess it”. Decision-makers “view 

uncertainty as an unavoidable factor […,] all information about the future is uncertain [and] 

they must make decisions under uncertainty every day, in a complex, evolving social, 

institutional, and political environment” (Morss et al. 2005).  

In this complex evolving landscape, decision-makers deal with forecast uncertainty 

similarly to other uncertainties they might face: under time and resources constraints. They 

assess the total uncertainty there is (the forecast uncertainty might sometimes be negligible 

compared to all the other factors at stake) in terms of its potential effect on the decision-

making process and outcome (Morss et al., 2005). As mentioned by a few EA duty officers, 

uncertainty is prevalent in everything that they do, and the key is understanding what the 

impact of these uncertainties will be on the ground. It is crucial to develop a methodology 

for decision-makers to be able to use (forecast) uncertainty information optimally. A 

solution that does not require any additional time- and resource-consuming complex 

analyses, given the high stakes and strict deadlines decision-makers have to work with. 

Smith et al. (2018) argue that if there was a “greater involvement of decision-makers in the 

design and execution of uncertainty analyses”, “more purposeful evaluation and 

communication of uncertainty would certainly result”. This remains an open challenge to 

be tackled. 

By design, probabilistic forecasts might contain some realisations that capture scenarios 

which do not always realise. This may lead to false alarms. Institutions can have specific 

risk perceptions and flood management priorities: seeking to avoid false alarms, or on the 

contrary, seeking to avoid missed flood events*, and the minimum/maximum lead time at 

which they (have to) issue flood warnings. This cultural landscape within which decision-
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makers operate may have an impact on the decision-making outcome (as discussed in Sect. 

5.2.4.2.3) and an institution’s uptake of probabilistic flood forecasts in practice (Nobert et 

al., 2010; Ishikawa et al., 2011; McEwen et al., 2012; Demeritt et al., 2013; Michaels, 2014). 

A transition to probabilistic flood forecasts should be reflected in an institution’s wider 

flood management priorities. This could be done, for example, by changing their internal 

communication pathways or their warning procedures (e.g. lead times at which they 

operate). 

Very often however, the ability of an institution to pick up new information and methods is 

not only down to them, but could be influenced by the wider socio-political context and 

other key actors in the decision-making web (e.g. the government, local authorities, 

regulations and guidelines), additionally to the populations at risk and the way they 

respond to flood warnings (Dessai and Hulme, 2004; Morss et al., 2005; Parker et al., 2009). 

This is reflected in the interviewed EA duty officers’ perceived challenges regarding 

‘Language & communication’ and ‘Binary decision-making’ (Sect. 5.2.4.3.2). In the face of a 

socio-political context that is demanding ever more precise information and with the rise 

of a post-factual society, the general trust in science might be a limiting factor to the uptake 

of new science and institutions should trust their capacity to use uncertain probabilistic 

information (Soares and Dessai, 2015; Golding et al., 2017; Knudsen and de Bolsée, 2019).   

It is also important to note that “moving to probabilistic forecasting from deterministic 

forecasting may trigger an institutional shift in who is responsible for decision making 

under uncertainty” (Michaels, 2014). Because making a decision based on probabilistic 

information is more nuanced than using deterministic information, the outcome will 

determine who will be ‘blamed’ and this ownership of the uncertainty judgment might have 

implications on the forecasters-users relationships (Michaels, 2014). This relates to some 

of the interviewed duty officers’ fears of a transition to probabilistic forecasts at the EA, as 

it might move “the burden of making a decision fusrther down the tree” (Sect. 5.2.4.3.2). In 

this context, a framework to engage with all key actors of the decision-making web ahead 

of and during a transition to probabilistic forecasts appears crucial. Ramos et al. (2010) 

advocated the use of integrated platforms to allow a continuous exchange between 

scientists and decision-makers in real-time. Similar studies on the provision of climate 

services have identified the lack of user engagement as a great limiting factor of the uptake 

of climate information in practice (Golding et al. 2017). It is evident that a transition to 

probabilistic forecasts is not only a scientific endeavour and feasibility studies should 

include other disciplines, such as social-science. 
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This paper and the supporting interviews intentionally excluded the notion of coastal flood 

forecasting as not all interviewees were familiar with and use these forecasts operationally 

(given the non-proximity of some of the EA centres where interviews were carried out with 

the coast). However, as mentioned in Sect. 5.2.2, the EA already uses coastal flood 

probabilistic forecasts and learning from this previous transition could provide valuable 

information for the current transition to probabilistic fluvial flood forecasts. This should be 

further investigated.  

5.2.5.2 Recommendations to the EA 

In light of the findings of this study, and other relevant studies, we make a list of 

recommendations to support the uptake of probabilistic forecasts at the EA. These ten 

recommendations are high priority actions for the EA as an institution. The service, role 

owners and those responsible for ensuring a quality service delivery should ensure that 

these recommendations are pursued, alongside technical work around the transition. 

Please note that these recommendations are not ranked in priority order for the EA, as some 

of these will be quicker and easier to implement and to demonstrate progress on. 

1) Communicate (via engagement campaigns, videos, email newsletters, social media 

updates and webinars, etc.) with all key players in the decision-making chain (as 

well as external players such as the emergency responders and the public) to ensure 

that they are all aware that the transition to probabilistic forecasts will become 

operational practice. 

 

2) Give appropriate and custom designed internal training to all key players (Nobert 

et al., 2010). Duty officers must receive training on how to make decisions based on 

probabilistic forecasts (for example in the form of decision-making activities and 

serious games - see the HEPEX† and the Red Cross Climate Centre‡ resources for 

inspiration). 

 

3) Expand existing EA communication structures to allow the co-design of the new 

products between forecast producers and users (Morss et al., 2005; Smith et al., 

2018). Everyone using the forecasting products and systems at the EA should have 

the chance to have a say in how the system will look and function through a mutual 

design strategy.  If the new system does not reflect the complex landscape in which 

                                                             
† hepex.irstea.fr/resources/hepex-games 
‡ www.climatecentre.org/resources-games/games 
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duty officers operate (a mix of ‘hard scientific facts’ and ‘soft values’), probabilistic 

forecasts might end up being under- or misused. 

 

4) Reach out to the community of practice in hydrological probabilistic forecasting, 

such as HEPEX§ (community of international experts in the field of probabilistic 

hydrological forecasting and decision-making) and connect with institutes which 

have already gone through such a transition to gain insights and share best practice, 

as some elements might be transferrable (Nobert et al., 2010; Dale et al., 2014). This 

could be done through organised workshops, webinars and the establishment of an 

advisory group. 

 

5) The way probabilistic information will be translated into meaningful content and 

communicated to the emergency responders and the public requires careful 

thought and design (Bruen et al., 2010; Joslyn and Savelli, 2010; Stephens et al., 

2012; Pappenberger et al., 2013; Sivle et al., 2014). To this end, an interdisciplinary 

approach between forecasters and social-scientists would be greatly valuable as 

social-science can offer insights into the human response to warning messages.  A 

tailored and inter-disciplinary study of the forecasting products using probabilistic 

information and used in the decision-making process is urgently required. 

 

6) a) The EA’s heterogeneity at the national level should be accounted for and 

addressed. Given the heterogeneity of the EA at a national level and the areas’ 

diversity in terms of history and catchment response, we do not expect probabilistic 

forecasts to be welcomed similarly in all the EA centres. Efforts will therefore have 

to be made by the EA to achieve a simultaneous and homogeneous transition in all 

its centres.  

 

b) Furthermore, the design of the new forecasting system should be homogenised 

at the national level (to allow for staff movement during major flood events), while 

accounting for the heterogeneity of local conditions, existing dynamics and 

institutional practices. This could be achieved through the co-design of the 

forecasting system with local duty officers (see recommendation 3). 

 

                                                             
§ hepex.irstea.fr 
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7) Be prepared to move towards lead times that reflect the probabilistic forecast 

predictability. The optimal lead time to trigger action depends on both the 

probabilistic flood forecast quality and the actions’ operational implementation 

time (Bischiniotis et al., 2019). While the EA operates with pre-defined lead times 

for each specific activity (e.g. it takes x hours/days to move equipment from A to B, 

or to deploy temporary defences), probabilistic forecasts could in theory provide 

earlier indications of potential future floods, giving the EA more time to prepare 

ahead of a flood event. To utilise probabilistic forecasts to their full potential, 

tailored studies should be performed during the EA system’s co-design to adjust 

lead times (for planning and warning) on the probabilistic products and event 

types, with ample time for testing by the EA duty officers.  

 

8) Under no circumstances should the old system be switched off as soon as the 

probabilistic system is operational. There should be a reasonable period of overlap 

between the two systems in order to give everyone some time to gradually adapt 

(Funtowicz and Ravetz, 1993). During that time of overlap, end-user feedback 

should be collected (Thielen et al., 2006). To avoid situations where the 

probabilistic forecast and the two scenarios show contrasting results, the new 

operating procedures need to specify that the probabilistic forecasts should be 

looked at first. 

 

9) Update the duty officers’ operating procedures. Clear guidelines should be provided 

to the duty officers on how to make a decision based on the new probabilistic 

products. These guidelines should include information such as: the various sources 

of information available to them for making a decision, how to interpret a 

probabilistic forecast, the forecast confidence at which certain decisions and actions 

should be made and the language that should be used.     

 

10) Document this transition (in writing or through documentary-style interviews, etc.) 

to help other institutes and future transitions at the EA (Pielke, 1997). While this 

paper investigates how things might change, post-transition evaluation should seek 

to answer the question: “How did we do?” 

 

Many of these recommendations are however general and could be applicable to other 

institutes and types of information. 
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5.2.6 Conclusions 

The Environment Agency (EA) is in the process of a transition to probabilistic fluvial flood 

forecasts, from the two flood scenarios they currently use operationally for flood warning 

and incident management activities in England. State-of-the-art probabilistic forecasts can 

give an earlier indication of potential future extreme events, such as floods, increasing the 

amount of time decision-makers have to prepare. A series of interviews were carried out 

with EA ‘Monitoring and Forecasting Duty Officers’ (MFDOs) and ‘Flood Warning Duty 

Officers’ (FWDOs), two roles at the heart of the EA’s flood risk management decision-

making chain. The aim was to understand how an operational transition to probabilistic 

flood forecasts might affect their decision-making activities. Overall, none of the 

interviewed duty officers mentioned concerns about impacts of this transition on their two 

roles’ interaction. Perceived challenges lie mostly outside of their roles and relate to: 

communication with emergency responders and the public, translating uncertain 

information into a binary decision and the speed of the transition. Ten high priority 

recommendations were made to the EA to ensure a successful transition. They include: i) 

communicating with all key players in the decision-making chain (as well as emergency 

responders and the public) to ensure that they are all aware that this transition will become 

operational practice, ii) facilitating the co-design of the new products by forecasters and 

users and collecting end-user feedback during a reasonable period of overlap between the 

two systems, iii) employing an inter-disciplinary approach to translate probabilistic 

information into meaningful content for communication with emergency responders and 

the public, and iv) being prepared to adapt the EA’s overarching warning and incident 

planning strategy to reflect this transition. It is vital for these recommendations to be 

followed to ensure that state-of-the-art science is used to its fullest potential for risk 

management practice and is not being under- or misused. 
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5.2.7 Appendix 

Appendix A. Glossary of terms. 

Best Estimate A forecaster’s assessment of the most likely rainfall, river and 

groundwater levels, and coastal conditions, and their impacts. 

Catchment 

characteristics 

and response 

Catchment characteristics are the features that describe a river 

basin (i.e. the area of land drained by a river), such as its location, 

size, vegetation cover, soil type and topography. They partially 

define the catchment response, the catchment’s reaction when 

subjected to a rainfall event (e.g. how fast the water level increases 

after a rainfall event).  

Chaos The property of a complex system, like the weather, whose 

behaviour is so unpredictable that it appears random. This is due 

to the system’s sensitivity to small changes in conditions. 

Confident A forecaster’s expert judgement of how certain they are that the 

forecast is right. 

Convective 

rainfall events 

The sun heats the ground, warming up the air above it. This causes 

the air to rise. As the air rises it cools and condenses, forming water 

droplets that organise into clouds and lead to rainfall. Convective 

rainfall events can lead to thunderstorms. 

Department for 

Environment, 

Food and Rural 

Affairs (Defra)  

UK government department responsible for safeguarding the UK’s 

natural environment and supported by 33 agencies and public 

bodies, including the Environment Agency (EA). 

www.gov.uk/government/organisations/department-for-

environment-food-rural-affairs 
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Deterministic 

forecasts 

Refers to a forecast which gives a single possible outcome of the 

future rainfall, river and groundwater levels and coastal conditions. 

Ensemble Instead of running a single deterministic forecast, computer 

models can run a forecast several times, using slightly different 

inputs to account for uncertainties in the forecasting process. The 

complete set of forecasts is called an ‘ensemble’, and each 

individual forecast within it are ‘ensemble members’. Each 

ensemble member represents a different possible scenario of 

future rainfall, river and groundwater levels and coastal conditions. 

Each scenario is equally likely to occur. 

Environment 

Agency (EA) 

An executive non-departmental public body sponsored by Defra. 

The EA has an operational responsibility to manage risks of 

flooding from rivers and the sea in England, by warning and 

informing the public and businesses about impending floods.  

www.gov.uk/government/organisations/environment-agency 

False alarms A warning given ahead of an event (e.g. flood) that does not 

ultimately occur. 

Flood action 

groups 

Cores of local people who act as representative voices for their 

wider community. They work alongside agencies and authorities 

and meet on a regular basis with the aim of reducing their 

community’s flood risk and improving its resilience to flooding. 

Flood Forecasting 

Centre (FFC) 

A partnership between the Environment Agency and the UK Met 

Office. It provides a UK-wide 24/7 hydro-meteorological service to 

emergency responders to better prepare for flooding (river, 

surface water, tidal/coastal and groundwater). 

www.ffc-environment-agency.metoffice.gov.uk 

Flood Guidance 

Statement (FGS) 

A daily flood risk forecast for the UK, produced by the FFC (in 

collaboration with the EA and Natural Resources Wales) to assist 

with strategic, tactical and operational planning decisions. It gives 

a flood risk assessment shown by county and unitary authority 

across England and Wales over the next five days for all types of 
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natural flooding (coastal/tidal, river, groundwater and surface 

water). The FGS is issued by the FFC every day at 10:30am and at 

other times, day or night, if the flood risk assessment changes. 

www.ffc-environment-

agency.metoffice.gov.uk/services/FGS_User_Guide.pdf 

Flood incident 

management 

strategy 

An institute’s priorities for preparing for and responding to flood 

events. 

Flood 

management 

measures 

Solutions to reduce the impacts that floods pose to humans and the 

environment. They can be natural (e.g. planting vegetation to retain 

extra water in the ground) or engineered (e.g. flood barriers). 

Flood 

preparedness 

Measures taken to prepare for and reduce the effects of a flood 

event. 

Flood scenarios Possible future development of a flood event and its associated 

likelihood. 

Flood wardens Volunteers from local communities who have the responsibility to 

monitor watercourses in the area they cover and contact local 

authorities with up to date information. 

Forcing The action of inputting information into a computer model to 

produce a forecast. 

Forecast accuracy The level of agreement between the forecast and the truth (i.e. what 

is observed in reality). 

Forecasting 

product 

A comprehensive and tailored overview (i.e. in the form of text, 

graphics and/or tables, etc.) of the forecast. 

Hydraulic model Mathematical model of the movement of water in a system (e.g. a 

river). 

Hydrological 

model 

Simplified model of a real-world system that describes the water 

cycle. 
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Hydro-

meteorological 

observations and 

forecasts 

Hydro-meteorology is a branch of meteorology and hydrology that 

studies the transfer of water and energy between the land surface 

and the lower atmosphere. Hydro-meteorological observations 

include observations of meteorological (e.g. temperature and 

rainfall) and hydrological variables (e.g. river and groundwater 

levels). Hydro-meteorological forecasts are forecasts that predict 

the evolution of meteorological and hydrological variables in time. 

Hydro-

Meteorological 

Services 

Hydro-meteorological forecasting* products* produced by the FFC 

and issued daily (Hydro-Meteorological Guidance), twice daily 

(Forecast Meteorological Data) or whenever required (Heavy 

Rainfall Alerts). 

Lead time The length of time between when the forecast is made and the 

occurrence of the event (e.g. flood) being predicted. 

Long-range 

forecasts 

Forecasts which cover a period of time from a month to more than 

a season. 

Missed flood 

events 

A flood for which no warning was given ahead of it happening. 

Model 

performance 

The level of agreement between the model’s outputs and their 

observations in reality. The difference between a model output and 

its respective observation is the error. The lower the error, the 

greater the model performance. 

Nowcasting Extrapolating from the latest observations (e.g. radar rainfall) to 

forecast the evolution of, for example the weather, in the next 

couple of hours. 

Operational 

decision-making 

Decision-making based on real-time information to resolve 

imminent situations. 

Outlook Refers to a forecasting product* based on long-range forecasts* (i.e. 

monthly to seasonal). 

Performance 

measures 

Metrics that characterise the quality of a forecast or a model 

compared to observations. 
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Probabilistic 

forecasts 

While a deterministic model gives a single possible outcome for an 

event, a probabilistic model gives a probability distribution as a 

solution, indicating the likelihood of each scenario to occur. 

Probabilistic and ensemble forecasts are sometimes used 

interchangeably (see ‘Ensemble’). 

Rapid-response 

catchments 

Catchments and rivers that respond quickly to rainfall events. 

Real-time river 

gauges 

Instruments that measure a river’s characteristics (e.g. flow or 

water level) and communicate these data in real-time remotely. 

Reasonable Worst 

Case 

A forecaster’s assessment of the potential upper range of rainfall, 

river and groundwater levels, and coastal conditions, and their 

impacts. 

Risk A combination of likelihood and impact of an event. 

River level 

correlations 

Mathematical characterisation of the river level at one point of the 

river with respect to another point on the river. This can be used to 

estimate the river level at a point on the river if the river level 

upstream is known. 

Short-range 

forecasts 

Forecasts which cover a period of time from a couple of a hours to 

a couple of weeks. 

Surface water 

flooding 

Flooding caused when the volume of rainwater falling does not 

drain away through the river network and other drainage systems, 

or infiltrate into the ground, but lies on or flows over the ground. 

Surge forecasts  Forecasts of the rise of water along coastlines. 

Telemetry sites Sites where instruments collect measurements automatically and 

transmit it remotely (see ‘Real-time river gauges’) 

Uncertainty Having limited knowledge or understanding of our environment, it 

is impossible to characterise and predict its evolution with 100% 

certainty. All forecasts are uncertain, and that uncertainty 

amplifies with lead time*. Ensemble* or probabilistic forecasting* 

can be used to represent the forecast uncertainty. 
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Appendix B. Visual examples of operational products used by EA MFDOs and FWDOs: (a) 

Flood Guidance Statement, (b) Hydro-Meteorological Guidance, (c) Forecast Meteorological 

Data, (d) Heavy Rainfall Alert, and (e) National Flood Forecasting System (source: EA). The 

works published in this journal are distributed under the Creative Commons Attribution 

4.0 License. This licence does not affect the Crown copyright work, which is re-usable under 

the Open Government Licence (OGL). The Creative Commons Attribution 4.0 License and 

the OGL are interoperable and do not conflict with, reduce or limit each other. 

 

(a) 

© Crown copyright 

2019 
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(b) 

© Crown copyright 

2019 
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(c) 

© Crown copyright 

2019 
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(d) 

© Crown copyright 

2019 
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(e) 
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Appendix C. Interviewees’ quotes in relation to their perceptions (opportunities, neutral 

and challenges) associated with a transition to probabilistic forecasts.  

 

Opportunities 

O1: “If you’ve got a huge spread then you know that there’s a very wide range of impact 

potentially, but if […] everything’s within a couple of centimetres of each other, it gives you 

a lot more confidence in saying, no I think we’re going, we’re not going to see a threshold 

crossing. So […] it will help decision making I think” [MFDO3] 

O2: “I think in a good way […] it will […] reveal the uncertainty that’s hidden by apparent 

simplicity” [I1] 

O3: “The new flood forecasting system is being developed at the moment so it’s going to 

replace the NFFS. [The] benefits to that I suppose […] are that if we can look to be more 

consistent across the country in even simple things like what displays look like […] we’re 

more interoperable if we need to” [MFDO1] 

O4: “I think in an incident I’m happy that that’s […] a useful range of things to know, like 

you said, you probably warn for the lowest one and plan for the highest one and we can 

interpret between them” [FWDO2] 

O5: “We’re talking about some of these decisions that have got a long lead time, we’re 

going to move people around the country, we’re going to move equipment. It takes a long 

time to do that” [I1] 

O6: “Between us [duty officers], it’s probably OK because we’ve got that understanding of 

the roles” [FWDO3] 

O7: “I can see some benefits to it, especially when you’ve got less experienced staff […], 

you’re almost […] showing them the breadth of what a catchment could do given a range 

of responses” [MFDO2] 
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Neutral 

N1: “Uncertainties are very tricky to deal with, whether probabilistic forecasting and a 

switch to that is going to help?” [MFDO2] 

N2: “I think the MFDO role won’t change, it will still be to communicate a forecast but the 

[…] wording of the forecast may change slightly” [MFDO1] 

N3: “I think from our point of view it will just mean a bit more interpretation of forecasts 

and then […] just a slightly different way of passing it on […]. But I don’t think it will change 

the process” [MFDO3] 
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Challenges 

C1: “All the comms research we hear about generally says […] the public message has to 

be as simple as possible, so that is working the opposite way to any proposal for 

probabilistic forecasting” [FWDO2] 

C2: “A lot of local authorities standing their staff up, putting them on standby for a 

weekend is quite a big budget thing […]. So […] if we say, it is going to flood, they can justify 

the spend on it […]. If we pass it on as shades of grey, a lot of them, they’ll appreciate the 

information but some of them would actually resent having the decision forced on them 

because they will struggle to then justify doing something or they’ll be blamed, either way, 

blamed for spending money if it doesn’t happen and blamed for not spending enough if it 

does happen.” [FWDO2] 

C3: “That would be my concern that it’s even more information and more uncertainty and 

it’s kind of like, well what do you do with this information? And which bit do you 

communicate to who?” [FWDO3] 

C4: “It is something to bear in mind with that if probabilistic forecasting put too much 

pressure and stress on decision making on the people in these roles, the system probably 

would just collapse, people would walk away” [FWDO2] 

C5: “You’re still going to have this overriding issue with fast responding catchment where 

one scenario says we might need to issue a flood warning but 99 of them say no. Someone 

has to make a decision” [MFDO1]  

C6: “I think still for a lot of people the question they […] want answered is am I going to 

flood?” [I2] 

C7: “I think my role is going to be the one where it has to stop and it can’t be probabilistic 

because it […] does come to a yes or no, issue it, don’t issue it. So to some extent, 

probabilistic forecasting does feel like everyone else just pushing things down the line 

saying you make the decision, […], we have to make the decision because we’re the last ones 

on the line” [FWDO2] 

C8: “Having probabilistic forecasting just moves the burden of making a decision further 

down the tree” [MFDO2] 
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Chapters 2 to 5 have shown how the combination of various disciplines and tools (e.g. the 

science of forecasting, decision-making, serious games, sensitivity analyses and interviews) 

can give a comprehensive overview of a specific topic. In this case: streamflow forecasting 

over Europe.  

Art can be a powerful tool to communicate science, as well as making space for questioning, 

raising unconventional scientific questions of societal relevance. In Chapter 6, we will see 

how the combination of science and art can be beneficial to both fields. This chapter will 

also introduce a science and art exhibition, created as part of this PhD. 
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6.1 Background 

6.1.1 Why (not) combine science and art? 

At school, we have all been told that science and art are their own distinct disciplines, and 

followed classes in both of these, separately. The process behind these disciplines seems 

quite different. Art is about connecting feelings with a colour, a shape, a texture. The process 

nourishes itself from creativity and intuition. Science is about logic. About applying known 

concepts to solve a given problem objectively, trading intuition for hard facts. 

“The beauty of art Is that it can be provocative, metaphoric, poetic, it can use 

juxtaposition […] to express. Art to me is an expressive medium. Whereas a scientist is 

trained to hold back personal expression. It’s a field that is not subjective, but objective. 

There to me is where there is a big difference, and that’s good, that’s fine.” (interview 

with Gayil Nalls1, founder of the Art & Science Collaborations™ Inc.) 

But this has not always been the case; the distinction between science and art is relatively 

recent. Until the 17th century, art was used to refer to a ‘skill’ or ‘mastery’, and was not 

differentiated from science. During the 15th century, Leonardo da Vinci was using science 

to elevate his art, fusing both disciplines to question the world in which he lived. Despite 

their apparent dissimilarities, science and art have respectively flourished from their 

combination and from the creativity that scientists and artists have shown. The creative 

process present in both science and art is perhaps their most common trait. 

In the early 20th century, L.C.W. Bonacina believed that the close relationship between 

aesthetic and scientific problems was vital in reaching a unifying vision of our world. He 

argued that the description of meteorological events could not be done by numerical 

measurement and verbal categorisation alone, but needed to be completed by pictorial 

qualification. The contemplation of beautiful scenes can, for example, raise novel scientific 

questions, while scientific knowledge can enhance aesthetic appreciation. 

                                                             
1 www.sciartmagazine.com/straight-talk-cynthia-pannucci.html 

The science and art of predicting floods  
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“It is difficult, for example, to believe that a person could completely come to terms with 

the majestic beauty of a thunder cloud, who had not at least a partial understanding of 

the mode in which water in mid-air is able to pile itself up into mountainous formations 

with peaks, domes, cliffs and gulleys.” (Bonacina, 1941) 

6.1.2 Art as a scientific process 

Science depends on the close observation of specimens and phenomena and the accurate 

recording of information. To this end, science relies on the artistic (or scientific) drawing 

process. Leonardo da Vinci, one of the greatest inventors of all times, produced an extensive 

amount of drawings and sketches, ranging from anatomy and physiology to engineering, 

following an observational approach to science. 

In fact, the modern-day classification of clouds would not have existed without the fruitful 

combination of science and art. Before the 19th century, meteorologists thought each cloud 

to be unique in every way. We had to wait until 1802 for Luke Howard, amateur 

meteorologist, to put forward the now widely used clouds classification. Luke Howard spent 

years monitoring the skies and making sketches and watercolour paintings of clouds (Fig. 

1) from which he came up with the three categories and descriptive Latin terms: cirrus (a 

curl of hair), cumulus (a heap), and stratus (a layer). Historians also believe Howard’s 

scientific classification of clouds has influenced artists throughout Europe, such as painters 

John Constable and Joseph M. W. Turner, changing the way clouds were depicted in many 

19th century European paintings compared to earlier work2. 

                                                             
2 blog.sciencemuseum.org.uk/the-man-who-named-the-clouds/ 
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Figure 1. Cloud study by Luke Howard. 

Until recently, most weather centres have relied on their meteorologists drawing weather 

maps by hand as an important step of the operational weather forecast generation. It is a 

process which requires both scientific knowledge and intuition (Fig. 2). 

© Royal Meteorological Society 



168 

 

 Chapter 6. The science and art of predicting floods 

 

Figure 2. ‘Draw the forecast’ science and art activity organised by L. Arnal at the ‘Using ECMWF's Forecasts’ event 2019 

(source: Twitter). 

6.1.3 Science as an artistic inspiration 

Just like painters John Constable and Joseph Turner, inspired by Howard’s scientific clouds 

classification, artists have been inspired by scientific discoveries and concepts for centuries. 

In October 2018, the World Bank’s Disaster Risk Finance and Insurance Program (DRFIP), 

the Global Facility for Disaster Reduction and Recovery (GFDRR), and the Government of 

Vanuatu co-hosted Understanding Risk Finance Pacific in Vanuatu. The centerpiece of the 

conference was a five-meter long data sculpture illustrating the range, frequency, and 

severity of disasters that have affected Pacific Island Countries over the last decades3 (Fig. 

3). Based on 25 years (1993-2018) of data on atmospheric and oceanic parameters, extreme 

events, economic losses, deaths, and people affected by disasters in the Pacific region, the 

designer and lead artist, Pablo Suarez, wanted to communicate the risks of natural disasters 

in this part of the world. By engaging with the audience’s emotions, the sculpture highlights 

the need to build resilience to climate risks. 

                                                             
3 blogs.worldbank.org/psd/giving-life-numbers-communicating-risk-through-art 
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Figure 3. ‘Risk & Time: A Data Sculpture on Nature, Disasters, & Finance’ (source: Twitter). 

Another example is the art installation of UK-based artists Lise Autogena and Joshua 

Portway, called ‘Most Blue Skies’4. As part of this installation, a computer runs continuously 

to find ‘the bluest skies’ in the world, by measuring the passage of light through particulate 

matter in the atmosphere and calculating the exact colours of the sky at billions of places 

on Earth. By combining “atmospheric research, environmental monitoring and sensing 

technologies with the romantic history of the blue sky and its fragile optimism”, this project 

looks at “our changing relationship to the sky space as the subject for scientific and symbolic 

representation”. 

Climate change is a topic that has been widely explored by artists. The work of visual artist 

Andreco for the Climate 04-Sea Level Rise project is one example5. Inspired by international 

research about the effects of sea level rise and extreme waves in the Venice lagoon, Andreco 

created a meters’ long wall painting to bring these scientific concepts and motivations to 

                                                             
4 www.autogena.org/mbs.html 
5 streetartnews.net/2017/10/climate-04-sea-level-rise-project-art-science-andreco-venice.html 
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the streets of Venice (Fig. 4). Reaching a wide audience, the painting stimulated public 

discussions on the causes and effects of climate change. 

 

Figure 4. Climate 04-Sea Level Rise project mural by Andreco (source: Twitter). 

While scientists might experience difficulties bringing their findings to the public, art can 

bridge this gap by touching the public’s imagination and emotions. Artists can use 

juxtaposition, metaphors, poetry, engage with the audience’s senses to share information 

and create a questioning in the audience’s mind. 

“Artists excel at bringing ideas that you cannot see with a naked eye and conceptualise 

in them. They can reach not only the heart but the mind.” (interview with Gayil Nalls1) 

Another strength of using art to communicate science is the possibility to overcome 

problems associated with a language barrier (as mentioned in Chapter 5 regarding the 

communication between scientists and decision-makers). 

Science and art collaborations have soared in the last few decades, with the term SciArt 

coined to describe this rising phenomenon. There are nowadays many SciArt projects on 

the topic of weather and water. Science and art is also becoming more present amongst 

scientific institutes and at scientific conferences. The European Commission’s Joint 
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Research Centre (JRC) has been hosting a SciArt summer school for the past few years. This 

is followed by the Resonances festival, where the co-created work of artists, JRC and invited 

scientists is presented to trigger conversations on a pre-defined topic. Art is also becoming 

more present at the European Geosciences Union (EGU) General Assembly, where a SciArt 

session has been held for the past couple of years for scientists and artists to display their 

SciArt work on any environmental topic. In 2018 for the first time, the EGU also hosted two 

artists in residence at the General Assembly (Fig. 5). As part of Pint of Science, a global 

festival which aims to bring scientific research to local pubs to reach a wider audience, 

several cities have organised SciArt-themed events (‘Creative Reactions’6). This year, 

Reading organised its first Creative Reactions event (of which I was one of the co-

organisers; Fig. 6). The event brought together about 30 scientists and artists from around 

Reading to talk about and create art inspired from a range of scientific topics, displayed 

during the event. 

 

Figure 5. Artworks by artists in residence at the EGU GA 2019 (source: Twitter). 

                                                             
6 pintofscience.co.uk/creativereactions 
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Figure 6. Reading Pint of Science ‘Creative Reactions’ 2019 (source: Twitter).  

6.2 ‘Gambling with floods?’ A science and art exhibition by L. Arnal 

6.2.1 My science and art practice 

I am a scientist with a lifelong love of art. Growing up in a family of artists, art has been a 

go-to-activity and a way for me to express myself since a very young age. But when I started 

my PhD, I put art aside, thinking that I had to dedicate all my time to science. 

Two years through my PhD, I went through a difficult phase, as many PhD students will 

experience. I picked up art again, capturing my days at work through sketches. Art became, 

once again, an essential part of my life, and one of the main reasons you are reading this 

sentence. 

I realised that, this once personal tool, could be used to share my passion for the science I 

do with an audience. This led to my first SciArt piece, ‘The science & art of predicting 

floods’7. In this video, I am telling my mother (an artist) what my PhD is about, while she 

draws what it means to her. Through this project, I wanted to share my passion for my PhD 

topic with my mum, and an audience like her (with no a priori knowledge of the field). I also 

wanted to visualise how my mum understood the science I do. 

                                                             
7 sciartfloods.wordpress.com/2018/03/03/the-journey-begins/ 
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 This video inspired me to work on many more and various SciArt projects (e.g. comics 

summarising my scientific papers, live-cartoons capturing an event, chaos SciArt 

experiments, SciArt activities organised for children and adults, collaboration with artists 

for the JRC’s Resonances festival 2019; see my blog8 for some examples), all related to my 

PhD’s topic. Through these projects, I wanted to bring together two of my passions, science 

and art, to reach a wider audience than the scientific community to which discussions 

around my PhD’s topic were usually confined (via the more classical formats of scientific 

papers, presentations at conferences, and ultimately the PhD thesis). 

These projects bolstered my science and art practice through the varied challenges they 

brought. They also reinforced my passion for SciArt and my aspiration to steer my career 

towards this emerging field. 

6.2.2 Art exhibition 

Building on these last couple of years of experience doing SciArt, I wanted to create an 

exhibition that captures the core of my PhD topic and practice. Having realised multiple 

static SciArt pieces in the past, I wanted this piece to be dynamic, to recreate an experience 

metaphorical of my PhD practice and of forecasting (a very dynamic process per se). 

Through the creation of this SciArt exhibition, I also wanted to challenge the traditional 

format of the scientific PhD thesis and pave the way for (and hopefully inspire) future PhD 

students to use art as a tool and process within their scientific practice. 

My PhD’s final art piece is a SciArt exhibition called ‘Gambling with floods?’ (Fig. 7). This 

exhibition makes space for a wide audience to explore the science and art of flood 

forecasting, questioning how we, humans, can work with machines to anticipate floods in 

the noisy chaos of nature. Below is a synopsis of the exhibition. 

                                                             
8 sciartfloods.wordpress.com 
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Figure 7. ‘Gambling with floods?’ art exhibition by L. Arnal. 

Floods are expected to become more intense and frequent in the future. With an increasing 

population at risk, it is vital to predict these events well in advance. Machines are taking an 

ever-growing role in the prediction and anticipation of floods. But to what extent can they be 

trusted? How much can be predicted by machines in the noisy chaos of nature? And where is 

the place of machines in the midst of long-standing traditional methods, based on experience 

and intuition, such as weather-related proverbs? 

These are all questions explored through a multi-sensory immersive science and art 

installation, in which the spectator becomes actor, a forecaster playing with real data and 

creating a forecast, at the heart of the forecasting machine. The installation will stimulate the 

spectators’ senses (sight, hearing and touch) through the overlay of flood related sounds and 

images, filling up the space of a small and dark room from top to bottom. Triggered by a 
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jackpot machine (controlled by the spectator-actor), these sounds and images will build-up 

towards a finale, the creation of a forecast. 

The spectator will be prompted to activate the jackpot machine to create the forecast, with a 

single question posed on the wall. The installation will be layered in space and time and partly 

codified to recreate an atmosphere metaphorical of my PhD’s research, and evoke the 

precision of the ‘flood forecasting machine’. Contrastingly, the installation will be controlled 

by a jackpot machine to symbolise the randomness or chaos in flood forecasts, leading the 

spectator-actor to wonder: ‘can I actually trust the forecast I’m creating?’ or ‘Will next time I 

activate the jackpot machine be the right one?’ The whole installation is built on the 

juxtaposition of the plurality of chaos with the singularity of the concept of predictability. 

This exhibition mirrors my PhD’s topic through its overarching theme, as well as 

installation set-up. For example, the spectator-actor has to wait a certain amount of time to 

see the forecast they are creating, raising their emotions and perhaps apprehension of the 

result to come. This is to reflect the notion of time inherent and important in forecasting. 

The weather proverbs will remind us of more traditional ‘predictions’ based on past 

observations, such as the ESP used as a benchmark in Chapters 3 and 4. 

This installation was exhibited at the Museum of English Rural Life (Reading, UK) from 1st 

to 15th November 2019. In order to engage with the audience, there was additionally a ‘meet 

the artist’ event on 6th November 2019. 

The exhibition grasps the essence of the scientific field and explores complex scientific 

themes (e.g. flood probabilities and chaos theory). The beauty of it being art is that it can 

however leave many of these scientific themes abstract. It is then the spectator-actor’s 

choice whether they want to find out more by reading the exhibition brochure, which 

provides a more detailed perspective on key scientific aspects of the exhibition and where 

they sit in the wider context of flood forecasting. For instance, the jackpot machine contains 

some notion of chaos and forecast probabilities, which the spectator can find out more 

about in the exhibition brochure after having experienced the installation.  

But this exhibition is more than a tool to communicate science to society. By provoking the 

audience, through the exhibition’s name, the installation concept (i.e. the jackpot machine 

being used to create a flood forecast) and the audience’s experience when the installation 

is running, it aims to deconstruct pre-acquired concepts, to create a moment of confusion, 

hopefully followed by a self-gained personal new perspective (and perhaps also the will to 

find out more about the topic at heart). By being linked to a physical space in time, this 
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exhibition also created a space for science and society, scientists and the public, to get one 

step closer to one another, bridging the existing gap between these two worlds.  

This exhibition generated interest from a diverse audience, from The MERL’s regular 

visitors, to artists, scientists, and decision-makers from the University of Reading, ECMWF 

and the Environment Agency, to cite a few. These were also all represented at the ‘meet the 

artist’ event and could engage further with one another on flood forecasting and decision-

making. The Environment Agency exhibited interest to, in the future, use art as part of their 

communication strategy. The hope is that the next time one of the exhibition visitors (with 

before no a priori knowledge of the field) sees a flood forecast, they will be able to connect 

the emotions they felt in the exhibition space (and knowledge gained through these) to a 

forecast which may have in the past appeared as a cold and blurry scientific fact. 
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The aim of this thesis, as part of the IMPREX Horizon 2020 project, was to improve 

operational flood early warning in Europe, through long-term forecasting and fostering the 

uptake of state-of-the-art scientific information in practice and outside of the scientific 

community. As the science and technology is improving, we are able to produce forecasts 

with longer lead times, such as the seasonal timescale. While seasonal hydro-

meteorological forecasts have the potential to inform a range of water sectors, their 

operationalisation, performance assessment and applicability to flood early warning in 

Europe has until now been poorly investigated.  

This thesis has enriched research and the operational worlds of forecast generation and 

decision-making, bridging the gap between science and society, combining decision-

makers’, scientific and artistic perspectives throughout the following objectives: 

1 Explore decision-makers’ requirements when using probabilistic hydrological 

forecasts for flood early warning. 

2 Investigate the current capabilities in seasonal hydrological forecasting on the 

global, continental and basin scales, and implement a global and European 

operational seasonal streamflow outlook. 

3 Develop a cost-efficient method for tangible seasonal streamflow forecast 

improvements and apply it over Europe. 

4 Suggest ways to facilitate decision-makers’ intake of probabilistic flood forecasts. 

5 Explore art as a tool to bridge the gap between science and society. 

This thesis was structured around these five objectives, explored in a variety of ways, 

including: the co-creation of two serious games and a decision-making activity, the 

publication of four first-author (of which one is in review) and three co-author peer-

reviewed published articles and a first-author peer-reviewed published IMPREX 

deliverable, the co-development of two operational seasonal streamflow outlooks, research 

interviews and the creation of an art exhibition. 

This chapter summarises the lessons learnt for each objective, discusses and highlights the 

(scientific) advances of this thesis and proposes directions for future work. 

Conclusions 
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7.1 Lessons learnt 

7.1.1 Objective 1: Decision-makers’ requirements when using probabilistic 

hydrological forecasts for flood early warning 

We live in a society in which science and decision-making are sometimes disconnected. This 

disconnect is perhaps more noticeable for high societal stakes, such as the anticipation of 

floods. The first objective of this thesis was an attempt at reconnecting both worlds, through 

an understanding of decision-makers’ requirements when using probabilistic hydrological 

forecasts for flood early warning.  

This was addressed using results from a HEPEX serious game (Arnal et al., 2016; Chapter 

2), an IMPREX decision-making activity (Neumann et al., 2018b; Chapter 2) and research 

interviews at the UK Environment Agency (EA; Arnal et al., in review; Chapter 5). For the 

serious game and the decision-making activity, participants were given probabilistic 

information, based on which they had to make decisions associated with flood anticipation 

activities. The interviews were carried out with EA decision-makers to understand their 

perspectives on potential changes associated a future transition from deterministic to 

probabilistic flood forecasts at the EA.  

Serious games, decision-making activities and interviews are very useful tools for a 

better understanding of complex topics (such as this objective’s). They can bring to light 

important hidden elements, through simple scenarios and open questions, providing 

directions for future research. They can additionally foster discussions among different 

communities, such as decision-makers and scientists. 

While the HEPEX serious game and the interviews were based on short-term probabilistic 

flood forecasts, the IMPREX decision-making activity was designed around seasonal 

hydrological forecasts. Many of the conclusions drawn from these various activities were 

however similar, applicable for a range of timescales.  

Results from the HEPEX serious game and the IMPREX activity showed that several factors 

shape a decision-maker’s uptake of forecast information and are important for 

informing decisions. These include: resources available, perceptions of forecast 

quality, experience of previous flood events, local knowledge and risk appetite. These 

results are in line with the research interviews with decision-makers at the EA. These 

interviews also highlighted institutional practices and external considerations (e.g. the 

necessity to align flood warnings with key responders) as key factors. 
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Despite these factors, results hinted that (probabilistic) forecasts, even biased or 

uncertain, are a valuable element of the decision-making chain, defining the timing of 

warning and response activities at the EA. Uncertainty is not a limitation of probabilistic 

forecasts per se. While EA decision-makers have access to and use forecast quality 

information on a daily basis, results from HEPEX and IMPREX activities both emphasised 

that forecast quality should be (better) communicated with decision-makers to 

ensure appropriate use of information and more informed decisions. 

The IMPREX decision-making activity communicated results which, although made with 

respect to seasonal hydrological forecast, might also apply to shorter- or longer-term 

forecasts. It identified the need to communicate forecast information in a combination 

of different formats (e.g. maps, texts, hydrographs and tables), tailored to different user 

groups, to enhance interpretation and use. Moreover, it was shown that to be more 

useful, (seasonal) hydrological forecasts should be presented at a scale which 

matches that employed in decision-making. Finally, local stakeholders and decision-

makers expressed the necessity of improved communication between scientists, 

providers and users to ensure that users are kept up to date with scientific 

developments. 

As identified by the IMPREX activity participants and the EA decision-makers, language 

can be a barrier to communication and ultimately forecast use. A lot more work is 

needed on translating a probabilistic information into a binary decision, communicating the 

shades of grey. 

7.1.2 Objective 2: Current capabilities in seasonal hydrological forecasting on the 

global, continental and basin scales and operational implementation of a 

global and European seasonal streamflow outlook 

Results from the IMPREX decision-making activity hinted that seasonal hydrological 

forecasts have the potential to inform a range of flood anticipation decisions and actions. 

Combining seasonal meteorological forecasts with hydrological models is a recent 

endeavour in the world of operational hydrological forecasting. Despite its potential to 

inform decisions and actions in theory, the literature has shown that the predictability of 

seasonal hydro-meteorological forecasting is still limited, especially over Europe. However, 

results from the first objective of this thesis highlighted that uncertain forecasts are still 

valuable for decision-making if the forecast quality is adequately communicated to ensure 

the appropriate use of information and more informed decisions.  
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The second objective of this thesis was to assess our current capabilities in seasonal 

hydrological forecasting, through the co-development and analysis of two operational 

seasonal hydro-meteorological forecast outlooks: EFAS-Seasonal over Europe (Arnal et al., 

2018; Chapter 3) and at the basin scale (Neumann et al., 2018a; Chapter 3) and GloFAS-

Seasonal at the global scale (Emerton et al., 2018; Chapter 3).  

Working at the ECMWF as part of this PhD led to the operational implementation of this 

research as one of the first pan-European seasonal hydro-meteorological forecasting 

system, as part of EFAS, and guidance in the design of the first global scale seasonal 

hydro-meteorological forecasting system outlook, as part of GloFAS. 

EFAS-Seasonal and GloFAS-Seasonal were assessed in terms of the hindcasts’ overall 

performance, as well as their ability to provide an earlier indication of low and high (as a 

proxy for floods) streamflows over Europe and for the global river network, respectively. 

The potential of EFAS-Seasonal for flood early warning was also investigated at the basin 

scale, for the 2013/14 Thames (UK) river floods. This study also explored the impact of 

improvements in seasonal meteorological forecasting to the hydrology. 

EFAS-Seasonal and GloFAS-Seasonal provide streamflow forecasts out to two months 

and four months ahead for the European and global river networks, respectively. 

They are openly available through the EFAS1 and GloFAS2 websites. 

Findings from both EFAS-Seasonal and GloFAS-Seasonal communicated the current 

limitations of seasonal hydro-meteorological forecasts. The analysis of EFAS-Seasonal 

showed that, on average over Europe, seasonal meteorological forecasts translate to skilful 

seasonal hydrological forecasts for the first month of lead time only. The performance of 

the system (in terms of hindcast accuracy, sharpness and overall performance) varies by 

region and season and EFAS-Seasonal is more skilful on average at predicting autumn and 

winter streamflows than for the spring and summer. The performance of GloFAS-Seasonal 

(hindcast skill and reliability) was also found to vary by region and season, over-predicting 

streamflow in general. These results highlight the importance of initial hydrological 

conditions and the land surface memory for seasonal streamflow forecasting. 

However, it was also observed that hydrological predictability can be gained from 

seasonal meteorological forecasts (compared to historical weather information). EFAS-

Seasonal and GloFAS-Seasonal are potentially useful for predicting low and high 

                                                             
1 www.efas.eu 
2 www.globalfloods.eu 
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streamflow events out to several months ahead in some cases, noticeably in winter for 

almost 40% of the European regions.  

Results from the analysis of EFAS-Seasonal at the European scale and for the Thames river 

floods of 2013/14 showed that seasonal meteorological forecast skill does not always 

translate to more skilful seasonal hydrological forecasts. There is knowledge to be 

gained from jointly considering the hydrology and meteorology. 

While extreme events such as the 2013/14 Thames river floods are difficult to 

predict with confidence at seasonal timescales, considering the local hydrogeological 

context can provide an effective early alert of potentially high impact events, for 

better preparedness and greater confidence in the forecasts as the event approaches. 

Seasonal hydrological forecasts could be used as complementary information to existing 

forecasts on shorter timescales, to provide monitoring and early-warning information for 

flood preparedness. 

It may seem as though we have reached a limit in the predictability of seasonal streamflow 

forecasting. However, as climate change is likely to generate changes in the drivers of 

seasonal predictability with time, these limits of predictability will equally shift. Seasonal 

predictability is a dynamic field of research which deserves greater future 

investigation. 

7.1.3 Objective 3: A cost-efficient method for tangible seasonal streamflow forecast 

improvements 

As shown in the second objective and by the literature (Chapter 4), seasonal hydro-

meteorological forecast skill is still limited in many parts of the world, including Europe. 

There exist various methods that can lead to forecast improvements, including the post-

processing of seasonal meteorological forecasts and the assimilation of better hydro-

meteorological observations. However, these methods are costly, adding to the costs and 

resources needed to produce and maintain a seasonal hydro-meteorological forecasting 

system in the first place. Moreover, research has shown that operational streamflow 

forecast quality has not significantly improved in the last decade, despite the costly research 

and developments they are receiving. Wood et al. (2016a) proposed a sensitivity analysis 

method, VESPA, which can disentangle dominant error sources in seasonal streamflow 

forecasting systems, to guide future system developments. Yet, VESPA is computationally 

intensive, a limitation to its use. 
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This motivated the third objective of this thesis, to develop a cost-efficient alternative 

method to VESPA. An alternative sensitivity analysis to VESPA was co-developed and 

tested with Andy Wood during a visit to the National Center for Atmospheric 

Research (NCAR) in Boulder (US). This is presented in a first-author publication (Arnal et 

al., 2017b; Chapter 4). The method was subsequently applied to the EFAS-Seasonal 

forecasting system in a first-author IMPREX deliverable (Arnal et al., 2017a; Chapter 4). 

Results from these publications inspired additional research, introducing the novel concept 

for a cost-efficient seasonal hydro-meteorological forecasting system. 

The EPB sensitivity analysis method is a computationally inexpensive alternative to 

VESPA. It is easy to implement and can identify the dominant predictability source (i.e. 

initial hydrological conditions and seasonal meteorological forecasts) of seasonal 

streamflow forecast skill, for a given basin and forecast initialisation date. Using the EPB, 

forecast skill elasticities can easily be calculated, indicating the degree of influence of 

changes in either of the predictability sources’ skill on the streamflow forecast skill. The 

EPB is therefore valuable to guide future developments for tangible seasonal 

streamflow forecast improvements. 

The EPB was first applied over Europe on the EFAS-Seasonal forecasting system 

(based on the hindcasts CRPSS). Overall, results showed that improving the seasonal 

meteorological forecast skill would lead to the largest seasonal streamflow forecast 

improvements beyond the first month of lead time, when the influence of the initial 

hydrological conditions on the streamflow start to disappear. The second objective of this 

thesis has indeed shown that currently, seasonal meteorological forecasts translate to 

skilful seasonal hydrological forecasts for the first month of lead time only over Europe. 

However, larger seasonal streamflow forecast improvements can be obtained from 

improving the initial hydrological conditions beyond the first month of lead time in 

regions where streamflow is driven by snowmelt and groundwater. 

Operational seasonal hydro-meteorological forecasting systems do not reflect these 

forecast predictability findings in their setup. Seasonal hydro-meteorological forecasts 

are usually computed with a fixed method, which might not be the most suitable (resource-

friendly, skilful and of use to decision-makers) for all forecast initialisation dates and river 

basins. We should challenge current practices and reconsider the way we produce 

seasonal hydro-meteorological forecasts operationally. 
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7.1.4 Objective 4: Facilitating decision-makers’ use of probabilistic flood forecasts 

The first objective of this thesis has given us perspectives from the decision-makers on the 

use of probabilistic forecasts for flood early warning. Subsequently, perspectives were 

gained from the science (from objectives 2 and 3) on the current limits of predictability in 

seasonal hydro-meteorological forecasting for earlier flood warnings, challenges in 

operational forecast development and product design with EFAS-Seasonal and GloFAS-

Seasonal. Objectives 1 to 3 all showed that while the science is far from being perfect, it is 

still valuable for decision-making. These perspectives were unified to suggest ways to 

promote decision-makers’ uptake of probabilistic flood forecasts (and new science in 

general).  

This was addressed through research interviews at the EA, with the aim to understand the 

context in which EA decision-makers currently operate (Arnal et al., in review; Chapter 5). 

Based on these findings, recommendations were made to the EA (which might apply to 

other institutes in a similar situation) to support a successful transition to probabilistic 

forecasts for flood early warning in England. 

The interviews’ analysis showed that, in a flood incident management context, EA decision-

makers are influenced by both hard (scientific) facts and soft values (as shown in objective 

1), and combining these sources of uncertain information to make a binary decision 

is seen as a major challenge. 

More specifically, findings from objective 1 highlighted that even uncertain or biased, 

forecasts can inform decisions and actions and should be communicated appropriately to 

forecast users for an appropriate use of the information. Forecast products additionally 

need to be tailored and communicated at the scale at which decisions are made. And 

language can be a barrier to forecast use. All of these findings suggest that a closer 

interaction between decision-makers and scientists is needed, for a co-leadership on 

improving science for society, the co-design of forecasting products, and the 

establishment of a common language. This more widely calls for an interdisciplinary 

approach to science, including decision-makers, scientists and other relevant fields (e.g. 

social scientists). 

While we address the weaknesses of the forecasting chain, we should also use its 

strengths. For example, EA decision-makers (Monitoring and Forecasting Duty Officers 

(MFDOs) and Flood Warning Duty Officers (FWDOs)) work closely together and do not 

perceive a transition to probabilistic flood forecasts as a threat to their interaction. The 



184 

 

 Chapter 7. Conclusions 

MFDOs could help FWDOs understand the strengths and intricacies of probabilistic 

forecasting to reduce their fears of having to make a decision on “visibly uncertain” 

information. 

Throughout this thesis, the term “binary decision” has been used to refer to the ultimate 

decision taken by a decision-maker (e.g. sending out a flood warning). It was also used by 

the interviewed EA duty officers. However, the term “binary decision” might not be the 

most appropriate as its simplicity hides real-life complexities and the shades of grey 

associated with and inherent to the decision-making process in the anticipation of 

extreme events (as seen in Chapter 5). 

7.1.5 Objective 5: Art as a tool to bridge the gap between science and society 

As seen in the previous objectives of this thesis (Chapters 2 to 5), there is a disconnect 

between science and practice for flood anticipation, a topic of high societal relevance. 

Language is a barrier to communication and the use and uptake of scientific research. Art 

does not rely on language to engage with its audience. It can use a juxtaposition of methods 

and engage a range of senses to convey an idea in an abstract and metaphorical way, giving 

a larger audience the opportunity to be a part of relevant scientific and decision-making 

developments. Art can also be used to question and challenge the way things are done in 

science, giving a new perspective on well-established practices. Art is a powerful tool that 

can bridge the gap between science and society. 

This motivated the last objective of this thesis, through the creation of a science and art 

exhibition, as part of this scientific PhD. Through this multi-sensory science and art 

installation, I wanted to give the opportunity to an audience outside of the scientific 

community to which discussions about my PhD’s topic are usually confined, to experience 

flood forecasting first-hand. This installation questions the limit between 

predictability and chaos in seasonal streamflow forecasting, and the place of 

computers in the noisy chaos of nature. 

This exhibition was more than a tool to communicate science to society. By provoking 

the audience, its aim was to deconstruct pre-acquired concepts through confusion in order 

to instigate a self-gained personal new perspective on the topic at heart. This exhibition 

also constituted a physical space for scientists and the public to meet, bridging the 

existing gap between science and society. It generated interest from a diverse audience, 

from the museum’s regular visitors, to artists, scientists, and decision-makers from the 

University of Reading, ECMWF and the EA. 
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7.2 Key contributions 

This thesis considers the full forecasting chain and uses a diversity of methods, including 

serious games, interviews, scientific research and art. The specific key contributions of this 

work are summarised below: 

• An IMPREX online serious game3 that allows a broad audience to proactively 

explore the full forecasting chain (from forecast production to evaluating the 

situation and making a decision), to understand the challenges and opportunities of 

flood preparedness based on probabilistic flood forecasts, and to appreciate the 

flood warning ‘behind-the-scenes’.  

• Co-design of some of the first operational seasonal hydro-meteorological outlooks 

over Europe and for the globe. 

• Benchmark of state-of-the-art dynamical seasonal streamflow forecast 

performance over Europe. 

• People have looked at using seasonal hydrological forecasts for many water sector 

applications, but flood anticipation was until now mostly unexplored. This thesis 

has shown the potential usefulness of seasonal hydrological forecasts for this field. 

This works builds on a study by Coughlan de Perez et al. (2017), who looked at the 

usability of seasonal rainfall forecasts for flood preparedness. 

• Paving the way for the uptake of seasonal hydrological forecasts in the Thames river 

basin. While the full potential of seasonal hydrological forecasts has not be attained 

yet, making the existing systems operational and familiarising users with their 

concepts, challenges and opportunities is key to their successful future applicability. 

• A novel cost-efficient sensitivity analysis to guide future seasonal hydro-

meteorological forecast developments for tangible improvements. This can be 

applied easily to any forecasting system and has already been used by several 

IMPREX partners, as well as for decadal predictions of terrestrial water storage 

(Zhu et al., 2019). This complements work by Hawkins and Sutton (2009; 2010), 

who have looked at attributing uncertainty in climate predictions of temperature 

and precipitation change. 

• Recommendations were given to the EA, to support a successful transition to 

operational probabilistic fluvial flood forecasts for flood early warning in England. 

                                                             
3 www.imprex.arctik.tech 
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• Art (via blog posts, individual and collaborative art pieces, SciArt activities at 

scientific events, and an exhibition) used to extend scientific discussions and 

engagement outside of the community of practice. 

7.3 Next steps 

This research forms an estuary to a sea of future research directions. 

 

Figure 1. A sea of future research directions. 

• User engagement. “We conclude that the current level of understanding in the 

West Thames provides an excellent basis upon which to incorporate future 

developments of operational forecasts and for facilitating communication and 

decision-making between water sector partners” (Neumann et al., 2018b). As 

highlighted here, user engagement is a key process of scientific development (from 

forecasting system design to forecast analysis and use in practice). To this end, focus 

groups, carried out under the umbrella of wider funded projects (such as IMPREX), 

are great initiatives. They should however carry on beyond a project’s end. 

• EFAS- & GloFAS-Seasonal developments. Engagement with EFAS, GloFAS and 

West Thames user communities has highlighted decision-makers’ needs for using 

seasonal hydrological forecasts in practice (e.g. displaying forecast performance, 
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tailoring products for a range of applications, communicating the forecasts on an 

actionable scale, etc.). These feedbacks should be used to drive EFAS-Seasonal and 

GloFAS-Seasonal developments.  

• User- and forecaster-relevant EPB analysis. Arnal et al. (2017b) showed that the 

choice of verification score impacts the forecast’s sensitivity to improvements made 

to its predictability sources (Chapter 4, Sect. 4.2). There exist a variety of forecast 

verification scores, designed to assess different aspects of a forecast and its value 

for decision-making (Cloke et al., 2017). The EPB sensitivity analysis should be 

performed with verification scores relevant for decision-makers (e.g. the ROC score 

to improve the prediction of low and high streamflows; after further research of the 

limitations of the EPB for certain verification scores – as seen in Chapter 4, Sect. 4.2 

– has been conducted). Moreover, to clearly guide system developments by 

forecasters and model developers, the EPB sensitivity analysis would benefit from 

further improvements, allowing to pinpoint the specific hydro-meteorological 

variables (from the initial hydrological conditions and the seasonal meteorological 

forecasts) affecting skill. The effect of degradations in the temporal and spatial 

accuracy of the input data could also be of added value.   

• EFAS-Seasonal tangible improvements. Results of the EPB sensitivity analysis 

applied to EFAS-Seasonal (Chapter 4, Sect. 4.3) should be used to drive forecast 

developments. It would be interesting to check whether obtained improvements 

match expectations. 

• From seasonal hydrological forecasting to flood early warning. Discussions 

with the EFAS, GloFAS and West Thames user communities showed that there are 

still challenges in the operational use of seasonal hydrological forecasts for flood 

preparedness. More work is needed on integrating these forecasts into existing 

forecasting and decision-making chains. This could be partly tackled by merging 

monthly and seasonal forecasts to obtain more skilful forecasts: updated more 

frequently and at longer lead times (Wetterhall and Di Giuseppe, 2018). The EFAS-

Seasonal and GloFAS-Seasonal outlooks could be integrated in a ‘Ready-Set-Go!’ 

approach (Coughlan de Perez et al, 2017). Paired with short-term and higher quality 

forecasts in a “two-stage action approach”, seasonal hydro-meteorological forecasts 

could be used by decision-makers as monitoring information, as a basis to 

implement no-regret actions. This would additionally help to increase their 

“portfolio of options at a later stage” (Bischiniotis et al., 2019). In order to make 

seasonal hydro-meteorological forecasts more actionable at the local scale, more 

research is needed on linking river basin hydro-climatic characteristics (Knoben et 



188 

 

 Chapter 7. Conclusions 

al., 2018) and seasonal hydro-meteorological forecast performance (assessed 

against hydro-meteorological observations; Greuell et al., 2018). We must be able 

to utilise our understanding of links between basins’ hydro-climatic characteristics 

and seasonal predictability to improve forecasting systems for flood early warning. 

Coughlan de Perez et al. (2017) for example looked at the link between several 

seasonal rainfall indicators and the likelihood of flooding across sub-Saharan Africa. 

This approach could be extended to seasonal hydrological forecasting and other 

parts of the world, for more tailored seasonal hydrological outlooks. 

• Flexible seasonal hydro-meteorological forecasting system. As shown in 

Chapter 4, Sect. 4.4, more skilful and resource-friendly forecasts could be obtained 

through the design of a flexible seasonal forecasting system. Clark et al. (2015a)’s 

‘SUMMA’ (Structure For Unifying Multiple Modeling Alternatives) approach could 

be extended to forecasting, integrating different forecasting approaches for a point 

in space and time. 

7.4 Closing remarks 

This thesis guides the readers through the art of streamflow forecasting over Europe, 

presenting some of the latest challenges in operational hydro-meteorological forecasting. 

The EFAS-Seasonal and GloFAS-Seasonal outlooks are some of the first operational seasonal 

hydrological products in the world, giving users an overview of potential streamflow 

changes for the next eight and 16 weeks, respectively, over Europe and the globe. While 

more work is needed to make these products more actionable in practice, they have the 

potential to inform decision-makers in a range of water sectors, such as flood early warning. 

Since their scientific application, ensemble (or probabilistic) hydrological forecasts are 

becoming more integrated in practice. However, efforts are still needed to bridge the gap 

between science and practice, where the co-development of actionable science is key. 

Serious games and art can help bridge the gap between scientists, decision-makers and 

society. It is the crossroads between disciplines that fosters creative thinking and findings 

and the uptake of science in practice. 
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Abstract. Probabilistic hydro-meteorological forecasts have
over the last decades been used more frequently to com-
municate forecast uncertainty. This uncertainty is twofold,
as it constitutes both an added value and a challenge for
the forecaster and the user of the forecasts. Many authors
have demonstrated the added (economic) value of probabilis-
tic over deterministic forecasts across the water sector (e.g.
flood protection, hydroelectric power management and nav-
igation). However, the richness of the information is also a
source of challenges for operational uses, due partially to
the difficulty in transforming the probability of occurrence
of an event into a binary decision. This paper presents the
results of a risk-based decision-making game on the topic of
flood protection mitigation, called “How much are you pre-
pared to pay for a forecast?”. The game was played at sev-
eral workshops in 2015, which were attended by operational
forecasters and academics working in the field of hydro-
meteorology. The aim of this game was to better understand
the role of probabilistic forecasts in decision-making pro-
cesses and their perceived value by decision-makers. Based
on the participants’ willingness-to-pay for a forecast, the re-
sults of the game show that the value (or the usefulness) of a
forecast depends on several factors, including the way users

perceive the quality of their forecasts and link it to the per-
ception of their own performances as decision-makers.

1 Introduction

In a world where hydrological extreme events, such as
droughts and floods, are likely to be increasing in inten-
sity and frequency, vulnerabilities are also likely to increase
(WMO, 2011; Wetherald and Manabe, 2002; Changnon
et al., 2000). In this context, building resilience is a vital ac-
tivity. One component of building resilience is establishing
early warning systems, of which hydrological forecasts are
key elements.

Hydrological forecasts suffer from inherent uncertainties,
which can be from diverse sources, including the model
structure, the observation errors, the initial conditions (e.g.
snow cover, soil moisture, reservoir storages) and the meteo-
rological forecasts of precipitation and temperature (Verkade
and Werner, 2011; He et al., 2009). The latter variables are
fundamental drivers of hydrological forecasts and are there-
fore major sources of uncertainty. In order to capture some of
this uncertainty, there has been a gradual adoption of prob-

Published by Copernicus Publications on behalf of the European Geosciences Union.
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abilistic forecasting approaches, with the aim of providing
forecasters and forecast users with additional information not
contained in the deterministic forecasting approach. Whereas
“a deterministic forecast specifies a point estimate of the pre-
dictand (the variate being forecasted)”, “a probabilistic fore-
cast specifies a probability distribution function of the pre-
dictand” (Krzysztofowicz, 2001). For operational forecast-
ing, this is usually achieved by using different scenarios of
meteorological forecasts following the ensemble prediction
approach (Buizza, 2008; Cloke and Pappenberger, 2009).

Many authors have shown that probabilistic forecasts pro-
vide an added (economic) value compared to deterministic
forecasts (Buizza, 2008; Verkade and Werner, 2011; Pap-
penberger et al., 2015). This is due, for example, to the
quantification of uncertainty by probabilistic forecasting sys-
tems, their ability to better predict the probability of oc-
currence of an extreme event and the fact that they is-
sue more consistent successive forecasts (Dale et al., 2014;
Cloke and Pappenberger, 2009). This probability of occur-
rence makes the probabilistic forecasts useful in the sense
that they provide information applicable to different deci-
sion thresholds, essential since not all forecast users have the
same risk tolerance (Michaels, 2015; Buizza, 2008; Cloke
and Pappenberger, 2009). Probabilistic forecasts therefore
enable the quantification of the potential risk of impacts
(New et al., 2007) and, as a result, they can lead to more
optimal decisions for many hydrological operational applica-
tions, with the potential to realise benefits from better predic-
tions (Verkade and Werner, 2011; Ramos et al., 2013). These
applications are, for example, flood protection (Stephens
and Cloke, 2014; Verkade and Werner, 2011), hydroelec-
tric power management (García-Morales and Dubus, 2007;
Boucher et al., 2012) and navigation (Meissner and Klein,
2013). Moreover, the continuous increase in probabilistic
forecast skill is very encouraging for the end-users of the
probabilistic forecasts (Bauer et al., 2015; Magnusson and
Källén, 2013; Simmons and Hollingsworth, 2002; Ferrell,
2009).

However, the communication of uncertainty through prob-
abilistic forecasts and the use of uncertain forecasts in
decision-making are also challenges for their operational
use (Cloke and Pappenberger, 2009; Ramos et al., 2010;
Michaels, 2015; Crochemore et al., 2015). One of the rea-
sons why the transition from deterministic to probabilis-
tic forecasts is not straightforward is the difficulty in trans-
forming a probabilistic value into a binary decision (Dale
et al., 2014; Demeritt et al., 2007; Pappenberger et al., 2015).
Moreover, decision-makers do not always understand prob-
abilistic forecasts the way forecasters intend them to (Hand-
mer and Proudley, 2007). This is why it is essential to bridge
the gap between forecast production and hazard mitigation,
and to foster communication between the forecasters and the
end-users of the forecasts (Cloke and Pappenberger, 2009;
Michaels, 2015).

As (Michaels, 2015) notes, “the extent to which forecasts
shape decision making under uncertainty is the true measure
of the worth of a forecast”. The potential added value of the
forecast can furthermore only be entirely realised with full
buy-in from the decision-makers. However, how much are
users aware of this added value? How much are they ready to
pay for a forecast? These are questions that motivated the
work presented in this paper. In order to understand how
users perceive the value of probabilistic forecasts in decision-
making, we designed a risk-based decision-making game –
called “How much are your prepared to pay for a forecast?”
– focusing on the use of forecasts for flood protection. The
game was played during the European Geophysical Union
(EGU) General Assembly meeting 2015 (Vienna, Austria),
at the Global Flood Partnership (GFP) workshop 2015 (Boul-
der, Colorado), as well as at Bristol University (BU) in 2015.
Games are increasingly promoted and used to convey infor-
mation of scientific relevance. They foster learning, dialogue
and action through real-world decisions, which allow the
study of the complexities hidden behind real-world decision-
making in an entertaining and interactive set-up (Mendler
de Suarez et al., 2012).

This paper presents the details of the game and the re-
sults obtained from its different applications. The partici-
pants’ perceived forecast value is analysed by investigating
the way participants use the forecasts in their decisions and
their willingness-to-pay (WTP) for a probabilistic forecast.
The WTP is the amount an individual is inclined to disburse
to acquire a good or a service, or to avoid something undesir-
able (Breidert et al., 2006; Leviäkangas, 2009). It is a widely
and very commonly adopted method to make perceived value
assessments and its use has been demonstrated in a meteo-
rological context (Leviäkangas, 2009; Anaman et al., 1998;
Rollins and Shaykewich, 2003; Breidert et al., 2006). (Brei-
dert et al., 2006) present a complete overview of the meth-
ods available, organised by data collection types. According
to their classification, there exist two main WTP measuring
approaches: the “revealed preference” and the “stated pref-
erence”. The former describes price-response methods (such
as market data analysis, laboratory experiments and auctions,
amongst others), while the latter refers to surveys in gen-
eral. This experiment combines both “revealed preference”
and “stated preference” methods. The design of the game is
described in Sect. 2 and justified in terms of the purpose and
contribution of the different components of the game to its
main aim. The results and the discussion promoted by the
latter are subsequently presented in Sects. 3 and 4 respec-
tively.

Hydrol. Earth Syst. Sci., 20, 1–20, 2016 www.hydrol-earth-syst-sci.net/20/1/2016/
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Figure 1. (a) Experiment set-up and (b) flow diagram of the game decision problem for one case.

2 Set-up of the decision-making game

2.1 Experimental design

This game was inspired by the table game “Pay-
ing for Predictions”, designed by the Red Cross/Red
Crescent Climate Centre (http://www.climatecentre.org/
resources-games/paying-for-predictions). Its focus is how-
ever different. Here, our aim is to investigate the use of fore-
casts for flood protection and mitigation. Also, we strongly
adapted the game to be played during conferences and with
large audiences.

The set-up of the game (illustrated in Fig. 1a) was the fol-
lowing: participants were told that they were competing for
the position of head of the flood protection team of a com-
pany. Their goal was to protect inhabitants of a fictitious town
bordering a fictitious river against flood events, while spend-
ing as little money as possible during the game. The partic-
ipant with the highest amount of money at the end of the
game was chosen as head of the flood protection team. Each
participant was randomly assigned a river (river yellow, river
blue or river green) for the entire duration of the game. Each
river had distinct initial river levels and rates of flood occur-
rences (see Table 1). Participants worked independently and
had a worksheet to take notes (see Appendix A). An initial
purse of 20 000 tokens was given to each player to be used
throughout the game.

Based on this storyline, the participants were presented
the following sequence of events (illustrated in Fig. 1b): af-
ter being given their river’s initial level (ranging from 10 to
60 included), each participant was asked to make use of a
probabilistic forecast (see Fig. 1b) of their river level incre-
ment after rainfall (ranging from 10 to 80 included) to de-
cide whether they wanted to pay for flood protection or not.
The cost of flood protection was 2000 tokens. They were in-
formed, prior to the start of the game, that a flood occurred if

Table 1. Number of flood events for each round of the game and
each river.

Round River

Yellow Green Blue

1 1 2 3
2 3 2 1

Total 4 4 4

the sum of the initial river level and the river level increment
after rainfall (i.e. the actual river level after rainfall) reached
a given threshold of 90. The probabilistic forecasts were vi-
sualised using boxplot distributions. They had a spread of
about 10–20, and indicated the 5th and 95th percentiles as
well as the median (i.e. 50th percentile) and the lower and
upper quartiles (i.e. 25th and 75th percentiles respectively)
of the predicted river level increment after rainfall. Forecasts
were given to participants case by case (i.e. when playing
the first case, they could only see the boxplot distribution
of forecast river increment for case 1). Once the participants
had made their decisions using both pieces of information
(i.e. river level before rainfall and forecast of river level in-
crement), they were given the observed (actual) river level
increment after rainfall for their rivers. If a flood occurred
and the participant had not bought flood protection, a damage
cost (i.e. price paid when no protection was bought against a
flood that actually happened) of 4000 tokens had to be paid.

The monetary values (initial purse, price of flood protec-
tion and damage cost) were deliberately chosen. The price of
a protection was set to 2000 tokens such that if a participant
decided to buy flood protection every time during the game
(i.e. two rounds of five cases each, thus ten times) they would
have no tokens left in their purse at the end of the game. This
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was done in order to discourage such a behaviour. The dam-
age cost was set to twice the flood protection cost as this was
estimated to be a realistic relation between the two prices
based on (Pappenberger et al., 2015). The latter states that
the avoided damages due to early flood warning amount to a
total of about 40 %. Here, for simplicity, we used a percent-
age of 50 %.

Once the context was explained, the participants were then
told that they would first play one round of five independent
cases, which would each be played exactly according to the
sequence of events presented, and for which they would have
to record their decisions on the worksheet they were provided
(see Appendix A). The game had a total of two rounds of
five cases each. This specific number of cases and rounds
was chosen because of the time constraint to play the game
during conferences (the game should last around 20–30 min
only). Table 1 presents the total number of flood events for
each round and each river. The number of flood events was
different for every river for each round as river level values
were randomly generated for the purpose of the game. This
allowed the exploration of the influence of different flood fre-
quencies in round 1 on the participants’ WTP for a second
forecast set. The number of flood events was however sam-
pled to some extent in order to obtain decreasing (increas-
ing) numbers of flood events between the two rounds for the
blue (yellow) river, or constant throughout the two rounds for
the green river. This was done to investigate the effect of the
change (or not) in flood frequency between rounds 1 and 2
on the participants’ strategies throughout the game.

During the first round of the game, the participants had
forecasts of river level increments to help their decisions.
These forecasts were however not available for all partici-
pants in the second round, but were sold between the two
rounds through an auction. The purpose and set-up of each
round and the auction are explained in the following para-
graphs.

2.1.1 Round 1

The objective of the first round was to familiarise the partici-
pants with the probabilistic forecasts they were given to help
them in their decisions, and to create a diversity amongst the
decision-makers in terms of

– their river behaviour: which is why different rivers, each
with different flood frequencies and different initial lev-
els, were assigned to the participants;

– the money they would spend during this round and have
in hand for the ensuing auction (before round 2);

– the quality of their forecasts in the first round: to this
end, different forecast sets were distributed to the play-
ers for round 1.

This diversity was triggered in round 1 in order to analyse
whether or not the WTP for a second forecast set, measured

in the auction performed before round 2, was dependent on
any of the factors inherent to the first round (i.e. river-specific
flood frequency, money left in purse, or quality of the fore-
casts).

Before the start of the first round each participant was
given a forecast set containing probabilistic forecasts of their
river level increment after rainfall for the five cases of round
1. Participants were however not aware that three different
forecast sets were produced for each of the rivers. One set had
only forecasts with a positive bias (forecast sets 1), the sec-
ond set had only unbiased forecasts (forecast sets 2) and the
third set only forecasts with a negative bias (forecast sets 3).
There were therefore nine different sets of forecasts which
were distributed randomly amongst the audience prior to the
start of the game. The three different forecast types were ob-
tained by varying the position of the observation inside the
forecast distribution. The unbiased forecasts had the obser-
vations fall between the lower and upper quartiles of their
distributions, while the biased forecasts had the observations
fall outside of the lower and upper quartiles of their distri-
butions, leading to over- (positively biased forecast sets) or
under-predictions (negatively biased forecast sets) of the ob-
servations.

The quality of each forecast set can be represented in terms
of the number of correct forecast flood events (given a fore-
cast percentile threshold) with respect to the number of ob-
served flood events. For each forecast set type and each river,
the number of forecast flood events during the first round was
calculated by adding the median of the forecast river level in-
crement to the initial river level for each case. A forecast is
referred to as a false alarm if this sum forecasts a flood (i.e.
it exceeds the flood threshold) but the flood is subsequently
not observed. It is referred to as a hit if the sum forecasts
the flood and the flood is subsequently observed. A miss is
an observed flood that was not forecast. The numbers of hits,
misses and false alarms are usually gathered in a contingency
table as a matrix (e.g. Table 2): hits are placed on top, left,
misses on bottom, left, and false alarms on top, right. The
place on bottom, right is usually not considered in the eval-
uation of forecasts as it represents situations of low interest
to a forecaster (i.e. when floods are neither forecast nor ob-
served). Table 2 displays the nine contingency tables we ob-
tain considering each forecast set type and each river. Each
participant would find themselves in one of the contingency
tables represented. We can see the higher number of total
misses (false alarms) considering all rivers together in neg-
atively (positively) biased forecast sets, and the absence of
these in the unbiased forecast sets.

After all the five cases of round 1 were played, participants
were asked to rate their performance as a decision-maker and
the quality of their forecast set for round 1 on a scale from
“very bad” to “very good” (the option “I don’t know” was
also available) (see Appendix A).
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Table 2. Contingency table for each river and forecast set type for
the first round (considering the 50th percentile, i.e. the median fore-
cast). The numbers for a specific river-forecast set type represent,
clockwise from the top left, hits (italics), false alarms (bold), cor-
rect negatives (–) and misses (regular).

Forecast set type River

Yellow Green Blue

Positively biased
1 1 2 1 3 2
0 – 0 – 0 –

Unbiased
1 0 2 0 3 0
0 – 0 – 0 –

Negatively biased
0 0 2 0 2 0
1 – 0 – 1 –

2.1.2 Auction

The auction was carried out after round 1 in order to measure
the participants’ WTP for a second forecast set and to eval-
uate its dependencies on any of the elements of the game in
round 1. The auction was implemented as follows.

At the end of the first round participants were asked to
transfer the remaining tokens from round 1 to the second
round. They were then told that the forecasting centre dis-
tributing the probabilistic forecasts now wanted the decision-
makers to pay for the forecast sets if they wanted to have ac-
cess to them for the second round. Furthermore, they were
informed that only 30 % of them could get a second forecast
set for this round. This percentage was chosen in order to
restrict the number of participants that could buy a forecast
set (and create a competitive auction), while keeping a high
enough number of participants playing with a forecast set in
round 2 for the analysis of the results.

Participants were then asked to make a sealed bid, writing
down on their worksheets the number of tokens they were
willing to disburse from their final purse of round 1 to obtain
a set of probabilistic forecasts for all five cases of round 2.
After the bids were made, a forecast set was distributed to
the participants within the highest 30 % of the bids. This was
done through an auction. It was carried out by asking the par-
ticipants whether any of them wrote down a bid superior or
equal to 10 000 tokens. If any participants did, they raised
their hands, after which a forecast set – for the same river as
the river assigned to them at the beginning of the game – was
given to them. The auction continued by lowering the num-
ber of tokens stated to the participants until all forecast sets
for round 2 were distributed. Each participant having bought
a forecast set for round 2 was then asked to disburse the num-
ber of tokens they paid for this forecast set from their remain-
ing purse from round 1.

We note that participants were not told that the forecasts
for the second round were all unbiased forecasts. Once again,

the quality of the forecasts was kept secret in order for the
participants to assign a value to the second forecast set that
would strictly be related to the conditions under which they
played the first round.

2.1.3 Round 2

The second round was played in order to measure the added
value of an unbiased forecast set, compared to no forecast
set at all, to the decisions of the participants on protecting
or not against floods. Moreover, as the winner of the game
was determined by the number of tokens left in their purse
at the end of the game, this round would give a chance to
participants who bought a second forecast set to make up for
the money spent with the auction, during round 2.

The second round developed similarly to the first round,
with five independent cases of decision-making, with the ex-
ception that only participants who bought a second forecast
set could use it to make their decisions. Participants who did
not buy a second forecast set did not have any forecasts on
which to base their decisions.

After the five cases were played, the participants were
asked to once again answer a set of questions (see Ap-
pendix A). They were asked to rate their performance as a
decision-maker in the second round, on a scale from “very
bad” to “very good” (the option “I don’t know” was also
available). Participants without a second forecast set were
invited to provide a justification for not purchasing a set of
forecasts for this round. Participants who had bought a sec-
ond forecast set were also asked to rate the quality of their
forecast set for round 2 (on a scale from “very bad” to “very
good”; the option “I don’t know” was also available) and
whether those were worth the price they had paid for them. If
not, they were asked to provide a new price that they would
have rather paid.

The winner was finally determined by finding the player
with the largest number of tokens in their purse at the end of
the game.

2.2 Objectives and evaluation strategy

The main aim of this paper is to investigate the participants’
WTP for a probabilistic forecast set in the context of flood
protection, following the game experiment designed as pre-
sented in the previous paragraphs. It unfolds into two objec-
tives that were pursued in the analysis of the results:

1. to analyse how participants used the information they
were provided (probabilistic forecast sets) in this risk-
based decision-making context, and

2. to characterise the participants’ WTP for a probabilistic
forecast set for flood protection.

We assess these objectives through six questions, which
are presented below, together with the evaluation strategy im-
plemented.
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2.2.1 Did the participants use their forecasts and, in
this case, follow the 50th percentile of their
forecast during the decision-making process?

This first question was investigated using the results of the
first round. We first wanted to know whether the players were
actually using their forecasts to make their decisions. More-
over, we searched for clues indicating that the participants
were following the 50th percentile (i.e. the median) of the
probabilistic forecasts. This was done in order to see whether
the 50th percentile was considered by the players as the op-
timal value to use for the decision-making process under this
specific flood risk experiment. Additionally, this question re-
lates to an intrinsic characteristic of the use of probabilis-
tic forecasts for decision-making, which is the difficulty in
transforming the probabilistic values into a binary decision
(Dale et al., 2014; Demeritt et al., 2007; Pappenberger et al.,
2015). The way in which probabilistic flood forecasts are
used depends on attitudes of decision-makers towards risk,
the uncertainty and the error in the information provided to
them (Demeritt et al., 2007; Ramos et al., 2013), and deci-
sions can vary from one participant to the next provided the
same information (Crochemore et al., 2015).

Question one was explored by looking at the worksheets
collected in order to infer from the decisions taken by the par-
ticipants whether or not they most probably used the median
of their forecasts to consider whether the river level would
be above, at or under the flood threshold. In cases where the
decisions did not coincide with what the median forecast in-
dicated, other factors that could also influence the decisions
were considered, such as (a) the flood frequency of each river
and their initial river levels, (b) the forecast set type each par-
ticipant had (i.e. biased – positively or negatively – or unbi-
ased) and (c) the familiarity of the participants with prob-
abilistic forecasts and decision-making (given their occupa-
tion and years of experience).

2.2.2 Was there a correspondence between the way
participants perceived the quality of their
forecasts in round 1 and their “true” quality?

A well-known effect, called the “cry wolf”, was studied
for weather-related decision-making by LeClerc and Joslyn
(2015). It describes the reluctance of users to comply with
future alarms when confronted in the past with false alarms.
This leads to the second question which was explored in this
paper: was there a correspondence between the way partici-
pants perceived the quality of their forecasts in round 1 and
their “true” quality? Our aim here is to investigate whether
the participants were more sensitive to false alarms or misses.
The participants’ answers to the question on their forecast
set quality for the first round (see Appendix A) were anal-
ysed against their “true” quality. The latter was measured in
terms of forecast bias, calculated from the hits, false alarms
and misses presented in Table 2. A bias value was computed

for each forecast set type of each river (i.e. each contingency
table; there were therefore nine different bias values in total)
with the following equation:

Bias=
hits + false alarms

hits + misses
. (1)

A bias value equal to one is a perfect value (which corre-
sponds to unbiased forecasts), and a value less than (superior
to) one indicates under- (over-)prediction.

2.2.3 Did the participants’ perceptions of their own
performance coincide with their “true”
performance?

We also looked at the perception the participants had of their
own performance. The answers to the question “How was
your performance as a decision-maker” (see Appendix A)
were assessed against the participants’ “true” performances
(in rounds 1 and 2), which were calculated in terms of the
money participants spent as a consequence of their decisions.
The following general formula (n being the round number)
was used:

Performance=
Money spent round n

Optimal
. (2)

The performance is expressed relatively to an optimal per-
formance, which is the minimum amount a participant could
have spent, given the river they were assigned, defined as

Optimal= Protection cost × Number of floods in round n. (3)

A performance value of one indicates an optimal perfor-
mance. Performance values greater than one indicate that
participants spent more money than the minimum amount
necessary to protect the city from the observed floods. The
greater the value, the higher the amount of money unneces-
sarily spent.

2.2.4 What was the participants’ willingness-to-pay for
a probabilistic forecast set?

The auction was incorporated into the experiment in order to
explore the WTP of participants for a probabilistic forecast
set, considering the risk-based decision-making problem pro-
posed by the game. To characterise this WTP, the bids were
analysed and their relationships with several other aspects of
the game were explored to explain the differences (if any) in
the bids. These aspects were the following.

– The way participants used the forecasts. Here we try to
learn about the effectiveness of the information on the
user, which is an attribute of the value of information
(Leviäkangas, 2009). It is assumed that a participant is
not expected to be willing to disburse any money for
information they are not using. The answers to question
one (i.e. “Did the participants use their forecasts and,
in this case, follow the 50th percentile of their forecast
during the decision-making process?”) are used here.
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– The money available to participants after round 1 to
make their bids. As participants were informed at the
beginning of the game that the winner would be the
player with the highest number of tokens in purse at
the end of the game, the tokens they had in hand for
the auction (after round 1) may have restricted them in
their bids. The bids are thus also explored relative to the
number of tokens in hand at the time of the auction.

– The forecast set type. The bias of the forecasts during
round 1 could also have been a potential determinant of
participants’ WTP for a forecast set in round 2.

– The river flood frequency. This was different for all the
rivers in the first round and could be an element of the
relevance of the information, another attribute of the
value of information (Leviäkangas, 2009). Indeed, one
could ask: “If my river never floods, why should I pay
for forecasts?”.

– The years of experience and occupation. This might in-
fluence the familiarity participants may have with the
use of probabilistic forecasts for decision-making.

2.2.5 Did participants with a forecast set perform
better than those without?

Round 2 was led by a central question: did participants with
a forecast set perform better than those without? It was in-
vestigated by looking at the performance of participants in
round 2, calculated from Eq. (2). While we expect players
with more (unbiased) information to make better decisions,
other factors could have influenced the trust participants had
in the information during round 2, such as, for instance,
the quality of the forecasts experienced by participants in
round 1 or the flood events observed in the river in round 2,
compared to the experience participants had previously had
in round 1.

2.2.6 What were the winning and losing strategies (if
any)?

Finally, from the final results of the game, a question arose:
what were the winning and losing strategies (if any)? This
question was explored by looking at the characteristics (e.g.
river assigned, forecast set type in round 1, performances in
both rounds, purchase of a second forecast set) and decisions
of the participants during the game, in order to distinguish
common attributes for the winning and losing strategies.

Furthermore, an “avoided cost” was calculated for each
river based on the difference between the tokens spent by par-
ticipants without a second forecast set and the tokens spent
by participants with a second forecast set, during round 2. It
represents the average number of tokens participants without
a second forecast set lost by protecting when a flood did not
occur or by not protecting when a flood did occur, compared

Table 3. Distribution of the 129 worksheets collected for the anal-
ysis per river (yellow, green and blue) and forecast set type (posi-
tively biased, unbiased and negatively biased).

Forecast set type River Total

Yellow Green Blue

Positively biased 15 11 18 44
Unbiased 13 21 9 43
Negatively biased 11 19 12 42

Total 39 51 39 129

to participants with a second forecast set. This “avoided cost”
was measured and compared to the average bid of partici-
pants for each river in order to evaluate participants’ estima-
tion of the value of the forecasts compared to their “true”
value in terms of the money they enabled the participants
with a second forecast set to save in the second round. An av-
erage “new bid” was also calculated by replacing the bids of
participants who had said that their forecast set in the second
round was not worth the price they had paid initially, with
the new bids they would have rather paid (see Appendix A).
This average “new bid” was compared to the “avoided cost”
and the actual average bid obtained from the auction.

3 Results

The results are based on the analysis of 129 worksheets from
the 145 worksheets collected. The remaining 16 worksheets
were either incomplete or incorrectly completed and were
thus not used. Table 3 shows the distribution of the 129 work-
sheets among the three forecast set types and the three rivers.

The game was played at the different events mentioned
in the introduction. The participants present at those events
displayed a diversity in terms of their occupation and years
of experience. This was surveyed at the beginning of the
game and is presented in Fig. 2, for all the participants as
well as for each river and forecast set type separately. Par-
ticipants were mainly academics (postdoctoral researchers,
PhDs, research scientists, lecturers, professors and students),
followed by professionals (forecasters, operational hydrolo-
gists, scientists, engineers and consultants). The majority had
less than 5 years of experience.

3.1 Participants were using the forecasts, but consistent
patterns of use are difficult to detect

Figure 3 presents, on the one hand, the final purses of all the
participants at the end of round 1, according to their river and
forecast set type (columns and rows respectively), and, on
the other hand, the final purses that participants would have
had if they had made their decisions according to the me-
dian of their forecasts. Participants in charge of the yellow
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Figure 2. Number of participants according to occupation and years
of experience. The categories of occupations are academics (post-
doctoral researchers, PhDs, research scientists, lecturers, professors
and students), professionals (forecasters, operational hydrologists,
scientists, engineers and consultants) and others. Top: overall par-
ticipant distribution; middle: distribution according to their river;
bottom: distribution according to the forecast quality types (1: pos-
itively biased, 2: unbiased and 3: negatively biased).

river (first column) ended the first round with, on average,
more tokens than the others. Participants playing with the
blue river (last column) are those who ended round 1 with
less money in purse, on average. This is due to the higher
number of flood events for the blue river in round 1 (see Ta-
ble 1). There are also differences in terms of final purses for
the participants assigned the same river but given a differ-
ent forecast set type. Overall, participants who had unbiased
forecasts (middle row) ended the first round with on average
more money than the other players. These results are an indi-
cation that the participants were using their forecasts to make
their decisions.

In order to see whether the participants were using the me-
dian values of the forecasts, a forecast final purse was com-
puted considering the case where the participants followed
the median of their forecasts for all the cases of the first round
(red vertical lines shown in Fig. 3). If the participants had
followed the median values of the forecasts during the entire
first round, their final purses would have been equal to this
value. Although this is almost the case for participants with
unbiased forecast sets (for all rivers), for participants with the
yellow river and positively biased forecast sets and the green
river and negatively biased forecast sets, it is not an overall
generally observed behaviour.

Could some participants have discovered the bias in their
forecasts and adjusted them for their decisions? Although it
is hard to answer this question from the worksheets only,
some of the decisions taken seem to support this idea. Fig-
ure 4 presents in more detail the results for the blue river in

Figure 3. Participants’ round 1 final purses for each river (from the
leftmost to the rightmost column: the yellow, the green and the blue
river) and for each forecast set type (from the top to the bottom row:
positively biased, unbiased and negatively biased). The red lines
show the final purses that the participants of a given river-forecast
set type group would have gotten if they had followed the median
of their forecasts for all five cases of the first round.

the first round. The forecast final levels are shown as box-
plots for each forecast set type and for each of the five cases
of round 1. These are the levels the river would reach if the
initial level is added to the percentiles of the forecasts for
each case. The bars at the bottom of the figure show the per-
centages of participants whose decisions differed from what
the median of their forecast final level indicated (i.e. partici-
pants who bought (or did not buy) protection while no flood
(or a flood) was predicted by the median of their forecast).

When comparing cases 1 and 4, for which the initial river
levels and the observed and forecast final river levels were
the same, we would not expect any changes in the way par-
ticipants were using their forecasts. This is however not true.
Figure 4 shows that the percentages of participants not fol-
lowing their forecast median differs between the two cases.
For instance, about 80 % of the participants with negatively
biased forecast sets (under-predicting the increment of the
river level) did not follow the median forecast in case 1, and
did not protect against the predicted flood by their median
forecast, while this percentage drops to about 20 % in case 4.
The fact that they were not consistently acting the same way
may be an indication that they found out the bias in the fore-
casts and tried to compensate for it throughout round 1. We
can also see that, in general, the lowest percentages of partic-
ipants not following the median forecast are for the unbiased
forecast set. This is especially observed in the cases where
the forecast final levels given by the median forecast are well
above or below the flood threshold (cases 1, 2, 4, 5). The
fact that from case 1 to case 4, for unbiased forecast sets,
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Figure 4. Observed initial and final river levels for the blue river
for each case of the first round. The boxplots show the forecast final
river levels by each forecast set type (negatively biased, unbiased
and positively biased). The bars display the percentages of partic-
ipants whose decisions did not correspond to what their forecast
median indicated.

we moved from about 10 % of participants not following the
median forecast to 0 %, may also indicate that they built con-
fidence in their forecasts (at least in the median value) along
round 1, by perceiving that the median forecast could be a
good indication of possible flooding or not in their river.

Figure 4 also shows that some participants with unbiased
forecasts did not always follow the median of their forecasts
(for instance, cases 1, 3 and 5). Additional factors may there-
fore have influenced the way participants used their forecasts.
A number of worksheets indicated that the distance of the
initial river level to the flood threshold could have been in-
fluential. In a few cases where the median forecast clearly
indicated a flood, while the initial river level was low, some
players did not purchase any flood protection. This can be
observed in Fig. 4 for case 1, for example, for participants
with positively biased or unbiased forecast sets. The inverse
situation (i.e. the initial river level was high, but the river
level forecast by the median was low, below the flood thresh-
old) was also observed and is illustrated in Fig. 4 for case 2
and negatively biased forecast sets. Hence, in some cases, the
initial river level seemed to also play a role in the decisions
taken.

There are indications that the participants could also have
used other percentiles of the forecast to make their deci-
sions, especially in cases where the median of the forecast
was marginally above or below the flood threshold. For ex-
ample, in case 4, the entire unbiased forecast lies above the
flood threshold and all the participants chose the same and
correct action. In cases where the 5th or 95th percentiles of
the forecast fell above or below the flood threshold, the par-
ticipants showed less consistent decisions (e.g. case 3 for un-
biased forecast sets).

Figure 5. Cumulative percentages of participants who rated their
forecast quality from “very bad” to “very good”, as a function of the
forecast set bias (“true” forecast quality; Eq. 1) in round 1. A bias
equal to one indicates perfect forecasts; a bias less than (superior
to) one indicates under- (over-)prediction.

Other possible influencing factors, such as occupation and
years of experience, were also investigated (not shown). No
strong indications that these factors could have played a role
in the participants’ decision-making were however found.

3.2 Participants were overall less tolerant to misses
than to false alarms in round 1

Figure 5 displays the cumulative percentages of participants
having answered that the quality of their forecast set in
round 1 (see Appendix A) was “very bad” to “very good”,
as a function of the “true” quality of the corresponding fore-
casts, measured by the forecast set bias (Eq. 1). While par-
ticipants with forecast sets for which the bias equalled one
(perfect value) mostly rated their forecasts “quite good” or
“very good”, the percentage of negative perceptions of the
quality of the forecasts increases with increasing or decreas-
ing forecast bias.

It is interesting to note that participants with forecasts bi-
ased towards over-prediction never rated their forecasts as
“very bad”. Also noteworthy is the very good rating given by
participants with the most negatively biased forecasts (bias of
0). These participants belonged to the yellow river and had
negatively biased forecasts in round 1. There was only one
flood event for river yellow in the first round, which occurred
at the end of the round and which was missed by the nega-
tively biased forecasts. During the analysis of the results, it
was observed that only about 25 % of the yellow river partic-
ipants given the negatively biased forecasts did not purchase
flood protection for this flood. An explanation for this low
percentage could be that participants had time to learn about
their forecasts’ quality until the occurrence of the flood at the
end of the first round. This low number of participants who
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Figure 6. Number of participants having rated their performance as a decision-maker from “very bad” to “very good” in round 1, as a
function of (a) their “true” performance (calculated from Eq. 2), and (b) their perceived forecast set quality. A performance value of one
denotes a “true” performance equal to the optimal performance (Eq. 3). The larger the performance value, the more distant from optimal the
decisions were during round 1. The size and the colour of the point indicate the number of participants that fall into a specific perceived–actual
performance combination or perceived performance–forecast set quality combination.

actually suffered from their negative bias and the presence of
only one miss out of the five cases of round 1 could therefore
justify the good rating of their forecasts by those participants.

Overall, forecasts exhibiting under-prediction seem to be
less appreciated by the participants. This could be an indi-
cation that participants were less tolerant to misses, while
they accepted better forecasts leading to false alarms (over-
predictions). This is contrary to the “cry wolf” effect, and
could be explained by the particular game set-up for which
the damage cost (4000 tokens) was twice the protection cost
(2000 tokens).

3.3 Participants had a good perception of their good
(or bad) performance during the game and related
it to the quality of their forecasts

Figure 6a illustrates the answers to the question “How was
your performance as a decision-maker in round 1?” as a func-
tion of the participants’ “true” performance (calculated from
Eq. (2), i.e. the ratio to an optimal performance). The figure
shows the distribution of participants across all perceived–
actual performance combinations, for all rivers and forecast
set types combined. The perceived decision-maker perfor-
mance is presented on a scale from “very bad” to “very
good”. An overall positive relationship between the partic-
ipants’ perceived performance and their “true” performance
is observed: the best performances (i.e. performance values
of one or close to one) are indeed associated with a very good
perception of the performance by the decision-makers and
vice versa. The same analysis carried out for the answers
concerning round 2 (not displayed) showed similar results:
the ratings participants gave to their performance were simi-
larly close to their “true” performance.

Figure 6b looks at the relationship between the perceived
decision-maker performance and the rating the decision-
makers gave to their forecast set quality in round 1. A posi-
tive relationship can also be seen: the majority rated their per-
formance and the quality of their forecast set as “quite good”
and “very good”, while those who rated their performance
“very bad” also considered their forecast set “very bad”. The
rating participants gave to their performance was therefore
closely connected to the rating they gave to their forecast set
quality. This also contributes to the evidence that participants
were using their probabilistic forecast sets to make their deci-
sions. It is furthermore an indication that participants linked
good forecast quality to good performance in their decision-
making and vice versa.

3.4 Several factors may influence the WTP for a
forecast, including forecast quality and economic
situation

Given the evidence that most participants were using their
forecasts to make their decisions in round 1 (see Sect. 3.1),
we now investigate their willingness-to-pay (WTP) for a new
forecast set to be used in round 2.

Figure 7 shows the bids participants wrote on their work-
sheets prior to the auction, for a second forecast set, as a
function of the number of tokens they had in their purses at
the end of round 1. All bids are plotted and those from par-
ticipants who succeeded in buying a second forecast set are
displayed as red triangles in the figure. On average, partic-
ipants were willing to pay 4566 tokens, which corresponds
to 32 % of the average number of tokens left in their purses.
The minimum bid was zero tokens (i.e. no interest in buy-
ing forecasts for round 2), which was made by 10 % of the
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Figure 7. Bids declared by participants to purchase a forecast set
for round 2, as a function of the number of tokens they had left in
their purse at the end of round 1. The colour of the points indicates
the number of participants that fall into a specific bid–tokens left in
purse combination.

players. Half of these players were participants who were as-
signed the blue river (the river for which players ended the
first round with on average the lowest number of tokens in
purse). The only three participants who never bought flood
protection in the first round (i.e. who could be seen as “risk-
seeking” players) made bids of zero, 3000 and 4000 tokens.
The highest bid made was 14 000 tokens, corresponding to
100 % of the tokens left in that participant’s purse. However,
this participant did not raise their hand during the auction to
purchase a second forecast set. Nine participants (less than
10 % of the total number of players) made a bid of 10 000
tokens or above, corresponding to, on average, 77 % of the
tokens they had left in their purses. The total cost of protect-
ing all the time for round 2 being 10 000 tokens, as indicated
in Fig. 7 by the dashed black line, bidding 10 000 tokens or
more for a second forecast set was clearly pointless. Half
of these participants were players to which the yellow river
was assigned (the river that experienced the least number of
floods in round 1 and for which participants thus ended the
first round with on average the highest number of tokens left
in their purse) and eight out of these nine participants had
a forecast set with a bias during the first round. These nine
participants, who paid 10 000 tokens or more for the second
forecast set, were removed from the subsequent analyses of
the auction results, as their bids suggest that they have not
understood the stakes of the game.

From Fig. 7, there is a clear positive relationship between
the maximum bids within each value of tokens left in purse
and the tokens left in purse, as the participants did not dis-
burse more tokens than they had left in their purse during the
auction. When we look at the evolution of the median of the
bids with the number of tokens in purse, in general, the more

Figure 8. Participants’ % bids, bids expressed as a percentage of the
tokens participants had left in their purse at the time of the auction,
as a function of the rating they gave to their forecast set quality
in round 1 (from “very bad” to “very good”). The colour of the
points indicates the number of participants that fall into a specific
bid-perceived forecast set quality combination.

tokens one had left in purse, the higher their WTP for a fore-
cast set. Nonetheless, the WTP seems to have a limit. It can
be seen that from a certain number of tokens left in purse,
the median value of the bids remains almost constant (in our
game case, at about a bid of 6000 tokens for participants with
12 000 tokens or more in their purse). The number of tokens
that the participants had in hand therefore only influenced to
a certain extent their WTP for a second probabilistic forecast
set.

We also investigated whether the way participants per-
ceived the quality of their forecast set in the first round was
a plausible determinant of their WTP for another forecast set
to be used in round 2. Figure 8 shows the % bids (i.e. bids
expressed as a percentage of the tokens participants had left
in their purse at the time of the auction) as a function of the
rating participants gave to their forecast set quality in round 1
(from “very bad” to “very good”; see Appendix A). Firstly,
it is interesting to observe that three participants judged their
first forecast set to have been of “very bad” quality but were
nonetheless willing to disburse on average 50 % of the to-
kens they had left in purse. Those bids were however quite
low, 4000 tokens on average. Moreover, players who rated
their first forecast set from “quite good” to “very good” were
on average willing to disburse a larger percentage of their
tokens than candidates who rated their previous forecast set
from “quite bad” to “neither good nor bad”. Therefore, the
way participants rated the quality of their first forecast set
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Table 4. Distribution of the 44 forecast sets sold during the auction,
per river (yellow, green and blue) and forecast set type (positively
biased, unbiased and negatively biased).

Forecast set type River Total

Yellow Green Blue

Positively biased 5 2 6 13
Unbiased 6 9 3 18
Negatively biased 3 10 0 13

Total 14 21 9 44

was to a certain degree influential on their WTP for a second
forecast set.

During the auction following the closed bids, 44 forecast
sets were distributed to the participants who made the high-
est bids, in order to be used in round 2. Table 4 shows that
participants who purchased these second forecast sets were
quite well distributed among the different forecast set types
of round 1, with a slightly higher frequency of buyers among
participants who had played round 1 with unbiased forecasts;
42 % of all participants with unbiased forecasts purchased a
second forecast set, while 30 % (31 %) of participants with
positively biased (negatively biased) forecasts bought a sec-
ond forecast set. Buyers also belonged more often to the
group assigned river green (48 %, or 41 % of all green river
participants), followed by rivers yellow (32 %, or 36 % of all
yellow river participants) and blue (20, or 23 % of all blue
river participants). The higher percentage of green river par-
ticipants buying a second forecast set could have been due to
a combination of the river green flood frequency in round 1
(not as low as for the yellow river, making it more relevant
for green river participants to buy a second forecast set) and
of money left in purse (on average, not as low as for the blue
river participants). The buyers of the second forecast sets are
displayed as red triangles in Fig. 7. We note that these red tri-
angles are not necessarily the highest bid values in the figure,
since we plot results from several applications of the game (in
one unique application, they would coincide with the highest
bids, unless a participant had a high bid but had not raised
their hand during the auction to buy a second forecast set).
Differences in the highest bids among the applications of the
game could be an indication that the size (or type) of the au-
dience might have had an impact on the bids (i.e. the WTP
for a probabilistic forecast). Our samples were however not
large enough to analyse this aspect.

Participants who did not purchase a second probabilistic
forecast set (85 players in total) stated their reason for do-
ing so. The majority of them (66 %, or 56 players) said that
the price was too high (which means, in other words, that the
bids made by the other participants were too high, preventing
them from purchasing a second forecast set during the auc-
tion). Ten participants (12 %) argued that the model did not

seem reliable. Most of these participants were among those
who had indeed received a forecast set with a bias in the first
round. The rest of the candidates who did not purchase a sec-
ond forecast set (22 %, or 19 players) wrote down on their
worksheet the following reasons.

– Low flood frequency in the first round – a participant
assigned the yellow river wrote: “Climatology seemed
probability of flood = 0.2”.

– Assessment of the value of the forecasts difficult – a par-
ticipant wrote: “No information for the initial bidding
line”; and another wrote: “Wrong estimation of the costs
versus benefits”.

– Preference for taking risks – “Gambling” was a reason
given by a player.

– Enough money left in purse to protect all the time during
round 2 – which can be an indication of risk-averse be-
haviour coupled with economic wealth and no worries
of false alarms.

– Not enough money left in purse to bid successfully – a
participant wrote: “The purse is empty due to a lot of
floods”.

3.5 Decisions are better when they are made with the
help of unbiased forecasts, compared to having no
forecasts at all

The analysis of the results of round 2 allowed us to compare
the performance of participants with and without a forecast
set. Overall, participants without a second forecast set had an
average “true” performance value of 3.1, computed as shown
in Eq. (2) and over the five cases of round 2. The best perfor-
mance was equal to the optimal performance (“true” perfor-
mance value equal to 1) and the worst performance reached
a value of 6. Comparatively, participants with a second fore-
cast set had an average “true” performance of 1.2, thus much
closer to the optimal performance than the average perfor-
mance of participants without a second forecast set. The best
performance in this group also equalled the optimal perfor-
mance, while the worst performance value was 2.5, much
lower (i.e. thus much closer to the optimal value) than the
worst performance value of participants making their deci-
sions without any forecasts. These numbers clearly indicate
that the possession of a forecast set in the second round led to
higher performances and to a lower spread in performances
within the group of players with a second probabilistic fore-
cast set (compared to players without forecasts in round 2).

Does this conclusion however depend on the participants’
performances in round 1? Do you need to be a good decision-
maker to benefit from the forecasts in hand? Our results sug-
gest otherwise. All the participants with a bad performance
in the first round and a forecast set in round 2 had a good
performance in the second round. This indicates that even if
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those participants had a bad performance in round 1, they
took advantage of the forecasts and had a good performance
in round 2. Additionally, 57 out of 59 participants with a
good performance in round 1 and no forecasts in round 2
had a bad performance in the second round. This therefore
indicates that no matter how well the participants performed
in round 1, the possession of a forecast set led to better deci-
sions in round 2.

All the participants without a second forecast set who were
assigned the yellow river missed the first two floods in the
second round. Some of these participants purchased flood
protection for all or some of the subsequent cases, while the
others never bought any protection. It could have been due
to the low flood frequency of their river in the first round
(see Table 1). This behaviour was not observed for the green
river participants without a second forecast set, for which a
very diverse sequence of decisions was seen in the second
round. As for the blue river participants without any second
forecast set, most of them missed the first flood event that oc-
curred in round 2 and, subsequently, purchased flood protec-
tion for a few cases where no flood actually occurred. These
decision patterns were not observed for participants with a
second forecast set within each river, who took more consis-
tently right decisions.

The large majority of participants with a second forecast
set in round 2 (41 out of 44) rated their forecasts as either
“quite good” or “very good”, which was expected since all
the forecasts were unbiased in round 2. The three remaining
participants said that their second forecast set was “neither
good nor bad” or “quite bad”. These participants all had bi-
ased forecasts in the first round and their behaviour during
round 2 suggested that they might have been influenced by
the bias in their forecasts for round 1.

3.6 Overall winning strategies would combine good
performance with an accurate assessment of the
value of the forecasts

The average final purse at the end of round 2 was 3149 to-
kens (3341 tokens for participants without a second forecast
set and 2778 tokens for participants with a second forecast
set), remaining from the 20 000 tokens initially given to each
participant. The minimum final purses observed were zero
tokens or less. Twenty-five participants, out of the total of
129 players, finished the game with such amounts of tokens.
Out of these 25 participants, 22 had received a biased forecast
set in the first round. From the analysis of the game work-
sheets, we could detect three main losing strategies followed
by these 25 participants who finished with zero tokens or less
in purse.

1. Eighteen participants, most of them blue river players,
had an “acceptable to bad” performance in round 1 (per-
formances ranging between 1.3 and 3), did not purchase
a second forecast set, and performed badly in round 2
(performances ranging between 2.3 and 6).

Table 5. Average values of “avoided cost” for round 2, average bid
for a second forecast set and average “new bid” if forecasts were
considered not worth the price originally paid. Values are in tokens
and for the three different rivers.

River Average Average Average
“avoided cost” bid “new bid”

Yellow 7251 7929 7083
Green 5829 7083 6224
Blue 5711 6889 5875

2. Four players, mostly in charge of the yellow river, had
a “good to bad” performance in round 1 (performances
ranging between 1 and 3), purchased a second forecast
set for 10 000 tokens or higher, and performed very well
in round 2 (performances of 1).

3. Three participants, all green river players, had a “good
to acceptable” performance in round 1 (performances
ranging between 1 and 1.5), bought a second forecast set
for 6000–8000 tokens, but performed badly in round 2
(performances ranging between 2 and 2.5).

The winners of the game, six players in total, finished
round 2 with 8000 or 12 000 tokens in their purse. Half of
these participants were assigned the green river and the other
half the blue river. Apart from one participant, all had re-
ceived a biased forecast set in the first round. Most partic-
ipants had a “good to acceptable” performance in the first
round (performances ranging between 1 and 1.7), did not pur-
chase any forecast set and had a “good to bad” performance
in the second round (performances ranging between 1 and
3). Their performance in round 2 did not lead to large money
losses, as it did for yellow river participants, which can be
explained by the fact that they did not have so many flood
events in this round (see Table 1).

The average “avoided cost”, the average bid for a second
forecast set and the average “new bid” are presented in Ta-
ble 5 for each river. By comparing the “avoided cost” with
the average bid for each river, it is noticeable that the aver-
age bid was larger than the “avoided cost” of each river. On
average participants paid 1000 tokens more for their second
forecast set than the benefit, in terms of tokens spared in the
second round, that they derived from having this forecast set.
This could explain why none of the winners of the game had
a forecast set in the second round. From the average “new
bid”, it is evident that participants would have liked to pay
less on average than what they originally paid for their sec-
ond forecast set. For all the rivers, the average ‘new bid’ is
closer to the “avoided cost” than the average bid of partici-
pants during the auction.
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4 Discussion

4.1 Experiment results and implications

It was clear during the game that most participants had used
the probabilistic forecasts they were given at the beginning
of the game to help them in their decisions. This was an im-
portant issue in our game since it was an essential condition
to then be able to evaluate how the participants were using
their forecasts and to understand the links between the way
they perceived the quality of their forecasts and the way they
rated their performance at the end of a round. There was evi-
dence that participants were mostly using the 50th percentile
of the forecast distributions, but, interestingly, the median
alone could not explain all the decisions made. Other aspects
of the game might have also shaped the participants’ use of
the information, such as the discovery, during the first round,
of the forecast set bias (i.e. two out of three forecast sets
were purposely biased for round 1). This was also mentioned
by some participants at the end of some applications of the
game, who said that the fact of noticing the presence of a bias
(or suspecting it, since they were not told beforehand that the
forecasts were biased) led them to adjust the way they were
using the information. This could suggest that forecasts, even
biased, can still be useful for decision-making, compared to
no forecasts at all, if users are aware of the bias and know
how to consider it before making a decision.

Interestingly, in the analysis of the worksheets, there was
an indication that the players had, however, different toler-
ances to the different biases. Indeed, a lower tolerance for
under-predictive forecasts than for over-predictive forecasts
was identified. Biased forecasts were hence problematic for
the users and indicative of the manner in which the infor-
mation was used. This strongly indicates that there is an im-
portant need for probabilistic forecasts to be bias-corrected
previously to decision-making, a crucial aspect for applica-
tions such as flood forecasting, for instance (Hashino et al.,
2007; Pitt, 2008).

There was additionally evidence that, in a few cases, some
participants with unbiased forecasts did not use their fore-
casts (when considering the 50th percentile as key forecast
information). The analysis suggested that the players’ risk
perception, triggered by the initial river level or the prox-
imity of the forecast median to the flood threshold, might
have been a reason for this. This led to less consistent ac-
tions, where participants based their decisions on extremes
of the forecast distribution (other percentiles of the forecast)
or on no apparent information contained in the forecast dis-
tribution. A similar finding was reported by Kirchhoff et al.
(2013) through a case study in America, where it was found
that the perception of a risk was a motivational driver of a wa-
ter manager’s use of climate information. There is a constant
effort from forecasters to produce and provide state-of-the-
art probabilistic forecasts to their users. However, it was seen
here that even participants with unbiased forecasts did not al-

ways use them. This is an indication that further work needs
to be done on fostering communication between forecasters
and users, to promote an enhanced use of the information
contained in probabilistic forecasts.

From the results, it also appeared that the participants had
an accurate perception of their decision-maker performance
and related it to the quality of their forecasts. This implies
that participants viewed their forecasts as key elements of
their decision-making. This result is very encouraging for
forecasters and also bears important implications for the real
world. It could indeed suggest that decision-makers forget
that their own interpretation of the forecasts is as important
as the information held in the forecast itself, as there is a myr-
iad of ways to interpret and use probabilistic forecasts for
decision-making. The choice of the percentile on which the
decisions are based is an example of such an interpretation.
This could potentially mean that decision-makers will tend
to blame (thank) the forecast providers for their own wrong
(good) decisions.

Many papers have shown, through different approaches,
the expected benefits of probabilistic forecasts vs. determin-
istic forecasts for flood warning (e.g. Buizza, 2008; Verkade
and Werner, 2011; Pappenberger et al., 2015; Ramos et al.,
2013). However, many challenges still exist in the opera-
tional use of probabilistic forecasting systems and the opti-
misation of decision-making. This paper is a contribution to
improve our understanding of the way the benefits of prob-
abilistic forecasts are perceived by the decision-makers. It
proposes to investigate it from a different perspective, by al-
lowing, through a game experiment, decision-makers to bid
for a probabilistic forecast set during an auction. The auction
was used in this paper as an attempt to characterise and un-
derstand the participants’ WTP for a probabilistic forecast in
the specific flood protection risk-based experiment designed
for this purpose. Our results indicate that the WTP displays
dependencies on various aspects.

The bids were to a certain extent influenced by the par-
ticipants’ economic situation. They were on average posi-
tively related to the money available to participants during
the auction. Nonetheless, this was mainly a factor for partic-
ipants who had little money left in their purses at the time of
the auction. The participants’ perceived forecast quality was
also a factor influencing their WTP for another forecast set.
Players who had played the first round with biased forecasts
were less prone to disburse money for another forecast set for
the second round. There was moreover an indication that the
flood frequency of the river might have influenced the WTP
for a forecast set. Some players in charge of a river with only
one flood event in the first round (i.e. low flood risk) did not
consider beneficial the purchase of a forecast set for the sec-
ond round. The participants’ risk perception was therefore an
important element of their WTP for a probabilistic forecast.
The more risk-averse participants did not buy a second fore-
cast set as they had enough money to protect all the time;
“gambling” was also stated as a reason for not buying a sec-
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ond forecast set. Seifert et al. (2013) have similarly shown
that “the demand for flood insurance is strongly positively
related to individual risk perceptions”.

These results show that the perceived benefit of proba-
bilistic forecasts as a support of decision-making in a risk-
based context is multifaceted, and varies not only with the
quality of the information and its understanding, but also
with the relevance and the risk tolerance of the user. This
further demonstrates that more work is needed not solely
to provide guidance on the use of probabilistic information
for decision-making, but also to develop efficient ways to
communicate the actual relevance and evaluate the long-term
economic benefits of probabilistic forecasts for improved de-
cisions in various applications of probabilistic forecasting
systems within the water sector. This could additionally pro-
vide insights into bridging the gap between the theoretical
or expected benefit of probabilistic forecasts in a risk-based
decision-making environment and the perceived benefits by
key users.

4.2 Game limitations and further developments

This paper aimed to depict behaviours in the flood fore-
casting and protection decision-making context. Although
game experiments offer a flexible assessment framework,
compared to real operational configurations, it is however
extremely complex to search for general explanatory be-
haviours in such a context. This is partially due to the unique-
ness of individuals and the interrelated factors that might in-
fluence decisions, which are both aspects that are difficult to
evaluate when playing a game with a large audience. A so-
lution to overcome this, as proposed by Crochemore et al.
(2015), could be to prolong the game by incorporating a dis-
cussion with the audience or with selected individuals, aim-
ing at understanding the motivations hidden underneath their
decisions during the game. Having more time available to
apply the game would also allow one to play more cases in
each round, bringing additional information to the analysis
and clarifying key aspects of the game, such as the effect of
the bias on the participants’ use of the forecasts and on their
WTP for more forecasts. Co-designing such an experiment
with social anthropologists could bring to light many more
insights into participants’ decision-making behaviours.

Being set up as a game, this study also presents some lim-
itations. As mentioned by Breidert et al. (2006), a source of
bias in such studies is their artificial set-up. Indeed, under
those circumstances, participants are not directly affected by
their decisions, as they neither use their own money nor is the
risk a real one. This might lead them to make decisions which
they would normally not make in real life or in operational
forecasting contexts.

Moreover, in our game, the costs given to both flood pro-
tection and flood damages were not chosen to represent the
real costs that one encounters in real environments. First,
real costs in integrated flood forecasting and protection sys-

tems are difficult to assess, given the complexity of flood
protection and its consequences. Secondly, the external im-
posed conditions for playing our game (i.e. the fact that we
wanted to play it during oral talks in conferences, workshops
or teaching classes, with expected eclectic audiences of vari-
able sizes, having a limited amount of time, and using paper
worksheets to be collected at the end of the game for the anal-
ysis) were not ideal to handle any controversy on the realism
(or absence of realism) of the game scenario.

It is however arguable whether the game results could be
a reflection of the experiment set-up, and hence of the pa-
rameters of the game (the protection and damage costs, the
number of flood events, etc.). For instance, the higher dam-
age costs might have influenced the participants’ tolerance to
misses and false alarms. Further developments could include
testing the influence of the parameters of this experiment on
its results as a means of analysing the sensitivity of flood
protection mitigation to a specific decision-making setting.

Additionally, the small sample size of this experiment lim-
ited the statistical significance of its results. Replicating it
could ascertain some of the key points discussed, leading to
more substantial conclusions, and improve our understand-
ing of the effect of the professional background of the partic-
ipants on their decisions.

Finally, the experiment’s complex structure was its
strength as well as its weakness. When analysing the game
results, the chicken and egg situation arose. Several factors
of the participants’ use of the forecasts and of their WTP
for a forecast set were identified, but it was not possible to
measure causalities. It would therefore be interesting to carry
out further work in this direction, together with behavioural
psychologists, by, for instance, testing the established factors
separately.

5 Conclusions

This paper presented the results of a risk-based decision-
making game, called “How much are you prepared to pay for
a forecast?”, played at several workshops and conferences
in 2015. It was designed to contribute to the understanding
of the role of probabilistic forecasts in decision-making pro-
cesses and their perceived value by decision-makers for flood
protection mitigation.

There were hints that participants’ decisions to protect (or
not) against floods were made based on the probabilistic fore-
casts and that the forecast median alone did not account for
all the decisions made. Where participants were presented
with biased forecasts, they adjusted the manner in which they
were using the information, with an overall lower tolerance
for misses than for false alarms. Participants with unbiased
forecasts also showed inconsistent decisions, which appeared
to be shaped by their risk perception; the initial river level
and the proximity of the forecast median to the flood thresh-
old both led the participants to base their decisions on ex-
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tremes of the forecast distribution or on no apparent infor-
mation contained in the forecast.

The participants’ willingness-to-pay for a probabilistic
forecast, in a second round of the game, was furthermore in-
fluenced by their economic situation, their perception of the
forecasts’ quality and the river flood frequency.

Overall, participants had an accurate perception of their
decision-making performance, which they related to the
quality of their forecasts. However, there appeared to be dif-
ficulties in the estimation of the added value of the proba-
bilistic forecasts for decision-making, thus leading the par-
ticipants who bought a second forecast set to end the game
with a lower amount of money in hand.

The use and perceived benefit of probabilistic forecasts
as a support of decision-making in a risk-based context is a
complex topic. The paper has shown the factors that need to
be considered when providing guidance on the use of prob-
abilistic information for decision-making and developing ef-
ficient ways to communicate their actual relevance for im-
proved decisions for various applications. Games such as
this one are useful tools for better understanding and dis-
cussing decision-making among forecasters and stakehold-
ers, as well as highlighting potential factors that influence
decision-makers and that deserve further research.

6 Resources

This version of the game is licensed under CC BY-SA 4.0
(Creative Commons public license). It is part of the activ-
ities of HEPEX (Hydrologic Ensemble Prediction Experi-
ment) and is freely available at www.hepex.org. This game
was inspired by the Red Cross/Red Crescent Climate Centre
game “Paying for Predictions” (http://www.climatecentre.
org/resources-games/paying-for-predictions).
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Appendix A: Example of a worksheet distributed to the
game participants (here for river blue and the set 1 of
positively biased forecasts: BLUE-1)

BLUE-1

How much are you prepared to PAY for a forecast?

Occupation (student, PhD candidate, scientist, operational hydrologist, forecaster, professor, lecturer, other):

..............................

How many years of experience do you have? � < 5 years � 5 to 10 years � > 10 years

Flood protection = -2,000 tokens; flood without protection = -4,000 tokens

Flood occurs at 90 or above

Round
Case

River level
before rainfall

(10-60)

Flood
protection?

River level
increment
(10-80)

River level
after

increment

Flood?
(≥ 90)

Tokens
spent

Purse
(20,000)

1

1 Yes � No � Yes � No �

2 Yes � No � Yes � No �

3 Yes � No � Yes � No �

4 Yes � No � Yes � No �

5 Yes � No � Yes � No �

• How was your forecast set in Round 1?
� very bad � quite bad � neither good nor bad � quite good � very good � I don’t know

• How was your performance as a decision-maker in Round 1?
� very bad � quite bad � neither good nor bad � quite good � very good � I don’t know

Round 2

www.hydrol-earth-syst-sci.net/20/1/2016/ Hydrol. Earth Syst. Sci., 20, 1–20, 2016
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Do not forget to transfer your final Round 1 purse to Round 2 (in the brackets under ‘Purse’)

Round
Case

River level
before rainfall

(10-60)

Flood
protection?

River level
increment
(10-80)

River level
after

increment

Flood?
(≥ 90)

Tokens
spent

Purse
(...........)

Bid: .............. tokens. Did you buy a probabilistic forecast set? YES / NO

If yes, deduct the money you paid for it here:

2

1 Yes � No � Yes � No �

2 Yes � No � Yes � No �

3 Yes � No � Yes � No �

4 Yes � No � Yes � No �

5 Yes � No � Yes � No �

• How was your performance as a decision-maker in Round 2?
� very bad � quite bad � neither good nor bad � quite good � very good � I don’t know

• For the people who DID NOT buy a forecast set:

– Why didn’t you buy a forecast set?
� The model did not seem reliable
� The price was too high
� Other reason (explain): ..................................................................................................

• For the people who DID buy a forecast set:

– How was your forecast set in Round 2?
� very bad � quite bad � neither good nor bad � quite good � very good � I don’t know

– Were the forecasts worth what you paid for them? � Yes � No

– If not, how many tokens would you now pay for them? ............ tokens

Please return this worksheet into the envelope and give it to one of the assistants before you leave.
Thank you for your participation!

We hope you enjoyed it!

Hydrol. Earth Syst. Sci., 20, 1–20, 2016 www.hydrol-earth-syst-sci.net/20/1/2016/
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The Supplement related to this article is available online
at doi:10.5194/hess-20-1-2016-supplement.
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Abstract. While this paper has a hydrological focus (a glos-
sary of terms highlighted by asterisks in the text is included
in Appendix A), the concept of our decision-making activity
will be of wider interest and applicable to those involved in
all aspects of geoscience communication.

Seasonal hydrological forecasts (SHF) provide insight into
the river and groundwater levels that might be expected over
the coming months. This is valuable for informing future
flood or drought risk and water availability, yet studies in-
vestigating how SHF are used for decision-making are lim-
ited. Our activity was designed to capture how different wa-
ter sector users, broadly flood and drought forecasters, water
resource managers, and groundwater hydrologists, interpret
and act on SHF to inform decisions in the West Thames,
UK. Using a combination of operational and hypothetical
forecasts, participants were provided with three sets of pro-
gressively confident and locally tailored SHF for a flood
event in 3 months’ time. Participants played with their “day-
job” hat on and were not informed whether the SHF repre-
sented a flood, drought, or business-as-usual scenario. Par-
ticipants increased their decision/action choice in response
to more confident and locally tailored forecasts. Forecast-
ers and groundwater hydrologists were most likely to request
further information about the situation, inform other organi-
zations, and implement actions for preparedness. Water re-
source managers more consistently adopted a “watch and
wait” approach. Local knowledge, risk appetite, and expe-
rience of previous flood events were important for inform-

ing decisions. Discussions highlighted that forecast uncer-
tainty does not necessarily pose a barrier to use, but SHF
need to be presented at a finer spatial resolution to aid local
decision-making. SHF information that is visualized using
combinations of maps, text, hydrographs, and tables is ben-
eficial for interpretation, and better communication of SHF
that are tailored to different user groups is needed. Decision-
making activities are a great way of creating realistic sce-
narios that participants can identify with whilst allowing the
activity creators to observe different thought processes. In
this case, participants stated that the activity complemented
their everyday work, introduced them to ongoing scientific
developments, and enhanced their understanding of how dif-
ferent organizations are engaging with and using SHF to aid
decision-making across the West Thames.

1 Introduction

There has been a recent shift away from the conventional lin-
ear model of science, where research is carried out within
the scientific community with the expectation that users will
be able to access and apply the information, towards co-
production and stakeholder-led initiatives that bring together
scientists and decision-makers to frame and deliver “ac-
tionable research” (Asrar et al., 2012; Lemos et al., 2012;
Meadow et al., 2015). Regular and clear communication
between scientists and policy-makers and practitioners in

Published by Copernicus Publications on behalf of the European Geosciences Union.
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workshops, focus groups, consultations, and interviews, and
through the development of games, activities, and interactive
media, is imperative for ensuring that projects deliver im-
pact outside of the academic environment. Here, we share
findings from an activity that explored the use of seasonal
hydrological forecasts∗ for local decision-making. This was
conducted as part of an IMPREX (IMproving PRedictions
and management of hydrological Extremes) stakeholder fo-
cus group for the West Thames, UK (van den Hurk et al.,
2016; IMPREX, 2018a), co-organized by the University of
Reading (UoR), UK, Environment Agency (EA) and sup-
ported by the European Centre for Medium-Range Weather
Forecasts (ECMWF).

Seasonal hydrological forecasts (SHF) have the ability to
predict principal changes in the hydrological environment
such as river flows and groundwater levels weeks or months
in advance. This has the potential to benefit humanitarian
action and economic decision-making, e.g. to provide early
warning of potential flood and drought events, assist with
water quality monitoring, and ensure optimal management
and use of water resources for public water supply, agricul-
ture, and industry (Chiew et al., 2003; Arnal et al., 2017; Li
et al., 2017; Meißner et al., 2017; Turner et al., 2017). SHF
systems covering a range of spatial scales have been devel-
oped – Hydrological Outlook UK forecasts at a national level
(Prudhomme et al., 2017; CEH, 2018) – while the Coperni-
cus European and Global Flood Awareness Systems (EFAS
and GloFAS) provide operational forecasts over larger scales
(JRC, 2018a, b). Recent research has demonstrated improve-
ments in SHF quality∗, including increased accuracy out to
4 months for high-flow events during the winter in Europe
(Arnal et al., 2018; Emerton et al., 2018).

There is growing interest in SHF amongst policy-makers
and practitioners; however, in many cases, there is limited
information about whether SHF products are actually being
used. Research output has focused largely on technical sys-
tem development and improvements to forecast skill∗ (see
the review by Yuan et al., 2015), with relatively fewer studies
exploring how users engage with and apply SHF to inform
decisions (see Crochemore et al., 2015; Viel et al., 2016).
Many seasonal forecasting studies, including those investi-
gating the application of seasonal meteorological forecasts∗

(which provide information about future weather variables,
rather than hydrology more specifically), have identified
forecast uncertainty∗, whereby forecast skill and sharpness∗

decrease with increasing lead time∗ (Wood and Lettenmaier,
2008; Soares and Dessai, 2015), and how this uncertainty
can be communicated effectively as key barriers to use (Ar-
nal et al., 2016; Vaughan et al., 2016). Non-technical fac-
tors, including the level of knowledge and training required
to interpret and apply SHF information effectively (Bolson
et al., 2013; Soares and Dessai, 2016), the visualization, for-
mat, and compatibility of the information provided (Fry et
al., 2017; Soares et al., 2018), and the level of communica-
tion between different users in the water sector and between

research developers and practitioners (Golding et al., 2017),
have all been found to act as both barriers and enablers, de-
pending on the user group in question.

The potential for SHF to meet the needs of the water sec-
tor is recognized by a host of UK environmental organiza-
tions, including the EA, the Met Office, and research centres
(see Prudhomme et al., 2017). The West Thames specifically
is underlain by a slowly responding, largely groundwater-
driven hydrogeological system (Mackay et al., 2015), mean-
ing that there is potential for extreme hydrological events
such as the drought of 2010–2012 (Bell et al., 2013) and
winter floods of 2013–2014 (Neumann et al., 2018) to be de-
tected weeks or months in advance. It also has a dense pop-
ulation and high demands for water which require effective
long-term management of resources for public drinking sup-
ply, industry, agriculture, and wastewater treatment (further
details about the West Thames can be found in Sect. 2.2).
The value of using SHF in the West Thames is of particular
interest to the EA; however, information on the level of un-
derstanding, uptake, and application is currently unknown.
We therefore aimed to develop a clearer understanding about
how different professional water sector users – broadly fore-
casters, groundwater hydrologists, and water resource man-
agers – are currently engaging with SHF in the West Thames
using a decision-making activity.

In the context of flood science communication with ex-
perts, real-time activities such as simulation exercises (that
imitate real-world processes and behaviours) or roleplay
(where participants engage with real-world scenarios but take
on personas and positionalities that differ from their own)
are known to be effective when engaging with stakehold-
ers who bring a range of scientific ideas and perspectives to
the table (McEwen et al., 2014). Such activities encourage
participants to apply their knowledge to realistic situations
and to reflect on issues and the perspectives of other stake-
holders (Pavey and Donoghue, 2003, p. 7). They are also
valuable for understanding decision-making processes, e.g.
for environmental hazards and conflicting community views
(Harrison, 2002), for capacity building in response to new
water legislation (Farolfi et al., 2004), and for understand-
ing climate forecasts and decision-making (Ishikawa et al.,
2011). Our decision-making activity provided an interactive
and entertaining platform that encouraged participants to en-
gage with real-world scenarios whilst fostering discussions
about the barriers and enablers to use of SHF. Using three
activity stages, participants were provided with sets of pro-
gressively confident and locally tailored SHF for the next 3
to 4 months. The SHF were produced using output from op-
erational systems including Hydrological Outlook UK and
the European Flood Awareness System (EFAS), and hypo-
thetical forecasts generated through scientific research (see
Neumann et al., 2018). Participants were asked to play in real
time, i.e. as if receiving the forecasts on the day for the next 3
to 4 months. They did not know in advance whether the SHF
represented a flood, drought, or business-as-usual scenario
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and had to use their knowledge and experiences to make in-
formed decisions based on the maps, hydrographs∗, tables,
and text provided. In reality, all three sets of SHF represented
the same time period: winter 2013–2014 (a period of exten-
sive flooding nationwide that occurred at the end of 2 years
of drought conditions in the UK). Between December 2013
and February 2014 the West Thames experienced extreme
flooding from fluvial and groundwater sources which had
knock-on impacts for local water quality, sewage treatment,
and water resource management – opening up discussions
for all participants. Given that issues relating to flood and
drought risk, water quality, and water resource management
in the West Thames are generally managed by local and
regional-area authorities (Thames Water, 2010), the activity
focused on whether SHF can be used to support decision-
making at the local level. To the best of our knowledge, this
scale of practical application has yet to be explored, we sus-
pect mainly due to the lower skill of seasonal meteorological
forecasts in Europe, particularly with respect to precipitation,
which is a key variable of interest for hydrology (Arribas et
al., 2010; Doblas-Reyes et al., 2013). A brief overview of the
focus group is provided in Sect. 2, the full activity set-up is
detailed in Sect. 3, and the findings and the discussion are
presented in Sects. 4 and 5.

2 Overview of the focus group

2.1 Aims of the focus group

The focus group was developed in collaboration with the EA
and in line with the objectives of the IMPREX project. The
aims were the following.

– Introduce and discuss current SHF projects, products,
and initiatives for the UK and Europe.

– Engage with participants’ experiences and knowledge
of using SHF.

– Learn how SHF are being applied in the West Thames
and recognize how different users in the water sector ap-
proach and apply SHF information for decision-making.

– Identify limitations and barriers to use.

– Identify future opportunities for SHF application and re-
search.

These aims were delivered through a series of four interac-
tive sessions designed to actively engage participants to share
their knowledge and experiences of SHF, and short presenta-
tions that introduced the main topics surrounding SHF and
informed participants about current SHF projects and devel-
opments in the scientific research. While this paper focuses
on the decision-making activity (interactive session 2), dis-
cussions from the other sessions are also presented where

relevant. An outline of the focus group programme is pro-
vided in Supplement 1 and a full report of the activities is
available; see Neumann et al. (2017).

2.2 The West Thames in southern England

2.2.1 Physical geography

The West Thames refers to the non-tidal portion of the
Thames River Basin∗, from its source in the Cotswolds in the
west of England to 230 km downstream at Teddington Lock
in western London (Fig. 1). It covers an area of 9857 km2

(the Thames basin is 16 980 km2) and comprises 10 river
catchments∗ that are the tributaries∗ that feed directly into
the River Thames (Fig. 1). The western catchments are pre-
dominantly rural; land use is a mix of agriculture and wood-
land with rolling hills and wide, flat floodplains (elevation
up to 350 m a.s.l.). Towards the centre and east, the region
becomes increasingly urbanized, encompassing the towns
of Reading and Slough and outskirts of Greater London
(elevation 4 m a.s.l. at Teddington Lock). Lithology∗ varies
markedly across the West Thames. Catchments overlaying
the Cotswolds (upstream) and the Chilterns (middle sections)
are dominated by chalk and limestone aquifers∗ with high
baseflow∗, while a band of less-permeable clays and mud-
stones separates these two areas. Sandstones, mudstones,
and clays are also prevalent towards London (downstream)
– these catchments have higher levels of surface runoff∗ and
can exhibit a flashier∗ response to storm events (Bloomfield
et al., 2011; EA, 2009).

2.2.2 Water demands, risk, and management – why the
West Thames is of interest

The West Thames is a highly pressured environment –
15 million people and a substantial part of the UK’s economy
rely directly on its water supply (EA, 2015). There are more
than 2000 licensed abstraction points in the chalk aquifers
and superficial alluvium and river terrace gravel deposits;
90 % of abstractions are for public water supply, the rest
providing water for agriculture, aquaculture, and industry
(Thames Water, 2010). There are 12 000 registered wastewa-
ter discharge points; pollution from sewage treatment works,
transport, and urban areas affects more than 45 % of rivers,
water bodies, and aquifers, largely towards London. Diffuse
pollution and sedimentation from agricultural and forestry
practice are the main contributors to poor water quality in
the upper catchments, especially during times of high rain-
fall (EA, 2015).

Urbanization and land-use change in combination with
more varied rainfall patterns have seen the region affected
by a number of extreme drought and flood events in recent
years (EA, 2009; Parry et al., 2015; Muchan et al., 2015).
Across the Thames Basin, 200 000 properties are at risk from
a 1 : 100∗-year fluvial flood, with 10 000 at risk from a 1 : 5∗-
year event (EA, 2009). Low and high river flows also pose
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Figure 1. Location and lithology of the West Thames and its 10 main river catchments.

risks to navigation and management of the canal network
which is highly important for recreation, local living, and the
economy (Wells and Davis, 2016).

2.3 Participants

2.3.1 Who took part?

SHF have the potential for wide-ranging application and it
was important to capture the different perspectives of the
West Thames water sector. The organizers agreed that the
focus group would work well with a relatively small num-
ber of participants (up to 12) so that all perspectives could
be heard. Based on discussions held between the organiz-
ers, individuals from local organizations working in estab-
lished (i.e. long-term/permanent/leadership) roles relevant to
SHF in the West Thames were invited; many but not all par-
ticipants had previously collaborated with the University of
Reading and/or EA. In some cases, an invitee was unable to
attend due to prior commitments or because they had a col-
league who they felt would be a better fit for the focus group.
A total of 17 participants were invited from six organizations
– 12 accepted and 11 took part on the day. They were respon-
sible for flood and drought forecasting (F× 3), groundwater
modelling and hydrogeology (GH× 2), navigation (N× 1),
water resource and reservoir management (WR× 2), public
water supply (WS× 2), and wastewater modelling and oper-
ations (WW× 1). They represented five organizations: two
non-departmental public bodies (sponsored by government
agencies), two science and research centres, one water ser-
vice company, and one non-for-profit organization (Table 1).

2.3.2 Current engagement with SHF

By inviting local stakeholders we ensured that participants
represented a range of different water sector personas and
were familiar with the West Thames environment. We did not
assume that participants had any prior knowledge of SHF and
invitees were encouraged to attend even if they were unfamil-
iar with the concept as this would be an important indicator
of the state of play in the West Thames (invite poster; see
Supplement 1).

All 11 focus group participants were familiar with the con-
cept of seasonal hydrological forecasting and 10 regularly
used SHF in their everyday job (according to results from
interactive session 1 – “What are seasonal hydrological fore-
casts?”). Using post-its, participants noted that Hydrologi-
cal Outlook UK (CEH, 2018) and the associated raw fore-
casts from the analogue, hydrological, and meteorological
models (produced by the UK Met Office, Centre for Ecol-
ogy and Hydrology, British Geological Survey, EA, Natural
Resources Wales, Scottish Environment Protection Agency,
and Rivers Agency Northern Ireland) were the main sources
of SHF information currently being used, primarily for flood
and drought outlook, groundwater monitoring, and river flow
projection purposes. Scientific research, operational plan-
ning, and sharing of information with other organizations in
the water sector were also listed as reasons for engaging with
SHF. It is important to note that no prior definitions or infor-
mation were provided and no restrictions or guidance were
placed on what participants should write down. This suggests
that many in the water sector are using SHF to obtain an in-
sight into whether the upcoming season will be drier or wet-
ter than normal, but that they also believe SHF potentially

Geosci. Commun., 1, 35–57, 2018 www.geosci-commun.net/1/35/2018/



J. L. Neumann et al.: Can seasonal hydrological forecasts inform local decisions and actions? 39

Table 1. Breakdown of participants who took part in the activity.

Job title Organization type Role in the activity

Modelling and Forecasting Team Leader Public body/government agency (1) Flood and drought forecaster
Chief Hydrometeorologist Public body/government agency (2) Flood and drought forecaster
Climate Scientist (Professor) Science and research centre (1) Flood and drought forecaster
Thames Water Resources Technical Specialist Public body/government agency (1) Groundwater modelling and hydrogeology
Groundwater Research Directorate Science and research centre (2) Groundwater modelling and hydrogeology
Principal Hydrologist for Water Management Not-for-profit (charitable trust) Navigation
Water Resources, Environment and Business Directorate Public body/government agency (1) Water resource and reservoir management
Abstraction and Transfers Analyst Water service company Water resource and reservoir management
Water Strategy and Resources Modeller Water service company Public water supply
Thames Region Hydrologist Public body/government agency (1) Public water supply
Wastewater Modelling Specialist Water service company Wastewater modelling and operations

have the capability to forecast possible flood and drought
risk, which could be used to support decision-making and
provide better preparedness. This is an encouraging starting
point, although many participants noted that this potential is
not currently being realized due to the uncertainty and coarse
spatio-temporal resolution of SHF; e.g. Hydrological Out-
look UK forecasts are only published monthly for the main
UK river basins.

3 Set-up of the decision-making activity

3.1 Background

Our activity was inspired by the success of previous decision-
making activities and games run by the HEPEX (Hydro-
logical Ensemble Prediction EXperiment) community (e.g.
Ramos et al., 2013; Crochemore et al., 2015; Arnal et al.,
2016). The aim was to better understand how different water
sector users in the West Thames interpret and act on SHF by
providing them with hydrological context, maps, and fore-
casts for the region. The activity was designed for the West
Thames so that we could capture the relationship between
local stakeholders and the environment in which they work.

3.2 Activity design

3.2.1 Overview of the set-up

The set-up of the activity (illustrated in Fig. 2) had the
following structure: Choose groups > Define the Objec-
tives > Background Context > Stage 1 > Stage 2 > Stage 3.

Participants divided themselves into three groups based on
their area of expertise and where they felt they could best
contribute to the discussions. There were three flood and
drought “forecasters” and two “groundwater hydrologists”.
The remaining participants (navigation, water resource and
reservoir management, public water supply and wastewa-
ter operations) grouped themselves as “water resource man-
agers”. While the results and discussions focus on these three
broad groups, individual perspectives are also included to

capture the variety of water sector personas present. There
were also three research facilitators and three note-takers
whose role it was to capture and record the key discussion
points.

Groups were first provided with background context to
the West Thames to set the scene, followed by three sets
of progressively confident SHF for the next 3 to 4 months
(Stages 1–3). Stage 1 forecasts were from Hydrological Out-
look UK, Stage 2 were from EFAS-Seasonal (European
Flood Awareness System) and Stage 3 were “improved”
output from EFAS-Seasonal (Fig. 2 and Sect. 3.4). Partic-
ipants were asked to discuss the information presented in
their groups and make informed decisions about each of the
10 West Thames catchments (Fig. 1 and Sect. 3.3.2). All
groups were provided with exactly the same information and
discussion was encouraged. The activity took around 2 h and
timings were only loosely controlled.

SHF at all three stages of the activity represented the same
time period – dating from 1 November 2013 to 28 Febru-
ary 2014 (or 31 January 2014 for Hydrological Outlook UK,
which only extends to 3 months; CEH, 2018). These dates
captured a period of severe and widespread river and ground-
water flooding in the West Thames (Huntingford et al., 2014;
Kendon and McCarthy, 2015; Muchan et al., 2015). Par-
ticipants did not know the dates of the forecasts, nor were
they informed whether the situation being forecasted was
a high flow (flood), low flow (drought) or a business-as-
usual scenario. Dates were removed from all information,
and streamflow- and groundwater-level units were removed
from the Stage 2 and Stage 3 EFAS hydrographs, although
exceedance thresholds were provided for context. The de-
cision to remove units was advised by the EA. The con-
cern was that participants familiar with average and high-
flow values for specific catchments would deduce that the
SHF must represent the 2013–2014 floods, which would bias
their decision-making based on their previous experience and
memories. No information on forecast skill or quality was
given and participants were asked to treat all information as
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Discuss in teams and individually make informed decisions for each of the 10 western Thames catchments based on three sets of 
SHF (Stages 1 – 3) 

- Stick individual colour-coded decisions (dots) on map (see Table 2) 

- Record individual thought-process on empathy chart (see Fig. 4) 
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STAGE 1 

STAGE 2 

STAGE 3 

Figure 2. Set-up of the activity.

being “current”, i.e. as if receiving the SHF today, for the
next 3–4 months to create a realistic forecasting scenario.

3.2.2 Recording the decisions

In real life, a user’s decision process can encompass a
range of possible actions and associated consequences
(Crochemore et al., 2015). Decisions can be controlled by
providing participants with a set of options to choose from,
e.g. to deploy temporary flood defences or not – the conse-
quences of which usually determine the outcome of a game
or activity. In this case, participants were asked to select from
a broad range of colour-coded options (Table 2), but spe-
cific decisions were not defined as these had the potential to
differ greatly between participants and might prompt unreal-

istic answers. At each stage, the colour-coded options were
discussed by the three groups, simulating conversations that
could happen in real life, but it was stressed that the colour
chosen was to be representative of what an individual par-
ticipant, or their organization, would do with the SHF infor-
mation in each catchment. This was recorded on an A1 map
using coloured sticky dots marked with the participant’s ini-
tials (n∼ 110 dots per map (11 participants, 10 catchments))
(Fig. 3). In cases where participants were not familiar with
all catchments, or did not feel able to make an informed de-
cision, they did not place a dot. It was important to gather
a written record explaining how and why the decisions were
reached, and so participants were also asked to complete an
A4 empathy map at each stage (Fig. 4). Originally designed
as a collaborative tool to be used in business and marketing,
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Figure 3. Participants’ individual colour-coded decisions recorded on an A1 map.

Table 2. Colour codes and corresponding action or decision to be taken.

Decision to be made or action to be taken

Ignore the SHF information: wait for the more skilful forecasts with shorter lead times (e.g. a 7–10-day forecast).

Look at the SHF information: decide there is no notable risk and do nothing at this point.

Look at the SHF information: discuss or pass the information on to relevant colleagues/departments in your
organization and agree to keep an eye on the situation.

Look at the SHF information: discuss or pass the information on to relevant colleagues/departments in
your organization but also external partners – actively request further information about the situation or seek
advice on possible actions.

Look at the SHF information: decide to implement or set in motion action(s) in a catchment, e.g. to help with
drought preparedness, early warning, repairs, or maintenance to flood defences.

empathy maps aim to gain a deeper understanding about an
external user’s experiences and decisions (Gray, 2017). Here,
we adapted the traditional use by asking individuals to reflect
on their own decisions based on their real-life experiences
and discussions with other group members. This allowed us
to capture individuals’ thought processes, influences, discus-
sions, and the potential risks and gains associated with their
decision (Fig. 4). By combining the information recorded on

empathy maps for each group, we also gathered an overview
of the shared understanding between forecasters, groundwa-
ter hydrologists, and water resource managers and how their
SHF needs and expectations match and differ when it comes
to decision-making.
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Figure 4. Empathy map completed by each participant during Stages 1–3.

3.3 Background context

Groups were given information about the West Thames
catchment characteristics and “current” hydrological condi-
tions (units and dates removed) to place the upcoming SHF
into context and aid interpretation.

3.3.1 Catchment characteristics – driving factors, risks
and opportunities

Five maps (Supplement 2) that provided a visual representa-
tion and a numerical breakdown of the characteristic differ-
ences between each catchment were given to participants.

– Hydrogeology∗ – dominant geological type (sandstone,
chalk, clay)

– Elevation – minimum, maximum and mean elevation
(m a.s.l.)

– Slope – minimum, maximum and standard deviation of
slope angle (degrees)

– Land cover – dominant land use (urban, woodland, agri-
cultural, semi-natural)

– Flood risk – flood warning and flood alert areas and an
indication of “urban flood risk”

Participants were asked to discuss and identify the key differ-
ences between catchments and highlight the associated risks
and opportunities. As some participants were more familiar
with specific areas/catchments based on their day job, the
maps provided a wider view of where catchment characteris-
tics differ across the West Thames region.

3.3.2 Current hydrological situation

To help set the scene with respect to initial conditions, i.e. the
“current” levels of water contained in the soil, groundwater,
rivers, and reservoirs, groups were provided with informa-
tion from the Hydrological Summary (NRFA, 2018) for the
last month, past season, and past year (October 2013, June
to September 2013, and November 2012 to October 2013
with dates removed). The Hydrological Summary (Supple-
ment 3) focuses on rainfall, river flows, groundwater levels,
and reservoir stocks and places the events of each month,
and the conditions at the end of the month, into a historical
context. In the real world, decision-makers are already pre-
pared with this information; thus, providing evidence about
whether hydrological conditions were wet, dry, or normal at
the point of receiving the forecasts was an important piece of
information for the participants to consider.

3.4 Activity Stages 1–3: the seasonal hydrological
forecasts

3.4.1 Stage 1 – Hydrological Outlook UK

The first set of SHF information provided to participants was
the Hydrological Outlook UK (from 1 November 2013 to
31 January 2014, with dates removed) (CEH, 2013). This
provided regional information for the next 3 months with ref-
erence to normal conditions for precipitation, temperature,
river flows and groundwater levels. Hydrological Outlook
UK uses observations, ensemble models and expert judge-
ment (CEH, 2018) to produce the seasonal forecasts. Infor-
mation is publicly available and consists of text, graphs, ta-
bles and regional maps (examples are shown in Fig. 5 and
the full set of forecasts provided to participants are in Sup-
plement 4).
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Figure 5. UK 3-month outlook maps from November 2013 (colours based on the percentile range of historical observed values). (a) Regional
river flow forecasts created from climate forecasts. (b) Groundwater level forecasts at 25 UK boreholes created from climate forecasts (CEH,
2013).

3.4.2 Stage 2 – EFAS-Seasonal

EFAS-Seasonal (European Flood Awareness System) is an
operational system that monitors and forecasts streamflow∗

across Europe, with the potential to predict higher than nor-
mal streamflow events up to 2 months ahead in an operational
capacity, and up to 7 months in practice (JRC, 2018a; Arnal
et al., 2018). It runs on a 5 km× 5 km grid and uses the LIS-
FLOOD hydrological model (Van der Knijff et al., 2010; Al-
fieri et al., 2014). Seasonal ensemble∗ meteorological fore-
casts from the ECMWF’s “System 4” operational meteoro-
logical forecasting system (Molteni et al., 2011) are used as
input to LISFLOOD, from which seasonal ensemble hydro-
logical forecasts are generated on the first day of each month
(see Arnal et al., 2018, for details).

For the activity, SHF were produced from 1 Novem-
ber 2013 out to 4 months to focus on the period of ex-
treme stormy weather and flooding experienced. As EFAS-
Seasonal is designed to run at the scale of large river basins
(i.e. the whole Thames basin), GIS shapefiles were used to
extract forecast information for the 10 West Thames catch-
ments using Python v3.5. This provided more locally tai-
lored forecasts compared with Hydrological Outlook UK
(Stage 1).

To ascertain whether participants had a preference for how
SHF information is presented, the Stage 2 forecasts were pre-
sented as both hydrographs and choropleth∗ maps (Fig. 6).

Ensemble hydrographs for streamflow (m3 s−1) and ground-
water levels (mm) indicated the predicted trajectory of the
hydrological conditions for the next 4 months in each of the
10 catchments (n.b. the greater the spread, the more uncer-
tain the forecast) (Fig. 6a). Units and dates were removed;
however, exceedance thresholds∗, based on daily observed
streamflow and groundwater records between 1994 and 2014
for each of the catchments, were provided for context (EA,
2017; NRFA, 2017). Q50 (median) indicated average stream-
flow and groundwater conditions for the catchment. Q10
(90th percentile) indicated high streamflow/high groundwa-
ter level conditions – 90 % of all recorded observations over
the previous 20-year period fell below this line.

The choropleth maps showed the maximum probability
that the full forecast ensemble for a catchment exceeded the
Q10 (90th percentile) threshold in a given month (Fig. 6b),
thus providing a snapshot of the probability of potentially
extreme conditions at catchment level. The full set of EFAS-
Seasonal SHF provided to participants can be found in Sup-
plement 5.

3.4.3 Stage 3 – “Improved” EFAS-Seasonal

Stage 3 followed the exact same set-up and provided the
same style output (Fig. 7a, b) as Stage 2 – the only differ-
ence being that the seasonal meteorological forecasts used as
input to LISFLOOD were taken from a set of atmospheric re-
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Figure 6. Four-month hydrological forecasts from EFAS-Seasonal (Stage 2). (a) Ensemble hydrographs for streamflow (light blue) and
groundwater levels (dark blue) for the Lower Thames (LT) catchment. Exceedance thresholds (based on records from 1994 to 2014) are
shown as Q10 (dashed line) and Q50 (dotted line). (b) Choropleth map shows the maximum probability that the full hydrograph ensemble
for a catchment exceeds the Q10 streamflow threshold in a given month.

laxation experiments∗ conducted as part of a scientific study
in the West Thames (see Neumann et al., 2018) rather than
the operational seasonal meteorological forecasts from “Sys-
tem 4”.

Atmospheric relaxation experiments were conducted by
the ECMWF in late 2014 after the extreme weather and
flooding (Rodwell et al., 2015). The aim was to recreate
the atmospheric conditions that prevailed between Novem-
ber 2013 and February 2014, so that the ECWMF could
better understand how weather anomalies across the globe
contributed to the flooding experienced in the West Thames
(Neumann et al., 2018). The SHF at Stage 3 represented near
“perfect” forecasts as they were produced once the floods
had happened and the weather conditions were known. The
hydrographs are thus much sharper and more accurate than
those presented to the participants at Stage 2 (Fig. 7, Supple-
ment 6). It is important to note that this is not something that

can be achieved by operational systems currently, but does
represent the theoretical upper level of forecast skill that may
be available to water sector users in the future.

4 Results

4.1 Background context

4.1.1 Catchment differences – “hydrogeology is the
driving factor of risks and opportunities”

All groups recognized spatial variability between the catch-
ments and general consensus was that hydrogeology was
the most important factor determining flood risk, drought
risk, and water availability in the West Thames (Supple-
ment 2). All groups were interested in the persistence, hy-
drological memory, and slower response of the groundwater-
driven catchments upstream (e.g. the Evenlode, Thames, and
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Figure 7. Four-month hydrological forecasts from the “Improved” EFAS-Seasonal (Stage 3). (a) Ensemble hydrographs for streamflow
(light blue) and groundwater levels (dark blue) for the Lower Thames (LT) catchment. Exceedance thresholds (based on records from 1994
to 2014) are shown as Q10 (dashed line) and Q50 (dotted line). (b) Choropleth map shows the maximum probability that the full hydrograph
ensemble for a catchment exceeds the Q10 streamflow threshold in a given month.

South Chilterns and Kennet) as these provided the great-
est opportunity for water supply but also increased risk of
local groundwater flooding and widespread fluvial flooding
further downstream. Forecasters also highlighted the risks
posed by impermeable catchments (e.g. the Cherwell and
Lower Thames) that have a flashier response to rainfall. Wa-
ter resource managers stated that upstream reservoirs were
at increased risk of pollution (from agriculture), whilst dry
weather (drought) was a greater issue towards London.

4.1.2 Current hydrological situation – “normal”

Hydrological Summary placed the “current” hydrological
conditions for river flows, groundwater levels, and reservoir
stocks within the “normal” range (Supplement 3). Maps indi-
cated that rainfall was below average over the past season but
above average the previous month. All groups were happy

with the current hydrological situation (no risks currently),
although water resource managers stated that rainfall defi-
ciency in the background should be kept in mind due to fu-
ture drought potential.

4.2 Participant responses from Stages 1 to 3

The findings from each stage of the activity are presented be-
low. At no point did participants ignore the SHF information
(no black stickers were placed on the maps), which matched
previous discussions about organizations’ current use of SHF
(Sect. 2.3.2). Colour-coded decisions made by all partici-
pants (calculated by counting the stickers on the A1 catch-
ment maps) are represented as pie charts. An accompanying
bar chart details the breakdown of choices made by each par-
ticipant and their specific role in the water sector (Fig. 8a–c).
Quotes and information in the text are taken from discussions
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F = Flood and drought forecasters     WR = Water resource specialists 
GH = Groundwater hydrologists         WS = Public water supply managers 
N = Navigations officer       WW = Wastewater operations 
 

Figure 8. Summary of decisions and actions taken by different water sector personas based on (a) Hydrological Outlook UK; (b) EFAS-
Seasonal; and (c) “Improved” EFAS-Seasonal. Blue – no notable risk; green – discuss internally; yellow – discuss externally and seek advice;
red – implement action. Refer to Table 2 for full colour code descriptors.
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recorded on the day and empathy maps – these are presented
for the three groups (forecasters, groundwater hydrologists,
and water resource managers).

4.2.1 Stage 1 – Hydrological Outlook UK

General consensus was for normal or above-normal condi-
tions over the next 3 months; however, the information was
“too vague to be actionable”. Forecasters and groundwater
hydrologists were more likely to discuss the situation with
colleagues and keep an eye on the situation (green/blue), al-
though there was some disagreement about the level of risk.
Those involved in water resources, water supply, navigation,
and wastewater operations (water resource managers) identi-
fied no risks requiring action (blue) (Fig. 8a).

Key statements:
“Analogy with the summer 2007
floods∗ suggests that there’s a risk
that might be worth communicating
internally. Political influences e.g.
known flooding hotspots might also be
singled out for further engagement.
However, there’s not much evidence to
divert from a normal pattern of
preparedness.”
∗The UK suffered extensive flooding during June and

July 2007 (the West Thames was flooded in late July).

Thirteen people died and damages exceeded

3.2 billion GBP nationwide

(Chatterton et al., 2010).

“No major issues currently but there
is a signal for rising groundwater
levels, potentially leading to flood risk
– discuss with colleagues and keep an
eye on borehole observations and
new forecasts.”

“Conditions are favourable from
a water resources perspective –
possibly heading more towards flood
than drought conditions but currently
no notable risk and no concerns.
Discussions may arise during regular
business briefings, but unlikely to be
pursued unless changes are observed.”

4.2.2 Stage 2 – EFAS-Seasonal

General consensus was for above-average streamflow and
groundwater levels. Although the SHF provided more detail
compared with Hydrological Outlook UK (Stage 1), clarity
remained an issue. There was a general shift towards more
internal communication (green), although actions were taken

by the wastewater operations manager in the water resource
managers’ group (yellow/red) (Fig. 8b).

Key statements:
“Repeated rainfall events can lead
to accumulated flood risk in the
Lower Thames and Thame and South
Chilterns. Streamflow appears to
convey more risk than groundwater
levels. Would discuss in general terms
with colleagues and internal decision-
makers to avoid an over-reaction at
senior level.”

“A moderate risk of groundwater
flooding (especially if the time period
is for autumn – winter) but river flows
do not appear to contribute much to
groundwater risk at this stage and the
forecasts are uncertain. Our attention
is focused on the chalk catchments
and Thames gravels; no direct
actions are taken at the moment but
we’d keep an eye on the situation and
discuss at monthly meetings.”

“No significant concerns from a
water resources or navigation
perspective however, there is
potential for localised flood risk
which may impact on water
supply and turbidity. Not all
catchments are affected so focus
attention on Cotswolds and the
Vale, Cherwell, Thame and South
Chilterns and Colne where maps
indicate high probability
of Q10 exceedance. Discuss at
internal briefings.”

4.2.3 Stage 3 – “Improved” EFAS-Seasonal

General consensus was for confident forecasts that showed
a high risk of streamflow and groundwater flooding in ap-
proximately 6 weeks’ time. At this stage, forecasters and
groundwater hydrologists were looking to verify the relia-
bility and quality of the forecasts. Internal discussion and
wider communication (green/yellow) were actively explored,
although forecasters and groundwater hydrologists were still
more likely to act on the information compared with water
resource managers (Fig. 8c).
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Key statements:
“Compared with our previous
experiences of SHF these are very
sharp with a strong signal and we
would actively seek expert guidance as
to the quality of the forecasts. If credible,
our concern is that the signal is likely to
represent a nationwide flood risk (not
just the West Thames). Low-consequence
actions that deliver a measured message
should be implemented – e.g., identifying
and locating resources and stocks,
movement of temporary flood defences
to high risk areas, completing projects,
careful media release, strategic planning
and staff briefing.”

“There’s high probability of
substantially exceeding the Q10
threshold. Catchment characteristics
are important to identify areas most
at risk of groundwater flooding
(chalk and gravels). Drawing on
previous experiences we’d discuss
the situation, obtain regular updates
from partner organisations, use
localised groundwater models to
verify forecasts and consider
communication via press release.”

“These are confident forecasts that
give a good overview of magnitude
and sequencing of possible flood
events and subsequent knock-on
effects to water quality. Expect
issues in 2–4 months so any actions
taken would depend on how regularly
forecasts are updated. We’d keep an
eye on groundwater levels, hold
internal briefings and discuss with
groundwater team members to ensure
they are kept informed and prepared.
For navigation and wastewater
operations where impacts can directly
affect the public, we’d consider
some open discussion with customers
who will want to know how long an
event might last.”

5 Discussion

Our decision-making activity was designed to help under-
stand how different water sector users engage with and act on
SHF at a local level. The SHF for the three activity stages rep-

resented an extreme flood event between November 2013 and
February 2014. There was clear evidence that more confident
(sharper) and locally tailored forecasts led to increased levels
of decision and action, although water sector users did not re-
spond uniformly. Forecasters and groundwater hydrologists
were most likely to inform other organizations, request fur-
ther information about the situation, and implement action,
while water resource managers more consistently adopted a
“watch and wait” approach. In this section, the results are
discussed in more detail and the findings are placed into the
wider context of policy, practice, and next steps based on dis-
cussions captured during the focus group.

5.1 Operational SHF systems can support
decision-making and uncertainty is expected

Throughout the focus group, participants expressed posi-
tively the potential for SHF to deliver better preparedness
and early warning of flood and drought events, and the ben-
efits associated with more consistent management of water
resources, whilst recognizing that low skill and coarse reso-
lution are current barriers to use (see also Soares and Des-
sai, 2015, 2016; Vaughan et al., 2016; Soares et al., 2018).
These benefits and barriers were demonstrated during the ac-
tivity as participants increased their level of decision-making
in response to the more confident and locally tailored fore-
casts presented: Stage 1 Hydrological Outlook UK > Stage 2
EFAS-Seasonal > Stage 3 “Improved” EFAS-Seasonal.

Hydrological Outlook UK is the first operational SHF sys-
tem for the UK and was the product that participants were
most familiar with, likely due to its partnership set-up (Prud-
homme et al., 2017). All groups indicated that the regional
focus of the maps, i.e. the whole Thames basin, and lack of
resolution and certainty as to the trajectory of the upcom-
ing hydrological conditions, limited their ability to make in-
formed decisions. No participants however ignored or dis-
missed the information despite there being no perceived risk.
All agreed that on a day-to-day basis, Hydrological Out-
look UK serves as a useful outlook tool when supplemented
with additional sources of information including water situa-
tion reports (UK Gov, 2018) and other hydro-meteorological
forecasts. As of 2017, exactly how the water sector uses Hy-
drological Outlook UK in practice had yet to be assessed
(Bell et al., 2017), and here we provide a first step towards
answering this question.

Stage 2 (EFAS-Seasonal) also represented an operational
forecasting system designed to run at the scale of the whole
Thames basin akin to Hydrological Outlook UK. The fore-
casts however were presented at a catchment level on a
month-by-month basis to provide a more localized outlook.
This finer spatio-temporal resolution allowed participants
to supplement the SHF with their knowledge of local hy-
drogeology and other risk factors to identify those catch-
ments where attention would likely be most needed. This led
to increased levels of communication within organizations,
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even though the overall hydrological outlook was very sim-
ilar to that observed at Stage 1 (uncertain but with indica-
tion towards normal–high flows). The use of large-scale (re-
gional or global) operational forecasting products that trigger
worthwhile actions at the local level has been demonstrated
at shorter lead times (e.g. Coughlan de Perez et al., 2016).
While the development of higher-resolution seasonal mete-
orological forecasts and better representation of the coupled
system and initial conditions are expected to lead to improve-
ments in SHF (Lewis et al., 2015; Bell et al., 2017; Arnal et
al., 2018), we pose the open question: do operational systems
such as Hydrological Outlook UK already have the poten-
tial to support better communication and decision-making if
they could be presented at a more local scale? This would
require careful communication of the uncertainty, reliability,
and skill of the forecast, and how to do this effectively is a
topic of current interest in meteorological and hydrological
forecasting (e.g. Ramos et al., 2013; Vaughan et al., 2016;
Fry et al., 2017). Although communicating uncertainty was
not a specific focus of our activity, one key message from
the focus group was that “uncertainty is expected” with SHF
and water sector users would engage with a local forecast,
even if they chose not to act on it. As pointed out by Viel
et al. (2016), “low skill” is not the same as “no skill”, and
SHF which may have minimal value from the perspective of
a scientific researcher can sometimes elicit significant inter-
est from the view of a water sector user who is familiar with
the area. Importantly, it should also be noted that although
no measures of forecast skill and quality were included in our
activity, participants only expressed a need to verify the qual-
ity of the forecasts at Stage 3. In discussions as to why this
was the case, the forecasters and groundwater hydrologists
stated that holding internal briefings and increasing aware-
ness of “at risk” catchments are suitable low-cost actions
when dealing with SHF that indicate some degree of risk,
even if the information is uncertain and unverified. At Stage
3, to obtain such confident SHF was well beyond current op-
erational standards; thus, its reliability was questioned. Par-
ticipants did agree however that even in the absence of infor-
mation on forecast quality, a sharper, more confident forecast
that indicated high potential flood risk would be more likely
to provoke a response than a dispersive one, even if the max-
imum of the forecast ensemble indicated values of compara-
ble magnitude in both cases.

5.2 Interactions with SHF are user-specific and should
be tailored accordingly

The manner in which users approached and used SHF dif-
fered markedly depending on the perceived severity of the
flood event; the responsibilities and risk appetite of an or-
ganization; and the local knowledge and experiences pos-
sessed by the individual (see also Kirchhoff et al., 2013;
Golding et al., 2017). Forecasters and groundwater hydrol-
ogists displayed the lowest risk appetite, admitting that they

were likely to err on the side of caution to avoid negative
media impacts, economic damages, and loss of trust by the
public.

“Analogy with the summer floods of 2007 . . .
my previous experience makes me think that the
risk is worth communicating. . . ” – forecaster at
Stage 1/2.

“A much stronger and more coherent signal re-
garding river flows and groundwater levels, but the
forecasts indicate that the potential impact isn’t
right now . . . we’ll keep an eye on the situation”
– water resource manager at Stage 3.

While a flood event is less of an immediate issue for water
resource managers, secondary effects relating to closure of
canals (navigation), turbidity, and sewer surcharge (wastew-
ater operations) did invoke action where there was potential
to impact on the public. Participants were notably proactive
where they had had previous experience of extreme events,
e.g. forecasters’ analogies with the 2007 floods (Chatterton
et al., 2010), or had been witness to poor management; e.g.
the wastewater operations manager recognized high potential
for groundwater flooding and sewer surcharge at 1 month’s
lead time in the Evenlode, Cherwell, and Colne (Fig. 7).

“Based on previous operational issues, I’d advise
pre-emptive actions such as the cleaning and main-
tenance of pumping stations for these catchments”
– Wastewater operations manager at Stage 2/3.

This highlights the value of retaining institutional mem-
ory where possible (see also McEwen et al., 2012) and be-
ing aware of organizations’ or individuals’ pre-determined
positions or perceived self-interests which may largely be
founded on previous experiences (Ishikawa et al., 2011).

It is important to note that while this activity focused on
a flood event, decisions made by the groups would almost
certainly have differed if the SHF had indicated drought con-
ditions. The impacts of drought have the potential to affect
larger areas, for longer (Bloomfield and Marchant, 2013),
notably with respect to agriculture (Li et al., 2017), reservoir
management (Turner et al., 2017) and navigation (Meißner
et al., 2017). The difference in response between water sec-
tor users supports the notion that tailoring SHF information
to specific user groups will improve uptake and ability to in-
form decision-making (Jones et al., 2015; Lorenz et al., 2015;
Vaughan et al., 2016; Soares et al., 2018), an area currently
being explored by the IMPREX Risk Outlook (IMPREX,
2018b).

5.3 Communication is both a barrier and enabler to
decision-making

Communication is one of the most frequently identified bar-
riers when it comes to uptake and use of seasonal meteoro-
logical and hydrological forecasts (Soares and Dessai, 2015;

www.geosci-commun.net/1/35/2018/ Geosci. Commun., 1, 35–57, 2018



50 J. L. Neumann et al.: Can seasonal hydrological forecasts inform local decisions and actions?

Vaughan et al., 2016; Golding et al., 2017; Soares et al.,
2018). Discussions captured during the focus group and in-
dicated on some empathy maps identified two key communi-
cation barriers in the West Thames: (1) between water sector
users themselves and how they interpret and communicate
SHF information and (2) a disconnect between scientists de-
veloping the forecasts and those involved in policy, practice
and decision-making.

All groups said they felt better able to interpret and com-
municate the messages when presented with a range of com-
plementary forms of SHF information including maps, hy-
drographs, and text, with maps being of particular value.
This supports findings by Lorenz et al. (2015), who identified
clear differences in users’ comprehension of and preference
for visualizations of climate information. Mapping informa-
tion was also found to be important in the survey by Vaughan
et al. (2016), while numerical representations were preferred
over text and graphics in the study by Soares et al. (2018).
Many participants said they would feel better prepared and
able to discuss upcoming hydrological conditions if SHF in-
formation was visualized in a variety of ways and regular en-
gagement was made a routine part of their job (see Sect. 5.4).

A number of participants also felt that scientific improve-
ments and developments to SHF are not being adequately
communicated to those involved in policy and practice. Gen-
eral consensus was that knowledge exchange events and
information sharing services through projects such as IM-
PREX are an excellent way of addressing this disconnect.
Presentations during the focus group shared findings from
other projects, including the European Provision Of Regional
Impacts Assessments on Seasonal and Decadal Timescales
(EUPORIAS) (Met Office, 2018), the End-to-end Demon-
strator for improved decision-making in the water sector
in Europe (EDgE), Service for Water Indicators in Climate
Change Adaptation (SWICCA) (Copernicus, 2017a, b), and
Improving Predictions of Drought for User Decision Making
(IMPETUS) (Prudhomme et al., 2015) – much of which was
new knowledge to some participants. It was further expressed
that stakeholder events yield maximum benefit for both the
scientist and the user when they are co-produced with an or-
ganization that is involved in receiving, tailoring, and dis-
tributing SHF information (Rapley et al., 2014). Importantly,
we do not want to be in the position whereby SHF skill has
improved but the credibility and reliability of the information
is questioned by decision-makers who have not been kept up
to date with developments. The potential for this disconnect
was demonstrated by both forecasters and groundwater hy-
drologists at Stage 3 (“Improved” EFAS-Seasonal) whereby
decisions would only be made if the accuracy of the forecast
could be verified.

“Forecast signal is implausibly strong but, if valid,
gives a clear signal for disturbed conditions”

“Surprised at forecast and the strength of the sig-
nal. . . IF credible, then actions need to be taken”

“Would definitely talk to the Environment Agency
and search for other monitoring data to verify the
forecast” – forecasters and groundwater hydrolo-
gists at Stage 3.

In this case, the SHF at Stage 3 were hypothetical and no
information on forecast quality was given; however, the fore-
casts provided a good representation of what scientists hope
to achieve with operational seasonal forecasting systems in
the future (Neumann et al., 2018). This emphasizes the need
to keep water sector users informed of scientific develop-
ments (see also Bolson et al., 2013), and to build awareness
and knowledge around interpreting and using forecast quality
information, as it is becoming more widely adopted in sea-
sonal forecasting (see Copernicus, 2017a; Fry et al., 2017).

5.4 Implications for future policy and decision-making

The EA is the public body responsible for managing flood
risk in the UK. They focus on maintaining a certain level
of preparedness whilst recognizing that particular conditions
and types of flooding/drought are more likely at different
times of year. Currently, the EA use SHF predominantly as
supporting information and rely on shorter-range forecasts
for action. As co-developers of this focus group, the EA rec-
ognized the following points for future consideration.

1. To upskill and help staff interpret SHF information re-
ceived.

2. To identify suitable low-consequence actions that could
be taken based on SHF.

3. To move beyond the current position of using SHF for
information only, to making conscious decisions as part
of routine incident management strategies (relies on 1
and 2).

“Regular review and discussion of extended
outlooks (5–30 days) and the 1–3 months fore-
casts during weekly handover between the in-
coming and outgoing flood duty teams would
improve familiarity of long range forecast
products and dealing with the uncertainty that
they present. This would be an excellent way
of considering the possible conditions and the
potential for disruption going forward.” – EA
activity co-developer.

In short, more engagement with SHF and improved clarity
for easier interpretation by different users will ensure that
SHF have a valuable role to play in future decision-making
at the local scale.

5.5 Learning outcomes and future considerations

Encouragingly, we identified that SHF are being used, and
participants agreed that the decision-making activity was an
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entertaining platform for fostering discussions which com-
plemented their everyday work and general understanding of
SHF. From the participants’ perspective, learning outcomes
included knowing more about the ongoing scientific develop-
ments in SHF and a better understanding of how different or-
ganizations in the West Thames water sector are using SHF.
Many also stated that the activity and focus group discus-
sions enhanced their ability to think about possible decisions
and actions that may be taken in the future. As the activity
developers, we found that the group discussions stimulated
participants’ motivations and interests more so than would
have been achieved by asking participants to engage on an
individual basis. We also advocate the use of empathy maps
or other forms of obtaining a written record of participant
thought processes in addition to their decision choices.

Our activity was designed to provide a first insight into
the current state of play regarding SHF in the West Thames.
Although 11 participants was a small sample size, they rep-
resented an important and well-balanced mix of water sec-
tor decision-makers in the West Thames. The only exception
was the agricultural sector, which could not attend, and thus
it would be interesting to capture this perspective with on-
going research (e.g. Li et al., 2017). We also recognize the
possibility that those who took part had a vested interest in
SHF; however, we did encourage participants to attend even
where they had no background knowledge or experience of
SHF. Finally, we advocate that others conducting a similar
activity may wish to consider whether participant interpre-
tation can be subconsciously influenced by the information
provided. For example, flood risk maps were provided as
part of the background context, but may have inadvertently
led participants to consider the upcoming forecasts with re-
spect to high-flow events. Likewise, there is potential that the

3-month SHF (Stage 1) may have been interpreted differently
to the 4-month forecasts (Stage 2 and Stage 3) and we do not
know the degree to which individuals may have been swayed
to place a particular colour on the map based on the conver-
sations they had with their group members (and how big an
influence such conversations play in real life). Discussions
with the participants at the end of the activity with respect to
these points would have been helpful.

6 Conclusions

Key findings were that engagement is user-specific and SHF
have the potential to be more useful if they could be pre-
sented at a scale which matches that employed in decision-
making. The ability to interpret messages is aided by com-
plementary forms of SHF visualization that provide a wider
overview of the upcoming hydrological outlook, with maps
being of particular value. However, improved communica-
tion between scientists, providers, and users is required to
ensure that users are kept up to date with developments. We
conclude that the current level of understanding in the West
Thames provides an excellent basis upon which to incorpo-
rate future developments of operational forecasts and for fa-
cilitating communication and decision-making between wa-
ter sector partners.

Data availability. All data/graphs/information that were used by
participants for the focus group activity are included in the Sup-
plement. Individual participant results are not publicly available in
order to protect anonymity. If readers require further information,
this may be provided by contacting the corresponding author.
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Appendix A: Glossary

Aquifer underground layer of water-bearing permeable rock which can occur at various depths.
Atmospheric relaxation
experiments

are used by meteorologists once an extreme weather event has happened. Put simply, when
a seasonal forecast predicts the wrong weather, scientists “force” the conditions in the atmo-
sphere so that they can try to recreate the extreme weather conditions and better understand
what happened.

Baseflow the portion of the river flow (streamflow) that is sustained between rainfall events and is
fed into streams and rivers by delayed shallow subsurface flow. Not to be confused with
“groundwater” which is water which has entered an aquifer, or “groundwater flow” where
water enters a river having been in an aquifer.

Choropleth map uses differences in shading, patterning or colouring in proportion to the value of a given
variable in areas of interest.

Exceedance threshold a user-defined threshold (e.g. 90 %) that is based on river flow or groundwater level observa-
tions (measurements) from the previous 20 years. E.g. if an exceedance threshold is set to the
90th percentile, this means that 90 % of all recorded observations over the past 20 years fell
below this level.

Flashy rivers and catchments that respond quickly to rainfall events.
Forecast ensemble instead of running a single forecast (known as a deterministic forecast that has one outcome),

computer models can run a forecast several times using slightly different starting conditions
(to account for uncertainties in the forecasting process). The complete set of forecasts is
referred to as the ensemble, and the individual forecasts are known as ensemble members.
Each ensemble member represents a different possible scenario, and each scenario is equally
likely to happen.

Forecast quality the SHF is compared to, or verified against, a corresponding observation of what actually
happened, or a good estimate of the true outcome. SHF quality describes the degree to which
the forecast corresponds to what actually happened (see also “forecast skill”).

Forecast sharpness describes the spread or variability among the different ensemble members of a forecast (the
different forecast values). The more concentrated (close together) the ensemble members are,
the sharper the forecast is, and vice versa. Importantly, a forecast can be sharp even if it is
wrong i.e. far from what actually happened. (See also “forecast ensemble”.)

Forecast skill the SHF quality can be compared to the quality of a benchmark or reference, usually another
forecast. The relative quality of the SHF over this reference forecast is the SHF skill (see also
“forecast quality”).

Forecast uncertainty the skill and accuracy of SHF tends to decrease with increasing lead time due to factors
such as variations in weather conditions, how the hydrological model has been set-up to
represent complex processes, and how well the hydrological model has captured the real-
world hydrologic conditions at the time the forecast is started (e.g. how wet is the soil or how
much water is currently in the river?). There is an element of uncertainty in all forecasts that
can amplify with time. Ensemble forecasting is one way of representing forecast uncertainty.
(See also “forecast ensemble”.)

Hydrogeology the area of geology that deals with the distribution and movement of below-ground water in
the soil, rocks and aquifers.

Hydrograph a graph showing how river and groundwater levels are expected to change over time at a
specific location. Ensemble hydrographs show the full spread of the forecast ensemble.

Lead time the length of time between when the SHF is started (initiated) and the occurrence of the
phenomena (e.g. flood) being predicted. Can also be used to represent the point at which the
SHF is started and the beginning of the forecast validity period (e.g. from 3 weeks).

Lithology the general physical characteristics of rocks.
River basin the largest and total area of land drained by a major river (in this case the River Thames) and

all its tributaries. (See also “river catchment”.)
River catchment the area of land drained by a river. “Catchment” and “basin” are sometimes used interchange-

ably. Here catchments represent the drainage areas of the River Thames main tributaries, of
which there are 10 in the West Thames.
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Seasonal hydrological
forecasts (SHF)

provide information about the hydrological conditions e.g. streamflow (river flows), ground-
water levels and soil moisture levels, that might be expected over the next few months (e.g.
from 3 weeks out to 7 months).

Seasonal meteorological
forecasts

provide information about the weather conditions e.g. rainfall, air temperature, humidity,
pressure, wind, that might be expected over the next few months (e.g. from 3 weeks out
to 7 months).

Streamflow the flow of water in a stream or river. Also known as river flow.
Surface runoff the flow of water that occurs when water from excess rainfall, meltwater or drainage systems

flows over the Earth’s surface and not into the ground.
Tributary a river or stream that flows into a larger stream, river or lake. Tributaries do not flow into the

sea.
1 : 100-year flood event a 100-year flood is a flood event that has a 1 % chance of occurring in any given year.
1 : 5-year flood event a 1-in-5-year flood is a flood event that has a 20 % chance of occurring in any given year.
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Abstract. This paper considers whether there is any added
value in using seasonal climate forecasts instead of histor-
ical meteorological observations for forecasting streamflow
on seasonal timescales over Europe. A Europe-wide analysis
of the skill of the newly operational EFAS (European Flood
Awareness System) seasonal streamflow forecasts (produced
by forcing the Lisflood model with the ECMWF System 4
seasonal climate forecasts), benchmarked against the ensem-
ble streamflow prediction (ESP) forecasting approach (pro-
duced by forcing the Lisflood model with historical meteoro-
logical observations), is undertaken. The results suggest that,
on average, the System 4 seasonal climate forecasts improve
the streamflow predictability over historical meteorological
observations for the first month of lead time only (in terms
of hindcast accuracy, sharpness and overall performance).
However, the predictability varies in space and time and is
greater in winter and autumn. Parts of Europe additionally
exhibit a longer predictability, up to 7 months of lead time,
for certain months within a season. In terms of hindcast re-
liability, the EFAS seasonal streamflow hindcasts are on av-
erage less skilful than the ESP for all lead times. The re-
sults also highlight the potential usefulness of the EFAS sea-
sonal streamflow forecasts for decision-making (measured in
terms of the hindcast discrimination for the lower and upper
terciles of the simulated streamflow). Although the ESP is
the most potentially useful forecasting approach in Europe,
the EFAS seasonal streamflow forecasts appear more poten-
tially useful than the ESP in some regions and for certain

seasons, especially in winter for almost 40 % of Europe. Pat-
terns in the EFAS seasonal streamflow hindcast skill are how-
ever not mirrored in the System 4 seasonal climate hindcasts,
hinting at the need for a better understanding of the link be-
tween hydrological and meteorological variables on seasonal
timescales, with the aim of improving climate-model-based
seasonal streamflow forecasting.

1 Introduction

Seasonal streamflow forecasts predict the likelihood of a dif-
ference from normal conditions in the following months. Un-
like forecasts at shorter timescales, which aim to predict indi-
vidual events, seasonal streamflow forecasts aim at predict-
ing long-term (i.e. weekly to seasonal) averages. The pre-
dictability in seasonal streamflow forecasts is driven by two
components of the Earth system, the initial hydrological con-
ditions (IHC; i.e. of snowpack, soil moisture, streamflow and
reservoir levels, etc.) and large-scale climate patterns, such
as the El Niño–Southern Oscillation (ENSO), the North At-
lantic Oscillation (NAO), the Pacific-North American (PNA)
pattern and the Indian Ocean Dipole (IOD) (Yuan et al.,
2015b).

The first seasonal streamflow forecasting method, based
on a regression technique developed around 1910–1911 in
the United States, harnessed the predictability from accurate
IHC of snowpacks to derive streamflow for the following
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summer (Church, 1935). This statistical method recognized
antecedent hydrological conditions and land surface mem-
ory as key drivers of streamflow generation for the following
months.

Alongside the physical understanding of streamflow gen-
eration processes came technical developments, such as the
creation of the first hydrological models and the acquisi-
tion of longer observed meteorological time series, which
led to the creation of the first operational model-based sea-
sonal streamflow forecasting system. This system, called ex-
tended streamflow prediction (ESP; i.e. note that ESP nowa-
days stands for ensemble streamflow prediction, although it
refers to the same forecasting method), was developed by
the United States National Weather Service (NWS) in the
1970s (Twedt et al., 1977; Day, 1985). The ESP forecasts are
produced by forcing a hydrological model, initialized with
the current IHC, with the observed historical meteorological
time series available. The output is an ensemble streamflow
forecast (where each year of historical data is a streamflow
trace) for the following season(s) (Twedt et al., 1977; Day,
1985). The quality of the ESP forecasts can be high in basins
where the IHC dominate the surface hydrological cycle for
several months (the exact forecast quality depending on the
time of year and the basin’s physiographic characteristics;
Wood and Lettenmaier, 2008).

In basins where the meteorological forcings drive the pre-
dictability, however, the lack of information on the future cli-
mate is a limitation of the ESP forecasting method and might
result in unskilful ESP forecasts. This drawback led to the in-
vestigation of the use of seasonal climate forecasts, in place
of the historical meteorological inputs, to feed hydrological
models and extend the predictability of hydrological vari-
ables on seasonal timescales (Pagano and Garen, 2006). This
investigation was made possible by technical and scientific
advances. Scientifically, seasonal climate forecasts were im-
proved greatly by the understanding of ocean–atmosphere–
land interactions and the identification of large-scale climate
patterns as drivers of the hydro-meteorological predictabil-
ity (Goddard et al., 2001; Troccoli, 2010). This was tech-
nically implementable with the increase in computing re-
sources, making it possible to run dynamical coupled ocean–
atmosphere–land general circulation models on the global
scale at high spatial and temporal resolutions (Doblas-Reyes
et al., 2013). An additional technical challenge, the coarse
spatial resolution of seasonal climate forecasts compared to
the finer resolution of hydrological models, had to be ad-
dressed. To tackle this issue, many authors have explored dif-
ferent ways of downscaling climate variables for hydrologi-
cal applications (Maraun et al., 2010, and references therein).

While climate-model-based seasonal streamflow forecast-
ing experiments are more common outside of Europe, for ex-
ample for the United States (Wood et al., 2002, 2005; Mo and
Lettenmaier, 2014), Australia (Bennett et al., 2016), or Africa
(Yuan et al., 2013), they remain limited in Europe, with a few
examples in France (Céron et al., 2010; Singla et al., 2012;

Crochemore et al., 2016), in central Europe (Demirel et al.,
2015; Meißner et al., 2017), in the United Kingdom (Bell et
al., 2017; Prudhomme et al., 2017) and at the global scale
(Yuan et al., 2015a; Candogan Yossef et al., 2017). This is
because, although the quality of seasonal climate forecasts
has increased over the past decades, there remains limited
skill in seasonal climate forecasts for the extra-tropics, par-
ticularly for the variables of interest for hydrology, notably
precipitation and temperature (Arribas et al., 2010; Doblas-
Reyes et al., 2013).

In Europe, the NAO is one of the strongest predictability
sources of seasonal climate forecasts; it is associated with
changes in the surface westerlies over the North Atlantic and
Europe, and hence with changes in temperature and precip-
itation patterns over Europe (Hurrell, 1995; Hurrell and Van
Loon, 1997). It was shown to affect streamflow predictability,
especially during winter (Dettinger and Diaz, 2000; Bierkens
and van Beek, 2009; Steirou et al., 2017), in addition to the
IHC and the land surface memory. It was furthermore shown
to be an indicator of flood damage and occurrence in parts of
Europe (Guimarães Nobre et al., 2017).

As the quality and usefulness of seasonal streamflow fore-
casts increase, their usability for decision-making has lagged
behind. Translating the quality of a forecast into an added
value for decision-making and incorporating new forecast-
ing products into established decision-making chains are not
easy tasks. This has been explored for many water-related
applications, such as navigation (Meißner et al., 2017), reser-
voir management (Viel et al., 2016; Turner et al., 2017),
drought-risk management (Sheffield et al., 2013; Yuan et
al., 2013; Crochemore et al., 2017), irrigation (Chiew et al.,
2003; Li et al., 2017), water resource management (Schepen
et al., 2016) and hydropower (Hamlet et al., 2002), but sea-
sonal streamflow forecasts have yet to be adopted by the
flood preparedness community.

The European Flood Awareness System (EFAS) is at the
forefront of seasonal streamflow forecasting, with one of the
first operational pan-European seasonal hydrological fore-
casting systems. The aim of this paper is to bridge the current
gap in pan-European climate-model-based seasonal stream-
flow forecasting studies. Firstly, the setup of the newly op-
erational EFAS climate-based seasonal streamflow forecast-
ing system is presented. A Europe-wide analysis of the skill
of this forecasting system compared to the ESP forecast-
ing approach is then presented, in order to identify whether
there is any added value in using seasonal climate fore-
casts instead of historical meteorological observations for
forecasting streamflow on seasonal timescales over Europe.
Subsequently, the potential usefulness of the EFAS seasonal
streamflow forecasts for decision-making is assessed.
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Figure 1. Schematic of the EFAS-WB streamflow simulation and of the CM-SSF and ESP seasonal streamflow hindcast generation, where
P is precipitation, T is temperature, E is evaporation and ETpot is potential evapotranspiration. The Lisflood model diagram was taken from
Burek et al. (2013).

2 Data and methods

2.1 EFAS hydrological simulation and seasonal
hindcasts

The data used in this paper include a streamflow simulation
and two seasonal streamflow hindcasts (Fig. 1). Further in-
formation on these datasets is given below.

2.1.1 Hydrological modelling and streamflow
simulation

The Lisflood model was used to produce all the simulations
and hindcasts used in this paper. Lisflood is a GIS-based
hydrological rainfall–runoff–routing distributed model writ-
ten in the PCRaster Dynamic Modelling Language, which
enables it to use spatially distributed maps (i.e. both static
and dynamic) as input (De Roo et al., 2000; Van Der Kni-
jff et al., 2010). The Lisflood model was calibrated to pro-
duce pan-European parameter maps. The calibration was per-
formed for 693 basins from 1994 to 2002 using the Stan-
dard Particle Swarm Optimisation 2011 (SPSO-2011) algo-
rithm. The calibration was carried out for parameters control-
ling snowmelt, infiltration, preferential bypass flow through
the soil matrix, percolation to the lower groundwater zone,
percolation to deeper groundwater zones, residence times in
the soil and subsurface reservoirs, river routing and reservoir
operations for a few basins. The results were validated with
the Nash–Sutcliffe efficiency (NSE) for the validation period
2003–2012. In validation (calibration), Lisflood obtained a
median NSE of 0.57 (0.62). Basins with large discrepancies
between the observed and simulated flow statistics were situ-
ated mainly on the Iberian Peninsula and on the Baltic coasts
(see Zajac et al., 2013, and Smith et al., 2016, for further
details).

The Lisflood model is run operationally in EFAS, with
the simulation domain covering Europe at a 5× 5 km reso-
lution. A reference simulation, called the EFAS water bal-

ance (EFAS-WB), is available on a daily time step start-
ing from February 1990. Lisflood simulates the hydrologi-
cal processes within a basin (most of which are mentioned
above), starting from the previous day’s IHC (e.g. snow
cover, storage in the upper and lower zones, soil moisture,
initial streamflow, reservoir filling) and forced with the most
recent observed meteorological fields (i.e. of precipitation,
potential evapotranspiration and temperature; provided by
the EFAS meteorological data collection centres). The ob-
served meteorological fields are daily maps of spatially in-
terpolated point measurements of precipitation (from more
than 6000 stations) and temperature (from more than 4000
stations) at the surface level. These same data are used to
produce interpolated potential evapotranspiration maps from
the Penman–Monteith method (Alfieri et al., 2014). All mete-
orological variables are interpolated on a 5×5 km grid using
an inverse distance weighting scheme and the temperature is
first corrected using the elevation (Smith et al., 2016).

The EFAS-WB is the best estimate of the hydrological
state at a given time and for a given grid point in EFAS and
is thus used as initial conditions from which the seasonal hy-
drological forecasts are started.

2.1.2 Ensemble seasonal streamflow hindcasts

In this paper, two types of ensemble seasonal stream-
flow hindcasts are used: the ensemble streamflow prediction
(ESP) hindcast (hereafter referred to as ESP) and the System
4-driven seasonal streamflow hindcast (hereafter referred to
as CM-SSF (climate-model-based seasonal streamflow fore-
cast), following the notation from Yuan et al. (2015b)).

They are both initialized from the EFAS-WB, on the first
day of each month, to produce a new ensemble streamflow
forecast up to a lead time of 7 months (215 days), with a
daily time step. Both hindcasts are generated from February
1990 for the same European domain as the EFAS-WB, at the
same 5×5 km resolution. The unique difference between the
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ESP and the CM-SSF is the meteorological forcing used to
drive the hydrological model, described below.

The ESP is produced by driving the Lisflood model with
20 (the number of years of data available at the time the hind-
cast was produced) randomly sampled years of historical me-
teorological observations (i.e. the same as the meteorologi-
cal observations used to produce the EFAS-WB, excluding
the year of meteorological observations corresponding to the
year that is being forecasted). A new 20-member ESP is thus
generated at the beginning of each month and for the next 7
months.

The CM-SSF is produced by driving the Lisflood model
with the ECMWF System 4 seasonal climate hindcast (Sys4,
i.e. of precipitation, evaporation and temperature). Sys4 has
a spatial horizontal resolution of about 0.7◦ (approximately
70 km). It is re-gridded to the Lisflood spatial resolution us-
ing an inverse distance weighting scheme and the tempera-
ture is first corrected using the elevation. Sys4 is made up
of 15 ensemble members, extended to 51 every 3 months
(Molteni et al., 2011). From 2011 onwards the Sys4 forecasts
were run in real time and all contained 51 ensemble mem-
bers. A new 15- to 51-member CM-SSF is hence produced
at the beginning of each month and for the next 7 months.
Operationally, the CM-SSF forecasts are currently used in
EFAS to generate a seasonal streamflow outlook for Europe
at the beginning of every month.

2.2 Hindcast evaluation strategy

For this study, monthly region specific discharge averages of
the hindcasts (CM-SSF and ESP) and EFAS-WB were used.
The specific discharge is the discharge per unit area of an
upstream basin. For this paper, the gridded daily specific dis-
charge was calculated by dividing the gridded daily discharge
output maps (of the hindcasts and the EFAS-WB) by the Lis-
flood gridded upstream area static map. Subsequently, the
gridded daily specific discharge maps were used to calculate
daily region averaged specific discharges (for each region in
Fig. 2) by summing up the daily specific discharge values
of each grid cell within a region, divided by the number of
grid cells in that region. Finally, monthly specific discharge
region averages were calculated for each calendar month.

The regions displayed in Fig. 2 were created by merging
several basins together (basins used operationally in EFAS
for the shorter timescale forecasts), while respecting hydro-
climatic boundaries. They were chosen for the analysis pre-
sented in this paper for two main reasons. Firstly, they are
the regions used operationally to display the EFAS seasonal
streamflow outlook. Secondly, they were created in order to
capture large-scale variability in the weather.

The analysis of the hindcasts was performed on monthly
specific discharge (hereafter referred to as streamflow) re-
gion averages for hindcast starting dates spanning February
1990 to November 2016 (included; approximately 27 years
of data), with 1 to 7 months of lead time. In this paper, 1

Figure 2. Map of the 74 European regions (dark blue outlines) se-
lected for the analysis of the CM-SSF and the ESP.

month of lead time refers to the first month of the forecast
(e.g. the January 2017 streamflow for a forecast made on 1
January 2017). Two months of lead time is the second month
of the forecast (e.g. the February 2017 streamflow for a fore-
cast made on 1 January 2017), etc. Monthly averages were
selected for the analysis presented in this paper as it is a
valuable aggregation time step for decision-makers for many
water-related applications (as shown in the literature for ap-
plications such as, for example, navigation (Meißner et al.,
2017), reservoir management (Viel et al., 2016; Turner et
al., 2017), drought-risk management (Yuan et al., 2013), ir-
rigation (Chiew et al., 2003; Li et al., 2017) and hydropower
(Hamlet et al., 2002)).

Several verification scores were selected in order to assess
the hindcasts’ quality. These verification scores were cho-
sen to cover a wide range of hindcast attributes (i.e. accu-
racy, sharpness, reliability, overall performance and discrim-
ination). All of these verification scores, except for the veri-
fication score selected to look at hindcast discrimination, are
the same as chosen in Crochemore et al. (2016), and are de-
scribed below. The EFAS-WB streamflow simulations were
used as a proxy for observation against which the seasonal
streamflow hindcasts were evaluated, hence minimizing the
impact of model errors on the hindcasts’ quality.
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2.2.1 Hindcast accuracy

Both hindcasts (CM-SSF and ESP) were assessed in terms of
their accuracy, the magnitude of the errors between the hind-
cast ensemble mean and the “truth” (i.e. the EFAS-WB). For
this purpose, the mean absolute error (MAE) was calculated
for each region, target month (i.e. the month that is being
forecast) and lead time (i.e. 1 to 7 months). The lower the
MAE, the more accurate the hindcast.

2.2.2 Hindcast sharpness

Both hindcasts were also assessed in terms of their sharpness,
an attribute of the hindcast only, which is a measure of the
spread of the ensemble members of a hindcast. In this paper,
the 90 % interquantile range (IQR; i.e. the difference between
the 95th and 5th percentiles of the hindcast distribution) was
calculated for each region, target month and lead time. The
lower the IQR, the sharper the hindcast.

2.2.3 Hindcast reliability

Both hindcasts were additionally assessed in terms of their
reliability, the statistical consistency between the hindcast
probabilities and the observed frequencies. For this purpose,
the probability integral transform (PIT) diagram was calcu-
lated for each region, target month and lead time (Gneiting
et al., 2007). The PIT diagram is the cumulative distribution
of the PIT values as a function of the PIT values. The PIT
values measure where the “truth” (i.e. EFAS-WB) falls rela-
tive to the percentiles of the hindcast distribution. For a per-
fectly reliable hindcast, the “truth” should fall uniformly in
each percentile of the hindcast distribution, giving a PIT di-
agram that falls exactly on the 1-to-1 diagonal. A hindcast
that systematically under- (over-) predicts the “truth” will
have a PIT diagram below (above) the diagonal. A hindcast
that is too narrow (i.e. underdispersive; hindcast distribution
smaller than the distribution of the observations) (large (i.e.
overdispersive; hindcast distribution greater than the distri-
bution of the observations)) will have a transposed S-shaped
(S-shaped) PIT diagram (Laio and Tamea, 2007).

In order to compare the reliability across all regions, target
months and lead times, the area between the PIT diagram
and the 1-to-1 diagonal was computed for all PIT diagrams
(Renard et al., 2010). The smaller this area, the more reliable
the hindcast.

Furthermore, to disentangle the causes of poor reliabil-
ity, the spread and bias of the hindcasts were calculated for
all PIT diagrams, using two measures first introduced by
Keller and Hense (2011): ß-score and ß-bias, respectively.
By definition, a perfectly reliable hindcast (with regards to
its spread) will have a β-score of zero (to which a tolerance
interval of ±0.09 was added), whereas a hindcast that is too
narrow (large) will have a negative (positive) β-score (out-
side of the tolerance interval). A perfectly reliable hindcast

(with regards to its bias) will have a β-bias of zero (to which
a tolerance interval of ±0.09 was added), whereas a hind-
cast that systematically under- (over-) predicts the “truth”
will have a negative (positive) β-bias (outside of the toler-
ance interval).

2.2.4 Hindcast overall performance

The hindcasts were furthermore assessed in terms of their
overall performance from the continuous rank probability
score (CRPS), calculated for each region, target month and
lead time (Hersbach, 2000). The CRPS is a measure of the
difference between the hindcast and the observed (i.e. EFAS-
WB) cumulative distribution functions. The lower the CRPS,
the better the overall performance of the hindcast.

In this paper, the skill of the CM-SSF is benchmarked with
respect to the ESP in order to identify whether there is any
added value in using Sys4 instead of historical meteorolog-
ical observations for forecasting the streamflow on seasonal
timescales over Europe. To this end, skill scores were calcu-
lated for the MAE, IQR, PIT diagram area and CRPS, using
the following equation:

Skill score= 1−
scoreCM−SSF

scoreESP
. (1)

Skill scores were calculated for each region, target month and
lead time and will be referred to as MAESS, IQRSS, PITSS
and CRPSS, respectively. Skill scores larger (smaller) than
zero indicate more (less) skill in the CM-SSF compared to
the ESP. A skill score of zero means that the CM-SSF is as
skilful as the ESP. Note that as the ESP is not a “naive” fore-
cast, using it as a benchmark might lead to lower skill than
benchmarking the CM-SSF against, for example, climatol-
ogy.

2.2.5 Hindcast potential usefulness

For decision-making, the ability of a seasonal forecasting
system to predict the right category of an event (e.g. above
or below normal conditions) months ahead is of great impor-
tance (Gobena and Gan, 2010). In this paper, the potential
usefulness of the CM-SSF and the ESP to forecast lower and
higher than normal streamflow conditions within their hind-
casts is assessed.

To do so, the relative operating characteristic (ROC) score,
a measure of hindcast discrimination (Mason and Graham,
1999), was calculated. The thresholds selected to calculate
the ROC are the lower and upper terciles of the EFAS-WB
climatology for each season. They were calculated for the
simulation period (February 1990 to May 2017), by group-
ing together EFAS-WB monthly streamflows for each month
falling in a season (SON: September–October–November,
DJF: December–January–February, MAM: March–April–
May and JJA: June–July–August). For each season and each
region a lower and upper tercile streamflow value was ob-
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tained, subsequently used as thresholds against which to cal-
culate the probability of detection (POD) and the false alarm
rate (FAR; with 0.1 probability bins) for both hindcasts, and
for each region, season and lead time. Finally, the area under
the ROC curve, i.e. the ROC score, was calculated for both
hindcasts, for each region, season and lead time. The ROC
score ranges from 0 to 1, with a perfect score of 1. A hind-
cast with a ROC score ≤ 0.5 is unskilful, i.e. less good than
the long-term average climatology which has a ROC of 0.5,
and is therefore not useful.

Because the ROC score was calculated from a low num-
ber of events (i.e. approximately 27 years × 3 months in
each season ×1/3 (lower or upper tercile) = 27 simulated
events), the hindcasts were judged skilful and useful when
their ROC score ≥ 0.6 instead of 0.5. Moreover, the CM-
SSF was categorized as more useful than the ESP when the
CM-SSF’s ROC score was at least 10 % larger than the ESP’s
ROC score.

3 Results

3.1 Overall skill of the CM-SSF

In the first part of the results, the skill of the CM-SSF (bench-
marked with respect to the ESP) is presented, in terms of the
accuracy (MAESS), sharpness (IQRSS), reliability (PITSS)
and overall performance (CRPSS) in the hindcast datasets.
This will benchmark the added value of using Sys4 against
the use of historical meteorological observations for forecast-
ing the streamflow on seasonal timescales over Europe.

As shown by the MAESS boxplots (Fig. 3), the CM-SSF
appears on average more accurate than the ESP for the first
month of lead time only, for all seasons excluding spring
(MAM). Beyond 1 month of lead time, the CM-SSF becomes
on average as or less accurate than the ESP. There are how-
ever noticeable differences between the different seasons.
The CM-SSF shows the largest improvements in the aver-
age accuracy compared to the ESP in winter (DJF) and for
the first month of lead time. For longer lead times (i.e. 2 to
7 months), the accuracy of the CM-SSF is on average quite
similar to that of the ESP in autumn (SON) and winter, and
on average lower in spring and summer (JJA). The boxplots
for the CRPSS look very similar to the MAESS boxplots,
the main difference being the lower average scores for 2 to 7
months of lead time in autumn and winter (Fig. 3).

The boxplots of the IQRSS show that the CM-SSF predic-
tions are on average as sharp as those of the ESP for the first
month of lead time (slightly sharper in autumn; Fig. 3). For
2 to 7 months of lead time, in autumn and winter, the CM-
SSF predictions are on average sharper than those of the ESP,
whereas in spring and summer, the CM-SSF predictions are
on average slightly less sharp than the ESP predictions.

As shown by the boxplots of the PITSS (Fig. 3), the CM-
SSF predictions are less reliable than the ESP predictions for

all seasons and months of lead time. For the first month of
lead time and all seasons, 10–20 % of the ESP hindcasts and
less than 5 % of the CM-SSF hindcasts are reliable (Fig. 4).
About 40–60 % of the ESP hindcasts are not reliable for the
first month of lead time and all seasons due to the ensemble
spread. Approximately half of these hindcasts are too large,
while the other half (slightly more in autumn and winter)
are too narrow. Furthermore, 50–80 % of the ESP hindcasts
under-predict the simulated streamflow for the first month of
lead time and all seasons. The percentage of reliable (unreli-
able) ESP hindcasts increases (decreases) with lead time, as
the effect of the IHC fades away. About 70–90 % of the CM-
SSF hindcasts are too narrow for the first month of lead time
and all seasons. With increasing lead time, the percentage
of CM-SSF hindcasts that are too narrow (large) decreases
(increases), especially in spring. Approximately 40–50 % of
the CM-SSF hindcasts over-predict the simulated stream-
flow in spring and summer for the first month of lead time
(and increasingly over-predict with longer lead times). In au-
tumn and winter, about 70 % of the CM-SSF hindcasts under-
predict the simulated streamflow for the first month of lead
time (and increasingly under-predict with longer lead times).

For all verification scores, the boxplots for autumn and
winter are slightly smaller than for spring and summer, hint-
ing at a smaller variability in the verification scores amongst
regions and target months in autumn and winter than in
spring and summer. Furthermore, the presence of the box-
plots above the zero line (i.e. no skill line) for all lead times
suggests that the CM-SSF is more skilful than the ESP for
some regions and target months, beyond the first month of
lead time.

3.2 Potential usefulness of the CM-SSF

In the second part of the results, the potential usefulness of
the CM-SSF compared to the ESP is described for decision-
making. Here, potential usefulness is defined as the ability
of the forecasting systems to predict lower or higher stream-
flows than normal, as measured with the ROC score.

Generally, either of the two forecasting systems (CM-SSF
or ESP) is capable of predicting skilfully whether the stream-
flow will be anomalously low or high in the coming months
(Fig. 5). However, for a few seasons and regions, none of the
two forecasting systems is skilful at predicting lower and/or
higher streamflows than normal. This is especially noticeable
in winter.

For most seasons and regions, the ESP is more skilful than
the CM-SSF at predicting lower and higher streamflows than
normal. However, in winter for most regions and during other
seasons for several regions, the CM-SSF appears more skilful
than the ESP. Regions where the CM-SSF best predicts lower
and higher streamflows than normal at most lead times are
summarized in Table 1 for all four seasons and the lower and
upper terciles of the simulated streamflow.
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Figure 3. Boxplots of the MAESS, CRPSS, IQRSS and PITSS (from the top to bottom rows) for all four seasons (SON, DJF, MAM and JJA
from the left-most to right-most columns) as a function of lead time (i.e. 1 to 7 months). The boxplots contain the scores for all target months
falling in a given season and all 74 European regions. For all scores, values larger (smaller) than zero indicate that the CM-SSF is more (less)
skilful than the ESP (benchmark). Where the skill is zero, the CM-SSF is as skilful as the ESP for the hindcast period. Note that the PITSS
plots have a different y-axis scale.
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Figure 4. Plots of the percentage of the ESP (a) and the CM-SSF (b) hindcasts falling into each reliability category (reliable – in terms of
both spread and bias, too large, too narrow, over-predicting and under-predicting) for all four seasons (SON, DJF, MAM and JJA from the
left-most to right-most bars in each reliability category). The results are shown as bar charts for the first month of lead time and as circles for
the seventh month of lead time. These lead times were selected for display to highlight the evolution of reliability between the first and last
months of the hindcast. The percentages were calculated from hindcasts for all target months falling in a given season and all 74 European
regions.

Table 1. Regions where the CM-SSF is more skilful than the ESP at predicting anomalously low (lower tercile; first column) or high (upper
tercile; second column) streamflows for all four seasons (SON, DJF, MAM and JJA from the top to bottom rows). This is a summary of the
information displayed in Fig. 5.

Lower tercile Upper tercile

SON – Few regions in Fennoscandia
– Po River basin (northern Italy)
– Elbe River basin (south of Denmark)
– Upstream of the Rhine River basin
– Upstream of the Danube River basin
– Duero River basin (Iberian Peninsula)

– Few regions in Fennoscandia
– Iceland
– Parts of the Danube River basin
– Segura River basin (Iberian Peninsula)

DJF Many regions except
– in most of Fennoscandia north of the Baltic Sea,
– parts of central Europe.

Same as lower tercile.

MAM – Few regions on the Iberian Peninsula
– Few regions in the western part of central Europe

Same as lower tercile.

JJA – Few regions in the United Kingdom (UK)
– Ireland
– North-western edge of the Iberian Peninsula
– Regions in Fennoscandia around the Baltic Sea
– Regions south of the North Sea

– Northern part of the UK
– Ireland
– North-western edge of the Iberian Peninsula
– Regions in Fennoscandia around the Baltic Sea
– Around the Elbe River basin
– Upstream of the Danube River basin
– Along the Adriatic Sea in Italy
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Figure 5. Maps of the best system (as measured with the ROC score) for all four seasons (SON, DJF, MAM and JJA) and the lower and
upper simulated streamflow seasonal terciles (left-most and right-most columns, respectively) in each region from (a) to (h). The pie charts
display the best system for each lead time (i.e. 1 to 7 months), as shown in the example pie chart on the bottom right of this figure. There are
three possible cases: (1) neither the ESP nor the CM-SSF is skilful (red colours), (2) the ESP is skilful and better than the CM-SSF (yellow
colours), and (3) the CM-SSF is skilful and better than the ESP (blue colours).
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4 Discussion

4.1 Does seasonal climate information improve the
predictability of seasonal streamflow forecasts over
Europe?

On average over Europe and across all seasons, the CM-SSF
is skilful (in terms of hindcast accuracy, sharpness and over-
all performance, using the ESP as a benchmark) for the first
month of lead time only. This means that, on average, Sys4
improves the predictability over historical meteorological in-
formation for pan-European seasonal streamflow forecasting
for the first month of lead time only. At longer lead times,
historical meteorological information becomes as good as or
better than Sys4 for seasonal streamflow forecasting over Eu-
rope. Crochemore et al. (2016) and Meißner et al. (2017)
similarly found positive skill in the seasonal streamflow fore-
cast (Sys4 forced hydrological model compared to an ESP)
for the first month of lead time, after which the skill faded
away for basins in France and central Europe, respectively.
Additionally, on average over Europe and across all seasons,
the CM-SSF is less reliable than the ESP for all lead times.
This is due to a combination of too narrow and biased CM-
SSF hindcasts, where the bias depends on the season that is
being forecasted. As mentioned in the methods section of this
paper, the ESP is not a “naive” benchmark, which might par-
tially explain the limited predictability gained from Sys4.

The predictability varies per season and the CM-SSF pre-
dictions are on average sharper than and as accurate as
the ESP predictions in autumn and winter beyond the first
month of lead time (and increasingly sharper with longer lead
times). The CM-SSF however tends to systematically under-
predict the autumn and winter simulated streamflow (and in-
creasingly under-predicts with longer lead times). In spring
and summer, the CM-SSF predictions are on average less
sharp and less accurate than the ESP predictions, and they
tend to systematically over-predict the simulated streamflow
(and increasingly over-predict with longer lead times).

The added predictability gained from Sys4 was shown
to lead to skilful CM-SSF predictions of lower and higher
streamflows than normal for specific seasons and regions.
The CM-SSF is more skilful at predicting anomalously low
and high streamflows than the ESP in certain seasons and
regions, and noticeably in winter in almost 40 % of the Eu-
ropean regions, mostly clustered in rainfall-dominated areas
of western and central Europe. Several authors have dis-
cussed the higher winter predictability over (parts of) Eu-
rope, with examples in basins in France (Crochemore et al.,
2016), central Europe (Steirou et al., 2017), the UK (Bell et
al., 2017) and the Iberian Peninsula (Lorenzo-Lacruz et al.,
2011). Bierkens and van Beek (2009) additionally showed
that there was a higher winter predictability in Scandinavia,
the Iberian Peninsula and around the Black Sea. Our results
are mostly consistent with these findings, except for Scan-
dinavia, where the ESP is more skilful than the CM-SSF

in winter. Bierkens and van Beek (2009) produced the sea-
sonal streamflow forecast analysed in their paper by forcing
a hydrological model with resampled years of historical me-
teorological information based on their winter NAO index.
However, Sys4 has difficulties in forecasting the NAO over
Europe (Kim et al., 2012), which could have led to these in-
consistent results with the ones presented by Bierkens and
van Beek (2009).

In spring, the CM-SSF is more skilful than the ESP at pre-
dicting lower and higher streamflows than normal beyond
1 month of lead time in approximately 15 % of the Euro-
pean regions, and mostly in regions of western Europe. This
could be due to a persistence of the skill from the previous
winter through the land surface memory (i.e. groundwater-
driven streamflow or snowmelt-driven streamflow), as high-
lighted by Bierkens and van Beek (2009) for Europe, Singla
et al. (2012) for parts of France, Lorenzo-Lacruz et al. (2011)
for the Iberian Peninsula and Meißner et al. (2017) for the
Rhine. Moreover, it could be that most of the gained pre-
dictability occurs in March, a transition month between the
more predictable winter (as mentioned above) and spring, as
discussed by Steirou et al. (2017). The ESP is overall more
skilful than the CM-SSF at predicting the spring streamflow
in snow-dominated regions (e.g. most of Fennoscandia and
parts of central and eastern Europe). This hints at the im-
portance of the IHC (i.e. of snowpack) and the land sur-
face memory for forecasting the spring streamflow in snow-
dominated regions in Europe.

The added predictability from Sys4 for forecasting lower
and higher streamflows than normal is limited in summer
and autumn for most regions. The CM-SSF is more skilful
at predicting anomalously low and high streamflows than the
ESP in about 10–20 % of the European regions during those
seasons. Other studies have found similar patterns for (parts
of) Europe; these include less skill in summer than in winter
overall for basins in France (Crochemore et al., 2016), less
skill for the low flow season (July to October) for basins in
central Europe (Meißner et al., 2017), negative correlations
in summer and autumn seasonal streamflow forecasts in cen-
tral Europe as the influence of the winter NAO fades away
(Steirou et al., 2017), and less skill overall in summer than in
winter in Europe (Bierkens and van Beek, 2009). The lower
CM-SSF skill for predicting lower and higher streamflows
than normal in summer could additionally be due to the con-
vective storms in summer over Europe, which are hard to pre-
dict, and to the fact that it is the dry season in most of Europe,
where rivers are groundwater fed. Therefore, in this season,
the quality of the IHC controls the streamflow predictability.

While the CM-SSF is most skilful (in terms of hindcast
accuracy, sharpness and overall performance, using the ESP
as a benchmark) in autumn and winter and most poten-
tially useful in winter, this does not appear to correlate with
high performance in the Sys4 precipitation and temperature
hindcasts (as seen on the maps of correlation for Sys4 pre-
cipitation and temperature for all four seasons (SON, DJF,
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MAM and JJA) and with 2 months of lead time (as identi-
fied in this paper); available at https://meteoswiss.shinyapps.
io/skill_metrics/, Forecast skill metrics, 2017). Over Europe,
the Sys4 precipitation and temperature hindcasts are the most
skilful in summer and the least skilful in autumn and winter.
Moreover, the regions of high CM-SSF skill for predicting
lower and upper streamflows than normal do not clearly cor-
respond to regions of high performance in the Sys4 precipi-
tation and temperature hindcasts. These differences could be
partially induced by the different benchmark used to evalu-
ate the skill of the CM-SSF (i.e. the ESP) compared to the
one used to look at the performance of the Sys4 precipi-
tation and temperature hindcasts (i.e. ERA-Interim). How-
ever, these results clearly indicate that looking at the perfor-
mance of the Sys4 precipitation and temperature hindcasts
only does not give a good indication of the skill and potential
usefulness of the seasonal streamflow hindcasts over Europe,
and that marginal performance in seasonal climate forecasts
can translate through to more predictable seasonal stream-
flow forecasts, and vice versa. The added predictability in
the CM-SSF could be due to the combined predictability in
the precipitation and temperature hindcasts, as well as a lag
in the predictability from the land surface memory.

In most regions and for most seasons, at least one of the
two forecasting systems (CM-SSF or ESP) is able to predict
lower or higher streamflows than normal. However, in win-
ter, the number of regions and lead times for which none of
the forecasting systems are skilful increases. This could be
because in winter, many regions experience weather-driven
high streamflows and the performance of Sys4 is limited at
this time of year (as mentioned above). In those regions, the
seasonal streamflow forecasts could be improved either by
improving the IHC, through for example data assimilation,
or by improving the seasonal climate forecasts.

Overall, the ESP appears very skilful at forecasting lower
or higher streamflows than normal, showing the importance
of IHC and the land surface memory for seasonal streamflow
forecasting (Wood and Lettenmaier, 2008; Bierkens and van
Beek, 2009; Yuan et al., 2015b).

4.2 What is the potential usefulness and usability of the
EFAS seasonal streamflow forecasts for flood
preparedness?

What appears like little added skill does not necessarily mean
no skill for the forecast users and can in fact be a large
added value for decision-making (Viel et al., 2016). The abil-
ity of a seasonal streamflow forecasting system to predict
the right category of an event months ahead is valuable for
many water-related applications (e.g. navigation, reservoir
management, drought-risk management, irrigation, water re-
source management, hydropower and flood preparedness).
From the results presented in this paper, it appears that ei-
ther of the two forecasting systems (CM-SSF or ESP) is ca-
pable of predicting lower or higher streamflows than normal

months in advance, thanks to the predictability gained from
the IHC, the land surface memory and the seasonal climate
hindcast in some regions and for certain seasons.

However, as highlighted by White et al. (2017), there is
currently a gap between usefulness and usability of seasonal
information. What is a useful scientific finding does not auto-
matically translate into usable information which will fit into
any user’s decision-making chain (Soares and Dessai, 2016).
While several authors have already investigated the usability
of seasonal streamflow forecasts for applications such as nav-
igation (Meißner et al., 2017), reservoir management (Viel
et al., 2016; Turner et al., 2017), drought-risk management
(Sheffield et al., 2013; Yuan et al., 2013; Crochemore et al.,
2017), irrigation (Chiew et al., 2003; Li et al., 2017), water
resource management (Schepen et al., 2016) and hydropower
(Hamlet et al., 2002), its application to flood preparedness is
still left mostly unexplored. One exception being Neumann
et al. (in review), who look at the use of the CM-SSF to
predict the 2013/14 Thames basin floods. This is partially
due to the complex nature of flood generating mechanisms,
still poorly studied on seasonal timescales beyond snowmelt-
driven spring floods, as well as the fact that seasonal forecasts
reflect the likelihood of abnormal seasonal streamflow totals,
but without much skilful information on the exact timing, lo-
cation and severity of the impact of individual flood events
within that season. Coughlan de Perez et al. (2017) looked
at the usefulness of seasonal rainfall forecasts for flood pre-
paredness in Africa and highlighted the complexities behind
using these forecasts as a proxy for floodiness (for a dis-
cussion on floodiness, see Stephens et al., 2015). Further-
more, decision-makers in the navigation, reservoir manage-
ment, drought-risk management, irrigation, water resource
management and hydropower sectors are familiar with work-
ing on long timescales (i.e. several weeks to months ahead).
In contrast, the flood preparedness community is currently
mostly used to working on timescales of hours to a couple of
days.

The Red Cross Red Crescent Climate Centre has recently
designed a new approach that harnesses the usefulness of
seasonal climate information for decision-making for disas-
ter management. This approach, called “Ready-Set-Go!”, is
made up of three stages. The “Ready” stage is based on sea-
sonal forecasts, where they are used as monitoring informa-
tion to drive contingency planning (e.g. volunteer training).
The “Set” stage is triggered by sub-seasonal forecasts, used
as early-warning information to alert volunteers. Finally, the
“Go!” stage is based on short-range forecasts and consists in
the evacuation of people and the distribution of aid (White
et al., 2017). Using a similar approach, seasonal stream-
flow forecasts could complement existing forecasts at shorter
timescales and provide monitoring and early-warning infor-
mation for flood preparedness. Such an approach however re-
quires the use of consistent forecasts from short to seasonal
timescales. In this context, moving to seamless forecasting is
becoming vital (Wetterhall and Di Giuseppe, in review).
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Soares and Dessai (2016) also identified the accessibil-
ity to the information, enhanced by collaborations and on-
going relationships between users and producers, as a key
enabler of the usability of seasonal information. Interna-
tional projects, such as the Horizon 2020 IMPREX (IMprov-
ing PRedictions and management of hydrological EXtremes)
project (van den Hurk et al., 2016), alongside promoting sci-
entific progress on hydrological extremes forecasting from
short to seasonal timescales over Europe, gather together
forecasters and decision-makers and can effectively demon-
strate the added value of the integration of seasonal infor-
mation in decision-making chains. The Hydrologic Ensem-
ble Prediction EXperiment (HEPEX) is another international
initiative that brings together researchers and practitioners
in the field of ensemble prediction for water-related applica-
tions. It is an ideal environment for collaboration and fosters
communication and outreach on topics such as the usefulness
and usability of seasonal information for decision-making.

4.3 Aspects for future work

In this paper, terciles of the simulated streamflow are used.
However, and because the application of the EFAS seasonal
streamflow forecasts is of particular relevance for flood pre-
paredness, the evaluation of the hindcasts for lower and
higher streamflow extremes (for example the 5th and 95th
percentiles, respectively) would be more relevant and might
give very different results. This was not done in this paper as
the time period covered by the seasonal streamflow hindcasts
(i.e. approximately 27 years) was not long enough for statis-
tically reliable results for lower and higher streamflow ex-
tremes. The limited hindcast length is a common problem in
seasonal predictability studies. Increasing the hindcast length
back in time could lead to more stable Sys4 hindcasts and
hence to more stable and potentially skilful seasonal stream-
flow hindcasts (Shi et al., 2015).

Furthermore, in this paper, the hindcasts were analysed
against simulated streamflow, used as a proxy for observed
streamflow. This is necessary because it enables an analysis
of the quality of the hindcasts over the entire computation
domain, rather than at non-evenly spaced stations over the
same domain (Alfieri et al., 2014). Further work could how-
ever include carrying out a similar analysis for selected river
stations in Europe, in order to account for model errors in the
hindcast evaluation.

The calculation of the verification scores (excluding the
ROC) was made by randomly selecting 15 ensemble mem-
bers from the 51 ensemble members of the CM-SSF hind-
casts, for starting dates for which the ensemble varies be-
tween 15 and 51 members (i.e. hindcasts made on 1 Jan-
uary, March, April, June, July, September, October and De-
cember; this is due to the split between 15 and 51 ensemble
members in the Sys4 hindcasts, as described in Sect. 2.1.2 of
this paper). In order to investigate the potential impact of this
evaluation strategy on the results presented in this paper, the

Figure 6. CRPSS calculated for the CM-SSF against the ESP
(benchmark) for hindcasts made on 1 February, May, August and
November, all lead times (i.e. 1 to 7 months) and all 74 European
regions. The x-axis (y-axis) contains the CRPSS calculated from 15
(all 51) ensemble members of the CM-SSF.

CRPSS was calculated for 15 and 51 ensemble members of
the CM-SSF hindcasts for starting dates for which 51 ensem-
ble members are available for the full hindcast period (i.e.
hindcasts made on 1 February, May, August and November).
This is displayed in Fig. 6 for all hindcast starting dates, lead
times (i.e. 1 to 7 months) and regions combined. Overall, it is
apparent that the impact of this evaluation strategy on the re-
sults presented in this paper should be minimal, as all points
align themselves approximately with the 1-to-1 diagonal.

The next version of the ECMWF seasonal climate forecast,
SEAS5, was released in November 2017. Future work could
include forcing the Lisflood model with SEAS5 and compar-
ing the obtained seasonal streamflow hindcasts to the CM-
SSF presented in this paper. This should indicate whether de-
velopments to the seasonal climate forecast translate through
to better pan-European seasonal streamflow forecasts, which
is of particular interest for regions and seasons when neither
the ESP nor the CM-SSF is currently skilful.

The operational EFAS medium-range streamflow forecasts
are currently post-processed as a means to improve their re-
liability (Smith et al., 2016, and references therein). Results
from this paper have shown that the CM-SSF is mostly un-
reliable (with regards to the EFAS-WB) and could hence
benefit from post-processing of the seasonal climate fore-
cast. However, post-processing techniques used for the EFAS
medium-range streamflow forecasts might not be suitable for
the CM-SSF, as the seasonal climate forecast used for the lat-
ter should be post-processed in terms of its seasonal anoma-
lies rather than for errors in the timing, volume and mag-
nitude of specific events. This is currently being considered
for operational implementation within EFAS and is an active
area of discussion within the EFAS user community.
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For the analysis presented in this paper, the CM-SSF was
benchmarked against the ESP. Several other techniques ex-
ist for seasonal streamflow forecasting, such as statistical
methods using predictors ranging from climate indices to an-
tecedent observed precipitation and crop production metrics,
to mention a few (e.g. Mendoza et al., 2017; Slater et al.,
2017). Further analysis could include benchmarking the CM-
SSF against one or multiple statistical methods, to assess the
relative benefits of various seasonal streamflow forecasting
techniques.

In this paper, the ability of both systems (CM-SSF and
ESP) to forecast lower and higher streamflows than nor-
mal was explored, with several hypotheses made to link
the streamflow predictability to regions’ hydro-climatic pro-
cesses. This includes the higher potential usefulness of the
ESP in forecasting the spring streamflow in snow-dominated
regions and the summer streamflow in regions where rivers
are groundwater fed. In these regions and for these seasons,
the IHC and the land surface memory drive the predictability.
The CM-SSF provides an added potential usefulness in win-
ter in the rainfall-dominated regions of central and western
Europe, where the skill appears to persist through to spring
due to the land surface memory (i.e. groundwater-driven
streamflow and snowmelt-drive streamflow). While further
exploration of these hypotheses is outside of the scope of
this paper, future work is required to disentangle the links
between the added predictability from Sys4 and the basins’
hydro-climatic characteristics, for example, understanding
the predictability in snow-dominated basins, arid regions and
temperate groundwater-fed basins.

In this context, additional work to further disentangle and
quantify the contribution of both predictability sources (sea-
sonal climate forecasts versus IHC) to seasonal streamflow
forecasting quality over Europe could be carried out by us-
ing the EPB (end point blending) method (Arnal et al., 2017).

5 Conclusions

In this paper, the newly operational EFAS seasonal stream-
flow forecasting system (producing the CM-SSF forecasts
by forcing the Lisflood model with the ECMWF System 4
seasonal climate forecasts (Sys4)) was presented and bench-
marked against the ESP forecasting approach (ESP fore-
casts produced by forcing the Lisflood model with histori-
cal meteorological observations) for the hindcast period 1990
to 2017. On average, Sys4 improves the predictability over
historical meteorological information for pan-European sea-
sonal streamflow forecasting for the first month of lead time
only (in terms of hindcast accuracy, sharpness and over-
all performance). However, the predictability varies per sea-
son and the CM-SSF is more skilful on average at predict-
ing autumn and winter streamflows than spring and summer
streamflows. Additionally, parts of Europe exhibit a longer
predictability, up to 7 months of lead time, for certain months

within a season. In terms of hindcast reliability, the CM-SSF
is on average less skilful than the ESP for all lead times, due
to a combination of too narrow and biased CM-SSF hind-
casts, where the bias depends on the season that is being
forecasted.

Subsequently, the potential usefulness of the two forecast-
ing systems (CM-SSF and ESP) was assessed by analysing
their skill in predicting lower and higher streamflows than
normal. Overall, at least one of the two forecasting systems
is capable of predicting those events months in advance. The
ESP appears the most skilful on average, showing the im-
portance of IHC and the land surface memory for seasonal
streamflow forecasting. Nevertheless, for certain regions and
seasons the CM-SSF is the most skilful at predicting anoma-
lously low or high streamflows beyond 1 month of lead time,
noticeably in winter for almost 40 % of the European regions.
This potential usefulness could be harnessed by using sea-
sonal streamflow forecasts as complementary information to
existing forecasts at shorter timescales, to provide monitor-
ing and early-warning information for flood preparedness.

Overall, patterns in skill in the CM-SSF are however not
mirrored in the Sys4 precipitation and temperature hindcasts.
This suggests that using seasonal climate forecast perfor-
mance as a proxy for seasonal streamflow forecasting skill
is not adequate and that more work is needed to understand
the link between meteorological and hydrological variables
on seasonal timescales over Europe.
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A4: Developing a global operational seasonal hydro-

meteorological forecasting system: GloFAS-Seasonal v1.0 
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Abstract. Global overviews of upcoming flood and drought
events are key for many applications, including disaster risk
reduction initiatives. Seasonal forecasts are designed to pro-
vide early indications of such events weeks or even months
in advance, but seasonal forecasts for hydrological variables
at large or global scales are few and far between. Here,
we present the first operational global-scale seasonal hydro-
meteorological forecasting system: GloFAS-Seasonal. De-
veloped as an extension of the Global Flood Awareness Sys-
tem (GloFAS), GloFAS-Seasonal couples seasonal meteoro-
logical forecasts from ECMWF with a hydrological model
to provide openly available probabilistic forecasts of river
flow out to 4 months ahead for the global river network. This
system has potential benefits not only for disaster risk re-
duction through early awareness of floods and droughts, but
also for water-related sectors such as agriculture and water
resources management, in particular for regions where no
other forecasting system exists. We describe the key hydro-
meteorological components and computational framework of
GloFAS-Seasonal, alongside the forecast products available,
before discussing initial evaluation results and next steps.

1 Introduction

Seasonal meteorological forecasts simulate the evolution of
the atmosphere over the coming months. They are designed
to provide an early indication of the likelihood that a given
variable, for example precipitation or temperature, will dif-
fer from normal conditions weeks or months ahead. Will a
particular region be warmer or cooler than normal during the
next summer? Or will a river have higher or lower flow than
normal next winter? Seasonal forecasts of river flow have
the potential to benefit many water-related sectors from agri-
culture and water resources management to disaster risk re-
duction and humanitarian aid through earlier indications of
floods or droughts.

Many operational forecasting centres produce long-range
(seasonal) global forecasts of meteorological variables, such
as precipitation (Weisheimer and Palmer, 2014). However, at
present, operational seasonal forecasts of hydrological vari-
ables, particularly for large or global scales, are few and
far between. A number of continental-scale seasonal hydro-
meteorological forecasting systems have begun to emerge
around the globe over the past decade (Yuan et al., 2015a),
using seasonal meteorological forecasts as input to hydro-
logical models to produce forecasts of hydrological vari-
ables. These include the European Flood Awareness System
(EFAS; Arnal et al., 2018; Cloke et al., 2013), the Euro-
pean Service for Water Indicators in Climate Change Adapta-
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tion (SWICCA; Copernicus, 2018b), the Australian Govern-
ment Bureau of Meteorology Seasonal Streamflow Forecasts
(Bennett et al., 2017; BoM, 2018), and the USA’s National
Hydrologic Ensemble Forecast Service (HEFS; Demargne et
al., 2014; Emerton et al., 2016). There are also various on-
going research efforts using seasonal hydro-meteorological
forecasting systems for forecast applications and research
purposes at regional (Bell et al., 2017; Bennett et al., 2016;
Crochemore et al., 2016; Meißner et al., 2017; Mo et al.,
2014; Prudhomme et al., 2017; Wood et al., 2002, 2005;
Yuan et al., 2013) and global (Candogan Yossef et al., 2017;
Yuan et al., 2015b) scales. In addition to the ongoing research
into improved seasonal hydro-meteorological forecasts at
the global scale, an operational system providing consis-
tent global-scale seasonal forecasts of hydrological variables
could be of great benefit in regions where no other forecast-
ing system exists and to organisations operating at the global
scale (Coughlan De Perez et al., 2017).

Often, in the absence of hydrological forecasts, seasonal
precipitation forecasts are used as a proxy for flooding. It has
been shown that forecasts of seasonal total rainfall, the most
often used seasonal precipitation forecasts, are not necessar-
ily a good indicator of seasonal floodiness (Stephens et al.,
2015), and other measures of rainfall patterns, or seasonal
hydrological forecasts, would be better indicators of poten-
tial flood hazard (Coughlan De Perez et al., 2017).

While it seems a natural next step to produce global-scale
seasonal hydro-meteorological forecasts, this is not a simple
task, not only due to the complexities of geographical vari-
ations in rainfall–run-off processes and river regimes across
the globe, but also due to the computing resources required
and huge volumes of data that must be efficiently processed
and stored and the challenge of effectively communicating
forecasts for the entire globe. Indeed, global-scale forecast-
ing for medium-range timescales has only become possi-
ble in recent years due to the integration of meteorologi-
cal and hydrological modelling capabilities, improvements in
data, satellite observations, and land-surface hydrology mod-
elling, and increased resources and computer power (Emer-
ton et al., 2016). In addition to continued improvements in
computing capabilities, the recent move towards the devel-
opment of coupled atmosphere–ocean–land models means
that it is now becoming possible to produce seasonal hydro-
meteorological forecasts for the global river network.

Despite the chaotic nature of the atmosphere (Lorenz,
1963), which introduces a limit of predictability (generally
accepted to be ∼ 2 weeks), seasonal predictions are possible
as they rely on components that vary on longer timescales
and are themselves predictable to an extent. This “second
type predictability” (Lorenz, 1993) for seasonal river flow
forecasts comes from the initial conditions and large-scale
modes of climate variability. The most prominent pattern
of climate variability is the El Niño–Southern Oscillation
(ENSO; McPhaden et al., 2006), which is known to affect
river flow and flooding across the globe (Chiew and McMa-

hon, 2002; Emerton et al., 2017; Guimarães Nobre et al.,
2017; Ward et al., 2014a, b, 2016). Other teleconnections
also influence river flow in various regions of the globe, such
as the North Atlantic Oscillation (NAO), Southern Oscilla-
tion (SOI), Indian Ocean Dipole (IOD), and Pacific Decadal
Oscillation (PDO), and contribute to the seasonal predictabil-
ity of hydrologic variables (Yuan et al., 2015a). Coupled
atmosphere–ocean–land models are key in representing these
large-scale modes of variability in order to produce seasonal
hydro-meteorological forecasts.

This motivates the development of an operational global-
scale seasonal hydro-meteorological forecasting system as an
extension of the Global Flood Awareness System (GloFAS;
Alfieri et al., 2013), with openly available forecast products.
GloFAS is developed by the European Centre for Medium-
Range Weather Forecasts (ECMWF) and the European Com-
mission Joint Research Centre (JRC) and has been produc-
ing probabilistic flood forecasts out to 30 days for the entire
globe since 2012. In 2016, work began in collaboration with
the University of Reading to implement a seasonal outlook
in GloFAS, aiming to provide forecasts of both high and low
river flow for the global river network up to several months
in advance. On 10 November 2017, the first GloFAS sea-
sonal river flow forecast was released. This paper introduces
the modelling system, its implementation, and the available
forecast products and provides an initial evaluation of the po-
tential usefulness and reliability of the forecasts.

2 Implementation

The GloFAS seasonal outlooks are produced by driving a
hydrological river routing model with meteorological fore-
casts from ECMWF. The forecasts are run operationally
on the ECMWF computing facilities. This section provides
an overview of the computing facilities, introduces the key
hydro-meteorological components of the modelling plat-
form (the meteorological forecast input, hydrological model,
and reference climatology), and describes the computational
framework of GloFAS-Seasonal.

2.1 ECMWF High-Performance Computing Facility

ECMWF’s current High-Performance Computing Facility
(HPCF) has been in operation since June 2016 and is used for
both forecast production and research activities. The HPCF
comprises two identical Cray XC40 supercomputers, each of
which is self-sufficient with their own storage and each with
equal access to the storage of the other. Each Cray XC40 con-
sists of 20 cabinets of compute notes and 13 storage nodes.
One compute node has two Intel Broadwell processors, each
with 18 cores, giving 192 nodes (6912 cores) per cabinet. The
Cray Aries interconnect is used to connect the processing
power. The majority of the nodes of the HPCF are run using
the high-performance Cray Linux Environment, a stripped-

Geosci. Model Dev., 11, 3327–3346, 2018 www.geosci-model-dev.net/11/3327/2018/



R. Emerton et al.: GloFAS-Seasonal v1.0 3329

down version of Linux, as reducing the number of operating
system tasks is critical for providing a highly scalable envi-
ronment.

In terms of storage, each Cray XC40 has ∼ 10 PB of stor-
age, and the data handling system (DHS) also comprises two
main applications: the Meteorological Archive and Retrieval
System (MARS), which stores and provides access to meteo-
rological data collected or produced by ECMWF, and ECFS,
which stores data that are not suitable for storing on MARS.
The DHS holds over 210 PB of primary data, and the archive
increases by ∼ 233 TB per day. The reader is referred to the
ECMWF website at https://www.ecmwf.int/ for further in-
formation on the HPCF and DHS.

In addition to the Cray XC40s, the ECMWF computing
facility also includes four Linux clusters consisting of 60
servers and 1 PB of storage. The Linux clusters are currently
used to run the river routing model used in GloFAS and to
produce the forecast products, while the meteorological forc-
ing and ERA5 reanalysis are produced on the HPCF. All data
related to GloFAS-Seasonal are stored on the MARS and
ECFS archives.

2.2 Hydro-meteorological components

2.2.1 Meteorological forcing

The first model component of the seasonal outlook is
the meteorological forecast input from the ECMWF Inte-
grated Forecast System (IFS, cycle 43r1; ECMWF, 2018b).
GloFAS-Seasonal makes use of SEAS5, which is the latest
version of ECMWF’s long-range ensemble forecasting sys-
tem made operational in November 2017 (ECMWF, 2017a;
Stockdale et al., 2018). SEAS5 consists of 51 ensemble
members (50 perturbed members and 1 unperturbed con-
trol member) and has a horizontal resolution of ∼ 36 km
(TCO319). The system, which comprises a data assimila-
tion system and a global circulation model, is run once a
month, producing forecasts out to 7 months ahead. Initial
pre-implementation testing of SEAS5 has suggested that in
comparison to the previous version (System 4), SEAS5 bet-
ter simulates sea surface temperatures (SSTs) in the Pa-
cific Ocean, leading to improved forecasts of the El Niño–
Southern Oscillation (ENSO; Stockdale et al., 2018), which
is closely linked to river flow across the globe and can pro-
vide added predictability.

SEAS5 is a configuration of the ECMWF IFS (cycle 43r1),
including atmosphere–ocean coupling to the NEMO ocean
model. SEAS5 is run operationally on the HPCF. Each en-
semble member is a complex, HPC-intensive, massively par-
allel code written in Fortran (version F90). In addition, fur-
ther complex scripting systems are required to control, pre-
pare, run, post-process, and archive all IFS forecasts. The
data assimilation systems used to prepare the initial condi-
tions for the forecasts also make use of Fortran and run on

the HPCF. For further information, the reader is referred to
the IFS documentation (ECMWF, 2018b).

2.2.2 Land surface component

Within the IFS, which includes SEAS5, the Hydrology Tiled
ECMWF Scheme of Surface Exchanges over Land, HTES-
SEL (Balsamo et al., 2011), is used to compute the land
surface response to atmospheric forcing. HTESSEL simu-
lates the evolution of soil temperature, moisture content, and
snowpack conditions through the forecast horizon to produce
a corresponding forecast of surface and subsurface run-off.
This component allows for each grid box to be divided into
tiles, with up to six tiles per grid box (bare ground, low
and high vegetation, intercepted water, and shaded and ex-
posed snow) describing the land surface. For a given precipi-
tation, the scheme distributes the water as surface run-off and
drainage, with dependencies on orography and soil texture.
An interception layer accumulates precipitation until satura-
tion is reached, with the remaining precipitation partitioned
between surface run-off and infiltration. HTESSEL also ac-
counts for frozen soil, redirecting the rainfall and snowmelt
to surface run-off when the uppermost soil layer is frozen,
and incorporates a snow scheme. Four soil layers are used to
describe the vertical transfer of water and energy, with sub-
surface water fluxes determined by Darcy’s law, and each
layer has a sink to account for root extraction in vegetated
areas. A detailed description of the hydrology of HTESSEL
is provided by Balsamo et al. (2011).

HTESSEL comprises a Fortran library of ∼ 20 000 lines
of code, using both F77 and F90 Fortran versions, and is
implemented modularly. While HTESSEL can be run on di-
verse architectures from a workstation PC to the HPCF, op-
erationally it is run on the HPCF.

2.2.3 River routing model

As HTESSEL does not simulate water fluxes through the
river network, Lisflood (Van Der Knijff et al., 2010), driven
by the surface and subsurface run-off output from HTESSEL
interpolated to the 0.1◦ (∼ 10 km) spatial resolution of Lis-
flood is used to simulate the groundwater (subsurface wa-
ter storage and transport) processes and routing of the water
through the river network. The initial conditions used to start
the Lisflood model are taken from the ERA5-R river flow
reanalysis (see Sect. 2.2.4).

Lisflood is a spatially distributed hydrological model, in-
cluding a 1-D channel routing model. Groundwater processes
are modelled using two linear reservoirs, the upper zone rep-
resenting a quick run-off component, including subsurface
flow through soil macropores and fast groundwater, and the
lower zone representing a slow groundwater component fed
by percolation from the upper zone. The routing of surface
run-off to the outlet of each grid cell, and the routing of
run-off produced by every grid cell from the surface, upper,
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Figure 1. Flowchart depicting the key GloFAS-Seasonal forecasting system components.

and lower groundwater zones through the river network, is
done using a four-point implicit finite-difference solution of
the kinematic wave equations (Chow et al., 2010). The river
network used is that of HydroSHEDS (Lehner et al., 2008),
again interpolated to a 0.1◦ spatial resolution using the ap-
proach of Fekete et al. (2001). For a detailed account of the
Lisflood model set-up within GloFAS, the reader is referred
to Alfieri et al. (2013).

Lisflood is implemented using a combination of PCRas-
ter GIS and Python and is currently run operationally on the
Linux cluster at ECMWF.

2.2.4 Generation of reforecasts and reference
climatology

In order to generate a reference climatology for GloFAS-
Seasonal, the latest of ECMWF’s reanalysis products, ERA5,
was used. Reanalysis datasets combine historical observa-
tions of the atmosphere, ocean, and land surface with a data
assimilation system; global models are used to “fill in the
gaps” and produce consistent global best estimates of the at-
mosphere, ocean, and land state. ERA5 represents the current
state of the art in terms of reanalysis datasets, providing a
much higher spatial and temporal resolution (30 km, hourly)
compared to ERA-Interim (79 km, 3-hourly) and better rep-
resentations of precipitation, evaporation, and soil moisture
(ECMWF, 2017b). In order to produce a river flow reanal-
ysis (ERA5-R) for the global river network, the ERA5 sur-
face and subsurface run-off variables were interpolated to
0.1◦ (∼ 10 km) resolution and used as input to the Lisflood
model (see Sect. 2.2.3). ERA5 is currently still in produc-
tion, and while it will cover the period from 1950 to present

when completed, the full dataset will not be available until
2019. ERA5 is being produced in three “streams” in par-
allel; at the time of producing the ERA5-R reanalysis, 18
years of ERA5 data were available across the three streams
(1990–1992, 2000–2007, and 2010–2016). In addition to the
historical climatology, ERA5 is also produced in near real
time, with a delay of just ∼ 3 days, allowing its use as initial
conditions for the river routing component of the GloFAS-
Seasonal forecasts. The ERA5-R reanalysis is thus updated
every month prior to producing the forecast. Figure 2 pro-
vides an overview of all datasets used in and produced for
the development of GloFAS-Seasonal.

Once the ERA5-R reanalysis was obtained, a set of
GloFAS-Seasonal reforecasts was produced. From the 25-
ensemble-member SEAS5 reforecasts produced by ECMWF,
the surface and subsurface run-off variables were used to
drive the Lisflood model with initial conditions from ERA5-
R. This generated 18 years of seasonal river flow reforecasts
(one forecast per month out to 4 months of lead time, with 25
ensemble members at 0.1◦ resolution). It is the weekly aver-
aged river flow from this reforecast dataset which is used as
a reference climatology, including to calculate the high and
low flow thresholds used in the real-time forecasts (described
in Sect. 2.3).

2.3 GloFAS-Seasonal computational framework

The GloFAS-Seasonal real-time forecasts are implemented
and run operationally on the ECMWF computing facilities
using ecFlow (Bahra, 2011; ECMWF, 2012), an ECMWF
work package used to run large numbers of programmes with
dependencies on each other and on time. An ecFlow suite
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is a collection of tasks and scheduling instructions with a
user interface allowing for the interaction and monitoring of
the suite, the code behind it, and the output. The GloFAS-
Seasonal suite is run once per month and is used to re-
trieve the raw SEAS5 forecast data. It runs this through Lis-
flood and produces the final forecast products and visuali-
sations using the newly developed GloFAS-Seasonal post-
processing code.

The GloFAS-Seasonal suite performs tasks (detailed be-
low) such as retrieving data, running Lisflood, computing
weekly averages and forecast probabilities from the raw Lis-
flood river flow forecast data, and producing maps and hydro-
graphs for the interface. It is primarily written in Python (ver-
sion 2.7), with some elements written in R (version 3.1) and
shell scripts incorporating climate data operators (CDOs).
The code was developed and tested on OpenSUSE Leap 42
systems.

When a new SEAS5 forecast becomes available (typically
on the 5th of the month at 00:00 UTC), the GloFAS-Seasonal
ecFlow suite is automatically deployed. The structure of and
tasks within the ecFlow suite are shown in Fig. 3. Each “task”
represents one script from the GloFAS-Seasonal code. The
suite first retrieves the latest raw SEAS5 forecast surface and
subsurface variables for all 51 ensemble members (stagefc
and getfc tasks), alongside the river flow reference clima-
tology (see Sect. 2.2.4) for the corresponding month of the
forecast (copywb task). The Lisflood river routing model (de-
scribed in Sect. 2.2.3) is then run for each of the 51 ensem-
ble members (lisflood task). Lisflood is initialised using the
ERA5-R river flow reanalysis (see Sect. 2.2.4) and driven
with the SEAS5 surface and subsurface run-off forecast to
produce the 4-month ensemble river flow forecast at a daily
time step, from which the weekly averaged ensemble river
flow forecast is obtained (average task). The weekly aver-
ages are computed for every Monday–Sunday starting from
the first Monday of each month so that the weekly averages
correspond from one forecast to the next. While SEAS5 pro-
vides forecasts out to 7 months ahead, the first version of
GloFAS-Seasonal uses only the first 4 months. This is in or-
der to reduce the data volumes required and to allow for the
assessment of the forecast skill out to 4 months ahead before
possible extension of the forecasts out to 7 months ahead in
the future.

Once the weekly averaging is complete, the forecast prod-
uct section of the suite is deployed, which post-processes the
raw forecast output to produce the final forecast products dis-
played on the web interface. The code behind the forecast
product section is provided in the Supplement. For a full de-
scription of the forecast products, including examples, see
Sect. 3. The suite computes the full forecast distribution (dis-
tribution task), followed by the probability of exceedance for
each week of the forecast and for every grid point (proba-
bility task) based on the number of ensemble members ex-
ceeding the high flow threshold or falling below the low
flow threshold. The high and low flow thresholds are defined

as the 80th and 20th percentiles of the reference climatol-
ogy for the week of the year corresponding to the forecast
week to use thresholds based on time of year of the forecast.
From these weekly exceedance probabilities, the maximum
probability of exceedance across the 4-month forecast hori-
zon is calculated for each grid point (maxprob task). Basin-
averaged maximum probabilities are also produced (basin-
prob task) by calculating the mean maximum probability of
exceedance across every grid point at which the upstream
area exceeds 1500 km2 in each of the 306 major world river
basins used in GloFAS-Seasonal (see Sect. 3.1). A minimum
upstream area of 1500 km2 is chosen, as the current resolu-
tion of the global model is such that reliable forecasts for
very small rivers are not feasible.

These probabilities are used to produce the forecast visu-
alisation for the web interface (Sect. 3). Firstly, the map task
produces colour-coded maps of both the river network, again
for grid points at which the upstream area exceeds 1500 km2,
and the major world river basins. The reppoint task then pro-
duces an ensemble hydrograph and persistence diagrams for
a subset of grid points (the “reporting points”) across the
globe. Further details on the location of reporting points are
given in Sect. 3.3. Finally, the web task collates and subse-
quently transfers all data required for the web interface.

This process, from the time a new SEAS5 forecast be-
comes available, takes∼ 4 h on average to complete, with up
to 10 tasks running in parallel (for example, running Lisflood
for 10 ensemble members at the same time). It is possible
to speed up this process by running more ensemble mem-
bers in parallel; however, the speed is sufficient so that it is
not necessary to use further resources to produce the fore-
cast more quickly. GloFAS-Seasonal forecast products are
typically produced by the 5th of the month at 05:00 UTC
and made available via the web interface on the 10th of the
month at 01:00 UTC. This is the earliest that the GloFAS-
Seasonal forecasts can be provided publicly under the Coper-
nicus licence agreement. Data are automatically archived at
ECMWF as the suite runs in real time; ∼ 285 GB of data
from each SEAS5 forecast are used as input for GloFAS-
Seasonal. Each GloFAS-Seasonal forecast run produces an
additional ∼ 1.8 TB of data and makes use of the ∼ 18 TB
reference climatology.

2.4 GloFAS web interface

The GloFAS website is based on a user-centred design
(UCD), meaning that user needs are core to the design princi-
ples (ISO13407). The website uses Web 2.0 concepts such as
simplicity, joy of use, and usability that are synonymous with
engaging users. It is a rich internet application (RIA) aiming
to provide the same level of interactivity and responsiveness
as desktop applications. The website is designed for those en-
gaged in flood forecasting and water resources, as users can
browse various aspects of the current forecast or past fore-
casts in a simple and intuitive way, with spatially distributed
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Figure 2. All datasets used and produced for GloFAS-Seasonal, including reanalysis, reforecasts, real-time forecasts, and observations.

information. Map layers containing different information,
e.g. flood probabilities for different flood severities, precipi-
tation forecasts, and seasonal outlooks, can be activated and
the user can also choose to overlay other information such
as land use, urban areas, or flood hazard maps. The inter-
face consists of three principal modules: MapServer, GloFAS
Web Map Service Time, and the Forecast Viewer. These are
outlined below.

2.4.1 MapServer

MapServer (Open Source Geospatial Foundation, 2016) is an
open source development environment for building spatially
enabled internet applications developed by the University of
Minnesota. MapServer has built-in functionality to support
industry standard data formats and spatial databases, which
is significant to this project, and the support of popular Open
Geospatial Consortium (OGC) standards including WMS. In
order to exploit the potential of asynchronous data transfer
between server and client, the GloFAS raster data have to be
divided into a grid of adequate dimensions and an optimal
scale sequence.

2.4.2 GloFAS Web Map Service Time

The OpenGIS Web Map Service (WMS) is a standard pro-
tocol for serving geo-referenced map images over the inter-
net. A web map service time (WMS-T) is a web service that
produces maps in several raster formats or in vector format
that may come simultaneously from multiple remote and het-
erogeneous sources. A WMS server can provide support to
temporal requests (WMS-T) by providing a TIME parameter
with a time value in the request.

The WMS specification (OGC, 2015) describes three
HTTP requests; GetCapabilities, GetMap, and GetFeature-
Info. GetCapabilities returns an XML document describing
the map layers available and the server’s capabilities (i.e.
the image formats, projections, and geographic bounds of
the server). GetMap returns a raster map image. The request
arguments, such as the layer ID and image format, should
match those listed as available in the GetCapabilities return
document. GetFeatureInfo is optional and is designed to pro-
vide WMS clients with more information about features in
the map images that were returned by earlier GetMap re-
quests. The response should contain data relating to the fea-
tures nearest to an image coordinate specified in the GetFea-
tureInfo request. The structure of the data returned is not de-
fined in the specification and is left up to the WMS server
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Figure 3. The GloFAS-Seasonal ecFlow suite. The inset image shows the sub-tasks within the Lisflood task for 1 of the 51 ensemble
members. Colours indicate the status of each task. Yellow: complete, green: active, orange: suspended, pale blue: waiting, turquoise (not
shown): queued, and red (not shown): aborted or failed. Grey boxes indicate dependencies; for example, “lisflood= complete” indicates that
the Lisflood task and all Lisflood sub-tasks must have successfully completed in order for the average task to run.

implementation. The GloFAS WMS-T (GloFAS, 2018b) can
be freely used, allowing access to the GloFAS layers in any
GIS environment, such as QGIS (QGIS Development Team,
2017) or ArcMAP (Environmental Systems Research Insti-
tute, 2018). The user manual for the GloFAS WMS-T is
available via the GloFAS website (GloFAS, 2018a).

2.4.3 Forecast Viewer

The GloFAS Forecast Viewer is based on the model view
controller (MVC) architectural pattern used in software en-
gineering. The pattern isolates “domain logic” (the applica-

tion logic for the user) from input and presentation (user in-
terface, UI), permitting the independent development, test-
ing, and maintenance of each. A fundamental part of this is
the AJAX (asynchronous JavaScript and XML) technology
used to enhance user-friendly interfaces for web mapping
applications. AJAX technologies have a number of benefits;
the essential one is removing the need to reload and refresh
the whole page after every event. Careful application design
and component selection results in a measurably smaller web
server load in geodata rendering and publishing, as there is
no need to link and send the whole html document, just the
relevant part that needs to be changed.
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GloFAS uses OpenLayers (OpenLayers, 2018) as a WMS
client. OpenLayers is a JavaScript-based web mapping
toolkit designed to make it easy to put a dynamic map on
any web page. It does not depend on the server technology
and can display a set of vector data, such as points, with
aerial photographs as backdrop maps from different sources.
Closely coupled to the map widget is a layer manager that
controls which layers are displayed with facilities for adding,
removing, and modifying layers. The new layers associated
with GloFAS-Seasonal are described in the following sec-
tion.

3 Forecast products

The GloFAS seasonal outlook is provided as three new
forecast layers in the GloFAS Forecast Viewer: the basin
overview, river network, and reporting point layers. Each of
the three layers represents a different forecast product de-
scribed in the following sections. Information on each of the
layers is also provided for end users of the forecasts under the
dedicated “Seasonal Outlook” page of the GloFAS website.

3.1 Basin overview layer

The first GloFAS seasonal outlook product is designed to
provide a quick global overview of areas that are likely to
experience unusually high or low river flow over the com-
ing 4 months. The “basin overview” layer displays a map of
306 major world river basins colour coded according to the
maximum probability of exceeding the high (blue) or low
(orange) flow thresholds (the 80th and 20th percentiles of
the reference climatology, respectively) during the 4-month
forecast horizon. This value is calculated for each river basin
by taking the average of the maximum exceedance proba-
bilities at each grid cell within the basin (using only river
pixels with an upstream area > 1500 km2). The three differ-
ent shades of orange–blue indicate the probability: dark (>
90 %), medium (75 %–90 %), and light (50 %–75 %). Basins
that remain white are those in which the probability of un-
usually high or low flow does not exceed 50 % during the
4-month forecast horizon. An example is shown in Fig. 4.

As mentioned in Sect. 2.2.3, the Lisflood river network
is based on HydroSHEDS (Lehner et al., 2008). In order to
generate the river basins used in GloFAS-Seasonal, the corre-
sponding HydroBASINS (Lehner and Grill, 2013) data were
used. HydroBASINS consists of a suite of polygon layers de-
picting watershed boundaries at the global scale. These wa-
tersheds were manually merged using QGIS (QGIS Develop-
ment Team, 2017) to create a global polygon layer of major
river basins based on the river network used in the model.

3.2 River network layer

The second map layer provides similar information at the
sub-basin scale by colour-coding the entire model river net-

work according to the maximum exceedance probability dur-
ing the 4-month forecast horizon. This allows the user to
zoom in to their region of interest and view the forecast max-
imum exceedance probabilities in more detail. Again, only
river pixels with an upstream area > 1500 km2 are shown.
The same colour scheme is used for both the basin overview
and river network layers, with blue indicating high flow (ex-
ceeding the 80th percentile), orange low flow (falling be-
low the 20th percentile), and darker colours indicating higher
probabilities. In the river network layer, additional colours
also represent areas where the forecast does not exceed 50 %
probability of exceeding either the high or low flow thresh-
old (light grey) and where the river pixel lies in a climatolog-
ically arid area such that the forecast probability cannot be
defined (darker grey–brown). Examples of the river network
layer can be seen in both Fig. 4 (globally) and Fig. 5 (zoomed
in).

3.3 Reporting points layer

In addition to the two summary map layers, reporting points
are provided at both static and dynamic locations throughout
the global river network, providing additional forecast infor-
mation: an ensemble hydrograph and a persistence diagram.

Static points originally consisted of a selection of gauged
river stations included in the Global Runoff Data Centre
(GRDC; BfG, 2017); this set of points has since been ex-
panded to further include points at locations of particular in-
terest to GloFAS partners. There are now ∼ 2200 static re-
porting points in the GloFAS interface.

Dynamic points are generated to provide the additional
forecast information throughout the global river network, in-
cluding river reaches for which there are no static points.
These points are obtained for every new forecast based on a
set of selection criteria adapted from the GloFAS flood fore-
cast dynamic point selection criteria (Alfieri et al., 2013).

– The maximum probability of high (low) river flow (ex-
ceeding or falling below) the 80th (20th) percentile of
the reference climatology) during the 4-month forecast
horizon must be ≥ 50 % for at least five contiguous pix-
els of the river network.

– The upstream area of the selected point must be ≥
4000 km2.

– Dynamic reporting points are generated starting from
the most downstream river pixel complying with the
previous two selection criteria. A new reporting point
is then generated every 300 km upstream along the river
network, unless a static reporting point already exists
within a short distance of the new dynamic point or the
forecasts further upstream no longer comply with the
previous two criteria.

Reporting points are displayed as black circles in the “report-
ing points” seasonal outlook layer. An example is shown in
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Figure 4. Example screenshot of the seasonal outlook layers in the GloFAS web interface. Shown here are both the “basin overview” layer
and “river network” layer, both indicating the maximum probability of unusually high (blue) or low (orange) river flow during the 4-month
forecast horizon. The darker the colour, the higher the probability: darkest shading indicates > 90 % probability, medium shading indicates
75 %–90 % probability, and light shading indicates 50 %–75 % probability. A white basin or light grey river pixel indicates that the forecast
does not exceed 50 % probability of high or low flow during the forecast horizon. Legends providing this information are available for each
layer by clicking on the green “i” next to the layer toggle (shown at the bottom left in this example).

Fig. 5. Clicking on a reporting point brings up a new window
containing a hydrograph and persistence diagram alongside
some basic information about the location, such as the lat-
itude and longitude, and the upstream area of the point in
the model river network. The number of dynamic reporting
points can vary from one forecast to the next due to the cri-
teria applied; for example, the March 2018 forecast included
∼ 1600 dynamic points in addition to the static points, and
thus ∼ 3800 reporting points were available globally.

The ensemble hydrographs (also shown in Fig. 5) display
a fan plot of the ensemble forecast of weekly averaged river
flow out to 4 months, indicating the spread of the forecast and
associated probabilities. Also shown are thresholds based on
the reference climatology: the median and the 80th and 20th
percentiles. These thresholds are displayed as a 3-week mov-
ing average of the weekly averaged river flow for the given
threshold for the same months of the climatology as that of
the forecast (i.e. a forecast for J–F–M–A also displays thresh-
olds based on the reference climatology for J–F–M–A). This
allows for a comparison of the forecast to typical and extreme
conditions for the time of year.

Persistence diagrams (see Fig. 5) show the weekly prob-
ability of exceeding the high and low flow thresholds for
the current forecast (bottom row) and previous three fore-
casts colour coded to match the probabilities indicated in the

map layers. These diagrams are provided in order to highlight
the evolution of the forecast, which can indicate whether the
forecast is progressing consistently or whether behaviour is
variable from month to month.

4 Forecast evaluation

In this section, the GloFAS-Seasonal reforecasts are evalu-
ated using historical river flow observations. Benchmarking
a forecasting system is important to evaluate and understand
the value of the system and in order to communicate the skill
of the forecasts to end users (Pappenberger et al., 2015). This
evaluation is designed to measure the ability of the forecasts
to predict the correct category of an “event”, i.e. the abil-
ity of the forecast to predict that weekly averaged river flow
will fall in the upper 80th or lower 20th percentile of cli-
matology using a climatology of historical observations as a
benchmark. This can be referred to as the potential usefulness
of the forecasts and is of particular importance for decision-
making purposes (Arnal et al., 2018). Another key aspect of
probabilistic forecasts to consider is their reliability, which
indicates the agreement between forecast probabilities and
the observed frequency of events.
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Figure 5. Example of the “reporting points” GloFAS seasonal outlook layer in the web interface (a). Black circles indicate the reporting
points, which provide the ensemble hydrograph (b) and persistence diagrams for both low flow (c) and high flow (d). Also shown is an
example section of the “river network” seasonal outlook layer indicating the maximum probability of high (blue) or low (orange) river flow
during the 4-month forecast horizon. The darker the colour, the higher the probability.

The potential usefulness is assessed using the relative op-
erating characteristic (ROC) curve, which is based on ra-
tios of the proportion of events (the probability of detection,
POD) and non-events (the false alarm rate, FAR) for which
warnings were provided (Mason and Graham, 1999); in this
case warnings are treated as forecasts of river flow exceeding
the 80th or falling below the 20th percentile of the reference
climatology (see Sect. 2.2.4). These ratios allow for the esti-
mation of the probability that an event will be predicted.

For each week of the forecast (out to 16 weeks, corre-
sponding to the forecasts provided via the interface; for ex-
ample, the hydrograph shown in Fig. 5), the POD (Eq. 1) and
FAR (Eq. 2) are calculated for both the 80th and 20th per-
centile events at each observation station:

POD=
hits

hits+misses
, (1)

FAR=
false alarms

hits+ falsealarms
, (2)

where a hit is defined when the forecast correctly exceeded
(fell below) the 80th (20th) percentile of the reference cli-
matology during the same week that the observed river flow
exceeded (fell below) the 80th (20th) percentile of the obser-
vations at that station. It follows that a miss is defined when
an event was observed but the forecast did not exceed the
threshold, and a false alarm when the forecast exceeded the
threshold but no event was observed. From these, the area un-

der the ROC curve (AROC) is calculated, again for both the
80th and 20th percentile events. The AROC (0≤AROC≤ 1,

where 1 is perfect) indicates the skill of the forecasts com-
pared to the long-term average climatology (which has an
AROC of 0.5) and is used here to evaluate the potential use-
fulness of the forecasts. The maximum lead time at which
forecasts are more skilful than climatology (AROC > 0.5) is
identified; a forecast with an AROC < 0.5 would be less skil-
ful than climatology and thus not useful.

The reliability of the forecasts is assessed using attributes
diagrams, which show the relationship between the forecast
probability and the observed frequency of the events. While
the ROC measures the ability of a forecasting system to pre-
dict the correct category of an event, the reliability assesses
how closely the forecast probabilities correspond to the ac-
tual chance of observing the event. As such, these evalua-
tion metrics are useful to consider together. As with the ROC
calculations, the reliability is assessed for each week of the
forecast (out to 16 weeks) and for both the 80th and 20th per-
centile events. The range of forecast probabilities is divided
into 10 bins (0 %–10 %, 10 %–20 %, etc.), and the forecast
probability is plotted against the frequency at which an event
was observed for forecasts in each probability bin. Perfect
reliability is exhibited when the forecast probability and the
observed frequency are equal; for example, if a forecast pre-
dicts that an event will occur with a probability of 60 %, then
the event should occur on 60 % of the occasions that this fore-
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cast was made. Attributes diagrams can also be used to assess
the sharpness and resolution of the forecasts. Forecasts that
do not discriminate between events and non-events are said
to have no resolution (a forecast of climatology would have
no resolution), and forecasts which are capable of predicting
events with probabilities that differ from the observed fre-
quency, such as forecasts of high or 0 probability, are said to
have sharpness.

The GloFAS-Seasonal reforecasts (of which there are 216
covering 18 years, as described in Sect. 2.2.4 and Fig. 2)
are compared to river flow observations that have been made
available to GloFAS, covering 17 years of the study period up
to the end of 2015 when the data were collated (see Fig. 2).
To ensure a large enough sample size for this analysis, along-
side the best possible spatial coverage, the following criteria
are applied to the data.

– The weekly river flow data record available for each sta-
tion must contain no more than 53 % (9 years) missing
data. The high and low flow thresholds (the 80th and
20th percentile, respectively) are calculated using the
observations for each station and for each week across
the 17 years of data, so a sample size of 17 is the maxi-
mum possible. A threshold of (up to) 53 % missing data
allows for a minimum sample size of eight. Selecting
a smaller threshold reduced the number of stations and
the spatial coverage across the globe significantly. The
percentage of missing data is calculated at each station
and for each week of the dataset independently, and as
such the number of stations used can vary slightly with
time.

– The upstream area of the corresponding grid point in the
model river network must be at least 1500 km2.

These criteria allow for the use of 1140±14 stations globally.
While the dataset contains 6122 stations, just 1664 of these
contain data during the 17-year period, and none have the
full 17 years of data available. Data from human-influenced
rivers have not been removed, as in this study we are inter-
ested in identifying the ability of the forecasting system in its
current state to predict observed events rather than the ability
of the hydrological model to represent natural flow.

4.1 Potential usefulness

In order to gain an overview of the potential usefulness of
the GloFAS-Seasonal forecasts across the globe, we map the
maximum lead time at which the forecasts are more skil-
ful than climatology (i.e. AROC > 0.5) at each observation
station averaged across all forecast months. These results
are shown in Fig. 6, and it is clear that forecasts of both
high and low flow events are more skilful than climatology
across much of the globe, with potentially useful forecasts
at many stations out to 4 months ahead. However, there are
regions where the forecasts are (on average across all fore-

cast months) not useful (i.e. AROC < 0.5), such as the west-
ern USA and Canada (excluding coastlines), much of Africa,
and additionally across parts of Europe for low flow events.
As forecasts with an AROC larger than but close to 0.5 could
be deemed as only marginally more skilful than climatology,
we apply a skill buffer, setting the threshold to AROC > 0.6
for a forecast to be deemed as potentially useful. These re-
sults are mapped in Fig. 7 and clearly indicate the reduction
in the lead time at which forecasts are potentially useful (for
both high and low flow events) at many stations, implying
that in some locations, forecasts beyond the first 1–2 months
are only marginally more skilful than climatology. There
are, however, stations in some rivers with an AROC > 0.6
out to 4 months of lead time and many locations across the
globe that still indicate that forecasts are potentially useful
1–2 months ahead for both high and low flow events.

These results can be further broken down by season, in-
dicating whether the forecasts are more potentially useful
at certain times of the year. Maps showing the maximum
lead time at which AROC > 0.6 for each season (for fore-
casts started during the season; e.g. DJF indicates the aver-
age results for forecasts produced on 1 December, 1 January,
and 1 February) are provided for high and low flow events in
Figs. S1 and S2 in the Supplement, respectively.

The following paragraphs provide an overview of these re-
sults for each continent; for further detail please refer to the
maps.

South America. For high flow events, forecasts for the
Amazon basin in DJF and MAM are potentially useful out
to longer lead times (up to 3–4 months) and at more stations
than in JJA and SON, with similar results in MAM for low
flow events. In contrast, further south, forecasts are most po-
tentially useful JJA and SON up to 4 months ahead. In the
more mountainous regions of western South America, fore-
casts in JJA and SON are generally less skilful than climatol-
ogy for high and low flow events. In the north-west, however,
for some stations, forecasts started in DJF and MAM are po-
tentially useful up to 3 months ahead.

North America. In eastern North America, JJA and SON
forecasts are most potentially useful, with more stations in-
dicating an AROC > 0.6 out to 2–3 months ahead. However,
during all seasons there are several stations in the east show-
ing skill out to varying lead times. Much of the western half
of the continent (excluding coastal areas) sees forecasts that
are less skilful than climatology during all seasons, although
some stations do indicate skill up to 4 months ahead for high
flow, for forecasts started in MAM and JJA, and for low flow
in MAM. At many coastal stations in the west, forecasts of
high flow events started in DJF, MAM, and JJA indicate skill
out to 3–4 months and out to ∼ 6 weeks in SON.

Europe. Forecasts for European rivers generally perform
best for high flow events in SON and DJF, with the exception
of some larger rivers in eastern Europe, for which the fore-
casts are more potentially useful in JJA and SON. In MAM
and JJA, the number of stations indicating no skill is gener-
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Figure 6. Maximum forecast lead time (target week, averaged across all months) at which the area under the ROC curve (AROC) is greater
than 0.5 (a) for high flow events (flow exceeding the 80th percentile of climatology) and (b) low flow events (flow below the 20th percentile
of climatology) at each observation station. This is used to indicate the maximum lead time at which forecasts are more skilful than the
long-term average. Dot size corresponds to the upstream area of the location – thus larger dots represent larger rivers and vice versa. Grey
dots indicate that (on average, across all months) forecasts are less skilful than climatology at all lead times.

ally higher. In contrast, forecasts for low flow events are less
skilful than climatology across much of Europe. Particularly
in north-east Europe and Scandinavia, forecasts produced in
the summer months of JJA have an AROC < 0.6 at all sta-

tions, with only a few stations indicating any skill in other
seasons, whereas in central and south-east Europe forecasts
of low flow events are most skilful in JJA and SON out to 3–
4 months ahead in the larger rivers. These results are similar
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Figure 7. Maximum forecast lead time (target week, averaged across all months) at which the area under the ROC curve (AROC) is greater
than 0.6 for (a) high flow events (flow exceeding the 80th percentile of climatology) and (b) low flow events (flow below the 20th percentile
of climatology) at each observation station. This is used to indicate the maximum lead time at which forecasts are deemed skilful. Dot size
corresponds to the upstream area of the location – thus larger dots represent larger rivers and vice versa. Grey dots indicate that (on average,
across all months) forecasts are less skilful than climatology at all lead times. Maps for each season are provided in the Supplement.

to those of Arnal et al. (2018) for the potential usefulness of
the EFAS seasonal outlook.

Asia. Although the number of available stations is very
limited, the few stations available in South East Asia indicate

that the forecasts are potentially useful out to 3–4 months
ahead, particularly for forecasts started in DJF and MAM
preceding the start of the wet season. For low flow events,
this skill extends into JJA, whereas forecasts made in SON
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towards the end of the wet season tend to be less skilful than
climatology.

Australia and New Zealand. Forecasts are most skilful out
to longer lead times in the Murray–Darling river basin in the
south-east, in particular for forecasts started in JJA and SON
during the Southern Hemisphere winter and spring. In north-
ern Australia, forecasts started in DJF and MAM for high
flow events and MAM and JJA for low flow events are poten-
tially useful out to 3–4 months ahead. This corresponds with
the assessment of the skill of the Bayesian joint probability
modelling approach for sub-seasonal to seasonal streamflow
forecasting in Australia by Zhao et al. (2016), who found
that forecasts in northern Australian catchments tend to be
more skilful for the dry season (May to October) than the wet
season (December to March). At the three stations in New
Zealand, forecasts are only skilful for high flow events dur-
ing the first month of lead time in DJF and MAM; however,
for low flow events forecasts made in SON for the southern
stations are potentially useful out to 4 months ahead.

Africa. While the spatial distribution of stations is limited,
for high flow events forecasts are seen to be potentially useful
at some of the stations in eastern Africa, particularly in SON
and to a lesser extent in DJF. In southern Africa, there is skill
in DJF and MAM, although the maximum lead time varies
significantly from station to station. For low flow, there is lit-
tle variation between the seasons; forecasts are generally less
skilful than climatology across the continent, with some sta-
tions in DJF in southern and western Africa indicating skill
in the first 1–2 months only.

4.2 Reliability

To provide an overall picture of the reliability of the GloFAS-
Seasonal forecasts, attributes diagrams are produced for fore-
casts aggregated across all observation stations globally for
both the 80th and 20th percentile events. In order to assess
geographical differences in forecast reliability, attributes di-
agrams are also produced for forecasts aggregated across the
stations within each of the major river basins used in the
GloFAS-Seasonal forecast products (see Sect. 3.1). Many of
these river basins do not contain a large enough number of
stations to produce useful attributes diagrams, and as such
the results in this section are presented for one river basin per
continent for this initial evaluation. The river basin chosen
for each continent is that which contains the largest number
of observation stations.

The globally aggregated results (Fig. 8) indicate that, in
general, the forecasts have more reliability than a forecast of
climatology, though the reliability is less than perfect. It is
important to note that the globally aggregated results shown
in Fig. 8 mask any variability between river basins. Overall,
the reliability appears to be slightly better for forecasts of
high flow events than low flow events, and for lower proba-
bilities, indicated by the steeper positive slope showing that
as the forecast probability increases, so does the verified

chance of the event. The forecasts for both high and low
flow events exhibit sharpness, although more so for high flow
events, meaning that they have the ability to forecast proba-
bilities that differ from the climatological average. This is
indicated by the histograms inset within the attributes dia-
grams in Fig. 8; a forecast with sharpness will show a range
of forecast probabilities differing from the climatological av-
erage (20 %), and a forecast with perfect sharpness will show
peaks in the forecast frequency at 0 % and 100 %. Forecasts
with no or low sharpness will show a peak in the forecast fre-
quency near the climatological average. A forecast can have
sharpness but still be unreliable. Figure 8 also suggests that in
general, GloFAS-Seasonal forecasts have a tendency to over-
predict the likelihood of an event occurring.

The following paragraphs summarise the forecast reliabil-
ity for one river basin per continent; for a map of the location
of these river basins, please refer to Fig. S3. The attributes di-
agrams for these river basins for both the 80th and 20th per-
centile events and for each season are provided in Figs. S4–
S8. Each attributes diagram displays the results for forecast
weeks 4, 8, 12, and 16, representing the reliability out to 1,
2, 3, and 4 months ahead. There are no river basins in Asia
containing enough stations to produce an attributes diagram.

South America, Tocantins River (Fig. S4). For high flow
events, forecasts for the Tocantins River indicate good relia-
bility in all seasons, particularly up to 50 % probability. Fore-
casts in the higher-probability bins tend to over-predict, and
this over-prediction worsens with lead time. In MAM and
JJA, the forecasts tend to slightly under-predict in the lower-
probability bins. The forecasts have sharpness, but it is clear
that the sample size of high-probability forecasts is limited.
There is a tendency to over-predict the likelihood of low flow
events in all seasons, but the forecasts show good reliability
for the lower-probability bins, particularly in SON and DJF.
In JJA, the resolution of the forecasts is low.

North America, Lower Mississippi River (Fig. S5). For
high flow events, the sample size of high-probability fore-
casts is small, and as such it is difficult to evaluate the relia-
bility of these forecasts. The forecasts at lower probabilities
have good reliability, particularly out to 2 months ahead in
MAM and JJA. In SON and DJF, forecasts are more reliable
at longer lead times. There is a tendency to under-predict at
low probabilities and over-predict at high probabilities. For
low flow events, the forecasts have a tendency to over-predict
in all seasons, and the resolution of the forecasts is lower than
for high flow events. At higher probabilities, forecasts of low
flow events are more reliable than climatology, but the reso-
lution is particularly low for probabilities up to 50–60 %. The
forecasts for both high and low flow events have sharpness.

Europe, River Rhône (Fig. S6). For the River Rhône, the
reliability is better than climatology at all lead times for high
flow events, although there is a lack of forecasts of higher
probabilities, particularly in MAM and JJA, as may be ex-
pected in the summer months. In SON, the reliability of fore-
casts up to 60–70 % is good at all lead times, and in DJF the
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Figure 8. Attributes diagram for forecasts of (a) low flow events (flow below the 20th percentile of climatology) and (b) high flow events
(flow exceeding the 80th percentile of climatology) aggregated across all observation stations globally. Results are shown for lead time
weeks 4, 8, 12, and 16 and indicate the reliability of the forecasts. The histograms (inset) show the frequency at which forecasts occur in each
probability bin and are used to indicate forecast sharpness. Attributes diagrams for selected river basins are provided in the Supplement.

forecasts are more reliable in the first 2 months of lead time
for most probability bins. The reliability is less good for low
flow events, but is generally better than climatology, partic-
ularly in summer (JJA). In winter (DJF), the resolution and
reliability of the forecasts is poor. For all seasons and lead
times and for both events, the forecasts have sharpness.

Australia, Murray River (Fig. S7). The attributes diagrams
for both high and low flow events indicate that forecasts are
often over-confident in this river basin, with probabilities
of 0 %–10 % for low flow events and 0 %–30 % and 90 %–
100 % for high flow events, occurring frequently. As such,
the sample size of forecasts in several of the bins is low. For
high flow events, forecasts tend to over-predict at high proba-
bilities and under-predict at low probabilities. The reliability
is very good up to ∼ 30 %, after which the sample size is
too small. For low flow events, there is a tendency to under-
predict, but based on the forecasts available, the reliability is
better than climatology at all lead times. The reliability for
low flow events is better in SON and DJF (spring and sum-
mer) than MAM and JJA (autumn and winter), and for high
flow events there is less differentiation between the seasons.

Africa, Orange River (Fig. S8). For the Orange River, fore-
casts of high flow events exhibit good reliability for lower
probabilities in SON, DJF, and MAM (spring through au-
tumn), particularly at longer lead times in SON and DJF, with
a tendency to over-predict at higher probabilities. Resolution
and reliability are poor for high flow events in JJA (winter),
with probabilities of 90 %–100 % predicted too frequently.
For low flow events, forecasts of 0 %–10 % are very frequent,
and the forecasts under-predict in all seasons, although the
reliability is better than climatology at all lead times (based

on a limited sample of forecasts for most probability bins).
Reliability for low flow events is best in DJF (summer).

4.3 Discussion

The results presented provide an initial evaluation of the po-
tential usefulness and reliability of GloFAS-Seasonal fore-
casts. For decision-making purposes, it is important to mea-
sure the ability of a forecasting system to predict the cor-
rect category of an event. As such, an event-based evaluation
of the forecasts is used to assess whether the forecasts were
able to correctly predict observed high and low river flow
events over a 17-year period and whether it is able to do so
with good reliability. The initial results are promising, indi-
cating that the forecasts are, on average, potentially useful
up to 1–2 months ahead in many rivers worldwide and up to
3–4 months ahead in some locations. The GloFAS-Seasonal
forecasts have sharpness, i.e. they are able to predict forecasts
with probabilities that differ from climatology, and overall
have better reliability than a forecast of climatology, but with
a tendency to over-predict at higher probabilities. It is also
clear that there is a frequency bias in the reliability results,
as often there is a small sample of high-probability forecasts.
Typically, the reliability is seen to be better when there is a
higher forecast frequency on which to base the results. As
would be expected, the potential usefulness and reliability of
the forecasts vary by region, season, and forecast lead time.

Considering the evaluation results by season allows for
further analysis of the times of year in which the forecasts
are potentially useful and/or reliable. For example, in south-
east Australia, forecasts are seen to be potentially useful up to
4 months ahead in JJA and SON, but for forecasts produced
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in DJF the skill only extends to 1 month ahead, and forecasts
are less skilful than climatology at several of the stations in
MAM. In many rivers across the globe, it is the case that fore-
casts are potentially useful in some seasons, but not in others,
and may be more reliable in certain seasons than others. As
such, the maps provided in Figs. S1 and S2 are intended to
highlight where and when the forecasts are likely to be use-
ful, information that is key in terms of decision-making.

It is clear that there are regions and seasons in which the
forecasts are less skilful than climatology and do not have
good reliability, and thus in these rivers it would be more
useful to use a long-term average climatology than seasonal
hydro-meteorological forecasts of river flow. This lack of
skill could be due to several factors, such as certain hy-
drological regimes that may not be well-represented in the
hydrological model or may be difficult to forecast at these
lead times (for example, snow-dominated catchments or re-
gions where convective storms produce most of the rainfall
in some seasons), poor skill of the meteorological forecast
input, poor initial conditions from the ERA5-R reanalysis,
extensive management of rivers that cannot be represented
by the current model, or the lack of model calibration. While
this initial evaluation is designed to provide an overview of
whether the forecasts are potentially useful and reliable in
predicting high and low flow events, more extensive anal-
ysis is required to diagnose the sources of predictability in
the forecasts and the potential causes of poor skill. Addition-
ally, it is evident that observations of river flow, particularly
covering the reforecast period, are both spatially and tempo-
rally limited across large areas of the globe. A more extensive
analysis should make use of the globally consistent ERA5-R
river flow reanalysis as a benchmark in order to fully assess
the forecast skill worldwide, including in regions where no
observations are available.

The verification metrics used also require that a high or
low flow event is predicted with the correct timing in the
same week as that in which it occurred. This is asking a
lot of a seasonal forecasting system and for many applica-
tions, such as water resources and reservoir management,
a forecast of the exact week in which an event is expected
at a lead time of several months ahead may not be neces-
sary. That such a system shows real skill despite this being
a tough test for the model and is able to successfully predict
observed high or low river flow in a specific week, several
weeks or months ahead, provides optimism for the future of
global-scale seasonal hydro-meteorological forecasting. Fur-
ther evaluation should aim to assess the skill of the forecasts
with a more relaxed constraint on the event timing and also
make use of alternative skill measures to cover different as-
pects of the forecast skill, such as the spread and bias of the
forecasts. It will also be important to assess whether the use
of weekly averaged river flow is the most appropriate way to
display the forecasts. While this is commonly used for appli-
cations such as drought early awareness and water resources
management, there may be other aspects of decision-making,

such as flood forecasting, for which other measures may be
more appropriate, for example daily averages or floodiness
(Stephens et al., 2015).

Future development of GloFAS-Seasonal will aim to ad-
dress these evaluation results and improve the skill and re-
liability of the current forecasts; it will also aim to over-
come some of the grand challenges in operational hydrolog-
ical forecasting, such as seamless forecasting and the use of
data assimilation. Seamless forecasting will be key in the fu-
ture development of GloFAS; the use of two different meteo-
rological forecast inputs for the medium-range and seasonal
versions of the model means that discrepancies can occur be-
tween the two timescales, thus producing confusing and in-
consistent forecast information for users. Additionally, the
use of river flow observations could lead to significant im-
provements in skill through calibration of the model using
historical observations and assimilation of real-time data to
adjust the forecasts. This remains a grand challenge due to
the lack of openly available river flow data, particularly in
real time.

5 Conclusions

In this paper, the development and implementation of a
global-scale operational seasonal hydro-meteorological fore-
casting system, GloFAS-Seasonal, was presented, and an
event-based forecast evaluation was carried out using two
different but complementary verification metrics to assess the
capability of the forecasts to predict high and low river flow
events.

GloFAS-Seasonal provides forecasts of high or low river
flow out to 4 months ahead for the global river network
through three new forecast product layers via the openly
available GloFAS web interface at http://www.globalfloods.
eu (last access: 16 August 2018). Initial evaluation results are
promising, indicating that in many rivers, forecasts are both
potentially useful, i.e. more skilful than a long-term average
climatology out to several months ahead in some cases, and
overall more reliable than a forecast of climatology. Forecast
skill and reliability vary significantly by region and by sea-
son.

The initial evaluation, however, also indicates a tendency
of the forecasts to over-predict in general, and in some re-
gions forecasts are currently less skilful than climatology; fu-
ture development of the system will aim to improve the fore-
cast skill and reliability with a view to providing potentially
useful forecasts across the globe. Development of GloFAS-
Seasonal will continue based on results of the forecast eval-
uation and on feedback from GloFAS partners and users
worldwide in order to provide a forecast product that remains
state of the art in hydro-meteorological forecasting and caters
to the needs of its users. Future versions are likely to address
some of the grand challenges in hydro-meteorological fore-
casting in order to improve forecast skill, such as data assim-

Geosci. Model Dev., 11, 3327–3346, 2018 www.geosci-model-dev.net/11/3327/2018/

http://www.globalfloods.eu
http://www.globalfloods.eu


R. Emerton et al.: GloFAS-Seasonal v1.0 3343

ilation, and will also include more features, such as flexible
percentile thresholds and indication of the forecast skill via
the interface. A further grand challenge that is important in
terms of global-scale hydro-meteorological forecasting, and
indeed for the development of GloFAS, is the need for more
observed data (Emerton et al., 2016), which is essential not
only for providing initial conditions to force the models, but
also for evaluation of the forecasts and continuous improve-
ment of forecast accuracy.

While such a forecasting system requires extensive com-
puting resources, the potential for use in decision-making
across a range of water-related sectors, and the promising re-
sults of the initial evaluation, suggest that it is a worthwhile
use of time and resources to develop such global-scale sys-
tems. Recent papers have highlighted the fact that seasonal
forecasts of precipitation are not necessarily a good indica-
tor of potential floodiness and called for investment in better
forecasts of seasonal flood risk (Coughlan De Perez et al.,
2017; Stephens et al., 2015). Coughlan de Perez et al. (2017)
state that “ultimately, the most informative forecasts of flood
hazard at the seasonal scale could be seasonal streamflow
forecasts using hydrological models” and that better seasonal
forecasts of flood risk could be hugely beneficial for disaster
preparedness.

GloFAS-Seasonal represents a first attempt at overcoming
the challenges of producing and providing openly available
seasonal hydro-meteorological forecast products, which are
key for organisations working at the global scale and for re-
gions where no other forecasting system exists. We provide,
for the first time, seasonal forecasts of hydrological vari-
ables for the global river network by driving a hydrologi-
cal model with seasonal meteorological forecasts. GloFAS-
Seasonal forecasts could be used in addition to other fore-
cast products, such as seasonal rainfall forecasts and short-
range forecasts from national hydro-meteorological centres
across the globe, to provide useful added information for
many water-related applications from water resources man-
agement and agriculture to disaster risk reduction.

Code availability. The ECMWF IFS source code is available sub-
ject to a licence agreement, and as such access is available to the
ECMWF member-state weather services and other approved part-
ners. The IFS code is also available for educational and academic
purposes as part of the OpenIFS project (ECMWF, 2011, 2018a),
with full forecast capabilities and including the HTESSEL land
surface scheme, but without modules for data assimilation. Simi-
larly, the GloFAS river routing component source code is not openly
available; however, the “forecast product” code (prior to implemen-
tation in ecFlow) that was newly developed for GloFAS-Seasonal
and used for a number of tasks such as computing exceedance prob-
abilities and producing the graphics for the interface is provided in
the Supplement.

Data availability. ECMWF’s ERA5 reanalysis and SEAS5 refore-
casts are available through the Copernicus Climate Data Store
(Copernicus, 2018a). The ERA5-R river flow reanalysis and the
GloFAS-Seasonal reforecasts (daily data) are currently available
from the authors on request and will be made available through
ECMWF’s data repository in due course. The majority of the ob-
served river flow data were provided by the Global Runoff Data
Centre (GRDC; BfG, 2017). These data are freely available from
https://www.bafg.de/ (last access: 16 August 2018). Additional data
were provided by the Russian State Hydrological Institute (SHI,
2018), the European Flood Awareness System (EFAS, 2017), So-
malia Water and Land Information Management (SWALIM, 2018),
South Africa Department for Water and Sanitation (DWA, 2018),
Colombia Institute of Hydrology, Meteorology and Environmental
Studies (IDEAM, 2014), Nicaragua Institute of Earth Studies (IN-
ETER, 2016), Dominican Republic National Institute of Hydraulic
Resources (INDRHI, 2017), Brazil National Centre for Monitor-
ing and Forecasting of Natural Hazards (Cemaden, 2017), Environ-
ment Canada Water Office (Environment Canada, 2014), Nepal De-
partment of Hydrology and Meteorology (DHM, 2017), Red Cross
Red Crescent Climate Centre (RCCC, 2018), Chile General Water
Directorate (DGA, 2018), and the Historical Database on Floods
(BDHI, 2018).

Supplement. The supplement related to this article is available
online at: https://doi.org/10.5194/gmd-11-3327-2018-supplement.
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ABSTRACT

The Thames basin experienced 12 major Atlantic depressions in winter 2013/14, leading to extensive and

prolonged fluvial and groundwater flooding. This exceptional weather coincided with highly anomalous

meteorological conditions across the globe. Atmospheric relaxation experiments, whereby conditions within

specified regions are relaxed toward a reanalysis, have been used to investigate teleconnection patterns.

However, no studies have examined whether improvements to seasonal meteorological forecasts translate

into more skillful seasonal hydrological forecasts. This study applied relaxation experiments to reforecast the

2013/14 floods for three Thames basin catchments with different hydrogeological characteristics. The tropics

played an important role in the development of extreme conditions over the Thames basin. The greatest

hydrological forecasting skill was associated with the tropical Atlantic and less with the tropical Pacific, al-

though both captured seasonal meteorological flow anomalies. Relaxation applied over the northeastern

Atlantic produced confident ensemble forecasts, but hydrological extremes were underpredicted; this was

unexpected with relaxation applied so close to the United Kingdom. Streamflow was most skillfully forecast

for the catchment representing a large drainage area with high peak flow. Permeable lithology and antecedent

conditions were important for skillfully forecasting groundwater levels. Atmospheric relaxation experiments

can improve our understanding of extratropical anomalies and the potential predictability of extreme events

such as the Thames 2013/14 floods. Seasonal hydrological forecasts differed from what was expected from the

meteorology alone, and thus knowledge is gained by considering both components. In the densely populated

Thames basin, considering the local hydrogeological context can provide an effective early alert of potential

high-impact events, allowing for better preparedness.

1. Introduction

The prediction of water availability over seasonal time

scales is beneficial for many aspects of the water sector,

including flood forecasting, water supply, hydropowerDenotes content that is immediately available upon publica-

tion as open access.
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generation, and navigation. For contingency planners,

skillful seasonal hydrological forecasts (SHFs) of river

and groundwater levels have the potential to provide an

indication of possible flood events weeks or months in

advance, allowing for more optimal and consistent deci-

sions to be made (Arnal et al. 2017). The operational use

of SHFs, however, remains a challenge because of un-

certainties posed by the initial hydrologic conditions (e.g.,

soil moisture, groundwater levels) and seasonal climate

forcings (mainly forecasts of precipitation and tempera-

ture) that lead to a decrease in skill with increasing lead

times (Wood and Lettenmaier 2008; Svensson 2016).

Across the United Kingdom and Europe, seasonal

streamflow and groundwater forecast methods are cur-

rently being developed for application, for example, the

U.K.MetOfficeGlobal Seasonal Forecast System(GloSea5),

the Hydrological Outlook UK, and the Copernicus

European Flood Awareness System (MacLachlan et al.

2015; Mackay et al. 2015; Svensson 2016), supported by

Copernicus projects including Service forWater Indicators

in Climate Change Adaptation (SWICCA) and End-to-

End Demonstrator for Improved Decision-Making in the

Water Sector in Europe (EDgE; Copernicus 2017a,b).

Recent U.K. developments in SHFs stem from a pro-

longed period of drought beginning in 2010, which

changed rapidly to widespread flooding during the winter

of 2013/14. Driven by the consecutive formation of 12

majorAtlantic depressions, the period betweenDecember

2013 and February 2014 (DJF 2014) was the wettest in the

UnitedKingdom since records began in 1910 (Huntingford

et al. 2014; Kendon and McCarthy 2015; Muchan et al.

2015) and the stormiest for at least 143 years when mea-

sured by cyclone frequency and intensity (Matthews et al.

2014). Individual storm events did not yield exceptional

rainfall, but accumulated levels over the period led to ex-

tensive flooding nationwide, the costs of which were esti-

mated at £1.3 billion (Environment Agency 2015a). The

ThamesRiver basin (southeastUnitedKingdom) received

more than half a year’s typical rainfall during DJF 2014

(Lewis et al. 2015), which led to concurrent fluvial, pluvial

(surfacewater/flash), and groundwater flooding—so-called

compound or coincident flood events (Thorne 2014).

To date, seasonal hydrological forecasting studies in the

Thames and other lowland catchments have primarily

identified initial hydrologic conditions as a dominant

source of predictability (see Svensson et al. 2015; Svensson

2016). This is because flow regimes are dominated by

slowly released groundwater, and forecast skill can be

derived largely from the hydrogeological memory of

antecedent conditions. Research conducted elsewhere,

however, has found that driving hydrological models

with more skillful meteorological inputs can capture

observed flood events (Yossef et al. 2013) and improve

hydrological prediction skill for streamflow (Shukla and

Lettenmaier 2011; Svensson et al. 2015) and groundwater

levels (Almanaseer et al. 2014). The contribution of me-

teorological forcing to SHF skill has also been found to

outweigh that provided from initial hydrologic conditions

during times of transition from dry to wet climate condi-

tions (Wood et al. 2016). In the United Kingdom, there

is demand to develop and improve the characterization

and skill of meteorological inputs (Lewis et al. 2015) to

improve hydrological forecasting skill at longer lead times

and during winter months (e.g., see Li et al. 2009; Shukla

and Lettenmaier 2011; Thober et al. 2014). This is recog-

nized as being particularly important for predicting

groundwater levels during extreme events as currently,

inadequacies in seasonal rainfall forecasts have resulted in

low groundwater forecast skill in all but the most quickly

responding U.K. catchments (Mackay et al. 2015). Con-

sidering better predictions of meteorological conditions,

alongside studies focusing on the role of initial hydrologic

conditions, will help ascertain which skill improvements

have the greatest potential to benefit hydrological forecasts

across the Thames basin.

There has been much discussion regarding the mete-

orological factors that led to the DJF 2014 floods in south-

ern England. Huntingford et al. (2014) proposed various

driving mechanisms for the precipitation anomalies,

with the North Atlantic Oscillation (NAO) providing the

strongest relationship.ApositiveNAO, characterized by an

atmospheric pressure difference between the Azores and

Iceland, is associatedwith increased delivery of rain-bearing

cyclonic weather systems into northern Europe during the

winter months (Wilby 2001; Svensson et al. 2015). The im-

portance of the NAO, however, was disputed by van

Oldenburg et al. (2015), who stated that a pressure pat-

tern bearing a low to the west of Scotland (as opposed to

Iceland) accounted for substantially more of the variance in

precipitation during this event and that combinations of

major large-scale modes of variability are likely to have

caused the stormy conditions (see also Knight et al. 2017).

The exceptional conditions of DJF 2014 have thus also

been attributed to a hemispheric pattern of severe

weather. Relative to the December 1981–February 2010

ERA-Interim climatology, sea surface temperatures

(SSTs) in the tropical Pacific were warmer than usual,

which disturbed wind patterns over the northeast Pacific

and deflected the Atlantic jet stream northward. This

brought cold air to NorthAmerica while eastern Europe

was anomalously warm (Palmer 2014; Watson et al.

2016); this temperature gradient strengthened the jet

stream and provided conditions for the continued for-

mation of depressions that affected theUnitedKingdom

(Slingo et al. 2014). These anomalous conditions, however,

were not skillfully forecast by the European Centre for
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Medium-Range Weather Forecasts (ECMWF) Opera-

tional System 4 (S4) seasonal meteorological forecasting

system (Molteni et al. 2011). As a result, the ECMWF

conducted a set of hindcast atmospheric relaxation ex-

periments (AREs) to better understand the role of

tropical sea surface temperatures in forcing the extra-

tropical circulation response. The AREs relaxed the

atmosphere toward the ERA-Interim reanalysis state

within specified domains highlighted by negativeRossby

wave source anomalies (see Rodwell et al. 2015;

Magnusson 2017), forcing S4 to more accurately repre-

sent the cyclonic weather conditions prevailing in winter

2013/14. The results provided convincing evidence that

the temperature and precipitation anomalies in Europe

and North America were embedded within a hemi-

spheric regime that was partly forced by tropical and

underlying sea surface temperatures via Rossby wave

source forcing (associated with its convection and di-

vergent outflow) and that increased precipitation may

have acted to reinforce the upstream wave.

This paper will use the ECMWF’s AREs from Rodwell

et al. (2015) to relate seasonal hydrological forecasting

skill to the forecasting skill of meteorological input and its

traceability from different atmospheric domains. Seasonal

hydrological reforecasts for DJF 2014 were conducted

using the European Flood Awareness System (EFAS)

with seasonal meteorological input generated from the

unforced S4 and three AREs. Specifically, we seek to

identify 1) which seasonal meteorological reforecasts

perform best, 2) whether increased skill in seasonal me-

teorological input translates through to more accurate

streamflow and groundwater reforecasts for the 2013/14

compound flood event in the Thames River basin, and 3)

how hydrological response differs for catchments with

different geological and land-use characteristics. We dis-

cuss the potential for improvements to seasonal meteo-

rological and hydrological forecasts and the practical value

ofmore skillful seasonal flood forecasts for stakeholders to

assist with decision-making in the Thames River basin.

2. Methods

a. Study catchments

The Thames River basin (containing 18 tributary catch-

ments) covers approximately 16200km2 in the southern

United Kingdom. The western side is predominantly rural,

comprising agriculture and woodland with rolling hills and

wide, flat floodplains. Toward the center and east, the basin

becomes increasingly urbanized, encompassing the towns of

Reading, Slough, and Greater London. The source of the

River Thames is located in the west (elevation up to 350m

MSL) and flows 230km to Teddington Lock, which is the

official upper tidal limit (elevation 4m MSL; Fig. 1). The

basin encompasses a diverse range of lithologies that greatly

influence the flow regime of the Thames and its tributaries,

from seasonally spring-fed streams to chalk aquifers with

high baseflow and clay-based rivers that are characterized

by a flashy response to storm events and high levels of

surface runoff (Bloomfield et al. 2009). Anthropogenic

channelmodifications, abstraction frommajor aquifers, and

discharge points into the river also influence the flow re-

gime; abstraction specifically represents a 5%–12% reduc-

tion in typical annual peak flow (Thames Water 2010).

Recent estimates identifiedmore than 200000 properties at

risk of flooding from a ‘‘100 year’’ event across the basin

(Environment Agency 2009).

For the purposes of forecasting fluvial and ground-

water floods, this study focuses on three catchments with

contrasting geological and physical characteristics up-

stream of Teddington Lock that experienced compound

flood events during DJF 2014. The Evenlode is a rela-

tively small (429 km2) rural agricultural headwater

catchment dominated by a limestone aquifer. The Loddon

(682 km2) comprises a rural–urban gradient and variable

geology. The area referred to in Fig. 1 as Lower Thames

(324 km2) is the farthest point downstream before

Teddington Lock and is small and heavily urbanized,

with a densely populated floodplain largely overlaying

impervious London clay deposits (Fig. 1, Table 1).

b. ECMWF atmospheric relaxation experiments

The rationale behind the AREs was to investigate

teleconnection patterns from specified forcing regions.

The concept nudges the forecast toward the ‘‘true state’’

in a predefined area during the forecast integration,

allowing the downstream impacts from the region to be

investigated. The nudging involves adding an extra term

to the prognostic equations of the model. Further details

about the relaxation technique can be found in section 2.2

in Magnusson (2017). The source regions in this study

were selected based on their strong and persistent

seasonal-mean forcing on theRossbywaveguide (Rodwell

et al. 2015). As these forcing patterns in the source regions

potentially had a long predictability, it was expected that

the AREs should show impact on the predictability in

other parts of the world.

This paper used three ARE model runs (AR_NPAC,

AR_WATL, and AR_EATL), each representing a dif-

ferent source of atmospheric relaxation (see Figs. 2d–f

and Figs. A1a–c in appendix A). The source regions

were chosen where a strong average forcing on the

northern midlatitude flow during DJF 2014 was identi-

fied, using a Rossby wave source as the diagnostic [see

Rodwell et al. (2015) for details]. TheAR_NPAC region

(centered at 358N, 1508W) can be physically explained as
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the region where forcing from the northeast tropical

Pacific acted on themidlatitude flow (Fig. 2d).AR_WATL

(western Atlantic) was the source region for Atlantic

cyclones (358N, 758W; Fig. 2e). AR_EATL was over the

northeast Atlantic (558N, 158W) and was associated with

the heavy precipitation experienced during DJF 2014, al-

though not directly linked to any underlying SST anomaly

(Fig. 2f). In eachof the regions, the atmospherewas relaxed

toward the ERA-Interim reanalysis state to determine the

impact of each region.

All seasonal meteorological ensemble forecasts (S4 has

51 ensemble members and AR_NPAC, AR_WATL, and

AR_EATL have 28 members) were produced by the

ECWMF Integrated Forecasting System (IFS) coupled

FIG. 1. Thames River basin, showing the geographical context and location of the West Thames National River Flow Archive (NRFA

2017) river gauging stations and EA (EA 2017) groundwater boreholes for the Evenlode, Loddon, and Lower Thames catchments. The

West Thames general lithology are from the British Geological Survey (after Bloomfield et al. 2011), catchments and rivers are from the

Water Framework Directive (EA 2015b), and the base map and urban areas are from Ordnance Survey (2017).

TABLE 1. Summary of catchment characteristics and flow regimes.Dominant land use obtained fromCentre for Ecology andHydrology

LandCover Map 2007 (NERC 2011) and general lithology (British Geological Survey after Bloomfield et al. 2011). Time to peak cal-

culated according to the Revitalised Flood Hydrograph (ReFH) model (Kjeldsen 2007). Gauged flow regimes under average (Q50) and

high extreme (Q10) conditions; values from NRFA (2017).

Catchment

Dominant land use

(% of catchment)

General lithology

(% of catchment) Time to peak (Tp) Gauged flow regimes (m3 s21)

Evenlode Agriculture 5 85% Mudstone/clay 5 41% Tp 5 14.68 h Q50 5 2.52, Q10 5 8.93

Urban 5 2% Chalk/limestone 5 58%

Seminatural 5 13% Sandstone 5 1%

Loddon Agriculture 5 50% Mudstone/clay 5 36% Tp 5 9.81 h Q50 5 2.31, Q10 5 5.92

Urban 5 20% Chalk/limestone 5 22%

Seminatural 5 30% Sandstone 5 42%

Lower Thames Agriculture 5 43% Mudstone/clay 5 53% Tp 5 34.31 h Q50 5 40.5, Q10 5 161.6

Urban 5 35% Chalk/limestone 5 16%

Seminatural 5 22% Sandstone 5 31%
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atmosphere–ocean–land model. The atmospheric model

was run at T255 horizontal resolution (;80km) with 60

vertical levels (91 for S4), and the NEMO ocean model

with 18 horizontal resolution inmiddle latitudes and higher

resolution near the equator. Because of model updates,

AREs used a more recent atmospheric model version

(CY40R1) than that which is used operationally in S4

(CY36R4). ECMWF produced a 28-member ensemble of

unforced control runs (NO_AR; Figs. 2c andA1d); neither

cycle was able to predict the observed planetary wave

anomaly in DJF 2014.

c. Seasonal hydrological modeling

Hydrological reforecasts were produced using the EFAS

seasonal hydrological forecasting suite. EFAS aims to in-

crease preparedness for floods in largeEuropean river basins

basedonoperational probabilistic flood forecasts (Bartholmes

et al. 2009; Thielen et al. 2009; Smith et al. 2016). The

hydrological model used in EFAS is LISFLOOD, a hybrid

between a conceptual and a physical rainfall–runoff model

combinedwith a river routingmodule and run on a 5km3
5km grid (van der Knijff et al. 2010; Alfieri et al. 2014).

LISFLOOD is calibrated using nonnaturalized data. A new

seasonal outlook for EFAS was recently developed by the

ECMWF that uses seasonal meteorological ensemble fore-

casts from S4 as input to LISFLOOD to extend the EFAS

flood forecast horizon up to 7 months (Arnal et al. 2018).

A reference daily simulation, termed the EFAS water bal-

ance (EFAS-WB), which starts from the initial conditions of

the previous day and is forcedwith themost recent observed

meteorological fields (interpolated point measurements of

precipitation and temperature), is also run. EFAS-WB is

used as initial conditions from which the seasonal forecasts

are started and provides a best estimate of the hydrological

states at a given time for a given grid point, that is, represents

the theoretical upper limit of the model performance.

This study used the seasonal meteorological forecasts

from ECMWF’s S4 and the three ARE model runs as in-

put to LISFLOOD. All hydrological forecasts were initi-

ated on 1November 2013 and ran for 4monthswith a daily

time step to provide ensemble reforecasts for streamflow

(routed river flow measured inm3 s21) and groundwater

level (storage in upper groundwater zone measured in

mm). Catchment-averaged daily cumulative precipitation

reforecasts (mmday21) were also produced.

Raw daily observation data for streamflow (m3 s21) and

groundwater level [m above ordnance datum (AOD)]

were obtained from National River Flow Archive

FIG. 2. (top)DJF2014 anomaly fields of z500: (a)ERA-Interimanalysis, (b) S4 (CY36R4), and (c)NO_AR(control) equivalent to theoperational

S4 forecasts, butwith themost recentmodel cycle (CY40R1). (bottom)Equivalent fields fromAREswhere theatmospherewas relaxed towardERA-

Interim reanalyses with Rossby wave source centers identified by black boxes: (d) AR_NPAC, centered at 358N, 1508W; (e) AR_WATL at

358N, 758W; and (f) AR_EATL at 558N, 158W.Model climatology based on three ensemblemembers, initiated from 1November for the 30 years of

1981–2010. Statistical significance at the 5% level is estimated from the 28-member distribution and indicated with saturated colors.
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(NRFA) gauging stations and Environment Agency

(EA) groundwater boreholes. Within each study catch-

ment, one gauging station on the main river and one

groundwater borehole were chosen (Fig. 1). All observa-

tion points provided a complete daily record over the

4-month reforecasting period, plus data extending back

20 years (or as far back since the start of records) to

identify probability exceedance thresholds for that lo-

cation. Streamflow and groundwater level reforecasts

were obtained for the 5-km EFAS grid tile within which

the NRFA gauging station and EA groundwater bore-

hole were located to ensure spatial consistency when

comparing between forecasts and observations (Fig. 1).

Areal precipitation reforecasts were calculated using the

arithmetic mean for each catchment.

Continuous rankedprobability scores (CRPSs;Hersbach

2000) were used as a measure of streamflow forecast

sharpness and accuracy comparing against the simulated

water balance (EFAS-WB) and river gauge observation

data. To ensure consistency when comparing against

different-sizedensembles, the relative percentagedifference

between the 28- and 51-member CRPS values for S4 were

calculated; values ranged from 0% (no difference in the

Evenlode) to 0.83% (in the Lower Thames; Fig. B1 in

appendix B).

Spearman’s rank correlation coefficient p was used to

compare the median forecasted groundwater level against

the simulated EFAS-WB and against borehole ground-

water observations. Spearman’s rank is a nonparametric

measure of temporal rank correlation,which accounted for

groundwater levels being expressed in different units.

Finally the EFAS-WB was compared against gauged

daily streamflow observations and borehole groundwater

observations as an evaluation of the LISFLOOD perfor-

mance capability to accurately forecast the events in each

catchment—this was achieved using Pearson’s correlation

coefficient r (to test EFAS-WB streamflow performance)

and Spearman’s rank p (groundwater performance). A

workflowof all the forecasts,models,methods, and analyses

used in the paper is shown in Fig. 3.

3. Results

a. Meteorological forcing

Severe weather conditions did not originate from a

single event, but from a number of events between late

December 2013 and the end of February 2014, as supported

by the negative seasonal average anomaly of the 500-hPa

geopotential height (z500) over the northeastern Atlantic,

with the United Kingdom located at the southeastern edge

(Fig. 2a). For a seasonal forecasting system, capturing this

structure was key to predicting the wet anomaly over the

United Kingdom, but no anomaly was present in the

ensemble mean averaged over the whole season for the S4

forecast (Fig. 2b).

Figures 2d–f show the results from the three AREs. By

applying the atmospheric relaxation over the northeastern

Pacific (AR_NPAC), the z500 anomalies over the western

hemisphere were improved with a negative node over

Canada and a positive node over the western Atlantic.

There was also a negative anomaly present over the

northeastern Atlantic, with a similar position to the anal-

ysis but weaker in magnitude (Fig. 2d).

Relative to AR_NPAC, the seasonal anomaly over the

eastern Atlantic was better captured both in position and

magnitude, with relaxation applied over the eastern part of

the United States and the western Atlantic (AR_WATL;

Fig. 2e). In the final experiment with the relaxation applied

over the eastern Atlantic (AR_EATL), the negative

anomaly was inside the relaxation box. However, the

magnitude was less than in the analysis and AR_WATL,

and the southern extent (outside the box)was not captured

(Fig. 2f). The time series of accumulated precipitation

shows AR_EATL underpredicted through late December

but captured the rainfall better in January and February.

b. Hydrological response to meteorological forcing

1) OVERVIEW

Patterns in simulated EFAS-WB cumulative areal

precipitation values (pink line) were consistent across all

catchments (Figs. 4–6). Therewere a fewwet days in early

November and a dry period intomid-December followed

by higher-than-average rainfall conditions, with extreme

precipitation events correspondingwithAtlantic depressions

recorded in mid- to late December, early January, late

January, and early February. Over the 4 months, total

cumulative areal precipitation (EFAS-WB, pink line)

was greatest in the Loddon catchment at 541.2mm and

lower in the Evenlode and Lower Thames at 494.1 and

454.1mm, respectively (Figs. 4–6).

During early to mid-December, observed gauged daily

streamflow (black line) fell below the median (Q50) daily

flow record (Table 1) in all three catchments (based on

daily flow records from 1994 to 2014; NRFA 2017). Ob-

served streamflow in all catchments then exceeded theQ10

exceedance threshold (percentage of time that streamflow

exceeds the 90th percentile) from mid-December through

to the end of the study period. Observed borehole daily

groundwater levels (black line) exceededQ50 (EA 2017) in

theLoddon toward the end of January but did not reach the

Q10 level of 65.9mm (not shown in Fig. 5). Observed

groundwater levels exceeded Q10 in the Evenlode by mid-

December and Lower Thames by mid-January (Figs. 4, 6).

Comparing observations against EFAS-WB (model

performance; Fig. 7), LISFLOODwas capableof predicting
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streamflow and groundwater levels with reasonably high

accuracy in all three catchments; correlation coefficients

ranged from a positive moderately strong 0.7 for Lower

Thames groundwater to a near perfect 0.98 positive corre-

lation for Lower Thames streamflow (Fig. 7).

2) COMPARISON OF SEASONAL HYDROLOGICAL

FORECASTS

Visual improvements to areal precipitation forecasts and

streamflow forecasts identified by CRPS followed the gen-

eral pattern: (worst) S4 . AR_NPAC . AR_EATL .

AR_WATL (best) (Figs. 4–6, 8a). This trendwas similar for

groundwater correlations; all three ARE model runs dem-

onstratedmarked improvement comparedwith S4 forecasts

that showednegative correlationwith simulatedEFAS-WB

and borehole groundwater observations in each catchment

(Fig. 8b).

S4 forecasted a linear increase in rainfall from

1 November that failed to pick up the low rainfall con-

ditions from the end of November to early December or

the extreme precipitation events in mid-December and

beyond. S4 also substantially underpredicted the total

FIG. 3.Workflowdetailing seasonalmeteorological forecast inputs, hydrological modeling setup, seasonal hydrological reforecast outputs,

observational data, and analyses used in the paper.
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amount of precipitation forecast over the 4-month period.

The resulting streamflow forecasts showed minimal fore-

cast skill across all catchments; the median did predict

above-average streamflow conditions (up to 90th per-

centile at times) and low numbers of ensemble members

forecast some extremes, but the timing and magnitude

of peak events were largely incorrect, notably during the

first 6 weeks (Figs. 4–6). S4 forecasted decreasing

groundwater levels over the 4 months, leading to nega-

tive correlations with borehole observations; this was

FIG. 5. As in Fig. 4, but for the Loddon catchment.

FIG. 4. Precipitation, streamflow, and groundwater levels: a comparison between S4 and the threeAREmodel runsAR_NPAC,AR_WATL,

and AR_EATL for the Evenlode catchment. Forecast shading shows the minimum, 5th, 25th, 75th, 95th, and maximum of the ensemble in all

cases. Areal precipitation (mm) 5 catchment-averaged cumulative daily forecast median values (gray). Streamflow (m3 s21) 5 daily forecast

median (light blue) at the river gauging station. Groundwater level (mm) 5 daily forecast median (dark blue) at the groundwater borehole.

Observations (black) and simulated EFAS-WB (pink) in all cases. Q10 (long dash) andQ50 (short dash) show exceedance thresholds (based on

1994–2014 observation records or the longest available record).
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most pronounced in the Evenlode, where observations

recorded a 6.10-m increase in groundwater levels in the

aquifer (Figs. 4, 8b).

The AR_NPAC precipitation forecast was similar to

S4, although sharper with less spread about the median

leading to minor improvements in streamflow and

groundwater forecasts. The timing of peak streamflow

events was more accurately represented, and the mag-

nitude was picked up by the ensemble maximum in

many cases. There remained poor forecast quality dur-

ing the first 6 weeks. Groundwater forecast median

showed weak to moderate positive correlation with

borehole observations and EFAS-WB (Fig. 8b), al-

though there was a large ensemble spread (Figs. 4–6).

Areal precipitation forecast by the AR_EATL model

run was sharp with a good correlation but underprediction

in respect to the simulated EFAS-WB values in all catch-

ments. Subsequent streamflow forecasts demonstrated

accuracy and sharpness but underprediction and reduced

reliability for high extremes. Groundwater forecasts were

sharper than S4 and AR_NPAC but also underpredicted

against the EFAS-WB (Figs. 4–6).

AR_WATL produced the best areal precipitation fore-

cast in all catchments; the forecast median traced the simu-

lated EFAS-WB cumulative rainfall patterns with relatively

high accuracy until mid- to late December when accuracy

trailed off. Precipitation forecasts remained sharper than S4

and AR_NPAC, and total rainfall was matched by the

forecast maximum in the Evenlode and Lower Thames

(Figs. 4–6).LowCRPSand strongpositive correlationvalues

indicate a marked improvement for all streamflow and

groundwater forecasts (Figs. 8a,b). Extreme streamflow

events were missed from late December to early January

in all catchments that correlatedwith thedecreased accuracy

in the rainfall forecast. Groundwater forecasts showed reg-

ular oscillations in all three catchments (also apparent in

AR_EATL and AR_NPAC forecasts; Figs. 4–6).

3) CATCHMENT VARIATION

Observed gauged streamflow patterns (black line), al-

though of different orders of magnitude, were similar for

the Evenlode and Lower Thames with consistently high

flows frommid-December onwardwith 5–6 clearly defined

peaks (Figs. 4, 6). LISFLOOD successfully modeled the

FIG. 6. As in Fig. 4, but for the Lower Thames catchment.

FIG. 7. Comparison between daily simulated EFAS-WB and gauged

daily streamflow (m3 s21) and borehole groundwater level (m AOD)

observations as ameasureof the capability (sensitivity)of theLISFLOOD

model performance. Streamflow performance (light blue) tested using

Pearson’s correlation rsens. Groundwater performance (dark blue)

tested using Spearman’s rank correlation coefficient psens.
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flow dynamics in the Lower Thames (rsens 5 0.98; Fig. 7).

The flow pattern was quite accurate in the Evenlode, but

overall model performance was lower (rsens 5 0.81) as the

simulated EFAS-WB did not capture flow pattern between

mid-December and the end of January (Figs. 4, 6, and 7).

TheLoddon had amuch flashier responsewith eight clearly

defined peaks (black line), coupledwith the shortest time to

peak of 9.81h (Table 1).Model performancewas the lowest

of the three catchments (rsens5 0.73) as LISFLOOD failed

to detect peaks around 17 December and underpredicted

the extreme events from late December to mid-January

(Figs. 5, 7).

Observed borehole groundwater levels (black line) in-

creased in all three catchments: Evenlode 16.10m,

Loddon10.90m, and Lower Thames11.13m (Figs. 4–6).

The Loddon and Lower Thames recorded average or just

below average (Q50) groundwater levels until mid-

December, when levels showed a consistent and steady

rise. Groundwater levels recorded in the Evenlode were

more responsive following precipitation events and mir-

rored streamflow dynamics (Fig. 4). LISFLOODwas best

able tomodel groundwater levels in the Evenlode (psens5
0.92) but was oversensitive in the Lower Thames (psens 5
0.70; Fig. 7).

In respect to streamflowand groundwater level forecasting

skill comparedagainst observations ineachcatchment,CRPS

and Spearman’s rank p indicated that AR_WATL pro-

vided the best forecast skill in all catchments (solid bars in

Figs. 8a,b). CRPSobs for the Loddon and Lower Thames

followed the aforementioned pattern S4. AR_NPAC.
AR_EATL . AR_WATL; however, the AR_EATL

model run performed worst in the Evenlode (CRPSobs 5
6.32). Groundwater level forecast skill was consistent

across catchments, with S4 performing worst and

AR_WATL best (Fig. 8b).

4. Discussion

The winter of 2013/14 was exceptional in regard to the

large number of Atlantic depressions that affected the

United Kingdom—the Thames basin saw record precipi-

tation levels that led to widespread and prolonged fluvial

and groundwater flooding (Kendon and McCarthy 2015),

the impacts of which have been well documented (e.g.,

Slingo et al. 2014; Thorne 2014; Muchan et al. 2015).

The drivers of these extreme conditions have also been

debated, with papers seeking to identify the atmospheric

influences via reviews of multiscale model simulations in-

vestigating factors such as atmosphere, ocean, land use and

demographics (see Huntingford et al. 2014), correlation

analyses (van Oldenburg et al. 2015) and relaxation ex-

periments (Rodwell et al. 2015; Watson et al. 2016; Knight

et al. 2017). It is largely accepted that a combination of

global meteorological influences were important, but

studies that link different meteorological inputs and how

these translate through to hydrological forecasting skill

have not been conducted. Below, we discuss how identifi-

cation of skill through the meteorological (ARE) and hy-

drological (EFAS) seasonal forecasting chain may provide

an indication as to the origins of extreme events and the

level of predictability that can be gained if the evolution in

parts of the system are known. We also highlight the value

of more skillful hydrological forecasts during extreme

events for stakeholders, taking into account the variation in

catchment properties that exist across the Thames basin.

a. Translating meteorological improvements into
more skillful hydrological forecasts

From a meteorological perspective, AR_EATL was

expected to give the rainfall closest to that observed during

DJF 2014 due to the location of southern England at the

FIG. 8. Comparison of seasonal hydrological forecast skill from the

operational S4 and three ARE model runs: AR_NPAC, AR_WATL,

andAR_EATL for the Evenlode (blue), Loddon (orange), and Lower

Thames (purple) catchments. (a) CPRS comparing daily streamflow

(m3 s21) forecast against gaugeddaily streamflowobservations (m3 s21)

(CRPSobs shown by solid bars) and against daily simulated EFAS-WB

(CRPSsim shown by hashed bars). (b) Spearman’s rank correlation

coefficient p comparing median daily groundwater level (mm) forecast

against borehole daily groundwater observations (mAOD) (pobs, solid

bars) and against daily simulated EFAS-WB (psim, hashed bars).
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edge of the relaxation box. Although this experiment pro-

vided the most confident hydrometeorological ensemble

forecasts, their valuewas limitedbecauseof underprediction,

likely because AR_EATL missed the southward extent of

the atmospheric trough and hence did not fully capture the

details of the flow anomaly affecting southern England.

Atmospherically speaking, AR_NPAC captured the re-

presentation of large-scale flow over the northern Atlantic

better than S4, yet this did not translate into an improved

precipitation forecast, resulting in low hydrological fore-

casting skill over the Thames basin. As AR_NPAC

gave a stronger anomaly in geopotential height over the

eastern Atlantic, one could speculate that systematic model

errors affected the Rossby wave train from the Pacific to

the Atlantic, leading to misplacement of the anomaly over

thenortheasternAtlantic.Given the relationshipbetween the

tropical Pacific and El Niño–Southern Oscillation (ENSO;

Doblas-Reyes et al. 2013), there was hope that seasonal hy-

drological predictability could be improved in the future

with a better modeled teleconnection from ENSO. Rather,

the results point to the importance of the western Atlantic

and pose the open question about whether the forcing into

this box is linked with the Pacific and/or tropical Atlantic.

The best hydrological forecasts were obtained by the

AR_WATLexperiment.Climatologically, theeasternUnited

States and Gulf Stream is the most active region for cyclo-

genesis in the Atlantic (Hoskins and Hodges 2002), and the

representation of the anomaly in this region also captured

the downstream anomalies over the northern Atlantic.

Whether this is a result of the cold anomaly over North

America giving a strong temperature contrast (baroclinicity)

over the Gulf Stream or related to the anomaly in the di-

vergent flow from South America as discussed in Knight

et al. (2017)has yet tobeconfirmed.Nonetheless,with future

improvements to coupled models, there is scope for an im-

provement in the teleconnectionswhereby the results for this

study could be revised (Magnusson et al. 2013).

b. More skillful hydrological forecasts, but missed
events, oscillations, and uncertainty

All three AREs led to improvements in meteorological

input, which translated through to more skillful streamflow

and groundwater level reforecasts compared to S4, with

AR_WATL performing best. However, there were consis-

tent trends observed for allAREmodel runs across the three

catchments. Poor representation of the hydrological vari-

ables during the first 6 weeks coincided with the end of the

drought period that preceded the extreme wet conditions.

Wood et al. (2016) found that this climatological transition

period produced the lowest seasonal predictability as initial

hydrologic conditions provide minimal contribution, an ef-

fect that may have been heightened in the Thames basin,

which is largely groundwater driven (Svensson et al. 2015).

Streamflow forecasts also missed peak streamflow events

observed between the end of December and mid-January;

timewise, these correlated with the point at which pre-

cipitation forecasts diverged from the simulatedEFAS-WB,

indicating potential meteorological forcing errors. This was

likely due to the extreme nature of the rainfall experienced

at this time, which was undetected in the meteorological

forecast, propagating the error into the hydrological fore-

cast (Davolio et al. 2008) coupled with the uncertainty

prevalent at longer lead times (Wood and Lettenmaier

2008). Structural issues in LISFLOOD, however, cannot be

ruled out, as the EFAS-WB also failed to capture these

peak streamflow events in the Evenlode and Loddon

catchments. Factors including the variable density of the

rain gauge network, lack of horizontal flow (from pixel to

pixel) of water in the topsoil and subsoil, and inability to

represent finescale geological and morphological charac-

teristics in smaller subbasins, for example, may have limited

forecast skill and model performance in these catchments.

Nonetheless, recovery of the EFAS-WB toward observa-

tions later in the seasonal streamflow forecast (mid-January

onward) suggests that these missed events may relate more

strongly to meteorological forcing errors.

Groundwater-level forecasts showed oscillations of in-

creasing amplitude as precipitation forecasts improved

(most obvious for AR_WATL), with troughs correspond-

ing with the November dry period and missed rainfall

events, and peaks shortly following periods of intense pre-

cipitation. A rapid response to rainfall has been observed

for aquifer recharge rates and groundwater level time series

(Lee et al. 2006; Bloomfield andMarchant 2013), indicating

that there can be sensitivity of groundwater forecasts to

meteorological forcing data. Here, we investigated the

LISFLOOD upper-groundwater-zone response, where

processes represent a mix of fast groundwater, including

preferential flow rates and subsurface flow through soil

macropores (Thielen et al. 2009), and thus a quicker re-

sponse to rainfall following a dry period was expected

(Mahmood-ul-Hassan andGregory 2002; Lee et al. 2006).

The cyclical dynamic of the forecast may also represent

model processes whereby outflow from the upper zone is

released once the amount of water being stored reaches a

threshold (vanderKnijff et al. 2010).As such, it is likely that

the observed oscillations represent combined effects of the

LISFLOOD model setup and sensitivity to rainfall input.

c. Catchment controls on the variation in
hydrological skill improvements

There were differences in the observed hydrological re-

sponse and model performance between catchments, likely

explained by the EFAS setup, plus local weather conditions

and geographical differences acting at the catchment level.

SimulatedEFAS-WB streamflow valueswere low compared

JUNE 2018 NEUMANN ET AL . 1069



to observations in the largely groundwater-driven Evenlode

and flashy-responding Loddon (discussed previously), but

were well captured in the Lower Thames, where peak

streamflow observations exceeded ;500m3s21. This in-

creased performance may be attributed to the fact that the

Thames basin in LISFLOOD is calibrated using gauged

daily flow records from the Lower Thames (at Kingston/

Teddington Lock). The geographical position of the Lower

Thames also represents drainage from the entire upstream

catchment, essentially representing a larger basin for which

LISFLOOD was designed. The greater coverage of imper-

vious surfaces where LISFLOOD assumes no soil or

groundwater storage may also have played a role (Burek

et al. 2013). By contrast, groundwater levels were most ac-

curately modeled and forecast in the Evenlode. Despite its

small size and position at the headwater, this suggests that

LISFLOOD is well set up to capture upper-zone processes

in rural land-use catchments dominated by chalk and lime-

stone lithology (see also Mansour et al. 2013). Antecedent

dry conditions are also likely to have played an important

role, allowing percolation into the aquifer, as explained by

the 6.10-m increase in observed groundwater levels

(Svensson et al. 2015). By contrast, the relatively small yet

linear increase inobservedgroundwater levels in theLoddon

and Lower Thames could be attributed to the locations of

boreholes within less permeable lithologies, and in the case

of the Lower Thames, a heavily urbanized area (Macdonald

et al. 2012). Bloomfield and Marchant (2013) recognized

clear effects of fractured chalk and granular sandstone

aquifer characteristics on saturated flow and storage during

U.K. drought conditions, and it is not unreasonable to expect

differences to carry forward into a period of extreme rainfall.

The cumulative effects of upstream groundwater abstrac-

tions not accounted for in LISFLOODmay also explain the

notable difference between simulated EFAS-WB and

borehole observations in the Lower Thames—an effect less

prevalent in the Loddon andEvenlode, where boreholes are

located toward the top of the catchments. Interestingly, the

observed groundwater storage in the Loddon and Lower

Thames was more consistent with that of the lower (satu-

rated) zone in LISFLOOD (not considered in this study

because of data issues), wherewater is either stored or enters

the channel via baseflow, producing a very slow, seasonally

linear response to meteorological forcings (van der Knijff

et al. 2010; Mackay et al. 2015). Whether the oversensitivity

of the simulated upper-zone response in these catchments

(notably the Lower Thames, where theEFAS-WBcaptured

groundwater variability at an entirely different frequency)

is a result of finer-scale geological and land-use heteroge-

neity not captured by LISFLOOD (Svensson et al. 2015) or

the saturated nature of the impervious deposits that may

be better represented by lower-zone processes requires

further work.

d. Stakeholder implications and future developments

1) IMPROVE CLIMATE FORCINGS TO DELIVER

MORE SKILLFUL HYDROLOGICAL FORECASTS

There is currently a lot of focus on improving operational

flood forecasts at seasonal time scales, and extreme events

such as those experienced in DJF 2014 raise important

questions aboutwhether there are elements of predictability

that are being missed by seasonal forecasting systems

(Scaife et al. 2014; van Oldenburg et al. 2015; Watson et al.

2016; Knight et al. 2017). Driving hydrological models with

inputs from atmospheric relaxation experiments provides a

valid indicationofwhat canbeachieved fromanoperational

forecasting system if the determinants of prolonged sea-

sonal mean forcing, for example, ENSO, could be captured

in the future. While S4 was unable to skillfully capture the

seasonal average forcing for DJF 2014, updates such as

the fifth-generation ECMWF seasonal forecasting system

(SEAS5), which will shortly replace S4, indicate substantial

improvements to SST bias in the tropical Pacific, increased

model resolution, and a greater ensemble size (Lucas 2017)

that may go some way to improving seasonal hydrological

predictions.

2) DIFFERENT HYDROLOGICAL MODEL SETUP TO

EXTRACT SKILL

While the uncertainty in the forecasts appears to be

largest, further analysis might consider adjusting the

LISFLOOD model parameters through a process of

model calibration (Shi et al. 2008) and/or comparing re-

sults with those obtained from a local-scale hydrological

model that better captures streamflow and groundwater

dynamics in smaller basins. Use of multiple different hy-

drological models could also help capture a fuller repre-

sentation of the uncertainty that comes from the hydrology

and land surface (e.g., see EDgE; Copernicus 2017b).

3) DJF 2014 FLOOD SIGNALS DETECTED WEEKS IN

ADVANCE

Based on numerical weather prediction, the fluvial flood

events of DJF 2014 were well forecast at a lead time of

2–3 days and with reasonable accuracy up to 2 weeks ahead

of time (Lewis et al. 2015). Groundwater floods, which ac-

ted over a longer time scale and were triggered by excep-

tional aquifer recharge and saturation of permeable

deposits, were not well predicted due to the complex dy-

namics and interactions of the groundwater system with

atmosphere and land processes (Mackay et al. 2015). The

EA is responsible for managing flood risk in the United

Kingdom. Taking the Loddon December floods as an

example, a flood alert based on the EA streamflow

thresholds at the river gauging station would have been
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triggered from a value of 11m3s21: in the case of S4 and

AR_NPAC, the forecast median did not cross this thresh-

old, although maximum extremes of the ensemble did. For

AR_WATL and AR_EATL, a flood alert for the local

area would have been observed with 6 weeks lead time

(1 November) based on the forecast median. This would

have allowed mitigation strategies and low-cost pre-

ventative actions to be carriedoutwell in advancewhile also

highlighting an ‘‘area to watch’’ as the season progressed.

The importance of SHF for advance warning should

not be underestimated in densely populated areas such

as the Thames basin. Increasing pressures for urban de-

velopment, intensification of agriculture, and clean water

demand a more spatially and temporally integrated ap-

proach to management of the water sector (Mansour

et al. 2013; Lewis et al. 2015). There is also growing evi-

dence to support an increasing likelihood of Atlantic

storms that take a more southerly track akin to DJF 2014

(Slingo et al. 2014), and while the contribution of climate

change cannot be definitively related to changes in the

U.K. hydrological response (Hannaford 2015), even a

small shift in mean climate variability could substantially

FIG. A1. DJF 2014 anomaly fields of TPO relative to model climatology for 28-member hindcasts made with

the coupled model (CY40R1). The equivalent field from AREs where the atmosphere was relaxed toward

ERA-Interim reanalyses with Rossby wave source centers identified by black boxes: (a) AR_NPAC, centered

at 358N, 1508W; (b) AR_WATL at 358N, 758W; and (c) AR_EATL at 558N, 158W. (d) NO_AR (control)

equivalent to the operational S4 forecasts (CY36R4), but with the most recent model cycle. Model climatology

based on three ensemble members, initiated from 1 November for the 30 years of 1981–2010. Statistical sig-

nificance at the 5% level is estimated from the 28-member distribution and indicated here with saturated colors.
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shorten the return periods of such events (Knight et al.

2017). Further studies that trace the meteorological

input improvements right through the meteorological–

hydrological forecasting chain are therefore strongly

advocated.

5. Conclusions

Atmospheric relaxation experiments can improve our

understanding of extratropical anomalies and the po-

tential predictability of extreme events such as DJF

2014. Our results highlight that there is meteorological

FIG. B1. CRPS for S4 run using 2–51 ensemble members: (a) forecast against streamflow

observations (CRPSobs) and (b) forecast against simulated EFAS-WB (CRPSsim). Tables

outline relative percentage differences in CRPS achieved with 28- and 51-member ensembles.
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knowledge to be gained by considering the hydrology, that

is, although large-scale seasonal flowanomalieswere picked

up in the meteorology, these did not always translate

through to more skillful hydrological forecasts. Extreme

events such as DJF 2014 are difficult to predict with confi-

dence at seasonal time scales, but considering the local

hydrogeological context for streamflow and groundwater

levels can provide an effective early alert of potentially high

impact events, allowing for better preparedness and greater

confidence in forecasts as an event approaches.
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APPENDIX A

Atmospheric Relaxation Experiments

AREs for DJF 2014 total precipitation (TPO) anom-

aly fields (Fig. A1).

APPENDIX B

Continuous Ranked Probability Scores

CRPSs for S4 run using 2–51 ensemble members

(Fig. B1).
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Appendix 

A6: An efficient approach for estimating streamflow forecast 

skill elasticity 

This paper presents the published version of Chapter 4, Sect. 4.2 of this thesis, with the 

following reference: 

Arnal, L., A. W. Wood, E. Stephens, H. L. Cloke and F. Pappenberger, 2017b: An Efficient 

Approach for Estimating Streamflow Forecast Skill Elasticity, J. Hydrometeorol., 18, 1715–

1729, doi:10.1175/JHM-D-16-0259.1*
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ABSTRACT

Seasonal streamflow prediction skill can derive from catchment initial hydrological conditions (IHCs) and from the

future seasonal climate forecasts (SCFs) used to produce the hydrological forecasts. Although much effort has gone into

producing state-of-the-art seasonal streamflow forecasts from improving IHCs and SCFs, these developments are ex-

pensive and time consumingand the forecasting skill is still limited inmost parts of theworld.Hence, sensitivity analyses are

crucial to funnel the resources into useful modeling and forecasting developments. It is in this context that a sensitivity

analysis technique, the variational ensemble streamflow prediction assessment (VESPA) approach, was recently in-

troduced. VESPA can be used to quantify the expected improvements in seasonal streamflow forecast skill as a result of

realistic improvements in its predictability sources (i.e., the IHCs and the SCFs)—termed ‘‘skill elasticity’’—and to indicate

where efforts should be targeted. The VESPA approach is, however, computationally expensive, relying on multiple

hindcasts having varying levels of skill in IHCs and SCFs. This paper presents two approximations of the approach that are

computationally inexpensive alternatives. These new methods were tested against the original VESPA results using 30

years of ensemble hindcasts for 18 catchments of the contiguousUnited States. The results suggest that one of themethods,

end point blending, is an effective alternative for estimating the forecast skill elasticities yielded by the VESPA approach.

The results also highlight the importance of the choice of verification score for a goal-oriented sensitivity analysis.
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1. Introduction

Unprecedented increases in computer capabilities

have shaped the last several decades’ advances in

numerical weather prediction (NWP), and with them,

the development of environmental forecasting and

modeling systems. This has led to a shift in the strat-

egy of operational forecasting centers toward more

integrated modeling and forecasting approaches,

such as coupled systems and Earth system models

(ESMs), with the final aim to extend the limits of

predictability (i.e., from subseasonal to seasonal

forecasting). These developments are supported by

the assimilation of more and better-quality observa-

tion data as well as the increase in model resolutions

and complexity. However, such advances can be very

expensive and data hungry and may not yield pro-

portional improvements.

Seasonal hydrological forecasts are predictions of the

future states of the land surface hydrology (e.g.,

streamflow), up to a few months ahead. They are valu-

able for applications such as reservoir management for

hydropower, agriculture and urban water supply, spring

flood and drought prediction, and navigation, among

others (Clark et al. 2001; Hamlet et al. 2002; Chiew et al.

2003; Wood and Lettenmaier 2006; Regonda et al. 2006;

Luo and Wood 2007; Kwon et al. 2009; Cherry et al.

2005; Viel et al. 2016). They have the potential to pro-

vide early warning for increased preparedness (Yuan

et al. 2015). Traditionally, seasonal streamflow forecasts

have relied upon land surface memory, the persistence

in the land surface (e.g., catchment) initial hydrolog-

ical conditions (IHCs; of soil moisture, groundwater,

snowpack, and the current streamflow). IHCs are one

of the most important predictability sources of sea-

sonal streamflow forecasts and were thus the starting

point for the development of the ensemble streamflow

prediction (ESP) approach in the 1970s (Wood et al.

2016b). The ESP was first developed and used for

reservoir management purposes. It is produced by

running a hydrological model with observed meteo-

rological inputs to produce current observed IHCs,

from which the forecast is started, and the forcing over

the forecast period is undertaken using an ensemble of

historical meteorological observations (Day 1985).

The ESP method assumes that the model states to

initialize a forecast are perfectly estimated, while the

future climate is completely unknown. However, the

skill of the ESP decreases significantly after one to a

few months of lead time over most parts of the world

because of a decrease in the land surface memory with

time. The achievable predictability from the ESP thus

depends on the persistence of the IHCs, which can

vary as a function of the season (i.e., the transition

between dry and wet seasons can, for example, be

hard to forecast) and the location and size of the

catchment (i.e., the streamflow in a large catchment

with a slow response time and/or situated in a region

with negligible precipitation inputs during the fore-

cast period will for example be easier to forecast;

Wood and Lettenmaier 2008; Shukla et al. 2013; van

Dijk et al. 2013; Yuan et al. 2015).

More recently, seasonal climate predictability derived

from large-scale climate precursors [e.g., El Niño–
Southern Oscillation (ENSO) and the North Atlantic

Oscillation (NAO)] has been used to enhance seasonal

streamflow forecasting (e.g., Wood et al. 2002; Yuan

et al. 2013; Demargne et al. 2014; Mendoza et al. 2017).

Such systems produce streamflow forecasts by initializ-

ing a hydrological model to estimate IHCs and forcing

the model with inputs based on seasonal climate fore-

casts (SCFs; of temperature and precipitation) instead

of historical observations. Their skill is also still limited

because of the rapid decrease in precipitation forecast-

ing skill beyond two weeks of lead time, and the skill

is variable in both space and time (Yuan et al. 2011;

van Dijk et al. 2013; Slater et al. 2017). In Europe, for

instance, the skill is higher in winter in regions where the

winter precipitation is highly correlated with the NAO.

Regions with high skill include the Iberian Peninsula,

Scandinavia, and regions around the Black Sea (Bierkens

and van Beek 2009). In the contiguous United States

(CONUS), the skill is on average higher over (semi)arid

western catchments, due to the persistence of the IHCs

influence up to threemonths of lead time. The skill can be

higher in some regions of the western CONUS (i.e.,

California, the Pacific Northwest, andGreat Basin) in the

winter and fall due to higher precipitation forecasting

skill in strong ENSO phases (Wood et al. 2005).

Increasing the seasonal streamflow forecast skill re-

mains a challenge: one that is being tackled by improving

IHCs and SCFs using a variety of techniques. Techniques

include model developments and data assimilation and

can vary in computational expense. However, over the

past several decades, it has been shown that operational

streamflow forecast quality has not significantly improved

(Pagano et al. 2004; Welles et al. 2007). This is the mo-

tivation for the use of sensitivity analysis techniques to

guide future forecasting developments for seasonal

streamflow forecasting and is the basis for this paper.

It is in this context that the attribution of seasonal

streamflow forecast uncertainty to the IHC and SCF

errors has been researched extensively. Wood and

Lettenmaier (2008) introduced a method based on two

hindcasting end points: the ESP and the reverse ESP.

In contrast to the ESP, which only represents the
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uncertainty in the future climate, the reverse ESP only

represents the uncertainty in IHCs by using an ensemble

of initial model states taken from historical simulations

to initialize a prediction forced by a single set of ob-

served meteorological inputs. Typically, the input un-

certainty attenuates over a period of months as the

influence of the perfect future climate input increasingly

determines model states.

Comparing the skill of the ESP versus reverse-ESP

seasonal streamflow forecasts allows one to identify the

dominant predictability source (and conversely un-

certainty source) of seasonal streamflow forecasting (i.e.,

the IHCs or the SCFs), and its evolution in both space and

time. It was successfully used to disentangle the relative

importance of initial conditions and boundary forcing er-

rors on seasonal streamflow forecast uncertainties by sev-

eral authors: for example, for catchments in the United

States (Wood and Lettenmaier 2008; Li et al. 2009; Shukla

and Lettenmaier 2011), in France (Singla et al. 2012), in

Switzerland (Staudinger and Seibert 2014), in China

(Yuan et al. 2016; Yuan 2016), and in the Amazon (Paiva

et al. 2012), as well as for the entire globe (Shukla et al.

2013; Yossef et al. 2013;MacLeod et al. 2016). This work is

instructive as it enables the dominant predictability source

to be identified (i.e., where efforts and resources should be

targeted) to focus improvement, which could potentially

lead to more skillful seasonal streamflow predictions.

This method was extended by Wood et al. (2016a,

hereafter W16) via a method called variational ensem-

ble streamflow prediction assessment (VESPA), which

involves assessing intermediate IHC and SCF un-

certainty points between the perfect and climatological

points applied in ESP and reverse ESP. The approach

allows the calculation of ametric called ‘‘skill elasticity,’’

that is, the sensitivity of streamflow forecast skill to IHC

and SCF skill changes. A key drawback of the VESPA

approach, however, is that it is computationally in-

tensive. For each catchment and initialization month

of a forecast, the response surface was defined through

the use of dozens of multidecadal variable-skill ensem-

ble hindcasts, ultimately amounting to millions of sim-

ulations. In contrast, the ESP and reverse-ESP skill can

be estimated from a single set of ensemble hindcasts

spanning a historical period. The IHC and SCF skill

variation method was also highly specific to the partic-

ular model state configuration and involved a relatively

simplistic linear blending procedure. The elasticity cal-

culations were furthermore based only on a single ver-

ification score of forecast skill (i.e., coefficient of

determination R2) for the analysis. An ensemble fore-

cast has many attributes, for example, the skill, the re-

liability, the resolution, and the uncertainty of the

forecast, among others. To obtain a complete picture of

the forecast quality, the scores should encompass many

of these attributes, as each verification score will give us

different information about the forecast quality.

The drawbacks of VESPA motivate us to assess two

computationally inexpensive methods of estimating the

forecast skill elasticities, using only the original ESP and

reverse-ESP results that depend on the single hindcast

series as mentioned above. The twomethods are termed

end point interpolation (EPI) and end point blending

(EPB). In the first part of this paper, we compare results

from the two methods tested on 18 catchments of the

CONUS to the original results from the VESPA, using a

single verification score. The objective of this part is to

investigate whether the new methods can discriminate

the influence of IHC and SCF errors on seasonal

streamflow forecasting uncertainties and to assess the

ability of those new methods to correctly estimate the

forecast skill elasticities. In the second part, additional

verification scores are applied for streamflow forecast

verification, supporting the second objective of the pa-

per, which is to explore the sensitivity of the results

obtained from the two new methods and the VESPA

approach to the choice of the verification score.

2. Methods, data, and evaluation strategy

a. The VESPA approach

In this work, as in W16, the term ‘‘perfect’’ refers to

current observed meteorological data and the term clima-

tological refers to the whole distribution of historical ob-

served data. Figure 1 presents theESP (Fig. 1a), the reverse

ESP (Fig. 1b), the climatology (Fig. 1c), and the VESPA

forecast (Fig. 1d), as generated in W16. The ESP, the re-

verse ESP, the perfect forecast, and the climatology are all

end points of the uncertainty in the sense that the un-

certainty in those forecasts is either perfect or climatolog-

ical. They are the end points of the VESPA approach.

VESPA aims to produce streamflow forecasts from

IHCs and SCFs with an uncertainty situated between the

perfect and the climatological uncertainty (Fig. 1d).

Forecasts were generated by linearly blending the cli-

matological and perfect IHCs (i.e., model moisture

states) and the climatological and perfect SCFs (i.e.,

meteorological forcings of precipitation, evapotranspi-

ration, and temperature), subsequently used to run the

hydrological model. The weights used for blending the

data were (w 5 0, 0.05, 0.10, 0.25, 0.50, 0.75, 0.90, 0.95,

1.0), applied so that a weight of zero is the perfect

knowledge and unity is the climatological knowledge,

with wIHC and wSCF denoting the weights used to blend

the IHCs and the SCFs, respectively (W16). An ESP

forecast results from the weightswIHC5 0 andwSCF5 1,

the reverse ESP fromwIHC5 1 andwSCF5 0, the perfect
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forecast from wIHC 5 0 and wSCF 5 0, and the clima-

tology from wIHC 5 1 and wSCF 5 1.

To plot the skill of the VESPA forecasts as a function

of the IHC and SCF skill, W16 used skill surface plots

(Fig. 2), interpolating forecast skill results from different

IHC and SCF weighting combinations. The axes repre-

sent the SCF and IHC skill, derived respectively from

the blending weights wSCF and wIHC using the following

equations (W16):

SCF skill5 1003 (12w2
SCF) and (1)

IHC skill5 1003 (12w2
IHC). (2)

The SCF and the IHC skill values obtained from these

equations are the percentage of climatological variance

explained in the respective predictability source (i.e., SCF

and IHC; W16). Each SCF skill–IHC skill combination

corresponds to a specificVESPA forecast, the skill of which

can be plotted on the skill surface plot (black plus signs in

Fig. 2). The blue circles are the end points of the VESPA

forecasts: the reverse ESP (revESP in Fig. 2), the perfect

forecasts, theESP, and the climatology (climo inFig. 2). The

skill surfaceplots arehence a graphical representationof the

response surface obtained from the VESPA sensitivity

analysis.

The VESPA seasonal streamflow forecasts were gener-

ated by W16 using lumped Sacramento Soil Moisture Ac-

counting (SAC-SMA)andSNOW-17 catchmentmodels for

unimpaired catchments. The models were forced with daily

inputs in precipitation, temperature, and potential evapo-

transpiration and were calibrated and validated against

observed daily streamflow from theU.S. Geological Survey

(USGS). Eighty-one skill variations of a 30-yr hindcast

(from 1981 to 2010) were produced for 424 catchments in

the CONUS, starting at the beginning of each month (i.e.,

forecast initialization dates), with lead times up to 6months.

b. Alternative methods to the VESPA approach

In this paper we present two alternative methods of the

VESPA approach, the EPI and the EPB. These methods

aim to reproduce the response surface obtained from the

VESPA approach by using the same 30-yr hindcast en-

sembles produced by W16, aggregated over the first three

months with zero lead time for each initialization date

(referred to as 3-month streamflow forecast hereafter) and

corresponding exclusively to the end points (i.e., the ESP,

the reverseESP, the perfect forecast, and the climatology).

FIG. 1. Schematic of (a) the ESP, (b) the reverse ESP, (c) the climatology, and (d) theVESPA (this figure is adapted

from Fig. 3 in W16).
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The two new methods were tested for a subset of the

CONUS-wide catchment dataset presented in W16

(Fig. 3), comprising 18 catchments from the large USGS

Hydro-Climatic Data Network (HCDN; Lins 2012). The

18 selected catchments cover a large range of hydrome-

teorological conditions, including the maritime climate

regime of the U.S. West Coast catchments; the humid

regime of the eastern United States (south of the Great

Lakes) with rainfall-driven runoff and variable winter

snow in the most northern catchments; and the In-

termountain West and northern Great Plains regions,

where streamflow is greatly influenced by the snow cycle.

1) END POINT INTERPOLATION

The EPI produces a response surface by interpolating

the forecast skill of the end points throughout the skill

FIG. 2. Schematic of a skill surface plot. The y and x axes display the SCF and the IHC skill,

respectively. They are expressed as a percentage of the climatological variance explained in the

respective predictability source. The blending weights, wSCF and wIHC, from which the skill

values are derived are shown in square brackets in the figure.

FIG. 3. Map of the 18 catchments of the CONUS selected for the analysis and the HCDN regions (dark blue

outlines).
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surface plot. Both linear (i.e., linear barycentric in-

terpolation) and cubic interpolation techniques were

tested. However, results will be shown for the linear

interpolation only as the cubic interpolation did not

provide noticeable improvements to the linear in-

terpolation given that the interpolation is based on only

four points situated at the corners of the response sur-

face. The linear EPI was performed for each forecast

initialization date and for each catchment.

2) END POINT BLENDING

The EPB generates hindcasts for each wSCF–wIHC

combination (i.e., each plus sign in Fig. 2;wSCF andwIHC

are selected to be the same blending weights used by

W16, for the purpose of comparison). For each combi-

nation point, a new ensemble of 100 members was

generated by blending the four end points, given a spe-

cific weighted average. The percentage of each end point

used [EP(%); i.e., the number of members randomly

selected from each end point], was calculated for each

combination point using the following equation:

EP(%)5 (12 jx
EP

2w
IHC

j)3 (12 jy
EP

2w
SCF

j) , (3)

where xEP and yEP are the wIHC and wSCF values of the

end point for which the percentage is calculated, re-

spectively. For example, if the wIHC and wSCF match the

end point values, 100% of the EPB hindcast members

are resampled from that end point (i.e., the end point

skill is reproduced). This was done for each forecast

initialization date and for each catchment.
To produce the skill surface plots for the EPBmethod,

the SCF and IHC skill was calculated using the same

equations as in W16 [i.e., Eqs. (1) and (2), respectively].

c. The evaluation strategy

The aim of this paper is to compare two computa-

tionally inexpensive alternative methods to the VESPA

approach, the EPI and the EPB. To this end, the paper

unfolds into two distinct objectives. First, we want to

investigate whether the EPI and/or the EPB can dis-

criminate the influence of IHC and SCF errors on

seasonal streamflow forecasting uncertainties and

reproduce VESPA skill elasticity estimates. This will

validate the use of one or both methods as alternative to

the VESPA approach. Second, we want to explore the

sensitivity of the results obtained from the EPI, the EPB,

and the VESPAmethods to the choice of the verification

score. This will be an attempt to demonstrate the im-

portance of the choice of the verification score for fore-

cast verification and communication.

1) CAN EPI AND EPB DISCRIMINATE THE

INFLUENCE OF IHC AND SCF ERRORS ON

SEASONAL STREAMFLOW FORECAST

UNCERTAINTIES?

To explore the first objective of this paper, skill sur-

face plots were produced for the EPI, the EPB, and the

VESPA methods. As in W16, the seasonal streamflow

forecast skill depicted in the skill surface plots was cal-

culated from theR2 of forecast ensemble means with the

observations, where perfect forecasts (model simula-

tions driven by the observed meteorology) were treated

as observations to calculate the R2. As discussed at

length in W16, this choice deliberately excludes the

model errors as a source of forecast uncertainty.

The skill surface plots obtained from the EPI and the

EPB methods were subsequently compared qualitatively

and quantitatively to the skill surface plots obtained for

the VESPA approach. The qualitative analysis consisted

in visually inspecting the patterns contained in the skill

surface plots, giving an indication of the dominant pre-

dictability source on the streamflow forecast skill. The

quantitative analysis of the results was based on the cal-

culation of the skill elasticities for the IHCs and the SCFs

(EIHC and ESCF, respectively), for the EPI, the EPB, and

theVESPAmethods, averaged across three transects of a

quadrant situated in the center of the response surface,

according to the following equations:

E
IHC

5 1003
S(F[75, 19 ])2 S(F[19, 19 ])

75%219%
1

S(F[75, 44 ])2 S(F[19, 44 ])

75%219%
1

S(F[75, 75 ])2 S(F[19, 75 ])

75%219%

� �
=3

(4)

and

E
SCF

5 1003
S(F[19, 75 ])2S(F[19, 19 ])

75%219%
1

S(F[44, 75 ])2 S(F[44, 19 ])

75%219%
1

S(F[75, 75 ])2 S(F[75, 19 ])

75%219%

� �
=3.

(5)

The numerators, expressed as S(F [�]) 2 S(F [�]), con-
tain the gradients in the streamflow forecast skill

between IHC skill (or SCF skill) values of 75% and

19% (the denominator). The values in between the
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square brackets of the numerator are the IHC skill

followed by the SCF skill values, which indicates a

certain wSCF–wIHC combination point in the example skill

surface plot in Fig. 2. In the denominator, the IHC and SCF

skill gradients are gradients in the percentage of the cli-

matological variance explained in the respective pre-

dictability source. The skill elasticities (EIHC and ESCF) are

positively oriented, where a skill elasticity of zero is ob-

tained when the predictability source has no influence on

the skill of the streamflow forecast,while positive (negative)

elasticities mean that an improvement in the predictability

source will lead to higher (lower) streamflow forecast skill.

The skill elasticities were calculated for all three methods

and for the 3-month streamflow forecasts produced for each

catchment and forecast initialization date.

The only difference between Eqs. (4) and (5) and the

skill elasticities calculated in W16 is that they chose to

calculate skill elasticities around the ESP point in the

skill surface plots. Here, we choose to calculate skill

elasticities across a quadrant within the skill surface plot

(between 75% and 19% of the climatological variance

explained in the IHC and the SCF) in order for the skill

elasticity values calculated in this paper to reflect the

forecast skill gradients within the response surface. This

is done differently to W16 because the aim of this paper

is to compare (qualitatively and quantitatively) the skill

surface plots obtained from the EPI and the EPB

methods to the VESPA approach.

2) WHAT IS THE SENSITIVITY OF THE RESPONSE

SURFACE TO THE CHOICE OF THE

VERIFICATION SCORE?

To investigate the second objective of this paper,

several verification scores were calculated for each

method (i.e., the EPI, the EPB, and the VESPA ap-

proach). These scores were selected in order to cover

key attributes of the forecasts verified, and they include

d the mean absolute error (MAE) of forecast ensemble

means, relative to the perfect forecasts and
d the continuous rank probability score (CRPS) and its

decomposition:
d the potential CRPS (CRPSpot), where CRPSpot 5
resolution 2 uncertainty, and

d the reliability part of the CRPS (CRPSreli).

The potential CRPS is the CRPS value that a forecast with

perfect reliability would have. The uncertainty is the var-

iability of the observations and the resolution is the ability

of the forecast to distinguish situations with distinctly dif-

ferent frequencies of occurrence. The CRPS reliability is a

measure of the bias and the spread of the system.

TheCRPSwas chosen as it is awidely used score to assess

the overall quality of an ensemble hydrometeorological

forecast. The CRPSmoreover has the advantage that it can

be decomposed into different scores in order to look at the

many different attributes of an ensemble forecast. The

CRPS for a single forecast is equivalent to theMAE, which

is why the latter was chosen.

For all of the above verification scores, the corre-

sponding skill scores were calculated for each point of

the skill surface plots from

skill score
forecast

5 12
score

forecast

score
reference

, (6)

where the scorereference is the score of the climatology

point, for eachmethod, each initialization date, and each

catchment. A perfect forecast results in a forecast skill

score of unity and a forecast with equal quality as the

reference forecast corresponds to a skill score of zero.

Any forecasts of lower quality than the reference fore-

cast produce negative skill score values. Skill scores

were calculated in order to have a similar score range as

the R2 (i.e., a climatological score of zero and a perfect

score of one), for comparative purposes.

Skill elasticities were subsequently calculated for all

the skill scores, using Eqs. (4) and (5), for all three

methods and for the 3-month streamflow forecasts pro-

duced for each catchment and forecast initialization

date. From these skill elasticity values, the influence of

improvements in the IHCs and SCFs on the seasonal

streamflow forecast skill can be assessed, in terms of the

forecasts’ overall performance (considering the mean of

the ensemble or the full ensemble spread, from the

MAE and the CRPS, respectively), their resolution and

uncertainty (CRPSpot), and their reliability (CRPSreli).

3. Results

a. Can EPI and EPB discriminate the influence of
IHC and SCF errors on seasonal streamflow
forecast uncertainties?

For the first part of this study, the Crystal River

(Colorado; USGS gauge 009081600), a snowmelt-driven

catchment, will be used as a test case to illustrate the skill

surface plots obtained from the EPI and the EPB

methods, compared to the VESPA approach. Pre-

cipitation is the highest in winter and spring in this

catchment and falls as snow between November and

April. In April, the snow starts melting and conse-

quently the soil moisture and streamflow both increase.

Figure 4 displays the skill surface plots obtained for

the VESPA (Fig. 4a), the linear EPI (Fig. 4b), and the

EPB methods (Fig. 4c), from R2 for the 3-month

streamflow forecast for the Crystal River, for initializa-

tions on the first of each month (each row in Fig. 4).
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FIG. 4. Skill surface plots obtained for (a) theVESPA, (b) the linear EPI, and (c) the EPBmethods. The skill

is calculated from theR2 of the 3-month streamflow forecast ensemble means against the perfect forecasts, for

hindcasts produced from 1981 to 2010 for the Crystal River (USGS gauge 009081600), with forecast initiali-

zations on the first day of each month. Differences between the skill surface plots obtained for (d) the VESPA

and linear EPI methods and (e) the VESPA and EPB methods are also shown.
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Figures 4d and 4e show the differences between the skill

surface plots obtained for the VESPA and EPI methods

and the VESPA and EPB methods, respectively. A first

visual comparison of the skill surface plots obtained from

the linear EPI method (Fig. 4b) and the EPB method

(Fig. 4c) with those obtained from the VESPA approach

(Fig. 4a) for the Crystal River tells us that the skill surface

plots obtained fromall threemethods are very similar. For

each initialization date, the orientation of the gradients in

streamflow forecast skill appears identical. The EPI and

the EPBmethods seem to correctly indicate the dominant

predictability source on the 3-month streamflow forecast

skill, for each initialization date for this catchment. Similar

results were obtained for the other 17 catchments (see

Figs. S1–S17 in the supplemental material). Forecasts

made on the first of February, March, and September

show a sensitivity to the SCF skill (i.e., horizontal or near

to horizontal orientation of the streamflow forecast skill

gradients), while all other forecasts are dominantly sen-

sitive to the IHC skill (i.e., vertical or near to vertical

orientation of the streamflow forecast skill gradients).

The gradients in streamflow forecast skill contained in

the EPI skill surface plots (Fig. 4b) differ moderately

from the gradients obtained from the VESPA approach

(Fig. 4a). This can be observed in Fig. 4d, showing the

differences between the skill surface plots obtained for

both methods. The VESPA approach gives very strong

gradients, causing a rapid decrease in streamflow fore-

cast skill with a decrease in one of the predictability

sources’ skill, depending on the initialization date. In

comparison, the EPI method indicates a gradual de-

crease in streamflow forecast skill with a decrease in one

of the two predictability sources, depending on the ini-

tialization date. The streamflow forecast skill gradients

produced by the EPI method are a reflection of the in-

terpolation method used (i.e., here linear), and because

the corner points lack information about describing cur-

vature of the surface at interior points, they cannot fully

capture nonlinearities in the skill gradients across the skill

surface. For some interior points, this limitation of the

EPI method could estimate very different skill elasticities

than those obtained from the VESPA approach.

The skill surface plots produced by the EPB method

(Fig. 4c) showminor differences in the streamflow forecast

skill gradients when compared to the skill surface plots

generated by the VESPA approach (Fig. 4a). This can be

seen in Fig. 4e, which shows the differences between the

skill surface plots obtained for both methods. To further

inspect those differences, they will be explored quantita-

tively (i.e., by comparing the skill elasticities) below.

To quantify the accuracy of the patterns contained in the

EPI and the EPB skill surface plots compared to the pat-

terns of the VESPA skill surface plots, IHC and SCF skill

elasticities (i.e., EIHC and ESCF, respectively) were calcu-

lated across a quadrant situatedwithin the response surface

for all three methods, for the 18 catchments and each

forecast initialization date, from Eqs. (4) and (5), respec-

tively. Figure 5 presents the skill elasticities for nine of the

18 catchments (the plots for the other nine catchments are

shown in Fig. S18). Each plot corresponds to a catchment

and shows the skill elasticities obtained from the VESPA,

the linear EPI, and the EPB methods as a function of the

forecast initialization date. From the nine different plots,

the skill elasticities given by the EPB method appear al-

most identical to the VESPA approach, whereas the skill

elasticities obtained from the EPI method differ in some

places. This confirms that the patterns of the EPB method

are very similar to the patterns of the VESPA approach,

with it being the closest out of the two tested methods.

The value of the SCF skill elasticity (i.e., ESCF) in

relation to the value of the IHC skill elasticity (i.e.,

EIHC), for a given method, indicates the dominant pre-

dictability source on the 3-month streamflow forecast

skill (here calculated from the R2). For a selected

method, equal SCF and IHC skill elasticity values sig-

nifies that equal improvements in both the SCFs and the

IHCs will lead to equal improvements in the streamflow

forecast skill. If ESCF is superior (inferior) to EIHC, it

reflects a larger potential increase in streamflow forecast

skill by improving the SCFs (IHCs). Although the EPI

method almost always indicates the same dominant pre-

dictability source as the two other methods, the degree

of influence of changes in IHC and SCF skill on the

streamflow forecast skill (i.e., the exact values of the skill

elasticities) often differs. For many catchments and fore-

cast initialization dates, the EPI appears to underestimate

the skill elasticities produced by the VESPA method.

The nine different catchments for which the skill

elasticities are presented in Fig. 5 display three different

types of behavior, best captured by the VESPA ap-

proach and the EPB method. For the three catchments

in Fig. 5 (left), improvements in the IHCs would yield

the highest improvements in the 3-month streamflow

forecast skill for spring to summer initializations (April–

August for the Crystal River, March–July for the Fish

River, andMarch–June for the Middle Branch Escanaba

River) and in the winter (October–January for the

Crystal River, November–December for the Fish River,

and inDecember for theMiddleBranchEscanabaRiver).

SCF improvements would lead to better 3-month

streamflow forecast skill for forecasts initialized in the

late winter and summer to fall (February–March and

September for the Crystal River, February and August–

October for the Fish River, and January–February and

July–September for the Middle Branch Escanaba

River). For the three catchments in Fig. 5 (middle),
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a notable feature is that the 3-month streamflow forecast

skill would benefit from SCF improvements for summer

initializations (June–September for the Chattooga and the

Nantahala Rivers and July–September for the New

River). Finally, for the three catchments in Fig. 5 (right),

the 3-month streamflow forecast skill would benefit from

improvements in the SCFs for all initialization dates. This

is true with the exception of forecasts initialized in De-

cember for East Fork Shoal Creek. It is important to note

that there is uncertainty around these estimates. However,

this is a good first indication of the sensitivity of 3-month

streamflow forecast skill (measured from the R2) to IHC

and SCF errors for each forecast initialization date and

each catchment.

The skill elasticities produced by the EPB method

appear to be almost identical to the skill elasticities

obtained from the VESPA approach, with occasional

marginal differences. This suggests that the EPB

method captures nearly exactly the degree of influence

of changes in IHC and SCF skill on the streamflow

forecast skill, obtained from theVESPA approach. Both

methods additionally indicate the same dominant pre-

dictability source: the predictability source which, once

improved, could lead to the largest increase in 3-month

streamflow forecast skill. The EPB method will there-

fore be used as an alternative to theVESPA approach to

investigate the second objective of this paper.

b. What is the sensitivity of the response surface to the
choice of the verification score?

To investigate the sensitivity of the response surface

to the choice of the verification score, and therefore to

FIG. 5. Streamflow forecast skill elasticities for the IHCs (i.e., EIHC, solid line) and the SCFs (i.e., ESCF, dashed line), calculated across

a quadrant situated within the 3-month streamflow forecast skill surface plots for the VESPA (red), the linear EPI method (gray), and the

EPB method [blue; using Eqs. (4) and (5)]. Each plot shows the evolution of the IHC and SCF skill elasticities with the initialization date

for a given catchment. The climatological regions of the catchments are indicated in the plots’ headings. The skill surface plots fromwhich

these skill elasticities were calculated are presented in Fig. 4 and Figs. S1–S17.
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the attribute of the forecast, several scores were com-

puted to evaluate the streamflow forecast quality. The

R2, the mean absolute error skill score (MAESS), and

the continuous rank probability skill score (CRPSS)

were calculated to evaluate the forecasts’ overall per-

formance in terms of the ensemble mean and the entire

ensemble. The potential CRPSS (CRPSSpot) was

computed to look at the forecasts’ resolution and un-

certainty, and the CRPSS reliability (CRPSSreli) was

computed to look at the forecasts’ reliability. The

Crystal River (USGS gauge 009081600) will here again

be used as a test case to illustrate this part of the results.

Figure 6 presents the IHC and SCF skill elasticities

[i.e., EIHC and ESCF; in Fig. 6 (top) and Fig. 6 (bottom),

respectively] as a function of forecast initialization

date for the Crystal River catchment. These are cal-

culated from Eqs. (4) and (5), for all the mentioned

verification scores, for the VESPA approach (Fig. 6a)

and the EPB method (Fig. 6b). If we compare the skill

elasticities obtained from the VESPA approach with

the skill elasticities obtained from the EPB method, it

appears that both methods produce very similar elas-

ticities for the R2, the MAESS, and the CRPSS. This

further confirms the results of the first part of the analysis,

which highlighted the similarity of the EPB results to the

VESPA results and extends it to multiple attributes of the

seasonal streamflow forecasts. However, slight differences

between the skill elasticities produced by the twomethods

can be observed for the CRPSSpot, and significant differ-

ences exist for the CRPSSreli. These dissimilarities are

discussed further below.

If we now compare the skill elasticities obtained for

the various verification scores for both methods, it is

clear that the R2, the MAESS, the CRPSS, and the

CRPSSpot give very similar skill elasticities. This hints

that those verification scores overall agree on the degree

of influence of changes in IHC and SCF skill on the

streamflow forecast skill. However, a few dissimilarities

can be observed for some of the forecast initialization

dates. This is, for example, the case for forecasts made in

FIG. 6. Streamflow forecast skill elasticities for the (top) IHCs (i.e., EIHC) and (bottom) SCFs (i.e., ESCF) as

a function of forecast initialization dates, for hindcasts produced from 1981 to 2010 for the Crystal River (USGS

gauge 009081600). These skill elasticities were calculated across a quadrant situated within the 3-month streamflow

forecast skill surface plots [from Eqs. (4) and (5)] for several verification scores (R2 in red, MAESS in blue, CRPSS

in gray solid line, CRPSSpot in gray dashed line, and CRPSSreli in gray dotted line). The results are shown for

(a) the VESPA approach and (b) the EPB method.
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the spring and in summer, where theEIHC appears lower

for the MAESS and the CRPSS (and the CRPSSpot for

the VESPA approach) compared to the EIHC obtained

for the R2 for both methods. It is also apparent for

forecasts made on the first of February, March, and

September, where the ESCF calculated for the MAESS

and the CRPSS (and the CRPSSpot for the VESPA

approach) is lower than theESCF obtained for theR2 for

both methods. For both examples, it infers that im-

provements in the IHC and the SCF skill could lead to

larger improvements in the streamflow forecast skill in

terms of the R2 rather than in terms of the MAESS and

the CRPSS (and the CRPSSpot for the VESPA ap-

proach). Overall, this indicates that the degree of influ-

ence of changes in IHC and SCF skill on the streamflow

forecast skill differs relative to the choice of the

verification score.

While the R2, the MAESS, the CRPSS, and the

CRPSSpot give a very similar picture, the skill elastici-

ties obtained for the CRPSSreli appear very different,

occasionally reaching negative values. These negative

values indicate a loss in streamflow forecast skill (in

terms of the forecast reliability) as a result of improve-

ments in one of the two predictability sources, while all

the other verification scores suggest a gain in streamflow

forecast skill (in terms of the forecast ensemble mean

and the ensemble overall performance, its resolution,

and uncertainty) with improvements in one of the two

predictability sources.

The substantial differences in skill elasticities ob-

tained for the CRPSSreli from the VESPA versus EPB

method suggest that there are limitations to the ability

of EPB to reconstruct the full ensemble information

present in VESPA, and of VESPA (applied with rela-

tively small ensembles at the end points) to estimate

sensitivities for complex verification scores such as re-

liability. The reliability verification score is influenced

by the combination of bias, spread, and other ensemble

properties and exhibits more noisy outcomes here than

were obtained for other verification scores. A negative

elasticity may occur because the ensemble spread has

narrowed without sufficient improvements in bias, for

instance. The behavior of the elasticity of reliabilities is

even more difficult to diagnose, but we suspect that the

presence of noise (erroneous local minima or maxima)

or curvature in the associated VESPA skill surface

greatly undermines the linear blending techniques.

Overall, these results suggest that improvements in

the skill of either of the two predictability sources will

impact streamflow forecast skill differently depending

on the attribute (i.e., verification score) of the forecast

skill that is considered and whether the ensemble mean

or the full ensemble is used.

4. Discussion

a. Implications and limitations of the results

W16 introduced the VESPA approach, a sensitivity

analysis technique used to pinpoint the dominant pre-

dictability source of seasonal streamflow forecasting

(i.e., the IHCs and the SCFs), as well as quantifying

improvements that can be expected in seasonal

streamflow forecast skill as a result of realistic im-

provements in those key predictability sources. Despite

being a powerful sensitivity analysis approach, VESPA

presents two key limitations.

1) It is computationally intensive, requiring multiple

ensemble hindcasts to define the skill response

surface (81 were used in the VESPA paper vs one

for the EPB and the EPI techniques).

2) It requires a complex state and forcing blending

procedure that may introduce additional uncer-

tainties, biases, or interactions between the predict-

ability sources (Saltelli et al. 2004; Baroni and

Tarantola 2014) that are not accounted for or diffi-

cult to quantify. This is not necessary in any of the

end points required in the two approaches presented

here, which rely instead on analyzing a single con-

ventional hindcast dataset that is more likely to be

feasible for forecasting centers.

The central aim of this paper was to address the first

limitation of the VESPA approach by presenting two

computationally inexpensive alternative methods: the

EPI and the EPB methods. Both methods successfully

identified the dominant predictability source of 3-month

streamflow forecasts for a given catchment and forecast

initialization date (i.e., given by the orientation of the

streamflow forecast skill gradients in the skill surface

plots). However, the EPB was more successful in

reproducing the VESPA skill elasticities—the exact

streamflow forecast skill gradients situated within the

skill surface plots (for skill and accuracy verification

scores including the R2, the MAESS, the CRPSS, and

the potential CRPSS to a certain extent). These skill

elasticities indicate the influence of changes in IHC and

SCF skill on streamflow forecast skill.

The new methods, by differing in their setup from the

VESPA approach, do not inherit the drawbacks specific

to this approach and mentioned above. The EPI and the

EPB methods nevertheless have their own limitations.

The EPI (both for the linear and cubic interpolation

methods; the latter was not shown) did not fully capture

the VESPA skill elasticities because of the nature of the

method that produces predefined gradients within the

skill surface plots (i.e., defined by the interpolation

method used). Additionally, curvature or local minima
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or maxima (if any) of the response surface cannot be

represented by the EPI method. The EPB, on the other

hand, performs better at reflecting curvature in the skill

response surface, hence local elasticities between the

end points. The EPB method aimed at reproducing

VESPA elasticities only by manipulating the output of a

single hindcast dataset (interpreted as ESP, reverse

ESP, the perfect forecast, and climatology). The EPB

method cannot match exactly the forecasts created by

the VESPA approach, as it does not account for the

idiosyncrasies in model forecast behavior, such as in-

teractions between the predictability sources. Further-

more, it is likely that the more the model investigated is

nonlinear or exhibits skill response thresholds, the more

the results obtained from the EPB method will differ

from the ones obtained from the VESPA approach.

These results overall allow that the EPB method can be

used as an inexpensive alternative method to the

VESPA approach, yet with the potential limitations of

the method stated above.

For the first part of the analysis, the streamflow fore-

cast quality was evaluated in terms of the forecasts’ skill

from the R2. The use of multiple verification scores is,

however, essential to obtain a more complete perspec-

tive of forecast quality. Thus, we explored the perfor-

mance of the two new methods and the VESPA

approach for a range of additional verification scores.

The results, presented for the EPB method and the

VESPA approach, showed differences in the response

surfaces obtained for the various verification scores (i.e.,

theR2, theMAESS, the CRPSS, and its decomposition).

This suggests distinct sensitivities of the seasonal

streamflow forecast attributes (i.e., overall performance

of the forecast ensemble mean and its full ensemble,

forecast resolution, uncertainty, and reliability) to

changes in the IHC and SCF skill. Ideally, a sensitivity

analysis should be goal oriented, that is, it should be

performed with prior knowledge of the intended use of

the results (Saltelli et al. 2004; Pappenberger et al. 2010;

Baroni and Tarantola 2014), which may favor using one

verification score over another.

This paper covered selected limitations of the work

presented by W16. However, many areas were left un-

explored and could be interesting topics in which to

focus future research. First, a major area inherent to

model-based sensitivity analyses is that their results are

model dependent (Saltelli et al. 2000); thus, the extent to

which they can be transferred to reality depends on the

model fidelity. The results presented in this paper are

specific to the forecasting system and similar systems on

which this analysis was based and should be used as

an indicator of catchment sensitivities. As noted in

W16, an extension of the elasticity analysis to include

observations and a model error component would pro-

vide valuable insights. Another possible approach could

be to use the results from various forecasting systems as

input to the sensitivity analysis, in order to achieve a

multimodel consensus view of the skill. As shown in

Cloke et al. (2017), a multimodel forcing framework can

be highly beneficial for streamflow forecasting com-

pared to a single model forecasting approach, provided

the models are chosen judiciously so as to provide a

rational characterization of forecasting uncertainty.

Second, the dependence of blending technique perfor-

mance versus VESPA on the characteristics of the skill

surface (e.g., linear or nonlinear) bears further in-

vestigation. Finally, this sensitivity analysis leaves ge-

neric the concept of improvements in either of the

predictability sources, although the space–time nature

of improvements may be consequential. This work could

therefore be extended by studying the effect of degra-

dations in the temporal and spatial accuracy of the input

data, thereby indicating the relative value of improve-

ments in the spatial or temporal predictability for a

specific catchment and a specific time of the year.

b. The wider context

The new strategy of operational forecasting centers is

to move toward more integrated operational modeling

and forecasting approaches, such as land surface–

atmosphere coupled systems, and beyond that, Earth

system models. These advances are enabled by the

continuous growth of computing capabilities, a better

understanding of physical processes and their in-

teractions throughout all compartments of the Earth

system, and the availability and use of more and better

observation data (i.e., satellite data). Despite all these

advances, most forecasts still reflect substantial uncer-

tainty that grows with time and limits the predictability

of observed events beyond a fewweeks of lead time. The

rapid progress has led our systems to be ever more data

hungry as increases in model complexity and resolution

are sought. These computationally expensive develop-

ments are not always feasible; hence, model developers

must be creative and constantly weigh the costs and

benefits of improving one aspect over another, such as

increasing the resolution or complexity of the models

(Flato 2011).

In this context, sensitivity analyses appear more

than ever as a natural tool to establish priorities in

improving predictions based on Earth system model-

ing. Such analyses are a powerful and valuable tool to

support the examination of uncertainty and pre-

dictability across spatial and temporal scales and for

various applications. They can be used for a large

range of activities, including examining model structure,
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identifying minimum data standards, establishing

priorities for updating forecasting systems, designing

field campaigns, and providing realistic insights into

the potential benefits of efforts to improve a fore-

casting system to managers with prior knowledge of

their costs (Cloke et al. 2008; Lilburne and Tarantola

2009; W16).

However, sensitivity analyses must be easily repro-

ducible to be effective in supporting each new model or

forecast system update, and the results should easily be

applied in order to constitute a ‘‘continuous learning

process’’ (Baroni and Tarantola 2014). In other words, a

sensitivity analysis should be a simple, tractable tool for

addressing a multifaceted challenge.

5. Conclusions

This paper presents two computationally inexpensive

alternative methods to the VESPA approach for esti-

mating forecast skill sensitivities and elasticities. Of

these, the end point blending (EPB) method provides a

useful substitute to the VESPA approach. Despite the

existence of some differences between the EPB and

the VESPA outcomes, the EPB successfully identifies

the dominant predictability source (i.e., IHCs and

SCFs) of seasonal streamflow forecast skill, for a given

catchment and forecast initialization date. The EPB

method can additionally reproduce the VESPA fore-

cast skill elasticities, indicating the degree of influence

of changes in IHC and SCF skill on the streamflow

forecast skill. The paper also draws attention to how

the choice of verification score impacts the forecast’s

sensitivity to improvements made to the predictability

sources. With a good understanding of the limitations of

the methods, such a sensitivity analysis approach can be a

valuable tool to guide future forecasting and modeling

developments.
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Supplementary Figure 1 Skill surface plots obtained for (a) the VESPA, (b) the linear EPI, and 

(c) the EPB methods. The skill is calculated from the R2 of the 3-month streamflow forecast 

ensemble means against the perfect forecasts, for hindcasts produced from 1981 to 2010 for 

Merced River (CA; USGS gauge 011266500), with forecast initializations on the first day of 

each month. Differences between the skill surface plots obtained for (d) the VESPA and linear 

EPI methods and (e) the VESPA and EPB methods are also shown. 
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Supplementary Figure 2 Skill surface plots obtained for (a) the VESPA, (b) the linear EPI, and 

(c) the EPB methods. The skill is calculated from the R2 of the 3-month streamflow forecast 

ensemble means against the perfect forecasts, for hindcasts produced from 1981 to 2010 for 

Long Tom River (OR; USGS gauge 014166500), with forecast initializations on the first day of 

each month. Differences between the skill surface plots obtained for (d) the VESPA and linear 

EPI methods and (e) the VESPA and EPB methods are also shown. 
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Supplementary Figure 3 Skill surface plots obtained for (a) the VESPA, (b) the linear EPI, and 

(c) the EPB methods. The skill is calculated from the R2 of the 3-month streamflow forecast 

ensemble means against the perfect forecasts, for hindcasts produced from 1981 to 2010 for 

Beaver River (UT; USGS gauge 010234500), with forecast initializations on the first day of each 

month. Differences between the skill surface plots obtained for (d) the VESPA and linear EPI 

methods and (e) the VESPA and EPB methods are also shown. 
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Supplementary Figure 4 Skill surface plots obtained for (a) the VESPA, (b) the linear EPI, and 

(c) the EPB methods. The skill is calculated from the R2 of the 3-month streamflow forecast 

ensemble means against the perfect forecasts, for hindcasts produced from 1981 to 2010 for 

Gila River (NM; USGS gauge 009430500), with forecast initializations on the first day of each 

month. Differences between the skill surface plots obtained for (d) the VESPA and linear EPI 

methods and (e) the VESPA and EPB methods are also shown. 
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Supplementary Figure 5 Skill surface plots obtained for (a) the VESPA, (b) the linear EPI, and 

(c) the EPB methods. The skill is calculated from the R2 of the 3-month streamflow forecast 

ensemble means against the perfect forecasts, for hindcasts produced from 1981 to 2010 for 

Gallinas Creek (NM; USGS gauge 008380500), with forecast initializations on the first day of 

each month. Differences between the skill surface plots obtained for (d) the VESPA and linear 

EPI methods and (e) the VESPA and EPB methods are also shown. 
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Supplementary Figure 6 Skill surface plots obtained for (a) the VESPA, (b) the linear EPI, and 

(c) the EPB methods. The skill is calculated from the R2 of the 3-month streamflow forecast 

ensemble means against the perfect forecasts, for hindcasts produced from 1981 to 2010 for 

E Fk San Jacinto River (TX; USGS gauge 008070200), with forecast initializations on the first 

day of each month. Differences between the skill surface plots obtained for (d) the VESPA and 

linear EPI methods and (e) the VESPA and EPB methods are also shown. 
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Supplementary Figure 7 Skill surface plots obtained for (a) the VESPA, (b) the linear EPI, and 

(c) the EPB methods. The skill is calculated from the R2 of the 3-month streamflow forecast 

ensemble means against the perfect forecasts, for hindcasts produced from 1981 to 2010 for 

UTE Creek (NM; USGS gauge 007226500), with forecast initializations on the first day of each 

month. Differences between the skill surface plots obtained for (d) the VESPA and linear EPI 

methods and (e) the VESPA and EPB methods are also shown. 

Supplemental Material: An Efficient Approach for Estimating Streamflow Forecast Skill Elasticity 
Louise Arnal, Andrew W. Wood, Elisabeth Stephens, Hannah L. Cloke, and Florian Pappenberger



 

Supplemental Material: An Efficient Approach for Estimating Streamflow Forecast Skill Elasticity 
Louise Arnal, Andrew W. Wood, Elisabeth Stephens, Hannah L. Cloke, and Florian Pappenberger



Supplementary Figure 8 Skill surface plots obtained for (a) the VESPA, (b) the linear EPI, and 

(c) the EPB methods. The skill is calculated from the R2 of the 3-month streamflow forecast 

ensemble means against the perfect forecasts, for hindcasts produced from 1981 to 2010 for 

Bull Lake Creek (WY; USGS gauge 006224000), with forecast initializations on the first day of 

each month. Differences between the skill surface plots obtained for (d) the VESPA and linear 

EPI methods and (e) the VESPA and EPB methods are also shown. 
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Supplementary Figure 9 Skill surface plots obtained for (a) the VESPA, (b) the linear EPI, and 

(c) the EPB methods. The skill is calculated from the R2 of the 3-month streamflow forecast 

ensemble means against the perfect forecasts, for hindcasts produced from 1981 to 2010 for 

Sheyenne River (ND; USGS gauge 005057000), with forecast initializations on the first day of 

each month. Differences between the skill surface plots obtained for (d) the VESPA and linear 

EPI methods and (e) the VESPA and EPB methods are also shown. 
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Supplementary Figure 10 Skill surface plots obtained for (a) the VESPA, (b) the linear EPI, and 

(c) the EPB methods. The skill is calculated from the R2 of the 3-month streamflow forecast 

ensemble means against the perfect forecasts, for hindcasts produced from 1981 to 2010 for 

Tickfaw River (LA; USGS gauge 007376000), with forecast initializations on the first day of 

each month. Differences between the skill surface plots obtained for (d) the VESPA and linear 

EPI methods and (e) the VESPA and EPB methods are also shown. 
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Supplementary Figure 11 Skill surface plots obtained for (a) the VESPA, (b) the linear EPI, and 

(c) the EPB methods. The skill is calculated from the R2 of the 3-month streamflow forecast 

ensemble means against the perfect forecasts, for hindcasts produced from 1981 to 2010 for 

East Fork Shoal Creek (IL; USGS gauge 005593900), with forecast initializations on the first day 

of each month. Differences between the skill surface plots obtained for (d) the VESPA and 

linear EPI methods and (e) the VESPA and EPB methods are also shown. 
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Supplementary Figure 12 Skill surface plots obtained for (a) the VESPA, (b) the linear EPI, and 

(c) the EPB methods. The skill is calculated from the R2 of the 3-month streamflow forecast 

ensemble means against the perfect forecasts, for hindcasts produced from 1981 to 2010 for 

Nantahala River (NC; USGS gauge 003504000), with forecast initializations on the first day of 

each month. Differences between the skill surface plots obtained for (d) the VESPA and linear 

EPI methods and (e) the VESPA and EPB methods are also shown. 
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Supplementary Figure 13 Skill surface plots obtained for (a) the VESPA, (b) the linear EPI, and 

(c) the EPB methods. The skill is calculated from the R2 of the 3-month streamflow forecast 

ensemble means against the perfect forecasts, for hindcasts produced from 1981 to 2010 for 

New River (VA; USGS gauge 003164000), with forecast initializations on the first day of each 

month. Differences between the skill surface plots obtained for (d) the VESPA and linear EPI 

methods and (e) the VESPA and EPB methods are also shown. 
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Supplementary Figure 14 Skill surface plots obtained for (a) the VESPA, (b) the linear EPI, and 

(c) the EPB methods. The skill is calculated from the R2 of the 3-month streamflow forecast 

ensemble means against the perfect forecasts, for hindcasts produced from 1981 to 2010 for 

Middle Branch Escanaba River (MI; USGS gauge 004057800), with forecast initializations on 

the first day of each month. Differences between the skill surface plots obtained for (d) the 

VESPA and linear EPI methods and (e) the VESPA and EPB methods are also shown. 
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Supplementary Figure 15 Skill surface plots obtained for (a) the VESPA, (b) the linear EPI, and 

(c) the EPB methods. The skill is calculated from the R2 of the 3-month streamflow forecast 

ensemble means against the perfect forecasts, for hindcasts produced from 1981 to 2010 for 

Chattooga River (GA; USGS gauge 002177000), with forecast initializations on the first day of 

each month. Differences between the skill surface plots obtained for (d) the VESPA and linear 

EPI methods and (e) the VESPA and EPB methods are also shown. 
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Supplementary Figure 16 Skill surface plots obtained for (a) the VESPA, (b) the linear EPI, and 

(c) the EPB methods. The skill is calculated from the R2 of the 3-month streamflow forecast 

ensemble means against the perfect forecasts, for hindcasts produced from 1981 to 2010 for 

SO. Branch Potomac River (WV; USGS gauge 001606500), with forecast initializations on the 

first day of each month. Differences between the skill surface plots obtained for (d) the VESPA 

and linear EPI methods and (e) the VESPA and EPB methods are also shown. 

Supplemental Material: An Efficient Approach for Estimating Streamflow Forecast Skill Elasticity 
Louise Arnal, Andrew W. Wood, Elisabeth Stephens, Hannah L. Cloke, and Florian Pappenberger



 

Supplemental Material: An Efficient Approach for Estimating Streamflow Forecast Skill Elasticity 
Louise Arnal, Andrew W. Wood, Elisabeth Stephens, Hannah L. Cloke, and Florian Pappenberger



Supplementary Figure 17 Skill surface plots obtained for (a) the VESPA, (b) the linear EPI, and 

(c) the EPB methods. The skill is calculated from the R2 of the 3-month streamflow forecast 

ensemble means against the perfect forecasts, for hindcasts produced from 1981 to 2010 for 

Fish River (ME; USGS gauge 001013500), with forecast initializations on the first day of each 

month. Differences between the skill surface plots obtained for (d) the VESPA and linear EPI 

methods and (e) the VESPA and EPB methods are also shown. 
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Supplementary Figure 18 Streamflow forecast skill elasticities for the IHCs (i.e., EIHC, solid line) 

and the SCFs (i.e., ESCF, dashed line), calculated across a quadrant situated within the 3-month 

streamflow forecast skill surface plots for the VESPA (red), the linear EPI method (gray), and 

the EPB method [blue; using Eqs. (4) and (5)]. Each plot shows the evolution of the IHC and 

SCF skill elasticities with the initialization date for a given catchment. The climatological 

regions of the catchments are indicated in the plots’ headings. The skill surface plots from 

which these skill elasticities were calculated are presented in Fig. 4 and Figs. S1–S17. 
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Appendix 

A7: The sensitivity of sub-seasonal to seasonal streamflow 

forecasts to meteorological forcing quality, modelled 

hydrology and the initial hydrological conditions 

This paper presents a co-author contribution arising through collaboration during this PhD, 

summarised in Chapter 4, Sect. 4.3, and has the following reference: 

Arnal, L. et al.: “IMPREX D4.2 - The sensitivity of sub-seasonal to seasonal streamflow 

forecasts to meteorological forcing quality, modelled hydrology and the initial hydrological 

conditions”. Deliverable of EU H2020 project “IMPREX – Improving predictions and 

management of hydrological extremes” (contract n° 641811), 2017a* 
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Executive summary 

Information about streamflow for the coming months (sub-seasonal time-scale) to 

seasons is needed for decision-making in many sectors of society. Examples are in a 

reservoir management context, for applications such as hydropower generation, 

water allocation for drinking water and agriculture, navigation, flood and drought 

mitigation. Here, sub-seasonal and seasonal forecasts can be a valuable tool. 

Compared to short range forecasts, these forecasts allow for an increased 

operational margin for early warning and maximised benefits. However, the 

potential skill on the longer time-scales are limited due to a low inherent 

predictability (of the atmosphere and hydrosphere) and limited quality of models 

and observations. 

In order to meet these needs and tackle those challenges, IMPREX will (1) analyse 

the current skill of state-of-the-art sub-seasonal to seasonal streamflow forecasts 

over Europe and (2) improve their capabilities, with a focus on extreme events (i.e., 

high and low flows) and variables, aggregation periods, seasons and lead times of 

interest to the users of the forecasts involved in IMPREX (which cover the water 

sectors mentioned above). 

This deliverable consists of three parts. The first part is a technical intercomparison 

of the performance of five different sub-seasonal to seasonal streamflow forecasting 

systems, operated by partners of IMPREX: ECMWF, SMHI, FW, BfG, UPV and 

Deltares. This is be done for key locations in Europe, selected based on the case 

studies of the project. They include Central European River and Swedish River 

stations and the Thames, Segura, Tagus, and Jucar River basins. The forecasting 

systems investigated in this deliverable all use the same meteorological forecasting 

system, ECMWF’s System 4 (with or without applying a bias correction method to 

the latter) and a variety of hydrological models. This intercomparison therefore 

enables us to identify the contribution of hydrological model structure and the 

presence of a bias correction of the meteorological forecasts to the streamflow 

forecasting skill on sub-seasonal to seasonal time scales and for an array of diverse 

locations, seasons and extreme events in Europe. This first part has revealed several 

major differences between the seasonal streamflow forecasting systems and their 
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impacts on the relevant water sectors. Notably, the BfG seasonal streamflow 

forecasts tend to underestimate the observed streamflow for the Central European 

River stations, which could be a problem for the navigation sector, dependent on 

accurate low flow forecasts in the summer. The ECMWF seasonal streamflow 

forecasts appear to systematically overestimate the spring flow and to 

underestimate the winter flow for the Central European River stations and the 

Thames River basin. The latter could be an issue for the flood protection sector as 

the forecasts would be prone to missing or underestimating the magnitude of flood 

events. The ECMWF forecasts are however very accurate for summer flow 

forecasting in the Segura and Tagus River Basins. This could be highly beneficial for 

the agricultural sector in this region. Both the ECMWF and the SMHI seasonal 

streamflow forecasts underestimate the May flow for Swedish River stations, which 

could be a challenge for the hydropower generation sector, relying on accurate 

spring flow predictions. The SMHI forecasts seem to generally overestimate the 

winter flow for the Central European River stations and the Thames River basin, 

which could once again be a problem for the flood protection sector as the 

forecasts would potentially lead to false alarms. The FW seasonal streamflow 

forecasts tend to overestimate largely the early spring-spring flow for the Tagus 

River Basin and to underestimate slightly the flow during all year for the Segura 

River Basin. Both biases could be challenging for the agricultural sector. 

This first technical intercomparison forms a benchmark, to which improved systems 

from other IMPREX tasks can be compared. The intercomparison can moreover be 

enriched during the course of IMPREX, with more stations and scores. 

The second part of the deliverable consists in a sensitivity analysis, specifically 

designed to diagnose the relative contributions of errors in the initial hydrological 

conditions (IHC) and in the meteorological forecasts (MF, sometimes called seasonal 

climate forecasts [SCF]) on sub-seasonal to seasonal streamflow forecasting 

uncertainty. This sensitivity analysis was carried out using the ECMWF and the BfG 

seasonal streamflow forecasts and highlighted several significant results. The 

analysis indicates that improving the IHC would yield a higher improvement of the 
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seasonal streamflow forecasts for the first month of lead time, after which the SCF 

become rapidly more influential on the skill of the streamflow forecasts. This signal 

is however contrasted in space and time, highlighting geographical and seasonal 

variations of the flow generating mechanisms in Europe. For example for streamflow 

forecasts made in the summer (May-July) and with one month of lead time, there 

appears to be a larger number of regions in Europe where the IHC dominate the 

quality of the streamflow forecasts, compared to forecasts made in the winter with 

the same lead time. This is probably due to the lower rainfall over Europe during 

the summer months, leading to groundwater dominated streamflow. For most 

leeward regions in Scandinavia, the IHC dominate the quality of the forecasts made 

in the winter, with one to three months of lead time. This is potentially due to 

precipitation falling as snow in the winter, leading to groundwater dominated 

streamflow in the winter and snowmelt driven flow in the following spring. For most 

regions of the Iberian Peninsula, the IHC seem relatively more important for 

streamflow forecasts made in the summer (June-September), with one to three 

months of lead time. This is probably due to groundwater dominated streamflow in 

the summer in those regions and a land surface memory spanning several months. 

Over the eastern part of central Europe, streamflow forecasts made in the spring 

seem to be more sensitive to the IHC, which might translate snowmelt driven spring 

flow. 

The third part of this deliverable is devoted to the identification of the key drivers 

(beyond IHC and SCF) that control and influence the hydrological forecasting skill. 

For this, an alternative sensitivity analysis was designed based on the results from 

about 35000 European basins, which allows linking the seasonal hydrological 

forecasting skill (from the SMHI forecasts) to the regional physiographic-hydro-

climatic characteristics. This analysis showed that seasonal hydrological forecasting 

skill is mainly dependent on the basin’s hydrological regime. Other factors, such as 

the elevation and the remaining bias in temperature, were also identified to be 

important aspects (i.e., dependence of response of mountainous basins to 

temperature). Another significant result is that seasonal hydrological forecasting skill 



 

  

 

 

 
9 

seems to be limited for relatively flashy basins, experiencing strong flow dynamics 

over the year (i.e., less memory in the system). 

The results of this deliverable will guide future research in IMPREX, indicating where 

improvements should be made in the forecasting chain (improvements to the IHC, 

the SCF) in order to improve the seasonal streamflow forecasts over Europe. 
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Glossary 

Bias correction: Process aiming at removing systematic errors in the output of a 

model. Methods include: linear scaling, distribution-based Scaling, quantile 

mapping, to cite a few. 

Lead time: The time between the initiation and completion of a forecast. 

Discharge: River discharge is the volume of water flowing through a river channel 

at any given point and is measured in cubic metres per second (m3/s). 

Target month or target season: The season or month for which the forecast is 

made.  

Forecast quality: How well a forecast compares against a corresponding 

observation of what actually occurred, or some good estimate of the true outcome. 

Sensitivity analysis: The study of how the uncertainty in the output of a model or 

system can be apportioned to different sources of uncertainty in its inputs. 

Skill elasticity: A measure of the sensitivity of the seasonal discharge forecasting 

skill to changes in the skill of its two main predictability sources: the initial 

hydrological conditions or the seasonal climate forcing. 

Initial hydrological conditions (IHC): The hydrological states (soil moisture, snow 

cover, water already in the river, among others) at or close to the start of the 

forecast run.  

Seasonal climate forcing (SCF): The seasonal meteorological forecast used as input 

to a hydrological model. 
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 Introduction 1

Information about streamflow during the coming month (sub-seasonal time-scale) 

and season is needed   for decision-making in many sectors. Examples are in a 

reservoir management context, for applications such as hydropower generation, 

water allocation for drinking water and agriculture, navigation, flood and drought 

mitigation. Here, sub-seasonal and seasonal forecast can be a valuable tool. 

Compared to short range forecasts, these forecasts allow for an increased 

operational margin for early warning and maximised benefits. However, the 

potential skill on the longer time-scales are limited due to a low inherent 

predictability and limited quality of models and observations. 

In order to meet these needs, IMPREX will (1) analyse the current skill of state-of-

the-art sub-seasonal to seasonal streamflow forecasts over Europe and (2) improve 

their capabilities, with a focus on extreme events (i.e., high and low flows) and 

variables, aggregation periods, seasons and lead times of interest to the users of 

the forecasts involved in IMPREX (which cover the water sectors mentioned above). 

This deliverable consists of three parts. The first part will use the verification 

scoreboard designed in WP4 (deliverable 4.1) to analyse and compare the skill of 

multiple sub-seasonal to seasonal streamflow forecasting systems, operated by 

partners of IMPREX. This will be done for key locations selected based on the case 

studies of the project. Since the forecasting systems investigated here all use the 

same meteorological forecasting system (with or without applying a bias correction 

method) and a variety of hydrological models, this work will enable us to identify 

the contribution of (hydrological) model structure and the presence of a bias 

correction of the seasonal meteorological forecasts to the streamflow forecasting 

skill on sub-seasonal to seasonal time scales and for an array of diverse locations, 

seasons and extreme events in Europe. This first technical intercomparison will form 

a benchmark, to which more stations, scores and improved systems from other 

IMPREX tasks can be added and compared. The main aim of this part is to highlight 

major differences and similarities between the performance of the seasonal 
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streamflow forecasting systems and the potential impacts of those performances on 

the sectoral applications at stake in the case study areas. This technical part will also 

inform later tasks of the IMPREX project, such as the multi-modelling and the data 

assimilation exercises. 

The second part of this deliverable will inform future IMPREX work through a 

sensitivity analysis, specifically designed to diagnose the relative contributions of 

initial hydrological conditions (IHC) and errors of the meteorological forecast (MF, 

sometimes called seasonal climate forecast [SCF]) on sub-seasonal to seasonal 

streamflow forecasting quality. This will indicate the potential achievable 

improvements in sub-seasonal to seasonal streamflow forecasting skill through the 

improvement in either one of the two error (or predictability) sources.  

The third part of this deliverable is devoted to the identification of the key drivers 

(beyond IHC and SCF) that control and influence the hydrological forecasting skill. 

For this an alternative sensitivity analysis was designed based on the results from 

about 35000 European basins, which allows linking the skill to the regional 

physiographic-hydro-climatic characteristics.    

The aim of this work is to produce a ‘hydrological sensitivity chart’, providing 

information about the state-of-the-art in terms of sub-seasonal to seasonal 

streamflow forecasting, as well as about potential targeted improvements on which 

IMPREX should focus. An overview of sub-seasonal to seasonal streamflow 

forecasting and the use of sensitivity analyses to diagnose its uncertainties are 

given in Section 2. Section 3 introduces the methodology, with an overview of the 

forecasting systems, the data and the methods used for the analyses. The results 

are subsequently presented in Section 4 and finally discussed in Section 5.  Section 

5 additionally states the lessons learnt and recommendations for future work. 
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 Sub-seasonal to seasonal streamflow forecasting: background, 2

applications and limitations  

 An overview of sub-seasonal to seasonal streamflow forecasting 2.1

The first seasonal streamflow forecasting methods were statistical methods, 

regression-based, using antecedent hydrological conditions (i.e., snowpack 

measurements, soil moisture, among others) to give an indication of the streamflow 

for the following months (Church, 1935; Wood and Lettenmaier, 2006). With the 

understanding of hydrological processes and the advances in computer 

technologies, the first numerical hydrological models were created (Helms et al. 

2008). In the 1970s, one of the first dynamical forecasting system was constructed 

using a hydrological model, initialising it with observed hydrological conditions 

(IHC) and forcing it with historical time series of observed precipitation and 

temperature from all the previous years of recorded meteorological observations. 

This method was introduced by the National Weather Service (NWS) in the United 

States and was termed the Extended Streamflow Prediction (ESP) system (Twedt et 

al., 1974; Day, 1985). The ESP nowadays stands for Ensemble Streamflow Prediction 

and describes the same forecasting process. 

Despite its strength, the ESP is limited by the fact that it is based on the 

assumption that the historical weather can give an accurate indication of the future 

weather. In the 1950s, the use of seasonal meteorological forecasts for seasonal 

streamflow forecasting for water management was first investigated but its skill was 

judged too poor for operational purposes (Pagano and Garen, 2005). The 1970s 

were a milestone for seasonal meteorological forecasting, due to the understanding 

of atmosphere-ocean-land interactions and the importance of teleconnections 

forecasting on seasonal time scales (such as the ENSO, NAO, etc; Pagano and 

Garen, 2005). It is however not until the late 1990s that seasonal meteorological 

forecasts were used for operational purposes, as a result of the very strong El-Niño 

of 1997-98 (Pagano and Garen, 2005). 
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Statistical forecasting techniques are still widely used, sometimes based on complex 

regression methods, harnessing the teleconnection indicators (Wang et al, 2011). It 

is only recently that dynamical seasonal streamflow forecasting (based on forcing a 

hydrological model with meteorological seasonal forecasts to obtain seasonal 

hydrological forecasts) has become a real potential to surpass statistical seasonal 

streamflow forecast skill (Easy et al. 2006). Statistical-dynamical hybrid systems also 

exist, for instance the use of teleconnection indicators to resample the historical 

observed meteorological years, removing anti-analogues, to force a hydrological 

model (Schaake, 1978; Pagano and Garen, 2005; Bierkens and van Beek, 2009).  

 Sectoral applications 2.2

Sub-seasonal to seasonal streamflow forecasts are valuable for many applications of 

the water sector, including reservoir management for hydropower generation and 

water allocation for drinking water and agriculture, navigation and flood and 

drought mitigation. These applications are diverse in terms of their needs and 

operational use of the forecasts. For example, the flood protection sector is more 

vulnerable to high river flow, while the navigation, agriculture, hydropower and 

reservoir management sectors are more vulnerable to low flows. Additionally, the 

flood protection sector requires accuracy in the timing and the intensity of an 

event, while the hydropower sector requires information on the flow accumulations 

for the spring. The various sectors and their individual needs and current 

operational practices are described below. 

 Flood forecasting - University of Reading 2.2.1

Flood forecasting is currently done successfully at short to medium time scales (up 

to a month ahead). Beyond this lead time, the capacity of the forecasts to indicate 

the potential for an extreme event to happen is still limited, let alone the exact day 

or even week when this event might happen and the exact location of this event. 

This is the main reason for which the Environment Agency (EA) does not currently 

use any sub-seasonal to seasonal forecasts for their decision-making. The main 

need for decision-making in a flood context is the probability of an event 

happening, an indication of how extreme the event will be and the estimate date of 



 

  

 

 

 
15 

the event. The EA bases their decisions on a very low threshold (i.e., allowing a high 

false alarm ratio), as the loss for not taking any action is much larger than the cost 

of taking action. Their strategies could be categorised as risk-averse, as the 

consequences of a false alarm are lower than for a miss. There is nonetheless the 

potential to integrate sub-seasonal to seasonal information in their current system. 

Information for the longer time scale could give an indication of the trend in 

discharge for the following months and flag areas to watch for these coming 

months, following a “ready-set-go” approach (Goddard et al. 2014). The EA has 

expressed interest in this kind of information. 

 Navigation - BfG 2.2.2

Monthly to seasonal forecasts are required for Inland Waterway Transport (IWT) for 

the the medium- to long-term planning and enhancement of the water bound 

logistic chain (stock management, adjustment of the industrial production chain, 

modal split planning). Information about the future evolution of flow and water 

levels in the large rivers is especially required by the stakeholders before and within 

the typical low flow seasons when transport capacity on rivers is limited. The 

required forecast lead time depends on the specific waterway user and the 

decisions to be taken. It ranges from weeks, for example to shift cargo from 

shipping to another means of transportation, to months, to adapt the fleet / usable 

transport capacity (see Klein and Meissner, 2016). Despite the great demand and 

interest of the IWT sector, no operational forecasts with lead times exceeding8 days 

are available at the moment for the Rivers Rhine (max. lead time 4 days), Elbe (max. 

published lead time 2- 8 days depending on the gauge) and Upper Danube (max. 

published lead time 2-4 days depending on the gauge), mainly due to the large 

uncertainties and the limited skill on monthly and seasonal time scales. 

In order to provide stakeholders with monthly to seasonal forecast information, a 

prototype is being developed in the context of IMPREX. To model the water 

balance and the flow in rivers the hydrological model LARSIM-ME is applied. The 

hydrological model was set up for the large rivers in Germany including their 
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international parts (model acronym LARSIM-M(iddle)E(urope)) and covers the 

catchments of the River Rhine, River Elbe, River Weser/Ems, River Odra and River 

Danube up to gauge Nagymaros in Hungary. The total catchment size simulated by 

the model is approx. 800 000 km². The spatial resolution is 5km x 5 km. As 

meteorological forcings resampled observed climatology (ESP) and seasonal 

forecasts from ECMWF Seasonal Forecast System 4 are used.  2-m temperature of 

the past 24 hours and daily total precipitation of System4 are interpolated to a 

common 50km x 50km grid (multiple of the 5km x 5km raster). Both variables were 

bias corrected on the 50km x 50km grid using linear scaling with the 

meteorological observation dataset set used for the baseline simulation (also 

aggregated to the 50km x 50km grid as reference data). As seasonal forecasts tend 

to drift towards their own model climate with increasing lead time, giving rise to 

model bias, separate bias correction factors have been estimated for each forecast 

initialisation date (starting on the first day of each calendar month) and monthly 

lead times (first month, second month, etc, to sixth month). In total 12 x 6 = 72 

scaling factors for precipitation and 72 additive terms for temperature were 

calculated for each 50km x 50km raster to correct the model drift of ECMWF’s 

System 4. In the next step temperature and precipitation are downscaled to the 

5km x 5km model grid. In future versions of the navigation related seasonal 

forecasting prototype NavSEAS-ME seasonale forecasts from GloSea5 from UK 

Metoffice will be included in addition. 

To analyse the potential skill of ECMWF-System4 for navigation related seasonal 

forecasting, the reforecast data set 01.01.1981 - 01.04.2011 as well as the pre-

operational and operational forecasts of the period 01.04.2011 - 31.12.2015 are 

applied. In the reforecast, the number of ensemble members is limited to 15 for the 

initialisation months January, March, June, July, September, October, and December. 

The number of ensemble members is extended to 51 for the initialisation months 

February, May, August and November. From April 2011 onwards, the (operational) 

ensemble size is 51 for all initialisation months. For verification the ensemble size of 

the operational forecasts was reduced to the ensemble size of the reforecast (15 

members) for the initialisation months January, March, June, July, September, 
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October, and December. The hydrological re-forecasts with LARSIM-ME are 

evaluated for relevant low- and medium flow indicators. 

 Agriculture - FutureWater 2.2.3

Irrigated agriculture is the main economic activity of Campo de Cartagena in the 

Segura River basin, Spain. However, water scarcity compromises such activity, which 

is mainly dependant on the water input it receives from the connected Tagus River 

basin. Mitigation measures of droughts in Spain are based on a number of drought 

indicators that are derived from the available water in the storage reservoirs. In 

order to anticipate drought episodes, decision-makers need to forecast the 

corresponding reservoir inflows. In the case of the Segura River, forecasts are 

currently estimated from simple regressions of river discharges from the preceding 

6 months, leading to updated management plans twice a year. 

In order to provide stakeholders in the basin with a more robust forecasting system 

that would allow them to better anticipate drought episodes and put into practice 

more effective allocation and mitigation practices, a prototype of a hydrological 

seasonal forecasting system is presented. The prototype uses the Spatial Processes 

in HYdrology model (SPHY) forced with the ECMWF’s System 4 (15 ensembles) 

seasonal meteorological forecasts to predict monthly river inflows at the reservoirs 

of the upper basins of the Segura and Tagus Rivers. The model was first calibrated 

for the 1980-2000 period (using 1979 as a warm-up year) against discharge 

observations at three stations located at the major storage reservoirs: Entrepeñas 

and Buendía in the Tagus basin and Fuensanta in the Segura basin (see Figure 1). 

The Cenajo station in the Segura basin was not included in the calibration due to 

data availability on water transfers between catchments in the Segura basin, but it 

was included in the simulation runs. 

The system focuses on four major periods (initialisation months) relevant for the 

regional climatology (January, April, July and October), with a forecasting lead time 

of three months, aiming at finding the most suitable period(s) to take decisions. 
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 Hydropower - SMHI 2.2.4

The regulated mountainous basins are commonly highly influenced by snowmelt 

runoff and volumes in hydropower production, particularly when a multi-reservoir 

system is present. In the case study of the Umeälven River (Sweden), seasonal 

forecasts of snowmelt runoff volumes, together with ground based and remote 

sensing snow cover monitoring, are key inputs to the decision models of the 

hydropower companies when planning the production for the current and next 

winter seasons. It is very common that the operational seasonal forecasts are based 

on an ESP. Reservoir operators are interested in accumulated forecasts of inflows 

over the spring flood period (April to July). Forecasts for the April-July accumulated 

runoff are issued once a month from January until the start of the melt season in 

April. An important driver is the reservoir level at the end of summer, where a 

trade-off between water usage for power production during the spring period and 

the desire to have high water levels at the end of the summer is present. 

Unnecessary release of water that cannot be used for production is recognised as 

spill and loss of potential production which can be translated into an economical 

value. Spill of water may happen when the remaining spring flood volumes were 

underestimated and reservoirs filled up too early. Therefore, score metrics that are 

based on volume errors are appropriate measures to describe the improvements in 

forecasting skill. 

 Reservoir management - UPV 2.2.5

In the Júcar River Basin, an important characteristic is the semi-aridity of the climate 

that leads to high hydrological variability, resulting in recurrent periods of drought 

lasting several years (more than 4 years in some instances). In order to decrease the 

vulnerability of the water resources system, large reservoirs were built and 

conjunctive use of surface and groundwater is a regular practice, also integrating 

wastewater reclamation and reuse. Therefore, integrated and improved 

management of the water resources system is essential. In addition, proactive 

drought management requires continuous monitoring and assessment of risk in 

order to anticipate measures. For this purpose, reliable seasonal forecasts of climate 
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variables (i.e., precipitation and temperature) and hydrological forecasts (river flows) 

are needed for the management of the system, which in this case is based on the 

risk of failure in the supply for all uses, mainly water allocation for drinking water 

and agriculture.  

The analysis must be performed in an integrated way for all elements of the water 

resources system of the entire basin. Otherwise, physical connections between 

elements (rivers, aquifers, returns from irrigation and urban uses, etc.) and 

implications of any decisions in the rest of the system (even from downstream to 

upstream), would be ignored and results would not be realistic. 

For reservoir management, the key is to be able to use the decision support system 

(DSS) to estimate the risk of failure in the supply of water to all users, as well the 

risk of failure in the compliance with the established ecological flows, during the 

next 12 to 24 months (anticipation period). If the risk is considered to be too high, 

then measures must be proposed and their efficacy be tested with the DSS. A key 

result is also the forecast of the volume of water remaining in the reservoirs system 

at the end of the irrigation season. Deterministic and probabilistic forecasts will 

allow management measures that optimize farmer yields, maintaining high reliability 

of supplies to the cities, and with an adequate degree of environmental protection 

Currently, the analysis is performed using flow forecasts in several places of the 

basin (we will focus on 5) obtained by multivariate synthetic flow forecasts 

generation conditioned to the present time state of the system and to past flows. 

The objective would be to improve the flow forecasts by incorporating short term 

and seasonal meteorological forecasts as forcing inputs. 

For this case study, at UPV we have compared river flow data, obtained from the 

hydrological model E-HYPE, with regional river flow observations. Hydrological 

model data were provided by SMHI, corresponding to the continentally calibrated 

E-HYPE model for the period 1980-2010 and for five sub-basins of the Júcar River 

basin. Regional observations are naturalized river flows (NRF) for these sub-basins. 

This comparison has the purpose of testing the reliability of the E-HYPE model and 

to evaluate the need for a bias correction. 
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 Flood & low flow forecasting - Deltares 2.2.6

In the Netherlands, salt intrusion occurs when the river flows of the Rhine and 

Meuse are low and coincidentally, wind storms push sea water into the river mouth. 

As a result, water boards cannot take in water to flush their polders, as these could 

suffer from saline seepage. This problem is a prerequisite for accurate and reliable 

forecasts of river flows, water levels, tide and surge, water demand and availability 

in the polder areas, salt concentrations and intrusion. Rijkswaterstaat (the Ministry 

of Infrastructure and the Environment) is currently predicting river flows up to 

10-15 days for the main rivers Rhine and Meuse.  

For drought forecasting in the Netherlands, the National Hydrological Model (LHM) 

was operationalised to support water management (e.g., lakes, surface water, etc) 

between April and November (Berendrecht et al., 2011). This system is forced with 

measured and forecasted river flows at the boundary and areal precipitation and 

potential evaporation (250x250m). Timely information about low flow conditions at 

the monthly to seasonal scale (1-3 months) can help to take measures such as 

raising the level of Lake Ijssel. This might also have consequences for the flood risk 

(e.g., due to windstorms causing surge on Lake IJssel) and flow forecasts for the 

Rhine and Meuse should therefore be accurate and reliable. 
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Figure 1 Example display of the operational water management system for the 

Netherlands, showing a daily computed or forecasted water balance for the 

surface water network for the Netherlands. 

 Sensitivity analyses as a tool to diagnose seasonal streamflow forecasting 2.3

uncertainties 

Despite great advances in sub-seasonal to seasonal streamflow forecasting in the 

last decade, the forecasting skill in Europe is still limited. This is due to a 

combination of errors, such as the poor seasonal meteorological forecasting skill in 

the extra-tropics (Arribas et al., 2010), errors in the IHC, hydrological model and 

downscaling errors. 

Sensitivity analyses are a useful tool to diagnose the sensitivity of the model output 

(here hydrological variables such as discharge) to the model inputs (SCF, IHC and 

model parameters; Saltelli et al., 2004; 2008). They can be used for a variety of 

motivations, ranging from research prioritisation (improving solely certain aspects of 

the forecasting chain) to model simplification (Saltelli et al., 2008). To this end, 
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forecasting systems intercomparison can help disentangle the sources of uncertainty 

and/or corroborate skill both in time and space. 

Another sensitivity analysis method widely used in seasonal streamflow forecasting 

is based on the ESP and the reverse-ESP and was first introduced by Wood and 

Lettenmaier (2003; 2008). The reverse-ESP can only be run in hindcast and is 

produced by forcing the hydrological model with a single meteorological trace (the 

meteorological observations for that specific time of the year). The hydrological 

model is initialised with an ensemble of historical IHCs (resampled from that same 

initialisation month for all the previous years). Contrary, the ESP is started from a 

single set of current IHC and forced with an ensemble of historical meteorological 

observations (resampled from the past meteorological observations available for all 

previous years and for the same time of the year as the one for which the ESP 

forecast is run). The ESP can be run as a forecast or in hindcast.. Whereas the 

uncertainty in the ESP is given by the SCF, the uncertainty in the reverse-ESP is 

given by the IHC. By comparing the ESP and reverse-ESP skill for a catchment-

season-lead time combination, it is possible to tell which component of the forecast 

mainly leads the uncertainty (i.e., the SCF or the IHC). Recently, this method was 

extended by Wood et al. (2016) to a method called VESPA (Variational Ensemble 

Streamflow Prediction Assessment). The VESPA method aims at assessing 

intermediate uncertainty points between the climatological and ‘perfect’ (i.e., current 

observed meteorological data) skill present in the reverse-ESP and the ESP. This 

method allows the calculation of a metric called ‘skill elasticity’, a measure of the 

potential to increase the seasonal streamflow forecasting skill as a result of 

increasing the SCF or the IHC skill. In this deliverable we will use an alternative 

method to the VESPA method, a description of which is given in Section 3.3. 

 Comparative analysis in large sample hydrology 2.4

Large-scale (i.e. continental) multi-basin modelling can complement the “deep” 

knowledge from basin-based modelling and enhance process understanding, 

increase robustness of generalisations, facilitate classification of basin behaviour and 
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prediction, support better understanding of prediction uncertainty, and go beyond 

sensitivities related to IHC and SCF (Pechlivanidis and Arheimer, 2015). This type of 

modelling has the potential to cross regional and international boundaries whilst 

the analysis over a number of basins allows the consideration of different 

geophysical and climatic zones (Gupta et al., 2014); hence it can provide a deeper 

understanding of the underlying sensitivities in the forecasting skill. Such modelling 

type can also advance hydrological science since it founds a numerical background 

for comparative hydrology (Blöschl et al., 2013). The use of a large sample of 

stations, particularly when analyses are conducted at the continental scale (i.e., as in 

Europe), can also allow for exploration of emerging patterns and facilitate 

comparative hydrology, allowing to test sensitivities for many catchments with a 

wide range of environmental conditions (Blöschl et al., 2013).  

However, understanding processes in large systems is challenging, given that 

physical properties (e.g., vegetation and soil type) generally exhibit high spatial 

variability, which consequently results in significant differences in system behaviour 

and predictability. As expected, this spatial heterogeneity introduces further high 

uncertainty on the categorisation of important drivers that influence the predictive 

hydrological skill. In addition, large river basins are often strongly influenced by 

human activities (e.g., irrigation, hydropower production, groundwater use) for 

which information is rarely available and therefore rarely described in hydrological 

model processes; hence introducing additional uncertainty regarding process 

understanding and description. Although such modelling type has limitations which 

vary in space, in here we make the step forward to gain insights in spatial patterns 

of hydrological skill at the large scale, and link this to the characteristics of the 

basin system. 
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 Data and methods 3

 The forecasting systems 3.1

All the partners of this deliverable use dynamical ensemble seasonal forecasting 

systems. These systems all use the same seasonal meteorological forecasts but are 

diverse in terms of the hydrological models and the presence or not of a bias 

correction method for the seasonal meteorological forcing. This was done in order 

to obtain insights into the seasonal discharge forecast sensitivity to the hydrological 

model type. An overview of the various systems and their characteristics is given in 

Table 1. For more details on the hydrological models used, see Annex A. 
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Table 1 Dynamical ensemble seasonal hydrological forecasting systems. 

Partner Meteorologi

cal forecasts 

Interpolation 

method 

Bias 

correction of 

the 

meteorologic

al forecasts 

Hydrological 

model 

# of 

ensembl

e 

member

s 

Hindcasts 

period for 

which scores 

calculated 

Forecast 

starting 

dates 

Lead time 

and time 

step 

Spatial domain 

ECMWF System 4 Inverse 

distance 

weighting. 

Temperature 

was first 

corrected 

using the 

elevation 

None LISFLOOD 

(5x5km) 

15, 

extended to 

51 every 

three 

months 

1990 - 2010 On the 

first of 

every 

month 

Up to 7 

months, 

daily 

values 

Europe 

BfG System 4 Precipitation 

Voronoi 

Linear scaling, 

Separate 

LARSIM-ME 

(5x5km) 

15, 

extended to 

1990 - 2010 On the 

first of 

Up to 6 

months 

Catchments of 

the Rivers 
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tesselation 

Temperature 

constant 

lapse rate 

and inverse 

distance 

weighting 

scaling factors 

are derived in 

dependence 

of initialization 

month and 

monthly lead 

time 

51 every 

three 

months 

every 

month 

Rhine, Elbe, 

Weser/Ems, 

Odra and 

Danube up to 

gauge 

Nagymaros in 

Hungary 

SMHI System 4  Distribution-

Based Scaling 

(DBS) 

approach 

E-HYPE (215 

km2) 

15 1990 - 2010 On the 

first of 

every 

month 

Up to 7 

months 

Europe 

FW System 4  Bias correction 

using Spain02 

observation 

data (Herrera 

et al. 2016) 

SPHY (5x5km 

- Tagus; 

2x2km 

Segura) 

15 1990 - 2010 On the 

first of: 

January, 

April, 

July and 

October 

Up to 3 

months 

Tagus and 

Segura River 

basins 
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UPV System 4  None 

EVALHID 

(semi-

distributed 

application 

at sub-basin 

scale) 

15 1990 - 2015 

On the 

first of 

every 

month 

Up to 7 

months, 

daily 

values 

Jucar River 

basin 

DELTARE

S* 

System 4 Precipitation 

HYRAS data 

set extended 

with 

emulated 

HYRAS 

Temperature 

HYRAS data 

set extended 

with a 

constant 

None wflow_hbv 

(1.44 km2) 

15, 

extended to 

51 every 

three 

months 

1980 - 2015 On the 

first of 

every 

month 

Up to 3 

months, 

daily 

values 

Rhine 
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lapse rate 

based on 

DEM and 

inverse 

distance 

weighting 

System 4 EFAS forcing 

dataset (See 

ECMWF) 

None W3RA (0.5 

km2 and 0.05 

km2) 

15, 

extended to 

51 every 

three 

months 

1990 - 2014 On the 

first of 

every 

month 

Up to 3 

months, 

daily 

values 

Europe 

*As the seasonal forecast runs from Deltares were not ready at the time of this deliverable, results of discharge simulations from the two 

models shown above for Deltares, as well as discharge simulations produced from the HBV96 model will be shown in the results. The 

W3RA was run with EFAS historical forcing data from 1991-2014, while the lumped HBV96 and distributed wflow_hbv models were run 

using HYRAS data from 1991-2006.



 

  

 

 

 
29 

 

 The forecasting systems intercomparison 3.2

The first part of this deliverable compares the performance of the dynamical sub-

seasonal to seasonal hydrological forecasting systems listed above (see Table 1). For 

the intercomparison, a common set of stations was selected, based on data 

available to the partners of this deliverable (see Figure 2 and Table 2). Observed 

discharge data was distributed for the corresponding stations by a few partners to 

all partners involved in WP4, in order to have a consistent verification across 

partners. 

 

Figure 2 Map of the stations used for the analysis. 
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Table 2 Observed discharge data for the selected stations. 

Case study Data source Station code Station name Station 

coordinates (lat, 

lon) 

Drainage area 

(km2) 

Elevation 

(m) 

River 

(country) 

The Thames 

River Basin  

Observed 

discharge from 

the NRFA 

(National River 

Flow Archive) 

UOR39088 Rickmansworth 51.64199826, -

0.461235789 

105 47.1 Chess (UK) 

UOR39072 Royal Windsor Park 51.48562525, -

0.589407615 

7046 13.5 Thames (UK) 

UOR39068 Castle Mill 51.23842724, -

0.31118153 

316 39.2 Mole (UK) 

UOR39034 Cassington Mill 51.786274, -

1.351677333 

430 60.2 Evenlode 

(UK) 

UOR39027 Pangbourne 51.48462376, -

1.08759943 

170.9 39.6 Pang (UK) 

UOR39021 Enslow Mill 51.86135121, -

1.301356378 

551.7 65 Cherwell (UK) 

UOR39016 Theale 51.43274011, - 1033.4 43.4 Kennet (UK) 
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1.066925886 

UOR39013 Berrygrove 51.67066472, -

0.380218207 

352.2 54.7 Colne (UK) 

UOR39010 Denham 51.56631768, -

0.483890807 

743 34.1 Colne (UK) 

UOR39008 Eynsham 51.77524074, -

1.356429965 

1616.2 59.7 Thames (UK) 

UOR39007 Swallowfield 51.37737889, -

0.951223862 

354.8 42.3 Blackwater 

(UK) 

UOR39002 Days Weir 51.63852061, -

1.179455188 

3444.7 45.8 Thames (UK) 

Central 

European 

Rivers 

The Global 

Runoff Data 

centre, 56068 

Koblenz, 

Germany 

GRDC634030

0 

Calbe Grizehne 51.916608,11.8099

82 

23719 49.36 Saale 

(Germany) 

GRDC634012

0 

Dresden 51.054456,13.7388

29 

53096 102.68 Elbe 

(Germany) 

GRDC634280 Hofkirchen 48.67657,13.11427 47496 299.6 Danube 
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0 9 (Germany) 

GRDC633510

0 

Kaub 50.085613,7.76500

8 

103488 67.66 Rhine 

(Germany) 

GRDC633506

0 

Koeln 50.937359,6.96322

5 

144232 34.97 Rhine 

(Germany) 

GRDC633520

0 

Maxau 49.038933,8.30553

5 

50196 97.76 Rhine 

(Germany) 

GRDC634011

0 

Neu Darchau 53.232337,10.8887

73 

131950 5.68 Elbe 

(Germany) 

GRDC634390

0 

Passau Ingling 48.5629,13.443071 26063 289.19 Inn 

(Germany) 

BFG2409530

2 

Raunheim 50.016067,8.44824

8 

27142 82.9 Main 

(Germany) 

GRDC633650

0 

Trier UP 49.732655,6.624 23857 121 Mosel 

(Germany) 

Observed 

discharge from 

GRDC643506

0 

Lobith 51.84, 6.11 160800 8.53 Rhine (The 

Netherlands) 
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RWS GRDC6421101 

 

St Pieter Noord 50.83, 5.71 21300 44 Meuse (The 

Netherlands) 

The Segura 

and Tagus 

River Basins 

Reservoir inflows FWUT_1 Entrepenas 40.2938,-2.4456 3825.5 636 Tagus (Spain) 

FWUT_2 Buendia 40.236,-2.4657 3355.7 636 Guadiela 

(Spain) 

FWSG_1 Fuensanta 38.2333,-2.1224 1210.1 524 Segura 

(Spain) 

FWSG_2 Cenajo 38.22,-1.4629 1394.4 335 Segura 

(Cenajo) 

The Jucar 

River Basin 

Reservoir 

inflows and 

Spain02 

 

 

 

UPV8001 Alarcon 39.564597,-

2.112084 

2937 831 Jucar (Spain) 

UPV8009 Contreras 39.543559,-

1.502849 

3266 1030 Cabriel (Spain) 

UPV8026 El Molinar 39.207931,-

1.239957 

7912 690 Jucar (Spain) 
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UPV8030 Tous 39.132927,-

0.650729 

17821 64 Jucar (Spain) 

UPV8089 Sueca 38.939532,-

0.478048 

21497 18 Jucar (Spain) 

Swedish 

Rivers 

The Global 

Runoff Data 

centre, 56068 

Koblenz, 

Germany 

GRDC6233510 Granaker 64.239979,19.66624 

 

11850.5 NA Vindelaelven 

(Sweden) 

GRDC6233710 Sikfors KRV 65.532833,21.20877

8 

 

10816.1 NA Piteaelven 

(Sweden) 

GRDC6233850 Raektfors 66.170645,22.81577

5 

 

23102.9 NA Kalixaelven 

(Sweden) 

GRDC6233470 Rengen 64.069902,14.09551

9 

1110.1 NA Harkan 

(Sweden) 
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In order to compare the performance of the different ensemble seasonal hydrological 

forecasting systems, several scores were chosen including both deterministic and 

probabilistic scores and covering the main attributes of ensemble forecasting relevant for 

sectoral applications (see Section 3b). These scores include: 

● Deterministic scores: 

o The Mean Absolute Error (MAE) (cawcr, 2015):  

 

The MAE ranges from 0 to an upper boundary defined by the system’s 

variability, with a perfect score of 0, and indicates the average magnitude of 

the forecast errors. Where Fi is the ensemble mean and Oi is the observed 

discharge for the same time. N is the sample size, it is the total number of 

forecasts made for the same target month and with the same lead time and 

temporal aggregation type. This score does not indicate the direction of the 

forecast deviations, which will be calculated using the Mean Error (ME). 

o The Mean Error (ME) (cawcr, 2015):  

 

The ME ranges from -∞ to +∞, with a perfect score of 0, and is a measure of 

the average forecast error, considering the ensemble mean. It indicates the 

forecast average additive bias (i.e., its tendency to underestimate or 

overestimate observed discharge). Note, a good ME score does not guarantee 

that the forecast is perfect as overestimations and underestimations made by 

the latter can compensate each other. 

o The normalised volumetric term of the Kling-Gupta Efficiency (beta, Gupta 

et al., 2009):  

𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 = 1 − 𝑠𝑠𝑠𝑠𝑠𝑠𝑏𝑏((𝛽𝛽 − 1)2) 

β is defined as the ratio of the monthly mean of the forecasts (the output of 

the model forced by meteorological forecasts) over the monthly mean of the 
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perfect forecasts (the output of the model forced by the reference forcing 

dataset); note that the range of the values for each term varies between -∞ 

and 1 with 1 being the optimum. 

 

● Probabilistic scores: 

o The Continuous Ranked Probability Score (CRPS) (Hersbach, 2000): 

 

Where P is the ensemble forecast cumulative distribution function (cdf) and Pa 

is the observation cdf and is defined by: 

 

For the observed discharge xa, with H(x) the Heaviside function: 

  

The CRPS ranges from 0 to +∞, with a perfect score of 0, and is a measure of 

the difference between the forecast and the observation cdfs. A perfect score 

of 0 is achieved in the case of a perfect deterministic forecast. The CRPS is a 

measure of the forecast accuracy and sharpness. It can be further 

decomposed into reliability, resolution and uncertainty components, according 

to: 

 

    CRPS reliability CRPSpotential= +  

 

Where the potential CRPS is the CRPS value that a forecast with perfect 

reliability (reliability=0) would have, expressed as:  

 

    CRPSpotential uncertainty resolution= −  

 

The reliability is a measure of the bias and the spread of the system. The 

uncertainty is the variability of the observations and the resolution is the 
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ability of the forecast to distinguish situations with distinctly different 

frequencies of occurrence.  The components all range from 0 to +∞, with a 

perfect score of 0. The CRPS and its components were averaged over all the 

forecasts made for the same forecast initialisation date and with the same 

lead time and temporal aggregation (monthly averages here). 

 

o The Brier score (BS) (cawcr, 2015): 

 

Where N is the sample size, the total number of forecasts made for the same 

target season and with the same lead time, temporal aggregation type and 

for the same event. oi is a binary observation, it is 1 if a predefined event 

happened and 0 if it did not. pi is the forecast probability of the event 

happening. The BS ranges from 0 to 1, with a perfect score of 0 and is a 

measure of the mean squared error of the probability forecasts over the 

verification sample. The events selected to calculate the Brier score are the 

upper and the lower terciles of the observed discharge for the specific season 

for which the score is calculated. These thresholds were chosen in order to 

have a large enough sample as this score is sensitive to the climatological 

frequency of the event: the rarer an event is, the easier it will be to obtain a 

good BS without necessarily having any real skill. The BS can be further 

decomposed into a (1) reliability, (2) resolution and (3) uncertainty part. The 

BS and its three parts were averaged over all the forecasts made for the same 

target season and with the same lead time, temporal aggregation (monthly 

averages here) and for the same event (upper or lower terciles). 

o The skill scores: the forecast skill was also calculated for the CRPS and the BS 

using the following equation: 

1 forecast

reference

score
Skillscore

score
= −   
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For the reference, two benchmarks were selected. The first benchmark is the 

climatology of observed discharge and the corresponding skill scores of the 

CRPS and the BS are called the CRPSS_CLI and the BSS_CLI, respectively. The 

climatology covers the same period as is covered by each forecasting system 

(excluding the year analysed) and is the climatology of a given target month 

(or season for the Brier Score). The second benchmark is the ESP 

corresponding to each system, for the same forecast initialisation date, lead 

time and temporal aggregation (monthly averages here). The corresponding 

skill scores of the CRPS and the BS are called the CRPSS_ESP and the 

BSS_ESP, respectively 

The analysis will present scores measured for the discharge forecasted from various forecast 

starting dates or target seasons (for the BS), lead times, monthly aggregations and several 

stations in Europe. This intercomparison will provide a spatio-temporal overview of the 

performance of the seasonal hydrological forecasting systems overall as well as for extreme 

events (high and low flows). 

 The EPB sensitivity analysis 3.3

The VESPA method is a sensitivity analysis method in the sense that it measures the 

response of the model output (discharge in our case) to a known variation in the model 

input(s) (here the SCF and the IHC). It was designed and tested on 424 catchments in the 

contiguous United States (CONUS), for which it successfully exposed the relative 

contributions of the two sources of errors (SCF and IHC) on seasonal streamflow forecasting 

uncertainty. Moreover, the ‘skill elasticity’ produced by the VESPA method indicates the 

potential to improve the seasonal streamflow forecasting skill by improving the SCF and/or 

the IHC skill. This information is valuable for guiding resources in seasonal forecasting 

system development towards useful improvements. One drawback of the VESPA method 

however is that it is computationally expensive to run as it is based on a very large number 

of simulations. Recently, an alternative and cheaper method called EPB (End Point Blending) 

was designed and tested on 18 catchments of the CONUS for which it gave almost identical 

results to the VESPA method (Arnal et al. 2017). Because the EPB sensitivity analysis is a 
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reliable and computationally cheap method which can give insightful results in the context 

of seasonal streamflow forecasting improvements, it will be used in this deliverable. 

The EPB is constructed by combining four sources of data (also called end points): the ESP, 

the reverse-ESP, the climatology and the ‘perfect’ forecast. The term ‘perfect’ refers to 

current observed meteorological data and the term climatological refers to the whole 

distribution of historical meteorological observed data. Each end point corresponds to a 

combination of IHC and SCF weights (wIHC and wSCF respectively; the axes on Figure 3). A 

weight of 0 is the ‘perfect’ knowledge (upper right corner on Figure 3) whereas a weight of 

1 is the climatological knowledge of either of the two predictability sources (bottom left 

corner on Figure 3).  A ‘perfect’ forecast (forecast generated by starting a hydrological 

model with the current IHC and forcing it with the current observed meteorological data) 

has a wIHC and a wSCF of 0. The climatological forecast (‘climo’ on Figure 3; forecast 

generated by starting a hydrological model with all historical IHC and forcing it with all 

historical observed meteorological data) has a wIHC and a wSCF of 1 by definition. The 

reverse-ESP is forced with a single meteorological trace, the meteorological observations for 

that specific time of the year (wSCF of 0) and the model is initialised with a range of 

historical IHC (wIHC of 1). The ESP is forced with historical observed meteorological data (wSCF 

of 1) and the current IHC (wIHC of 0).  

The EPB combines these four end points for each intermediate SCF and IHC weights (w = 0, 

0.05, 0.10, 0.25, 0.50, 0.75, 0.90, 0.95, 1.0), as shown on Figure 3 below. Those intermediate 

weights were chosen in order to coincide with the VESPA method (Wood et al. 2016). For 

each wSCF-wIHC combination (each cross on Figure 3 below), a new 100-member hindcast is 

generated by a weighted averaging of the forecasts carried out for the four end points. The 

percentage of each end point used, EP [%] (i.e., the number of members randomly selected 

from each end point), is given for each combination point by the following equation: 

[ ] ( ) ( )% 1 1EP IHC EP SCFEP x w y w= − − × − −  



  

  

 

IMPREX has received funding from the European Union Horizon 2020 Research and Innovation 

Programme under Grant agreement N° 641811 40 

Where xEP and yEP are the wIHC and wSCF values of the end point for which the percentage is 

calculated, respectively. For example, if the wIHC and wSCF match the end point values, 100 

percent of the EPB hindcast members are resampled from that end point (i.e., the end point 

skill is reproduced). This was done for each forecast initialisation date for a given location. 

 

Figure 3 Resampling surface for the EPB sensitivity analysis method (taken from Arnal 

et al. 2017). 

Once the new EPB hindcasts have been generated, their quality can be calculated for each 

combination point. A plot of the forecast quality as a function of IHC and SCF skill can then 

be drawn and is called skill surface plot in Wood et al. (2016). Finally, for each response 

surface (i.e., skill elasticity plot) skill elasticities for the IHC and the SCF (EIHC and ESCF 

respectively) can be measured from the scores from the following equations: 

[ ]( ) [ ]( ) [ ]( ) [ ]( ) [ ]( ) [ ]( )75,19 19,19 75,44 19,44 75,75 19,75
100

75% 19% 75% 19% 75% 19%
3

IHC

S F S F S F S F S F S F
E

 − − − = × + + − − −     

[ ]( ) [ ]( ) [ ]( ) [ ]( ) [ ]( ) [ ]( )19,75 19,19 44,75 44,19 75,75 75,19
100

75% 19% 75% 19% 75% 19%
3

SCF

S F S F S F S F S F S F
E

 − − − = × + + − − −     
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The numerators, expressed as S(F[-])-S(F[-]), are the streamflow forecast skill gradients 

between IHC skill (or SCF skill) values of 75% and 19% (the denominator). The values in the 

square brackets of the numerator are the IHC skill followed by the SCF skill values, 

indicating a wSCF - wIHC combination point in the example skill surface plot (i.e., Figure 3). 

In the denominator, the IHC and SCF skill gradients are gradients in the percentage of the 

climatological variance explained in the respective predictability source. The skill elasticities 

(EIHC and ESCF) are positively oriented; where a skill elasticity of zero is obtained when the 

predictability source has no influence on the skill of the streamflow forecast, while positive 

(negative) elasticities mean that an improvement in the predictability source will lead to 

higher (lower) streamflow forecast skill. 

For this deliverable, we calculated the IHC and SCF skill elasticities for the ECMWF seasonal 

discharge forecasts described in Table 1, for each initialisation date (the first of each month), 

monthly forecast aggregations from 1 to 7 months of lead time and over 74 geo-

climatological regions in Europe. These 74 regions were selected as they are the same 

regions for which the ECMWF seasonal streamflow forecast is currently operational in EFAS 

(European Flood Awareness System). The skill elasticities are based on the CRPSS, calculated 

against the climatological forecast. This analysis assumes that the model is perfect as the 

CRPS is calculated against the ‘perfect’ forecast (i.e., discharge simulation) and not actual 

discharge observations. Additionally, skill elasticities were calculated for the BfG seasonal 

discharge forecasts described in Table 1, for each initialisation date (the first of each month), 

monthly forecast aggregations from 1 to 6 months of lead time and for the stations shared 

by the BfG and presented in Table 2. 

 Seasonal hydrological forecasts - Clustering of the skill 3.4

To better understand the potential factors influencing the skill of a model and to identify 

regions of similarity, we apply classification and regression trees (CART). Here, we explored 

the spatial runoff patterns across the entire subcontinent by analysing the skill in all 35408 

catchments modelled by the E-HYPE model. CART is a recursive-partitioning algorithm that 
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classifies the space defined by the input variables/descriptors (i.e. physiographic-hydrologic-

climatic characteristics, and remaining climatic biases) based on the output variable (i.e. beta 

skill for lead month 2 and month March). The tree consists of a series of nodes, where each 

node is a logical expression based on a similarity metric in the input space (physiographic-

hydro-climatic characteristics etc.). CART also provides information on the probabilities of 

different output groups at each leaf node. In this case, beta (see section 3.2) is divided into 

five groups – bad (beta < 0.2), poor (0.2 < beta < 0.4), medium (0.4 < beta < 0.6), good (0.6 

< beta < 0.8) and very good (beta > 0.8), which are termed C0, C1, C2, C3 and C4 

respectively. A terminal leaf exists at the end of each branch of the tree, where the 

probability of belonging to any of the three output groups can be inspected. Here we 

summarised the basin characteristics into climatic, topographic, human impacts, biases in 

forcing input and hydrologic bias (Table 3). We next calculate the predictors’ importance 

(and rank them) by summing changes in the risk due to splits on every predictor and 

dividing the sum by the number of branch nodes. 

It is important to note that in order to avoid the high dimensionality in the CART analysis, 

the hydrologic signatures were firstly clustered into 11 groups with each group receiving an 

ID (named FlowID). We applied a k-means clustering approach within the 12-dimensional 

space (consisting of the 12 calculated flow signatures in Table 3) to categorise the subbasins 

based on their combined similarity in flow signatures. Through the mapping of the spatial 

pattern we gained insight into the similarities of catchment functioning and could identify 

the dominant flow generating processes for specific regions. 

Table 3 Basin characteristics used in the clustering analysis. 

Climatology (7 
characteristics) 

Topography 
(4) 

Human 
impact (1) 

Forcing biases 
(2) 

Hydrologic signatures (12) 

Precipitation 
(mm/month); Prec. 

Area (km2); 
Area 

Degree of 
regulation 
(%); DoR 

Precipitation (%): 
BiasPrec. 

Mean annual specific runoff; 
Qm 

Temperature (oC); 
Temp. 

Elevation 
(m); Elev. 

  Temperature 
(%); BiasTemp. 

Normalised high flow; q05 

Snow depth 
(cm/month); Snow 

Relief ratio 
(-); Relief 

    Normalised low flow; q95 

Actual evaporation 
(mm/month); AET 

Slope (%); 
Slope 

    Normalised relatively low 
flow; q70 
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Potential evaporation 
(mm/month); P 

      Slope of flow duration curve; 
mFDC 

Dryness index (-); 
P/Prec. 

      Range of Parde coefficient; 
DPar 

Evaporative index (-); 
AET/P 

      Coefficient of variation; CV 

        Flashiness; Flash 

        Normalised peak distribution; 
PD 

        Rising limb density; RLD 

        Declining limb density; DLD 

        Baseflow index; BFI 
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 Results 4

 The forecasting systems intercomparison 4.1

A set of scores was added from each forecasting system (from the ECMWF, SMHI, BfG and 

FW) into the scoreboard for the selected stations shown in Table 2. This allows to have a 

first view of the similarities as well as differences between the forecasting systems’ 

performances and highlights common forecasts’ behaviours across river basins. 

The seasonal discharge forecasts’ quality depends on the target month, the lead time and 

the station for which the forecast is made. We will split the results according to the 

geographical location of the river basins, as there are some noticeable similar characteristics 

in terms of forecast performance for stations in a given area of Europe. 

 Central European Rivers 4.1.1

For stations of the Central European Rivers case study, scores were calculated from the 

SMHI, the BfG and the ECMWF forecasting systems. From this set of stations, there appears 

to be two types of forecast performance behaviours. For the most western Central European 

Rivers stations included in this deliverable (the Main at Raunheim, the Rhine at Koeln, Kaub 

and Maxau and the Mosel at Trier UP), all forecasts show similar CRPS values, with larger 

errors from November-April. Figure 4 is an example of the CRPS for the three systems for 

the Rhine at Koeln. 

For the most eastern Central European Rivers stations included in this deliverable (the Elbe 

at Neu Darchau and Dresden and the Saale at Calbe Grizehne), the SMHI forecasts display 

larger CRPS values than the two other systems, especially from December-April. Figure 5 is 

an example of the CRPS for the three systems for the Elbe at Dresden. 

In general however, the BfG and the ECMWF seasonal discharge forecasts have a lower 

CRPS than the SMHI forecasts for the first forecast month. 
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Figure 4 Continuous Ranked Probability Score (CRPS) for the Rhine at Koeln for (top) 

the SMHI forecasts, (middle) the ECMWF forecasts and (bottom) the BfG forecasts. CRPS 

= 0 denotes a perfect forecast. The CRPS is given for each forecast init ialisation date 

(on the first of each month, different colours) and for 6 months of lead time (for the 

SMHI and the BfG forecasts) or 7 months of lead time (for the ECMWF forecasts). 
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Figure 5 Same as Figure 4 but for the Elbe at Dresden. 

While the seasonal forecasts with the W3RA model are not available at this time, results are 

shown from the simulation run (spanning 1990-2014, with one year of spin up) obtained 

from the W3RA model from Deltares for the Elbe at Dresden. The results, presented on 

Figure 6, are plotted as monthly values of the mean absolute error (MAE; comparable with 

the CRPS as shown above for the SMHI, ECMWF and BfG models). From these results, it 

appears that the W3RA model has the largest errors from October-May. This is similar to 

the pattern of the CRPS observed on Figure 5 for the SMHI forecasts for the same station.  



 

 

 

 

 

 

  

 

 

 
47 

Deliverable n° 4.2 

 

Figure 6 Mean Absolute Error (MAE) for the Elbe at Dresden (at lead time 0) for the 

W3RA model for the period 1991-2014. 

For the Rhine at Lobith, the results are also plotted as monthly values of the mean absolute 

error for the W3RA model, the lumped HBV96 model and the distributed wflow_hbv model 

(Figure 7). Note that W3RA was run with EFAS historical forcing data, while the lumped 

HBV96 and distributed wflow_hbv models were run using HYRAS data (details given in Table 

1). From Figure 7, it appears that the W3RA model displays larger errors than the two other 

models almost all year long, especially in summer. This could be an indication that the EFAS 

historical forcing data has large uncertainties for this station. It could furthermore be due to 

a misrepresentation of essential discharge generating mechanisms in this region by the 

W3RA model.  
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Figure 7 MAE for the Rhine at Lobith (at lead time 0) for the W3RA (1991-2014), the 

lumped HBV96 and the distributed wflow_hbv models (both for the period 1991-2006). 

Figures 8 and 9 show the bias (i.e., the ME) for all forecast initialisation dates and all lead 

times for the Rhine at Koeln and the Elbe at Dresden, respectively. For most Central 

European Rivers stations included in this analysis, the SMHI forecasts overestimate the 

observed discharge in the winter to spring months. This is both the case for the Rhine at 

Koeln (Figure 8) and the Elbe at Dresden (Figure 9). This positive bias could be due to a 

hydrological model error, where the model releases more water as river flow than is 

observed because it cannot store enough water as groundwater. For the Rhine at Koeln (and 

a few other stations of the most western Central European Rivers stations, not shown), the 

SMHI forecasts additionally present a negative bias for the rest of the year. 

The ECMWF forecasts overall overestimate the observed discharge during the spring months 

(more largely at longer lead times) while underestimating the winter discharge. This is both 

true for the Rhine at Koeln and the Elbe at Dresden (see Figures 8 and 9). This positive bias 

extends into the early summer months for some stations. These biases could be due to 

meteorological forecast error as the input meteorological forecasts used to produce the 

ECMWF seasonal discharge forecasts was not bias corrected, contrary to the BfG and the 
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SMHI forecasts. It seems that ECMWF generates too much of the precipitation falling as 

snow in winter, leading to underestimated discharge in those months and a snowmelt 

compensation in spring. 

The BfG forecasts underestimate the observed discharge for winter and early spring months 

or all target months, depending on the station (see Figures 8 and 9). This behaviour could 

either be due to the bias correction of the meteorological forecasts input to the 

hydrological model, which produces too dry conditions compared to the observed amount, 

or to the hydrological model which stores too much incoming water as groundwater. 

These are general characteristics of the SMHI, BfG and ECMWF forecasts and the magnitude 

of the bias depend on the station, target month and lead time for which the forecasts were 

made. 

 

Figure 8 Mean Error (ME) for the Rhine at Koeln for (top) the SMHI forecasts, (middle) 

the ECMWF forecasts and (bottom) the BfG forecasts. ME = 0 denotes no bias, while 

ME > 0 denotes a positive forecast bias and the ME < 0 a negative forecast bias. The 

ME is given for each forecast init ialisation date (on the first of each month, different 
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colours) and for 6 months of lead time (for the SMHI and the BfG forecasts) or 7 

months of lead time (for the ECMWF forecasts). 

 

Figure 9 Same as Figure 8 but for the Elbe at Dresden. 

Figure 10 shows the bias (i.e., the ME) for the W3RA model simulation for the Elbe at 

Dresden. From this figure, it can be seen that the W3RA underestimates the discharge for all 

months of the year, especially in April. 
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Figure 10 ME for the Elbe at Dresden (at lead time 0) for the W3RA model for the 

period 1991-2014.  

Figure 11 displays the Mean Error (ME) for the Rhine at Lobith for the W3RA, the lumped 

HBV96 and the distributed wflow_HBV models. For this station, the W3RA model largely 

overestimates the discharge for all months. The wflow_hbv model overestimates the 

observed discharge mostly in the summer, while it underestimates it slightly in November 

and January-February. The HBV96 model underestimates the observed discharge for 

October-November and overestimates it for the rest of the year. 
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Figure 11 ME for the Rhine at Lobith (at lead time 0) for the W3RA (1991-2014), the 

lumped HBV96 and the distributed wflow_hbv models (both for the period 1991-2006). 

In terms of the reliability of the forecasts (i.e., CRPS reliability), the results are contrasted and 

vary from station to station. For the most western Central European Rivers stations, the 

CRPS reliability appears highly influenced by the forecast lead time as well as the event 

which is being forecasted. Figure 12 is an example of the CRPS reliability for the three 

systems for the Rhine at Koeln. For this station, the SMHI forecasts are less reliable from 

February-March and May at 1 month lead time. The ECMWF forecasts are less reliable from 

May-July and January. The BfG forecasts are less reliable from March-April. 

For the most eastern Central European Rivers stations, the CRPS reliability, the ECMWF and 

the BfG forecasts display a better reliability than the SMHI forecasts, especially for 

December-April. Figure 13 is an example of the CRPS reliability for the three systems for the 

Elbe at Dresden. 
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Figure 12 CRPS reliability for the Rhine at Koeln for (top) the SMHI forecasts, (middle) 

the ECMWF forecasts and (bottom) the BfG forecasts. CRPS reliability = 0 denotes a 

perfect forecast reliability. The CRPS reliability is given for each forecast init ialisation 

date (on the first of each month, different colours) and for 6 months of lead time (for 

the SMHI and the BfG forecasts) or 7 months of lead time (for the ECMWF forecasts). 
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Figure 13 Same as Figure 12 but for the Elbe at Dresden. 

If we look at the seasonal discharge forecasts skill, when compared to the observed 

discharge climatology (CRPSS_CLI), it appears that the seasonal discharge forecasts 

produced by the three systems are more accurate and sharp than the observed discharge 

climatology for the first month to two months of lead time, depending on the station and 

the event forecasted. In some cases however, the seasonal discharge forecasts show a lower 

performance than the observed discharge climatology, for all lead times. In general, the 

ECMWF and the BfG forecasts are more skilful than the SMHI forecasts for the first month 

of lead time. Figures 14 and 15 are examples of the CRPSS_CLI for the three systems for the 

Rhine at Koeln and the Elbe at Dresden, respectively. 
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Figure 14 Continuous Ranked Probability Skill Score (CRPSS) of the seasonal discharge 

forecast against the observed discharge climatology for the Rhine at Koeln for (top) the 

SMHI forecasts, (middle) the ECMWF forecasts and (bottom) the BfG forecasts. CRPSS = 

1 denotes a perfect forecast skill. The CRPSS is given for each forecast init ialisation 

date (on the first of each month, different colours) and for 6 months of lead time (for 

the SMHI and the BfG forecasts) or 7 months of lead time (for the ECMWF forecasts). 
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Figure 15 Same as Figure 14 but for the Elbe at Dresden. 

For the upper and the lower terciles of the observed discharge, all forecasts show a very 

similar accuracy (Brier score of 0.2-0.3 on average over all lead times and all target seasons). 

There are however slight differences for single stations, for which the SMHI forecasts have a 

lower performance than the other forecasts for the summer target season for the lower 

tercile (BS33) and for the summer and the winter target season for the upper tercile (BS66; 

not shown). 

 The Thames River Basin 4.1.2

For stations for the Thames River Basin case study, scores were calculated from the SMHI 

and the ECMWF forecasting systems. From this set of stations, there are several observable 

forecast performance behaviours. For several stations, both the SMHI and the ECWMF 

forecasts appear overall less accurate and sharp (in terms of the CRPS) from October-April. 

Figure 16 is an example of such a behaviour and shows the CRPS for the Thames at Royal 

Windsor Park for both systems. 
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For several other stations, the SMHI forecasts are less accurate and sharp than the ECMWF 

forecasts throughout the year, especially from November-April.  This can be seen on Figure 

17 of the CRPS for the Pang at Pangbourne for both systems. 
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Figure 16 Same as Figure 4 but for the SMHI and the ECMWF forecasts only for the 

Thames at Royal Windsor Park. 

 

Figure 17 Same as Figure 4 but for the SMHI and the ECMWF forecasts only for the 

Pang at Panbourne. 
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In terms of the forecast bias (i.e., the ME) for both stations, the SMHI forecasts overestimate 

the November-March discharge (as seen for the Thames at Royal Windsor Park and the 

Pang at Pangbourne; Figures 18 and 19 respectively) and sometimes underestimate the 

April-May discharge (as seen for the Thames at Royal Windsor Park on Figure 18). A similar 

positive bias was described for stations of the Central European Rivers (Section 4.1.1) and 

could be here again due to a hydrological model error, where the model releases more 

water as river flow than is observed because it cannot store enough water as groundwater. 

While there is almost no bias for the Pang at Pangbourne for the ECMWF forecasts (Figure 

19), they underestimate the discharge from November-January and overestimate it more 

largely from February-June (increasingly with lead time) for the Thames at Royal Windsor 

Park (Figure 18). A similar bias pattern was observed for stations of the Central European 

Rivers and could be here again due to an overestimated percentage of precipitation falling 

as snow in the winter, leading to underestimated discharge in those months and a 

snowmelt compensation in spring.  
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Figure 18 Same as Figure 8 but for the SMHI and the ECMWF forecasts only for the 

Thames at Royal Windsor Park. 
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Figure 19 Same as Figure 8 but for the SMHI and the ECMWF forecasts only for the 

Pang at Panbourne. 

In terms of reliability (i.e., CRPS reliability; see Figure 20 for an example at the Thames at 

Royal Windsor Park), the SMHI forecasts are overall less reliable than the ECMWF forecasts, 

especially for forecasts for the winter and the spring target months.  The ECMWF forecasts 

are sometimes less reliable than the SMHI forecasts for the late summer or for the winter 

target months for a few stations. For both systems, the forecasts sometimes become more 

reliable with lead time, for a forecast made for the winter target months, which is a counter-

intuitive behaviour. 

 

Figure 20 Same as Figure 12 but for the SMHI and the ECMWF forecasts only for the 

Thames at Royal Windsor Park. 

In terms of the seasonal discharge forecasts skill, when compared to the observed discharge 

climatology (i.e., CRPSS_CLI), for several stations the SMHI and the ECMWF seasonal 

discharge forecasts exhibit a positive skill for the first month of lead time, which then 
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decreases with increasing lead time. This can be observed on Figure 21 of the CRPSS_CLI for 

the Thames at Royal Windsor Park for the SMHI and the ECMWF forecasts. The speed of 

decrease of the skill for both systems depends on the station and the event forecasted and 

can be negative for one month of lead time in some cases (not shown). For the Thames at 

Royal Windsor Park, the skill of the SMHI forecasts decreases the most from November-

February, while the skill of the ECMWF forecasts decreases the most from March-July. 

 

Figure 21 Same as Figure 14 but for the SMHI and the ECMWF forecasts only for the 

Thames at Royal Windsor Park. 

The forecasts’ accuracy for the lower and the upper terciles of the observed discharge is 

variable depending on the station and the target season. In general however, both the SMHI 

and the ECWMF forecasts show a similar accuracy (Brier score of 0.2 on average over all 

lead times and all target seasons). For several stations, the SMHI forecasts have a worst 

BS33 and BS66 for all target seasons and all lead times. However, the ECMWF forecasts are 

less accurate than the SMHI forecasts for the upper tercile for JJA and MAM target months 

for a few stations (not shown). 
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 The Segura and Tagus River Basins 4.1.3

For stations of the Segura and Tagus River Basins, scores were calculated from the SMHI, 

the ECMWF and FW forecasting systems. From this set of stations, the SMHI forecasts are 

on average less accurate and sharp than the two other forecasting systems, especially for 

forecasts made for the winter and the spring. The ECMWF forecasts appear more accurate 

and sharp for forecasts made for the summer for all stations shared for this river basin. See 

Figure 22 as an example for the Tagus at Entrepenas. 
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Figure 22 CRPS for the Tagus at Entrepenas for (top) the SMHI forecasts, (middle) the 

ECMWF forecasts and (bottom) the FW forecasts. The CRPS is given for each forecast 

init ialisation date (on the first of each month for the SMHI and ECMWF forecasts and 

on the first of January, April , July and October for the FW forecasts; different colours) 

and for 6 months of lead time (for the SMHI forecasts), 7 months of lead time (for the 

ECMWF forecasts) or 3 months of lead time (for the FW forecasts). 

Figures 23 and 24 show the forecast biases (i.e., the ME) for the Tagus at Entrepenas and 

the Segura at Cenajo, respectively. For these stations, the SMHI forecasts either 

underestimate or overestimate the observed discharge, more largely for the spring and the 

winter. The ECMWF forecasts have large biases for the winter and the spring as well, either 

positive or negative depending on the station. The summer biases are however the closest 

to zero for the ECMWF forecasts. The FW forecasts display large positive biases from 

February-April for the two stations on the Tagus River (see Figure 23 as an example for the 

Tagus at Entrepenas) and small negative biases throughout the whole year for the two 

stations on the Segura River (see Figure 24 as an example for the Segura at Cenajo). 
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Figure 23 ME for the Tagus at Entrepenas for (top) the SMHI forecasts, (middle) the 

ECMWF forecasts and (bottom) the FW forecasts. The ME is given for each forecast 

init ialisation date (on the first of each month for the SMHI and ECMWF forecasts and 

on the first of January, April , July and October for the FW forecasts; different colours) 

and for 6 months of lead time (for the SMHI forecasts), 7 months of lead time (for the 

ECMWF forecasts) or 3 months of lead time (for the FW forecasts). 
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Figure 24 Same as Figure 23 but for the Segura at Cenajo. 

The SMHI appears less reliable than the two other forecasts for all stations of the Segura 

and Tagus River Basins, especially for the winter and the spring (see Figure 25 as an 

example for the Tagus at Entrepenas). 
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Figure 25 CRPS reliability for the Tagus at Entrepenas for (top) the SMHI forecasts, 

(middle) the ECMWF forecasts and (bottom) the FW forecasts. The CRPS reliability is 

given for each forecast initialisation date (on the first of each month for the SMHI and 

ECMWF forecasts and on the first of January, April , July and October for the FW 

forecasts; different colours) and for 6 months of lead time (for the SMHI forecasts), 7 

months of lead time (for the ECMWF forecasts) or 3 months of lead time (for the FW 

forecasts). 

In terms of the seasonal discharge forecasts skill, when compared to the observed discharge 

climatology (i.e., the CRPSS_CLI), the SMHI, ECMWF and FW forecasts appear less skilful for 

the summer. The SMHI forecasts are also less skilful than the ECMWF and the FW forecasts. 

Both of these results can be seen on Figure 26 of the CRPSS_CLI for the Tagus at 

Entrepenas.  
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Figure 26 CRPSS of the seasonal discharge forecast against the observed discharge 

climatology for the Tagus at Entrepenas for (top) the SMHI forecasts, (middle) the 

ECMWF forecasts and (bottom) the FW forecasts. The CRPSS is given for each forecast 

init ialisation date (on the first of each month for the SMHI and ECMWF forecasts and 

on the first of January, April , July and October for the FW forecasts; different colours) 

and for 6 months of lead time (for the SMHI forecasts), 7 months of lead time (for the 

ECMWF forecasts) or 3 months of lead time (for the FW forecasts). 

 The Jucar River Basin 4.1.4

The analysis that will be performed in following sectoral work packages (i.e., WP8-

Hydroelectricity and WP11-Agriculture), as well as in WP13-Sectoral integration, must be 

performed using the entire river basin domain, and integrating all the relevant elements of 

the water resources system. This requires producing forecasts for streamflows in several 

sites. The reliability of the forecasts and the statistical consistency for time correlations and 

cross correlation between sites are crucial factors to foster the use of the forecasts in real 

management of the water resources system. Otherwise, the impacts of droughts would be 

underestimated. 



 

 

 

 

 

 

  

 

 

 
69 

Deliverable n° 4.2 

Since the Jucar River Basin is strongly anthropized, all forecasts and comparisons must be 

done in terms of natural flows (i.e., flows that would happen if man would not produce 

changes due to storage and releases from reservoirs, pumping from aquifers, and diversion 

and return flows from consumptive uses). Natural flows provide a consistent baseline in 

order to compare the performance of different programmes of measures in planning and 

management of the basin.  

Therefore, we performed a comparison between E-HYPE results and the historical data in 

five different points or sub-basins of the Jucar River Basin. Four of them are inflows to the 

main reservoirs (Alarcon, Contreras, Molinar, Tous) and the fifth is located in Sueca, at the 

lower part of the basin. All of these stations are crucial from the point of view of water 

management. 

In Figure 27, the comparison between the average monthly flows in the five mentioned 

locations produced by the SMHI-E-HYPE model and the historical re-naturalized flows at the 

same locations is depicted. As it can be seen, flows produced by E-HYPE in all sites are 

almost zero in the summer, while the historical values are much higher. This can be 

explained by the important natural regulation due to aquifers upstream and in the middle 

section of the basin. It seems that the E-HYPE model is not able to capture this important 

characteristic of the basin.  

On the same figure, the average monthly flows produced by the hydrological model 

EVALHID, which is currently used by the UPV for the Jucar River Basin, are also depicted. 

Flows in the summer produced by the EVALHID model are much closer to the historical 

values for all stations. 
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Figure 27 Comparison between streamflows from SMHI Pan-European data (E-HYPE), 

historical data as naturalized river flows and data from our hydrological model 

(EVALHID) in the five main sub-basins of Júcar River Basin: Alarcón, Contreras, Molinar, 

Tous and Sueca. 

This essential mismatch between the E-HYPE results and observed values cannot be 

overcome by any bias correction, since in the summer months rainfall is almost negligible. 

This is only feasible by means of a conceptual modification of the model and recalibration 

in order to capture the real behaviour of the basin by the model. This will be discussed in 

the following months of the IMPREX project. 
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For this deliverable, forecasts produced by the EVALHID hydrological model forced with 

ECMWF meteorological data as input (i.e., precipitation and mean temperature) is compared 

to the ECMWF forecasts.  

Figure 28 displays the CRPS obtained from the UPV forecasts for all five stations of the Jucar 

River Basin. From this figure, it appears that the forecast performance varies depending on 

the selected station, but the forecasts are on average more accurate and sharp in the spring 

and summer. The largest errors can be found in the winter months. 

Figure 29 displays the CRPS for the ECMWF forecasts for the Jucar at Alarcon and at Tous. 

Results for these stations show a different behaviour of the ECMWF forecasts. For the Jucar 

at Alarcon, the largest errors are observed for the winter, similarly to what was observed for 

the UPV forecasts. For the Jucar at Tous however, the largest errors are situated in the 

summer. 
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Figure 28 CRPS for the Jucar River at Alarcon, Contreras, Molinar, Tous and Sueca for 

the UPV forecasts. The CRPS is given for each forecast init ialisation date (on the first of 

each month, different colours) and for 7 months of lead time. 
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Figure 29 CRPS for (top) the Jucar at Alarcon and (bottom) the Jucar at Tous for the 

ECMWF forecasts. The CRPS is given for each forecast init ialisation date (on the first of 

each month, different colours) and for 7 months of lead time. 

Regarding to the UPV forecasts biases, different behaviours can be seen depending on the 

selected station (see Figure 30). For the Alarcon and Contreras stations, bias is positive all 

year except for January when it reaches negative values. This could be due to the fact that 

those two stations are situated in the mountainous headwaters of the river, where the faster 

discharge generating processes are likely misrepresented by the model and/or the 

precipitation is underestimated for this time of the year at those stations. The Molinar and 

Sueca stations display a slight positive bias all year long, while the Tous presents a negative 

bias all year. 

For the ECMWF forecasts (see Figure 31), the biases are similar to the UPV forecasts biases 

for the Jucar at Alarcon, which could be due to the same model misrepresentation and/or 

precipitation underestimation. For the Jucar at Tous, the ECMWF forecasts present slightly 

different and much larger biases than the UPV forecasts, with negative biases in the summer 

and positive biases the rest of the year. This hints towards an underestimation of the 

groundwater discharge by the ECMWF forecasts for this station.  
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Figure 30 ME for the Jucar River at Alarcon, Contreras, Molinar, Tous and Sueca for the 

UPV forecasts. The ME is given for each forecast init ialisation date (on the first of each 

month, different colours) and for 7 months of lead time. 
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Figure 31 ME for the Jucar River at Alarcon and Tous for the ECMWF forecasts. The ME 

is given for each forecast init ialisation date (on the first of each month, different 

colours) and for 7 months of lead time. 

 Swedish Rivers 4.1.5

For stations on the Swedish Rivers, scores were calculated from the SMHI and the ECMWF 

forecasting systems. From this set of stations, the SMHI and the ECMWF forecasts appear 

equally accurate and sharp, with larger errors from May-September for all four stations 

shared. This can be seen on Figure 32, which displays the CRPS for the Vindelaelven at 

Granaker for both systems. 
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Figure 32 Same as Figure 16 but for the Vindelaelven at Granaker. 

Figure 33 displays the bias (i.e., the ME) for the Vindelaelven at Granaker for both systems. 

On this figure, the SMHI forecasts appear to underestimate both May and July-September 

observed discharges, while they overestimate the June observed discharge. The ECMWF 

forecasts underestimate the May observed discharge and overestimate largely the June-

August observed discharge. This last characteristic of the ECMWF forecasts is however only 

seen for forecasts made in May or earlier. For forecasts made in June or after, the June-

August observed discharge is underestimated.  

These behaviours of the SMHI and the ECMWF forecasts were observed for the other shared 

stations for Swedish Rivers. For the SMHI forecasts, this could be due to a large 

underestimation of groundwater storage and recharge in the winter, subsequently leading 

to underestimated flows in the summer. For the ECMWF forecasts, the biases could be due 

to a delayed snowmelt process in the model, either due to model errors or to biased 

seasonal temperature forecasts input into the model. 
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Figure 33 Same as Figure 18 but for the Vindelaelven at Granaker. 

For both systems, the reliability is the worst during from June-August (see Figure 34), 

approximately when the largest CRPS errors were observed (see Figure 32). 
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Figure 34 Same as Figure 20 but for the Vindelaelven at Granaker. 

In terms of the seasonal discharge forecasts skill, when compared to the observed discharge 

climatology (i.e., the CRPSS_CLI), the ECMWF forecasts appear less skilful from February-April 

and in July (see Figure 35 as an example of this general behaviour for the Vindelaelven at 

Granaker). The skill of the SMHI forecasts depends given the station looked at, but they are 

generally more skiful than the ECMWF forecasts. 
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Figure 35 Same as Figure 21 but for the Vindelaelven at Granaker. 

The forecasts’ accuracy for the lower and the upper terciles of the observed discharge is 

variable depending on the station and the target season. In general however, both the SMHI 

and the ECWMF forecasts show a similar accuracy (Brier score of 0.2-0.3 on average over all 

lead times and all target seasons). For several stations, the ECMWF forecasts have a worst 

BS33 for DJF for all lead times (not shown). Both systems exhibit a very good accuracy (BS66 

close to 0) for the upper tercile for forecasts made for MAM at all lead times (not shown).  

 The EPB sensitivity analysis 4.2

Figure 36 shows maps of the dominant predictability source (IHC or SCF), the predictability 

source for which the skill elasticity is highest and which could therefore lead to higher 

seasonal discharge forecast skill after being improved. The skill elasticities were derived from 

forecasts produced by the ECMWF seasonal hydrological forecasting system, using the 

CRPSS calculated against the observed climatology. The results are shown for 74 regions 
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across Europe, as these regions are the same as the ones used for the seasonal outlook in 

EFAS. The maps were made for each forecast initialisation date (on the first of each month; 

each row) and for seven months of lead time. However, only the first three months of lead 

time (each column) are shown here as the impact of initialisation tends to disappear for lead 

times exceeding 3 months for most regions in Europe.  

From the maps one can see that on average, for the first month of lead time, improving the 

IHC would lead to a higher discharge forecasting skill. As lead time increases, the relative 

importance of IHC to SCF decreases and improving the SCF becomes more important to 

improve the discharge forecasting skill. There are however temporal and spatial variabilities.  

For the first month of lead time, the density of regions for which the IHC are relatively more 

important than the SCF is higher for forecasts starting from May to July, with the largest 

density in June. This is probably because from May to July, rainfall is low in most parts of 

Europe, leading to groundwater dominated discharges for most European basins.  

For most regions in Scandinavia, the IHC appear to dominate the uncertainty for forecasts 

started in the winter, with a signal that persists until three months of lead time (and further, 

not shown). This is maybe due to precipitation falling as snow during those months in these 

regions, leading to a more groundwater based discharge. Furthermore, a good knowledge 

of the antecedent snow content will lead to a high skill in spring, when discharge is 

snowmelt driven in those regions. This is however not the case for windward Scandinavia, 

where the discharge is mostly sensitive to the SCF. This could be due to weather systems 

raining out on Scandinavia’s western part, leading to a rainfall dominated discharge. 

Moreover, the ground memory is very low in this part of Scandinavia. 

Over the Iberian Peninsula, the IHC dominate the uncertainty for forecast generated in 

summer (June to September), a signal which persists until three months of lead time. The 

reason for this pattern is the very dry climate over the Iberian Peninsula during the summer 

months, leading to a mainly groundwater dominated discharge with long memory over 

several months. 

In central Europe, the eastern side appears to be more IHC dependent for the first month of 

lead time than the western part. This is probably mostly due to weather systems raining out 

on central Europe’s west coast. The IHC importance in Eastern central Europe could also be 

due to snowmelt drive discharge in spring. 
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Figure 36 Maps of the dominant predictability source for each forecast init ialisation 

date and the first three months of lead time for the EFAS regions across Europe. Blue 

[green] colours signify that the SCF [IHC] form the dominant source of predictability. 
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Figures 37 to 42 display the skill elasticities obtained for several EFAS regions (from the 

ECMWF forecasts) and for the BfG stations falling in each of those regions (from the BfG 

forecasts). Results are shown for all forecast initialisation dates and for the first and second 

months of lead time. The seasonal discharge forecasting skill elasticity to SCF (ESCF; in blue) 

and the seasonal discharge forecasting skill elasticity to IHC (EIHC; in green) indicate the 

potential to improve the seasonal discharge forecasting skill as a result of improving the 

quality of those respective predictability sources. When one skill elasticity is larger than the 

other, it implies that this predictability source has the largest potential to improve the 

seasonal discharge forecasting skill (for that specific station or region, lead time and 

forecasting initialisation date) once improved. These figures allow a comparison of the 

sensitivities of the ECMWF and the BfG seasonal discharge forecasts to the IHC and the SCF. 

Overall, one can see that the skill elasticities obtained for both the EFAS regions and the 

BfG stations from the two different forecasts are very similar. There are however slight 

differences, such as the larger relative importance of the IHC for the forecasts made in the 

spring for the EFAS region of Figure 37, compared to the corresponding station (The Inn at 

Passau Ingling). These differences between the skill elasticities for the EFAS regions and the 

BfG stations could be due to differences between the two systems for which the sensitivity 

analysis was performed as well as the scale (regional or at a station) at which the analysis 

was made. 
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Figure 37 Skill elasticit ies for (left) the first and (right) the second month of lead time, 

for (top) the EFAS region and (bottom) the corresponding BfG station for the Inn at 

Passau Ingling. Skill elasticit ies are shown for each forecast init ialisation month. 

 

Figure 38 Skill elasticit ies for (left) the first and (right) the second month of lead time, 

for (top) the EFAS region and (bottom) the corresponding BfG station for the Danube 

at Hofkirchen. Skill elasticit ies are shown for each forecast initialisation month. 
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Figure 39 Skill elasticit ies for (left) the first and (right) the second month of lead time, 

for (top) the EFAS region and (bottom) the corresponding BfG stations for the Rhine at 

Kaub and the Mosel at Trier UP. Skill elasticit ies are shown for each forecast 

init ialisation month. 

 

Figure 40 Skill elasticit ies for (left) the first and (right) the second month of lead time, 

for (top) the EFAS region and (bottom) the corresponding BfG stations for the Rhine at 

Maxau and the Main at Raunheim. Skill elasticities are shown for each forecast 

init ialisation month. 
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Figure 41 Skill elasticit ies for (left) the first and (right) the second month of lead time, 

for (top) the EFAS region and (bottom) the corresponding BfG station for the Rhine at 

Koeln. Skill elasticit ies are shown for each forecast init ialisation month. 

 

Figure 42 Skill elasticit ies for (left) the first and (right) the second month of lead time, 

for (top) the EFAS region and (bottom) the corresponding BfG stations for the Saale at 

Calbe Grizehne, the Elbe at Dresden and the Elbe at Neu Darchau. Skill elasticit ies are 

shown for each forecast init ialisation month. 

 Comparative analysis 4.3

For spatial interpretation of hydrological skill, we investigated potential relationships 

between predictive skill and physiographic-hydrological-climatic characteristics; hence 

allowing to identify the key controls of poor/good model skill. First the 15 descriptors (see 
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Table 3) were analysed for inter-dependence, and one of the highly inter-dependent 

descriptors was omitted to avoid potential artefacts in the CART regression analysis. 

Consequently a set of nine significant descriptors was statistically identified for application in 

the CART analysis, which further allowed us to estimate the descriptors’ importance. 

Figure 43 shows the ranking of nine descriptors (ranked by importance, with number 1 

being the most important descriptor) for all months and lead months. Results show that the 

dominant descriptors resulting in poor/good model performance are the FlowID (describing 

the hydrological behaviour of the basin), elevation and remaining bias in temperature 

(BiasTemp). It is generally expected that remaining biases in temperature will have an impact 

on the form of precipitation (rainfall or snowfall) during the cold months, and the processes 

(i.e. changing from (to) snow accumulation to (from) melting. For example, this occurs in 

northern Europe for April where the mean average temperatures for April is close to 0oC 

and hence small deviations in the meteorological forecasts will affect the basin response. 

Elevation (Elev.) is also an important factor. It is expected that the meteorological forecasts 

are reliable in predicting the climatological variability in highly elevated basins, which are 

usually snow dominated. Consequently the hydrological regime can be better described in 

comparison to a rain-fed basin. The basin’s hydrological behaviour (FlowID) seems to be the 

most important descriptor with basins of similar river flow properties achieving similar skill. 

It is known that river systems experience processes with high memory in comparison to the 

natural phenomena occurring in the atmosphere. Hence it is expected that hydrological 

variables (i.e. discharge, runoff, soil moisture) can have higher predictability than 

meteorological variables (i.e. precipitation, temperature). However, this cannot be linearly 

translated since the precipitation-discharge process is also not linear, and therefore different 

systems are expected to respond differently to the meteorological signal. 
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Figure 43 Importance ranking of key descriptors that influence the hydrological 

forecasting skill over Europe for all months and in lead month: (a) 0, and (b) 2. 

To get a better understanding of the basin characteristics that are characterised by a 

good/poor skill, Figure 44 shows the 11 spatially variable clusters, their distribution of flow 

signatures, and the distribution of skill in each cluster group. Similarity in catchment 

behaviour for each class was interpreted and dominant flow generating processes could be 

distinguished. 

Results give a clear separation between basins with poor and good skill. Basins in cluster 5 

achieve the highest skill. These basins are characterised by high ranges of baseflow (BFI), 

low monthly variability (intra-annual variability) (DPar), and high values of low and medium 

flows (q95 and q70). These are properties of basins where short-memory precipitation is 

aggregated and converted into long-memory discharge. Similar behaviour have the basins 

in clusters 6, 7 and 9, however not to the distinct level of basins in cluster 5. Basins in 

cluster 8 and 10 are short-memory rivers characterised by flashy response and high seasonal 
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variability (DPar and CV). These basins are responding quite fast to the precipitation signal 

and with strong dynamics (RLD) whilst contribution from base flow is small (BFI). Basins that 

belong to clusters 1, 2 and 3 perform adequately and are generally characterised by the 

same flow signatures. These basins are mainly located in the Scandinavian region and also 

in the central Europe at highly elevated regions. They are distinct for their medium to high 

slope in their flow distribution (mFDC), which is an indicator of a regime driven by 

snowmelt. 

 

Figure 44 (a) Spatial distribution of hydrologically similar (clusters) basins over Europe, 

(b) distribution of flow signatures in each cluster group (see also Table 3), and (c) 

distribution of beta skill in each cluster group 
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 Lessons learnt 5

The intercomparison of seasonal discharge quality from forecasting systems from the 

ECMWF, the SMHI, the BfG, the FW and the UPV done in a first part of this deliverable is a 

starting point for this larger task within the IMPREX project. Through this intercomparison, 

multiple scores of forecast quality were added to the scoreboard developed in WP4 

(deliverable 4.1) by the partners of this deliverable for stations within each system’s spatial 

boundaries.  

Although the sample of stations for which the intercomparison was made was limited, this 

task has already revealed several major differences between the seasonal hydrological 

forecasting systems and their impacts on the relevant water sectors. 

The BfG forecasting system overall mostly underestimates the observed discharge for 

stations shared for the Central European Rivers. This could be problematic for the navigation 

sector, who is most vulnerable to low flows in summer. These forecasts could potentially 

lead to an underestimation of the expected river flow in summer and consequently to an 

underestimation of the capacity of the river and a monetary loss. 

The ECMWF forecasting system appears to almost systematically overestimate the spring 

flow and underestimate the winter flow for the stations shared for Central European Rivers 

and for the Thames River Basin. The underestimation of the winter discharge could be a 

problem for the flood protection sector, as it would not flag regions to watch for potential 

floods in the coming months. For the Segura and Tagus River Basins, the ECMWF forecasts 

are very accurate in summer. This could be highly beneficial for the agriculture sector in this 

region, which relies on accurate drought forecasts for the summer. However, the summer 

flow is highly biased (as well as the winter flow) in the Jucar River Basin, also in Spain. In 

Sweden, the ECMWF forecasts underestimate the May flow and overestimate the summer 

river flow. This could be problematic for the hydropower industry, for which there is a 

particular interest in forecasting the spring flow accurately. 
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The SMHI forecasting system overestimates the flow in winter and spring for the Central 

European Rivers and the Thames River Basin. This could be a problem for flood forecasting 

as it could indicate potential floods in the coming months when none actually occurs. The 

SMHI is also overall less accurate for the lower tercile of observed discharge for summer for 

a few Central European River stations. This could be a limitation for the navigation sector as 

the forecasts would not be able to capture accurately a low extreme event in the summer. 

The May and summer flow in Sweden appears underestimated by the SMHI forecasts, while 

the June discharge is overestimated. This could be an issue for the hydropower sector, 

which needs accurate forecasts especially in spring. 

The FW forecasting system overestimates largely the early spring-spring flow for the Tagus 

River Basin and underestimates slightly the flow during all year for the Segura River Basin. 

Both biases could be challenging for the agricultural sector. 

The UPV forecasts are overall greatly improved by using the EVALHID hydrological model 

compared to the E-HYPE model, especially in summer. There are however still some biases 

which need to be overcome before the forecasts can be used operationally for reservoir 

management purposes in the Jucar River Basin. 

For most stations, after one to two months of lead time, using the observed flow 

climatology leads to more accurate and sharp forecasts than using seasonal hydrological 

forecasts. This shows that there are still model and meteorological forecast biases which 

need to be overcome in order to gain a real valuable additional from using seasonal 

hydrological forecasts operationally for many applications of the water sector. 

These results are a starting point, to which it will be possible to add more results along the 

course of the project. Indeed, as the project proceeds, anyone will be able to upload 

additional scores, scores for different stations or from a new or modified system to the 

scoreboard. The latter will enable us to monitor and visualise progresses made throughout 

the IMPREX project, such as improvements in the seasonal discharge forecast quality as a 

result of improving the seasonal meteorological forecast quality. Towards this goal, it is in 

our plans to expand on the work done in this deliverable by adding seasonal discharge 

forecasting scores from systems using different seasonal meteorological forecasts, such as 

GloSea5.  
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The intercomparison results are useful for the multi-modelling of task 4.3 of WP4. The multi-

modelling approach could for example use weights for each forecasting system based on 

the forecasting systems’ performances for a certain location, type of event, time of the year. 

Beyond this deliverable, the results of the intercomparison are valuable for the risk outlook, 

a deliverable of WP14 within IMPREX. The risk outlook will provide an overview of the 

hydrological 'risk' for Europe and it will also showcase examples of making hydrological 

information relevant at a local scale, focusing on selected IMPREX case studies. It is currently 

under development, so it is not yet fully known what will be included within the tool, but it 

is likely to show current hydrological status, climatology and seasonal forecasted anomalies 

as well as sector-specific indicators. An improved understanding of forecasting systems’ 

strengths and weaknesses will enable IMPREX communicate this information in a 

comprehensive way, by adding information which will help the users know with what level 

of confidence each forecast can be used. 

The EPB sensitivity analysis enabled to highlight which component of the forecast system 

should be improved in order to improve the seasonal discharge forecasting skill for all 

forecast initialisation dates and lead time for regions in Europe and individual Central 

European River stations. These results should be used as an indication of where to 

concentrate resources in order to obtain the largest improvements in the seasonal discharge 

forecasting skill. Where the analysis indicated the IHC to be the largest contributors to the 

errors in seasonal discharge forecasts, data assimilation methods could be used. Where the 

SCF were highlighted to be the largest contributors to seasonal discharge errors, the SCF 

used to force the hydrological models should be improved. 

Finally, from the comparative analysis of the hydrological skill we spotted the strengths and 

weaknesses of ensemble seasonal forecasts from ECMWF System 4. We identified links 

between forecasting skill and different physiographic and hydro-climatic characteristics. 

CART showed that skill is dependent on the basin’s hydrological regime. Elevation and 

remaining bias in temperature were also identified to be important aspects (dependence of 
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response at mountainous basins to temperature). The skill seems to be limited for relatively 

flashy basins experiencing strong flow dynamics over the year (less memory in the system). 
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 Annex A – Tabulated overview on hydrological model features 7

 

Table 4 Tabulated overview on hydrological model features of SPHY  

1. General Information  

Model name SPHY (Spatial Processes in HYdrology)   

Version  V2.1 

Author(s) / First 

publication  

Terink et al. (2015a) 

Contact person 

  

Wilco Terink (w.terink@futurewater.nl) 

Institute  FutureWater 

Website  http://www.sphy.nl/ 

General 

modelling 

objectives 

Calculation of river basins water balance 

   

Domain of 

applicability 

(catchment types 

and climate 

conditions)  

The SPHY model has been applied and tested in various studies 

ranging from real-time soil moisture predictions in flat lands, to 

operational reservoir inflow forecasting applications in 

mountainous catchments, irrigation scenarios in the Nile Basin, 

and detailed climate change impact studies in the snow- and 

glacier-melt dominated the Himalayan region. 

2. Model    

http://www.sphy.nl/
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description  

Model type 

(empirical, 

conceptual, 

physically based) 

Conceptual/Physically-based model   

Continuous or 

event-based  

Continuous   

Possible running 

time steps  

24h 

   

Spatial 

discretization 

(lumped, 

semidistributed,

  

distributed)  

Spatially distributed leaky bucket type 

   

Short description 

of model 

structure 

detailing main 

function 

(evaporation, soil 

moisture 

accounting, 

SPHY is grid-based and cell values represent averages over a cell, 

but sub-grid variability is taken into account. A cell can be glacier-

free, partially glaciered, or completely covered by glaciers. The cell 

fraction not covered by glaciers consists of either land covered 

with snow or land that is free of snow. Land that is free of snow 

can consist of vegetation, bare soil, or open water. In order to 

distinct between land cover types at sub-grid level, SPHY 

calculates and stores the state variables as grid-cell averages. Sub-
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groundwater, 

routing, 

snowmelt, etc.) 

   

grid variability is mainly determined by the fractional vegetation 

coverage, which affects processes such as interception, effective 

precipitation, and potential evapotranspiration. 

      

The land compartment is divided in two upper soil stores and a 

third groundwater store, with their corresponding drainage 

components: surface runoff, lateral flow and base flow. SPHY 

simulates for each cell precipitation in the form of rain or snow, 

depending on the temperature. Any precipitation that falls on 

land surface can be intercepted by vegetation and in part or in 

whole evaporated. The snow storage is updated with snow 

accumulation and/or snow melt. A part of the liquid precipitation 

is transformed in surface runoff, whereas the remainder infiltrates 

into the soil. The resulting soil moisture is subject to 

evapotranspiration, depending on the soil properties and 

fractional vegetation cover, while the remainder contributes in the 

long-term to river discharge by means of lateral flow from the 

first soil layer, and base flow from the groundwater reservoir. 

      

Melting of glacier ice contributes to the river discharge by means 

of a slow and fast component, being (i) percolation to the 

groundwater reservoir that eventually becomes base flow, and (ii) 

direct runoff. The cell-specific runoff, which becomes available for 

routing, is the sum of surface runoff, lateral flow, base flow, snow 

melt and glacier melt. 

      

If no lakes are present, then the user can choose for a simple flow 

accumulation routing scheme: for each cell the accumulated 

amount of material that flows out of the cell into its neighbouring 

downstream cell is calculated. This accumulated amount is the 

amount of material in the cell itself plus the amount of material in 

upstream cells of the cell. For each cell, the following procedure is 
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performed: using the local drain direction network, the catchment 

of a cell is determined which is made up the cell itself and all cells 

that drain to the cell. If lakes are present, then the fractional 

accumulation flux routing scheme is used: depending on the 

actual lake storage, a fraction of that storage becomes available 

for routing and is extracted from the lake, while the remaining 

part becomes the updated actual lake storage. The flux available 

for routing is routed in the same way as in the simple flow 

accumulation routing scheme. 

      

SPHY enables the user to turn on/off any of the six available 

modules that are not required: glaciers, snow, groundwater, 

dynamic vegetation, simple routing, and lake/reservoir routing. 

Scheme of model 

structure  
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Source: Terink et al. (2015a) 

3. Model 

parameters 

  

Distribution of 

model 

parameters 

(yes/no) 

Yes  

Number of free 

parameters  

Numerous free parameters (Terink et al. (2015a)) 

   

Procedure of 

model parameter 

estimation 

(measurement, 

manual or 

automatic 

algorithm, etc.) 

  

- Calibration for  each sub basin possible    

- An automatic calibration routine does not belong to the model 

itself. 

- For setting-up the model data on streamflows are not necessary. 

However, to undertake a proper calibration and validation 

procedure flow data are required. The model could also be 

calibrated using actual evapotranspiration, soil moisture contents, 

or snow coverage. 

4. Model inputs 

/ Model outputs

  

 

   

List and 

characteristics of 

input variables

  

(type, time step, 

As input SPHY requires data on state variables as well as dynamic 

variables. For the state variables the most relevant are: Digital 

Elevation Model (DEM), land use type, glacier cover, reservoirs and 

soil characteristics. The main dynamic variables are climate data 

such as precipitation, temperature, reference evapotranspiration. 
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spatial resolution, 

etc.)   

Since SPHY is grid-based optimal use of remote sensing data and 

global data sources can be made. For example, the Normalized 

Difference Vegetation Index (NDVI) can be used to determine the 

Leaf Area Index (LAI) in order to estimate the growth-stage of 

land cover. 

List and 

characteristics of 

output 

variables (type, 

time step, spatial 

resolution, etc.) 

 

 

   

The SPHY model provides a wealth of output data that can be 

selected based on the preference of the user. Spatial output can 

be presented as maps of all the hydrological processes. Maps 

often displayed as output include actual evapotranspiration, runoff 

generation (separated by its contributors), and groundwater 

recharge. These maps can be generated on daily base, but most 

users prefer to get those at monthly or annual aggregated time 

periods. Time-series can be generated for each location in the 

study area. Time-series often used are stream flow under current 

and future conditions, actual evapotranspiration and recharge to 

the groundwater. 

5. Examples of 

previous model 

applications 

  

Catchments, 

objectives, etc. 

Results of 

existing 

comparisons with 

other models 

A number of evaluations and applications are documented at the 

website. 
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6. List of 

selected 

references  

  

  

  

 

  

  

   

● Terink, W., S. Khanal. 2016. SPHY: Spatial Processes in Hy-

drology. Advanced training: input data, sensitivity analysis, 

model   calibration, and scenario analyses. Fu-

tureWater Report 159.  

● Terink, W., A.F. Lutz, G.W.H. Simons, W.W. Immerzeel, P. 

Droogers. 2015a. SPHY v2.0: Spatial Processes in HYdrolo-

gy. Geoscientific Model Development, 8, 2009-2034, 

doi:10.5194/gmd-8-2009-201  

● Terink, W., A.F. Lutz, W.W. Immerzeel. 2015b. SPHY v2.0: 

Spatial Processes in HYdrology. Model theory, installation, 

and data preparation. FutureWater report 142.  

● Terink, W., A.F. Lutz, W.W. Immerzeel. 2015c. SPHY: Spatial 

Processes in Hydrology. Graphical User-Interfaces (GUIs). 

FutureWater report 144. 

● Terink, W., A.F. Lutz, G.W.H. Simons, W.W. Immerzeel. 

2015d. SPHY: Spatial Processes in Hydrology. Case-studies 

for training. FutureWater report 143. 

 

 

Table 5 Tabulated overview on hydrological model features of HYPE 

1. General Information      

Model name HYPE (Hydrological Predictions for the Environment)                    

  

Version   v4.13 
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Author(s) / First 

publication                

Lindström et al. (2010) 

Contact person   

  

Charlotta Pers (charlotta.pers@smhi.se) 

Ilias Pechlivanidis (ilias.pechlivanidis@smhi.se) 

Institute  Swedish Meteorological and Hydrological Institute 

Website  http://hypecode.smhi.se 

General modelling 

objectives 

Calculation/prediction of river basin responses (water quantity 

and quality) 

                                  

Domain of 

applicability 

(catchment types 

and climate 

conditions)     

  

The HYPE model has been applied and tested in different 

scales, various domains and hydro-climatic conditions. 

See http://hypeweb.smhi.se 

2. Model 

description          

                                  

Model type 

(empirical, 

conceptual, 

physically based)  

Conceptual/Process-based model                      

Continuous or Continuous                              

http://hypecode.smhi.se/
http://hypeweb.smhi.se/
http://hypeweb.smhi.se/
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event-based 

Possible running 

time steps               

  

Daily (also hourly for national operational services) 

                                  

Spatial discretization 

(lumped, 

semidistributed,

  

distributed)           

Spatially distributed at the sub-basin scale. Sub-basin 

resolution depends on the application. In Europe, this is 215 

km2. 

                                  

Short description of 

model structure 

detailing main 

function 

(evaporation, soil 

moisture 

accounting, 

groundwater, 

routing, snowmelt, 

etc.) 

                                

  

HYPE is most often run at a daily time step and simulates the 

water flow paths in soil for hydrological response units (HRUs), 

which are defined by gridded soil and land- use classes and 

can be divided in up to three layers with a fluctuating 

groundwater table. The HRUs are further aggregated into sub-

basins based on topography. Elevation is also used to get 

temperature variations within a sub-basin to influence the 

snowmelt and storage as well as evapotranspiration. Glaciers 

have a variable surface and volume, while lakes are defined as 

classes with specified areas and variable volume. Lakes receive 

runoff from the local catchment and, if located in the sub-

basin outlet, also the river flow from upstream sub- basins. On 

glaciers and lakes, precipitation falls directly on the surface and 

water evaporates at the potential rate. Each lake has a defined 

depth below an outflow threshold. The outflow from lakes is 

determined by a general rating curve unless a specific one is 

given or if the lake is regulated. Regulated lakes and man-

made reservoirs are treated equally but a simple regulation 

rule can be used, in which the outflow is constant or follows a 
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seasonal function (as it is often the case with hydropower) for 

water levels above the threshold. A rating curve for the 

spillways can be used when the reservoir is full. 

Irrigation 

  

Irrigation is simulated based on crop water demands calculated either 

with the FAO-56 crop coefficient method (Allen et al., 1998) or 

relative to a reference flooding level for sub- merged crops (e.g. rice). 

The demands are withdrawn from rivers, lakes, reservoirs, and/or 

groundwater within and/or external to the sub-basin where the 

demands originated and are constrained by the water available at 

these sources. After subtraction of conveyance losses, the withdrawn 

water is applied as additional infiltration to the irrigated soils. The 

agriculture and irrigation data sets (see Table 1) are used to define 

irrigated area, crop types, growing seasons, crop coefficients, 

irrigation methods and efficiencies, and irrigation sources. The 

irrigation parameters regulating water demand and abstraction are 

usually manually calibrated using dis- charge stations in irrigation-

dominated areas. 

  

River discharge is routed between the sub-basins along the river 

network and may also pass sub-basins, flow laterally in the soil 

between sub-basins or interact with a deeper ground- water aquifer 

in the model. 
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Scheme of model 

structure 

 

Source: Hundecha et al. (2016) 

3. Model 

parameters 

                

Distribution of 

model parameters 

(yes/no) 

Yes         

Number of free 

parameters 

Numerous free parameters (Lindström et al. (2010)) 

                                  

Procedure of model 

parameter 

estimation 

(measurement, 

manual or 

automatic 

algorithm, etc.)                 

  

Many of the parameters are linked to physiographic 

characteristics in the landscape, such as soil type and depth 

(soil dependent parameters) or vegetation (land-use-dependent 

parameters), while others are assumed to be general to the 

entire domain (general parameters) or specific to a defined 

region or river (regional parameters). Parameters for each HRU 

are calibrated for representative gauged basins and then 

transferred to similar HRUs, which are gridded at a higher 

resolution than the sub-basins across the whole domain to 
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account for spatial variability in soil and land use. Using the 

distributed HRU approach in the multi-basin concept is thus 

one part of the regionalisation method for parameter values. 

  

Some other parameters, however, are either estimated from 

literature values and from previous modelling experiences (a 

priori values) or identified in the (automatic or manual) 

calibration procedure. 

  

Slightly different methods for regionalisation of parameter 

values have been used when setting up the different HYPE 

model applications, depending on access to gauging stations, 

additional data sources, and expert knowledge. 

  

An automatic calibration routine based on the differential-

evolution Markov-chain (DE-MC) algorithm has also been used. 

  

The model parameters can also be constrained using 

evapotranspiration or snow information. 

4. Model inputs / 

Model outputs             

  

                                  

List and   

characteristics of 

input variables 

As input HYPE requires data on: Digital Elevation Model (DEM), 

land use type, glacier cover, reservoirs, irrigation, and soil 

characteristics. Depending on the application information 

about crop and vegetation, bifurcations of the river network, 
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(type, time step, 

spatial resolution, 

etc.)                                

  

point sources and water extraction, floodplains and regional 

aquifers can be used. 

The main dynamic variables are climate data such as 

precipitation and temperature. Other observations can also be 

used for different purposes: 

http://www.smhi.net/hype/wiki/doku.php?id=start:hype_file_reference#

observation_data_files 

List and 

characteristics of 

output variables 

(type, time step, 

spatial resolution, 

etc.) 

 

A list of output variables can be found in: 

http://www.smhi.net/hype/wiki/doku.php?id=start:hype_file_refe

rence:info.txt:variables 

The exported time-step depends on the user, i.e. daily, weekly, 

monthly, and annual. 

The variables are exported for the basin outlet or represent 

basin averages. 

5. Examples of 

previous model 

applications 

                

Catchments, 

objectives, etc. 

Results of existing 

comparisons with 

other models 

A number of evaluations and applications are documented at 

the website. 

6. List of selected 

references       

                

 ● Andersson, J.C.M., Pechlivanidis, I.G., Gustafsson, D., 

Donnelly, C., and Arheimer, B., 2015. Key factors for im-

http://www.smhi.net/hype/wiki/doku.php?id=start:hype_file_reference%23observation_data_files
http://www.smhi.net/hype/wiki/doku.php?id=start:hype_file_reference%23observation_data_files
http://www.smhi.net/hype/wiki/doku.php?id=start:hype_file_reference:info.txt:variables
http://www.smhi.net/hype/wiki/doku.php?id=start:hype_file_reference:info.txt:variables


 

 

 

 

 

 

  

 

 

 
111 

Deliverable n° 4.2 

proving large-scale hydrological model performance. 

European Water 49:77-88. 

● Donnelly, C, Andersson, J.C.M. and Arheimer, B., 2016. 

Using flow signatures and catchment similarities to 

evaluate a multi-basin model (E-HYPE) across Europe. 

Hydr. Sciences Journal 61(2):255-273, doi: 

10.1080/02626667.2015.1027710 

● Hundecha, Y., Arheimer, B., Donnelly, C., Pechlivanidis, I., 

2016. A regional parameter estimation scheme for a 

pan-European multi-basin model. Journal of Hydrology: 

Regional Studies, Volume 6, June 2016, Pages 90-111. 

doi:10.1016/j.ejrh.2016.04.002 

● Lindström, G., Pers, C.P., Rosberg, R., Strömqvist, J., and 

Arheimer, B., 2010. Development and test of the HYPE 

(Hydrological Predictions for the Environment) model – 

A water quality model for different spatial scales. Hy-

drology Research 41.3-4:295-319. 

● Pechlivanidis, I. G. and Arheimer, B., 2015. Large-scale 

hydrological modelling by using modified PUB recom-

mendations: the India-HYPE case, Hydrol. Earth Syst. 

Sci., 19, 4559-4579, doi:10.5194/hess-19-4559-2015. 

● Strömqvist, J., Arheimer, B., Dahné, J., Donnelly, C. and 

Lindström, G., 2012. Water and nutrient predictions in 

ungauged basins – Set-up and evaluation of a model at 

the national scale. Hydrological Sciences Journal 

57(2):229-247. 
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Table 6 Tabulated overview on hydrological model features of LARSIM 

1. General Information  

Model name LARSIM (Large Area Runoff Simulation Model)  

Version  LARSIM Revision 968 (neue Formate) 

Author(s) / First 

publication  

Ludwig & Bremicker (2006) 

Contact person 

  

LARSIM development community http://www.larsim.info 

Institute  LARSIM development community http://www.larsim.info 

Website  http://www.larsim.info 

General 

modelling 

objectives 

Continuous simulation of runoff processes in catchments and river 

networks 

   

Domain of 

applicability 

(catchment types 

and climate 

conditions)  

Largely applied by forecasting centers in Germany, Austria, 

Luxembourg, Switzerland and the French regions of Alsace and 

Lorraine, Central Europe 

2. Model 

description  

   

Model type 

(empirical, 

conceptual, 

Deterministic conceptual model 
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physically based) 

   

Continuous or 

event-based  

Continuous   

Possible running 

time steps  

Hourly, daily 

   

Spatial 

discretization 

(lumped, 

semidistributed,

  

distributed)  

Distributed 

   

Short description 

of model 

structure 

detailing main 

function 

(evaporation, soil 

moisture 

accounting, 

groundwater, 

routing, 

snowmelt, etc.) 

   

The main components of the model are routines for  interception, 

evapotranspiration, snow accumulation, compaction and melt, soil 

water retention, storage and lateral water transport, as well as 

flood-routing in channels and retention in lakes. 

 

Spatial units are grid-based subareas or subareas according to 

hydrologic subcatchments. Hydrological processes are modelled 

for each single land use category or alternatively for each land 

use soil type category in a subarea (Hydrological response unit 

HRU). HRUs can be further subdivided in elevation zones for snow 

simulation. 

 

Different process descriptions could be selected to model snow 
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processes and evaporation. Here the configuration used in this 

study is described. 

 

Snow Routine: 

Precipitation is divided into rainfall and snowfall using a threshold 

temperature. On days with temperatures below the threshold, 

precipitation is supposed to be snow. The consideration of a 

transition from rain to snow over a temperature interval is 

possible. Based on a degree-day approach snow melt is 

computed. Water retention, snow compaction, meltwater outflow 

is calculated after the snow compaction approach of Bertle. Snow 

processes could be simulated separately for different elevation 

zones in the subarea. 

 

Soil Routine: 

The routine mainly controls runoff formation. To simulate the soil 

storage the Xinanjiang-model is used. Soil water content is 

calculated by the water balance equation, taking into account the 

precipitation supply, withdrawal of water through 

evapotranspiration as well as runoff formation. In the 

configuration applied here three runoff components are 

considered: runoff formation on saturated areas towards direct 

runoff storage, water release from soil storage through lateral 

drainage towards interflow storage and water release through 

vertical percolation towards groundwater storage. Saturated areas 

which control the direct runoff are derived from the soil water 

storage via the soil-moisture-saturated areas function. Actual 

evapotranspiration is computed from potential evapotranspiration 

as a function of soil moisture. 

 

Runoff Generation Routine: 

Runoff concentration from direct runoff storage, interflow storage 

and groundwater storage of the subareas are calculated by a 
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single linear storage model. The combination of the outflows of 

these storages results in the total outflow of the subarea. 

 

Routing Procedure: 

The translation and the retention in the channel are calculated in 

dependency of the channel geometry and the friction of the 

channel. 

 

Lake and Reservoir: 

Storage effects including operation of dams, lakes and reservoirs 

can be simulated using different approaches depending on the 

available data. 
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Scheme of model 

structure  

 

Source: Demuth and Rademacher (2016) 

3. Model 

parameters 

  

Distribution of 

model 

parameters 

(yes/no) 

Yes  

Number of free 

parameters  

Numerous free parameters (Ludwig & Bremicker 2006) 

   

Procedure of - Calibration for each subarea is possible, generally several 
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model parameter 

estimation 

(measurement, 

manual or 

automatic 

algorithm, etc.) 

subareas are combined and calibrated together 

- An automatic calibration routine for some parameters is 

available 

4. Model inputs 

/ Model outputs 

 

   

List and 

characteristics of 

input variables

  

(type, time step, 

spatial resolution, 

etc.)   

Depending on the considered process descriptions for potential 

evapotranspiration and modelling of snow processes different 

input data sets are required. In the configuration used here daily 

precipitation, temperature and global radiation are required as 

input data. 

List and 

characteristics of 

output 

variables (type, 

time step, spatial 

resolution, etc.) 

Numerous possible output variables (Ludwig & Bremicker 2006) 

e.g. total computed outflow, actual evaporation, soil moisture,… 

Depending on the variable output is available for subareas, HRUs, 

combination of several connected subareas, and defined output 

nodes (e.g. gauges) 

 

5. Examples of 

previous model 

applications 
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Catchments, 

objectives, etc. 

Results of 

existing 

comparisons with 

other models 

Operational forecast model, climate change analysis, water 

balance, water temperature. Applications and publications are 

documented at the website www.larsim.info. Mesoscale application 

for the River Rhine (Ebel et al. 2000). 

6. List of 

selected 

references  

  

 ● Bremicker, M., M. C. Casper & I. Haag (2011): Extrapola-

tionsfähigkeit des Wasserhaushaltsmodells LARSIM auf ex-

treme Abflüsse am Beispiel der Schwarzen Pockau. KW 

Korrespondenz Wasserwirtschaft 4(8), 445-451 

● Demuth, N. & S. Rademacher (2016): Chapter 5 - Flood 

Forecasting in Germany — Challenges of a Federal Struc-

ture and Transboundary Cooperation A2 - Adams, Thomas 

E. In: T. C. Pagano (Ed.): Flood Forecasting. Academic Press, 

Boston, 125-151 

● Ebel, M., K. Ludwig & K. G. Richter (2000): Mesoskalige 

Modellierung des Wasserhaushaltes im Rheineinzugsgebiet 

mit LARSIM. Hydrologie und Wasserbewirtschaftung 6, 

308-312 

● Haag, I. & A. Luce (2008): The integrated water balance 

and water temperature model LARSIM-WT. Hydrological 

Processes 22(7), 1046-1056 

● Ludwig, K. & M. Bremicker (2006): The Water Balance 

Model LARSIM –Design, Content and Applications. 22. C. 

Leibundgut, S. Demuth and J. Lange (Eds), Freiburger 

Schriften zur Hydrologie, Institut für Hydrologie, Universität 
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Freiburg im Breisgau, Freiburg, 141 pp. 

 

 

Table 7 Tabulated overview on hydrological model features of LISFLOOD 

1. General Information  

Model name LISFLOOD   

Version  NA 

Author(s) / First 

publication  

De Roo et al. (2000) 

Contact person 

  

A.P.J. De Roo  

Institute  Joint Research Centre, Space Applications Institute,  

AIS Unit Environment and Natural Hazards, TP 950, 21020 Ispra 

(Va), Italy 

Website  https://ec.europa.eu/jrc/en/publication/eur-scientific-and-

technical-research-reports/lisflood-distributed-water-balance-and-

flood-simulation-model-revised-user-manual-2013 

General 

modelling 

objectives 

To produce a tool that can be used in large and trans-national 

catchments for a variety of applications, including: 

• Flood forecasting 

• Assessing the effects of river regulation measures 
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• Assessing the effects of land-use change 

• Assessing the effects of climate change 

Domain of 

applicability 

(catchment types 

and climate 

conditions)  

The LISFLOOD model has been developed for European 

catchments. It was designed to make the best possible use of 

several existing databases that contain pan-European information 

on soils (King et al., 1997; Wösten et al., 1999), land cover (CEC, 

1993), topography (Hiederer & de Roo, 2003) and meteorology 

(Rijks et al., 1998). 

2. Model 

description  

   

Model type 

(empirical, 

conceptual, 

physically based) 

Conceptual/Physically-based model   

Continuous or 

event-based  

Continuous   

Possible running 

time steps  

24h 

   

Spatial 

discretization 

(lumped, 

semidistributed,

  

distributed)  

Spatially distributed 

   

Short description The figure below gives an overview of the structure of the 
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of model 

structure 

detailing main 

function 

(evaporation, soil 

moisture 

accounting, 

groundwater, 

routing, 

snowmelt, etc.) 

   

LISFLOOD model. Basically, the model is made up of the following 

components: 

• a 2-layer soil water balance sub-model 

• sub-models for the simulation of groundwater and subsur-

face flow (using 2 parallel interconnected linear reservoirs) 

• a sub-model for the routing of surface runoff to the near-

est river channel 

• a sub-model for the routing of channel flow (not shown in 

the Figure) 

The processes that are simulated by the model include snow melt 

(not shown in the figure), infiltration, interception of rainfall, leaf 

drainage, evaporation and 

water uptake by vegetation, surface runoff, preferential flow 

(bypass of soil layer), exchange of soil moisture between the two 

soil layers and drainage to the groundwater, sub-surface and 

groundwater flow, and flow through river channels. 
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Scheme of model 

structure  

 

Overview of the LISFLOOD model. P = precipitation; Int = 

interception; EWint = evaporation of intercepted water; Dint = 

leaf drainage; ESa=evaporation from soil surface; Ta = 

transpiration (water uptake by plant roots); INFact = 

infiltration; Rs = surface runoff; D1,2 = drainage from top- to 

subsoil; D2,gw = drainage from subsoil to upper groundwater 

zone; Dpref,gw = preferential flow to upper groundwater zone; 

Duz,lz = drainage from upper- to lower groundwater zone; 

Quz = outflow from upper groundwater zone; Ql = outflow 

from lower groundwater zone; Dloss = loss from lower 
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groundwater zone. Note that snowmelt is not included in the 

Figure (even though it is simulated by the model).  

3. Model 

parameters 

  

Distribution of 

model 

parameters 

(yes/no) 

Yes 

Number of free 

parameters  

Numerous free parameters 

(http://publications.jrc.ec.europa.eu/repository/bitstream/JRC78917

/lisflood_2013_online.pdf). 

   

Procedure of 

model parameter 

estimation 

(measurement, 

manual or 

automatic 

algorithm, etc.) 

  

“A calibration exercise completed in 2013 (Zajac et al., 2013) 

produced Europe wide parameter maps based on the estimation 

of parameter values for 693 catchments. Estimation was carried 

out using the Standard Particle Swarm 2011 (SPSO-2011) 

algorithm (Zambrano-Bigiarini and Rojas, 2013) and a root mean 

squared error criteria. For 659 of these a set of 9 parameters that 

control snowmelt, infiltration, preferential bypass flow through the 

soil matrix, percolation to the lower ground water zone, 

percolation to deeper groundwater zones, residence times in the 

soil and subsurface reservoirs and river routing, were estimated by 

calibrating the model against historical records of river discharge. 

For the remaining 34 catchments the option to represent 
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reservoirs was used requiring the calibration of four additional 

parameters related to reservoir operation; though neglecting the 

calibration of the deepest groundwater store resulted in 12 

calibration parameters for these catchments.” (Smith et al., 2016) 

4. Model inputs 

/ Model outputs

  

 

   

List and 

characteristics of 

input variables

  

(type, time step, 

spatial resolution, 

etc.)   
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List and 

characteristics of 

output 

variables (type, 

time step, spatial 

resolution, etc.) 
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5. Examples of 

previous model 

applications 
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Catchments, 

objectives, etc. 

Results of 

existing 

comparisons with 

other models 

 

6. List of 

selected 

references  

  

  

  

 

  

  

   

● De Roo, A. P. J., C. G. Wesseling, and W. P. A. Van Deursen, 

2000: Physically Based River Basin Modelling within a GIS: 

The LISFLOOD Model. Hydrological Processes, 14, 11-12, 

1981–92. doi:10.1002/1099-

1085(20000815/30)14:11/12<1981::AID-HYP49>3.0.CO;2-F. 

● “LISFLOOD - Distributed Water Balance and Flood Simula-

tion Model - Revised User Manual 2013 - EU Science Hub 

- European Commission.” 2013. EU Science Hub. October 

14. https://ec.europa.eu/jrc/en/publication/eur-scientific-

and-technical-research-reports/lisflood-distributed-water-

balance-and-flood-simulation-model-revised-user-manual-

2013. 

● Smith, Paul, Florian Pappenberger, Fredrik Wetterhall, Jutta 

Thielen, Blazej Krzeminski, Peter Salamon, Davide Muraro, 

Milan Kalas, and Calum Baugh. 2016. On the Operational 

Implementation of the European Flood Awareness System 

(EFAS). European Centre for Medium-Range Weather Fore-
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casts. 

http://www.ecmwf.int/sites/default/files/elibrary/2016/16337

-operational-implementation-european-flood-awareness-

system-efas.pdf. 

● Bódis, K., 2009. Development of a data set for continental 

hydrologic modelling. 

● De Roo, A., Thielen, J., Gouweleeuw, B., 2003. LISFLOOD, a 

Distributed WaterBalance, Flood Simulation, and Flood In-

undation Model, User Manual version 1.2. Internal report, 

Joint Research Center of the European Communities, Ispra, 

Italy, 74 pp. 

● Hock, R., 2003. Temperature index melt modelling in 

mountain areas. Journal of Hydrology, 282(1-4), 104–115. 

● Van Der Knijff, J., De Roo, A., 2006. LISFLOOD – Distributed 

Water Balance and Flood Simulation Model, User Manual. 

EUR 22166 EN, Office for Official Publications of the Euro-

pean Communities, Luxembourg, 88 pp. 

● Van der Knijff, J., 2008. LISVAP– Evaporation Pre-Processor 

for the LISFLOOD Water Balance and Flood Simulation 

Model, Revised User Manual. EUR 22639 EN/2, Office for 

Official Publications of the European Communities, Luxem-

bourg, 31 pp. 

● Van Der Knijff, J., De Roo, A., 2008. LISFLOOD – Distributed 

Water Balance and Flood Simulation Model, Revised User 

Manual. EUR 22166 EN/2, Office for Official Publications of 

the European Communities, Luxembourg, 109 pp. 

● Van der Knijff, J. M., Younis, J. and de Roo, A. P. J.: 

LISFLOOD: A GIS-based distributed model for river basin 

scale water balance and flood simulation, Int. J. Geogr. Inf. 

Sci., 24(2), 189–212, 2010. 
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Table 8 Tabulated overview on hydrological model features of wflow_w3ra 

1. General Information      

Model name wflow_w3ra (World Wide Water Resources Analysis)                  

+ wflow_routing 

Version   v1 

Author(s) / First 

publication                

Van Dijk et al. (2013) 

Contact person   

  

Albrecht Weerts (albrecht.weerts@deltares.nl) 

Jaap Schellekens (jaap.schellekens@deltares.nl) 

Institute  Deltares 

Website  https://github.com/openstreams/wflow 

General modelling 

objectives 

Calculation/prediction of hydrological water resources  

                                  

Domain of 

applicability 

(catchment types 

and climate 

conditions)     

  

The W3RA model has been applied on global scale 

2. Model 

description          
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Model type 

(empirical, 

conceptual, 

physically based)  

Conceptual/Process-based model                      

Continuous or 

event-based 

Continuous                              

Possible running 

time steps               

  

Daily (also hourly) 

                                  

Spatial discretization 

(lumped, 

semidistributed,

  

distributed)           

Spatially distributed at the sub-basin scale. Sub-basin 

resolution depends on the application. In Europe, this is 215 

km2. 

                                  

Short description of 

model structure 

detailing main 

function 

(evaporation, soil 

moisture 

accounting, 

groundwater, 

routing, snowmelt, 

etc.) 

                                

  

 

from Emmerton et al. (2016) 
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Scheme of model 

structure 

 

Simplified conceptual diagram of the W3RA model structure. 

Shown are: the minimum dynamic inputs (atmosphere); 

aggregated water losses form the grid cell (evapotranspiration 

and streamflow); water fluxes and model states (tech report 3 

AWRA-L). 

3. Model 

parameters 

                

Distribution of 

model parameters 

(yes/no) 

Yes         

Number of free 

parameters 

Numerous free parameters  (van Dijk et al, 2013 and references 

therein)                                  

Procedure of model Many of the parameters are linked to physiographic 
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parameter 

estimation 

(measurement, 

manual or 

automatic 

algorithm, etc.)                 

  

characteristics in the landscape (see van Dijk et al. 2013 and 

references therein) 

 

4. Model inputs / 

Model outputs             

  

                                  

List and   

characteristics of 

input variables 

(type, time step, 

spatial resolution, 

etc.)                                

  

The main dynamic variables are climate forcing data such as 

precipitation, temperature and potential evaporation. Other 

observations can also be used for different purposes.   

List and 

characteristics of 

output variables 

(type, time step, 

spatial 

resolution, etc.) 

 

The exported time-step depends on the user, i.e. hourly, daily. 

The variables (states and fluxes) can be exported for the whole 

grid or selected gauge locations . 

5. Examples of 

previous model 

applications 

                



 

 

 

 

 

 

  

 

 

 
139 

Deliverable n° 4.2 

Catchments, 

objectives, etc. 

Results of existing 

comparisons with 

other models 

Schellekens, J., Dutra, E., Martínez-de la Torre, A., Balsamo, G., 

van Dijk, A., Sperna Weiland, F., Minvielle, M., Calvet, J.-C., 

Decharme, B., Eisner, S., Fink, G., Flörke, M., Peßenteiner, S., van 

Beek, R., Polcher, J., Beck, H., Orth, R., Calton, B., Burke, S., 

Dorigo, W., and Weedon, G. P.: A global water resources 

ensemble of hydrological models: the eartH2Observe Tier-1 

dataset, Earth Syst. Sci. Data Discuss., doi:10.5194/essd-2016-

55, in review, 2016. 

6. List of selected 

references       

                

 Van Dijk, Pea-Arancibia, J. L., Wood, E. F., Sheffield, J., & Beck, 

H. E. (2013). Global analysis of seasonal streamflow predictabil-

ity using an ensemble prediction system and observations from 

6192 small catchments worldwide. Water Resources Research, 

49(5), 2729–2746. http://doi.org/10.1002/wrcr.20251 

 

 

Table 9 Tabulated overview on hydrological model features of wflow_hbv 

1. General Information      

Model name wflow_hbv 

Version   V1 

Author(s) / First 

publication                

Lindstrom  et al. (1997), see also Rakovec et al. (2012, 2015) 

http://doi.org/10.1002/wrcr.20251
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Contact person   

  

Albrecht Weerts (albrecht.weerts@deltares.nl) 

Institute  Deltares 

Website  https://github.com/openstreams/wflow 

General modelling 

objectives 

Calculation/prediction of hydrological water resources  

                                  

Domain of 

applicability 

(catchment types 

and climate 

conditions)     

  

wflow_hbv has been applied on catchment to global scale 

2. Model 

description          

                                  

Model type 

(empirical, 

conceptual, 

physically based)  

Conceptual/Process-based model                      

Continuous or 

event-based 

Continuous                              

Possible running 

time steps               

  

Hourly, daily 

                                  

Spatial discretization  

(distributed)           

spatially distributed, grid size determined by end user (grid size 

for Rhine 1.44 km2) 

https://github.com/openstreams/wflow
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Short description of 

model structure 

detailing main 

function 

(evaporation, soil 

moisture 

accounting, 

groundwater, 

routing, snowmelt, 

etc.) 

                                

  

The Hydrologiska Byrans Vattenbalansavdelning (HBV) model 

was introduced back in 1972 by the Swedisch Meteological and 

Hydrological Institute (SMHI). The HBV model is mainly used 

for runoff simulation and hydrological forecasting. The model 

is particularly useful for catchments where snow fall and snow 

melt are dominant factors, but application of the model is by 

no means restricted to these type of catchments. 

The wflow_hbv model is based on the HBV-96 model. 

However, the hydrological routing represent in HBV by a 

triangular function controlled by the MAXBAS parameter 

has been removed. Instead, the kinematic wave function 

is used to route the water downstream. All runoff that is 

generated in a cell in one of the HBV reservoirs is added 

to the kinematic wave reservoir at the end of a timestep. 

There is no connection between the different HBV cells 

within the model. Wherever possible all functions that 

describe the distribution of parameters within a subbasin 

have been removed as this is not needed in a distributed 

application/ 

A catchment is divided into a number of grid cells. For 

each of the cells individually, daily runoff is computed 

through application of the HBV-96 of the HBV model. The 

use of the grid cells offers the possibility to turn the HBV 

modelling concept, which is originally lumped, into a 

distributed model. 
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Adding lakes and reservoirs is also possible 

Scheme of model 

structure 

 

 

3. Model 

parameters 

                

Distribution of 

model parameters 

(yes/no) 

Yes         

Number of free 

parameters 

Numerous free parameters                            

Procedure of model 

parameter 

estimation 

(measurement, 

manual or 

automatic 

algorithm, etc.)                 

  

The parameter are obtained from lumped daily model 

calibrated using GLUE from upstream to downstream (ref) 

4. Model inputs / 

Model outputs             
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List and   

characteristics of 

input variables 

(type, time step, 

spatial resolution, 

etc.)                                

  

The main dynamic variables are climate forcing data such as 

precipitation, temperature and potential evaporation. For the 

daily model the other observations can also be used for 

different purposes (for instance DA using OpenDA).   

List and 

characteristics of 

output variables 

(type, time step, 

spatial 

resolution, etc.) 

 

The exported time-step depends on the user, i.e. hourly, daily. 

The variables (states and fluxes) can be exported for the whole 

grid or selected gauge locations . 

5. Examples of 

previous model 

applications 

                

Catchments, 

objectives, etc. 

Results of existing 

comparisons with 

other models 

Many (e.g. Rhine, Meuse etc) 

6. List of selected 

references       
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 • Lindstrom, G., Johansson, B., Persson, M., Gardelin, M., 

and Bergstrom, S.: Development and test of the 

distributed HBV-96 hydrological model, J. Hydrol., 201, 

272–288, 1997 

• Rakovec, O., Weerts, A. H., Hazenberg, P., Torfs, P. J. J. 

F., and Uijlenhoet, R.: State updating of a distributed 

hydrological model with Ensemble Kalman Filtering: 

effects of updating frequency and observation network 

density on forecast accuracy, Hydrol. Earth Syst. Sci., 16, 

3435–3449, doi:10.5194/hess-16- 3435-2012, 2012 

• Operational aspects of asynchronous streamflow 

assimilation for improved flood forecasting, O. Rakovec, 

A. H. Weerts, J. Sumihar, and R. Uijlenhoet, HESS, 19(6), 

2911-2924  doi:10.5194/hess-19-2911-2015. 
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Appendix 

A8: Flexible operational seasonal river flow forecasting 

This poster presents a co-author contribution arising through collaboration during this 

PhD, summarised in Chapter 4, Sect. 4.4. 

L.A. conceived the experiment, designed and carried out the analysis.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Introduction
Many operational dynamic seasonal hydrological forecasting systems are static. Meaning that a single forecasting method is used in

time and space. However, predictability sources vary with time and space, and this change should be reflected in the way we forecast

the river flow from one season to the next. Could this be done by combining several different forecasting methods operationally?

Flexible operational seasonal river flow forecasting
Louise Arnal1,2, Florian Pappenberger2,3, Paul Smith2, Hannah Cloke1,4, Liz Stephens1

l.l.s.arnal@pgr.reading.ac.uk; louise.arnal@ecmwf.int

1Department of Geography and Environmental Science, University of Reading, UK - 2ECMWF, UK – 3School of Geographical Sciences, University of Bristol, UK - 4Department of Meteorology, University of Reading, UK  

1. What are the predictability sources in my river basin?

3. Example: proof of concept

2. Flexible seasonal forecasting: concept

Figure 1 Schematic of the hindcasts needed for the EPB

The concept was tested on the EFAS (European Flood Awareness System)

seasonal river flow forecasts (ECMWF’s System 4 SCF run through the

LISFLOOD hydrological model):

• 3-monthly discharge averages with 0 lead time,

• discharge aggregated over 74 European regions,

• verification score: CRPSS of the forecast against the climatology.

The EPB was run from 02-1990 to 12-2013 and the flexible seasonal

forecasting method was used to forecast river flows over Europe from 01-2014

to 12-2014.

N.B. The results do not include any data assimilation yet.

Results

The map (see Fig. 5) shows the most skilful seasonal river flow forecasting

system for 2014. The flexible seasonal forecasting system is more skilful in 21

regions, vs. 16 for the Seas. and 37 for the ESP.

The EPB (End Point Blending) is a cheap and easily implementable sensitivity analysis method*. It shows the dominant predictability source (the

Initial Hydrological Conditions [IHCs] or the Seasonal Climate Forecasts [SCFs]) of a seasonal river flow forecasting system’s forecast skill.

Visualising the results

Skill surface plots (see Fig. 2) show the variations in the (new) river flow hindcast skill (here in terms of R2) with

varying levels of IHC and SCF skill. This indicates the main predictability source of the river flow hindcasts for each

river basin – forecast starting date – forecast lead time and aggregation period :

• horizontal skill gradients → SCF

• vertical skill gradients → IHC

The information contained in the skill surface plots can be summarised in two single values: the IHC and SCF skill

elasticities (EIHC and ESCF; see Fig. 3).

𝐸𝐼𝐻𝐶 𝐸𝑆𝐶𝐹 =
∆ ℎ𝑖𝑛𝑑𝑐𝑎𝑠𝑡 𝑠𝑘𝑖𝑙𝑙

∆ 𝐼𝐻𝐶 𝑆𝐶𝐹 𝑠𝑘𝑖𝑙𝑙
, measured in the skill surface plots. 

Figure 2 Skill surface plotsFigure 3 Skill elasticities

How can we use the results of the EPB to improve future

seasonal river flow forecasts?

• Invest in improving the SCF by using e.g., SCF instead of climatological

meteorological data (Seas. vs. ESP)

• Invest in improving the IHC through e.g., data assimilation (DA)

• Invest in improving both, interchangeably → flexible seasonal forecasting

Figure 4 Decision tree to produce the flexible seasonal river flow forecasts for a

given river basin – forecast lead time and aggregation period. Seas. refers to a

seasonal river flow forecast produced by forcing the hydrological model with SCF

• EIHC [ESCF] > 0 → positive improvements in the river

flow hindcast skill from improving the IHC [SCF] skill

• E = 0 → no improvements in the hindcast skill

• E < 0 → negative improvements in the hindcast skill

The range of CRPSS values obtained for the flexible seasonal

forecasting system are very similar to the ESP and better than the

seasonal forecasting system (see Fig. 6).

Figure 5 Map of the most skilful seasonal river flow forecasting system 

for 74 European regions for the year 2014 

Figure 6 Boxplots of the CRPSS obtained for the 3 forecasting 

systems for 74 European regions for the year 2014 

Take-home messages & references
This new flexible seasonal river flow forecasting system has

the potential to be more skilful than the ESP and seasonal

forecasts and cheaper to run operationally compared to

running a seasonal forecasting system with DA.

*Arnal, L., A. Wood, E. Stephens, H. Cloke, and

F. Pappenberger, 2017: An Efficient Approach for

Estimating Streamflow Forecast Skill Elasticity. J.

Hydrometeor. doi:10.1175/JHM-D-16-0259.1, in

press.

• ESP → 100% IHC skill & 0% SCF skill

• Reverse-ESP → 100% SCF skill & 0% IHC

skill

• Climatology → 0% SCF & IHC skill

• ‘Perfect’ → 100% SCF & IHC skill

Concept

Allow for the use of a different seasonal river flow forecasting method within

the existing system, depending on the dominant predictability source for a

given river basin – forecast starting date – forecast lead time and aggregation

period. The idea is to use an operationally cheap yet skilful forecasting

system.

→ Each new forecast would be produced following the decision tree

displayed on Fig. 4.

Method

New ensemble hindcasts are produced by combining the ESP and reverse-ESP seasonal river flow hindcasts with the climatology and the

‘perfect’ hindcasts (see Fig. 1). The number of members selected from each of these four data sources varies given the level of IHC vs. SCF skill

that we want to reflect (points in Fig. 2).

E.g., A new ensemble hindcast with 50% SCF skill and 100% (or perfect) IHC skill → 50% ESP and 50% ‘perfect’.

Aim: Present the concept of a new flexible operational seasonal river flow forecasting system.
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Appendix 

A9: “Are we talking just a bit of water out of bank? Or is it 

Armageddon?” Front line perspectives on transitioning to 

probabilistic fluvial flood forecasts in England 

This paper presents the submitted (currently in review) version of Chapter 5, Sect. 5.2 of 

this thesis, with the following reference: 

Arnal, L., L. Anspoks, S. Manson, J. Neumann, T. Norton, E. Stephens, L. Wolfenden, and H. L. 

Cloke, 2019: Are we talking just a bit of water out of bank? Or is it Armageddon? Front line 

perspectives on transitioning to probabilistic fluvial flood forecasts in England, Geosci. 

Commun. Discuss., doi:10.5194/gc-2019-18, in review* 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                             
* ©2019. The Authors. Geoscience Communication, a journal of the European Geosciences Union published by 
Copernicus. This is an open access article under the terms of the Creative Commons Attribution License, which 
permits use, distribution and reproduction in any medium, provided that the original work is properly cited. 



1 

 

“Are we talking just a bit of water out of bank? Or is it Armageddon?” 

Front line perspectives on transitioning to probabilistic fluvial flood 

forecasts in England 

Louise Arnal1,2, Liz Anspoks3, Susan Manson3, Jessica Neumann1, Tim Norton3, Elisabeth Stephens1, 

Louise Wolfenden3, Hannah Louise Cloke1,4,5 5 

1University of Reading, UK 
2European Centre for Medium-Range Weather Forecasts, UK 
3Environment Agency, UK 
4Uppsala University, Sweden 
5Centre of Natural Hazards and Disaster Science, Sweden 10 

Correspondence to: Louise Arnal (l.l.s.arnal@pgr.reading.ac.uk) 

Abstract. The inclusion of uncertainty in flood forecasts is a recent, important yet challenging endeavour. In the chaotic and 

far from certain world we live in, probabilistic estimates of potential future floods are vital. By showing the uncertainty 

surrounding a prediction, probabilistic forecasts can give an earlier indication of potential future floods, increasing the amount 

of time we have to prepare. In practice, making a binary decision based on probabilistic information is challenging. The 15 

Environment Agency (EA), responsible for managing risks of flooding in England, is in the process of a transition to 

probabilistic fluvial flood forecasts. A series of interviews were carried out with EA decision-makers (i.e. duty officers) to 

understand how this transition might affect their decision-making activities. The interviews highlight the complex and evolving 

landscape (made of alternative ‘hard scientific facts’ and ‘soft values’) in which EA duty officers operate, where forecasts play 

an integral role in decision-making. While EA duty officers already account for uncertainty and communicate their confidence 20 

in the system they use, they view the transition to probabilistic flood forecasts as both an opportunity and a challenge in 

practice. Based on the interview results, recommendations are made to the EA to ensure a successful transition to probabilistic 

forecasts for flood early warning in England. 

We believe that this paper is of wide interest for a range of sectors at the intersection between geoscience and society. A 

glossary of technical terms is highlighted by asterisks in the text and included in Appendix A. 25 

1 Introduction 

One of the most recent and significant challenges in hydrology has been the inclusion of uncertainty information in flood 

forecasts. We live in a world where it is currently impossible to say with 100% certainty how the weather will evolve in the 

following days to months, or by how much exactly a river level is expected to change. This is due to the inaccurate measurement 

of hydro-meteorological observations*, errors in the mathematical models used to produce these forecasts (due to scientific 30 

and technical limitations) and, most importantly, nature’s intrinsic chaos* (Lorenz, 1969; Buizza, 2008). In this world, 

probabilistic estimates of potential future floods are vital. Probabilistic forecasts* give a range of likely possible future 

outcomes, contrary to deterministic forecasts*, which indicate a single future possibility (Buizza, 2008). Probabilistic flood 

forecasts are generally produced by forcing* a hydrological model* with an ensemble* of future meteorological scenarios 

(Cloke and Pappenberger, 2009). By giving an idea of the uncertainty surrounding a prediction, probabilistic forecasts can 35 

give an earlier indication of potential future extreme events, such as floods, increasing the amount of time decision-makers 

have to prepare (Buizza, 2008; Stephens and Cloke, 2014). 

In practice however, probabilistic forecasts can be challenging to use for operational decision-making*, given their uncertain 

nature (Nicholls, 1999; Cloke and Pappenberger, 2009; Demeritt et al., 2010; Nobert et al., 2010; Ramos et al., 2010; Stephens 

https://doi.org/10.5194/gc-2019-18
Preprint. Discussion started: 9 September 2019
c© Author(s) 2019. CC BY 4.0 License.
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et al., 2019) . Having to translate a range of possible outcomes into a binary decision (such as sending out a flood warning) is 40 

intricate and requires careful interpretation, an understanding of probabilities, risk*, uncertainty* (Dessai and Hulme, 2004) 

and of the systems modelled. Furthermore, probabilistic forecasts are designed to capture scenarios that may not always realise, 

which in turn could lead to false alarms*. Decision-making can be based on a set of rules, such as threshold exceedance (Dale 

et al., 2013). It is, for example, possible to take decisions (e.g. send a flood warning) when a pre-defined threshold is reached 

with a minimum forecast probability (Thielen et al., 2009). However, the decision-making process is generally based on, and 45 

influenced, by several additional factors. These include the type of event considered (e.g. a localised small flood event vs a 

large scale extreme flood event), the costs of taking action vs not taking action, experience of past events, the decision-maker’s 

trust in the forecast (which can be built up over time), their risk aversion, and the cultural context in which decisions are made 

(Cloke et al., 2009; Arnal et al., 2016; Neumann et al., 2018). 

The Environment Agency (EA)* is responsible for managing risks of flooding in England and their flood incident management 50 

strategy* is often shaped by major flood events (Werner et al., 2009; Stephens and Cloke, 2014; Pilling et al., 2016). In the 

1990s and early 2000s, the UK policy shifted from a ‘flood defence’ to a ‘flood risk management’ strategy, on the back of the 

1998 and 2000 floods (McEwen et al., 2012), which has led to more forecast-based decision-making. The summer 2007 UK 

floods boosted the development of the National Flood Forecasting System and the Flood Forecasting Centre (FFC*; a UK Met 

Office and EA partnership), with the aim to improve national flood warning services (Pitt, 2008; Stephens and Cloke, 2014). 55 

The winter 2013/14 UK floods further demonstrated the value of the FFC and the use of ensemble surge forecasts* for flood 

preparedness* (Stephens and Cloke, 2014). It was also during the 2013/14 floods that the EA started using two fluvial (or 

river) flood scenarios* (a reasonable worst case* and a best estimate*, instead of a single prediction) for flood incident 

management. Following this, Defra (the UK government Department for Environment, Food & Rural Affairs)* published a 

National Flood Resilience Review (NFRR) in 2016 (HM Government, 2016; House of Commons - Environment, Food and 60 

Rural Affairs Committee, 2016). This review aimed at understanding and increasing the UK’s resilience to river and coastal 

flooding from extreme weather over the next ten years. The NFRR recommends a better integration of probabilistic weather 

forecasts into flood forecast products, for an improved characterisation of uncertainty and an enhanced communication of 

flood risk and likelihood to inform a range of flood management measures*. 

While catastrophic events can foster the uptake of state-of-the-art science (e.g. probabilistic forecasts) for decision-making, 65 

achieving a complete and successful transition relies on many elements. For example, the use of ensemble surge forecasts in 

2013/14 might not have been possible without the prior shift to a flood risk management mindset and the creation of the FFC. 

Moreover, we do not want to be in a situation where we require a catastrophic event in order to begin implementing the best 

science into risk management practice; it is vital to understand a country’s and institution’s cultural landscape to ensure that 

science is not being under- or misused (Golding et al., 2017). In the case of probabilistic forecasts, making sure that they add 70 

value rather than uncertainty to operational decision-making is key (Nobert et al., 2010). Interviews can be an effective method 

to capture an institution’s complex cultural landscape (Schoenberger, 1991; Pagano et al., 2004). They can provide interviewers 

with an understanding of the world (in this case the institution world) from the perspective of the informants, shedding light 

on their unique perceptions and information only known to them (Sivle et al., 2014). 

As outlined by the NFRR, the EA is in the process of a transition to probabilistic fluvial flood forecasts, from the two flood 75 

scenarios they currently use operationally (Orr and Twigger-Ross, 2009; Sene et al., 2009). To capture the EA’s forecasting 

practice landscape and understand how this transition might affect their flood decision-making activities, a series of interviews 

were carried out in the summer 2018 with EA ‘Monitoring and Forecasting Duty Officers’ (MFDOs) and ‘Flood Warning 

Duty Officers’ (FWDOs). These two roles are at the heart of the EA’s flood risk management decision-making chain. The 

outcomes of these interviews were used as a basis for this paper, with the aim to highlight the potential opportunities and 80 

challenges that this transition might translate to for the duty officers, ahead of it happening. 

https://doi.org/10.5194/gc-2019-18
Preprint. Discussion started: 9 September 2019
c© Author(s) 2019. CC BY 4.0 License.
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2 Context: the Environment Agency’s flood incident management strategy 

The Environment Agency (EA) is an executive non-departmental public body, sponsored by Defra. The EA has an operational 

responsibility to manage risks of flooding from rivers and the sea in England, by warning and informing the public and 

businesses about impending floods. Flood warnings are sent with a 2-hour minimum lead time*, however, different lead times 85 

have recently been introduced to take into account the type of flooding and catchment characteristics*; i.e. flash flooding vs 

slow responding catchment. Under the Flood and Water Management Act 2010 (DEFRA, 2010), the EA takes a lead role on 

river and coastal flooding, whilst lead local flood authorities take a lead role on local flood risk (which covers flooding from 

other sources, including surface water, groundwater and minor watercourses). The EA also has a strategic overview role for 

all sources of flooding and works with lead local flood authorities by providing guidance, knowledge and support in responding 90 

to surface water flooding. The following schematic (Fig. 1) displays the EA’s institutional landscape, with a particular focus 

on the flood incident management (FIM) information flow to and from MFDOs and FWDOs. 

Historically, the EA was structured as a national body, delivering its work across England in six operational regional 

boundaries (i.e. regional boundaries were political delineations and were roughly aligned with the regional development fund 

boundaries). On 1st April 2014, the EA changed its operating structure to adopt area boundaries (i.e. broadly based on 95 

catchment delineations, but some catchments span different areas, especially at the borders with Wales and Scotland). These 

were aligned in 2016 with the Natural England (non-departmental public body, sponsored by Defra, and responsible for 

ensuring the protection and improvement of England's natural environment) boundaries. The EA is now operating over 14 

areas with 7 forecasting centres (hereafter referred to as ‘centres’; see Fig. 2). 

To help manage flood risk, the EA receive hydro-meteorological forecasts* produced by the Flood Forecasting Centre (FFC; 100 

see Fig. 1) on a daily basis (more or less frequently depending on the forecasting product* – see Sect. 4.1.1). The FFC is a 

partnership between the EA and the UK Met Office. It combines the hydrological and meteorological expertise from both 

institutes to provide hydro-meteorological forecasting products (for all natural forms of flooding, including river, surface water, 

coastal and groundwater flooding) to emergency responders: category 1 (e.g. police services, fire and rescue authorities, 

including the EA for England), category 2 (e.g. utilities, telecommunications, transport providers, Highways Agency), Natural 105 

Resources Wales (for Wales) and the Met Office (for England and Wales). 

The EA’s FIM is based on the principle: ‘think big, act early, be visible’ (EA, 2018). This is part of a wider move from incident 

response to risk anticipation, with the aim to ensure that resources are put in place early and that the EA is prepared to scale-

up or -down (i.e. preparations for measures implemented or not closer to the potential incident; e.g. expanded incident rotas 

with duty officers on standby, instigating requests for mutual aid to a different area, requests for equipment to support 110 

preventative and/or repair work, such as temporary barriers and pumps). As part of this strategy, the FFC forecasts are currently 

(and since the UK winter floods of 2013/14) used to produce two deterministic fluvial flood scenarios with a five-day lead 

time at the EA, a ‘Best Estimate’ and a ‘Reasonable Worst Case’.  

Several internal documents have been written to give guidance on how to use these scenarios to support decision-making for 

FIM activities, in line with the EA’s principle. In summary, the Reasonable Worst Case gives an indication of what ‘could’ 115 

happen and should be used for preparation, information and response to flooding. The Best Estimate gives an indication of 

what ‘should’ happen and should be used as the basis for planning for warning. Together, the two scenarios provide the scale 

and size of the incident for planning and response preparations (FFC, 2017). 

According to research done in the Thames river basin (UK), New et al. (2007) showed that probabilistic forecasts provide 

more informative results (enabling the potential risks of impacts to be quantified) than a scenario-based approach. The 120 

transition to the two scenarios can be seen as a stepping stone towards probabilistic fluvial flood forecasts. Ultimately, the EA 

would like to: 1) quantify uncertainty and communicate flood risk in a clear manner internally and externally, and 2) make 

decisions around incident preparation and escalation, operational activities and flood warnings effectively, intelligently and 

accurately. While the EA acknowledges that a potential benefit of probabilistic flood forecasts is the possibility to give earlier 
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warnings, they question the extent to which probabilistic forecasts would reduce scientific and decision uncertainties in a FIM 125 

context (Orr and Twigger-Ross, 2009). 

While work has already been done by the EA to investigate the technical feasibility of a transition to probabilistic fluvial flood 

forecasts (Orr and Twigger-Ross, 2009; Sene et al., 2009, Dale et al., 2013), this paper focuses on exploring the perceptions 

of the EA duty officers on the subject matter. This work is important as it will ensure the appropriate use of fluvial flood 

probabilistic forecasts for FIM decision-making activities, once operational. It should be noted that the EA already uses coastal 130 

flood probabilistic forecasts (Flowerdew et al., 2009); this work focuses on fluvial flooding. To this end, a series of interviews 

were carried out with EA ‘Monitoring and Forecasting Duty Officers’ (MFDOs) and ‘Flood Warning Duty Officers’ (FWDOs), 

as they are the two roles at the heart of the EA’s internal forecast-led decision-making, building on the exchange between the 

MFDOs and the FFC (see Fig. 1; more information about their respective roles in Sect. 3.1 and 4.1). 

3 Methods 135 

3.1 Participants 

The EA has several MFDO and FWDO roles, fulfilled by a number of different people. These are voluntary roles, added to 

the staff’s day-to-day job, for which they follow relevant training. MFDOs receive, process and communicate forecast 

information to FWDO’s, who are responsible for interpreting the information and working out the potential impacts on the 

ground. The duty officers’ schedules are predetermined by a rota, and duty officers are on call for a period of one week at a 140 

time. During times of increased flood risk, when more forecasting or warning activities are required, additional rostering takes 

place. Duty officers receive a range of forecasts (nowcasting* products to monthly outlooks*) and are aware of potential 

situations from a month out. Five days ahead is when the activity really starts to build and is the focus of these interviews. 

A total of six EA MFDOs and FWDOs from three different EA centres (one pair per centre) were interviewed to capture a 

range of perspectives in relation to this topic, following best practice (Sivle et al., 2014; participant information sheet provided 145 

as supplementary material). Forecasting and decision-making varies between EA centres due to different management 

approaches and different types of geography and catchment response. To protect anonymity, the three centres where interviews 

were carried out are shown in terms of the wider area they are responsible for: 1) the Yorkshire area (YOR) in the North (area 

3), 2) the Thames area (THM) in the South East (area 11), and 3) the Solent and South Downs area (SSD) in the South East 

(area 14) (Fig. 2). 150 

MFDOs and FWDOs were interviewed in pairs as they are used to working together and the information they use sits between 

these two roles. The thought was that by talking to the MFDOs alone we would lose the element of “and so what?”, while 

talking to the FWDOs alone we would lose all the expertise about forecasting. All MFDOs and FWDOs interviewed had 

several years of experience and so were able to describe how current practice would change with a different type of forecast. 

Participants were selected by EA study co-developer I1 to meet the above criteria. For the purpose of anonymity, the 155 

interviewees will thereafter be reported using codes. The three MFDOs interviewed will be referred to as MFDO1, MFDO2 

and MFDO3, and the three FWDOs interviewed as FWDO1, FWDO2 and FWDO3 (interviewed pairs are however represented 

by the same number). As well as those from the MFDOs and FWDOs, quotes from two EA study co-developers are reported 

in this paper, I1 and I2, who helped the interviewer (Louise Arnal) by providing some context about the EA’s organisational 

landscape, forecasting systems and MFDO and FWDO roles prior to the three interviews. 160 

3.2 Interviews 

By design, qualitative, semi-structured interviews are used to understand interviewees’ perspectives, allowing the exploration 

of a research question that does not necessitate quantifying information and creating generalisations from the interview 

transcripts. The strength of such studies (compared to other survey methods) is that they are more sensitive to historical and 
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institutional complexity and can capture the influence of local context (Schoenberger, 1991; Pagano et al., 2004). Moreover, 165 

they are flexible, allowing the interviewer to remodel questions throughout an interview and from one interview to the next, 

to follow up on new information discovered (Sivle et al., 2014). 

A fixed set of open-ended questions were prepared in advance to guide the discussion and allow for comparability across all 

three interviews. To prompt discussion, all three MFDO and FWDO pairs were asked the same opening question: “Could you 

please walk me through what you would do ahead of a potential flood event?” The following questions were also prepared in 170 

advanced, but their order was changed, or they were skipped depending on whether the interviewees had already answered 

them: 

• “Could you tell me about the uncertainties in the information you said you used in this context?” 

• “How do you deal with these uncertainties?” 

• “Could you tell me about how you communicate these uncertainties to each other?” 175 

• “How would your job be influenced by a transition to probabilistic forecasts?” 

Each interview lasted between 30 minutes and 1 hour 30 minutes. All interviews were conducted and digitally recorded by the 

first author (Louise Arnal) in meeting rooms at the corresponding EA centres. 

3.3 Data analysis 

All interviews were transcribed verbatim and transcripts were analysed qualitatively with respect to three main research 180 

questions. These research questions provide the structure for the results’ section of this paper (Sect. 4). 

1) What are the MFDOs’ and FWDOs’ roles and how do they interact with one another? 

2) Where are the forecasts currently situated amidst their decision-making process? 

3) Considering how the duty officers communicate confidence with one another at present, what might be the potential 

impacts of a transition to probabilistic forecasts on their roles? 185 

Although interpretations might have been communicated by many interviewees, no frequencies are provided as quantitative 

generalisations cannot be inferred from this small and purposive sample. Following best practice, the results contain a mix of 

interviewees’ perspectives, supported by quotes, and further interpretation of the interview transcripts by the authors, 

identifiable throughout the text (Davies et al., 2014). 

4 Results 190 

4.1 Roles and interactions between EA duty officers 

Below, we summarise the MFDOs’ and FWDOs’ roles in an incident response context, using the interviewees’ responses to 

the question: “Could you please walk me through what you would do ahead of a potential flood event?” It is worth noting that 

all interviewed pairs suggested the MFDO answer that question before the FWDO, indicating that the decision-making process 

starts with the MFDO. 195 

“My role’s an MFDO so generally if there’s a flood event coming I should know before the FWDO, in theory” 

[MFDO2] 

4.1.1 The role of Monitoring and Forecasting Duty Officers 

“Ramping up to a flood event, the MFDO gathers that information, processes it and filters it, and 

passes that along to the area staff [FWDO].” [MFDO2] 200 

What information do they use? 

https://doi.org/10.5194/gc-2019-18
Preprint. Discussion started: 9 September 2019
c© Author(s) 2019. CC BY 4.0 License.



6 

 

The MFDOs regularly receive FFC (Flood Forecasting Centre) national and county scale (i.e. area sub-divisions) flood risk 

forecasts and produce catchment/local scale flood forecasts, which they communicate with the FWDOs (see Fig. 3). The FFC 

generates three types of products: 

• Outlook products – annual, seasonal and monthly assessments of flood risk; 205 

• Flood Guidance Statement (FGS)* – a five-day forecast of flood risk for all sources of flooding, for England and 

Wales, at a county scale (see Appendix B, Fig. (a) for an example); 

• Hydro-Meteorological Services* – detailed products communicating flood forecast data, currently comprising 

Hydro-Meteorological Guidance, Forecast Meteorological Data and Heavy Rainfall Alerts (see Appendix B, Fig. (b), 

(c) and (d), respectively, for examples). 210 

How do they use this information? 

Based on this suite of information, the MFDOs decide whether they want to run the hydrological forecasting model, which sits 

in a separate system called the National Flood Forecasting System (NFFS; see Appendix B, Fig. (e) for an example). The 

decision can be triggered by the colours shown on the FGS (which communicates flood risk as a combination of likelihood 

and impact; e.g. high flood risk values on the FGS are more likely to lead to the MFDOs running the hydrological model). The 215 

NFFS allows users to explore the observed data (i.e. river levels and rainfall) and run hydrological and hydraulic models*. 

These models, forced with the FFC’s deterministic weather forecast, provide a single trace of past and future (i.e. for the next 

five days) river level for specific areas. This initial forecast scenario is usually referred to as the ‘Best Estimate’ scenario, 

showing what ‘should’ happen. What ‘could’ happen (i.e. the ‘Reasonable Worst Case’ scenario) may not always be run. 

“If there’s uncertainty in the forecast like if there’s showers […] especially when they’re thundery and they can give 220 

you really high totals in a very short space of time that’s when you start to run ‘What If’ scenarios” [MFDO1]  

‘What If’ scenarios (i.e. ‘Reasonable Worst Case’ scenarios) are additional forecasts run by the MFDOs by manually 

modifying the FFC’s deterministic weather forecast (usually through the use of predefined factors applied over an entire 

catchment; e.g. 200% of catchment rainfall totals in the next 6 hours). They then run this ‘modified weather forecast’ through 

the hydrological/hydraulic models to obtain a new river level forecast scenario, often referred to as the ‘Reasonable Worst 225 

Case’ scenario. The MFDOs choose which What If scenario to run based on the FFC Hydrometeorological Guidance and their 

own expert knowledge, to estimate the likelihood of both scenarios (the ‘Best Estimate’ and the ‘Reasonable Worst Case’). 

“[The FFC] might give us a number of different scenarios and we tend to pick the worst one and then see what that 

does” [MFDO1] 

A critical part of the MFDOs’ role is to interpret the different forecasting products, which might sometimes be inconsistent 230 

(e.g. differences between the national and local scale pictures). The MFDOs usually do this by applying expert judgement 

based on knowledge of model performance and catchment response* to make a coherent story and put the information into 

context for the FWDOs.  

The MFDOs decide when to pass the information on to the FWDOs, generally waiting for the forecast to be confident* before 

flagging a situation. The exact content of the communication depends on each pair, but usually contains information about the 235 

scale of the event and their confidence in the forecast. 

“Which scenario is going through which threshold [and] how likely that is to happen” [MFDO1]. “Approximate […] 

scale of the event […] are we talking just a bit of water out of bank? Or is it Armageddon?” [MFDO2]  

The conversation can sometimes be bilateral, and the MFDOs might ask questions to the FWDOs.  
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“Can they provide information […] in terms of local sensitivity […] and are works going on in that catchment? Is there 240 

a gauge out of play?” [MFDO2] 

4.1.2 The role of Flood Warning Duty Officers 

“The role of the FWDO is to make sense of all that forecasting information and try and work out 

potentially what the impacts could be of that on the ground and then make decisions as to whether 

or not [they] issue flood alerts, flood warnings or severe flood warnings.” [FWDO1] 245 

What information do they use? 

The FWDOs’ role is to combine several different types of information to decide whether to issue a flood alert or warning (see 

Fig. 3). The information available to them includes: 

• The processed hydro-meteorological forecast and interpretation from the MFDOs 

• Factors within the catchment that could influence river levels (e.g. blockage from a tree fallen down). This is ad-250 

hoc information and comes from a variety of sources, including: information gathered from community contacts 

(flood wardens*, flood action groups*, etc.), from EA staff and duty officers, hydrometric data/CCTV images, details 

of consented works (i.e. work going on in a channel); 

• The situation on nowcasting meteorological products (e.g. rainfall radar); 

• Information about the communities that might be affected (e.g. have they been affected by many floods in the 255 

past); 

• Expert knowledge about catchment response. 

How do they use this information? 

The FWDOs assess these various sources of information (e.g. in terms of their accuracy) to make a decision, knowing that 

they do not necessarily have all the information to make a judgement call. 260 

“I look at the river level forecasts and then what I want to know from the MFDO is, does this account for the rain we’ve 

had? So, do you think this is likely to change? Is the forecast I’m seeing on my screen a good river level forecast? Or 

do we think it’s not picked something up properly?” [FWDO2] 

According to an internal document on using the two flood scenarios in practice, the Best Estimate should be used as a basis to 

issue flood alerts or warnings. However, both scenarios are currently used for incident planning activities (e.g. resources 265 

needed for response) and communication with responders and communities, while flood alerts and warnings are mostly issued 

based on nowcasting products. This discrepancy could be due to the challenges associated with forecast accuracy* and lead 

time, specifically for surface water flooding* and rapid-response catchments*. This document does however encourage the 

use of the two scenarios for planning and flood warning activities whenever possible, in combination with expert judgement. 

“The scenarios are planning scenarios and at some point […] we move into operational now type forecasting. So 270 

normally we’d issue a flood warning with anywhere between 30 minutes to […] six hours lead time, whereas these 

scenarios are generally two to five days ahead. So you wouldn’t normally […] come up with a simple statement that 

will issue flood warnings based on the best estimate […] and at some point we transition into something that’s more 

now that we use for operational decision making” [I1]  

4.1.3 Communication between MFDOs and FWDOs 275 
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“The FWDO shouldn’t even really be thinking about anything until they’ve had a phone call from 

the MFDO […].  Some FWDOs do go a bit more proactive than that, I think particularly the ones 

with the forecasting backgrounds almost can’t help themselves looking into it. And it depends on 

personality as well, some people hate the idea of being surprised by anything. But it does also depend 

on the MFDO.” [FWDO2] 280 

There is usually a constant exchange of information between MFDOs and FWDOs, even when no major event is on the horizon. 

However, more recently, the level of activity in preparation for a potential event has increased. Since 2007 (this corresponds 

vaguely with the summer 2007 floods), the lead time for which forecasts are shown and on which MFDOs and FWDOs can 

take action has increased from a few days to a few months ahead (based on the FFC’s outlook products mentioned in Sect. 

4.1.1). This is consistent with findings from Neumann et al. (2018), who report that the EA currently uses long-range* (i.e. 285 

seasonal) hydrological forecasts mainly as supporting information, while relying on the shorter-range forecasts* for action. 

“So even from a month out now we’re starting to become aware of potential situations […], but […] because […] most 

of our products […] are […] based on that five-day forecast […] that’s when the activity really starts to build” 

[MFDO1] 

The communication between MFDOs and FWDOs varies across people and EA centres. Factors that might influence 290 

communication – in terms of its trigger, frequency and content – include the duty officers’ personality, day-to-day job and 

level of experience. Some FWDOs are more proactive than others in obtaining the information needed to make a decision; 

some might wait to be contacted by the MFDOs with a processed forecast, and others monitor the situation on a daily basis 

(see quote from FWDO2 above). In some cases, the FWDO might contact the MFDO first to get more details about an area of 

concern to them. 295 

“[…] and […] then it’s […] liaising with regional forecasting [the MFDOs] so they can give us any more detail or 

certainty or if we’re concerned about an area they can watch it a bit more for us [the FWDOs]” [FWDO3] 

Duty officers’ level of experience can also influence the content and interpretation of the conversation. Knowing each other 

helps interpret and gauge the confidence from each other’s language, which MFDO2 refers to as ‘nuanced communication’. 

Working with new duty officers can lead to misinterpretations and you might have to justify your position further and prompt 300 

them to obtain the information you need.  

“I’ve known [FWDO1] for quite a while so when I’m on duty with [them] […] I can sense […] what sort of questions 

[they] want to ask, where [they’re] coming from. I think with less experienced duty officers it’s often more tricky to do 

that. So […] the verbal communication that you go into with [FWDO1] for example might be a bit brief probably 

because I know that [they’ve] understood the message and interpreted the message well, whereas a new duty officer 305 

you might be spelling out […] your position more, spending more time explaining why the uncertainty is such and how 

that may impact on the ground” [MFDO1]  

“Knowing each other is really important because if I know it’s [MFDO2] on duty [they’ve] probably put that 

interpretation on already. If I get someone who’s reading off the screen, I put the interpretation on and if we misjudge 

that and we both put it on we could end up getting it too low” [FWDO2] 310 

Other factors that influence communication include the context of the event, duty officers’ geographical proximities and a 

centre’s practice. In some areas, the FWDOs will make the final call of warning the public or not, while in other areas, the 

MFDOs will tell the FWDOs when they need to issue a warning. In addition, MFDOs and FWDOs do not always sit in the 
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same building or town. MFDOs work from forecasting centres, while FWDOs are based in Area offices or Area incident 

rooms, which influences their (mode of) communication (in person vs via phone or emails). 315 

“If these people [the FWDOs] were sitting geographically with these other people [the MFDOs], I think you’d get a 

better service” [I1] 

4.2 The forecast, a small cog in a much bigger wheel 

“Forecasting’s really important. It is, it should be really central to what we do […] but actually it’s a 

small cog in the middle of a much bigger wheel.” [I1] 320 

Forecasting supports incident response by providing a critical piece of information. However, duty officers have to consider a 

range of other sources of information and factors when making risk-based decisions.  

“We always implore people to try and look at different sources of information” [I2] 

These additional sources of information include river level correlations*, model performance*, local knowledge (i.e. 

knowledge of how a certain catchment behaves), personal experience, and internal and external considerations (see Fig. 4). 325 

This section gives a more detailed overview of these factors and their relevance for decision-making. 

4.2.1 River level correlations and model performance  

“The MFDO will be looking at how much rain is falling compared to what was forecast. You can 

check the river levels on the telemetry sites*, so you can see how fast they’re responding compared 

to the model and you can start to gauge how that catchment’s responding compared to what you 330 

thought it would do” [MFDO1] 

MFDOs might use several products to gain an understanding of model and forecast performance while the event unravels. 

More basic forecasting methods, like river level correlation tables, complement forecast information and aid the decision-

making process. These correlations are based on a linear regression between peak levels upstream and downstream of a station. 

However, discrepancies between the forecasts and correlations can call into question the forecast accuracy.  335 

“If the model says you’re going to get flooding, the correlation says we’re going to get flooding, we’ve had more 

rainfall than any previous event, you know that that decision’s […] a clear one. If the model says flooding, the 

correlation says no you’re fine, and we’ve had somewhere in the middle in terms of rainfall, that’s when it gets difficult, 

because those borderline calls are really tricky to make” [I2] 

The MFDOs’ knowledge of the hydraulic/hydrological model performances, for certain types of events and catchments, is also 340 

key in interpreting the forecast. This is based on performance measures*, local feedback from real time river gauges*, 

experience and target lead times (i.e. the theoretical maximum lead time you have to send out a flood warning for a catchment 

before it floods, based on catchment size, gauge location and flood risk in that catchment). For certain types of events, such as 

convective rainfall events*, for which the duty officers know models are still limited, they might decide to issue a warning 

based on the ‘Reasonable Worst Case’, although it is “technically against procedure” [MFDO2]. 345 

The FFC meteorological products also communicate some sort of confidence, which the MFDOs can use to complement the 

hydrological models’ performance information. 

4.2.2 Local knowledge and personal experience 
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“Whilst we are very data reliant on the information coming through, there’s also that experience 

that you know that certain watercourses are very slow responding and […] no matter how much 350 

money we spend on your forecast, it’s always not very good, you always delay it by a day and drop 

the peak by a bit. […] Data is very important but that local experience is as important if not more so 

in certain circumstances” [MFDO2] 

Local knowledge and personal experience are key ingredients for judgement, an important component of the decision-making 

process. This means duty officers can react appropriately to an event and add confidence to the forecast. As MFDO2 put it, 355 

“experience is the unwritten part of the value that each role has”.  

Local knowledge is so important to decision-making that the interviewees believe it cannot be replaced by training, written 

material or fully automated systems.  

“Some areas have very set triggers for a severe flood warning whereas other areas may just take it on a feel. […] And 

each area has done it for a good reason, it’s the local reasons for doing that but it isn’t nationally consistent” [MFDO2] 360 

“We have in the past looked at automated warnings […], we can’t automate them […], there’s a lot of personal 

interpretation and judgement [that] goes into it, and if a computer just hits a level and issues a warning, it’s going to 

go wrong” [FWDO2] 

This also manifests itself in perceptions about how successfully duty officers can transfer to other centres or areas to help 

during an important flood event. 365 

“One of the things we’re trying to do at the moment is to get mutual aid sorted out so that if a flood event happens in 

[some of the Northern areas] and their MFDOs […] or the FWDOs are very […] stretched […] we can go […] there, 

use their tools, their systems and do the same job. But whenever we’ve tried it the local knowledge is the key thing. Like 

knowing that this river responds particularly quickly and that we need to deal with it first before we move on to other 

ones that’s the sort of thing that even if you’re picking it up whilst you’re working in a different centre it’s affecting 370 

your ability to deliver the role at the time” [MFDO1] 

Duty officers have access to tangible information about past flood events that can be useful for placing model information into 

context. The ‘Flood Intelligence Files’ compile information (e.g. highest events on record, what rainfall led to them, what the 

catchment state was at the time and any known impacts) for every gauge the EA is providing forecasts for. 

How information is interpreted, risk appetite and past experience, can all affect decisions taken. There is the danger of 375 

following instincts too much and becoming biased towards issuing too many (i.e. risk-averse) or not enough warnings (i.e. 

risk-hungry), while in some cases decisions might never be forecast-led. 

“Since the Boxing Day floods I think the next level of flooding after that there was some discrepancies amongst the 

area responses […] they were a bit […] jumpy […] to not be caught out again which is understandable” [MFDO2] 

“these kind of decisions about do we need to draw up a roster, do we need to be in the office overnight, a lot of that has 380 

probably been done on gut feel, probably this FWDO being the advisor. […] Do we need to do whatever based on 

judgement, experience, feel for it. […] I wouldn’t expect these people to actually be looking at any forecast and saying, 

based on this I will do” [I1] 

4.2.3 Internal and external considerations 
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“There are lots of external pressures as well, particularly as FWDO you can come under pressure 385 

from all different types of sources to make decisions and perhaps not based on the evidence that 

you’ve got for political reasons, […] reputational reasons, organisation, in terms of being seen to be 

active, seen to […] act early” [FWDO1] 

Decisions are not only dictated by the science, local knowledge or personal experience and differences, but might have to 

respond to internal and external considerations, especially during major events. 390 

At an internal level, some areas and duty officers might be more forecast-led while others are more reliant on a nowcasting 

type approach. Discrepancies amongst the area responses are partially due to historical differences across the different areas 

and EA centres. 

“There are definite differences between areas and […] between individual staff, so [town X] are far more likely to issue 

flood alerts […] purely on rainfall than [town Y] is, [town Y] will generally wait for a river level to rise and that 395 

develops I suppose out of slight historical differences and personalities involved” [FWDO2] 

“Some other areas will issue messages based on forecast whereas, we were always told to base it on what’s happening, 

so we kind of wait to see if the rain comes in and then if anything happens issue. And we get marked on messages that 

we send out, so one of the things is the timeliness and if you’ve issued one, did it actually flood afterwards? So if you’re 

obviously issuing on a forecast, then you’re probably going to get scored low because it doesn’t always happen, so it’s 400 

difficult” [FWDO3] 

There are exceptions to these procedures and FWDO3 mentions the possibility of issuing flood alerts based on the forecast 

when the impact is expected to occur overnight or if the forecast displays “rarely high confidence” of rainfall and “if it’s a 

more prolonged event” and “you know the catchment’s already wet”. 

The EA’s principle, ‘think big, act early, be visible’, is an example of an internal consideration, which might influence the 405 

duty officers’ decision-making (EA, 2018). In what ways does the EA’s statutory warning responsibilities and principle 

influence decision-making? Does ‘act early’ put the forecast in first place while ‘think big’ and ‘be visible’ move it to a 

secondary position? 

“Our mantra to incident response is think big, act early so sometimes […] there is a danger that you’re over responding. 

Somewhere you’re issuing alerts and warnings when actually the risk is low. So I think the role of the FWDO is to 410 

assimilate all that information, forecasting information and using it to help inform the instant response but also manage 

expectations” [FWDO1] 

There is usually a political element (external consideration) to the response immediately following a very major flood, as the 

EA puts a greater focus on demonstrating to communities and the government that they are being proactive in warning, 

informing, etc. There is also the need for the EA to align its message with actions of lead local flood authorities and responders 415 

and to think about public response.  

“It’s managing expectations internally in terms of operational response and how this is going to potentially play out 

which […] can still be quite hard to do but it’s even harder to do it externally with [the] mood of the public or even 

some of our professional partners, so local authorities are also obviously geared up to respond to flooding” [FWDO1] 

To conclude this section, it is evident that the duty officers have to take different sources of information, besides the forecast, 420 

into consideration to make a decision. However, the forecast helps determine the timing of warning and response activities. 

Because the forecast plays a seemingly small part in a much bigger system, could that mean that the transition to a different 
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type of forecast will have very minor impacts on the duty officers? Or on the contrary, could it unsettle this very complex 

machine? 

4.3 What could a transition to probabilistic forecasting mean in practice? 425 

4.3.1 Current practice: communicating confidence for decision-making at the EA 

“Uncertainty is present in everything that we do and every bit of communication, […] I don’t think 

I’ve ever been able to say something with 100% confidence, ever.” [MFDO2] 

We have previously touched on the factors and uncertainties duty officers have to work with, including uncertainties in: the 

weather (and how it cascades down to hydrological response), model performance, the different spatial scales of response 430 

(local vs national), the situation on the ground (e.g. soil conditions prior to an event and river blockages), EA staff decisions 

and actions, and the public’s reaction to warnings. 

Duty officers currently adapt the language they use to communicate these uncertainties internally and externally, based on 

their confidence level. According to internal EA guidelines, the language used should change according to the scenario used 

so that duty officers “get used to the [..] way they're working around scenarios and probabilistic forecasting” [I1]. 435 

“If messages around a ‘Reasonable Worst Case’ use, could or […] is possible; if it’s a ‘Best Estimate’ use, we expect, 

it’s probable” [I1] 

Between the MFDOs and the FWDOs, confidence and uncertainty appears to always be (based on these interviews) 

communicated, usually using the two flood forecast scenarios.  

“I don’t think we can withhold uncertainty. One, the key role for MFDO is providing the forecast. So it’s getting the 440 

forecast as accurate as you can and then communicating it in the clearest way possible. So that’s often about 

interpreting the uncertainty and communicating it. So we often use the ‘Reasonable Worst Case’ and the ‘Best Estimate’ 

to do that” [MFDO1] 

Messages to the public are also worded with care to communicate the appropriate level of risk and prompt appropriate response 

and also contain some information about confidence and uncertainty. These messages are usually free-text messages and will 445 

therefore vary from across FWDOs.  

“The message starts off with this flood warning has been issued for this place then it runs on after a while into detail 

which is where you can communicate those shades of grey” [FWDO2] 

However, not all uncertainties are critical, and local knowledge and experience are key for the “interpretation of the 

uncertainties” [FWDO2] and their impact on the ground.  450 

“Uncertainty from the forecasting point of view is always prevalent but understanding how it will impact the […] area’s 

reaction is kind of the key thing” [MFDO2] 

There is currently space for the communication of confidence at the EA and externally. This is a step towards probabilistic 

forecasting. But how big of a step is it? And how big of a step is still needed to reach that full transition to probabilistic flood 

forecasts? 455 

4.3.2 The duty officers’ perceived opportunities and challenges 

“Whether it creates as many problems as it solves, maybe” [I2] 
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The transition to probabilistic forecasts is a significant evolution, which generates mixed feelings amongst the duty officers. It 

is undeniable that this transition will bring changes at the EA; as FWDO2 put it, “probabilistic forecasting is kind of a fresh 

start for everyone”. This section presents the interviewees’ perspectives on the changes that will ensue from this transition, in 460 

terms of perceived opportunities (left wordcloud on Fig. 5), challenges (right wordcloud on Fig. 5) and neutral changes. Table 

1 outlines these perspectives, split into six main topics and supported by quotes reported in Appendix C. 

Some of quotes reported in Appendix C might sound very extreme, which could be partly due to the way the questions that 

prompted them were phrased. However, it could also reflect personal resistance and should be explored further. 

5 Discussion and recommendations 465 

5.1 Considerations for a successful transition to probabilistic forecasts 

Probabilistic forecasts have a great potential to capture extreme events (Stephens and Cloke, 2014), and their benefits 

(compared to deterministic forecasts) for flood warning are evident (Verkade and Werner, 2011; Pappenberger et al., 2015). 

However, despite the increasing lead times at which we can confidently predict floods, the uncertainty inherent in the chaotic 

natural system being modelled grows with increasing lead times, posing new problems. As science and decision-making are 470 

both individually progressing, adapting to their respective internal and external changes, there still lacks an ideal framework 

for the incorporation of new and ‘uncertain’ science in decision-making practices, and, respectively, the uptake of decision-

makers’ perspectives in the design of scientific practice. Here, results from this study and relevant literature are joined to put 

forward elements that should be considered for a successful transition to probabilistic forecasts for flood warning in England. 

From these interviews and previous EA studies, it is apparent that forecasts are one element in the complex decision-making 475 

landscape within which EA duty officers operate (Orr and Twigger-Ross, 2009; Dale et al., 2014). This landscape includes 

alternative ‘hard scientific facts’ (e.g. correlations, model performance and local knowledge to an extent), and ‘soft values’ 

(dependent on culture and context, personal experience and internal and external considerations) (Morss et al., 2005; Cloke et 

al., 2009; Arnal et al., 2016; Neumann et al., 2018). Morss et al. (2005) found that “although flood management practitioners 

might appreciate more certain hydro-meteorological information, scientific uncertainty is often swamped by other factors [e.g. 480 

community perception, time, money and resource constraints] and thus is not a high priority.” When uncertainties are evident 

and decision stakes are high, as is the case for the uncertainty communicated by probabilistic forecasts for flood incident 

management, traditional decision-making pathways could become ineffective and soft values might become more important 

than hard scientific facts (Funtowicz and Ravetz, 1993). In this specific study for example, an uncertain probabilistic forecast 

could lead to some duty officers reverting to the ‘Best Estimate’ and the river level correlations to make a decision, ignoring 485 

low probabilities of extreme events which could have ultimately led to an earlier flood warning. 

Facing constantly evolving soft values, some decision-makers may find familiarity with the scientific methods they use 

reassuring, reducing their personal willingness to adopt new scientific methods (Morss et al., 2005; Ishikawa et al., 2011). This 

personal willingness was captured in the range of responses (perceived challenges and opportunities) obtained during the 

interviews. An institute’s operating practice should reflect the complex landscape in which decision-makers operate, where 490 

the forecast plays an integral role in decision-making. To this end, the co-design of forecasting systems by both forecasters 

and users is necessary. 

To do that, clear communication between forecasters and users is needed. However, language is perhaps one of the biggest 

barriers between scientists and decision-makers. It has been observed that “the way scientists referred to and discussed 

uncertainty sometimes confused practitioners” (Morss et al., 2005). Similarly, there is a lot of research done on the impacts of 495 

graphical representation of uncertainty in hazard forecasts on decision-making. These have shown that great care has to be 

taken when designing and communicating uncertain information, as it can impact the nature of the actions taken (Bruen et al., 

2010; Joslyn and Savelli, 2010; Stephens et al., 2012; Pappenberger et al., 2013; Sivle et al., 2014). 
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There is the common misconception amongst the scientific community that decision-makers want 100% certain information 

(Demeritt et al., 2013; Michaels, 2014). In reality, as shown in this paper, decision-makers appreciate that scientific information 500 

is uncertain, not unlike other types of information they use. Decision-makers want to see that uncertainty, which they do not 

necessarily perceive as a barrier to use (Morss et al., 2005; Bruen et al., 2010; Neumann et al., 2018). One reason for this 

misconception might be the different ways scientists and decision-makers approach forecast uncertainty. Scientists see (the 

reduction of) forecast uncertainty as an end goal and “often deal with uncertainty by attempting to reduce, quantify, analyze, 

and/or assess it”. Decision-makers “view uncertainty as an unavoidable factor […,] all information about the future is uncertain 505 

[and] they must make decisions under uncertainty every day, in a complex, evolving social, institutional, and political 

environment” (Morss et al. 2005).  

In this complex evolving landscape, decision-makers deal with forecast uncertainty similarly to other uncertainties they might 

face: under time and resources constraints. They assess the total uncertainty there is (the forecast uncertainty might sometimes 

be negligible compared to all the other factors at stake) in terms of its potential effect on the decision-making process and 510 

outcome (Morss et al., 2005). As mentioned by a few EA duty officers, uncertainty is prevalent in everything that they do, and 

the key is understanding what the impact of these uncertainties will be on the ground. It is crucial to develop a methodology 

for decision-makers to be able to use (forecast) uncertainty information optimally. A solution that does not require any 

additional time- and resource-consuming complex analyses, given the high stakes and strict deadlines decision-makers have 

to work with. Smith et al. (2018) argue that if there was a “greater involvement of decision-makers in the design and execution 515 

of uncertainty analyses”, “more purposeful evaluation and communication of uncertainty would certainly result”. This remains 

an open challenge to be tackled. 

By design, probabilistic forecasts might contain some realisations that capture scenarios which do not always realise. This may 

lead to false alarms. Institutions can have specific risk perceptions and flood management priorities: seeking to avoid false 

alarms, or on the contrary, seeking to avoid missed flood events*, and the minimum/maximum lead time at which they (have 520 

to) issue flood warnings. This cultural landscape within which decision-makers operate may have an impact on the decision-

making outcome (as discussed in Sect. 4.2.3) and an institution’s uptake of probabilistic flood forecasts in practice (Nobert et 

al., 2010; Ishikawa et al., 2011; McEwen et al., 2012; Demeritt et al., 2013; Michaels, 2014). A transition to probabilistic flood 

forecasts should be reflected in an institution’s wider flood management priorities. This could be done, for example, by 

changing their internal communication pathways or their warning procedures (e.g. lead times at which they operate). 525 

Very often however, the ability of an institution to pick up new information and methods is not only down to them, but could 

be influenced by the wider socio-political context and other key actors in the decision-making web (e.g. the government, local 

authorities, regulations and guidelines), additionally to the populations at risk and the way they respond to flood warnings 

(Dessai and Hulme, 2004; Morss et al., 2005; Parker et al., 2009). This is reflected in the interviewed EA duty officers’ 

perceived challenges regarding ‘Language & communication’ and ‘Binary decision-making’ (Sect. 4.3.2). In the face of a 530 

socio-political context that is demanding ever more precise information and with the rise of a post-factual society, the general 

trust in science might be a limiting factor to the uptake of new science and institutions should trust their capacity to use 

uncertain probabilistic information (Soares and Dessai, 2015; Golding et al., 2017; Knudsen and de Bolsée, 2019).   

It is also important to note that “moving to probabilistic forecasting from deterministic forecasting may trigger an institutional 

shift in who is responsible for decision making under uncertainty” (Michaels, 2014). Because making a decision based on 535 

probabilistic information is more nuanced than using deterministic information, the outcome will determine who will be 

‘blamed’ and this ownership of the uncertainty judgment might have implications on the forecasters-users relationships 

(Michaels, 2014). This relates to some of the interviewed duty officers’ fears of a transition to probabilistic forecasts at the 

EA, as it might move “the burden of making a decision further down the tree” (Sect. 4.3.2). In this context, a framework to 

engage with all key actors of the decision-making web ahead of and during a transition to probabilistic forecasts appears 540 

crucial. Ramos et al. (2010) advocated the use of integrated platforms to allow a continuous exchange between scientists and 
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decision-makers in real-time. Similar studies on the provision of climate services have identified the lack of user engagement 

as a great limiting factor of the uptake of climate information in practice (Golding et al. 2017). It is evident that a transition to 

probabilistic forecasts is not only a scientific endeavour and feasibility studies should include other disciplines, such as social-

science. 545 

5.2 Recommendations to the EA 

In light of the findings of this study, and other relevant studies, we make a list of recommendations to support the uptake of 

probabilistic forecasts at the EA. These ten recommendations are high priority actions for the EA as an institution. The service, 

role owners and those responsible for ensuring a quality service delivery should ensure that these recommendations are 

pursued, alongside technical work around the transition. Please note that these recommendations are not ranked in priority 550 

order for the EA, as some of these will be quicker and easier to implement and to demonstrate progress on. 

 

1) Communicate (via engagement campaigns, videos, email newsletters, social media updates and webinars, etc.) with 

all key players in the decision-making chain (as well as external players such as the emergency responders and the 

public) to ensure that they are all aware that the transition to probabilistic forecasts will become operational practice. 555 

 

2) Give appropriate and custom designed internal training to all key players (Nobert et al., 2010). Duty officers must 

receive training on how to make decisions based on probabilistic forecasts (for example in the form of decision-

making activities and serious games - see the HEPEX1 and the Red Cross Climate Centre2 resources for inspiration). 

 560 

3) Expand existing EA communication structures to allow the co-design of the new products between forecast producers 

and users (Morss et al., 2005; Smith et al., 2018). Everyone using the forecasting products and systems at the EA 

should have the chance to have a say in how the system will look and function through a mutual design strategy.  If 

the new system does not reflect the complex landscape in which duty officers operate (a mix of ‘hard scientific facts’ 

and ‘soft values’), probabilistic forecasts might end up being under- or misused. 565 

 

4) Reach out to the community of practice in hydrological probabilistic forecasting, such as HEPEX3 (community of 

international experts in the field of probabilistic hydrological forecasting and decision-making) and connect with 

institutes which have already gone through such a transition to gain insights and share best practice, as some elements 

might be transferrable (Nobert et al., 2010; Dale et al., 2014). This could be done through organised workshops, 570 

webinars and the establishment of an advisory group. 

 

5) The way probabilistic information will be translated into meaningful content and communicated to the emergency 

responders and the public requires careful thought and design (Bruen et al., 2010; Joslyn and Savelli, 2010; Stephens 

et al., 2012; Pappenberger et al., 2013; Sivle et al., 2014). To this end, an interdisciplinary approach between 575 

forecasters and social-scientists would be greatly valuable as social-science can offer insights into the human response 

to warning messages.  A tailored and inter-disciplinary study of the forecasting products using probabilistic 

information and used in the decision-making process is urgently required. 

 

                                                           
1 hepex.irstea.fr/resources/hepex-games 
2 www.climatecentre.org/resources-games/games 
3 hepex.irstea.fr 
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6) a) The EA’s heterogeneity at the national level should be accounted for and addressed. Given the heterogeneity of 580 

the EA at a national level and the areas’ diversity in terms of history and catchment response, we do not expect 

probabilistic forecasts to be welcomed similarly in all the EA centres. Efforts will therefore have to be made by the 

EA to achieve a simultaneous and homogeneous transition in all its centres.  

 

b) Furthermore, the design of the new forecasting system should be homogenised at the national level (to allow for 585 

staff movement during major flood events), while accounting for the heterogeneity of local conditions, existing 

dynamics and institutional practices. This could be achieved through the co-design of the forecasting system with 

local duty officers (see recommendation 3). 

 

7) Be prepared to move towards lead times that reflect the probabilistic forecast predictability. The optimal lead time to 590 

trigger action depends on both the probabilistic flood forecast quality and the actions’ operational implementation 

time (Bischiniotis et al., 2019). While the EA operates with pre-defined lead times for each specific activity (e.g. it 

takes x hours/days to move equipment from A to B, or to deploy temporary defences), probabilistic forecasts could 

in theory provide earlier indications of potential future floods, giving the EA more time to prepare ahead of a flood 

event. To utilise probabilistic forecasts to their full potential, tailored studies should be performed during the EA 595 

system’s co-design to adjust lead times (for planning and warning) on the probabilistic products and event types, with 

ample time for testing by the EA duty officers.  

 

8) Under no circumstances should the old system be switched off as soon as the probabilistic system is operational. 

There should be a reasonable period of overlap between the two systems in order to give everyone some time to 600 

gradually adapt (Funtowicz and Ravetz, 1993). During that time of overlap, end-user feedback should be collected 

(Thielen et al., 2006). To avoid situations where the probabilistic forecast and the two scenarios show contrasting 

results, the new operating procedures need to specify that the probabilistic forecasts should be looked at first. 

 

9) Update the duty officers’ operating procedures. Clear guidelines should be provided to the duty officers on how to 605 

make a decision based on the new probabilistic products. These guidelines should include information such as: the 

various sources of information available to them for making a decision, how to interpret a probabilistic forecast, the 

forecast confidence at which certain decisions and actions should be made and the language that should be used.     

 

10) Document this transition (in writing or through documentary-style interviews, etc.) to help other institutes and future 610 

transitions at the EA (Pielke, 1997). While this paper investigates how things might change, post-transition evaluation 

should seek to answer the question: “How did we do?” 

 

Many of these recommendations are however general and could be applicable to other institutes and types of information. 

6 Conclusions 615 

The Environment Agency (EA) is in the process of a transition to probabilistic fluvial flood forecasts, from the two flood 

scenarios they currently use operationally for flood warning and incident management activities in England. State-of-the-art 

probabilistic forecasts can give an earlier indication of potential future extreme events, such as floods, increasing the amount 

of time decision-makers have to prepare. A series of interviews were carried out with EA ‘Monitoring and Forecasting Duty 

Officers’ (MFDOs) and ‘Flood Warning Duty Officers’ (FWDOs), two roles at the heart of the EA’s flood risk management 620 
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decision-making chain. The aim was to understand how an operational transition to probabilistic flood forecasts might affect 

their decision-making activities. Overall, none of the interviewed duty officers mentioned concerns about impacts of this 

transition on their two roles’ interaction. Perceived challenges lie mostly outside of their roles and relate to: communication 

with emergency responders and the public, translating uncertain information into a binary decision and the speed of the 

transition. Ten high priority recommendations were made to the EA to ensure a successful transition. They include: i) 625 

communicating with all key players in the decision-making chain (as well as emergency responders and the public) to ensure 

that they are all aware that this transition will become operational practice, ii) facilitating the co-design of the new products 

by forecasters and users and collecting end-user feedback during a reasonable period of overlap between the two systems, iii) 

employing an inter-disciplinary approach to translate probabilistic information into meaningful content for communication 

with emergency responders and the public, and iv) being prepared to adapt the EA’s overarching warning and incident planning 630 

strategy to reflect this transition. It is vital for these recommendations to be followed to ensure that state-of-the-art science is 

used to its fullest potential for risk management practice and is not being under- or misused. 
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Figure 1: Schematic of the EA’s institutional landscape and the FIM information flow between MFDOs, FWDOs and first-degree contact points (red arrows) (source: EA).
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Figure 2: Map showing the geographical areas of the EA’s operations (green numbered areas), highlighting the three areas which 

the centres where interviews were carried out are responsible for (blue boxes) (source: EA). The works published in this journal are 

distributed under the Creative Commons Attribution 4.0 License. This licence does not affect the Crown copyright work, which is 

re-usable under the Open Government Licence (OGL). The Creative Commons Attribution 4.0 License and the OGL are 

interoperable and do not conflict with, reduce or limit each other. 

 

 

Figure 3: Roles and interactions between EA duty officers. Blue arrows and circles are for incoming information and green arrows 

and circles relate to outputs from either of the duty officers. 

 

© Crown copyright 2019 

https://doi.org/10.5194/gc-2019-18
Preprint. Discussion started: 9 September 2019
c© Author(s) 2019. CC BY 4.0 License.



23 

 

 

Figure 4: Complex decision-making landscape in which EA duty officers operate. 

 

 

Figure 5: Wordclouds of perceived opportunities (left) and challenges (right), based on the interview transcripts. 
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Table 1: Interviewees’ perceived opportunities, challenges and neutral changes associated with a transition to probabilistic forecasts. 

Perspectives are split into six main topics (rows). Supporting quotes can be found in Appendix C. 

Language and 

communication 

Most interviewees agreed that this will probably be the biggest change. Some said they thought it might 

improve long-term communication and increase the MFDOs’ credibility and confidence (quote O1) 

This was also found by Thielen et al. (2006). Others believe that there is a potential for 

misunderstanding and that a lot more work is still needed on this topic (quotes C1 and C2). 

Uncertainty 

Probabilistic forecasts contain uncertainty which they openly display. Some interviewees thought that 

this would materialise the forecast uncertainty, otherwise sometimes hidden with the two scenarios 

(quote O2). This is in line with the EA’s 2009 science report (Sene et al., 2009). Many interviewees 

however questioned whether probabilistic forecasts would really help tackle the uncertainty they deal 

with while on duty (quotes N1 and C3). 

The forecasting 

system 

Some interviewees mentioned that the two scenarios, and the What If scenarios used to produce them, 

were sometimes challenging to play with and required a lot of expert judgment, thus making them 

inconsistent nation-wide. There were hints that a few MFDOs thought probabilistic forecasts might lead 

to more consistency across the EA centres (quote O3). It was however clear from the interviews that 

things will need to change slowly to give duty officers time to build confidence in the new system 

(quote C4). 

Decision-

making 

A few interviewees mentioned the fact that probabilistic forecasts will not solve the fundamental need 

of decision-making to be binary and saw this as a challenge (quotes C5 and C6). Others saw this as an 

opportunity for early warning and long-term planning (quotes O4 and O5) 

Duty officers’ 

roles 

This transition was seen neither as an opportunity nor as a challenge by and for the MFDOs. They 

simply stated how things might change for them (quotes N2 and N3). A few of the FWDOs however 

thought that this might push more of the interpretation on to them (quotes C7 and C8). It is worth noting 

is that none of the interviewees mentioned worries concerning potential impacts of this future transition 

on the communication and interaction between duty officers. The worries seem to mostly lie outside of 

their interaction (quote O6). 

New staff 

training 

An interviewee mentioned that probabilistic forecasts could help with new staff training, by increasing 

their understanding of catchment response (quote O7). 
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Appendix A. Glossary of terms. 

Best Estimate A forecaster’s assessment of the most likely rainfall, river and groundwater levels, and 

coastal conditions, and their impacts. 

Catchment 

characteristics and 

response 

Catchment characteristics are the features that describe a river basin (i.e. the area of land 

drained by a river), such as its location, size, vegetation cover, soil type and topography. 

They partially define the catchment response, the catchment’s reaction when subjected to a 

rainfall event (e.g. how fast the water level increases after a rainfall event).  

Chaos The property of a complex system, like the weather, whose behaviour is so unpredictable 

that it appears random. This is due to the system’s sensitivity to small changes in conditions. 

Confident A forecaster’s expert judgement of how certain they are that the forecast is right. 

Convective rainfall 

events 

The sun heats the ground, warming up the air above it. This causes the air to rise. As the air 

rises it cools and condenses, forming water droplets that organise into clouds and lead to 

rainfall. Convective rainfall events can lead to thunderstorms. 

Department for 

Environment, Food and 

Rural Affairs (Defra)  

UK government department responsible for safeguarding the UK’s natural environment and 

supported by 33 agencies and public bodies, including the Environment Agency (EA). 

www.gov.uk/government/organisations/department-for-environment-food-rural-affairs 

Deterministic forecasts Refers to a forecast which gives a single possible outcome of the future rainfall, river and 

groundwater levels and coastal conditions. 

Ensemble Instead of running a single deterministic forecast, computer models can run a forecast 

several times, using slightly different inputs to account for uncertainties in the forecasting 

process. The complete set of forecasts is called an ‘ensemble’, and each individual forecast 

within it are ‘ensemble members’. Each ensemble member represents a different possible 

scenario of future rainfall, river and groundwater levels and coastal conditions. Each 

scenario is equally likely to occur. 

Environment Agency 

(EA) 

An executive non-departmental public body sponsored by Defra. The EA has an operational 

responsibility to manage risks of flooding from rivers and the sea in England, by warning 

and informing the public and businesses about impending floods.  

www.gov.uk/government/organisations/environment-agency 

False alarms A warning given ahead of an event (e.g. flood) that does not ultimately occur. 

Flood action groups Cores of local people who act as representative voices for their wider community. They 

work alongside agencies and authorities and meet on a regular basis with the aim of reducing 

their community’s flood risk and improving its resilience to flooding. 

Flood Forecasting Centre 

(FFC) 

A partnership between the Environment Agency and the UK Met Office. It provides a UK-

wide 24/7 hydro-meteorological service to emergency responders to better prepare for 

flooding (river, surface water, tidal/coastal and groundwater). 

www.ffc-environment-agency.metoffice.gov.uk 

Flood Guidance 

Statement (FGS) 

A daily flood risk forecast for the UK, produced by the FFC (in collaboration with the EA 

and Natural Resources Wales) to assist with strategic, tactical and operational planning 

decisions. It gives a flood risk assessment shown by county and unitary authority across 

England and Wales over the next five days for all types of natural flooding (coastal/tidal, 

river, groundwater and surface water). The FGS is issued by the FFC every day at 10:30am 

and at other times, day or night, if the flood risk assessment changes. 

https://doi.org/10.5194/gc-2019-18
Preprint. Discussion started: 9 September 2019
c© Author(s) 2019. CC BY 4.0 License.



26 

 

www.ffc-environment-agency.metoffice.gov.uk/services/FGS_User_Guide.pdf 

Flood incident 

management strategy 

An institute’s priorities for preparing for and responding to flood events. 

Flood management 

measures 

Solutions to reduce the impacts that floods pose to humans and the environment. They can 

be natural (e.g. planting vegetation to retain extra water in the ground) or engineered (e.g. 

flood barriers). 

Flood preparedness Measures taken to prepare for and reduce the effects of a flood event. 

Flood scenarios Possible future development of a flood event and its associated likelihood. 

Flood wardens Volunteers from local communities who have the responsibility to monitor watercourses in 

the area they cover and contact local authorities with up to date information. 

Forcing The action of inputting information into a computer model to produce a forecast. 

Forecast accuracy The level of agreement between the forecast and the truth (i.e. what is observed in reality). 

Forecasting product A comprehensive and tailored overview (i.e. in the form of text, graphics and/or tables, etc.) 

of the forecast. 

Hydraulic model Mathematical model of the movement of water in a system (e.g. a river). 

Hydrological model Simplified model of a real-world system that describes the water cycle. 

Hydro-meteorological 

observations and 

forecasts 

Hydro-meteorology is a branch of meteorology and hydrology that studies the transfer of 

water and energy between the land surface and the lower atmosphere. Hydro-meteorological 

observations include observations of meteorological (e.g. temperature and rainfall) and 

hydrological variables (e.g. river and groundwater levels). Hydro-meteorological forecasts 

are forecasts that predict the evolution of meteorological and hydrological variables in time. 

Hydro-Meteorological 

Services 

Hydro-meteorological forecasting* products* produced by the FFC and issued daily 

(Hydro-Meteorological Guidance), twice daily (Forecast Meteorological Data) or whenever 

required (Heavy Rainfall Alerts). 

Lead time The length of time between when the forecast is made and the occurrence of the event (e.g. 

flood) being predicted. 

Long-range forecasts Forecasts which cover a period of time from a month to more than a season. 

Missed flood events A flood for which no warning was given ahead of it happening. 

Model performance The level of agreement between the model’s outputs and their observations in reality. The 

difference between a model output and its respective observation is the error. The lower the 

error, the greater the model performance. 

Nowcasting Extrapolating from the latest observations (e.g. radar rainfall) to forecast the evolution of, 

for example the weather, in the next couple of hours. 

Operational decision-

making 

Decision-making based on real-time information to resolve imminent situations. 

Outlook Refers to a forecasting product* based on long-range forecasts* (i.e. monthly to seasonal). 

Performance measures Metrics that characterise the quality of a forecast or a model compared to observations. 

Probabilistic forecasts While a deterministic model gives a single possible outcome for an event, a probabilistic 

model gives a probability distribution as a solution, indicating the likelihood of each 

scenario to occur. Probabilistic and ensemble forecasts are sometimes used interchangeably 

(see ‘Ensemble’). 
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Rapid-response 

catchments 

Catchments and rivers that respond quickly to rainfall events. 

Real-time river gauges Instruments that measure a river’s characteristics (e.g. flow or water level) and communicate 

these data in real-time remotely. 

Reasonable Worst Case A forecaster’s assessment of the potential upper range of rainfall, river and groundwater 

levels, and coastal conditions, and their impacts. 

Risk A combination of likelihood and impact of an event. 

River level correlations Mathematical characterisation of the river level at one point of the river with respect to 

another point on the river. This can be used to estimate the river level at a point on the river 

if the river level upstream is known. 

Short-range forecasts Forecasts which cover a period of time from a couple of a hours to a couple of weeks. 

Surface water flooding Flooding caused when the volume of rainwater falling does not drain away through the river 

network and other drainage systems, or infiltrate into the ground, but lies on or flows over 

the ground. 

Surge forecasts  Forecasts of the rise of water along coastlines. 

Telemetry sites Sites where instruments collect measurements automatically and transmit it remotely (see 

‘Real-time river gauges’) 

Uncertainty Having limited knowledge or understanding of our environment, it is impossible to 

characterise and predict its evolution with 100% certainty. All forecasts are uncertain, and 

that uncertainty amplifies with lead time*. Ensemble* or probabilistic forecasting* can be 

used to represent the forecast uncertainty. 
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Appendix B. Visual examples of operational products used by EA MFDOs and FWDOs: (a) Flood Guidance Statement, 

(b) Hydro-Meteorological Guidance, (c) Forecast Meteorological Data, (d) Heavy Rainfall Alert, and (e) National Flood 

Forecasting System (source: EA). The works published in this journal are distributed under the Creative Commons 

Attribution 4.0 License. This licence does not affect the Crown copyright work, which is re-usable under the Open 

Government Licence (OGL). The Creative Commons Attribution 4.0 License and the OGL are interoperable and do 

not conflict with, reduce or limit each other. 

 

(a) 
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(b) 
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Appendix C. Interviewees’ quotes in relation to their perceptions (opportunities, neutral and challenges) associated 

with a transition to probabilistic forecasts.  

 

 

Opportunities 

O1: “If you’ve got a huge spread then you know that there’s a very wide range of impact potentially, but if […] everything’s 

within a couple of centimetres of each other, it gives you a lot more confidence in saying, no I think we’re going, we’re not 

going to see a threshold crossing. So […] it will help decision making I think” [MFDO3] 

O2: “I think in a good way […] it will […] reveal the uncertainty that’s hidden by apparent simplicity” [I1] 

O3: “The new flood forecasting system is being developed at the moment so it’s going to replace the NFFS. [The] benefits 

to that I suppose […] are that if we can look to be more consistent across the country in even simple things like what displays 

look like […] we’re more interoperable if we need to” [MFDO1] 

O4: “I think in an incident I’m happy that that’s […] a useful range of things to know, like you said, you probably warn for 

the lowest one and plan for the highest one and we can interpret between them” [FWDO2] 

O5: “We’re talking about some of these decisions that have got a long lead time, we’re going to move people around the 

country, we’re going to move equipment. It takes a long time to do that” [I1] 

O6: “Between us [duty officers], it’s probably OK because we’ve got that understanding of the roles” [FWDO3] 

O7: “I can see some benefits to it, especially when you’ve got less experienced staff […], you’re almost […] showing 

them the breadth of what a catchment could do given a range of responses” [MFDO2] 

Neutral 

N1: “Uncertainties are very tricky to deal with, whether probabilistic forecasting and a switch to that is going to help?” 

[MFDO2] 

N2: “I think the MFDO role won’t change, it will still be to communicate a forecast but the […] wording of the forecast 

may change slightly” [MFDO1] 

N3: “I think from our point of view it will just mean a bit more interpretation of forecasts and then […] just a slightly 

different way of passing it on […]. But I don’t think it will change the process” [MFDO3] 
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Challenges 

C1: “All the comms research we hear about generally says […] the public message has to be as simple as possible, so that 

is working the opposite way to any proposal for probabilistic forecasting” [FWDO2] 

C2: “A lot of local authorities standing their staff up, putting them on standby for a weekend is quite a big budget thing 

[…]. So […] if we say, it is going to flood, they can justify the spend on it […]. If we pass it on as shades of grey, a lot of 

them, they’ll appreciate the information but some of them would actually resent having the decision forced on them because 

they will struggle to then justify doing something or they’ll be blamed, either way, blamed for spending money if it doesn’t 

happen and blamed for not spending enough if it does happen.” [FWDO2] 

C3: “That would be my concern that it’s even more information and more uncertainty and it’s kind of like, well what do 

you do with this information? And which bit do you communicate to who?” [FWDO3] 

C4: “It is something to bear in mind with that if probabilistic forecasting put too much pressure and stress on decision 

making on the people in these roles, the system probably would just collapse, people would walk away” [FWDO2]  

C5: “You’re still going to have this overriding issue with fast responding catchment where one scenario says we might need 

to issue a flood warning but 99 of them say no. Someone has to make a decision” [MFDO1]  

C6: “I think still for a lot of people the question they […] want answered is am I going to flood?” [I2] 

C7: “I think my role is going to be the one where it has to stop and it can’t be probabilistic because it […] does come to a 

yes or no, issue it, don’t issue it. So to some extent, probabilistic forecasting does feel like everyone else just pushing things 

down the line saying you make the decision, […], we have to make the decision because we’re the last ones on the line” 

[FWDO2] 

C8: “Having probabilistic forecasting just moves the burden of making a decision further down the tree” [MFDO2] 
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