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Abstract: It is important to reduce primary energy consumption and greenhouse gas emissions
associated with residential buildings in the hot summer and cold winter (HSCW) zone of China.
Changing the insulation thickness of the external walls of residential buildings (ITEWB) is regarded
as an effective way to manage such problems within a budget. This paper aims at developing an
innovative way to select the optimal insulation thickness of external walls for residential buildings
(OTWRB) in the HSCW zone of China, considering economic, energy and greenhouse gas emissions
issues associated with the ITEWB. Four different cities and two different operation modes of the
air conditioners (continuous and intermittent) are considered in this study. To explain the selection
process, typical hypothetical buildings are simulated in Wuhan, Changsha, Hangzhou and Chengdu.
Expanded polystyrene is chosen as the material of the insulation layer while split air conditioners are
selected as the equipment for space heating and cooling. Integrated Environmental Solutions-Virtual
Environment is used for the dynamic operational energy consumption of buildings. Life cycle cost
method is adopted to calculate the economic impact of ITEWB on building performance. The Chinese
life cycle database is used to quantize the impacts of ITEWB on building performance in the aspect of
energy and greenhouse gas emissions based on the life cycle theory. The most appreciated insulation
thickness is chosen from the thickness range of 30 mm to 150 mm. We find that for continuous
operation mode of air conditioners in Wuhan, the optimal economic insulation thickness is 70 mm,
whereas when considering only energy and environmental aspects, the OTWRB is 150 mm. These are
all larger than the current insulation thickness which is 30 mm. When the weighting efficiencies of
the economy, energy, and greenhouse gas emissions are different, the OTWRB varies from 70 mm to
150 mm for continuous operation mode. The different cities have little influence on the OTWRB while
the different operation modes of air conditioners have some influence on the OTWRB.

Keywords: insulation thickness; hot summer and cold winter zone; integrated criteria

1. Introduction

It is imperative to reduce primary energy consumption as well as greenhouse gas emissions
related to residential buildings in China since China has made a promise to reduce greenhouse gas
emissions as well as primary energy consumption at the Paris Agreement [1]. The building sector is
one of the three biggest energy consumers and it is responsible for an enormous amount of greenhouse
gas emissions in China [2,3]. Meanwhile, the residential building sector comprises over 40% of the
energy consumption in China’s civilian construction sector [4]. Reducing primary energy consumption
and limiting the associated greenhouse gas emissions related to residential buildings are the key points
of such objectives.
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There are five climate zones of China; cold zone, severe cold zone, hot zone, hot summer and cold
winter (HSCW) zone, and hot summer and warm winter zone [5]. So far, there have been remarkable
results for energy savings and reducing greenhouse gas emissions of the residential building sector
in cold and severe cold zones of China. On the other hand, the energy consumption associated with
the residential building sector in the HSCW zone has been continuously increasing [6]. According to
China’s National Bureau of Statistics [7], there were 21% of the national urban residential population
in the HSCW zone. The residential buildings in this area lack central heating systems because of
historical reasons [8,9]. The residentials there heavily rely on mechanical heating and cooling systems
to keep indoor thermal comfort, resulting in a lot of operational energy consumption [9,10]. The energy
consumption for space heating and cooling systems contributes to 50~60% of residential annual energy
consumption [11]. While the thermal efficiency of the envelope of the buildings is relatively poor,
implying huge saving potentials in this area [12]. As a result, increasing building envelope efficiency is
crucial to reducing primary energy consumption and minimizing greenhouse gas emissions associated
with residential buildings in the HSCW zone of China.

Applying an insulation layer on the external wall of a building is a popular method for increasing
building envelope efficiency. By reducing heat loss through the wall [6], energy consumption and
greenhouse gas emissions associated with the buildings can significantly be reduced economically [13].
Up to this point, applying the insulation layer on the external wall of residential buildings has been
promoted by the government recently in the HSCW zone of China.

Insulation thickness is an important parameter to consider when applying thermal insulation,
thus, there is considerable research about the optimal insulation thickness of the external walls for
residential buildings (OTWRB) [14–18]. Since the climate is one of the most important factors in
determining the OTWRB [19–21], it is necessary to cut down the scope of the contest to the HSCW zone
of China for the OTWRB recommended in this certain area. However, until recently, a few researchers
began to pay attention to the OTWRB in this special part of China. Although these existing studies have
made significant efforts for the selection of the most appreciated insulation thickness of an external
wall, some shortcomings need to be improved.

One shortcoming is the neglect of the intermittent operation mode of the heating and cooling
equipment in the HSCW zone of China. In most research focused on the OTWRB in the HSCW zone
of China [22,23], the space heating and cooling equipment is assumed to maintain a comfortable
temperature for the whole day over the heating and cooling period. However, according to the
results of several investigations [8,12,24,25], there is, in fact, plenty of time when this equipment is
not in operation [26]. Moreover, Fang Ruan believed that these two different operation modes of air
conditioners (continuous and intermittent) resulted in obvious differences in the operational energy
consumption of a building [24]. Based on the conclusion that the heating and cooling demands of
buildings affect the OTWRB, it is reasonable to discuss the impact of different operation modes of air
conditioners on the OTWRB [19].

Another shortcoming of the existing research is the lack of consideration of the integrated impacts
associated with the ITEWB. For the existing research about the OTWRB in the HSCW zone of China,
some of them only considered the energy aspect associated with ITEWB [27,28], while the others
only considered the economic aspect associated with the ITEWB [29,30]. As previously mentioned,
the purpose of applying the insulation layer on the external wall of a building is not only about the
economic aspect, there are more considerations about the energy aspect and the environmental aspect
of the ITEWB. The possibility of considering all these three objectives associated with the ITEWB is
revealed by [31]. Their studies proved that greenhouse gas emissions associated with the ITEWB were
reduced at the economic insulation thickness compared to that at the zero thickness. The necessity of
considering the integrated impacts in the optimization criteria is proved by [14,32,33]. These findings
showed the significant impact of criteria on the OTWRB. As a result, it is worth investigating all of
these impacts of the ITEWB and selecting the most appreciated one for buildings located in the HSCW
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zone of China. To the author’s best knowledge, there is no paper considering these three factors in the
determining process of the OTWRB in the HSCW zone of China.

The innovation of this paper is to develop an innovative method to select the OTWRB considering
the integrated impact associated with ITEWB in terms of economic, energy and greenhouse gas
emissions issues in the HSCW zone of China. Different weighting efficiencies applied to the economy,
energy and greenhouse gas emissions are also considered in this paper. To provide some realistic
context, the Chinese cities of Wuhan, Changsha, Hangzhou, and Chengdu are used as hypothetical
scenarios where the OTWRB values would be determined. Comparative analysis of the results for
these four different cities and two different modes of air conditioners (continuous and intermittent) is
conducted to discuss the feasibility of the OTWRB.

2. Materials and Methods

2.1. Hypothetical Building

2.1.1. Physical Information of the Typical Building

The same hypothetical buildings are assumed to be located in Wuhan, Changsha, Hangzhou and
Chengdu. As shown in Figure 1, these four cities represent the cities in the middle, western, eastern
and southern parts of the HSCW zone of China.
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Figure 1. Four typical cities in the hot summer and cold winter (HSCW) zone of China.

The layout and construction information of the building prototype is similar to that of the typical
building obtained from the field study carried out by Xueping Li, who surveyed above 40 residential
communities built around the 2000s in the HSCW zone of China [34]. Figure 2 shows the floor plan
and the elevation drawing of the case study building. The total floor area of this 12-storey hypothetical
building is 2701.4 m2.
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Figure 2. Geometry information of the case study building: (a) The floor plan of the case study building;
(b) The elevation drawing of the case study building.

The other typological characteristics of the building prototype are in Table 1.

Table 1. Typological characteristics of the building.

Resource Storey Construction Plane Form Floor Area per
Household

This paper 12 (multi-story) reinforced concrete three bedrooms, one living
room and one dining room

around 112 m2

(about 100 m2)
Reference [35] [9,36,37] [9] [12]

The construction information about the envelope of the building is presented in Table 2. The data
is based on the field study carried out by Xueping Li [34].

Table 2. U value of the envelope of the typical building.

Resource
U Value of the Building Component (w/m2k)

Ground/Exposed Floor Roof Window

this paper 1.79 0.77 2.67
[34] —— 0.785 2.8

As shown in Table 3, the structure of the external wall of the typical building is obtained from
the field study carried out by Xueping Li, and it is a very common structure in the HSCW zone of
China [34]. EPS (expanded polystyrene) is one of the most widely used insulation materials for external
walls in this area [30,38,39]. The thermal conductivity of the EPS is 0.4 w/mk in the case study building.

Table 3. Structure of the external wall of the typical building.

Layer (Outside to Inside) Thickness (mm)

Cement mortar 20
Expanded polystyrene 30

Reinforced concrete 200
Cement mortar 20

The thickness of the insulation layer of the external wall of the buildings is 30 mm for EPS for the
present situation [40]. In this paper, optional values of insulation thickness of the external wall are 30
mm, 50 mm, 70 mm, 90 mm, 110 mm, 130 mm, and 150 mm.
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According to the field studies carried out by [34,40–42], split air conditioners fed by electricity are
a popular choice to keep indoor comfort in such an area of China, as there is no central heating system
in this area because of historical reasons. The details of the thermal system of the case study building
are presented in Table 4. Two operation modes of air conditioners are presented in Table 5.

Table 4. Thermal system setting of the hypothetical building.

Factor Assumption Reference

Equipment heat gain 4.3 W/m2 [43]
Heating space Living room and bedroom [44]
Cooling space Living room and bedroom [44]

Heating period From 1st December to 28th
February of the following year [45]

Cooling period From 15th June to 15th September [34]
Heating setpoint temperature 18 ◦C [43,45]
Heating trigger temperature 16 ◦C [46]

Cooling setpoint temperature 26 ◦C [43,45]
Cooling trigger temperature 29 ◦C [47]

Infiltration rate (ach) 1.0/h [43,48]
Coefficient of performance (COP) of Heating system 1.9 [30,43,49]
Coefficient of performance (COP) of Cooling system 2.3 [30,43,49]

Table 5. Two operation modes of air conditioners of the hypothetical building.

Scenario Space Daily Operation Time Reference

Continuous
Bedroom 0:00–24:00 [44]

Living room 0:00–24:00

Intermittent Bedroom
0:00–8:00

[50]22:00–24:00
Living room 17:00–22:00

2.1.2. Meteorological Information of the Typical Building

As shown in Table 6, the meteorological data adopted in this paper is from The Solar and Wind
Energy Resource Assessment (SWERA) project. This database has the typical hourly meteorological
data, and it is known for accurate solar information. Since solar radiation is significant for the building’s
operational energy, particularly for the cooling load, this database is adopted in this paper [51].

Table 6. Meteorological information of the hypothetical building.

Location
Annual Average

HDD CDDDry-Bulb
Temperature (◦C)

Wind Speed
(m/s)

Global Radiation
(W/m2)

External RH
(%)

Wuhan 15.89 2.32 163.14 76.55 1122.62 224.12
Changsha 16.31 2.36 151.28 80.91 1020.10 220.78
Hangzhou 15.51 2.50 152.97 77.72 1094.81 169.78
Chengdu 15.76 1.08 146.03 81.04 949.50 14.40

HDD: heating degree days for the base temperature of 18 ◦C during the heating period. CDD: cooling degree days
for the base temperature of 26 ◦C during the cooling period.

2.2. Calculation of Operational Energy Consumption of the Hypothetical Building

Generally, there are two different methods to compute energy consumption for space heating
and cooling. One method is the equation-based method and another method is the simulation-based
method. In the reference, they found out that the equation-based method might not lead to a desired
accurate result of the energy demand for space heating and cooling [52–54]. For a more accurate heat
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transfer calculation, the dynamic meteorological data and the dynamic indoor temperature should be
considered. However, because of the calculation constraints, this approach makes use of assumptions
to simplify the equations in calculating heat transfer.

To overcome this kind of simplification of inputs in the equation-based method, some authors
adopted the simulation-based method [53]. Thanks to the great computing power of computers, it can
make good use of these amounts of inputs and it can automatically calculate the operational energy
consumption of buildings with high accuracy.

There are a variety of building simulation tools used in the research, such as Energy Plus, Integrate
Environmental Solution-Virtual Environment (IES-VE), and Designer‘s Simulation Toolkits (DeST).
Among these tools, IES-VE is a popular commercial software used worldwide including China [55].
The validation and accuracy of this software have been proven by the BESTEST (Building Energy
Simulation Test) standard of the International Energy Agency (IEA), green building rating schemes and
amounts of existing studies [56–59]. Moreover, it has extensive capabilities for modeling customize
systems and controls, which allows for the simulation of the intermittent operation mode of air
conditioners in the case study.

For this study, ApacheSim module and Apache HVAC module of IES-VE are mainly used. Apache
HVAC module is a supplement module for detailed settings of the HVAC system of case study
building. The Apache HVAC module enables users to adjust the air conditioner settings, including the
operation mode. The ApacheSim module helps users to calculate the space heating and cooling energy
consumption of the building automatically. In this software, heat conduction and storage, convection
heat transfer, heat transfer by air movement, long-wave radiation heat transfer, solar radiation, casual
gains, and thermo-physical properties of air can be all considered in the ApacheSim calculation.

As a verification measure, the operational energy calculated for Hangzhou is compared with the
results of past studies. As shown in Table 7, the computed value is comparable with the results in
previous studies.

Table 7. Comparison of energy consumption as calculated by IES-VE (Integrate Environmental
Solution-Virtual Environment) in this paper for Hangzhou with existing research.

Paper Resource U Value of the External
Wall (w/m2k)

Heating Energy
Consumption (kwh/m2)

Cooling Energy
Consumption (kwh/m2)

Annual Energy
Consumption (kwh/m2)

This paper 0.75 25.11 12.06 39.40
[46] 0.72 26 12.5 38.5
[60] 0.87 —- —- 18–38
[61] 0.84 — —- 43.42

2.3. Integrated Estimation Method to Select the OTWRB

2.3.1. Evaluation of the Impacts of ITEWB on Building Performance with Regard to the Economic,
Energy and Greenhouse Gas Emissions Aspects.

In this paper, the optimal insulation thickness is obtained based on the integrated impacts
of the ITEWB on building performance, with regard to the economic, energy and greenhouse gas
emissions aspects.

In the literature, the application of life cycle assessment to the OTWRB is becoming more and
more popular [16,21,62]. Based on this theory, three indicators in the paper, which are life cycle cost
(LCC), life cycle primary energy demand (LPED) and life cycle global warming potential (LGWP), are
selected to present the impacts of the ITEWB on these three aspects.

Under this approach, these three indicators associated with the ITEWB are assessed from
cradle to grave. In general, the life cycle stages of insulation include production, transportation,
operation, maintenance, demolition and waste management. However, considering the minor effects
of transportation, maintenance, demolition and waste management on these three factors in some
cases and the difficulty to obtain these data [63], in this paper, only the production stage and the
operational stage of the insulation layer are considered. In other words, this study is focusing on
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analyzing the impacts of the variation of the ITEWB on the insulation material and the operational
energy consumption during the insulation material’s lifespan.

• Life cycle cost (LCC)

Based on the existing research [18,54], the LCC associated with ITEWB is defined as:

LCCins = LCCoperation + LCCmaterial (1)

LCCmaterial = 10−3CinsAwξins (2)

LCCoperation = CopQop P1 (3)

P1 = PWF(Ne, i, d) =


1

d−i

[
1−

(
1+i
1+d

)Ne
]

i , d
Ne
1+i i = d

(4)

The abbreviations used in these equations are shown in Table 8.

• Life cycle primary energy demand (LPED)

Table 8. Abbreviations used in the life cycle cost of the insulation thickness of the external wall of
residential buildings (ITEWB).

Abbreviation Explain Units

LCCins Life cycle cost of the ITEWB yuan
LCCmaterial Life cycle cost of insulation material associated with the ITEWB yuan
LCCoperation Life cycle cost of operational energy associated with the ITEWB yuan

Cins Cost of insulation material per unit yuan/m3

Aw Area of external wall m2

ξins The thickness of the insulation layer mm
Cop Cost of operational energy per unit yuan/kwh
Qop Annual operational energy consumption kwh/year
Ne Insulation layer lifetime year
P1 Present worth factor (PWF) –
i Interest rate –
d Inflation rate –

A commonly used Chinese local database, CLCD (Chinese Life Cycle Database) [64], is adopted
in this paper to quantify the impacts of the ITEWB on building performance with regard to energy and
greenhouse gas emissions aspects.

Based on the existing research [33,53], the LPED related to the ITEWB is defined as:

LPEDins = LPEDmaterial + LPEDoperation (5)

LPEDmaterial = 10−3PEDinsAwξinsρ (6)

LPEDoperation = PEDopQopNe (7)

The abbreviations used in these equations are presented in Table 9.

• Life cycle global warming potential (LGWP)
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Table 9. Abbreviations used in the life cycle primary energy demand of the ITEWB.

Abbreviation Definition Units

ρ The density of the insulation material kg/m3

LPEDins Life cycle primary energy demand of the ITEWB kgce

LPEDmaterial
Life cycle primary energy demand of insulation

material associated with the ITEWB kgce

LPEDoperation
Life cycle primary energy demand of operational

energy associated with the ITEWB kgce

PEDins
Primary energy demand of
insulation material per unit kgce/kg

PEDop Primary energy demand of
operational energy per unit

kgce/kwh

Based on [53], LGWP related to the ITEWB is defined as

LGWPins = LGWPmaterial + LGWPoperation (8)

LGWPmaterial = 10−3GWPinsAwξinsρ (9)

LGWPoperation = GWPopQopNe (10)

The abbreviations used in these equations are shown in Table 10.

Table 10. Abbreviations used in the life cycle global warming potential of the ITEWB.

Abbreviation Definition Units

LGWPins Life cycle global warming potential of the ITEWB kgCO2eq

LGWPmaterial
Life cycle global warming potential of insulation

material associated with the ITEWB
kgCO2eq

LGWPoperation
Life cycle global warming potential of

operational energy associated with the ITEWB
kgCO2eq

GWPins Global warming potential of
insulation material per unit

kgCO2eq/kg

GWPop Global warming potential of
operational energy per unit

kgCO2eq/kwh

2.3.2. Integrated Estimation Method to Select the OTWRB

To normalize these three indicators, LCC, LPED and LGWP, the min-max method is applied in
this paper as shown in Equations (11)–(13). To integrate and consider all these three aspects associated
with the ITEWB, a weighting sum method is adopted in Equations (14)–(16).

NLCCr =
LCCr − LCCr,min

LCCr,max − LCCr,min
(11)

NLPEDr =
LPEDr − LPEDr,min

LPEDr,max − LPEDr,min
(12)

NLGWPr =
LGWPr − LGWPr,min

LGWPr,max − LGWPr,min
(13)

Zr = w1 ∗NLCCr + w2 ∗NLPEDr + w3 ∗NLGWPr (14)

w1 + w2 + w3 = 1 (0� w1, w2 , w3 � 1) (15)
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r = {30 50 70 90 110 130 150} (16)

The abbreviations used in these equations are shown in Table 11.

Table 11. Abbreviations used in the min-max method.

Abbreviation Definition

NLCCr Normalized life cycle cost of the ITEWB
NLPEDr Normalized life cycle primary energy demand of ITEWB
NLGWPr Normalized life cycle global warming potential of ITEWB
LCCr,min The minimum life cycle cost of ITEWB
LCCr,max The maximum life cycle cost of ITEWB

LPEDr,min The minimum life cycle primary energy demand of ITEWB
LPEDr,max The maximum life cycle primary energy demand of ITEWB
LGWPr,min The minimum life cycle global warming potential of ITEWB
LGWPr,max The maximum life cycle global warming potential of ITEWB
w1, w2 , w3 Weighting efficiency assigned to economy, energy and greenhouse gas emissions

r Insulation thickness, which is 30, 50, 70, 90, 110, 130, 150 mm in this paper

3. Results and Discussion

3.1. Operational Energy Consumption and the ITEWB

As shown in Figure 3, for the continuous scenario, the heating energy consumption decreases with
the increase of the ITEWB, while the impact of the ITEWB on the cooling load is not obvious [65]. The
heating and cooling energy consumption of the building is more sensitive to ITEWB when the ITEWB
is smaller. These similar trends are also revealed in [66]. Moreover, for Chengdu, with the increase of
insulation thickness, the cooling energy consumption is not reduced, instead, it increases slightly [67].
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3.1. Operational Energy Consumption and the ITEWB  

As shown in Figure 3, for the continuous scenario, the heating energy consumption decreases 
with the increase of the ITEWB, while the impact of the ITEWB on the cooling load is not obvious 
[65]. The heating and cooling energy consumption of the building is more sensitive to ITEWB when 
the ITEWB is smaller. These similar trends are also revealed in [66]. Moreover, for Chengdu, with the 
increase of insulation thickness, the cooling energy consumption is not reduced, instead, it increases 
slightly [67].  
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With the increase of insulation thickness, the thermal transmittance of the external wall decreases,
leading to more difficulties in terms of heat transfer driven by the temperature difference between
indoor environment and outdoor environment [66]. This can lead to a reduction in operational energy
consumption when the indoor thermal environment is more comfortable. It also can lead to an increase
in operational energy consumption when the outdoor thermal environment is more comfortable.

For the HSCW zone of China, in the heating period, the indoor thermal environment is more
comfortable compared to the outdoor thermal environment in most of time. In a certain range of
insulation thickness, with the thicker insulation layer, the thermal transmittance of the external wall
decreases, resulting in less heat loss from the indoor environment. As shown in Figure 4, within
a certain range of ITEWB, the impact of the ITEWB on the thermal transmittance of the wall is
reduced [68]. As a result, within a certain range of the ITEWB, with the increase of insulation thickness,
the heating load of the building decreases and the reduction is smaller and smaller.
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Figure 4. Insulation thickness and thermal transmittance of the external wall of the case study building.

In the cooling period, compared to the heating period, there is more time when the outdoor
thermal environment is more comfortable. In a certain range of the insulation thickness, with the
increase of the ITEWB, for cities in the HSCW zone of China, the impact of the ITEWB on the cooling
load is not obvious. Besides that, in some situations, where there is a long period that the outdoor
environment is more comfortable compared to the indoor environment, the cooling load is increased
with a thicker insulation layer [67].

The annual energy consumption of the building is determined by the sum of heating energy
consumption and cooling energy consumption. As shown in Figure 5, for all these four cities in the
HSCW, when the ITEWB increases from 30 mm to 150 mm, the annual operational energy consumption
of the building decreases.

Sustainability 2020, 12, x FOR PEER REVIEW 11 of 21 

HSCW, when the ITEWB increases from 30 mm to 150 mm, the annual operational energy 
consumption of the building decreases. 

 
Figure 5. Annual operational energy consumption for scenario continuous. 

3.1.1. Impact of Different Cities on the Operational Energy Consumption 

As shown in Figure 6, the different cities have different operational energy consumption and the 
effects of the ITEWB on these cities are different. 

(a) (b) 

Figure 6. Energy consumption of four cities for scenario continuous for: (a) Heating; (b) Cooling. 

This is because the meteorological data of these four cities is different. As shown in Table 6, 
Wuhan has the largest temperature difference between the indoor environment and outdoor 
environment based on the HDD and CDD. The annual operational energy consumption of building 
for Wuhan is the largest.  

3.1.2 Impact of Different Operation Modes of Air Conditioners on the Operational Energy 
Consumption 

As shown in Figure 7, the annual energy consumption under intermittent operation mode is less 
than that under continuous operation mode. Additionally, the annual operational energy 
consumption of the building is less sensitive to the ITEWB. This is mainly because, under the 
intermittent operation mode of air conditioners, the operation time of air conditioners is reduced, 
leading to less heat transfer in the heating and cooling period. 

30 50 70 90 110 130 150 160
14

16

18

20

22

24

26

28

insulation thickness of external wall (mm)

he
at

in
g 

en
er

gy
 c

on
su

m
pt

io
n 

(k
w

h/
m

2 )

 

 
Wuhan
Changsha
Hangzhou
Chengdu

30 50 70 90 110 130 150 160
5

10

15

20

25

insulation thickness of external wall (mm)

co
ol

in
g 

en
er

gy
 c

on
su

m
pt

io
n 

(k
w

h/
m

2 )

 

 
Wuhan
Changsha
Hangzhou
Chengdu

Figure 5. Annual operational energy consumption for scenario continuous.
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3.1.1. Impact of Different Cities on the Operational Energy Consumption

As shown in Figure 6, the different cities have different operational energy consumption and the
effects of the ITEWB on these cities are different.
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Figure 6. Energy consumption of four cities for scenario continuous for: (a) Heating; (b) Cooling.

This is because the meteorological data of these four cities is different. As shown in Table 6, Wuhan
has the largest temperature difference between the indoor environment and outdoor environment
based on the HDD and CDD. The annual operational energy consumption of building for Wuhan is
the largest.

3.1.2. Impact of Different Operation Modes of Air Conditioners on the Operational Energy
Consumption

As shown in Figure 7, the annual energy consumption under intermittent operation mode is less
than that under continuous operation mode. Additionally, the annual operational energy consumption
of the building is less sensitive to the ITEWB. This is mainly because, under the intermittent operation
mode of air conditioners, the operation time of air conditioners is reduced, leading to less heat transfer
in the heating and cooling period.
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Figure 7. Annual energy consumption for the continuous and intermittent scenarios for Wuhan.

3.2. Result of the OTWRB for Four Cities

The parameters used in the methods described in Section 2.3 are listed in Table 12. These values
are obtained from [15,17,23,30,69].
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Table 12. Parameters used in the evaluation of the impacts of the ITEWB on building performance.

Parameter Value Unit

i 1% —
d 5% —

Ne 20 year
P1 13.50 —
ρ 30 kg/m3

Cins 600 yuan/m3

Cop 0.52 yuan/kwh
PEDins 3.95 kgce/kg
PEDOP 0.46 kgce/kwh
GWPins 5.64 kgCO2eq/kg
GWPOP 1.01 kgCO2eq/kwh

3.2.1. The OTWRB When Considering Only One Criterion

As mentioned in Section 2.3.1, LCC is used to for the economic indicator associated with the
ITEWB. With the increase of ITEWB, on the one hand, the economic indicator associated with the
operational energy decreases as the operational energy demand decreases. On the other hand, the
economic indicator associated with insulation material increases linearly with the increase in the
insulation material. Figure 8 shows the insulation thickness and the LCC for Wuhan. It shows that
when insulation thickness is enlarged from 50 mm to 70 mm, the reduction in the operational energy
cost outweighs the increase in the insulation material. However, when the ITEWB extends from 70
mm to 90 mm, the reduction in the energy cost cannot offset the increase in the insulation material.
Thus, the lowest LCC is achieved at 70 mm.Sustainability 2020, 12, x FOR PEER REVIEW 13 of 21 
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Figure 8. The ITEWB and the life cycle cost (LCC) for Wuhan under a continuous scenario.

The LPED and LGWP are used for the energy and greenhouse gas emissions aspects of the ITEWB,
as mentioned in Section 2.3. As shown in Figure 9, the PED of operational energy is a major part of
the LPED related to the ITEWB, while the PED of insulation material is only a small part. Changes
in insulation thickness determine the operational energy consumption, while the operational energy
consumption determines the LPED associated with the ITEWB. The 150 mm ITEWB results in the least
operational energy consumption and the least LPED.

The LGWP shows a similar trend as shown in Figure 10. The GWP of operational energy
consumption comprises the overwhelming part of the LGWP related to the ITEWB. The 150 mm ITEWB
results in the least operational energy and the least LGWP.
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Figure 9. The ITEWB and the life cycle primary energy demand (LPED) for Wuhan under
continuous scenario.

• Impact of different cities on the OTWRB when only considering one criterion
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Figure 10. The ITEWB and the life cycle global warming potential (LGWP) for Wuhan under
continuous scenario.

As shown in Figure 11, the LCC trend lines for all four cities exhibit similar trends, wherein the
value tends to decrease early and then eventually rises. Such relations between the ITEWB and its LCC
is also revealed by [15,17,23], the optimal economic ITEWB for these four cities is 70 mm in this case.
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Figure 11. The ITEWB and the LCC for four cities under the continuous scenario.
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As shown in Figures 12 and 13, when the ITEWB increases from 30 mm to 150 mm, the LPED and
the LGWP decreases. The OTWRB, when only considering energy or greenhouse gas emissions factor
is 150 mm for all these four cities.
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Figure 12. The ITEWB and LPED for four cities under the continuous scenario.
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Figure 13. The ITEWB and LGWP for four cities under the continuous scenario.

The impacts of insulation thickness on the LCC, LPED and LGWP are most noticeable for Wuhan,
which has the largest operational energy consumption and is less obvious for Chengdu which has the
least operational energy consumption. This is because the reduction of energy consumption is more
obvious for larger building operational energy consumers when the insulation thickness increases
from 30 mm to 150 mm.

• Impact of different operation modes on the OTWRB when only considering one criterion

As shown in Figure 14, for both scenarios, within a certain range of the ITEWB, with the increase of
the ITEWB, the life cycle cost associated with the ITEWB decreases to a certain value and then it starts
to increase when the ITEWB beyond this value [18,70]. The optimal economic insulation thickness is
less for intermittent operation mode than that for the continuous mode. Here are the reasons.

For the continuous operation mode, when the ITEWB increases from 50 to 70 mm, the reduction
of operational energy cost result from the reduction of the operational energy consumption can make
up for the 20 mm increase in insulation material investment. As a result, the total cost for 70 mm
ITEWB is less than that for 50 mm ITEWB. However, for the intermittent operation mode, there is less
operational energy consumption and there is less reduction in operational energy consumption. The
reduction of operational cost cannot make up to the increase in insulation material investment. As a
result, the total cost for 70 mm insulation thickness is more than that for 50 mm insulation.
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Figure 14. Comparison of LCC of the ITEWB under two scenarios of Wuhan.

As shown in Figure 15, for these two different operation modes of air conditioners, with the
increase of the ITEWB, the LPED and LGWP associated with the ITEWB decrease. For the intermittent
scenario, the impact of the ITEWB on the operational energy consumption is less obvious, leading to
less obvious variations in the LPED and LGWP compared to the continuous scenario.
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Figure 15. Comparison of indicators associated with the ITEWB for two different operational modes of
air conditioners of Wuhan: (a) Comparison of LPED; (b) Comparison of LGWP.

3.2.2. The OTWRB When Considering Different Weighting Efficiencies

As shown in Figure 16, the different weighting efficiencies of economy, energy and greenhouse
emissions have a certain impact on the OTWRB. When there are fewer weighting efficiencies assigned
to the economic criteria, the optimal insulation thickness tends to become larger.

• Impact of different cities on the OTWRB when considering different weighting efficiencies
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Figure 16. OTWRB considering different weighting efficiencies of economy, energy and greenhouse
emissions for Wuhan under the continuous scenario.
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As shown in Figures 17 and 18, the OTWRB for different cities under continuous and intermittent
operation modes of air conditioners are roughly the same.
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Figure 17. Impact of different cities on the optimal insulation thickness of external walls for residential
buildings (OTWRB) when considering different weighting efficiencies of economy, energy, and
greenhouse gas emissions under the continuous scenario.
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Figure 18. Impact of different cities on the OTWRB when considering different weighting efficiencies
of economy, energy, and greenhouse gas emissions under the intermittent scenario.

The OTWRB for Wuhan is the largest while the OTWRB for Chengdu is the smallest for the same
weighting system. This is because Wuhan has the largest operational energy consumption while the
operational energy consumption for Chengdu is the smallest. As the impact of the increase of ITEWB
is more obvious for larger energy consumers, the reduction in operational energy consumption in
Wuhan is more than that in Chengdu. As a result, within a certain range of ITEWB, the net benefit by
increasing ITEWB in Wuhan is more than that in Chengdu.

• Impact of different operation modes on the OTWRB when considering different
weighting efficiencies

In Figure 19, for half of the various weighting systems, the OTWRB for two different operational
modes of air conditioners are different. This is because of the certain assumption of the intermittent
operation mode in this paper, resulting in differences in operational energy consumption between the
continuous operation mode and the intermittent operation mode.
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Figure 19. Impact of different operation modes of air conditioners on the OTWRB for Wuhan when
considering different weighting efficiency: (a) Weighting 1; (b) Weighting 2.

4. Conclusion and Limitations

4.1. Conclusions

This study proposes a framework to analyze and select the OTWRB in the HSCW zone of China.
The criteria for this selection consider the integrated impacts of the ITEWB on building performance
quantified by LCC, LPED and LGWP. Hypothetical buildings are simulated with split air conditioners
and using EPS as the insulation material in four typical cities of China, which are chosen as Wuhan,
Changsha, Hangzhou and Chengdu. Two different operation modes of air conditioners (intermittent
and continuous) are considered in this paper. The main findings of this study are as follows:

• For the continuous operation mode of air conditioners in Wuhan, the optimal economic insulation
thickness is 70 mm. When considering only the aspects of energy consumption and greenhouse
gas emissions, the optimal value is 150 mm. For different weighting efficiencies assigned to the
economy, energy and greenhouse gas emissions, the OTWRB is determined to be 70, 90, 110, or 150
mm. For all these weighting systems, the OTWRB is larger than the current insulation thickness,
which is 30 mm.

• When the weighting efficiencies assigned to the economy, energy and greenhouse gas emissions
change, the OTWRB might also change. In this paper, when the range of insulation thickness is 30
mm to 150 mm, the minimum OTWRB is achieved when the economic factor is the only criterion.
On the other hand, the maximum OTWRB is obtained when sufficient weighting efficiencies are
assigned to the energy and greenhouse gas emissions factors. When larger weighting efficiencies
applied to the energy and greenhouse gas emissions factors, the OTWRB did not become smaller.

• The different operation modes of air conditioners have a certain impact on the OTWRB based on
the results of this study.

• The OTWRB is almost the same for these four cities based on the results of this study. The OTWRB
is found to be the largest for Wuhan, which consumes the most operational energy, and smallest
for Chengdu, which consumes the least operational energy for the same weighting system.

4.2. Limitations

There are still some areas in need of improvement for future research:

• The impact of different kinds of intermittent operation modes of space heating and cooling systems
on the OTWRB is not considered in this paper.

• A general formula to optimize ITEWB related to meteorological data is not provided in this paper.
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