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Abstract 
Maintaining wheat grain yield under expected more frequent and maybe severe drought 

episodes requires identifying the drought tolerance traits as well as deciphering the genetic 

basis of these traits responses to drought, and utilising potential symbiotic endophytes to 

alleviate drought effects. The aim of this project was to conduct an in-depth study of the 

genetic architecture of wheat responses to drought, deciphering the genetic basis of both 

source and sink traits under field conditions, as well as, investigating the ability of the 

endophyte fungus Piriformospora indica to increase yield in both well-watered and drought 

conditions and identify QTL underpinning drought-resistance traits influenced by endophytic 

growth. 

In the field trial, a representative subset of the elite eight-founder population, comprising 384 

RILs, the founders and a check variety ’Kielder’ were tested in rainfed vs irrigated field 

blocks, monitoring soil moisture content at different depth intervals. Field plots were 

phenotyped throughout the growing season using integrative drone-based and proximal 

sensing approaches. 

The results showed maximum soil moisture deficit (SMD) peaking over 120 mm in the rainfed 

plots, with large deficits (>75 mm) from late April that coincided with tillering and more 

prolonged large deficits from mid-June to mid-July (>100 mm), significantly decreasing crop 

canopy indices at all measured dates post-irrigation and causing significant increase in canopy 

temperature of rainfed plots, all driving an average yield reduction of 32.8% which was 

significantly genotype dependent. Also identifying traits most significantly (p≤0.001) 

correlated with yield revealed grains.m-2 (r=0.68) and (r=0.72) and canopy temperature 

depression (CTD) (r=0.52) and (r=0.61) in rainfed and irrigated condition, respectively. QTL 

analysis for yield revealed a total of 16 novel QTL expressed commonly across both 

treatments explaining individually 1 to 4.5% as well as treatment dependent QTL. With 

remarkable examples of grain yield QTL collocating with major QTL such as grains.m-2 QTL 

on chromosome 3A and Rht-D1 pleiotropic region on chromosome 4D and highlighting 

significant SNP-SNP epistatic interactions for yield occasionally coinciding with QTL for 

crop canopy indices. 

Investigating the response of 200 MAGIC lines to P. indica inoculation showed the potential 

of the endophyte to significantly increase yield in well-watered and drought conditions, 

however, for most traits, there was significant difference in genotypes responses to 
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colonization. Several QTL unique to colonized plants were detected on most chromosomes 

and linked to measured traits under drought, Those QTL can be investigated as candidate 

genes governing the symbiosis between wheat and P. indica. 
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1 Chapter 1: Introduction and literature review 

 

1.1 Overview 

Water availability is a fundamentally important resource in arable agriculture and in many 

important production areas (North American prairie, Caucasian steppe, semi-arid 

Mediterranean basin) is the single edaphic factor which most limits production. Even in the 

maritime climate of the UK, however, up to 30% of the wheat acreage is grown on drought-

prone soils, resulting in a >10% annual loss in yield (Foulkes et al., 2007). In all parts of the 

globe, increased likelihood of extreme weather events/patterns driven by global warming 

make scientific progress towards understanding how to breed crops able to efficiently and 

stably yield food supplies on defined, low amounts of water more important than ever before. 

Despite the importance of this topic, there is some confusion in the literature, stemming 

mainly from the paradox about which characteristics sustain better yield under stress, 

depending on the nature of the water limitation and plant ideotype targeted and although it is 

well understood that relevant genetic variation for several drought tolerance-related traits 

exists  (Dodd et al., 2011), few have been the subject of QTL mapping. 

The recent creation and validation of an eight-parent wheat mapping population resource 

(Mackay et al., 2014) offers new possibilities to achieve a far better understanding of the 

genetic and physiological trade-offs between sustainable crop water use, high yield potential 

and performance under limiting water conditions in wheat.  

From a plant-fungus symbiosis perspective, recent studies of a novel fungal endophyte of 

wheat, Piriformospora indica, have shown a 40% increase in total seed weight of inoculated 

versus uninoculated control (unstressed) plants and up to 2.2-fold increase in total seed weight 

of inoculated versus uninoculated in droughted conditions (Hubbard et al., 2014). 

This PhD thesis aimed to conduct an in-depth study of the genetic architecture of wheat 

responses to drought, deciphering the genetic basis of both source and sink traits under field 

conditions, as well as, investigating the ability of P.indica to increase yield in both well-

watered and drought conditions and identify QTL underpinning drought-resistance traits 

influenced by endophytic growth. 
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To accomplish this, the winter wheat elite 8-founder MAGIC population was used, as it 

captures more than 80% of the allelic diversity found in the UK winter wheat elite breeding 

material, making it likely that the markers identified in this analysis are segregating in the UK 

population as a whole. 

1.2 Wheat background 

Wheat is one of the major food resources worldwide providing 20% of total consumed 

calories, grown globally on more than 218 million hectares with total production of 772 

million tons in 2017. Throughout history, wheat was a prominent food source for both humans 

and livestock thanks to its adaptability and the success of growing under wide range of 

latitudes from 67 °No in Scandinavia and Russia to 45 °So in Argentina hosting highly diverse 

environmental conditions. Currently, only 5 % of world wheat production is accounted for by 

tetraploid durum wheat (T. turgidum L. ssp. durum (Desf.), mainly used for pasta industry 

with production hub and adaptability to semi-arid Mediterranean climate and 95% by 

hexaploid bread wheat (Triticum aestivum L.) (Shewry, 2009). Due to large differences in the 

availability of arable lands, cultivation resources and environmental stresses, the cultivated 

area in individual countries ranges from 4 hectares in Qatar to 24 million hectares in China, 

and variation in yields ranges from averages of 0.4 t/ha in Somalia to 10.2 t/ha in Ireland 

(FAO, 2019a). 

Wheat flour is processed in a variety of ways producing several end products such as bread, 

cakes, biscuits, noodles and pasta depending on gluten content (Curtis et al., 2002, Shewry, 

2009). The wheat grain is rich in vitamins B6, folate, thiamin and riboflavin and minerals 

such as manganese, phosphorus and zinc. Compared to other cereals, wheat has higher 

protein, fibre and fat content (Sramkova et al., 2009). Although different regions of the world 

have different end uses for wheat flour and thus measures of quality, all wheats can be 

classified as either ‘hard’ or ‘soft’ depending on the particle size distribution of wheat flower 

and the grains’ resistance to crushing. This is based on the functionality of puroindoline 

proteins, as the presence of both puroindolines (a) and (b) in their wild state results in soft 

wheat, while absence or lack of functionality of one of them determines hard texture (Morris, 

2002), puroindolines are governed by the soft (Ha) and hard (ha) alleles on the short arm of 

chromosome 5D (Doekes and Belderok, 1976). In the UK, the National Association of British 

and Irish flour Millers (NABIM) classifies wheat cultivars into four groups: Group 1: these 

are the cultivars that produce consistent milling and baking performance with high protein 

content of 13%; Group 2: may be used by millers in ‘general purpose’, some perform 
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inconsistently while others are suited to specialist flours; Group 3: cultivars possessing soft 

milling characteristics, low protein, good extraction rates, and extensible but not elastic 

gluten, used for biscuit and cake; and lastly, Group 4: these cultivars can be either hard or soft 

but are unsuitable for milling and are grown mainly for animal feed (NABIM, 2019). 

Bread wheat cultivars are classified based on their seasonal growth habits into spring and 

winter wheat, where winter wheat requires a period of low temperature exposure during 

winter to induce flowering known as the vernalization requirement, while spring wheat does 

not require vernalization to shift from vegetative to reproductive stage (Law, 1987). 

Wheat belongs to the family Poaceae (subf. Pooideae), genus Triticum. There are four 

cultivated species in the Triticum genus; the diploid einkorn wheat (Triticum monococcum) 

representing the AA wheat genome is the oldest cultivated wheat species and was gradually 

replaced by emmer wheat due to its low yielding potential. Emmer wheat (Triticum turgidum) 

is a tetraploid species which arose from the domestication of wild tetraploid Emmer wheat. 

The only Triticum turgidum that is still commercially cultivated is the subspecies durum. 

Hexaploid bread wheat resulted from hybridization of diploid Aegilops tauschii (DD) and 

tetraploid Triticum dicoccoides (AA BB), and its high yield potential, broad adaptability and 

bread-making and nutritional properties led it to become one of the most significant crops in 

human history (Simons et al., 2006, Isidore et al., 2005). 

Domesticated hexaploid bread wheat originated more than 10 thousand years ago near the 

upper reaches of the Tigris and Euphrates rivers, in present-day south-eastern Turkey and 

northern Syria, an area known as the Fertile Crescent (Lev-Yadun et al., 2000). The newly 

domesticated crop was transported through human trade and migration routes across the world 

in different directions, through Anatolia to Europe through Greece (8000BP), then across to 

Italy, France and Spain and north via Balkans to the Danube (7000BP), to reach Scandinavia 

and the UK (5000BP). Another route went through Iran to central Asia and finally China 

(3000BP), a third route to Africa happened through Egypt. Finally, wheat was introduced to 

the New World via Mexico in 1529 and to Australia in 1788. 

1.3 Effects of drought stress on wheat production 

Although variability in weather patterns and the consequent temperature and hydric stresses 

have always been a challenge to global agricultural production, with a rapidly growing 

population and an accelerating rate of greenhouse gas-driven global warming, the threat to 

global food security has never been higher (Godfray et al., 2010). 
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Drought is one of the main threats to sustainable crop production as changes in precipitation 

patterns accompanied by more drought episodes coupled with increased water demand due to 

agricultural intensification in many parts of the world make drought stress currently a 

significant and potentially devastating constraint to crop production (Mishra and Singh, 2010, 

Semenov and Stratonovitch, 2015). In 2009 Kenya was faced with an extremely dry year, 

reducing wheat yield 45 % compared to 2010’s good crop season and yield losses of 46% 

were experienced in Australia during the 2010 growing season compared to the previous 50 

years average (FAO, 2019b). 

Field trials for spring and winter wheat in different locations and years emphasise the 

profound negative effect of different degrees of drought on grain yield. For example, Afzal et 

al. (2017) tested a diversity panel of 213 spring wheat lines and commercial varieties under 

naturally rainfed, investigating yield response in control and supplementary irrigated 

treatment in two consecutive years and reported an average of 62% yield loss in the rainfed 

field. Another trial using a CIMMYT association panel of 287 lines reported a yield reduction 

of 29% when tested under contrasting well irrigated and rainfed conditions, in a doubled 

haploid bi-parental population comparing full to limited water irrigation (Edae et al., 2014), 

grain yield was reduced by 39% in the limited water treatment (El-Hendawy et al., 2017). 

And a more recent field trial investigating 108 advanced wheat lines reported 44.6% yield 

losses under drought treatment. Under mild drought, Elfeki et al. (2018) tested a winter wheat 

doubled haploid population and reported a loss of 20% of its yield potential when the 

irrigation was limited, compared to full irrigation and in a different experiment testing three 

commercial cultivars, yield was reduced by 47% (Thapa et al., 2018). 

 Although rarely reaching the level of severe drought of the type experienced in Kenya or 

Australia, crop productivity is nonetheless limited in the UK as a result of drought episodes 

occurring at different stages of crop growth and development during spring and summer, as 

average rainfall is 130 mm less than average evapotranspiration (Jones et al., 1985). It is 

reported that only a minority of UK arable land planted with wheat is subjected to drought in 

an average year (Bailey, 1990), mainly because deep soils with fine texture are able to hold 

an adequate amount of moisture to compensate for this shortfall (Gales and Wilson, 1981) 

and brought to field capacity before spring, but in a dry year, the majority of arable soils might 

face various degrees of drought. Various experiments reported dry years to cause yield losses 

of 22-68%, depending on the level of drought that varied significantly among years and field 
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locations and genotypic response (Foulkes et al., 2001, Foulkes et al., 2002, Whalley et al., 

2006, Foulkes et al., 2007, Dodd et al., 2011). 

Drought stress occurring during different stages of wheat growth causes different effects; 

early season drought resulting in low establishment and reduced shoot and root length 

(KizilgeÇİ et al., 2017), whereas during the later vegetative stages it results in reduced 

tillering (Duggan et al., 2000, Foulkes et al., 2002), reduces pollen fertility during 

reproductive stage (Dong et al., 2017), subsequently reducing grains/ear (Foulkes et al., 2002, 

Senapati et al., 2019), while late season drought induces earlier senescence (Farooq et al., 

2014) and reduces grain filling (Liu et al., 2017). All the above, either as isolated or multiple 

episodes lead to varying levels of reduction in grain yield. 

1.4 Breeding for drought tolerance 

Breeding for improved drought tolerance and understanding its genetic underpinnings is 

impaired by the fact that drought tolerance is a complex quantitative trait with low heritability, 

showing a high genotype by environment (G×E) interaction and in most cases it is confounded 

with and accompanied by other stresses such as heat (Fleury et al., 2010) and by complexity 

of plant responses to drought, which is amplified under field environment by significant 

variation in severity and timing of drought among years (Dolferus et al., 2019). 

Improving and speeding up the breeding programs may be achieved via combining 

comprehensive understanding of target environments and knowledge about genetic control of 

drought through key physiological traits, nevertheless this approach is highly dependent on 

the genetic correlation of the physiological trait of interest with final grain yield, extent of 

genetic variability, level of heritability and extent of G×E interactions (Mir et al., 2012). 

Various morphological and physiological traits were identified to contribute to yield stability 

under drought, such as stem-soluble carbohydrates (Foulkes et al., 2002), green flag leaf 

persistence and slow senescence rate (Foulkes et al., 2007, Lopes and Reynolds, 2012), CO2 

exchange rates, water use efficiency and stomatal conductance (Kimurto et al., 2009), 

thousand grain weight, grains/ear and tillers/plant (Afzal et al., 2017), canopy temperature 

depression (Thapa et al., 2018), increased root length density (Ehdaie et al., 2012), early 

flowering date escaping terminal drought (Blum, 2011) and presence of long awns (Taheri et 

al., 2013). However, the relative significance of particular traits depends on the severity, 

duration and timing of the drought, for example, the last two traits did not add significant 

value in case of mild and early season drought (Foulkes et al., 2007). 
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With such a wide palette of genetically determined traits that could potentially mitigate 

drought stress, the key to an accurate mapping of the most relevant traits is adoption of high 

throughput and precise phenotyping in target environments (Tuberosa, 2012). The idea of 

being able to phenotype large experiments with massive numbers of lines in a short time with 

high repeatability and at low cost could be attained using less-complex tools such as RGB 

high resolution cameras for rapid (and time series) assessment of vegetation indices, ground 

cover, or plant establishment counts (Mullan and Reynolds, 2010). 

Several researches have indicated the repeatability and high heritability of spectral reflectance 

indices; Babar et al. (2006) reported similar evidence for high accuracy on Simple Ratio (SR), 

Water Index (WI) and Normalized Water Index-1 (NWI-1) measured in wheat subjected to 

different water regimes. 

The availability of commercial devices that measure spectral index Normalized Difference 

Vegetation Index (NDVI) and estimate ground cover, biomass and senescence rate made it 

feasible to phenotype of large mapping populations successfully (Lopes and Reynolds, 2012). 

In trials carried out by Tattaris et al. (2016), imposing different combinations of heat and 

drought stresses on wheat, significant correlations were found between canopy temperature 

and NDVI and key measured phenotypes such biomass and yield, with higher correlations 

when using drone-based imagery compared to proximal ground-based ones. Air-born NDVI 

and thermography were found to be repeatable and suggested as a reliable guide to selection 

for root depth and grain yield as reported by Li et al. (2019b). 

Since yield is a complex trait that needs to be explained by various phenotypic traits measured 

throughout the growing season (under both optimum and water stressed conditions), 

identifying QTL governing high throughput measured traits such as canopy temperature (as a 

proxy for root distribution and/or depth) and “NDVI” (stay green) became a necessity. Pinto 

and Reynolds (2015) carried out field experiments testing spring wheat under drought and/or 

heat stress and found that optimal root distribution where roots are growing near the surface 

in hot and irrigated conditions while they proliferate deeply under drought, is to be associated 

with QTL related to cooler canopies. In a different field trial, Gao et al. (2015) tested 246 F8 

RILs for NDVI at different time points and unravelled eight QTL for NDVI explaining 4.0–

9.8% of the phenotypic variances with heritability of 0.8-0.94. 
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1.4.1 Genetic bases of quantitative traits in wheat 

Traits with significant importance tend to show a complex mode of inheritance and to be 

governed by several genes with additive and/or epistatic nature in addition to strong response 

to environmental factors.  

A basic definition for quantitative trait locus is a genomic region that is statistically associated 

with the genetic variation of a complex trait (Geldermann, 1975). Genotype-phenotype 

associations are identified when different classes of marker alleles show statistically different 

trait values, due to linkage disequilibrium between the tested marker positions and genomic 

loci that govern trait variation (Lynch and Walsh, 1998). Reliable QTL detection requires 

high quality replicated phenotypic data, a trait of high heritability (Abiola et al., 2003) and a 

mapping population of desired type and size (Singh and Singh, 2015). 

Mapping populations are generated by crossing two or more genetically diverse lines and 

handling the progeny in a definite fashion, for a long time the most common type of 

experimental population to be used for quantitative genetics was the biparental cross, 

combining the genomes of two parents with contrasting trait(s) in order to decipher genomic 

regions governing these traits. They are developed in various forms as summarized in Table 

1.1, but due to the narrow genetic base of these kind of populations, all that is captured is a 

small snapshot of QTL affecting the traits, offering the possibility to only detect genomic 

regions that differ among the two founders and alleles occurring in high frequency (Jannink, 

2007). 

To overcome these drawbacks, association mapping was introduced as a complementary 

mapping approach, whereby sampling from distantly related individuals that make up a 

typical association panel offers a wide view for the whole population and captures greater 

diversity than any bi-parental population. Genome wide association studies (GWAS) 

genetically dissects complex phenotypes using the pattern of linkage disequilibrium (LD) 

existing in collections of diverse germplasm (Yu and Buckler, 2006). 

GWAS could generate finer mapping resolution in comparison to QTL mapping with bi-

parental populations, as the latter can only rely on the informative meiosis accumulated during 

population development (Morgante and Salamini, 2003). However, a very large number of 

lines is needed to ensure sufficient power for detecting target genomic regions and 

confounding associations due to population structure and linkage disequilibrium need to be 

carefully controlled (Huang et al., 2015). 
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Nested Association Mapping Population (NAM) was then proposed to combine the 

advantages of both association and linkage mapping approaches. NAM populations are 

created by crossing a set of diverse founder parents to one or two common parents and a set 

of RILs from each of these crosses is generated using the single seed descent (SSD) method 

(Yu et al., 2008). 

The Multi-Parent Advanced Generation Inter-Crosses (MAGIC) is believed to overcome 

some weaknesses of the aforementioned designs, increasing simultaneously the power, 

diversity and resolution of detecting genomic regions associated with different traits. In this 

schema, multiple inbred founders are intermated for several generations before deriving the 

inbred lines each inheriting a unique fine-scale mosaic genome of contributions from all 

founders, all together making a diverse population (Figure 1.1). The MAGIC approach offers 

high accuracy and fine resolution for detecting QTL, facilitated by the extensive breakdown 

of LD that follows from the relatively high number of crossovers during the inter-crossing 

generations (Flint et al., 2005). 

The MAGIC concept was developed originally by (Mott et al., 2000) in order to fine map 

small-effect QTL in mice. The idea was subsequently adopted by plant scientists due to its 

advantages (Cavanagh et al., 2008) and MAGIC populations were developed in several crops 

with 4-8 parents such as Arabidopsis (Kover et al., 2009), spring wheat (Huang et al., 2012), 

chick pea (Gaur et al., 2012), rice (Bandillo et al., 2013), winter wheat (Mackay et al., 2014, 

Stadlmeier et al., 2018), maize (Dell’Acqua et al., 2015), tomatoes (Pascual et al., 2015), 

barley (Sannemann et al., 2015), Cotton (Li et al., 2016), Durum wheat (Milner et al., 2016) 

and cowpea (Huynh et al., 2017). 
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Table 1.1 Summary of the features of some common mapping populations (Singh and 

Singh, 2015) 
 

Mapping population 

Feature F2 Backcross RIL NIL 

Perpetuation ephemeral ephemeral perpetual perpetual 

Genetic composition Homo & 

heterozygotes 

homo & 

heterozygotes 

homozygotes homozygotes 

A genotype represented by One plant One plant One line One line 

Generations needed Two Two 7–8 or more 8–10 

Number of crosses One (F1) Two (F1 & 

backcross) 

One (F1) 6 or more (F1 & 

backcrosses) 

Selection during development None None None Yes 

 

Recombination rounds One One About two 1+ backcrosses 

Segregation ratio markers Different Different Same Same 

Suitable for: 

(i) Oligogene mapping Yes Yes Yes Yes 

(ii) QTL mapping No No Yes Yes 

(iii) Fine mapping No No No Yes 

(iv) Mapping of heterosis Yes No No No 

(v) Positional cloning No No No Yes 

(vi) Assessment of QTL X 

genotype interaction 

No No Yes Yes 

Minimum QTL X QTL 

interaction 

No No Yes Yes 

Mapped loci belong to either parent either parent either parent donor parent 

Analysis covers whole genome whole genome whole 

genome 

genomic segment 
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1.4.2 Haplotype reconstruction in MAGIC populations 

A prerequisite to carry out genetic analysis of multi parent-population is defining the parental 

origin of marker alleles along the fixed chromosomes, known as haplotype reconstruction, 

then deploying the appropriate computational tools that can process the allelic segregation 

patterns associated with marker genotypes and setting the framework which is better fitting 

the associated founder probabilities, in order to construct multi-parental linkage map and 

mapping of quantitative traits.  

Two major factors cause various degrees of ambiguity in inferring the parental origin of allelic 

information. the first one is caused by information acquired from the bi-allelic SNPs markers 

system, which could be either fully informative or non-informative in a simple cross, a SNP 

marker system will never be totally informative in a multi-parent population. In theory there 

might be alleles equal to number of founders segregating at each genomic locus, but a SNP 

marker system can’t capture more than two of them, making it impossible to differentiate 

between alleles that are Identical By State (IBS) from those that are Identical By Descent 

(IBD), unless we apply probabilistic models accounting for founder haplotype probabilities. 

The second factor is the severe bottlenecks that characterise crop history, implying genomic 

regions to show IBD stretches and hindering the power to detect the parental origin of marker 

alleles. 

Several statistical tools were developed to reconstruct the genome of each RIL as a mosaic of 

the founder haplotypes and trace its allelic information back to the founder lines. For example, 

R package R/HAPPY (Mott et al., 2000) which assumes all ancestry combination to be 

equally possible, ignoring the pedigree information. R/QTL developed by Broman et al. 

(2003) includes multipoint probabilities computed conditionally on the observed marker data 

at flanking markers, resulting in more accurate inference. More recently, R/mpmap (Huang 

and George, 2011) was released to analyse MAGIC population data combining and extending 

functions of R/HAPPY and R/QTL. 
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Figure 1.1 Generic ‘funnel’-based crossing scheme for an eight founder 

MAGIC population. Reproduced from (Cavanagh et al., 2008). 
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Table 1.2 Quantitative trait loci (QTL) regions identified for drought tolerance 

Trait Chromosome Mapping populations Reference 

Seedling vigour 6A RILs (Spielmeyer et al., 2007)  

Chlorophyll 

content 

3A,3B,3D,4B,6A RILs (Kumar et al., 2012)  

Stomatal 

conductance 

2B,2D,4A,6D Doubled haploid (Wang et al., 2015) 

Water soluble 

carbohydrates 

1A, 1B,1D, 4A Association panel (Ovenden et al., 2017) 

Root diameter & 

surface area 

1D, 2A, 2B, 2D, 3A, 4A, 4B, 

5B,5D, 6D, 7A, 7D 

Advanced backcross 

population 

(Ibrahim et al., 2012) 

Flowering date 

1B,1D,2B,4A,4D,5A,7A RILs (Mathews et al., 2008)  

1B,3A,3B,4B,5A,6B Doubled haploid (Gahlaut et al., 2017) 

Plant height 

1B,1D,2B,3A,4A,5A,5B,6B RILs (Mathews et al., 2008)  

3D,4B,5A,6A Doubled haploid (Gahlaut et al., 2017) 

Leaf temperature 1A,1D,3A,3B,5B,6A RILs (Kumar et al., 2012)  

CT  1A,5A,6A,6B,6D Association panel (Li et al., 2019a) 

Stay green 1A, 3D, 7B RILs (Joshi et al., 2010) 

Grains/ear 1A,2A,3A 
 

 (Xu et al., 2017b)  

Tillers/m2 1B,5A Doubled haploid  (Gahlaut et al., 2017) 

 

Thousand-grain 

weight 

2A Association panel (Ahmad et al., 2014) 

1B, 4A, 4B, 7A, 7D Association panel (Nezhad et al., 2012)  

Grain yield 

1D, 2B, 3A, 3B, 4A,4B,5B, 

6A,6D,7A, 7B 

RILs (Alexander et al., 2012)  

3B Doubled haploid  (Bennett et al., 2012)  

1B,2B,3D,5A,5B,5D,6A,6D Association panel (Qaseem et al., 2019)  
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Since drought tolerance traits are mostly polygenic, the advances in QTL mapping approaches 

and the availability of well-structured mapping populations provide the perfect pipeline to 

unravel the genetic underpinnings of such complex traits with the possibility of more robust 

findings by applying high throughput phenotyping (Kulkarni et al., 2017), In the recent past, 

many studies have been conducted to identify QTL governing morphological and 

physiological traits under various degrees of drought (Table 1.2). 

1.5 Symbiotic Fungus Piriformospora indica 

Endophytes are microorganisms that spend part(s) of their life cycle within living host tissues 

inter/intracellularly without giving rise to obvious damage to the plant (Sun et al., 2014). The 

behaviour of fungal endophytes varies from mutualistic (White and Torres, 2010) to 

pathogenic (Tellenbach et al., 2011), when the relation includes long term interaction between 

the two species with one of them living inside the other, it is known as ‘endosymbiosis’, where 

mycorrhiza is the best studied species for such interaction beside other non-mycorrhizal fungi 

(Weiss et al., 2011). 

Increased attention is being paid to the growth enhancing effect of endophytes on plants 

driven by the hope that they may effectively increase crop productivity by means of boosting 

the plant tolerance to abiotic stresses such as heat (Hubbard et al., 2012, Ismail et al., 2018), 

drought (Hubbard et al., 2014, Khan et al., 2015), high salinity (Halo et al., 2015, Ghaffari et 

al., 2016, Molina-Montenegro et al., 2018) and heavy metals (Dourado et al., 2015). Fungal 

endophytes are known to be capable of increasing resistance to biotic stresses, such as insects 

(Hammer and Van Bael, 2015, Lopez and Sword, 2015) and microbial pathogens (Waqas et 

al., 2012, Dutta et al., 2014, Rabiey et al., 2015, Rabiey and Shaw, 2016). 
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Figure 1.2 Coiled hyphae and pear shaped chlamydospores (right) and electron microscopic view of 

spores (left). Reproduced from (Varma et al., 2012). 

 

Piriformospora indica (Serendipita indica) was isolated for the first time as a contaminant 

during isolation of arbuscular mycorrhizal fungus Funneliformis mosseae spores from the 

rhizosphere of Prosopis juliflora and Ziziphus nummularia in the sandy desert soils of 

Rajasthan, northwest India. After extensive molecular genetics and ultrastructural analyses, it 

was described as a new species following the order Sebacinales, Basidiomycota. Its name was 

derived from the pear-like chlamydospores “piriformospora” and the geographic territory 

where it was isolated for the first time “indica” (Verma et al., 1998). P.indica thin walled 

hyphae (0.7 to 3.5 μm) typically appear as coiled cord of highly mingled threads, with mostly 

vitreous or white mycelia (Figure 1.2). By maturity, mycelia produce either single or clustered 

distinctive pear-shaped chlamydospores (Varma et al., 2012). It was found to grow 

successfully using different synthetic media, with improved aspergillus medium ranking the 

best among them (Hill and Käfer, 2001). 

 P.indica has a very wide range of host plants (that were tested in the last years under field 

and/or controlled environment conditions) exceeding 50 different species which encompass 

monocots, dicots, perennial and annual plants (Kost and Rexer, 2013) mainly via direct 
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manipulation of phytohormone signalling pathways during mutualism with plants (Varma et 

al., 1999). 

Root colonization by P.indica follows the procedure of intracellular germination of 

chlamydospores, which then form intracellular hyphae to penetrate the rhizodermal and 

cortical tissues, this biotrophic colonization does not trigger defence responses in the host 

tissues indicating that it does not rely on cell death for successful colonization (Jacobs et al., 

2011). It depends on the potential for suppressing innate immunity in roots involving 

phytohormones such as glucosinolate, salicylic acid (SA) -related defence pathways and JA-

mediated suppression of early immune responses, Moreover the ability to significantly reduce 

the secretion of immunity-associated proteins (e.g., PR1 and PRRs) is promoting disturbance 

of endoplasmic reticulum (ER) integrity by P.indica, thereby facilitating colonization 

(Schäfer et al., 2009, Qiang et al., 2012). 

P. indica is the archetype for the mutualistic symbiosis between fungi and Angiosperms, 

conferring growth promotion and inducing tolerance to various stresses (Varma et al., 2012). 

P.indica has a reported role in nutrient mobilization. Phosphorous mediation and translocation 

from culture medium to the host plant as an energy dependent process by Varma et al. (2001), 

and P.indica was found to facilitate access to the necessary amounts of complex, condensed 

or insoluble forms of phosphate by producing significant amounts of acid phosphatases 

(Archana et al., 2000, Ngwene et al., 2015). 

Inoculation with P.indica improved germination and survival rates of in vitro grown 

chickpeas, soybean and peas, to be near 100% while it was about 50% in the corresponding 

controls. And increased plant height of chickpeas and mung beans by 35.7 and 14.2%, 

respectively and increase of fresh weight of 9 and 11% respectively in inoculated plants 

compared to controls (Pham et al., 2008). Following the same trend, Varma et al. (1999) 

tested four weeks old plants of maize, tobacco and parsley grown in pots and found inoculated 

plants to have increased total shoot and root biomass by 100%. 

In terms of its effect on disease tolerance of its host plant, P.indica is reported to mediate 

reductions in symptoms severity caused by root rot (Fusarium culmorum), soil-borne take-all 

disease (Gaeumannomyces graminis var.tritici) and stem rot (Pseudocercosporella 

herpotrichoides) in wheat (Ghahfarokhy, 2011). Also, it was found to induce systemic 

resistance in barley leaves against the powdery mildew Blumeria graminis f.sp. hordei and in 

Arabidopsis thaliana against the powdery mildew Golovinomyces orontii (Waller et al., 2005, 
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Stein et al., 2008). Panda et al. (2019) found P.indica to induce systemic resistance 

against Alternaria solani the causative agent of tomato blight. 

In recent studies P.indica showed the potential to reduce the severity of crown rot at seedling 

stage and Fusarium head blight diseases under simulated UK weather conditions in addition 

to significantly increasing thousand grain weight, total grain yield and above ground biomass 

(Rabiey et al., 2015, Rabiey and Shaw, 2016). Anwar et al. (2019) reported P.indica to 

significantly decrease disease severity and area under the disease progress curve, when two 

susceptible wheat varieties to leaf rust were inoculated with the endophyte under disease 

stress. 

 A number of studies have shown that P.indica could boost abiotic stresses tolerance. In 

Arabidopsis subjected to different levels of drought at different stages, P.indica was reported 

to increase germination rate, give a threefold increase in the fresh weight and double the 

chlorophyll content of 18 day old seedlings (Sherameti et al., 2008). Inoculation with P.indica 

mitigated thylakoid protein and chlorophyll degradation in drought-challenged Chinese 

cabbage (Sun et al., 2010). 

 Xu et al. (2017a) conducted an in vitro maize experiment, where drought was imposed using 

polyethylene glycol (PEG-6000). P.indica colonized plants had increased leaf area, 

chlorophyll, antioxidative activities of catalases and superoxide dismutase, proline content 

and dry weight, while reducing indicators of membrane integrity, such as malondialdehyde 

(MDA). 

In barley, P.indica conferred a significant increase in yield explained by increasing shoot and 

root dry weight of plants under both ambient and drought stress conditions stressed by 300 

mM NaCl (Ghabooli, 2014). P.indica enhanced plant growth under such stress by 

differentially expressing 254 genes either up or down regulation (Ghaffari et al., 2016) and 

mitigated the drought stress effect by promoting significant accumulation of proteins 

protective of photorespiration, primary metabolism and energy modulation, in addition to 

enhancing the electron transfer chain and photosystem activity. Moreover, the number of 

altered abundance proteins under severe drought for inoculated and control treatments was 

144 and 462, respectively (Ghaffari et al., 2019). 

P.indica has shown an increase of 1.2 to 2.2 and up to 5 fold in total seed weight in ambient, 

droughted and heat stressed conditions respectively and significantly increasing the 

photosynthetic efficiency Fv/Fm under heat and drought stress (Hubbard et al., 2014). 
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Yaghoubian et al. (2014) tested the responses of wheat to P.indica inoculation under drought 

and found reduced lipid peroxidation rate and hydrogen peroxide level in inoculated wheat 

plants and increased leaf chlorophyll content antioxidant enzymes activity such as CAT, APX 

and POD. 

1.5.1 Basis of plants response to P. indica 

The earliest and most persistent responses to plants interaction with P.indica are molecularly 

and physiologically directed by altered levels of phytohormones and intracellular calcium 

(Ca2+), inducing beneficial mechanisms (Gill et al., 2016), with a complex network of 

responses depending on the conditions of the host plant (Figure 1.3). 

Root growth as P.indica colonizes the host plant was widely explained by auxin (IAA) 

produced by the fungus, as well as upregulating auxin gene expression (Sirrenberg et al., 

2007, Schäfer et al., 2009, Lee et al., 2011). Another plant growth strategy was promoted via 

fungal interference with ethylene signalling (Barazani et al., 2007).  

Evidence has been reported for the role of the phosphate transporter (PiPT) in P.indica for 

mediating phosphorus to the host plant, after isolation and functional characterization of high 

affinity phosphate transporters (Yadav et al., 2010). In addition to significant production of 

acid phosphatases, making insoluble, condensed and complex forms of phosphate more 

accessible (Archana et al., 2000). Inoculation of tobacco and Arabidopsis with P.indica 

showed significance increase in one of the vital nitrate acquisition enzymes NADH-dependent 

nitrate reductase (NR) which induced more transfer of nitrogen to the shoots (Sherameti et 

al., 2005). 

Abiotic stress mitigation by P.indica was explained by significant promotion of shoot and 

root growth by means of increasing the activity of superoxide dismutase, peroxidases and 

catalases in the plant leaves. It significantly reduced the degradation of chlorophylls and 

thylakoid proteins, in addition to upregulating the expression of drought related genes such 

as DREB2A, CBL1, ANAC072 and RD29A and modulating several members of ROS system 

and antioxidant defence enzymes such as monodehydroascorbate reductase (Waller et al., 

2005, Sherameti et al., 2008, Sun et al., 2010, Hamilton et al., 2012, Xu et al., 2017a). 
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Biotic stresses resistance was reported as a result of P.indica colonization, as various defence 

related genes in the host plants were upregulated, including ethylene (ERF1) signalling genes, 

jasmonate JA(VSP, PDF1.2, LOX2) and pathogenesis related PR genes (Molitor et al., 2011). 

1.5.2 Commercializing P. indica 

As reports accumulated about enhancing effects of the P.indica on various plants under 

different environments including stresses, conducted in field conditions or controlled 

environments, there were some steps to mass produce it as inoculum on a large scale and was 

tested on after Guar, rice and sugarcane (Smriti and Ajit, 2014). 

 

Figure 1.3 Schematic representation of symbiosis between P.indica and host plant. 

Reproduced from (Gill et al. 2016). 
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1.6 Project Outline: 

This PhD project aims to assess genotypic variation in wheat responses to drought stress by 

testing a representative subset of the 8-founder elite MAGIC population under field conditions 

and responses to the endophyte fungus Piriformospora indica. 

1.6.1 Hypotheses: 

1. The ability of a given wheat genotype to withstand limited periods of drought results from 

multiple interacting quantitative traits expressed throughout the life cycle including, but not 

limited to, phenology, canopy development and architecture, and of course regulation of 

photosynthesis, evapotranspiration, canopy temperature in response to fluctuating 

environmental conditions. 

2. There are significant heritable differences in the phenological and developmental traits 

between MAGIC genotypes which cause heritable differences in the final yield under 

contrasting water regimes. 

3. The extent to which P. indica may buffer a particular wheat genotype against drought stress 

is conditioned by a specific set of P.indica response QTL, understanding of which would 

contribute to a better mechanistic understanding of mutualistic symbiosis. 

1.6.2 Objectives 

1. Quantifying associations among measured traits and association with yield under 

contrasting water regimes. 

2. Identifying Quantitative Trait Loci (QTL) and genetic interactions associated with various 

phenotypic traits under both rainfed and irrigated conditions in order to describe the optimal 

genetic architecture of genotypes that can sustain yield potential under drought stress. 

3. Assessing wheat responses upon inoculation with P.indica under both drought stress and 

well-watered conditions and identifying QTL governing these responses. 

 

 

 

 



20 
 

1.7 References 

Abiola, O., Angel, J. M., Avner, P., Bachmanov, et al. (2003). The nature and identification 

of quantitative trait loci: a community's view. Nature Reviews Genetics, 4, 911-916. 

Afzal, F., Reddy, B., Gul, A., Khalid, M., et al. (2017). Physiological, biochemical and 

agronomic traits associated with drought tolerance in a synthetic-derived wheat diversity 

panel. Crop and Pasture Science, 68, 213-224. 

Ahmad, M., Khan, S., Salam Khan, A., Kazi, A. M. & Basra, S. M. A. (2014). Identification 

of QTLs for drought tolerance traits on wheat chromosome 2A using association mapping. 

International Journal of Agriculture and Biology, 16, 862-870. 

Alexander, L. M., Kirigwi, F. M., Fritz, A. K. & Fellers, J. P. (2012). Mapping and 

quantitative trait loci analysis of drought tolerance in a spring wheat population using 

amplified fragment length polymorphism and diversity array technology markers. Crop 

Science, 52, 253-261. 

Anwaar, H., Ali, S., Sahi, S. T. & Siddiqui, M. T. (2019). Evaluating the antagonistic role of 

fungal endophytes against leaf rust of wheat caused by Puccinia recondita. International 

Journal of Agriculture and Biology, 21, 333-337. 

Archana, S., Jyotika, S., Rexer, K. H. & Ajit, V. (2000). Plant productivity determinants 

beyond minerals, water and light: Piriformospora indica - a revolutionary plant growth 

promoting fungus. Current Science, 79, 1548-1554. 

Babar, M. A., van Ginkel, M., Klatt, A. R., Prasad, B. & Reynolds, M. P. (2006). The potential 

of using spectral reflectance indices to estimate yield in wheat grown under reduced irrigation. 

Euphytica, 150, 155-172. 

Bailey, R. (1990). Irrigated crops and their management, Ipswich, UK, Farming Press. 

Bandillo, N., Raghavan, C., Muyco, P. A., et al. (2013). Multi-parent advanced generation 

inter-cross (MAGIC) populations in rice: progress and potential for genetics research and 

breeding. Rice, 6, 11. 

Barazani, O., von Dahl, C. C. & Baldwin, I. T. (2007). Sebacina vermifera promotes the 

growth and fitness of Nicotiana attenuata by inhibiting ethylene signaling. Plant Physiology, 

144, 1223-1232. 



21 
 

Bennett, D., Reynolds, M., Mullan, D., Izanloo, A., Kuchel, H., Langridge, P. & Schnurbusch, 

T. (2012). Detection of two major grain yield QTL in bread wheat (Triticum aestivum L.) 

under heat, drought and high yield potential environments. Theoretical and Applied Genetics, 

125, 1473-1485. 

Blum, A. (2011). Plant water relations, Plant Stress and Plant Production. In: Plant Breeding 

for Water-Limited Environments. Springer, New York, NY.  

Broman, K. W., Wu, H., Sen, Ś. & Churchill, G. A. (2003). R/qtl: QTL mapping in 

experimental crosses. Bioinformatics, 19, 889-890. 

Cavanagh, C., Morell, M., Mackay, I. & Powell, W. (2008). From mutations to MAGIC: 

resources for gene discovery, validation and delivery in crop plants. Current Opinion in Plant 

Biology, 11, 215-221. 

Curtis, B. C., Rajaram, S. & Macpherson, H. G. (2002). Bread wheat: improvement and 

production, FAO. 

Dell’Acqua, M., Gatti, D. M., Pea, G., et al. (2015). Genetic properties of the MAGIC maize 

population: a new platform for high definition QTL mapping in Zea mays. Genome Biology, 

16, 167-189. 

Dodd, I. C., Whalley, W. R., Ober, E. S. & Parry, M. A. J. (2011). Genetic and management 

approaches to boost UK wheat yields by ameliorating water deficits. Journal of Experimental 

Botany, 15, 5241–5248. 

Doekes, G. J. & Belderok, B. (1976). Kernel hardness and baking quality of wheat — A 

genetic analysis using chromosome substitution lines. Euphytica, 25, 565-576. 

Dolferus, R., Thavamanikumar, S., Sangma, H., et al. (2019). Determining the genetic 

architecture of reproductive stage drought tolerance in wheat using a correlated trait and 

correlated marker effect model. G3: Genes|Genomes|Genetics, 9, 473-489. 

Dong, B., Zheng, X., Liu, H., et al. (2017). Effects of drought stress on pollen sterility, grain 

yield, abscisic acid and protective enzymes in two winter wheat cultivars. Frontiers in Plant 

Science, 8, 1008-1022. 

Dourado, M. N., Neves, A.A., Santos, D. S. & Araujo, W. L. (2015). Biotechnological and 

agronomic potential of endophytic pink-pigmented methylotrophic Methylobacterium spp. 

BioMed Research International, 2015, 19-37. 



22 
 

Duggan, B. L., Domitruk, D. R. & Fowler, D. B. (2000). Yield component variation in winter 

wheat grown under drought stress. Canadian Journal of Plant Science, 80, 739-745. 

Dutta, D., Puzari, K. C., Gogoi, R. & Dutta, P. (2014). Endophytes: exploitation as a tool in 

plant protection. Brazilian Archives of Biology and Technology, 57, 621-629. 

Edae, E.A., Byrne, P.F., Haley, S.D. et al. (2014). Genome-wide association mapping of yield 

and yield components of spring wheat under contrasting moisture regimes. Theoritical and 

Applied Genetics, 127, 791-808. 

Ehdaie, B., Layne, A. P. & Waines, J. G. (2012). Root system plasticity to drought influences 

grain yield in bread wheat. Euphytica, 186, 219-232. 

El-Hendawy, S., Hassan, W., Al-Suhaibani, N. & Schmidhalter, U. (2017). Spectral 

assessment of drought tolerance indices and grain yield in advanced spring wheat lines grown 

under full and limited water irrigation. Agricultural Water Management, 182, 1-12. 

Elfeki, W., Byrne, P., Reid, S. & Haley, S. (2018). Mapping quantitative trait loci for 

agronomic traits in winter wheat under different soil moisture levels. Agronomy, 8, 133-142. 

FAO. (2019a). FAOstat. URL: http://www.fao.org/faostat/en/#data/QC/visualize. 

FAO. (2019b). Land & Water URL: http://www.fao.org/land-water/en/. 

Farooq, M., Hussain, M. & Siddique, K. H. M. (2014). Drought stress in wheat during 

flowering and grain-filling periods. Critical Reviews in Plant Sciences, 33, 331-349. 

Fleury, D., Jefferies, S., Kuchel, H. & Langridge, P. (2010). Genetic and genomic tools to 

improve drought tolerance in wheat. Journal of Experimental Botany, 61, 3211-3222. 

Flint, J., Valdar, W., Shifman, S. & Mott, R. (2005). Strategies for mapping and cloning 

quantitative trait genes in rodents. Nature Reviews Genetics, 6, 271-286. 

Foulkes, M. J., Scott, R. K. & Sylvester-Bradley, R. (2002). The ability of wheat cultivars to 

withstand drought in UK conditions: formation of grain yield. The Journal of Agricultural 

Science, 138, 153-169. 

Foulkes, M. J., Scott, t. l. R. K. & Sylvester-Bradley, R. (2001). The ability of wheat cultivars 

to withstand drought in UK conditions: resource capture. The Journal of Agricultural Science, 

137, 1-16. 



23 
 

Foulkes, M. J., Sylvester-Bradley, R., Weightman, R. & Snape, J. W. (2007). Identifying 

physiological traits associated with improved drought resistance in winter wheat. Field Crops 

Research, 103, 11-24. 

Gahlaut, V., Jaiswal, V., Tyagi, B. S., et al. (2017). QTL mapping for nine drought-responsive 

agronomic traits in bread wheat under irrigated and rain-fed environments. PLOS ONE, 12, 

e0182857. 

Gales, K. & Wilson, N. J. (1981). Effects of water shortage on the yield of winter wheat. 

Annals of Applied Biology, 99, 323-334. 

Gao, F., Wen, W., Liu, J., et al. (2015). Genome-wide linkage mapping of QTL for yield 

components, plant height and yield-related physiological traits in the Chinese wheat cross 

Zhou 8425B/chinese spring. Frontiers in Plant Science, 6, 1099-1116. 

Gaur, P. M., Jukanti, A. K. & Varshney, R. K. (2012). Impact of genomic technologies on 

chickpea breeding strategies. Agronomy, 2, 199-221. 

Geldermann, H. (1975). Investigations on inheritance of quantitative characters in animals by 

gene markers I. Methods. Theoretical and Applied Genetics, 46, 319-330. 

Ghabooli, M. (2014). Effect of Piriformospora indica inoculation on some physiological 

traits of barley (Hordeum vulgare) under salt stress. Chemistry of Natural Compounds, 50, 

1082-1087. 

Ghaffari, M. R., Ghabooli, M., Khatabi, B., Hajirezaei, M. R., Schweizer, P. & Salekdeh, G. 

H. (2016). Metabolic and transcriptional response of central metabolism affected by root 

endophytic fungus Piriformospora indica under salinity in barley. Plant Molecular Bioliogy, 

90, 699-717. 

Ghaffari, M. R., Mirzaei, M., Ghabooli, M., et al. (2019). Root endophytic fungus 

Piriformospora indica improves drought stress adaptation in barley by metabolic and 

proteomic reprogramming. Environmental and Experimental Botany, 157, 197-210. 

Ghahfarokhy, M., Goltapeh, E., Purjam, E., Pakdaman, B., Modarres Sanavy, S.,Varma, A. 

(2011). Potential of mycorrhiza-like fungi and Trichoderma species in biocontrol of Take-all 

Disease of wheat under greenhouse condition. Journal of Agricultural Technology, 7, 185-

195. 



24 
 

Gill, S. S., Gill, R., Trivedi, D. K., et al. (2016). Piriformospora indica: Potential and 

significance in plant stress tolerance. Frontiers in Microbiology, 7, 332-341. 

Godfray, H. C. J., Beddington, J. R., Crute, I. R., et al. (2010). Food Security: The challenge 

of feeding 9 billion people. Science, 327, 812-818. 

Halo, B. A., Khan, A. L., Waqas, M., et al. (2015). Endophytic bacteria (Sphingomonas sp. 

LK11) and gibberellin can improve Solanum lycopersicum growth and oxidative stress under 

salinity. Journal of Plant Interactions, 10, 117-125. 

Hamilton, C. E., Gundel, P. E., Helander, M. & Saikkonen, K. (2012). Endophytic mediation 

of reactive oxygen species and antioxidant activity in plants: a review. Fungal Diversity, 54, 

1-10. 

Hammer, T. J. & Van Bael, S. A. (2015). An endophyte-rich diet increases ant predation on 

a specialist herbivorous insect. Ecological Entomology, 40, 316-321. 

Hill, T. & Käfer, E. (2001). Improved protocols for Aspergillus minimal medium: Trace 

element and minimal medium salt stock solutions. Fungal Genetics Newsletter., 48, 20-21. 

Huang, B. E. & George, A. W. (2011). R/mpMap: a computational platform for the genetic 

analysis of multiparent recombinant inbred lines. Bioinformatics, 27, 727-729. 

Huang, B. E., George, A. W., Forrest, K. L., Kilian, A., Hayden, M. J., Morell, M. K. & 

Cavanagh, C. R. (2012). A multiparent advanced generation inter-cross population for genetic 

analysis in wheat. Plant Biotechnology Journal, 10, 826-39. 

Huang, B. E., Verbyla, K. L., Verbyla, A. P., Raghavan, C., Singh, V. K., Gaur, P., Leung, 

H., Varshney, R. K. & Cavanagh, C. R. (2015). MAGIC populations in crops: current status 

and future prospects. Theoritical and Applied Genetics, 128, 999-1017. 

Hubbard, M., Germida, J. & Vujanovic, V. (2012). Fungal endophytes improve wheat seed 

germination under heat and drought stress. Botany, 90, 137-149. 

Hubbard, M., Germida, J. J. & Vujanovic, V. (2014). Fungal endophytes enhance wheat heat 

and drought tolerance in terms of grain yield and second-generation seed viability. Journal of 

Applied Microbiology, 116, 109-22. 



25 
 

Huynh, B.-L., Ehlers, J. D., Munoz-Amatriain, M., et al. (2017). A multi-parent advanced 

generation inter-cross population for genetic analysis of multiple traits in cowpea (Vigna 

unguiculata L. Walp.). The Plant Journal, 93, 1-24 . 

Ibrahim, S., Schubert, A., Pillen, K. & Léon, J. (2012). QTL analysis of drought tolerance for 

seedling root morphological traits in an advanced backcross population of spring wheat. 

International Journal of Agriculture Science, 2, 619-629. 

Isidore, E., Scherrer, B., Chalhoub, B., Feuillet, C. & Keller, B. (2005). Ancient haplotypes 

resulting from extensive molecular rearrangements in the wheat A genome have been 

maintained in species of three different ploidy levels. Genome Research, 15, 526-536. 

Ismail, Hamayun, M., Hussain, A., Iqbal, A., Khan, S. A. & Lee, I.-J. (2018). Endophytic 

fungus Aspergillus japonicus mediates host plant growth under normal and heat stress 

conditions. BioMed Research International, 2018, 11. 

Jacobs, S., Zechmann, B., Molitor, A., et al. (2011). Broad-spectrum suppression of innate 

immunity is equired for colonization of arabidopsis roots by the fungus Piriformospora 

indica. Plant Physiology, 156, 726-740. 

Jannink, J.-L. (2007). Identifying quantitative trait locus by genetic background interactions 

in association studies. Genetics, 176, 553-561. 

Jones, R. J. A. & Thomasson, A. J. (1985). An agroclimatic databank for England and Wales, 

Laws Agricultural Trust, Soil Survey of England and Wales. 

Joshi, A., Kumar, S. & S. Roder, M. (2010). Identification of QTLs for stay green trait in 

wheat (Triticum aestivum L.) in the ‘Chirya 3’ 3 ‘Sonalika’ population. Euphytica, 437–445. 

Khan, A. L., Hussain, J., Al-Harrasi, A., Al-Rawahi, A. & Lee, I.-J. (2015). Endophytic fungi: 

resource for gibberellins and crop abiotic stress resistance. Critical Reviews in Biotechnology, 

35, 62-74. 

Kimurto, P. K., Ogola, J. B. O., Kinyua, M. G., Macharia, J. M. & Njau, P. N. (2009). 

Physiological traits associated with drought tolerance in bread wheat (Triticum aestivum L.) 

under tropical conditions. South African Journal of Plant and Soil, 26, 80-90. 

KizilgeÇİ, F., Tazebay, N., Namli, M., Albayrak, Ö. & Yıldırım, M. (2017). The drought 

effect on seed germination and seedling growth in bread wheat (Triticum aestivum L.). 

Internatioal Journal of Agricultural Environment and Food Scince.  1, 33–37. 



26 
 

Kost, G. & Rexer, K.-H. (2013). Morphology and Ultrastructure of Piriformospora indica. 

In: Varma, A., Kost, G. & Oelmüller, R. (eds.) Piriformospora indica: Sebacinales and Their 

Biotechnological Applications. Berlin, Heidelberg: Springer Berlin Heidelberg. 

Kover, P. X., Valdar, W., Trakalo, J., Scarcelli, N., Ehrenreich, I. M., Purugganan, M. D., 

Durrant, C. & Mott, R. (2009). A multiparent advanced generation inter-cross to fine-map 

quantitative traits in Arabidopsis thaliana. PLOS Genetics, 5, e1000551. 

Kulkarni, M., Soolanayakanahally, R., Ogawa, S., Uga, Y., Selvaraj, M. G. & Kagale, S. 

(2017). Drought response in wheat: key genes and regulatory mechanisms controlling root 

system architecture and transpiration efficiency. Frontiers in Chemistry, 5, 106-129. 

Kumar, S., Sehgal, S. K., Kumar, U., Prasad, P. V. V., Joshi, A. K. & Gill, B. S. (2012). 

Genomic characterization of drought tolerance-related traits in spring wheat. Euphytica, 186, 

265-276. 

Law, C. N. (1987). The genetic control of day-legth response in wheat. In: Atherton, J. G. 

(ed.) Manipulation of Flowering. Butterworth-Heinemann. 

Lee, Y.-C., Johnson, J. M., Chien, C.-T., et al. (2011). Growth promotion of chinese cabbage 

and arabidopsis by Piriformospora indica is not stimulated by mycelium-synthesized auxin. 

Molecular Plant-Microbe Interactions, 24, 421-431. 

Lev-Yadun, S., Gopher, A. & Abbo, S. (2000). The cradle of agriculture. Science, 288, 1602-

1603. 

Li, D. G., Li, Z. X., Hu, J. S., Lin, Z. X. & Li, X. F. (2016). Polymorphism analysis of multi-

parent advanced generation inter-cross (MAGIC) populations of upland cotton developed in 

China. Genetics and Molecular Research, 15, 10.4238/gmr15048759. 

Li, L., Peng, Z., Mao, X., et al. (2019a). Genome-wide association study reveals genomic 

regions controlling root and shoot traits at late growth stages in wheat. Annals of Botany. 

mcz041 

Li, X., Ingvordsen, C. H., Weiss, M., et al. (2019b). Deeper roots associated with cooler 

canopies, higher normalized difference vegetation index, and greater yield in three wheat 

populations grown on stored soil water. Journal of Experimental Botany. 18, 4963-4974. 



27 
 

Liu, Y., Bowman, C. B., Hu, Y.-G., et al. (2017). Evaluation of agronomic traits and drought 

tolerance of winter wheat accessions from the USDA-ARS national small grains collection. 

Agronomy, 7, 51-67. 

Lopes, M. S. & Reynolds, M. P. (2012). Stay-green in spring wheat can be determined by 

spectral reflectance measurements (normalized difference vegetation index) independently 

from phenology. Journal of Experimental Botany, 63, 3789-3798. 

Lopez, D. C. & Sword, G. A. (2015). The endophytic fungal entomopathogens Beauveria 

bassiana and Purpureocillium lilacinum enhance the growth of cultivated cotton (Gossypium 

hirsutum) and negatively affect survival of the cotton bollworm (Helicoverpa zea). Biological 

Control, 89, 53-60. 

Lynch, M. & Walsh, B. (1998). Genetics and analysis of quantitative traits, Sinauer. 

Mackay, I. J., Bansept-Basler, P., Barber, T., et al. (2014). An eight-parent multiparent 

advanced generation inter-cross population for winter-sown wheat: creation, properties, and 

validation. G3: Genes|Genomes|Genetics, 4, 1603-1610. 

Mathews, K. L., Malosetti, M., Chapman, S., et al. (2008). Multi-environment QTL mixed 

models for drought stress adaptation in wheat. Theoretical and Applied Genetics, 117, 1077-

1091. 

Milner, S. G., Maccaferri, M., Huang, B. E., et al. (2016). A multiparental cross population 

for mapping QTL for agronomic traits in durum wheat (Triticum turgidum ssp. durum). Plant 

Biotechnology Journal, 14, 735-748. 

Mir, R. R., Zaman-Allah, M., Sreenivasulu, N., Trethowan, R. & Varshney, R. K. (2012). 

Integrated genomics, physiology and breeding approaches for improving drought tolerance in 

crops. Theoretical and Applied Genetics, 125, 625-645. 

Mishra, A. K. & Singh, V. P. (2010). A review of drought concepts. Journal of Hydrology, 

391, 202-216. 

Molina-Montenegro, M. A., Acuña-Rodríguez, I. S., Torres-Díaz, C. & Gundel, P. E. (2018). 

Root endophytes improve physiological performance and yield in crops under salt stress by 

up-regulating the foliar sodium concentration. bioRxiv, 435032. 



28 
 

Molitor, A., Zajic, D., Voll, L. M., et al. (2011). Barley leaf transcriptome and metabolite 

analysis reveals new aspects of compatibility and Piriformospora indica–mediated systemic 

induced resistance to powdery mildew. Molecular Plant-Microbe Interactions, 24, 1427-1439. 

Morgante, M. & Salamini, F. (2003). From plant genomics to breeding practice. Current 

Opinion in Biotechnology, 14, 214-219. 

Morris, C. F. (2002). Puroindolines: the molecular genetic basis of wheat grain hardness. Plant 

Molecular Biology, 48, 633-647. 

Mott, R., Talbot, C. J., Turri, M. G., Collins, A. C. & Flint, J. (2000). A method for fine 

mapping quantitative trait loci in outbred animal stocks. Proceedings of the National 

Academy of Sciences, 97, 12649-12654. 

Mullan, D. J. & Reynolds, M. P. (2010). Quantifying genetic effects of ground cover on soil 

water evaporation using digital imaging. Functional Plant Biology, 37, 703-712. 

NABIM (2019). Wheat varieties. http://www.nabim.org.uk/wheat-varieties 

Nezhad, K., Weber, W. E., Röder, M., et al. (2012). QTL analysis for thousand-grain weight 

under terminal drought stress in bread wheat (Triticum aestivum L.). Euphytica, 186, 127-

138. 

Ngwene, B., Boukail, S., Söllner, L., Franken, P. & Andrade-Linares, D. R. (2015). Phosphate 

utilization by the fungal root endophyte Piriformospora indica. Plant and Soil, 405, 231-241. 

Ovenden, B., Milgate, A., Wade, L. J., Rebetzke, G. J. & Holland, J. B. (2017). Genome-wide 

associations for water-soluble carbohydrate concentration and relative maturity in wheat 

using SNP and DArT marker arrays. G3: Genes|Genomes|Genetics, 7, 2821-2830. 

Panda, S., Busatto, N., Hussain, K. & Kamble, A. (2019). Piriformospora indica-primed 

transcriptional reprogramming induces defense response against early blight in tomato. 

Scientia Horticulturae, 255, 209-219. 

Pascual, L., Desplat, N., Huang, B. E., et al. (2015). Potential of a tomato MAGIC population 

to decipher the genetic control of quantitative traits and detect causal variants in the 

resequencing era. Plant Biotechnology Journal, 13, 565-77. 

http://www.nabim.org.uk/wheat-varieties


29 
 

Pham, G. H., Singh, A., Malla, R., et al. (2008). Interaction of Piriformospora indica with 

diverse microorganisms and plants. In: Varma A., Abbott L., Werner D., Hampp R. (eds) 

Plant Surface Microbiology. Springer, Berlin, Heidelberg. 

Pinto, R. S. & Reynolds, M. P. (2015). Common genetic basis for canopy temperature 

depression under heat and drought stress associated with optimized root distribution in bread 

wheat. Theoritical and Applied Genetics, 128, 575-585. 

Qaseem, M. F., Qureshi, R., Shaheen, H. & Shafqat, N. (2019). Genome-wide association 

analyses for yield and yield-related traits in bread wheat (Triticum aestivum L.) under pre-

anthesis combined heat and drought stress in field conditions. PLOS ONE, 14, e0213407. 

Qiang, X., Weiss, M., Kogel, K.-H. & Schafer, P. (2012). Piriformospora indica—a 

mutualistic basidiomycete with an exceptionally large plant host range. Molecular Plant 

Pathology, 13, 508-518. 

Rabiey, M. & Shaw, M. W. (2016). Piriformospora indica reduces fusarium head blight 

disease severity and mycotoxin DON contamination in wheat under UK weather conditions. 

Plant Pathology, 65, 940-952. 

Rabiey, M., Ullah, I. & Shaw, M. W. (2015). The endophytic fungus Piriformospora indica 

protects wheat from fusarium crown rot disease in simulated UK autumn conditions. Plant 

Pathology, 64, 1029-1040. 

Sannemann, W., Huang, B. E., Mathew, B. & Léon, J. (2015). Multi-parent advanced 

generation inter-cross in barley: high-resolution quantitative trait locus mapping for flowering 

time as a proof of concept. Molecular Breeding, 35, 1-16. 

Schäfer, P., Pfiffi, S., Voll, L. M., et al. (2009). Manipulation of plant innate immunity and 

gibberellin as factor of compatibility in the mutualistic association of barley roots with 

Piriformospora indica. The Plant Journal, 59, 461-474. 

Semenov, M. & Stratonovitch, P. (2015). Adapting wheat ideotypes for climate change: 

Accounting for uncertainties in CMIP5 climate projections. Climate Research, 65, 123-139. 

Senapati, N., Stratonovitch, P., Paul, M. J. & Semenov, M. A. (2019). Drought tolerance 

during reproductive development is important for increasing wheat yield potential under 

climate change in Europe. Journal of Experimental Botany, 70, 2549-2560. 



30 
 

Sherameti, I., Shahollari, B., Venus, Y., Altschmied, L., Varma, A. & Oelmüller, R. (2005). 

The endophytic fungus Piriformospora indica stimulates the expression of nitrate reductase 

and the starch-degrading enzyme glucan-water dikinase in tobacco and arabidopsis roots 

through a homeodomain transcription factor that binds to a conserved motif in their 

promoters. Journal of Biological Chemistry, 280, 26241-26247. 

Sherameti, I., Tripathi, S., Varma, A. & Oelmuller, R. (2008). The root-colonizing endophyte 

Pirifomospora indica confers drought tolerance in Arabidopsis by stimulating the expression 

of drought stress-related genes in leaves. Molecular Plant-microbe Interaction, 21, 799-807. 

Shewry, P. R. (2009). Wheat. Journal of Experimental Botany, 60, 1537-1553. 

Simons, K. J., Fellers, J. P., Trick, H. N., Zhang, Z., Tai, Y.-S., Gill, B. S. & Faris, J. D. 

(2006). Molecular characterization of the major wheat domestication gene Q. Genetics, 172, 

547-555. 

Singh, B. & Singh, A. K. (2015). Marker-assisted plant breeding: principles and practices. 

Sirrenberg, A., Göbel, C., Grond, S., et al. (2007). Piriformospora indica affects plant growth 

by auxin production. Physiologia Plantarum, 131, 581-589. 

Smriti, S. & Ajit, V. (2014). From Piriformospora indica to rootonic: a review. African 

Journal of Microbiology Research, 8, 2984-2992. 

Spielmeyer, W., Hyles, J., Joaquim, P., Azanza, F., Bonnett, D., Ellis, M. E., Moore, C. & 

Richards, R. A. (2007). A QTL on chromosome 6A in bread wheat (Triticum aestivum) is 

associated with longer coleoptiles, greater seedling vigour and final plant height. Theoretical 

and Applied Genetics, 115, 59-66. 

Sramkova, Z., Gregová, E. & Šturdík, E. (2009). Chemical composition and nutritional 

quality of wheat grain-Review. Acta Chimica Slovaca, 2, 115-138. 

Stadlmeier, M., Hartl, L. & Mohler, V. (2018). Usefulness of a multiparent advanced 

generation intercross population with a greatly reduced mating design for genetic studies in 

winter wheat. Froniers in Plant Science, 9, 1825-1837. 

Stein, E., Molitor, A., Kogel, K.-H. & Waller, F. (2008). Systemic resistance in Arabidopsis 

conferred by the mycorrhizal fungus Piriformospora indica requires jasmonic acid signaling 

and the cytoplasmic function of NPR1. Plant and Cell Physiology, 49, 1747-1751. 



31 
 

Sun, C., Johnson, J. M., Cai, D., Sherameti, I., Oelmuller, R. & Lou, B. (2010). 

Piriformospora indica confers drought tolerance in Chinese cabbage leaves by stimulating 

antioxidant enzymes, the expression of drought-related genes and the plastid-localized CAS 

protein. Journal of Plant Physiology, 167, 1009-1017. 

Sun, S. S., Chen, X. M. & Guo, S. X. (2014). Analysis of endophytic fungi in roots of 

Santalum album Linn. and its host plant Kuhnia rosmarinifolia Vent. journal of zhejiang 

university science, 15, 109-115. 

Taheri, S., Saba, J., Shekari, F. & Abdullah, T. (2013). Effects of drought stress condition on 

the yield of spring wheat (Triticum aestivum) lines. African Journal of Biotechnology, 10, 

18339–18348. 

Tattaris, M., Reynolds, M. P. & Chapman, S. C. (2016). A direct comparison of remote 

sensing approaches for high-throughput phenotyping in plant breeding. Frontiers in Plant 

Science, 7, 1131-1139. 

Tellenbach, C., Grünig, C. R. & Sieber, T. N. (2011). Negative effects on survival and 

performance of Norway spruce seedlings colonized by dark septate root endophytes are 

primarily isolate-dependent. Environmental Microbiology, 13, 2508-2517. 

Thapa, S., Jessup, K. E., Pradhan, G. P., et al. (2018). Canopy temperature depression at grain 

filling correlates to winter wheat yield in the U.S. southern high plains. Field Crops Research, 

217, 11-19. 

Tuberosa, R. (2012). Phenotyping for drought tolerance of crops in the genomics era. 

Frontiers in Physiology, 3, 347-362. 

Varma, A., Bakshi, M., Lou, B., Hartmann, A. & Oelmueller, R. (2012). Piriformospora 

indica: a novel plant growth-promoting mycorrhizal fungus. Agricultural Research, 1, 117-

131. 

Varma, A., Savita, V., Sudha, Sahay, N., Butehorn, B. & Franken, P. (1999). Piriformospora 

indica, a cultivable plant-growth-promoting root endophyte. Applied Environmental 

Microbiology, 65, 2741-2744. 

Varma, A., Singh, A., Sudha, N. S., et al. (2001). Piriformospora indica: an axenically 

culturable mycorrhiza-like endosymbiotic fungus. In: Hock, B. (ed.) Fungal Associations. 

Berlin, Heidelberg: Springer Berlin Heidelberg. 



32 
 

Verma, S., Varma, A., Rexer, K.-H., et al. (1998). Piriformospora indica, gen. et sp. nov., a 

new root-colonizing fungus. Mycologia, 90, 896-903. 

Waller, F., Achatz, B., Baltruschat, H., et al. (2005). The endophytic fungus Piriformospora 

indica reprograms barley to salt-stress tolerance, disease resistance, and higher yield. 

Proceedings of the National Academy of Sciences of the United States of America, 102, 

13386-13391. 

Wang, S. G., Jia, S. S., Sun, D. Z., et al. (2015). Genetic basis of traits related to stomatal 

conductance in wheat cultivars in response to drought stress. Photosynthetica, 53, 299-305. 

Waqas, M., Khan, A. L., Kamran, M., et al. (2012). Endophytic fungi produce gibberellins 

and indoleacetic acid and promotes host-plant growth during stress. Molecules, 17, 10754-

10773. 

Weiss, M., Sýkorová, Z., Garnica, S., Riess, K., Martos, F., Krause, C., Oberwinkler, F., 

Bauer, R. & Redecker, D. (2011). Sebacinales everywhere: previously overlooked ubiquitous 

fungal endophytes. PloS one, 6, e16793. 

Whalley, W. R., Clark, L. J., Gowing, D. J. G., Cope, R. E., Lodge, R. J. & Leeds-Harrison, 

P. B. (2006). Does soil strength play a role in wheat yield losses caused by soil drying?. Plant 

and Soil, 280, 279-290. 

White, J. F., Jr. & Torres, M. S. (2010). Is plant endophyte-mediated defensive mutualism the 

result of oxidative stress protection?. Physiologia Plantarum, 138, 440-448. 

Xu, L., Wang, A., Wang, J., Wei, Q. & Zhang, W. (2017a). Piriformospora indica confers 

drought tolerance on Zea mays L. through enhancement of antioxidant activity and expression 

of drought-related genes. The Crop Journal, 5, 251-258. 

Xu, Y.-F., Li, S.-S., Li, L.-H. et al. (2017b). QTL mapping for yield and photosynthetic 

related traits under different water regimes in wheat. Molecular Breeding, 37, 34. 

Yadav, V., Kumar, M., Deep, D. K., et al. (2010). A phosphate transporter from the root 

endophytic fungus Piriformospora indica plays a role in phosphate transport to the host plant. 

Journal of Biological Chemistry, 285, 26532-26544. 

Yaghoubian, Y., Goltapeh, E., Pirdashti, H., et al. (2014). Effect of Glomus mosseae and 

Piriformospora indica on growth and antioxidant defense responses of wheat plants under 

drought stress. Agricultural Biology, 3, 239-245. 



33 
 

Yu, J. & Buckler, E. S. (2006). Genetic association mapping and genome organization of 

maize. Current Opinion in Biotechnology, 17, 155-160. 

Yu, J., Holland, J. B., McMullen, M. D. & Buckler, E. S. (2008). Genetic design and statistical 

power of nested association mapping in maize. Genetics, 178, 539-551. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



34 
 

2 Chapter 2: Characterization of spatial variability of wheat 

responses to water limitation 

2.1 Abstract 

The effect of a prolonged period of drought on soil moisture deficit, soil temperature and 

performance of high yielding winter wheat variety ‘KWS Kielder’ throughout the growing 

season (2016/17) was assessed in a field experiment on a free-draining deep sandy loam soil. 

‘KWS Kielder’ was tested under rainfed/irrigated treatment using integrative drone-based and 

proximal sensing approaches of time series green canopy development and multispectral 

indices as well as plant height, flowering time, above ground biomass and grain yield. The 

results showed soil temperature to diverge by 2°C between the treatments and maximum Soil 

Moisture Deficit (SMD) peaking over 120 mm in the rainfed plots, with large deficits (>75 

mm) from late April that coincided with tillering and more prolonged large deficits from mid-

June to mid-July (>100 mm), significantly decreasing green area index and (Normalized 

Difference Vegetation Index (NDVI) at all measured dates post irrigation. Thousand grain 

weight and grains/ear were not significantly suppressed by drought, opposite to flowering 

time, plant height and above ground biomass decreased, all resulting in a significant (p≤0.001) 

decrease in grain yield of 31.5%. Concluding the reliability of using such set of soil and time 

series crop measurements in detecting the dynamic effect of drought on grain yield and its 

source traits of winter wheat under UK conditions. 

Keywords: Wheat; drought; soil moisture deficit; soil temperature; multispectral indices; 

canopy temperature. 

2.2 Introduction 

 Wheat (Triticum aestivum L.) is one of the most important food crops supporting the global 

population, accounting for 29% of world cereal production (FAO, 2019). The continued 

growth in the world population is projected to necessitate an approximate doubling of the 

food supply (especially of grain crops) by 2050 to ensure food security against the challenge 

of accelerating climatic change likely to include more frequent drought episodes. Even before 

factoring in the possible impacts of climate change in the future, drought is already a very real 

limitation on crop productivity in the UK, with the estimated shortfall between average 

evapotranspiration and average rainfall during spring and summer at about 130 mm (Jones et 

al., 1985). 
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Against this, soils are typically brought to field capacity before spring, allowing deep soils 

with fine texture to hold an adequate amount of moisture to compensate this shortfall (Gales 

and Wilson, 1981). This means that only a minority of UK arable land planted to wheat is 

subjected to drought in an average year (Bailey, 1990). However, rainfall patterns are 

variable, and most wheat crops are expected to be subject to a degree of water limitation in a 

dry year. The most recent and reliable estimate of the magnitude of UK wheat production 

losses to water limitation suggests that 30% of the UK wheat arable area faces annual losses 

of 1-2 tones/ha due to insufficient water availability at sensitive stages of wheat development 

such as stem elongation, anthesis and grain filling (Foulkes et al., 2001). 

Under UK conditions, because of the sporadic nature of profound drought episodes during 

the growing season, few studies comparing rainfed and irrigated regimes have been conducted 

in open field conditions, though those that have been conducted highlight the potential for 

dramatic changes in phenology and productivity. For example, when Foulkes et al. (2001) 

and Foulkes et al. (2002) compared irrigated to rainfed treatments over three consecutive 

seasons, soil moisture deficit was found to exceed 140 mm during the growing season, with 

prolonged episodes over 75 mm which restricted canopy expansion and decreased canopy 

area at late grain filling, advanced flowering date by up to 9 days, lowered total above-ground 

biomass between 4.2 t/ha and 6 t/ha and lowered grain yield by between 1.38 t/ha and 4.55 

t/ha. 

Whalley et al. (2006) found that grain yield of wheat variety ‘Claire’ was reduced by 16.6 

and 35.5% in 2003 and 2004, respectively and emphasised the role that physical restriction of 

root growth in drier (and hence stronger) soils was a significant factor in limiting yield, while 

another experiment in well-drained, sandy soil using six elite UK winter wheat lines showed 

grain yield reduction comparing rainfed to irrigated treatment of 68% and 29% in 2009 and 

2010, respectively (Dodd et al., 2011). Foulkes et al. (2007) reported 22-27% loss of potential 

yield due to insufficient water availability in two doubled haploid populations. 

Penman (1970) proposed the concept of limiting deficit (LD), which is the value of potential 

soil moisture deficit (SMD) above which the grain yield diminishes. LD is highly dependent 

on the soil’s available water capacity and on the critical growth stage of the crop; for example, 

LD was 40 mm for spring wheat before ear emergence. Under different soils and 

environmental conditions in New Zealand, Jamieson et al. (1995) found LD to be 262 mm 

for winter wheat subject to late season drought.  

https://paperpile.com/c/nRoEtG/NECn
https://paperpile.com/c/nRoEtG/NECn
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Most studies testing high temperature impact on crop response almost always consider air 

temperature, while the counteractive effect of high soil temperature at root zone on crop 

performance was poorly studied. Wraith and Ferguson (1994) compared the effect of two soil 

temperature treatments using cover materials and reported up to 65 mm difference of 

cumulative soil water depletion between treatments and significantly accelerated soil water 

depletion in warmer soil. 

The advances and availability of commercial devices that measure the spectral index 

Normalized Difference Vegetation Index (NDVI) and estimate ground cover, biomass and 

senescence rate made it feasible to phenotype large crop populations on a wide scale 

successfully (Lopes and Reynolds, 2012). A bottleneck in screening big fields for 

multispectral indices and canopy temperature, is the sensitivity of these measurements to 

environmental parameters and hence the need to be collected in a short time span, which can 

be attained by integrating UAV measurements. For example, Tattaris et al. (2016) imposed 

different combinations of heat and drought stresses on wheat, significant correlations were 

found between canopy temperature and NDVI and key measured phenotypes such as biomass 

and yield, with higher correlations when using drone-based imagery compared to proximal 

ground-based ones. Li et al. (2019) found air born NDVI and thermography to be repeatable 

and suggested them as a reliable guide to selection of root depth and grain yield.  

Few studies have aimed to trace the dynamic effect of extended dry episodes on time series 

canopy development using non-destructive approaches, including canopy development over 

time and multi-spectral indices using integrative proximal sensing and drone-based 

measurements under the UK conditions. 

The objectives of this study were to: (a) update the literature on limitation of yield under 

drought using a contemporary high-yielding wheat variety (b) ascertain the magnitude of 

divergence in water availability between large rainfed versus irrigated blocks by quantifying 

rainfall, soil temperature and soil moisture deficit; (c) test the effect of spatial variation of the 

field on the measured traits; and (d) detect the differential effect of divergent water availability 

regimes on crop canopy development, plant height, flowering time, biomass and grain yield 

using high-throughput phenotyping techniques that could be used in parallel to characterize 

genetic responses of an entire multi-parent mapping population.  
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2.3 Materials and methods 

2.3.1 Plant Materials 

This experiment is part of a larger field trial accommodating 1600 plots of nearly 400 

recombinant inbred lines of the winter wheat multiparent advanced inter-cross (MAGIC) 

population (Mackay et al., 2014). The analysis of genetic architecture of drought responses 

will be reported In Chapter 3. This report focuses on the variety ‘KWS Kielder’ (AFP 1/2076 

bred by KWS UK Ltd), which was used as a highly replicated control in the field trial during 

the growing season 2016-2017.  

2.3.2 Site and experimental treatments 

Field work was carried out in the University of Reading’s Sonning farm, Sonning, UK (0°54’ 

W, 51°29’ N), where the soil is a free-draining deep sandy loam. The experiment was 

designed as a Randomized Complete Block (RCB), with two main blocks (reps) and 16 plots 

within each block, each 0.5m x 2m KWS Kielder plot was located within a 50 m2 sub-block 

which were included as covariates in the statistical analysis to account for spatial variation in 

the field (which spanned 2 hectares). Seeds were drilled mid-October in 0.5 m x 2 m plots 

and seeding rate of 350 seeds/m2. Plots were maintained free of weeds and disease with the 

appropriate herbicides and fungicides and received standard nutrient regime. 

Two of the four replicates were managed to receive supplementary irrigation from T-tapes 

running through the gap between rows 2 and 3 of a 5-row plot at the rate of 3.7 mm/day. 

Irrigation started on 26th April 2017 and was terminated on the 26th June 2017 giving a total 

supplementary irrigation of 222 mm. 

To quantify the water availability in soil at different depths among the two water regimes, 1-

meter deep fiberglass access tubes (ALT-1 Access Tube, Delta T Devices, Cambridge, UK) 

were inserted at 27 of the 32 plots shortly after emergence. Soil moisture measurements were 

recorded from early May at 10-day intervals. 

Soil moisture deficit (SMD) was calculated using the field-level model IRRIGUIDE with 

onsite rainfall measurements and other daily weather data taken from the on-site weather 

station (Silgram et al., 2007). 

To obtain frequent time series data quantifying soil temperature, 16 I-button Hygrochrons 

(DS1923) were inserted in soil at 50 cm depth in 16 of the 27 plots with the soil moisture 



38 
 

access tubes in January 2017 and soil temperature was recorded each hour from 1st of February 

up to harvest time. 

2.3.3 Crop measurements 

Red-Green-Blue (RGB) images of high quality were captured at fixed height using a Canon 

EOS 6D camera with a resolution of 5472 x 3648 pixels, mounted on a proximal sensing cart 

(Supplementary material, Figure S2. 1) similar to that described by White and Conley (2013). 

Custom software was then used to estimate the Green Area Index (GAI) from the high-

resolution pictures by measuring the proportion of green pixels in an image (supplementary 

material, Figure S2. 2). RGB images were taken from seedling emergence almost once a 

month until onset of irrigation at late April where it was taken every 10-15 days depending 

on weather conditions until partial lodging of a small proportion of plots after a summer storm 

at the end of June closed the gaps between rows and prevented further use of the proximal 

sensing cart. 

Time series GAI data were then used to infer secondary traits from a spline curve model that 

interpolates data between points and extract potential growth indicators for biomass 

accumulation: canopy duration (CD) was measured as the number of thermal degree days 

spent above 50% of maximum value and maximum green value (MGV) using R package 

AUC (Ballings and Van den Poel, 2013). To overcome difficulty of counting tillers, the 

number of ears/unit area was counted as the total number of visible ears in the captured RGB 

images which had a fixed field of view covering 0.16 m2. 

Canopy temperature (CT) was captured once by thermal camera around solar noon (13:04 

GMT) 19th June 2017 which was notable as one of the hottest days during the entire growing 

season, where air temperature at the adjacent weather station peaked at 32.1°C during the 

imaging session. Multispectral reflectance (NDVI) was recorded four times after the irrigation 

treatment started. 

Plant height was measured using the rising plate (Sharrow, 1984) as the average of two 

measurements per plot at grain filling stage. Flowering time (FT) was recorded as number of 

days from 1st of May to Zadok’s growth stage (GS67) where about 75% of anthers are 

extruded in more than 50% of the plants in the plot. Final grain yield was estimated at harvest 

time by recording plot harvest weight and adjusting for plot length area and grain moisture 

content. Two days prior to harvesting, four ears were sampled from each plot to estimate 

thousand grain weight (TGW) and number of grains/ear. 
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 At harvest time the plots were manually trimmed above ground, weighed (fresh weight) as 

total above-ground biomass before being threshed and seed yield calculated in t/ha. 

2.3.4 Statistical analysis 

All descriptive statistics (mean, variance, standard error, distribution) and Analysis of 

Variance (ANOVA) were carried out in R software R 3.3.4 (R development core team, 2017). 

2.4 Results and discussion 

2.4.1 Level of drought in rainfed conditions. 

The spring of 2017 was exceptionally dry in the United Kingdom by historical standards. 

Rainfall anomaly charts published by the UK Met Office showed that across large areas of 

SE England, where this investigation was carried out, the total rainfall for the month of April 

was less than 20% of the 1981-2010 average (supplementary material, Figure S2. 3). 

Rainfall data from the Sonning Farm meteorological station from which records are available 

for 60 years showed that April 2017 monthly rainfall (6.8 mm) was just 13.6 % of the 1981-

2010 average of 50 mm. Against this backdrop of unusually low levels of natural rainfall, it 

was possible to produce dramatic differences in soil moisture deficit by applying irrigation to 

half the replicate blocks in the experiment. Indeed, within our experimental field, soil 

moisture content measured by the access tubes showed the irrigated plots to have almost 

double the moisture content of the rainfed plots at all measuring dates across the soil profile 

(10-100 cm), except for the first measurement in early May that was immediately preceded 

by a rainfall event (supplementary material, Figure S2. 4). 

Supplementary irrigation started in late April (at around 1300 degree-days from sowing), in 

the middle of a prolonged period of almost no rainfall where cumulative precipitation had 

reached a plateau. The plateau in cumulative precipitation persisted in the rainfed plots while 

cumulative precipitation progressively increased in the irrigated block (Figure 2.1c). 

Supplementary irrigation lead to a rapid divergence in SMD reaching 30 mm difference 

between treatments within ten days and reaching 93 mm by mid-June. 

Maximum soil moisture deficit (SMD) in the rainfed blocks peaked over 120 mm, with large 

deficits (>75 mm) from late April that coincided with tillering and more prolonged large 

deficits from 13th June to 18th July (>100 mm) that covered most of the grain filling stage 

(Figure 2.1d), all imposing significant stress on crop development and performance, 

illustrating that potential SMD exceeded the limiting deficit LD (Penman, 1970), as observed         
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Figure 2.1 Changes in (a) GAI; (b) NDVI, (c) cumulative precipitation and (d) soil 

moisture deficit, from germination to late grain filling over thermal time (expressed in 

degree days). Blue and red lines show irrigated and rainfed treatments respectively. The 

green vertical line indicates the time of onset of supplementary irrigation. 
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in significant reduction in grain yield. 

Soil average daily temperature at 50 cm depth was found to differ between the two treatments 

from late April onwards, with irrigation driving a difference >1°C from mid-June to mid-

July and occasionally exceeding 2°C. A reduction in soil temperature as a consequence of 

irrigation was previously reported (Dong et al., 2016, Karandish and Shahnazari, 2016) and 

later senescence of winter wheat was detected in cooler soils (Wraith & Hanks 1992), 

moreover, Dong et al. (2016) found that during the hot summer months, top layer soil 

temperature peaks in early evenings which if prolonged and repeated results in hindered plant 

growth and yield of maize and that well watering at night reduced soil temperature, increasing 

root length and marginally increasing grain yield by 10%. 

2.4.2 Spatial variation 

The means, standard error of mean (S.E.) and significance of treatment response were 

calculated for 22 traits (Table 2.1). 

The possible impact of spatial variation was investigated by ANOVA with block and sub-

block as random effects. These showed that the main blocks had no significant impact on any  

 Figure 2.2 Heatmap of grain yield (GY) gradient by sub blocks. 

https://paperpile.com/c/nRoEtG/DrMZ


42 
 

of the measured traits, as did sub block/block (Figure 2.2), except for NDVI 4th and 16th of 

May and plant height, where the overall blocks showed no significant difference, but the 

individual sub blocks/block appeared to differ significantly. To illustrate this, (supplementary 

material, Figure S2. 5 and Figure S2.6) show the locations of ‘KWS Kielder’ plots in a map 

of the field trial and heat maps for sub block effect for the measured traits.  

The vanishingly low significance of block or sub-block variation in comparison to marked 

treatment effects is crucial to the wider objective of being able to precisely quantify responses 

of a large number of individual genotypes physically distributed over a two hectares land area  

Table 2.1 P-values and means of measured phenotypes under the two treatments. Canopy 

duration and maximum green value were estimated as one value/block. 

Trait P-value s.e Mean 

 Treatment Block Sub block/block  irrigation rainfed 

GAI.213(dd) 0.091 <0.001*** 0.079 0.001 0.02 0.03 

GAI.486(dd) 0.081 <0.001*** 0.076 0.007 0.06 0.08 

GAI.841(dd) 0.264 0.006** 0.636 0.012 0.23 0.24 

GAI.1192(dd) 0.127 0.912 0.778 0.016 0.50 0.45 

GAI.1388(dd) <0.001*** 0.232 0.130 0.014 0.48 0.38 

GAI.1471(dd) <0.001*** 0.520 0.095 0.016 0.55 0.41 

GAI.1630(dd) <0.001*** 0.117 0.926 0.024 0.67 0.46 

GAI.1994(dd) <0.001*** 0.360 0.965 0.026 0.64 0.42 

NDVI.1409(dd) <0.001*** 0.543 0.005** 0.021 0.76 0.58 

NDVI.1555(dd) <0.001*** 0.175 0.011* 0.026 0.82 0.57 

NDVI.1976(dd) <0.001*** 0.119 0.778 0.014 0.78 0.64 

NDVI.2553(dd) <0.001*** 0.232 0.869 0.013 0.54 0.40 

CT <0.001*** 0.411 0.037* 0.467 29.32 34.34 

FT <0.001*** 0.842 0.969 0.295 38.06 35.38 

Pht <0.001*** 0.163 0.016* 0.709 70.40 63.94 

CD 0.029* 0.540 ND 35.400 846.50 713.50 

MGV 0.025* 0.422 ND 0.060 0.66 0.46 

Biomass 0.009** 0.643 0.227 0.873 29.73 21.58 

TGW 0.223 0.936 0.732 0.680 46.37 44.54 

Grains/ear 0.809 0.046* 0.593 1.705 84.60 85.33 

Ears/area 0.002** 0.311 0.658 2.392 92.12 76.53 

Grain yield <0.001*** 0.981 0.524 0.499 15.28 10.48 

 

*, **, *** Statistically significant at p≤0.05, 0.01, 0.001, respectively. 

ND. Not determined.  
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sufficiently homogeneous treatment effect to be able to accurately map genetic factors 

underpinning the differences in response. 

2.4.3 Trait responses 

The treatment means of GAI did not differ until late April (prior to applying irrigation) 

showing homogeneity of the replicates designated for both water treatments (Figure 2.1a), 

GAI development in both treatments was suppressed by late April as a result of large SMD 

but was significantly mitigated in the irrigated treatment leading to significant divergence 

since imposing supplementary irrigation up to late season. This result agrees with Foulkes et 

al. (2001), who found significant increase in GAI as a result of irrigation in dry year at growth 

stages GS 39 and GS 61.  

 

 

 

The biological parameters obtained from time series GAI; Canopy duration and Maximum 

green value were both significantly suppressed by the drought, showing the impact of these 

stress episodes on means of solar radiation interception and subsequently on grain yield. 

Figure 2.3 Phenotypic responses to irrigation. (a) flowering time (expressed in days from 1st 

May), (b) plant height in cm, (c) canopy temperature in °C, (d) above-ground biomass in t/ha 

, (e) grain yield and (f) ears/unit area. In each panel, blue box and whiskers denotes the 

irrigated (I) treatment and red the rainfed (R) treatment. 
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NDVI measurements recorded between 4th May and 14th July always showed a significant 

effect of the irrigation treatment in stressing the plants under rainfed conditions (Figure 2.1 

b) and indicating later senescence in the irrigated blocks, where Foulkes et al. (2001) found 

post anthesis drought to advance senescence by 7 days. 

Drought induced a small but significant effect on flowering time, advancing it on average by 

2.68 days (Figure 2.3a); this limited effect of drought might be explained by the alleviating 

effect of mid-May rainfall, this finding agrees with Foulkes et al. (2007) who detected an 

average of 1 day advanced anthesis in drought treatment, while it was found to be significantly 

advanced by up to 9 days in Foulkes et al. (2001), which might be explained by seasonal 

differences of timing and duration of the drought treatment relative to anthesis. 

In contrast to the small size effect on flowering time, canopy temperature (CT) was 

significantly higher in the rainfed than the irrigated plots by an average of 5°C (Figure 2.3 c) 

which is suggested to be one of the main influencers of reduced yield under stress, as Crain 

et al. (2016), Thapa et al. (2018) found a significant negative correlation between CT and 

grain yield, Li et al. (2019) reported wheat with cooler canopies to have 7-19% higher yield 

than warmer ones after testing three mapping populations. 

Plant height was significantly reduced by the drought on average of 6.46 cm between the two 

treatments (Figure 2.3 b) in agreement with previous studies reporting the suppressive effect 

of drought on wheat height (Liu et al., 2017, Zhang et al., 2018). 

Above ground biomass was compared with rainfed/irrigation treatments and showed that 

rainfed plot lost significantly an average of 8.2 t/ha, which is likely to be the result of the 

suppression in plant height and canopy development caused by the drought stress at different 

stages (Figure 2.3 d). This effect agrees with Foulkes et al. (2001), Foulkes et al. (2002) and 

Varga et al. (2017) findings on winter wheat. 

More importantly, for all traits which were measured both in the KWS Kielder control plots 

and across the wider experiment, there was full agreement both in terms of direction and 

magnitude of phenotypic responses (data shown in chapter 3), which means that the 

demonstration of limiting soil moisture in rainfed conditions in the control plots and their 

consequences for rates of growth, development and ultimately yield can be extrapolated to 

the experiment as a whole. 
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2.4.4 Yield and yield components 

Grain yield was 4.8 t/ha lower in rainfed compared to irrigated plots (Figure 2.3 e). As shown 

in Table 1, neither TGW nor number of grains/ear were significantly affected by the drought 

episodes, indicating that they had the least contribution to differential yield gain, on the other 

hand number of ears/unit area (Figure 2.3 f) was significantly reduced by 17% in the rainfed 

part of the field, which shows that yield response in this experiment might have been more 

dependent on tillering which was the phase of first drought episode on season. Foulkes et al. 

(2002), (Foulkes et al., 2007) found that number of ears/m2 was significantly reduced only in 

years where drought occurred pre-anthesis, as was the case in this study. On the other hand, 

they found significant parallel reductions in TGW and number of grains/ear driven by high 

SMD during grain filling phase, whereas SMD during grain filling was lower in this study. 

 

2.5 Conclusion 

The results of this study show that UK wheat fields experience drought spells during the 

growing season that was detected quantitatively in terms of acute and prolonged SMD and 

higher soil temperature in rainfed plots, which in turn lead to high canopy temperature and 

suppression of time series crop canopy indices, plant height, biomass, number of ears/unit 

area and grain yield. Moreover, the spatial effect of the field on the measured traits was not 

significant given a total area of the experimental field of 2 hectares. These findings indicate 

the reliability of such experimental design, environmental measurements and water limitation 

magnitude to test big size mapping population response to drought and dissect genetic 

underpinnings of these responses. 
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2.7 Supplementary material 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S2. 1 Proximal sensing cart used for tracking canopy cover development. 
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Figure S2. 2 Custom software (Pheno-harvesrt) processing of green pixels on time series pictures, 

capturing crop canopy cover development. 
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Figure S2. 3 UK rainfall anomaly map for April 2017 (Met office 2017) 

Figure S2. 4  Average soil moisture within ‘Kielder’ field plots under the two water availability regimes. 

Blue and red lines correspond to irrigated and rainfed treatments, respectively. 
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Figure S2. 5 Heatmap of phenotypes gradient by sub blocks 
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Figure S2.6 Field design showing ‘Kielder plots’ (in white) representing subblocks within the whole 

MAGIC panel. Blue and red parts of the field indicate irrigated and rainfed blocks, respectively. 
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Figure S2. 7 ’Kielder’ plots (mid-grain filling) a: irrigated, b: rainfed. 
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3 Chapter 3: Genetic underpinnings of MAGIC wheat         

response to drought 

3.1 Abstract 

Sustaining yield potential under drought stress could result from a combination of phenotypic 

responses that accumulate over time. Therefore, characterising significant phenotypes 

throughout the growing season and dissecting their genetic basis should be a useful approach 

to describe the phenological and genetic architecture of wheat responses to drought. In this 

study, we conducted detailed above ground phenotyping combining proximal sensing and 

drone-based approaches of 392 RILs and founders of the eight-way “elite MAGIC” winter 

wheat population in a field trial with contrasting water availability regimes. The traits most 

significantly (p≤0.001) correlated with yield were grains.m-2 (r=0.68) and (r=0.72) and 

canopy temperature depression (CTD) (r=0.52) and (r=0.61) in rainfed and irrigated 

condition, respectively. QTL analysis for yield revealed a total of 16 novel QTL expressed 

commonly across both treatments explaining individually 1 to 4.5% as well as treatment 

dependent QTL, with remarkable examples of grain yield QTL collocating major QTL such 

as grains.m-2 QTL on 3A and Rht-D1 pleiotropic region on chromosome 4D. A search for 

two-way SNP-SNP epistatic interactions for yield, identified significant pairs of alleles 

occasionally coinciding with QTL for crop canopy indices. The results of this study 

demonstrate how key phenotypes might explain yield under given environmental parameters 

and reveal novel QTL for drought tolerance associated traits that could be utilized in wheat 

breeding for resistance to such stress. 

Keywords: wheat, QTL, drought stress, MAGIC, canopy indices 

3.2 Introduction 

 Wheat (Triticum aestivum L.) is one of the most important food crops supporting the global 

population, accounting for 29% of world cereal production (FAO, 2019b). Expecting future 

population growth and a doubled need of food production ensuring food security, this should 

be fulfilled while expecting climatic changes such as more frequent drought episodes which 

is currently affecting about 30-49% of the global wheat growing area in various degrees 

(FAO, 2019a). Despite the efforts put into wheat breeding program, yield genetic gain does 

not exceed 1% per year (Reynolds et al., 2012), with reports that this increase is expected to 
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be reduced due to climatic variability (Wiebe et al., 2015) and in Europe, genetic gain is 

predicted to be partially counteracted by high temperature during grain filling and drought 

during stem elongation (Brisson et al., 2010). 

Winter wheat in the UK faces 1-2 t/ha yield annual losses in 30% of the UK wheat arable 

area, due to the limited water availability at drought sensitive developmental stages such as 

stem elongation, anthesis and grain filling (Foulkes et al., 2001). This necessitates breeding 

for cultivars capable of sustaining yield potential under possible drought episodes during the 

growing season and having a comprehensive understanding of the physiological and 

morphological traits required for such breeding programs, in addition to defining the genetic 

architecture reflecting this ideotype. 

Few field trials designed to explicitly examine the impacts of drought in open field conditions 

have been conducted in the UK due to the unpredictability and sporadic nature of drought 

episodes during the wheat growing season. Nonetheless Foulkes et al. (2001) and Foulkes et 

al., (2002) found soil moisture deficit (SMD) to exceed 75 mm for long period and peaks over 

140 mm, driving grain yield loss of 1.38 t/ha and 4.55 t/ha while other studies reported that 

wheat grown on well drained/sandy soils and facing prolonged dry episodes, showed a 

significant reduction in yield in the non-irrigated treatment of between 16.6 and 68% 

(Whalley et al., 2006, Dodd et al., 2011). 

Morphological and physiological traits that mitigate the drought stress effect vary according 

to the severity and timing of the drought episode. Under the UK drought, which is usually 

mild and sporadic in nature, highly correlated with yield under drought were early flowering 

high GAI, water use efficiency and stem soluble carbohydrates (Foulkes et al., 2001, Foulkes 

et al., 2002). Foulkes et al. (2007) found persistence of green flag leaf area to be a trait with 

most significant correlation with yield under drought and reported presence of awns and 

flowering time to have neutral effects in the absence of terminal drought. 

 Given the massive amount of genotypic data that became available due to advances in 

genomics technology, one of the main constraints of crop breeding programs currently is 

accurate and efficient phenotyping and it becomes more challenging if the aim is to phenotype 

large number of lines for time series non-destructive traits (Tuberosa, 2012). To tackle this 

bottleneck, several researchers developed high-throughput phenotyping platforms to gather 

time series of red-green-blue (RGB) and multispectral images, plant height and canopy 

temperature, either proximal sensing (Busemeyer et al., 2013, Crain et al., 2016) or unmanned 
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aerial vehicles (UAV) (Gracia-Romero et al., 2019, Guan et al., 2019). Moreover, the 

advances in spectral index devices and thermal cameras made it feasible to phenotype large 

crop populations on a wide scale successfully (Lopes and Reynolds, 2012). 

Highly significant correlations between yield and spectral reflectance indices with high 

repeatability and heritability were reported, for example, Guan et al. (2019) found significant 

correlation (r= 0.6-0.8) between NDVI and grain yield. NDVI and canopy temperature were 

reported to have (r= 0.3-0.39) and (r= -0.25, -0.52) correlation with root depth. Tattaris et al. 

(2016) found a significant correlation between canopy temperature and NDVI and key 

measured phenotypes under heat and drought stress with higher correlations when using 

drone-based imagery compared to proximal ground-based ones. 

The Multi-Parent Advanced Generation Inter-Crosses (MAGIC) is believed to overcome the 

drawbacks of both biparental populations and association panels, increasing simultaneously 

the power, diversity and resolution of detecting genomic regions associated with different 

traits. In this schema, multiple inbred founders are intermated for several generations before 

deriving the inbred lines each inheriting a unique fine-scale mosaic genome of contributions 

from all founders, all together making a diverse population. A number of studies have already 

been reported using the same population used in this experiment, Thepot et al. (2015) used it 

to detect QTL controlling anthesis and were able to identify markers tagging Ppd-D1 gene 

and identifying genetic elements that influence the timing of developmental stages until 

senescence was carried out by Camargo et al. (2016). Gardner et al. (2016) constructed the 

first eight-parent wheat MAGIC genetic map for wheat using 643 F5 RILs, comprising 18601 

SNP markers and concluded that the elite MAGIC population has captured > 80% of the 

genetic diversity of the UK wheat germplasm after comparing the SNP markers to those of 

the Wheat Association Genetics for Trait Advancement and Improvement of Lineages  

“WAGTAIL” association panel (520 varieties). 

Recent studies using crop MAGIC populations demonstrated not only their suitability to 

discover novel QTL-QTL interactions (Mathew et al., 2018) but to do so amongst a selection 

of alleles that are representative of the gene pool from which the multiple founders are drawn, 

as is the case with the elite wheat MAGIC population that contains 74% of alleles found in a 

panel of varieties representing the UK winter wheat gene pool (Mackay et al., 2014). 

The aims of this study were (1) quantifying associations among measured phenotypes and 

association with yield under contrasting water regimes, (2) identifying quantitative trait loci 
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(QTL) and genetic interactions associated with various phenotypic traits under both rainfed 

and irrigated conditions in order to describe the optimal genetic architecture of genotypes that 

can sustain yield potential under drought stress and to investigate for transgressive segregation 

among the MAGIC genotypes with the potential of sustaining yield under drought stress. 

3.3 Materials and methods 

3.3.1 Plant material 

The germplasm is a collection of F7, 384 recombinant inbred lines (RILs), as a representative 

subset of the >1000 RILs winter wheat elite eight-founder MAGIC population (Mackay et 

al., 2014), in addition to the eight founder varieties (Supplementary material, Table S3. 1) 

and a check variety ‘Kielder’ (KWS UK Ltd). The RILs and parent varieties seeds were all 

obtained from on-site multiplication field plots that were set the previous year.  

3.3.2 Field trial 

The genotypes panel was evaluated during 2016–2017 growing season at the Reading 

University Crops Research Unit, Sonning, UK (0°54’W, 51°29’ N), where the soil is a free-

draining deep sandy loam. A split plot design was employed in partially randomized complete 

blocks. Consisting of two blocks (replicates) and 8 sub-blocks/block. The whole plot was 

assigned for the irrigation/rainfed treatment, while the split plots were dedicated for the 

genotypes. In each whole plot there were 384 MAGIC RILs, the 8 parents and 8 replicates of 

‘KWS Kielder’ (allocated randomly once in each sub-block). Seeds were drilled mid-October 

in 0.5 x 2 m plots and seeding rate of 350 seeds/m2. Plots were maintained free of weeds and 

disease with the appropriate herbicides and fungicides and received standard nutrient regime. 

Two of the four replicates were managed to receive supplementary irrigation from T-tapes 

running through the gap between rows 2 and 3 of a 5-row plot at the rate of 3.7 mm/day. 

Irrigation started on 26th April 2017 and was terminated on the 26th June 2017 giving a total 

supplementary irrigation of 222 mm. 

3.3.3 Phenotyping 

The measured traits are: time series crop canopy cover development (referred to as GAI) 

measured at eight occasions throughout the growing season, canopy temperature (CT) 

captured around solar noon 19th June 2017 which was notable as one of the hottest days during 

the entire growing season and plant height at grain filling, multispectral wavelengths 

reflectance (NDVI) recorded four times since implementing irrigation, flowering time (FT) 

expressed in thermal degree days, thousand grain weight (TGW), number of grains/ear and 
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grain yield. Full details of phenotyping the above mentioned traits in addition to quantifying 

soil water availability, soil moisture deficit (SMD) and soil temperature is described in 

Chapter 2, except grain yield, which in this experiment was estimated at harvest time by 

recording plot harvest weight and adjusting for plot length area and grain moisture content on 

combine. Grain number m-2 was calculated by dividing yield (g) per square meter by mean 

grain weight (g) and canopy temperature depression (CTD) is expressed as the difference 

between air temperature and canopy temperature (CTD = T.air −T.canopy) (Balota et al., 

2007). Abbreviations used in this article are listed in Table 3.1. 

Time series GAI data was then used to infer secondary traits from a spline curve model that 

interpolates data between points and extracts potential growth indicators for biomass 

accumulation, such as the area under the plotted curve (AUC) using R package AUC (Ballings 

and Van den Poel, 2013). 

Table 3.1 Phenotypes abbreviation description 

Abbreviation Trait 

Grains.E-1 Number of grains per ear 

TGW* Thousand grain weight 

Grains.m-2 Number of grains per square meter 

FT* Flowering time 

P.ht* Plant height 

GY* Grain yield 

CTD* Canopy temperature depression 

GAI.(213dd) Green area index (degree days) 

GAI.(486dd) Green area index (degree days) 

GAI.(841dd) Green area index (degree days) 

GAI.(1192dd) Green area index (degree days) 

GAI.(1388dd) Green area index (degree days) 

GAI.(1471dd) Green area index (degree days) 

GAI.(1630dd) Green area index (degree days) 

GAI.(1994dd) Green area index (degree days) 

AUC Area under the spline curve 

NDVI.(1409dd) Normalized difference vegetation index (degree days) 

NDVI.(1555dd) Normalized difference vegetation index (degree days) 

NDVI.(1976dd) Normalized difference vegetation index (degree days) 

NDVI.(2553dd) Normalized difference vegetation index (degree days) 

 

*TGW (g), FT (thermal degree days), P.ht (cm), GY (t/ha) and CTD (oC) 
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3.3.4 Statistical analysis 

R software R 3.3.4 (R development core team, 2017) was used to analyse experimental data. 

Means and standard errors were calculated using ANOVA to identify differences between 

treatments. Within the ANOVA the genotypes were defined as a fixed effect as was water 

stress, while replicates were treated as random. Broad sense heritability of phenotype data 

was defined as: 𝐻2=𝜎2𝐺/𝜎2𝑃 

where H2 is the broad sense heritability, σ2G is the genotypic variance and σ2P is the total 

phenotypic variance.  

Best Linear Unbiased Predictions “BLUPs” of all phenotypes were calculated to account for 

variations due to spatial effects of the field prior to genetic analysis using R/Lme4 Package 

(Bates et al., 2015). Correlations between the traits were estimated using the R /corrplot 

package (Wei and Simko, 2017). 

3.3.5 QTL analysis 

The MAGIC lines were genotyped using the Illumina Infinium iSelect 90,000 SNP wheat 

array (Victorian AgriBiosciences Center, Bundoora, VIC 3083, Australia) and a 

comprehensive genetic linkage map for the population was constructed by Gardner et al. 

(2016). To reduce the computational requirements and simplify the genetic analysis, the full 

20,639 full SNP markers set was filtered by eliminating all except one of the perfectly 

correlated markers, resulting in 3535 unique markers. 

The MAGIC linkage map was constructed using R/mpMap (Huang and George, 2011). 

Founder haplotype probabilities were computed with the mpprob function in mpMap using a 

Hidden Markov model implemented in R/qtl (Broman et al., 2003). Composite interval 

mapping exploiting the eight founders’ identity by-descent haplotype probabilities (IBD-

CIM). For interval mapping, a linear model was fit by estimating separated fixed effects for 

each of the eight founders at each putative QTL position (‘Xi-19’ was arbitrarily set as the 

reference haplotype), using the mpIM function in mpMap (program ‘qtl’). When determining 

whether QTL listed independently in the R/mpmap outputs were redundant or collocated 

(same locus detected independently in treatments or across different traits), initially only QTL 

confidence intervals sharing a flanking marker were considered redundant/collocated. Further 

inspection of QTLs for the same trait separated by only a few CM highlighted instances where 

direction and magnitude of parental effects led us to override the strict positional criterion. In 

order to detect interactions between loci, a standard two-dimensional whole-genome scan was 
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performed for each trait using PLINK software (Purcell et al., 2007, Chang et al., 2015). 

Redundant interactions between highly correlated SNPs on the same chromosomes were 

removed and a threshold P-value of 1.00E-05 was applied to consider a SNP–SNP interaction 

as significant. 

3.4 Results 

3.4.1 Level of drought in rainfed conditions 

The spring of 2017 was remarkably dry by historical standards of the United Kingdom, where 

the total rainfall for spring was 40-50%, specifically, April was less than 20% of the 1981-

2010 average (Supplementary material, Figure S3. 1). These figures were confirmed by on 

site rainfall data from the Sonning farm meteorological station from which records are 

available for 60 years showing that spring months 2017 rainfall was 43% and April monthly 

rainfall (6.8 mm) was just 13.6 % of the 1981-2010 average of 50 mm. Soil moisture content 

measured by the access tubes (restricted to ‘Kielder’ plots to avoid genotypic differences in 

root absorbance) showed the irrigated plots to have almost double the moisture content of the 

rainfed plots at all measuring dates across the soil profile (10-100 cm), except for the first 

measurement in early May that was immediately preceded by a rainfall event (as detailed in 

chapter 2). Supplementary irrigation lead to a rapid divergence in SMD reaching 30 mm 

difference between treatments within ten days and reaching 93 mm by mid-June and 

maintaining a prolonged peak (>100 mm) up to mid-July, causing divergence in crop canopy 

indices (Supplementary material, Figure S3. 2).  

3.4.2 Trait responses 

Response to irrigation for all measured traits is displayed in density plots (supplementary 

material, Figure S3. 3). The mean, S.E., range and broad sense heritability of the measured 

traits are presented in Table 3.2. 

The treatment means of GAI did not show any significant differences until late April (prior 

to applying irrigation), revealing homogeneity of the replicates designated for both water 

treatments. 

For all traits, Analysis Of Variance (ANOVA) showed highly significant variation among the 

genotypes and the phenotypic range of the progeny under both treatments greatly exceeded 

the range of the parental lines indicating transgressive segregation. The main effect of 

irrigation was highly significant for all traits except the first GAI at 1388(dd) and flowering 

time were weakly significant (P≤0.07). 
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Figure 3.1 Pearson’s correlation coefficient for the measured phenotypes of the MAGIC 

lines. (a) rainfed, (b) irrigated treatment. 
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Although, TGW, grains/ear and grain number m-2 data were collected from one replicate and 

didn’t go through ANOVA, the means under both treatments seem to be close except for grain 

number m-2. The highly replicated ‘Kielder’ analysis confirmed no significant effect for water 

regimes on both traits in this experiment but significant difference in number of ears/unit area. 

The interaction between genotypes and water treatment was not significant for the GAI 

measurements and the first two NDVI, but highly significant for the last two NDVI 

measurements, flowering time, plant height, canopy temperature depression and grain yield, 

indicating genetic differential response to treatments as revealed by heritability; which was 

highest for flowering time, plant height as 0.87 and 0.83 respectively while GAI.(486dd) and 

NDVI.(1409dd) ranked the least, both with 0.3 heritability, possibly due to strong 

environmental dependence of these traits. 

Correlations (Pearson’s Correlation Coefficient - PCC) between traits in both treatments 

(Figure 3.1) was calculated to set expectations for the degree of overlap in genetic architecture 

of what were sometimes explicitly inter-dependent traits and to assess the environmental 

dependence or otherwise of the traits under study. CTD showed high correlation with all traits 

in both treatments except for TGW, to be the second highest correlated with grain yield 

(r=0.52) and (r=0.61) following grains.m-2 which was (r=0.72) and (r=0.68) for rainfed and 

irrigation treatments, respectively. All the canopy indices correlated with themselves in both 

treatments, especially those of consecutive dates. In both treatments, TGW had significant 

negative correlation with grains/ear and grains.m-2 showing the trade-off between grain 

number and filling potential. 

To identify the most significantly contributing traits to grain yield under both treatments, a 

stepwise regression analysis was computed (Table 3.3). The regression model explained 76% 

and 65% (p≤0.001) of the grain yield in the irrigated and rainfed treatments, respectively. 

CTD, TGW and grains.m-2 appear to have significant contribution in explaining variation of 

yield in both treatments; the latter had a similar effect in both cases while the two former ones 

have higher B coefficient in irrigated condition.  

The significant representation of grains.m-2 in the regression model and its correlation with 

yield might explain the remarkable difference in yield under the two water regimes to be due 

to the suppression effect of drought on potential tillering, especially as drought stress had 

minimal effect on the other two components of yield, TGW and grains.E-1. 
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Late season NDVI.1976 significant effect indicates the high potential of prolonged grain 

filling on yield in irrigated treatment. GAI.1388 that was measured post prolonged lack of 

rainfall during April and early May, showed significant contribution to yield in rainfed 

treatments illustrating how sustaining tillering and canopy development at this stage 

maintained its effect on yield under stress. 

Table 3.3 Stepwise regression showing the relative contribution significant traits in predicting 

grain yield 

Rainfed 

 

Irrigated 

 

Trait B coefficient P-value Trait B coefficient P-value 

Intercept 4.2093 <0.001 Intercept 3.8472  0.088 

P.ht -0.0201  0.004 FT -0.0035  0.002 

GAI.1388 4.2697  0.006 NDVI.1976 4.1574  0.023 

CTD 0.2905 <0.001 CTD 0.7112 <0.001 

TGW 0.0497 <0.001 TGW 0.1019 <0.001 

Grains/m2 0.0002 <0.001 Grains/m2 0.0002 <0.001 

Final equation GY=4.209+ 4.26 

(GAI.1388)-0.02 (P.ht) 

+0.29 (CTD)+0.0002 

(Grains/m2)  

Final equation GY=3.847-0.0035 

(FT)+4.15(NDVI.1976) + 

0.711(CTD)+0.1(TGW)+ 

0.0002(Grains/m2)  

 

3.4.3 Mapping Quantitative Trait Loci 

A total of 309 significant QTL detected for the traits under investigation are listed in Table 

3.4. For each trait, in both treatments, between 5 and 13 QTL were discovered, explaining 

22.8% and 50.12% of the phenotypic variation, with high correlation (r =0.81, P≤0.001) 

between the broad-sense heritability and the percentage of phenotypic variation explained by 

the detected QTL, suggesting that the main genetic factors driving variability have been 

discovered in this analysis. 

For the dynamic GAI trait over time (eight times during the growing season) in both water 

regimes, a total of 110 QTL were detected ranging in individual effect size from 1 to 7.14% 

of variation explained, showing different sets of QTL to control GAI at each growth stage, 

with occasional collocations detected among consecutive GAI dates and cumulative GAI 

(AUC) in Figure 3.2. 

 Five detected QTL appeared to contribute to GAI/AUC under both treatment (shown in 

yellow circles in Figure 3.2), moreover,  remarkable big size effect locus persisting in both 

cases and over time such as Q.GAI.1192_4B explained 4.35%, Q.GAI.1630_4B explaining 
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5.7% and 4% and Q.AUC_4B explaining 4.12 and 3.83% in irrigated and rainfed treatments, 

respectively. These loci (although close but independent of RhT-B1 locus) showed pleiotropic 

effect, governing rainfed grain yield Q.GY.(R)_4B (1.7%), Q.NDVI.1976(R)_4B (3.6%) and 

Q.NDVI.2553(R)_4B (1.52%) and irrigated plant height Q.P.ht(I)_4B.2 (5%).  

The traits for which the largest effect size of QTLs detected were flowering time and plant 

height, Q.FT(I)_2D and Q.FT(R)_2D loci (tagging photoperiod sensitivity gene Ppd-D1) was 

found to explain 13.04% and 12.38%. Q.P.ht(I)_4D and Q.P.ht(R)_4D tagging dwarfing 

genes Rht-D1 were detected to explain 15.2% and 12.23% and those tagging Rht-B1, 

Q.P.ht(I)_4B.1 and Q.P.ht(R)_4B explained 7.8% and 11.23 % of phenotypic variation in 

irrigated and rainfed treatments, respectively. 

The QTL tagging Rht-D1 shows another example of pleiotropy on various traits, such as 

Q.GAI.841_4D(3.24%), Q.GAI.1630(I)_4D (3.2%), Q.AUC (R)_4D(3.64%), Q.NDVI.1409 

(R)_4D (2.4%) and Q.NDVI.1555(R)_4D (1.36%), Q.Grains.E-1.(I)_4D(9.42%), Q.Grains.m-

2 (I)_4D (7.9%) and Q.GY.(I)_4D(3.42%). 

 For grain yield, 17 QTL were detected across the two treatments, individually accounting for 

1.1% to 4.53% of the phenotypic variation. Only few of them collocated with QTL of other 

traits which can be explained by the overall low heritability of grain yield, Q.GY.(I)_3A with 

big size effect (3.7%) matched Q.Grains.m-2.(I)_3A.2 (6.4%) and Q.GY.(I)_6B (2%) 

coincided with both Q.CTD(I)_6B (1.3%) and Q.GAI.1994.(I)_6B.2 (4.7%), in addition to 

the pleiotropic case of Rht-D1 tagged area with multiple phenotypes including grain yield. 

Interestingly, one of the biggest effect sizes QTL Q.GY.(I)_4A and Q.GY.(R)_4A appeared 

to be environmentally independent and explained 2.14% and 3.39% of the phenotypic 

variation in irrigated and rainfed treatments, respectively. Moreover, chromosome 1B 

harboured 3 QTL, together explaining 9% of the phenotypic variation of yield. 
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Table 3.4 QTL table for MAGIC lines measured phenotypes. Trait abbreviations are 

as shown in Table 3.1, (I) and (R) indicate irrigated and rainfed treatment, 

respectively. 

   and (R) indicate irrigated and rainfed treatments, respectively. 
QTL name Chromosome Left marker Right marker Position

Left marker 

position

Right marker 

position p  value R
2

1 Q.FT(I)_1A 1A IAAV3919 BS00026456_51 1.01 1.01 2.53 3.9E-07 3.04

2 Q.NDVI.1976(I)_1A 1A BS00077350_51 Excalibur_c9196_313 23.76 21.74 23.76 0.0001 1.37

3 Q.GAI.1192_1A 1A BS00086680_51 BobWhite_c478_1386 71.1 71.10 72.11 4.4E-08 4.14

4 Q.GY.(I)_1A 1A BS00021864_51 wsnp_Ku_c21316_31053745 85.71 83.17 85.71 0.0113 3.33

5 Q.GAI.841_1A 1A tplb0041a22_935 Kukri_c10239_2186 96.1 96.10 100.17 6.6E-07 1.74

6 Q.GAI.213_1A 1A Kukri_c10239_2186 RAC875_c31419_80 101.17 100.17 101.17 0.00211 3.6

7 Q.NDVI.1555(I)_1A 1A BS00067742_51 BS00088136_51 145.04 143.52 145.04 1.5E-08 2.45

8 Q.NDVI.2553(I)_1A 1A RAC875_c53725_217 BS00011521_51 211.95 210.94 211.95 0.00671 1.64

9 Q.Grains.m
-2

.(I)_1A 1A IAAV4238 Kukri_c44201_497 215.76 215.76 216.76 0.00881 2.22

10 Q.GAI.1471.(R)_1A 1A IAAV4238 Kukri_c44201_497 216.76 215.76 216.76 3.3E-05 2.93

11 Q.GY.(R)_1A 1A Kukri_c18608_729 BobWhite_c44947_277 231.14 225.37 231.14 4.6E-05 2.24

12 Q.GAI.1192_1B 1B BS00022180_51 BS00093078_51 2.51 1.51 2.51 3.4E-06 4.95

13 Q.AUC(I)_1B 1B BS00093078_51 BS00050522_51 2.51 1.51 2.51 7.5E-07 5.89

14 Q.AUC(R)_1B 1B BS00093078_51 BS00050522_51 2.51 1.51 2.51 4.1E-07 5.16

15 Q.GAI.1630(I)_1B 1B BS00093078_51 BS00050522_51 8.9 2.51 8.90 3.5E-08 4.49

16 Q.NDVI.1409(I)_1B 1B BS00050522_51 BobWhite_c5793_372 13.48 8.90 13.48 0.00202 2.93

17 Q.GAI.1388.(R)_1B.1 1B Kukri_c29655_194 RFL_Contig4140_1135 21.72 21.72 22.72 5.1E-06 4.51

18 Q.GAI.841_1B 1B Kukri_c29655_194 RFL_Contig4140_1135 21.72 21.72 22.72 1.7E-05 3.91

19 Q.FT(R)_1B 1B BS00068182_51 BS00037387_51 26.75 25.75 26.75 0.00074 1.09

20 Q.GAI.1471.(I)_1B 1B BS00011695_51 CAP7_c3299_316 31.32 30.32 31.32 0.00023 4.24

21 Q.GAI.1471.(R)_1B.1 1B Tdurum_contig34049_172 BS00106306_51 35.39 35.39 36.39 0.00018 2.47

22 Q.GY.(I)_1B.1 1B Kukri_c105601_74 IAAV6 56.55 56.55 57.55 0.00017 4.22

23 Q.NDVI.1976(I)_1B 1B Kukri_rep_c101550_113 Ra_c15153_324 93.08 92.07 93.08 2.5E-07 5.13

24 Q.NDVI.1555(I)_1B 1B Ra_c15153_324 BS00064406_51 101.92 93.08 101.92 0.0001 3.88

25 Q.GAI.486_1B 1B BS00108497_51 BS00022324_51 133.11 133.11 134.11 0.0003 1.24

26 Q.GY.(I)_1B.2 1B Excalibur_c17977_71 Excalibur_c4459_1867 189.63 188.63 189.63 0.0025 3.62

27 Q.Grains.E
-1

.(R)_1B 1B RFL_Contig2484_1065 Ku_c1932_1583 229.7 226.87 229.70 1.2E-12 2.13

28 Q.GY.(I)_1B.3 1B BobWhite_c48071_144 IACX1240 240.3 240.30 241.30 0.00024 1.1

29 Q.GAI.213_1B 1B BobWhite_c42716_71 BS00022851_51 244.83 244.83 246.34 1.2E-07 2.69

30 Q.CTD.(R)_1B 1B Tdurum_contig16606_648 Excalibur_c43793_379 265.02 264.01 265.02 0.0119 1.83

31 Q.GAI.1471.(R)_1B.2 1B BS00023173_51 BobWhite_c44460_821 291.21 289.69 291.21 9.8E-06 2.88

32 Q.P.ht(R)_1B 1B BS00023173_51 BobWhite_c44460_821 291.21 289.69 291.21 0.00453 1.85

33 Q.GAI.1388.(R)_1B.2 1B BobWhite_c44460_821 IACX8074 299.25 291.21 299.25 1.4E-05 3.73

34 Q.Grains.E
-1

.(I)_1B 1B RAC875_c9770_123 BobWhite_c16824_151 327.18 323.82 327.18 0.00013 2.65

35 Q.NDVI.1555(R)_1B 1B BobWhite_c20073_382 BobWhite_c4482_73 337.34 337.34 338.34 1.7E-05 3.99

36 Q.Grains.m
-2

.(R)_1D 1D BS00022323_51 BS00089270_51 19.25 6.33 19.25 1.24E-08 7.38

37 Q.GY.(I)_1D 1D D_contig13475_402 wsnp_Ex_c12012_19240904 39.65 39.65 47.46 4.6E-06 2.49

38 Q.CTD.(R)_1D 1D BS00012936_51 wsnp_CAP12_c633_339740 55 55.00 56.00 8.5E-05 1.02

39 Q.Grains.E
-1

.(R)_1D 1D RAC875_rep_c105196_532IAAV4656 71.23 66.65 71.23 3.7E-13 2.13

40 Q.GAI.841_1D 1D BS00014671_51 BS00003816_51 89.02 89.02 99.08 0.00071 2.27

41 Q.GAI.1994.(I)_1D 1D BS00014671_51 BS00003816_51 99.08 89.02 99.08 0.0124 1.48

42 Q.TGW(R)_1D 1D BobWhite_c1897_1010 Kukri_rep_c69829_307 122.74 122.74 124.25 1.1E-05 4.44

43 Q.Grains.E
-1

.(R)_2A 2A BS00022241_51 BS00022377_51 146.83 146.83 151.47 3.6E-05 10.99

44 Q.Grains.m
-2

.(R)_2A 2A BS00023214_51 Excalibur_rep_c102052_721 177.36 177.36 184.29 1.2E-08 8.41

45 Q.GAI.486_2A 2A BS00107804_51 BobWhite_c15867_215 187.33 187.33 191.93 6.3E-06 2.49

46 Q.CTD(I)_2A 2A Kukri_c22047_313 RAC875_c104160_61 206.04 206.04 207.05 0.00085 1.2

47 Q.NDVI.1555(I)_2A 2A Kukri_c22047_313 RAC875_c104160_61 206.04 206.04 207.05 0.00479 2.44

48 Q.GAI.1388(I)_2A.1 2A RAC875_c104160_61 BobWhite_c25764_348 207.05 207.05 212.27 0.00012 1.74

49 Q.GAI.1388(I)_2A.2 2A RAC875_c21013_1187 Excalibur_c52319_257 230.55 230.55 232.05 0.0125 1.57

50 Q.GAI.1471.(I)_2A 2A RAC875_c21013_1187 Excalibur_c52319_257 230.55 230.55 232.05 0.00318 2.31

51 Q.GAI.1192_2A 2A RAC875_c259_1339 Tdurum_contig8350_350 237.63 236.63 237.63 0.0017 1.19

52 Q.AUC(R)_2A 2A BS00062869_51 wsnp_Ex_rep_c108004_91402649240.68 240.68 244.25 4.5E-06 3.69

53 Q.NDVI.1976(R)_2A 2A BS00107649_51 BS00098312_51 250.78 249.27 250.78 2.5E-08 3.86

54 Q.NDVI.1409(R)_2A 2A Ra_c1757_256 BS00060596_51 252.8 251.79 252.80 1.5E-07 2.01

55 Q.CTD.(R)_2A 2A BS00094172_51 BS00064055_51 259.39 255.31 259.39 0.00059 2.12

56 Q.GAI.1630(R)_2A 2A BS00094172_51 BS00064055_51 259.39 255.31 259.39 5.7E-08 6.04

57 Q.NDVI.1555(R)_2A 2A BS00094172_51 BS00064055_51 259.39 255.31 259.39 2.3E-05 4.1

58 Q.GAI.1994.(I)_2B 2B Kukri_c19266_779 BobWhite_c12144_216 2.53 2.53 3.53 1.5E-08 7.14

59 Q.GAI.1630(R)_2B 2B Kukri_c19266_779 BobWhite_c12144_216 3.53 2.53 3.53 8.7E-07 1.61

60 Q.GAI.1994(R)_2B 2B BS00028028_51 RAC875_c27611_467 10.58 8.56 10.58 9.7E-07 6.29

61 Q.GAI.1471.(I)_2B 2B Excalibur_c14396_1629 RAC875_c84991_116 27.82 27.82 29.84 0.0001 1.88

62 Q.GAI.841_2B 2B Excalibur_c14396_1629 RAC875_c84991_116 27.82 27.82 29.84 8.2E-07 2.15
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63 Q.Grains.E
-1

.(I)_2B 2B Tdurum_contig64563_491 BobWhite_c2988_2161 72.64 69.57 72.64 9.8E-09 2.98

64 Q.Grains.E
-1

.(R)_2B.1 2B Excalibur_c6111_411 BS00022417_51 139.06 136.52 139.06 2.4E-06 1.18

65 Q.P.ht(R)_2B 2B BS00031143_51 IAAV6994 147.66 146.66 147.66 5.4E-05 1.84

66 Q.FT(R)_2B.1 2B Excalibur_c19344_137 BobWhite_c892_73 171.86 170.86 171.86 0.00339 1.59

67 Q.Grains.E
-1

.(R)_2B.2 2B Tdurum_contig30930_184 wsnp_JD_rep_c67103_42432235 221.23 220.23 221.23 3.3E-05 5.53

68 Q.FT(R)_2B.2 2B Kukri_c4294_371 Excalibur_c1353_1364 253.98 251.45 253.98 9.4E-05 5.24

69 Q.NDVI.1976(R)_2B 2B BobWhite_c22728_78 BS00022805_51 271.92 271.92 279.38 0.00027 1.55

70 Q.TGW(I)_2B 2B CAP11_c2941_210 BS00026432_51 283.93 283.93 285.43 0.00078 1.72

71 Q.GAI.1388.(R)_2B 2B RAC875_c3259_276 BS00064483_51 375.98 373.94 375.98 0.00577 3.12

72 Q.Grains.m
-2

.(I)_2D 2D Tdurum_contig64286_182 BS00063251_51 5.61 5.61 15.33 0.00641 3.82

73 Q.GAI.1994.(I)_2D 2D BS00010043_51 D_contig17313_245 18.85 18.85 21.94 0.00292 2.83

74 Q.GAI.1630(I)_2D 2D BS00029208_51 BS00043986_51 42.21 42.21 50.33 4E-06 2.74

75 Q.NDVI.2553(I)_2D 2D BS00022276_51 Kukri_c27309_590 55.4 53.36 55.40 0.00771 1.29

76 Q.P.ht(R)_2D 2D BS00022276_51 Kukri_c27309_590 55.4 53.36 55.40 0.00042 3.52

77 Q.CTD.(R)_2D 2D Kukri_c27309_590 wsnp_CAP12_c1503_764765 62.71 55.40 62.71 3.2E-11 6.73

78 Q.FT(I)_2D 2D Kukri_c27309_590 wsnp_CAP12_c1503_764765 62.71 55.40 62.71 3.3E-16 13.04

79 Q.FT(R)_2D 2D Kukri_c27309_590 wsnp_CAP12_c1503_764765 62.71 55.40 62.71 3E-13 12.38

80 Q.GAI.1388.(R)_2D 2D Kukri_c27309_590 wsnp_CAP12_c1503_764765 62.71 55.40 62.71 0.00268 3.87

81 Q.GAI.1994(R)_2D 2D Kukri_c27309_590 wsnp_CAP12_c1503_764765 62.71 55.40 62.71 0.00055 6.41

82 Q.NDVI.1976(R)_2D 2D Kukri_c27309_590 wsnp_CAP12_c1503_764765 62.71 55.40 62.71 1.7E-09 8.8

83 Q.NDVI.2553(R)_2D.1 2D IACX5935 BS00039211_51 85.59 85.09 85.59 0.00264 3.39

84 Q.GAI.841_2D.1 2D D_contig77859_59 BS00083504_51 96.26 92.64 96.26 3.3E-06 1.09

85 Q.GAI.486_2D 2D Kukri_c55028_182 Kukri_rep_c72254_186 106.21 105.71 106.21 0.00788 2.05

86 Q.GAI.841_2D.2 2D BS00011109_51 Kukri_c26676_225 121.04 119.52 121.04 4.3E-08 4.15

87 Q.AUC(I)_ 2D Kukri_c26676_225 Kukri_c3344_401 121.04 121.04 122.56 6.1E-05 4.03

88 Q.GAI.1192_2D 2D Kukri_c3344_401 Ku_c19185_1569 128.39 122.56 128.39 4.9E-07 2.86

89 Q.NDVI.2553(R)_2D.2 2D Tdurum_contig12912_308 Kukri_c9274_1004 171.95 171.45 171.95 0.00935 1.6

90 Q.TGW(R)_2D 2D Tdurum_contig12912_308 Kukri_c9274_1004 171.95 171.45 171.95 0.00397 8.9

91 Q.GAI.213_2D 2D Kukri_c9274_1004 RAC875_c50347_258 196.35 171.95 196.35 2.7E-09 4.96

92 Q.GY.(R)_3A 3A wsnp_Ex_c6833_11782875 RAC875_c36922_829 12.06 10.55 12.06 1.3E-05 4.53

93 Q.Grains.m
-2

.(R)_3A 3A RAC875_c787_431 Excalibur_c11505_155 30.01 23.32 30.01 0 3.14

94 Q.GAI.1471.(I)_3A 3A RAC875_c371_251 wsnp_Ra_rep_c106523_90273922 34.65 34.65 38.27 0.00055 3.71

95 Q.P.ht(I)_3A 3A RAC875_c371_251 wsnp_Ra_rep_c106523_90273922 34.65 34.65 38.27 0.00442 6.34

96 Q.NDVI.1409(R)_3A 3A wsnp_Ra_rep_c106523_90273922 BS00090225_51 44.6 38.27 44.60 1E-06 6.16

97 Q.AUC(R)_ 3A BS00090225_51 BS00057444_51 50.32 44.60 50.32 0.00167 2.12

98 Q.NDVI.1555(R)_3A 3A BS00090225_51 BS00057444_51 50.32 44.60 50.32 0.00162 2.98

99 Q.Grains.m
-2

.(I)_3A.1 3A wsnp_Ex_c11085_17973016 BobWhite_c43681_334 128.58 128.58 131.14 1.6E-07 1.41

100 Q.NDVI.1976(R)_3A 3A BobWhite_c30232_154 IAAV902 136.23 134.19 136.23 0.00107 1.21

101 Q.GAI.1994.(I)_3A.1 3A Excalibur_rep_c105978_544 BS00047668_51 187.18 187.18 188.69 8.8E-05 3.65

102 Q.GY.(I)_3A 3A BobWhite_c18593_955 RAC875_c47550_437 204.47 198.84 204.47 4.9E-05 3.74

103 Q.Grains.m
-2

.(I)_3A.2 3A RAC875_c47550_437 BobWhite_c17879_519 205.98 204.47 205.98 1.7E-07 6.43

104 Q.GAI.841_3A 3A RAC875_c52195_324 CAP11_c1022_117 243.45 243.45 247.62 1.4E-05 0.98

105 Q.GAI.1388.(R)_3A 3A CAP7_c3178_52 BS00048633_51 270.21 270.21 274.05 0.00157 3.22

106 Q.GAI.1471.(R)_3A 3A CAP7_c3178_52 BS00048633_51 270.21 270.21 274.05 5.5E-07 4.09

107 Q.NDVI.1976(I)_3A 3A Ku_c26872_269 wsnp_Ex_c361_707953 282.21 281.20 282.21 0.00298 3.2

108 Q.GAI.1994.(I)_3A.2 3A Kukri_rep_c70441_132 RFL_Contig2394_439 308.3 304.20 308.30 0.00001 1.18

109 Q.NDVI.1976(R)_3B 3B BS00080158_51 Kukri_c17082_378 1.51 0.00 1.51 0.00613 3.27

110 Q.TGW(I)_3B 3B BS00080158_51 Kukri_c17082_378 1.51 0.00 1.51 0.00075 1.38

111 Q.GAI.1994.(I)_3B 3B BS00026471_51 BS00046375_51 39.46 36.17 39.46 0.0302 1.85

112 Q.NDVI.2553(R)_3B 3B IAAV3924 BobWhite_c12908_381 41.48 41.48 42.74 7.4E-07 3.01

113 Q.GAI.1630(I)_3B.1 3B BS00011596_51 BS00044752_51 44.77 44.77 47.31 3.2E-13 4.16

114 Q.Grains.E-1.(I)_3B 3B BS00011596_51 BS00044752_51 47.31 44.77 47.31 4.7E-12 3.37

115 Q.AUC(I)_3B 3B BS00095638_51 BS00093856_51 52.39 49.87 52.39 0.00203 3.53

116 Q.NDVI.1555(R)_3B.1 3B BS00022242_51 Excalibur_c35645_587 63.63 63.63 65.14 2.1E-05 4.51

117 Q.GAI.1630(I)_3B.2 3B BS00066108_51 Ku_c24126_637 85.62 85.62 86.63 0.00128 2.4

118 Q.Grains.m
-2

.(I)_3B 3B RAC875_c9095_217 IAAV1079 96.7 96.70 97.70 5.9E-06 2.02

119 Q.TGW(R)_3B.1 3B BS00076872_51 BobWhite_c13099_755 149.92 147.39 149.92 8.2E-05 7.61

120 Q.GAI.1630(R)_3B.1 3B BS00073011_51 wsnp_Ku_rep_c72504_72191206 154.44 153.44 154.44 0.0014 1.15

121 Q.TGW(R)_3B.2 3B Excalibur_c48047_90 Excalibur_c21604_247 179.92 175.11 179.92 6.3E-06 8.46

122 Q.CTD.(R)_3B 3B BS00022611_51 Excalibur_c34069_487 183.45 182.45 183.45 0.00125 1.5

123 Q.GAI.1630(R)_3B.2 3B BS00022611_51 Excalibur_c34069_487 183.45 182.45 183.45 3.4E-05 2.82



72 
 

Table 3.4 (continued) 

 

 

 

 

QTL name Chromosome Left marker Right marker Position

Left marker 

position

Right marker 

position p  value R
2

124 Q.Grains.m
-2

.(R)_3B 3B wsnp_Ex_c13154_20785032 BobWhite_c6015_141 201.56 201.56 205.69 2E-09 2.65

125 Q.NDVI.1555(R)_3B.2 3B BS00022861_51 BS00024499_51 233.55 233.55 236.59 0.0015 1.15

126 Q.GAI.1994(R)_3B 3B BS00070210_51 Excalibur_c72450_483 241.15 241.15 242.67 0.0005 4.21

127 Q.GAI.1192_3B 3B RAC875_c7158_687 BS00037871_51 246.73 246.73 254.80 0.0051 1.52

128 Q.FT(I)_3D 3D Excalibur_c20277_436 Excalibur_c83177_99 1.01 1.01 3.53 4E-06 1.92

129 Q.FT(R)_3D 3D Excalibur_c20277_436 Excalibur_c83177_99 1.01 1.01 3.53 7E-06 1.18

130 Q.P.ht(I)_3D 3D IAAV2729 wsnp_Ex_c18250_27065775 94.19 91.10 94.19 0.0003 2.38

131 Q.P.ht(R)_3D 3D IAAV2729 wsnp_Ex_c18250_27065775 94.19 91.10 94.19 6E-08 1.23

132 Q.GAI.1994.(I)_3D 3D wsnp_Ex_c7260_12463738 Kukri_c43208_335 99.87 98.36 99.87 0.0027 2.22

133 Q.GAI.1630(I)_3D 3D Ku_c2845_342 Ku_c6080_1667 107.27 100.88 107.27 0.0035 1.18

134 Q.GAI.213_3D 3D Jagger_c3839_60 BS00017789_51 192.5 180.63 192.50 4E-05 4.95

135 Q.NDVI.1409(I)_4A.1 4A BS00021716_51 BS00106545_51 7.23 6.73 7.23 1E-06 3.36

136 Q.GAI.1471.(I)_4A 4A BS00035307_51 wsnp_Ra_c14920_23225219 7.74 7.74 23.34 0.0036 2.29

137 Q.NDVI.2553(R)_4A 4A BS00035307_51 wsnp_Ra_c14920_23225219 23.34 7.74 23.34 6E-09 4.78

138 Q.AUC(I)_4A 4A BS00065863_51 wsnp_Ex_c28429_37553452 29.17 29.17 33.88 0.0008 1.66

139 Q.GY.(I)_4A 4A Ex_c7626_444 RAC875_c28178_889 36.98 36.98 43.14 0.0026 2.14

140 Q.GY.(R)_4A 4A Ex_c7626_444 RAC875_c28178_889 36.98 36.98 43.14 2E-06 3.39

141 Q.Grains.m
-2

.(R)_4A 4A CAP12_c2677_138 BS00021752_51 43.64 43.64 44.14 3E-11 4.02

142 Q.NDVI.1976(I)_4A 4A BS00036493_51 Tdurum_contig11919_360 49.5 49.50 54.62 4E-05 1.03

143 Q.Grains.E
-1

.(R)_4A 4A BobWhite_c20514_92 BobWhite_c5633_59 61.2 61.20 63.74 4E-13 7.81

144 Q.GAI.1388(I)_4A 4A Ex_c66324_1151 Jagger_c4331_105 113.1 110.57 113.10 0.0005 1.94

145 Q.NDVI.1555(I)_4A 4A IAAV7104 RFL_Contig3679_315 123.55 123.05 123.55 0.0119 1.93

146 Q.Grains.E
-1

.(I)_4A 4A IAAV5722 RAC875_c6939_1042 140.85 137.78 140.85 9E-12 3.78

147 Q.GAI.213_4A 4A BS00064369_51 BS00091752_51 164.01 158.75 164.01 5E-06 1.01

148 Q.FT(R)_4A 4A BS00039811_51 IAAV2823 178.37 177.87 178.37 0.0024 1.86

149 Q.NDVI.1409(I)_4A.2 4A Excalibur_c10699_404 IAAV2769 217.29 214.75 217.29 0.0068 1.56

150 Q.GAI.1630(I)_4B.1 4B Excalibur_c7581_1266 wsnp_Ex_c30695_39579408 18.73 14.02 18.73 2E-07 3.25

151 Q.GAI.1994.(I)_4B 4B wsnp_Ex_c30695_39579408 Kukri_c26488_139 25.91 18.73 25.91 3E-05 3

152 Q.P.ht(I)_4B.1 4B Tdurum_contig42229_113 IAAV585 52.17 52.17 53.17 2E-08 7.83

153 Q.P.ht(R)_4B 4B Tdurum_contig42229_113 IAAV585 52.17 52.17 53.17 0 11.23

154 Q.GY.(I)_4B 4B BS00029342_51 IACX773 63.34 62.34 63.34 0.0013 1.31

155 Q.TGW(I)_4B 4B BS00105791_51 BS00062691_51 65.87 65.87 72.57 0.0015 4.73

156 Q.AUC(R)_4B 4B BS00067786_51 IACX5989 75.09 75.09 78.18 3E-06 3.83

157 Q.GAI.1192_4B1.1 4B BS00067786_51 IACX5989 75.09 75.09 78.18 2E-08 4.35

158 Q.GAI.1630(I)_4B.2 4B IACX5989 Tdurum_contig29989_132 78.18 78.18 79.19 6E-06 5.67

159 Q.GY.(R)_4B 4B IACX5989 Tdurum_contig29989_132 78.18 78.18 79.19 2E-06 1.7

160 Q.NDVI.1976(R)_4B 4B IACX5989 Tdurum_contig29989_132 78.18 78.18 79.19 0.0012 3.6

161 Q.NDVI.2553(R)_4B 4B IACX5989 Tdurum_contig29989_132 78.18 78.18 79.19 0.0002 1.52

162 Q.GAI.1630(R)_4B 4B Tdurum_contig29989_132 BS00040159_51 79.19 79.19 80.71 2E-06 4.03

163 Q.P.ht(I)_4B.2 4B Tdurum_contig29989_132 BS00040159_51 80.71 79.19 80.71 0.0002 4.99

164 Q.AUC(I)_4B.1 4B wsnp_BE442869B_Ta_1_1 BS00011085_51 81.72 81.72 82.72 0.0056 4.12

165 Q.CTD.(R)_4B.1 4B BS00064884_51 IAAV4595 83.73 83.73 84.73 4E-08 4.13

166 Q.GAI.1388(I)_4B 4B BS00064884_51 IAAV4595 83.73 83.73 84.73 3E-06 4.17

167 Q.CTD(I)_4B 4B BS00022653_51 Kukri_c11415_1074 111.24 111.24 112.25 4E-05 6.97

168 Q.Grains.E
-1

.(R)_4B 4B CAP7_c10839_300 BS00037020_51 143.65 143.65 146.70 2E-08 6.66

169 Q.FT(R)_4B 4B BobWhite_c27751_206 Ku_c101046_1063 159.51 158.50 159.51 1E-06 4.43

170 Q.NDVI.2553(I)_4B 4B Ra_c10455_3226 Excalibur_c106884_135 169.15 166.59 169.15 0.0286 1.04

171 Q.GAI.1471.(I)_4B 4B BS00009342_51 wsnp_Ex_c16825_25387841 178.44 173.22 178.44 0.0002 1.55

172 Q.CTD.(R)_4B.2 4B RAC875_c24515_602 wsnp_Ku_c12503_20174234 179.45 179.45 182.54 0.0011 1.42

173 Q.AUC(I)_4B.2 4B Tdurum_contig74813_560 BS00065222_51 226.6 226.60 230.19 0.0005 1.47

174 Q.GAI.1630(I)_4B.3 4B Tdurum_contig74813_560 BS00065222_51 226.6 226.60 230.19 0.0004 1.18

175 Q.GAI.1192_4B.2 4B Tdurum_contig74813_560 BS00065222_51 230.19 226.60 230.19 3E-06 1.28

176 Q.GAI.841_4D 4D Kukri_rep_c68594_530 Excalibur_c19078_210 24.93 24.93 32.24 5E-05 3.24

177 Q.Grains.E
-1

.(I)_4D 4D Kukri_rep_c68594_530 Excalibur_c19078_210 24.93 24.93 32.24 4E-07 9.42

178 Q.NDVI.1555(R)_4D 4D Kukri_rep_c68594_530 Excalibur_c19078_210 24.93 24.93 32.24 0.0007 1.36

179 Q.AUC(R)_4D 4D Excalibur_c19078_211 RAC875_rep_c105718_305 32.24 32.24 40.11 0.0003 3.64

180 Q.CTD.(R)_4D 4D Excalibur_c19078_210 RAC875_rep_c105718_304 32.24 32.24 40.11 0.001 3.73

181 Q.GAI.1630(I)_4D 4D Excalibur_c19078_210 RAC875_rep_c105718_304 32.24 32.24 40.11 4E-07 3.2

182 Q.Grains.m
-2

.(I)_4D 4D Excalibur_c19078_210 RAC875_rep_c105718_304 32.24 32.24 40.11 4E-09 7.86

183 Q.GY.(I)_4D 4D Excalibur_c19078_210 RAC875_rep_c105718_304 32.24 32.24 40.11 3E-07 3.42

184 Q.NDVI.1409(R)_4D 4D Excalibur_c19078_210 RAC875_rep_c105718_304 32.24 32.24 40.11 5E-06 2.44

185 Q.P.ht(I)_4D 4D Excalibur_c19078_210 RAC875_rep_c105718_304 32.24 32.24 40.11 0 15.18

186 Q.P.ht(R)_4D 4D Excalibur_c19078_210 RAC875_rep_c105718_304 32.24 32.24 40.11 0 12.23
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187 Q.TGW(I)_4D.2 4D Kukri_c20631_614 wsnp_BF473052D_Ta_2_1 62.98 62.98 80.59 6E-06 4.31

188 Q.GAI.1388(I)_4D 4D BobWhite_c20689_427 Excalibur_c79009_131 99.22 99.22 106.01 2E-06 2.68

189 Q.NDVI.1409(I)_4D 4D BobWhite_c20689_427 Excalibur_c79009_131 99.22 99.22 106.01 0.004 1.18

190 Q.NDVI.1976(I)_5A 5A Kukri_c61108_900 wsnp_Ex_c356_698872 51.47 48.38 51.47 1E-04 2.25

191 Q.CTD(I)_5A.1 5A BobWhite_rep_c49700_452 wsnp_Ex_c7668_13089715 69.43 68.43 69.43 0.002 1.64

192 Q.GY.(I)_5A 5A BobWhite_c15454_63 Excalibur_c38185_633 83.05 83.05 87.13 9E-06 1.38

193 Q.CTD(I)_5A.2 5A BS00015653_51 Tdurum_contig69079_300 99.27 98.27 99.27 0.01 2.44

194 Q.GY.(R)_5A 5A BS00109052_51 RAC875_c232_1895 126.69 118.07 126.69 7E-05 2.68

195 Q.GAI.1471.(R)_5A 5A BobWhite_rep_c61813_322 BobWhite_c11512_157 128.21 128.21 137.43 0.004 2.08

196 Q.GAI.1388(I)_5A 5A BobWhite_c11512_157 wsnp_Ku_c35386_44598937 137.43 137.43 138.95 5E-06 3.14

197 Q.NDVI.1555(I)_5A.1 5A Tdurum_contig43844_1266 Excalibur_c1208_72 139.96 139.96 141.98 5E-04 1.33

198 Q.Grains.m
-2

.(R)_5A 5A BS00060445_51 BS00000365_51 166.8 166.80 169.34 1E-10 2.14

199 Q.GAI.486_5A 5A Excalibur_c9210_168 wsnp_Ex_c18941_27840714 177.07 176.07 177.07 4E-04 3.56

200 Q.GAI.213_5A 5A wsnp_Ra_c17216_26044790 BS00021955_51 181.64 180.64 181.64 2E-06 3.97

201 Q.FT(I)_5A.1 5A BS00067209_51 BS00022644_51 183.69 183.69 189.51 3E-09 3.27

202 Q.Grains.m
-2

.(I)_5A.1 5A BS00067209_51 BS00022644_51 183.69 183.69 189.51 5E-05 1.84

203 Q.GAI.1994(R)_5A 5A IAAV9053 IAAV8258 197.58 196.58 197.58 0.002 3.09

204 Q.CTD.(R)_5A 5A RAC875_rep_c107228_92 BobWhite_c40633_308 206.98 206.98 208.50 7E-05 4.18

205 Q.NDVI.1976(R)_5A.1 5A BobWhite_c23736_153 Excalibur_c37943_221 211.51 210.51 211.51 0.004 1.5

206 Q.NDVI.1976(R)_5A.2 5A BobWhite_c16397_524 BobWhite_c15476_88 249.15 245.55 249.15 0.014 1.56

207 Q.FT(R)_5A 5A wsnp_Ex_c16715_25264080 Kukri_rep_c102608_599 253.77 253.77 256.86 0.004 1.12

208 Q.Grains.m
-2

.(I)_5A.2 5A wsnp_Ex_c16715_25264080 Kukri_rep_c102608_599 253.77 253.77 256.86 0.017 2.73

209 Q.NDVI.1409(R)_5A 5A BS00089076_51 BS00064336_51 278.73 277.73 278.73 3E-05 1.44

210 Q.NDVI.1555(R)_5A 5A Excalibur_c32414_705 BS00021969_51 300.75 300.75 301.75 5E-06 2.6

211 Q.FT(I)_5A.2 5A BobWhite_c11539_336 BobWhite_c8266_227 310.04 310.04 311.55 2E-07 3.03

212 Q.AUC(R)_5A 5A BobWhite_c8266_228 Excalibur_c46261_343 312.56 311.55 312.56 0.003 2.27

213 Q.GAI.1388.(R)_5A 5A BobWhite_c8266_227 Excalibur_c46261_342 312.56 311.55 312.56 0.003 1.5

214 Q.NDVI.1555(I)_5A.2 5A BobWhite_c8266_227 Excalibur_c46261_342 312.56 311.55 312.56 0.008 1

215 Q.AUC(I)_5A 5A Excalibur_c46261_342 Excalibur_c27357_146 313.57 312.56 313.57 4E-04 2.58

216 Q.GAI.213_5B.1 5B BS00062617_51 wsnp_Ex_c26252_35497729 13.16 12.15 13.16 0.005 1.38

217 Q.NDVI.2553(R)_5B 5B BobWhite_c47740_85 Kukri_c23070_350 38.92 36.36 38.92 5E-09 3.47

218 Q.AUC(I)_5B.1 5B BS00009311_51 IAAV7267 81.2 77.12 81.20 81.2 2.52

219 Q.GAI.1471.(I)_5B.1 5B BS00009311_51 IAAV7267 81.2 77.12 81.20 7E-04 2.69

220 Q.GAI.1388(I)_5B 5B Kukri_c52_225 Excalibur_c17055_1451 113.4 113.40 115.44 4E-10 3.59

221 Q.Grains.m
-2

.(I)_5B 5B Kukri_c52_225 Excalibur_c17055_1451 113.4 113.40 115.44 0.007 1.55

222 Q.CTD(I)_5B.1 5B Ex_c13277_2025 Kukri_rep_c113115_424 133.41 133.41 134.41 0.005 3.25

223 Q.FT(I)_5B 5B Kukri_c17396_2448 BS00087043_51 142.56 138.43 142.56 1E-05 1.44

224 Q.AUC(I)_5B.2 5B BS00012038_51 Ex_c29928_1020 144.57 143.57 144.57 0.03 1.79

225 Q.Grains.E
-1

.(R)_5B 5B BS00010311_51 wsnp_Ex_c33675_42124657 152.66 150.12 152.66 2E-08 2.63

226 Q.Grains.m
-2

.(R)_5B 5B BS00093522_51 Excalibur_c9391_1016 163.98 163.98 165.50 2E-09 2.85

227 Q.GY.(R)_5B 5B RAC875_c49291_156 Tdurum_contig57696_133 223.1 223.10 224.10 0.002 2.41

228 Q.GAI.213_5B.2 5B BS00022991_51 BobWhite_c39214_164 229.16 227.12 229.16 0.001 3.19

229 Q.CTD(I)_5B.2 5B Kukri_c59657_805 BS00074721_51 281.57 281.57 282.57 0.014 2.24

230 Q.GAI.1471.(I)_5B.1 5B Kukri_c59657_805 BS00074721_51 281.57 281.57 282.57 5E-05 2.92

231 Q.GAI.1192_5B 5B Kukri_c59657_805 BS00074721_51 282.57 281.57 282.57 3E-07 4.26

232 Q.GAI.841_5B 5B Kukri_c59657_805 BS00074721_51 282.57 281.57 282.57 7E-05 2.52

233 Q.NDVI.1555(I)_5B 5B Kukri_c59657_805 BS00074721_51 282.57 281.57 282.57 2E-04 2.52

234 Q.NDVI.1976(R)_5B 5B BS00024829_51 Excalibur_c94390_60 289.61 289.61 291.13 0.014 2.25

235 Q.P.ht(I)_5B 5B BS00024829_51 Excalibur_c94390_60 289.61 289.61 291.13 4E-04 4.27

236 Q.NDVI.1976(I)_5B 5B Excalibur_c146_170 Excalibur_c71712_180 298.71 298.71 300.72 5E-05 3.54

237 Q.Grains.E
-1

.(R)_5D 5D BS00082423_51 Kukri_rep_c110911_477 120.79 120.79 121.79 1E-06 1.18

238 Q.FT(I)_5D 5D BS00022699_51 CAP7_c3391_238 144.35 144.35 148.86 0.003 1.08

239 Q.Grains.m
-2

.(R)_5D 5D wsnp_Ex_rep_c68491_67318138wsnp_Ex_c23618_32855041 150.86 150.86 153.36 3E-12 2.82

240 Q.Grains.E
-1

.(I)_5D 5D BS00021991_51 BS00058709_51 171.07 171.07 173.07 0 5.91

241 Q.GAI.1994(R)_5D 5D Excalibur_c2795_1518 RAC875_c34515_86 198.08 198.08 199.08 8E-04 1.21

242 Q.GAI.1994.(I)_6A 6A Tdurum_contig29823_203 BS00066872_51 32.88 32.88 34.40 2E-06 1.86

243 Q.CTD(I)_6A 6A BS00022938_51 BobWhite_c15802_72 37.42 36.42 37.42 0.004 2.25

244 Q.Grains.E
-1

.(I)_6A 6A RAC875_c53520_103 BS00022951_51 61.07 58.53 61.07 0.023 3.19

245 Q.NDVI.2553(I)_6A.1 6A CAP7_c2381_149 CAP11_c989_113 109.46 109.46 112.02 2E-05 3.46

246 Q.GAI.213_6A 6A CAP7_c2381_149 CAP11_c989_113 112.02 109.46 112.02 0.001 1.53

247 Q.TGW(I)_6A 6A BS00034886_51 IACX14305 130.43 129.43 130.43 5E-06 7.17
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Table 3.4 (continued) 

 

 

 

QTL name Chromosome Left marker Right marker Position

Left marker 

position

Right marker 

position p  value R
2

248 Q.GAI.1630(I)_6A.1 6A BS00010576_51 Excalibur_c56264_188 146.08 146.08 148.64 5E-05 0.92

249 Q.NDVI.2553(R)_6A 6A BS00010576_51 Excalibur_c56264_188 148.64 146.08 148.64 5E-08 4.32

250 Q.NDVI.1409(I)_6A 6A IAAV1652 BS00012028_51 155.74 155.74 157.26 1E-06 3.83

251 Q.NDVI.1555(I)_6A.1 6A wsnp_Ex_c11348_18326787 BS00023893_51 175.93 175.93 176.94 0.0098 1.23

252 Q.GAI.486_6A 6A BS00023893_51 BS00065082_51 180.47 176.94 180.47 0.0117 1.39

253 Q.Grains.m
-2

.(I)_6A 6A IAAV151 BS00058929_51 191.33 184.00 191.33 5E-05 6.24

254 Q.NDVI.2553(I)_6A.2 6A Kukri_rep_c69627_954 Tdurum_contig97355_136 203.97 192.34 203.97 0.0082 2.41

255 Q.GAI.1630(I)_6A.2 6A BobWhite_c40051_360 RFL_Contig5037_560 204.98 204.98 210.63 0.0002 2.95

256 Q.FT(R)_6A 6A RFL_Contig5037_560 Excalibur_c52196_235 215.25 210.63 215.25 0.0002 1.49

257 Q.NDVI.1555(I)_6A.2 6A RAC875_c12821_550 BS00011578_51 256.9 256.90 268.25 6E-06 3.6

258 Q.NDVI.1555(R)_6B 6B CAP7_c10772_156 Ex_c66287_325 10.7 9.70 10.70 0.0192 1

259 Q.NDVI.2553(R)_6B.1 6B wsnp_Ku_c2119_4098330 BobWhite_c20959_229 15.73 14.47 15.73 1E-06 5.84

260 Q.GAI.1994.(I)_6B.1 6B Excalibur_c39569_79 RAC875_c26860_648 30.16 30.16 32.18 2E-05 1.38

261 Q.TGW(R)_6B 6B RAC875_c26860_648 BS00010403_51 35.81 32.18 35.81 5E-05 1.46

262 Q.GAI.1388(I)_6B 6B BS00027942_51 wsnp_Ex_c4815_8597064 42.6 41.08 42.60 4E-06 1.71

263 Q.GAI.1630(I)_6B 6B BS00011530_51 BobWhite_c9330_499 56.49 56.49 57.49 0.0003 3.19

264 Q.GAI.1994(R)_6B 6B BS00011530_51 BobWhite_c9330_499 57.49 56.49 57.49 0.0127 2.8

265 Q.GAI.1630(R)_6B 6B Ex_c31970_673 CAP8_rep_c9477_231 66.23 66.23 69.86 1E-06 4.25

266 Q.NDVI.1976(R)_6B 6B BobWhite_c18550_159 wsnp_Ex_c17435_26144201 80.74 79.74 80.74 0.0095 1.32

267 Q.TGW(I)_6B 6B BS00049942_51 Excalibur_c22998_621 159.18 157.67 159.18 0.0187 2.72

268 Q.CTD(I)_6B 6B Excalibur_rep_c69189_235 BobWhite_c33227_82 170.78 169.78 170.78 0.0013 1.23

269 Q.GAI.1994.(I)_6B.2 6B RAC875_c6649_642 BS00023050_51 173.83 172.82 173.83 2E-05 4.65

270 Q.GY.(I)_6B 6B Kukri_c56955_282 Tdurum_contig41142_267 175.85 175.85 182.56 0.0001 1.97

271 Q.P.ht(I)_6B 6B RAC875_c23461_428 Excalibur_c76628_251 192.21 189.67 192.21 2E-05 1.08

272 Q.FT(I)_6B.1 6B Ku_c24158_1468 RAC875_rep_c71463_98 214.55 214.55 221.24 2E-07 1.38

273 Q.NDVI.2553(R)_6B.2 6B Kukri_c338_109 Ra_c39588_830 235.26 232.24 235.26 0.0047 3.1

274 Q.FT(I)_6B.2 6B IACX1137 BobWhite_c43263_123 261.89 260.38 261.89 0.0004 2.23

275 Q.NDVI.1409(R)_6D 6D IAAV5171 BS00063175_51 104.21 104.21 105.22 5E-05 1.65

276 Q.NDVI.1976(I)_6D 6D IAAV5171 BS00063175_51 104.21 104.21 105.22 0.0005 2.19

277 Q.Grains.E
-1

.(R)_6D 6D BS00021881_51 BobWhite_c22280_104 130.85 130.85 190.15 1E-08 4.22

278 Q.GAI.1630(I)_6D 6D BobWhite_c13435_700 BS00070856_51 215 211.90 215.00 9E-06 0.94

279 Q.Grains.m
-2

.(R)_7A.1 7A BobWhite_c33300_159 Tdurum_contig93663_457 33.03 33.03 35.05 4E-10 4.28

280 Q.GAI.1471.(R)_7A 7A BobWhite_c33300_159 Tdurum_contig93663_457 35.05 33.03 35.05 2E-06 3.87

281 Q.GAI.1388.(R)_7A 7A RAC875_c6736_336 BS00002974_51 43.65 43.65 50.25 0.0007 1.61

282 Q.GAI.1630(R)_7A.1 7A Excalibur_c1310_414 Tdurum_contig15285_588 51.26 51.26 52.26 0.0002 1.57

283 Q.FT(R)_7A 7A BS00111120_51 BS00038787_51 188.57 187.57 188.57 0.0008 1.78

284 Q.NDVI.2553(I)_7A 7A BS00039561_51 IAAV5154 194.62 193.12 194.62 0.0015 3.57

285 Q.NDVI.1555(I)_7A 7A Kukri_rep_c74538_62 RAC875_c37085_317 303.2 301.69 303.20 0.0291 1.95

286 Q.NDVI.1976(I)_7A 7A IACX2471 BobWhite_c15352_394 307.74 305.72 307.74 0.0015 3.99

287 Q.GAI.213_7A 7A BS00004257_51 Excalibur_c14451_1313 312.27 312.27 313.79 5E-12 3.45

288 Q.GAI.1630(R)_7A.2 7A wsnp_Ex_c27898_37058842 Excalibur_c60238_183 328.69 327.18 328.69 8E-05 4.22

289 Q.AUC(I)_7A 7A BS00053365_51 CAP7_rep_c10402_310 342.526 342.53 344.55 0.0118 4.29

290 Q.TGW(R)_7A 7A CAP7_rep_c10402_310 Excalibur_c1142_724 346.57 344.55 346.57 0.0002 2.25

291 Q.GAI.1994.(I)_7A 7A wsnp_Ex_c6142_10746442 wsnp_Ex_c53387_56641291 365.23 365.23 366.23 0.0039 3.21

292 Q.Grains.m
-2

.(R)_7A.2 7A wsnp_BF483039A_Ta_2_1 BS00020236_51 380.43 380.43 382.97 4E-10 4.16

293 Q.NDVI.2553(R)_7A 7A BS00020236_51 BobWhite_c32883_84 386.06 382.97 386.06 0.0002 1.18

294 Q.Grains.E
-1

.(I)_7B.1 7B Excalibur_c15405_808 Tdurum_contig5352_556 0 0.00 6.39 1E-08 3.02

295 Q.P.ht(I)_7B 7B Excalibur_c15405_808 Tdurum_contig5352_556 6.39 0.00 6.39 0.0144 1.4

296 Q.TGW(R)_7B 7B BS00111144_51 BS00022056_51 43.08 41.58 43.08 0.0014 2.02

297 Q.TGW(I)_7B.1 7B BS00010616_51 BS00064344_51 60.03 57.99 60.03 3E-07 4.8

298 Q.GAI.841_7B.1 7B CAP11_c106_97 Tdurum_contig92540_1265 90.07 84.25 90.07 7E-05 2.89

299 Q.Grains.m
-2

.(I)_7B.1 7B Ra_c3470_1551 BS00044443_51 109.14 109.14 110.66 0.0011 3.42

300 Q.GAI.1630(R)_7B 7B BS00044443_51 BS00029286_51 110.66 110.66 121.82 1E-06 2.57

301 Q.GAI.841_7B.2 7B BS00025278_51 Excalibur_c12499_2075 147.07 147.07 148.58 0.0001 6.87

302 Q.Grains.E
-1

.(I)_7B.1 7B tplb0058p02_2806 Kukri_rep_c72901_271 194.38 193.38 194.38 9E-12 2.74

303 Q.NDVI.1409(R)_7B 7B Tdurum_contig52096_330 CAP7_c3950_160 255.55 255.55 256.55 2E-10 2.67

304 Q.NDVI.1555(R)_7B 7B Tdurum_contig52096_330 CAP7_c3950_160 255.55 255.55 256.55 8E-07 1.89

305 Q.TGW(I)_7B.2 7B RAC875_c525_106 CAP12_c194_402 274.13 273.13 274.13 6E-05 1.44

306 Q.Grains.m
-2

.(I)_7B.2 7B Kukri_c2348_2340 RAC875_c14064_177 287.41 286.40 287.41 0.0019 3.14

307 Q.Grains.m
-2

.(R)_7D 7D BS00065628_51 Kukri_c6274_1283 31.95 31.95 32.95 1E-09 2.93

308 Q.Grains.E
-1

.(I)_7D 7D wsnp_Ku_c27286_37236472 RAC875_c53629_483 63.26 53.28 63.26 3E-08 1.59

309 Q.CTD(I)_7D 7D BS00062644_51 BS00070188_51 117.36 117.36 118.37 0.0002 2.13



75 
 

 

 

Figure 3.2  Circos plot showing a genetic map of the 21 wheat chromosomes; LOD scores of 

individual significant SNPs (coloured dots on inner light grey segments- dot size is 

proportional to the effect size of QTL). LOD 5 and LOD 10 thresholds are marked by 

concentric circular lines. Chromosomal units in CM. Tracks inner to out illustrate the 8 

consecutive GAI dates and the 9th shows AUC. green dots show QTL before applying 

irrigation in the inner 4 tracks, then red and blue dots mark those of rainfed and irrigated 

treatments respectively. Black vertical lines link QTL on the same genomic position. Orange 

circle separates tracks before and after irrigation. 
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3.4.4 Grain yield bi-locus interactions 

An investigation of the two-way epistasis was done by selecting the five top statistically 

significant interactions of the PLINK output for each treatment, then interrogating them to 

identify those with big effect size. Six two-way interactions were identified, four of which 

were in the irrigated and two in the rainfed treatment (Figure 3.3). Among the 12 interacting 

SNPs, four were coinciding with identified QTL of other traits. The most significant example 

is one of the two interacting SNPs for rainfed yield (wsnp_CAP12_c1503_764765) on 2D 

and is tagging Ppd-D1 photoperiod sensitivity locus with pleiotropic impact on other 

phenotypes such as GAI.1388, GAI.1994, NDVI.1976 and CTD. 

The interacting alleles showed both favourable and unfavourable combinations as presented 

in Figure 3.4, for example the favourable allele combination in Figure 3.4 a, caused grain 

yield increase by 1.5 t/ha and this was found in 2.4% of the tested population. On the other 

hand, the interaction in Figure 3.4.f illustrates an epistasis that suppresses grain yield by more 

than 2 t/ha represented in 2.8% of the population. 
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Figure 3.3 Circos plot showing a genetic map of the 21 wheat chromosomes. Chromosomal 

units in CM. The two-way interacting SNPs are connected with red and blue lines for rainfed 

and irrigated treatments, respectively. Main QTL of coinciding interactions are pointed with 

black arrows. 
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Figure 3.4 Interaction plots of significant epistatic SNP pairs on grain yield. (a, b) in rainfed 

treatment and (c, d, e and f) in irrigated treatment. 
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3.5 Discussion 

3.5.1 Drought impact on phenology and yield 

The limited rainfall caused SMD to exceed 75 mm for prolonged periods of time in the rainfed 

blocks, which is reported as canopy expansion restriction threshold and consequently limits 

grain yield in several field trials under UK conditions and might have an amplified impact if 

coupled with significant high maximum air temperature which was the case in this 

experiment. The water limitation had a significantly negative impact on crop canopy indices, 

stem elongation, CTD and grains.m-2 (Table 3.2), causing an average yield reduction of 

32.8%, which agrees with yield losses reported for winter wheat in the UK in dry years either 

in commercial cultivars or biparental populations (Foulkes et al., 2001, Foulkes et al., 2002, 

Foulkes et al., 2007). 

Generally, heritability estimates were moderate to low, with considerable variation among 

traits. FT had the highest heritability value, mainly due to the minimal environmental 

influence on this trait (even under contrasting water availability regimes in this experiment), 

that it is largely governed by a limited number of major genes controlling vernalization 

requirements and photoperiod sensitivity (Griffiths et al., 2009) and relatively precise 

evaluation. While low heritability values for some traits (most of crop canopy indices 

measurements) indicate that environment had a big role in their expression. Moderate 

heritability of 0.53 for GY is typical of moderate to low values of grain yield heritability, 

which is significantly affected by environment, especially under drought stress (Huang et al., 

2006, Cuthbert et al., 2008, El-Feki et al., 2018). 

All crop canopy indices positively correlated with GY in both treatments, a result agreeing 

with (Pennacchi et al., 2018) who reported significant correlation of yield with canopy cover 

development with remarkably strong correlation with accumulated green area (r=0.43) and 

highest cover (r=0.42). Also, (Brian et al., 2004, Guan et al., 2019) investigated correlation 

of NDVI at different dates during summer with yield and reported significant correlations 

between (r=0.48) and (r=0.83). Notably, stepwise regression analysis showed contrast in 

identifying the key significant date predicting the yield under either treatment. Namely, 

NDVI.1976 tagging mid-grain filling and maximum crop cover in irrigated blocks and 

indicates the potential of strong light interception in explaining yield in favourable conditions 

as agreed by (Pennacchi et al., 2018), while in rainfed blocks it was GAI.1388 that coincided 

with tillering stage, indicating that genotypes with sustained tillering potential could sustain 

yield under drought commencing early in the season. This interpretation could be confirmed 
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by the fact that drought in this experiment caused minimal reduction on TGW and grains.ear-

1 but reduced grains.m-2 by 19.2%. 

 In rainfed treatment, flowering time revealed minor correlation with yield and no significant 

presence in the prediction model, contradicting the reports of Blum (2011) and Shavrukov et 

al. (2017), where early flowering served as a drought escape and avoidance mechanism, but 

supported by Foulkes et al. (2007) findings of neutral effect of FT in absence of severe 

terminal drought, such as the drought UK faces in dry years. 

 In case of soil water limited availability and as air temperature rises during daytime, stomatal 

conductance tends to decrease and consequently decreases CTD (Urban et al., 2007, Thapa 

et al., 2018). In both treatments, CTD measured at mid-grain filling showed strong correlation 

with grain yield (r=0.52) and (r=0.61) in rainfed and irrigated treatments, respectively, as well 

as a significant contribution in the stepwise regression model. Lopes and Reynolds (2010) 

concluded an association of canopy temperature with deep water extraction ability as they 

found cooler canopy wheat genotypes to develop 40% increase in root mass and outperformed 

warmer canopy genotypes by a 30% grain yield increase. 

Number of grains/unit area is considered the main component of genetic gain in wheat grain 

yield potential beside grain weight; generally, this gain tended to stabilise TGW or even 

reduce it in a trade-off that favours number of grains/unit area (Sadras, 2007, Fischer, 2008). 

Such an important component was the highest phenotype correlated with grain yield in both 

treatments (r=0.68) and (r=0.72) in rainfed and irrigated treatments, respectively. These high 

correlation coefficients are broadly typical of GY correlation with grain.m-2, for example, 

Griffiths et al. (2015) investigated this relation in a double haploid population tested in four 

countries and found significant correlation (r=0.56-0.9) with grain yield. In this experiment, 

there was minimal reduction in grains.E-1 and TGW in response to drought; this indicates 

grains.m-2 to be the main component in yield reduction under stress. This inference could be 

confirmed by the significant reduction (p≤0.01) in number of ears/unit area in the highly 

replicated variety ‘Kielder’. 

3.5.2 QTL analysis and epistasis 

The MAGIC panel has a wide range of morphological and physiological characteristics, in 

addition to high recombination rate and low population structure, allowing for high resolution 

QTL analysis to decipher the genetic basis of phenotypic variation of measured traits under 

both treatments. 
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QTL analysis for GAI as dynamic individual time points illustrated number of QTL exhibiting 

contribution over consecutive dates, while most of them were unique to the measuring date. 

Besides pinpointing significantly associated markers with each phenotype, this gives an 

insight on when these markers signals are peaking or decaying. 

Major effect QTL for plant height were identified on chromosome 4B, investigating parental 

effect confirmed that Rht-B1b is inherited from ‘Robigus’ and ‘Soissons’, the two founders 

harbouring the 4B copy of the dwarfing gene. Also identified major effect QTL for flowering 

time on chromosome 2D tagging photoperiod sensitivity locus Ppd-D1, ‘Soissons’ was the 

donor of the insensitive allele Ppd-D1 and caused early flowering in about ⅛ of the 

population, which did not appear to contribute to drought resistance in this experiment, 

contradicting several reports such as Shavrukov et al. (2017) and El-Feki et al. (2018), mainly 

as we had mild terminal drought and the biggest stress impact occurred pre-anthesis, so 

earliness and avoidance were not of much advantage. 

The pleiotropy shown by the D-genome copy of reduced height gene (Rht-D1b) is supported 

by previous researchers investigating in the same population used in this study. For example, 

Camargo et al. (2016) found it to explain 24% of phenotypic variation in harvest index, it was 

reported to explain 24 to 33% of phenotypic variation in above ground plant area at different 

time points (Camargo et al., 2018) and more recently, Jackson (2019) identified various sink 

traits QTL in the same region, such as grain area, grain width, factor form density (ffd) and 

TGW. 

For grain yield, significant main-effect QTL were found on chromosomes 1A, 1B, 1D, 3A, 

4A, 4B, 4D,5A, 5B and 6B, the only treatment independent QTL was identified on 4A. 

Looking at each treatment per se, 10 and 5 unique QTL were identified in the irrigated and 

rainfed treatment, respectively, emphasising the environmental impact on expression of such 

complex traits. Using the same population, Jackson (2019) found the same QTL, 

Q.GY.(R)_4B and Q.GY.(R)_5B to explain 3.32 and 6% of phenotypic variation in a year 

specific appearance. 

 Beside main effect QTL, yield epistatic SNP pairs analysis revealed significant combinations 

of alleles with positive/negative impact on yield, with 0.8 to 2.3 t/ha increase /decrease in the 

unique combination. A minor percentage of RILs encompassing these combinations ranged 

from 2.3 to 6.5% of the tested panel. Three of the six significant epistatic SNPs co-located 

with main QTL found for other traits, mainly crop canopy indices that did not co-locate with 
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the main effect QTL of grain yield. The only case of non-canopy related phenotype was the 

QTL tagging Ppd-D locus on chromosome 2D, the co-location of major effect QTL for grain 

yield and Ppd-D locus was recently reported by Sehgal et al. (2017). 

The Multi-Parent Advanced Generation Inter-Crosses (MAGIC) is believed to overcome the 

drawbacks of both biparental populations and association panels, increasing simultaneously 

the power, diversity and resolution of detecting genomic regions associated with different 

traits. The elite MAGIC population used in this experiment has captured > 80% of the genetic 

diversity of the UK wheat germplasm after comparing the SNP markers to those of the Wheat 

Association Genetics for Trait Advancement and Improvement of Lineages  “WAGTAIL” 

association panel (520 varieties), giving the chance to identify genotypes with allele 

combinations that confer higher yield and adaptability to stresses. On the other hand, these 

allele combinations all came from founder varieties highly adapted to the UK environmental 

condition with low chances of basis for drought tolerance. For future studies, it might be 

advised to enrich the MAGIC population genetic base with exotic material providing traits 

strongly associated with drought tolerance. 

3.6 Conclusion 

Using the winter wheat elite MAGIC population, this is the first study to investigate this 

panel’s (capturing > 80% of the genetic diversity of the UK wheat germplasm) responses to 

contrasting water availability regimes in the field and describes the most important phenology 

predicting grain yield in both treatments, given the environmental parameters such as rainfall, 

SMD, air temperature and soil temperature and identified drought resistance to occur mainly 

through sustaining grains.m-2 and cooler canopies. In this study, besides previously reported 

QTL for different phenological traits and grain yield, we identified novel QTL either stable 

and/or treatment specific and significant epistatic SNP pairs controlling grain yield. These 

significant QTL provide preliminary genomic architecture that could be used in marker 

assisted selection for defined drought tolerance, after validation in more field trials. 
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3.8 Supplementary materials 

Table S3. 1 Founder lines of the eight-parent MAGIC wheat population. Modified from 

Mackay et al (2014). 

Variety 
Listing 

Year 

Seed Yield 

(t/ha) 

NABIM Quality 

Group 
Trait attributes 

Alchemy 2006 9.163 4 
Yield, disease resistance, 

breeding use, soft  

Brompton 2005 9.151 4 
Hard feed, 1BL/1RS, OWBM-

resistant 

Claire 1999 8.654 3 
Soft biscuit/distilling, slow 

apical development 

Hereward 1991 7.683 1 
High-quality benchmark 1 

bread-making 

Rialto 1994 8.377 2 
Moderate bread-making, 

1BL/1RS 

Robigus 2003 9.053 3 
Bread-making quality, early 

flowering, Rht-B1 

Soissons 1995 7.553 2 
Bread-making quality, early 

flowering, Rht-B1 

Xi-19 2002 8.957 1 
Bread-making quality, 

facultative type, breeding use 
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QTL name Chromosome Position Alchemy Brompton Claire Hereward Rialto Robigus Soissons p  value R
2

1 Q.FT(I)_1A 1A 1.01 -58.14 32.55 -40.40 -49.90 -17.40 -28.07 -11.23 4E-07 3.04

2 Q.NDVI.1976(I)_1A 1A 23.76 -0.01 0.03 0.00 -0.01 0.02 -0.01 0.02 0.0001 1.37

3 Q.GAI.1192_1A 1A 71.10 -0.01 -0.01 0.06 -0.14 -0.01 0.04 -0.01 4E-08 4.14

4 Q.GY.(I)_1A 1A 85.71 1.57 0.15 -2.74 -0.82 -0.14 -0.18 -0.62 0.0113 3.33

5 Q.GAI.841_1A 1A 96.10 0.00 0.00 0.00 -0.06 -0.01 0.02 0.01 7E-07 1.74

6 Q.GAI.213_1A 1A 101.17 -0.43 0.02 0.08 -0.38 0.02 0.29 -0.13 0.0021 3.6

7 Q.NDVI.1555(I)_1A 1A 145.04 -0.02 0.03 NA -0.05 -0.04 -0.02 0.00 1E-08 2.45

8 Q.NDVI.2553(I)_1A 1A 211.95 0.01 -0.01 NA 0.01 0.00 -0.02 -0.01 0.0067 1.64

9 Q.Grains.m
-2

.(I)_1A 1A 215.76 7944.64 -2501.06 NA 573.05 -1327.48 -1575.55 -1807.77 0.0088 2.22

10 Q.GAI.1471.(R)_1A 1A 216.76 0.00 0.07 NA 0.03 0.02 0.01 0.00 3E-05 2.93

11 Q.GY.(R)_1A 1A 231.14 0.40 0.92 NA -0.01 0.20 -0.39 -0.10 5E-05 2.24

12 Q.GAI.1192_1B 1B 2.51 0.01 0.04 0.03 0.02 NA 0.01 0.00 3E-06 4.95

13 Q.AUC(I)_1B 1B 8.90 14.09 -71.79 31.85 10.85 114.22 28.16 1.33 7E-07 5.89

14 Q.AUC(R)_1B 1B 8.90 2.31 -161.15 18.88 4.38 186.77 1.74 -19.46 4E-07 5.16

15 Q.GAI.1630(I)_1B 1B 8.90 0.01 -0.05 0.03 0.02 0.11 0.03 -0.01 3E-08 4.49

16 Q.NDVI.1409(I)_1B 1B 13.48 0.02 -0.14 0.01 -0.01 0.15 0.00 -0.01 0.002 2.93

17 Q.GAI.1388.(R)_1B.1 1B 21.72 0.00 -0.01 0.00 0.01 0.02 0.02 -0.02 5E-06 4.51

18 Q.GAI.841_1B 1B 21.72 0.00 -0.03 0.01 0.00 0.06 0.00 0.00 2E-05 3.91

19 Q.FT(R)_1B 1B 26.75 -6.53 -5.45 8.14 -14.09 28.81 3.60 10.60 0.0007 1.09

20 Q.GAI.1471.(I)_1B 1B 31.32 0.01 0.05 -0.02 -0.02 -0.03 0.01 -0.01 0.0002 4.24

21 Q.GAI.1471.(R)_1B.1 1B 291.21 -0.03 0.00 -0.01 -0.03 0.00 -0.03 -0.02 1E-05 2.88

22 Q.GY.(I)_1B.1 1B 56.55 0.68 -2.41 -0.53 0.48 3.61 0.54 0.61 0.0002 4.22

23 Q.NDVI.1976(I)_1B 1B 93.08 0.04 0.01 0.02 0.02 0.05 0.04 0.02 3E-07 5.13

24 Q.NDVI.1555(I)_1B 1B 101.92 0.04 0.02 0.03 0.02 0.03 0.04 0.01 0.0001 3.88

25 Q.GAI.486_1B 1B 133.11 0.00 0.00 0.00 -0.01 0.01 0.00 0.00 0.0003 1.24

26 Q.GY.(I)_1B.2 1B 189.63 0.67 1.37 0.32 0.21 0.24 1.57 0.68 0.0025 3.62

27 Q.Grains.E
-1

.(R)_1B 1B 229.70 -17.97 1.54 -14.05 -17.03 -14.77 -12.17 -11.33 1E-12 2.13

28 Q.GY.(I)_1B.3 1B 240.30 -0.10 0.20 -0.16 -0.30 -0.13 -1.47 -0.61 0.0002 1.1

29 Q.GAI.213_1B 1B 244.83 0.09 0.09 0.40 0.14 0.02 -0.02 0.02 1E-07 2.69

30 Q.CTD.(R)_1B 1B 265.02 -0.11 0.01 -0.08 0.10 -0.28 0.41 0.15 0.0119 1.83

31 Q.GAI.1471.(R)_1B.2 1B 35.39 0.00 0.00 -0.01 0.01 -0.01 0.00 -0.03 0.0002 2.47

32 Q.P.ht(R)_1B 1B 291.21 0.75 1.33 2.88 -0.41 1.06 -2.19 2.13 0.0045 1.85

33 Q.GAI.1388.(R)_1B.2 1B 299.25 -0.02 0.00 -0.03 -0.03 0.01 -0.01 -0.02 1E-05 3.73

34 Q.Grains.E
-1

.(I)_1B 1B 327.18 -8.46 -5.05 -10.03 -4.45 -4.04 -0.41 -13.65 0.0001 2.65

35 Q.NDVI.1555(R)_1B 1B 337.34 0.00 0.00 -0.03 -0.02 0.02 0.00 -0.01 2E-05 3.99

36 Q.Grains.m
-2

.(R)_1D 1D 19.25 -6476.73 -4747.84 -5575.80 -16422.03 -9477.95 -11855.12 -7557.07 1E-08 7.38

37 Q.GY.(I)_1D 1D 39.65 0.45 -1.17 -0.83 -1.53 -0.24 0.39 -0.08 5E-06 2.49

38 Q.CTD.(R)_1D 1D 55.00 1.43 1.20 0.76 1.66 2.71 1.03 1.07 9E-05 1.02

39 Q.Grains.E
-1

.(R)_1D 1D 71.23 17.15 -10.74 8.62 -2.35 9.93 17.69 7.37 4E-13 2.13

40 Q.GAI.841_1D 1D 89.02 -0.03 -0.01 -0.01 0.00 0.01 0.01 -0.01 0.0007 2.27

41 Q.GAI.1994.(I)_1D 1D 99.08 0.01 -0.02 0.02 0.01 0.00 0.04 0.02 0.0124 1.48

42 Q.TGW(R)_1D 1D 122.74 -2.90 5.61 0.12 5.79 12.11 4.49 8.38 1E-05 4.44

43 Q.Grains.E
-1

.(R)_2A 2A 146.83 15.86 19.69 7.71 15.13 18.37 13.90 17.20 4E-05 10.99

44 Q.Grains.m
-2

.(R)_2A 2A 177.36 8983.44 4426.15 4916.88 8787.28 9191.56 3603.20 3519.47 3E-14 8.41

45 Q.GAI.486_2A 2A 187.33 0.01 0.00 0.01 0.00 0.00 0.00 0.00 6E-06 2.49

46 Q.CTD(I)_2A 2A 206.04 -0.01 -0.28 -0.29 -0.19 -0.31 -0.31 -0.04 0.0008 1.2

47 Q.NDVI.1555(I)_2A 2A 206.04 0.02 0.01 -0.01 -0.01 0.01 0.02 -0.02 0.0048 2.44

48 Q.GAI.1388(I)_2A.1 2A 207.05 0.03 0.02 0.00 -0.01 0.03 0.01 -0.01 0.0001 1.74

49 Q.GAI.1388(I)_2A.2 2A 230.55 0.00 0.00 0.03 0.04 0.00 0.01 0.00 0.0125 1.57

50 Q.GAI.1471.(I)_2A 2A 230.55 -0.01 -0.02 0.01 0.01 0.00 0.01 -0.02 0.0032 2.31

51 Q.GAI.1192_2A 2A 237.63 -0.02 -0.02 -0.01 -0.01 -0.02 -0.01 -0.03 0.0017 1.19

52 Q.AUC(R)_2A 2A 240.68 -10.32 -42.23 7.31 -8.72 -22.94 -10.27 -18.67 4E-06 3.69

53 Q.NDVI.1976(R)_2A 2A 250.78 0.00 -0.05 -0.02 -0.02 -0.01 0.03 0.04 2E-08 3.86

54 Q.NDVI.1409(R)_2A 2A 252.80 0.01 -0.03 0.01 0.00 0.02 0.02 0.02 2E-07 2.01

55 Q.CTD.(R)_2A 2A 259.39 -0.01 0.34 -0.05 0.08 0.59 -0.50 -0.65 0.0006 2.12

56 Q.GAI.1630(R)_2A 2A 259.39 0.00 -0.05 0.00 -0.06 -0.02 0.02 0.00 6E-08 6.04

57 Q.NDVI.1555(R)_2A 2A 259.39 -0.01 -0.04 0.02 -0.02 -0.04 0.00 -0.02 2E-05 4.1

58 Q.GAI.1994.(I)_2B 2B 2.53 -0.02 0.03 0.03 0.03 0.02 0.05 0.04 2E-08 7.14

59 Q.GAI.1630(R)_2B 6B 66.23 -0.03 0.02 0.02 0.12 -0.04 0.01 0.01 1E-06 4.25

60 Q.GAI.1994(R)_2B 2B 10.58 -0.02 0.00 0.01 0.01 0.00 0.01 0.03 1E-06 6.29

61 Q.GAI.1471.(I)_2B 2B 27.82 -0.03 0.00 0.00 0.00 -0.02 -0.01 -0.01 0.0001 1.88

62 Q.GAI.841_2B 2B 27.82 -0.01 0.00 0.01 0.01 -0.01 0.00 0.00 8E-07 2.15

Table S3. 2 Parental effect (relative to founder Xi-19) for the detected QTL. 



90 
 

 Table S3. 3 (continued) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

QTL name Chromosome Position Alchemy Brompton Claire Hereward Rialto Robigus Soissons p  value R
2

63 Q.Grains.E
-1

.(I)_2B 2B 72.64 -14.48 -8.05 4.21 -8.26 -10.11 -4.61 -1.17 1E-08 2.98

64 Q.Grains.E
-1

.(R)_2B.1 2B 139.06 -13.77 -109.10 -16.79 -7.89 76.50 -10.94 -15.11 2E-06 1.18

65 Q.P.ht(R)_2B 2B 147.66 -2.98 -45.69 -12.92 -3.89 11.30 -11.62 -12.50 5E-05 1.84

66 Q.FT(R)_2B.1 2B 171.86 -95.16 -246.23 -84.81 -55.67 -68.85 -98.24 -111.46 0.0034 1.59

67 Q.Grains.E
-1

.(R)_2B.2 2B 221.23 19.08 68.08 -26.74 14.85 16.38 16.00 27.28 3E-05 5.53

68 Q.FT(R)_2B.2 2B 253.98 125.24 196.73 224.57 11.72 154.23 104.91 110.72 9E-05 5.24

69 Q.NDVI.1976(R)_2B 2B 271.92 0.06 -0.02 0.18 0.22 -0.01 0.08 0.08 0.0003 1.55

70 Q.TGW(I)_2B 2B 283.93 -11.07 -6.02 -25.98 -5.45 -9.67 -11.54 -10.42 0.0008 1.72

71 Q.GAI.1388.(R)_2B 2B 375.98 -0.01 0.02 0.01 0.00 -0.01 0.02 0.00 0.0058 3.12

72 Q.Grains.m
-2

.(I)_2D 2D 5.61 -6430.64 572.91 -514.64 6913.28 -3038.06 -452.22 -5633.53 0.0064 3.82

73 Q.GAI.1994.(I)_2D 2D 18.85 -0.04 -0.03 -0.01 0.04 -0.02 0.01 0.00 0.0029 2.83

74 Q.GAI.1630(I)_2D 2D 42.21 -0.02 -0.01 0.06 -0.03 -0.05 0.05 0.00 4E-06 2.74

75 Q.NDVI.2553(I)_2D 2D 55.40 -0.04 -0.01 -0.02 -0.01 -0.01 -0.03 -0.03 0.0077 1.29

76 Q.P.ht(R)_2D 2D 55.40 0.33 0.40 -0.48 2.61 -0.41 -1.01 -3.91 0.0004 3.52

77 Q.CTD.(R)_2D 2D 62.71 -0.05 0.10 0.10 -0.33 0.38 0.11 1.33 3E-11 6.73

78 Q.FT(I)_2D 2D 62.71 -44.43 -20.10 -0.55 14.95 -11.07 -12.30 -64.75 3E-16 13.04

79 Q.FT(R)_2D 2D 62.71 -12.00 -5.80 11.95 4.07 -8.47 -4.87 -54.81 3E-13 12.38

80 Q.GAI.1388.(R)_2D 2D 62.71 -0.02 -0.01 -0.01 0.00 -0.02 0.00 -0.03 0.0027 3.87

81 Q.GAI.1994(R)_2D 2D 62.71 0.00 -0.01 0.03 0.00 -0.01 0.03 -0.02 0.0005 6.41

82 Q.NDVI.1976(R)_2D 2D 62.71 0.00 -0.03 0.02 -0.02 -0.01 -0.03 -0.07 2E-09 8.8

83 Q.NDVI.2553(R)_2D.1 2D 85.59 0.00 0.00 0.01 0.00 -0.01 -0.01 0.00 0.0026 3.39

84 Q.GAI.841_2D.1 2D 121.04 -0.01 0.06 0.05 0.04 0.04 0.04 0.03 4E-08 4.15

85 Q.GAI.486_2D 2D 106.21 0.02 0.01 -0.01 0.01 0.00 0.00 0.00 0.0079 2.05

86 Q.GAI.841_2D.2 2D 96.26 0.01 -0.02 -0.03 -0.03 -0.04 -0.02 0.00 3E-06 1.09

87 Q.AUC(I)_2D 2D 122.56 8.84 50.10 5.01 35.72 27.87 32.33 35.97 6E-05 4.03

88 Q.GAI.1192_2D 2D 128.39 0.01 0.07 0.02 0.05 0.03 0.04 0.05 5E-07 2.86

89 Q.NDVI.2553(R)_2D.2 2D 171.95 0.00 -0.01 -0.01 -0.01 -0.01 0.00 0.00 0.0094 1.6

90 Q.TGW(R)_2D 2D 171.95 -2.26 -2.79 -1.69 4.34 13.39 -3.27 1.87 0.004 8.9

91 Q.GAI.213_2D 2D 196.35 2.01 1.88 1.96 1.30 3.19 2.66 2.59 3E-09 4.96

92 Q.GY.(R)_3A 3A 12.06 0.65 -0.60 -1.07 0.18 -0.47 0.00 -0.28 1E-05 4.53

93 Q.Grains.m
-2

.(R)_3A 3A 30.01 6020.94 -2139.10 1850.11 2700.49 -2008.31 696.36 -6077.33 0 3.14

94 Q.GAI.1471.(I)_3A 3A 34.65 0.01 -0.01 -0.01 0.01 0.02 -0.03 0.01 0.0005 3.71

95 Q.P.ht(I)_3A 3A 34.65 1.28 -1.67 -4.15 0.62 -1.32 -2.90 2.37 0.0044 6.34

96 Q.NDVI.1409(R)_3A 3A 44.60 0.04 -0.02 0.00 -0.01 -0.01 0.01 -0.02 1E-06 6.16

97 Q.AUC(R)_3A 3A 50.32 -5.54 -31.30 14.55 -13.41 -27.38 -9.88 -9.93 0.0017 2.12

98 Q.NDVI.1555(R)_3A 3A 50.32 0.04 -0.02 -0.01 0.01 -0.01 0.00 0.00 0.0016 2.98

99 Q.Grains.m
-2

.(I)_3A.1 3A 128.58 -4885.78 -1075.10 -3611.46 -2992.52 1112.92 3001.36 -4240.35 2E-07 1.41

100 Q.NDVI.1976(R)_3A 3A 136.23 0.01 -0.03 -0.03 0.00 -0.01 0.00 -0.02 0.0011 1.21

101 Q.GAI.1994.(I)_3A.1 3A 308.30 0.01 0.00 0.02 0.01 0.05 0.04 0.05 1E-05 1.18

102 Q.GY.(I)_3A 3A 204.47 1.10 -0.02 1.01 -0.15 -0.27 0.05 0.08 5E-05 3.74

103 Q.Grains.m
-2

.(I)_3A.2 3A 205.98 3094.98 -1955.78 3799.69 1962.20 -4860.64 -5093.58 22.33 2E-07 6.43

104 Q.GAI.841_3A 3A 243.45 -0.02 -0.02 -0.01 0.00 -0.02 0.00 -0.01 1E-05 0.98

105 Q.GAI.1388.(R)_3A 3A 270.21 0.02 0.01 -0.03 0.02 0.02 0.02 0.03 0.0016 3.22

106 Q.GAI.1471.(R)_3A 3A 270.21 0.03 0.02 -0.03 0.02 0.01 0.03 0.03 6E-07 4.09

107 Q.NDVI.1976(I)_3A 3A 282.21 -0.02 0.00 -0.03 0.00 -0.01 -0.01 0.01 0.003 3.2

108 Q.GAI.1994.(I)_3A.2 3A 187.18 0.03 0.01 -0.02 0.02 0.03 0.01 0.01 9E-05 3.65

109 Q.NDVI.1976(R)_3B 3B 1.51 0.06 0.03 NA 0.03 0.04 0.01 0.03 0.0061 3.27

110 Q.TGW(I)_3B 3B 1.51 2.91 -0.08 NA -2.23 0.14 3.25 1.73 0.0008 1.38

111 Q.GAI.1994.(I)_3B 3B 39.46 0.03 -0.02 -0.02 -0.01 0.01 0.01 0.01 0.0302 1.85

112 Q.NDVI.2553(R)_3B 3B 41.48 -0.01 0.01 0.01 0.00 0.00 0.00 0.00 7E-07 3.01

113 Q.GAI.1630(I)_3B.1 3B 44.77 0.12 0.00 -0.09 -0.03 0.04 0.01 -0.03 3E-13 4.16

114 Q.Grains.E
-1

.(I)_3B 3B 47.31 2.45 -16.21 -16.64 -5.09 3.21 -0.81 -0.41 5E-12 3.37

115 Q.AUC(I)_3B 3B 44.77 3.43 -7.16 15.30 -0.01 18.09 22.92 -8.67 0.0007 2.83

116 Q.NDVI.1555(R)_3B.1 3B 63.63 -0.03 -0.01 0.06 0.02 0.03 0.02 0.03 2E-05 4.51

117 Q.GAI.1630(I)_3B.2 3B 85.62 0.01 0.04 0.10 0.10 0.01 0.04 0.05 0.0013 2.4

118 Q.Grains.m
-2

.(I)_3B 3B 96.70 -1025.22 -535.01 -2268.38 2663.05 -2239.16 4281.22 76.16 6E-06 2.02

119 Q.TGW(R)_3B.1 3B 149.92 30.22 33.37 29.67 33.07 67.13 33.41 25.38 8E-05 7.61

120 Q.GAI.1630(R)_3B.1 7A 328.69 -0.02 0.01 -0.01 -0.03 0.00 0.00 0.02 8E-05 4.22

121 Q.TGW(R)_3B.2 3B 179.92 -59.43 -65.41 -57.41 -62.74 -122.34 -67.19 -61.04 6E-06 8.46

122 Q.CTD.(R)_3B 3B 183.45 -4.33 -3.48 -3.91 -3.70 -7.25 -3.79 -3.40 0.0013 1.5

123 Q.GAI.1630(R)_3B.2 4B 79.19 -0.03 -0.02 0.04 0.02 0.01 0.03 -0.02 2E-06 4.03



91 
 

Table S3. 4 (continued) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

QTL name Chromosome Position Alchemy Brompton Claire Hereward Rialto Robigus Soissons p  value R
2

124 Q.Grains.m
-2

.(R)_3B 3B 201.56 -6672.12 658.12 -1186.32 224.68 -6962.44 -843.75 NA 2E-09 2.65

125 Q.NDVI.1555(R)_3B.2 3B 233.55 0.00 -0.02 0.04 0.01 0.04 0.03 NA 0.002 1.15

126 Q.GAI.1994(R)_3B 3B 241.15 0.02 -0.03 0.03 0.00 0.03 0.06 NA 5E-04 4.21

127 Q.GAI.1192_3B 3B 246.73 0.01 -0.02 0.00 0.00 0.02 0.04 NA 0.005 1.52

128 Q.FT(I)_3D 3D 1.01 -2943.30 2871.15 NA -11.91 NA -28.20 15.93 4E-06 1.92

129 Q.FT(R)_3D 3D 1.01 -1029.65 965.46 NA -14.30 NA -25.62 28.83 7E-06 1.18

130 Q.P.ht(I)_3D 3D 94.19 0.75 3.36 -0.17 0.60 -6.39 2.28 2.65 3E-04 2.38

131 Q.P.ht(R)_3D 3D 94.19 -3.17 -0.29 -1.17 3.01 -10.85 0.05 2.28 6E-08 1.23

132 Q.GAI.1994.(I)_3D 3D 99.87 0.00 0.01 0.01 0.04 -0.06 -0.01 0.00 0.003 2.22

133 Q.GAI.1630(I)_3D 3D 107.27 0.04 0.06 0.07 0.08 0.06 0.05 0.08 0.003 1.18

134 Q.GAI.213_3D 3D 192.5 -0.76 0.43 -0.31 -0.30 NA -0.32 NA 4E-05 4.95

135 Q.NDVI.1409(I)_4A.1 4A 7.23 -0.03 0.15 -0.03 -0.03 -0.13 -0.02 0.00 1E-06 3.36

136 Q.GAI.1471.(I)_4A 4A 7.74 0.01 0.09 0.01 0.00 -0.04 -0.01 0.01 0.004 2.29

137 Q.NDVI.2553(R)_4A 4A 23.34 0.01 -0.03 0.00 0.00 0.03 0.00 -0.01 6E-09 4.78

138 Q.AUC(I)_4A 4A 29.17 0.27 116.53 -0.75 -7.93 -75.34 0.89 12.53 8E-04 1.66

139 Q.GY.(I)_4A 4A 36.98 -0.37 2.27 0.71 -0.98 -1.16 -0.40 0.27 0.003 2.14

140 Q.GY.(R)_4A 4A 36.98 -0.19 -0.93 0.81 -0.42 0.08 0.16 0.19 2E-06 3.39

141 Q.Grains.m
-2

.(R)_4A 4A 43.64 2880.92 -5140.45 259.01 362.15 -3145.10 1695.27 -2455.75 3E-11 4.02

142 Q.NDVI.1976(I)_4A 4A 49.5 0.02 0.07 0.04 -0.01 -0.02 -0.02 0.01 4E-05 1.03

143 Q.Grains.E
-1

.(R)_4A 4A 61.2 2.52 -77.28 3.56 11.02 -8.87 0.02 11.94 4E-13 7.81

144 Q.GAI.1388(I)_4A 4A 113.1 -0.01 0.02 0.00 0.03 0.00 0.01 -0.01 5E-04 1.94

145 Q.NDVI.1555(I)_4A 4A 123.55 -0.03 -0.03 -0.01 0.00 0.00 -0.01 -0.02 0.012 1.93

146 Q.Grains.E
-1

.(I)_4A 4A 140.85 16.92 9.02 13.42 21.84 18.40 17.43 15.08 9E-12 3.78

147 Q.GAI.213_4A 4A 164.01 -0.01 -0.54 -0.38 -0.04 -0.16 -0.25 -0.02 5E-06 1.01

148 Q.FT(R)_4A 4A 178.37 66.46 45.78 -17.24 17.75 18.21 17.46 4.49 0.002 1.86

149 Q.NDVI.1409(I)_4A.2 4A 217.29 0.10 0.03 -0.03 0.02 -0.01 -0.05 -0.18 0.007 1.56

150 Q.GAI.1630(I)_4B.1 4B 78.18 -0.01 -0.02 0.00 0.02 0.01 0.03 -0.02 6E-06 5.67

151 Q.GAI.1994.(I)_4B 4B 25.91 -0.04 0.00 -0.07 -0.04 -0.04 -0.04 -0.04 3E-05 3

152 Q.P.ht(I)_4B.1 4B 52.17 2.67 -1.30 -0.16 -4.20 -3.06 -8.56 -6.80 2E-08 7.83

153 Q.P.ht(R)_4B 4B 52.17 -0.75 1.22 2.64 -1.31 0.22 -7.22 -8.27 0 11.23

154 Q.GY.(I)_4B 4B 63.34 -1.04 -0.74 -0.67 -0.18 -0.37 0.08 -1.06 0.001 1.31

155 Q.TGW(I)_4B 4B 65.87 4.42 -1.25 -1.03 1.68 1.15 0.27 -3.09 0.001 4.73

156 Q.AUC(R)_4B 4B 75.09 -22.99 -17.20 21.99 15.47 -2.47 18.30 -13.36 3E-06 3.83

157 Q.GAI.1192_4B1.1 4B 75.09 -0.01 -0.03 -0.01 0.02 0.01 0.00 -0.01 2E-08 4.35

158 Q.GAI.1630(I)_4B.2 4B 18.73 0.01 0.05 -0.10 0.01 -0.02 -0.03 0.00 2E-07 3.25

159 Q.GY.(R)_4B 4B 78.18 -0.33 -0.70 -0.50 0.31 -0.29 0.44 -0.13 2E-06 1.7

160 Q.NDVI.1976(R)_4B 4B 78.18 -0.05 -0.01 0.04 0.01 0.02 0.01 -0.01 0.001 3.6

161 Q.NDVI.2553(R)_4B 4B 78.18 0.00 -0.01 -0.01 0.00 -0.01 0.00 -0.01 2E-04 1.52

162 Q.GAI.1630(R)_4B 3B 183.45 0.17 0.15 0.13 0.21 0.40 0.21 0.18 3E-05 2.82

163 Q.P.ht(I)_4B.2 4B 80.71 -5.98 1.01 5.20 8.03 3.40 4.57 0.72 2E-04 4.99

164 Q.AUC(I)_4B.1 4B 81.72 1.22 -8.27 -14.45 20.34 3.78 14.00 1.74 0.006 4.12

165 Q.CTD.(R)_4B.1 4B 179.45 0.47 -0.45 -0.39 0.10 0.37 -0.01 -0.47 0.001 1.42

166 Q.GAI.1388(I)_4B 4B 83.73 -0.01 -0.03 -0.03 0.01 0.00 0.00 -0.02 3E-06 4.17

167 Q.CTD(I)_4B 4B 111.24 -0.04 0.12 0.58 -0.06 0.02 -0.07 0.16 4E-05 6.97

168 Q.Grains.E
-1

.(R)_4B 4B 143.65 -14.37 9.28 12.91 5.23 7.35 7.66 -2.57 2E-08 6.66

169 Q.FT(R)_4B 4B 159.51 -32.82 2.20 29.52 13.53 3.35 24.99 -6.77 1E-06 4.43

170 Q.NDVI.2553(I)_4B 4B 169.15 -0.04 -0.02 0.00 -0.01 -0.01 -0.01 0.00 0.029 1.04

171 Q.GAI.1471.(I)_4B 4B 178.44 -0.04 0.02 -0.01 -0.01 -0.03 -0.02 -0.02 2E-04 1.55

172 Q.CTD.(R)_4B.2 4B 83.73 1.40 0.67 -0.45 -0.54 0.03 0.01 0.43 4E-08 4.13

173 Q.AUC(I)_4B.2 4B 226.6 -34.19 37.28 -18.53 -31.78 -31.40 -5.10 -24.72 5E-04 1.47

174 Q.GAI.1630(I)_4B.3 4B 226.6 -0.05 -0.01 -0.04 0.01 -0.05 -0.04 -0.04 4E-04 1.18

175 Q.GAI.1192_4B.2 4B 230.19 -0.02 0.05 -0.04 -0.06 -0.01 0.00 -0.02 3E-06 1.28

176 Q.GAI.841_4D 4D 24.93 -0.04 0.00 NA 0.02 -0.03 0.00 0.00 5E-05 3.24

177 Q.Grains.E
-1

.(I)_4D 4D 24.93 26.93 15.79 NA 8.76 9.84 6.21 -0.75 4E-07 9.42

178 Q.NDVI.1555(R)_4D 4D 24.93 0.04 0.01 NA -0.02 -0.02 -0.01 0.02 7E-04 1.36

179 Q.AUC(R)_4D 4D 32.24 -26.72 25.12 NA -34.99 -31.78 -19.44 -6.91 3E-04 3.64

180 Q.CTD.(R)_4D 4D 32.24 0.49 -0.10 NA 1.23 0.56 0.52 0.15 1E-03 3.73

181 Q.GAI.1630(I)_4D 4D 32.24 0.08 -0.02 NA -0.02 0.00 -0.03 0.00 4E-07 3.2

182 Q.Grains.m
-2

.(I)_4D 4D 32.24 3574.90 3930.89 NA 19.23 -3741.80 -4425.27 -3142.67 4E-09 7.86

183 Q.GY.(I)_4D 4D 32.24 -0.49 0.43 NA -0.35 -0.47 -1.34 -0.83 3E-07 3.42

184 Q.NDVI.1409(R)_4D 4D 32.24 0.00 0.02 NA -0.02 -0.03 -0.01 0.01 5E-06 2.44

185 Q.P.ht(I)_4D 4D 32.24 -4.58 0.71 NA -3.17 -1.74 5.84 4.51 0 15.18

186 Q.P.ht(R)_4D 4D 32.24 -0.46 -0.98 NA -4.51 -2.02 4.04 5.06 0 12.23
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QTL name Chromosome Position Alchemy Brompton Claire Hereward Rialto Robigus Soissons p  value R
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187 Q.TGW(I)_4D.2 4D 62.98 5.27 3.11 NA 3.31 -3.80 6.44 -4.57 6E-06 4.31

188 Q.GAI.1388(I)_4D 4D 99.22 -0.02 0.04 NA -0.03 -0.03 -0.02 -0.03 2E-06 2.68

189 Q.NDVI.1409(I)_4D 4D 99.22 0.01 0.04 NA -0.02 -0.01 0.01 0.01 0.004 1.18

190 Q.NDVI.1976(I)_5A 5A 51.47 0.00 -0.05 0.03 0.00 -0.01 -0.01 -0.03 0.0001 2.25

191 Q.CTD(I)_5A.1 5A 99.27 -0.15 -0.06 -0.29 -0.14 -0.25 0.16 -0.10 0.0104 2.44

192 Q.GY.(I)_5A 5A 83.05 -0.61 -0.92 0.15 0.88 0.22 -1.13 -0.17 9E-06 1.38

193 Q.CTD(I)_5A.2 5A 69.43 0.16 0.28 0.37 -0.06 0.38 0.12 0.09 0.0023 1.64

194 Q.GY.(R)_5A 5A 126.69 0.37 -0.01 -0.02 1.09 0.30 0.23 -0.22 7E-05 2.68

195 Q.GAI.1471.(R)_5A 5A 128.21 0.03 -0.03 -0.01 0.00 -0.01 0.01 -0.01 0.0042 2.08

196 Q.GAI.1388(I)_5A 5A 137.43 0.01 0.00 0.04 0.00 -0.03 -0.02 0.02 5E-06 3.14

197 Q.NDVI.1555(I)_5A.1 5A 312.56 0.02 -0.02 0.01 -0.04 -0.03 -0.01 -0.01 0.0078 1

198 Q.Grains.m
-2

.(R)_5A 5A 166.8 -3787.01 -5163.65 -7062.84 -1761.08 -9374.33 -6299.46 -6319.52 1E-10 2.14

199 Q.GAI.486_5A 5A 177.07 -0.01 -0.01 0.00 -0.01 0.00 -0.01 0.00 0.0004 3.56

200 Q.GAI.213_5A 5A 181.64 -0.18 -0.01 -0.04 -0.11 -0.10 -0.17 0.19 2E-06 3.97

201 Q.FT(I)_5A.1 5A 183.69 1.11 -44.16 -57.46 -3.67 -4.26 -12.21 -30.39 3E-09 3.27

202 Q.Grains.m
-2

.(I)_5A.1 5A 183.69 1343.76 2789.05 -2728.05 -6329.76 -1051.93 2647.07 -1440.01 5E-05 1.84

203 Q.GAI.1994(R)_5A 5A 197.58 0.00 0.00 -0.02 -0.01 -0.03 -0.02 0.00 0.0022 3.09

204 Q.CTD.(R)_5A 5A 206.98 0.66 0.39 0.59 -0.14 0.41 0.02 0.16 7E-05 4.18

205 Q.NDVI.1976(R)_5A.1 5A 249.15 -0.02 0.03 -0.02 -0.01 -0.02 0.02 0.00 0.0138 1.56

206 Q.NDVI.1976(R)_5A.2 5A 211.51 -0.02 -0.05 -0.02 -0.02 -0.03 -0.02 -0.01 0.0043 1.5

207 Q.FT(R)_5A 5A 253.77 -11.25 3.39 -30.46 0.34 -17.48 -17.68 -11.85 0.0044 1.12

208 Q.Grains.m
-2

.(I)_5A.2 5A 256.86 -1777.32 910.99 4375.45 598.97 -1006.60 3474.63 -3181.03 0.0165 2.73

209 Q.NDVI.1409(R)_5A 5A 278.73 -0.04 0.00 0.00 0.00 0.00 -0.02 0.00 3E-05 1.44

210 Q.NDVI.1555(R)_5A 5A 300.75 -0.03 -0.01 0.02 0.00 -0.03 -0.03 -0.02 5E-06 2.6

211 Q.FT(I)_5A.2 5A 310.04 -13.75 -1.25 36.36 51.69 3.21 1.34 -6.52 2E-07 3.03

212 Q.AUC(R)_5A 5A 312.56 -28.87 -22.84 -32.54 1.17 -30.73 -13.68 -20.47 0.0033 2.27

213 Q.GAI.1388.(R)_5A 5A 312.56 -0.03 -0.01 0.01 0.03 -0.02 0.00 -0.01 0.0025 1.5

214 Q.NDVI.1555(I)_5A.2 5A 139.96 0.02 0.02 0.07 0.00 -0.01 0.00 0.02 0.0005 1.33

215 Q.AUC(I)_5A 5A 313.57 -15.70 -7.29 11.48 18.18 -23.49 9.51 -13.63 0.0004 2.58

216 Q.GAI.213_5B.1 5B 13.16 0.03 0.21 0.02 0.05 -0.02 -0.06 0.17 0.0047 1.38

217 Q.NDVI.2553(R)_5B 5B 38.92 0.01 -0.01 -0.01 0.00 0.00 0.00 0.00 5E-09 3.47

218 Q.AUC(I)_5B.1 5B 81.2 9.58 -37.61 46.22 -45.38 -41.73 -13.82 -33.11 0.0011 2.52

219 Q.GAI.1471.(I)_5B.1 5B 81.2 -0.02 -0.04 0.06 -0.06 -0.04 -0.02 -0.02 0.0007 2.69

219 Q.GAI.1471.(I)_5B.1 5B 281.57 -0.15 0.13 -0.05 -0.04 -0.01 -0.03 -0.02 5E-05 2.92

220 Q.GAI.1388(I)_5B 5B 113.4 -0.06 -0.04 0.03 -0.17 0.10 -0.06 -0.03 4E-10 3.59

221 Q.Grains.m
-2

.(I)_5B 5B 113.4 -5657.30 -1474.53 -1936.60 -18536.82 15972.94 -253.96 -1251.77 0.007 1.55

222 Q.CTD(I)_5B.1 5B 281.57 0.26 -0.98 1.23 0.24 0.08 0.13 0.21 0.0136 2.24

223 Q.FT(I)_5B 5B 142.56 2.97 41.50 5.16 -82.99 76.85 9.30 21.14 1E-05 1.44

224 Q.AUC(I)_5B.2 5B 144.57 -27.59 3.19 -2.45 -49.07 46.19 -13.99 6.75 0.0299 1.79

225 Q.Grains.E
-1

.(R)_5B 5B 152.66 -12.51 -1.23 7.44 3.62 2.19 0.12 1.45 2E-08 2.63

226 Q.Grains.m
-2

.(R)_5B 5B 163.98 -1880.33 576.50 1370.02 15324.17 -15405.93 357.14 1961.36 2E-09 2.85

227 Q.GY.(R)_5B 5B 223.1 -0.96 -0.20 -0.51 -0.01 -0.33 -0.71 -0.28 0.002 2.41

228 Q.GAI.213_5B.2 5B 229.16 -0.06 -0.28 -0.23 -0.26 -0.08 -0.33 -0.18 0.0012 3.19

229 Q.CTD(I)_5B.2 5B 133.41 0.24 0.12 -0.30 1.00 -0.28 0.15 -0.06 0.0045 3.25

231 Q.GAI.1192_5B 5B 282.57 -0.08 0.03 -0.04 -0.04 -0.02 -0.01 -0.04 3E-07 4.26

232 Q.GAI.841_5B 5B 282.57 -0.04 0.05 -0.06 -0.01 -0.01 0.00 -0.02 7E-05 2.52

233 Q.NDVI.1555(I)_5B 5B 282.57 -0.10 0.08 -0.06 -0.04 -0.02 -0.02 -0.05 0.0002 2.52

234 Q.NDVI.1976(R)_5B 5B 289.61 0.04 -0.01 -0.02 -0.01 0.00 -0.03 -0.03 0.0137 2.25

235 Q.P.ht(I)_5B 5B 289.61 -6.05 11.12 -9.06 -2.94 0.05 2.22 -1.35 0.0004 4.27

236 Q.NDVI.1976(I)_5B 5B 298.71 -0.10 0.08 -0.06 -0.02 0.00 -0.03 -0.02 5E-05 3.54

237 Q.Grains.E
-1

.(R)_5D 5D 120.79 16.45 15.39 5.62 -19.28 8.05 -7.80 16.98 1E-06 1.18

238 Q.FT(I)_5D 5D 144.35 -34.98 -14.29 -19.92 17.48 -34.44 -34.60 -33.98 0.0029 1.08

239 Q.Grains.m
-2

.(R)_5D 5D 150.86 -8842.46 -1042.88 331.52 -1791.56 2655.31 -4993.37 -4263.01 3E-12 2.82

240 Q.Grains.E
-1

.(I)_5D 5D 171.07 -8.29 21.95 10.08 16.70 19.48 23.28 24.08 0 5.91

241 Q.GAI.1994(R)_5D 5D 198.08 0.00 0.03 0.02 0.01 0.05 0.00 0.02 0.0008 1.21

242 Q.GAI.1994.(I)_6A 6A 32.88 0.01 0.04 -0.01 -0.01 0.01 0.03 0.00 2E-06 1.86

243 Q.CTD(I)_6A 6A 37.42 0.15 -0.15 -0.02 0.13 -0.09 -0.24 -0.05 0.0042 2.25

244 Q.Grains.E
-1

.(I)_6A 6A 61.07 -3.51 -9.79 -3.76 -3.85 -7.92 -5.90 -10.05 0.0225 3.19

245 Q.NDVI.2553(I)_6A.1 6A 203.97 -0.01 0.01 0.04 0.03 0.01 0.02 0.03 0.0082 2.41

246 Q.GAI.213_6A 6A 112.02 0.00 0.03 0.21 -0.09 0.03 -0.17 0.04 0.0011 1.53

247 Q.TGW(I)_6A 6A 130.43 0.65 0.56 -2.25 0.18 3.21 6.82 2.16 5E-06 7.17
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QTL name Chromosome Position Alchemy Brompton Claire Hereward Rialto Robigus Soissons p value R
2

248 Q.GAI.1630(I)_6A.1 6A 204.98 -0.01 -0.02 -0.02 -0.02 -0.02 -0.02 0.02 0.0002 2.95

249 Q.NDVI.2553(R)_6A 6A 148.64 0.01 0.00 0.00 -0.01 0.01 0.01 0.00 5E-08 4.32

250 Q.NDVI.1409(I)_6A 6A 155.74 0.03 -0.02 0.05 0.01 0.04 0.05 0.02 1E-06 3.83

251 Q.NDVI.1555(I)_6A.1 6A 175.93 0.04 0.01 0.04 0.02 0.02 0.02 0.03 0.0098 1.23

252 Q.GAI.486_6A 6A 180.47 0.00 -0.01 0.01 0.01 0.00 0.00 0.00 0.0117 1.39

253 Q.Grains.m
-2

.(I)_6A 6A 191.33 -4853.37 -7206.50 -377.41 -988.12 5088.19 1951.96 -14.66 5E-05 6.24

254 Q.NDVI.2553(I)_6A.2 6A 109.46 0.00 0.01 -0.01 -0.01 0.01 0.03 0.01 2E-05 3.46

255 Q.GAI.1630(I)_6A.2 6A 146.08 0.00 -0.02 0.02 -0.01 0.02 0.00 -0.06 5E-05 0.92

256 Q.FT(R)_6A 6A 215.25 -27.80 -14.13 20.14 13.27 -39.65 -1.81 -8.41 0.0002 1.49

257 Q.NDVI.1555(I)_6A.2 6A 256.90 -0.03 -0.05 0.02 0.00 0.01 0.05 0.00 6E-06 3.6

258 Q.NDVI.1555(R)_6B 6B 10.70 -0.05 0.00 -0.01 0.02 -0.01 0.00 0.01 0.0192 1

259 Q.NDVI.2553(R)_6B.1 6B 15.73 0.00 -0.01 -0.01 0.00 -0.01 -0.01 -0.01 1E-06 5.84

260 Q.GAI.1994.(I)_6B.1 6B 30.16 -0.01 -0.01 0.03 0.03 0.03 0.01 0.01 2E-05 1.38

261 Q.TGW(R)_6B 6B 35.81 -2.43 -1.71 -7.91 -3.16 -3.14 -4.27 -0.92 5E-05 1.46

262 Q.GAI.1388(I)_6B 6B 42.60 0.02 0.01 0.02 0.02 0.06 0.01 0.02 4E-06 1.71

263 Q.GAI.1630(I)_6B 6B 56.49 -0.05 -0.04 -0.02 -0.03 -0.01 -0.02 -0.02 0.0003 3.19

264 Q.GAI.1994(R)_6B 6B 57.49 -0.04 -0.01 -0.01 0.02 -0.03 0.00 0.00 0.0127 2.8

265 Q.GAI.1630(R)_6B 7B 110.66 0.04 0.01 0.09 0.03 -0.03 0.01 0.00 1E-06 2.57

266 Q.NDVI.1976(R)_6B 6B 80.74 -0.08 0.01 -0.01 0.08 0.01 0.02 0.00 0.0095 1.32

267 Q.TGW(I)_6B 6B 159.18 9.47 1.52 -11.55 6.16 -7.43 -1.98 0.87 0.0187 2.72

268 Q.CTD(I)_6B 6B 170.78 0.47 0.21 -0.05 0.16 0.84 0.36 0.47 0.0013 1.23

269 Q.GAI.1994.(I)_6B.2 6B 173.83 -0.10 -0.03 0.04 0.03 -0.12 -0.04 -0.03 2E-05 4.65

270 Q.GY.(I)_6B 6B 175.85 -2.93 -1.40 1.49 0.87 -0.74 -1.15 -0.63 0.0001 1.97

271 Q.P.ht(I)_6B 6B 192.21 -8.57 -0.72 4.67 -0.60 5.18 -3.49 -0.74 2E-05 1.08

272 Q.FT(I)_6B.1 6B 214.55 67.35 10.84 15.47 -13.20 7.42 71.04 27.51 2E-07 1.38

273 Q.NDVI.2553(R)_6B.2 6B 235.26 0.00 -0.01 0.00 0.00 0.00 0.00 0.00 0.0047 3.1

274 Q.FT(I)_6B.2 6B 261.89 46.08 26.09 3.39 44.15 26.71 -66.52 -42.08 0.0004 2.23

275 Q.NDVI.1409(R)_6D 6D 104.21 -0.12 -0.48 NA 0.38 NA -0.04 -0.01 5E-05 1.65

276 Q.NDVI.1976(I)_6D 6D 104.21 -0.19 0.47 NA -0.61 NA 0.03 -0.03 0.0005 2.19

277 Q.Grains.E
-1

.(R)_6D 6D 130.85 13.35 -40.39 NA 39.02 NA 11.29 -6.30 1E-08 4.22

278 Q.GAI.1630(I)_6D 6D 215.00 0.69 -0.01 -0.63 NA NA -0.01 0.05 9E-06 0.94

279 Q.Grains.m
-2

.(R)_7A.1 7A 33.03 3086.38 -1504.09 NA -4602.55 3854.80 268.16 -291.39 1E-04 4.28

280 Q.GAI.1471.(R)_7A 7A 35.05 0.01 0.03 NA -0.01 0.01 0.03 -0.01 2E-06 3.87

281 Q.GAI.1388.(R)_7A 7A 43.65 0.01 0.01 NA 0.01 0.03 0.03 -0.01 0.0007 1.61

282 Q.GAI.1630(R)_7A.1 2B 3.53 -0.03 0.04 0.02 -0.02 0.01 0.04 0.04 9E-07 1.61

283 Q.FT(R)_7A 7A 188.57 52.96 7.71 NA -3.98 41.63 -21.41 11.29 0.0008 1.78

284 Q.NDVI.2553(I)_7A 7A 194.62 0.04 0.01 NA 0.02 0.04 0.03 0.03 0.0015 3.57

285 Q.NDVI.1555(I)_7A 7A 303.20 -0.02 0.00 0.01 -0.01 0.00 -0.01 -0.03 0.0291 1.95

286 Q.NDVI.1976(I)_7A 7A 307.74 -0.03 0.02 0.03 -0.01 -0.01 0.00 -0.02 0.0015 3.99

287 Q.GAI.213_7A 7A 312.27 0.32 0.01 -0.57 -0.26 0.11 -0.33 -0.21 5E-12 3.45

288 Q.GAI.1630(R)_7A.2 7A 51.26 0.01 0.08 NA 0.03 -0.02 0.02 -0.01 0.0002 1.57

289 Q.AUC(I)_7A 7A 344.55 -1.37 -19.95 -29.49 -13.38 -1.08 -15.42 -20.05 0.0118 4.29

290 Q.TGW(R)_7A 7A 346.57 3.20 -0.50 -1.93 1.90 -2.29 -5.04 -0.57 0.0002 2.25

291 Q.GAI.1994.(I)_7A 7A 365.23 -0.03 -0.01 -0.02 -0.01 0.02 -0.02 0.00 0.0039 3.21

292 Q.Grains.m
-2

.(R)_7A.2 7A 380.43 6907.46 -617.28 925.83 -1059.00 7657.81 4789.18 2214.78 4E-10 4.16

293 Q.NDVI.2553(R)_7A 7A 386.06 0.00 0.00 0.00 -0.01 -0.01 0.00 -0.01 0.0002 1.18

294 Q.Grains.E
-1

.(I)_7B.1 7B 0.00 -2.53 25.10 -17.23 13.86 NA -6.09 -1.63 1E-08 3.02

294 Q.Grains.E
-1

.(I)_7B.1 7B 194.38 8.60 8.79 -8.01 -2.83 -23.51 -5.34 -6.48 9E-12 2.74

295 Q.P.ht(I)_7B 7B 6.39 4.03 4.49 3.24 6.36 NA 6.95 2.22 0.0144 1.4

296 Q.TGW(R)_7B 7B 43.08 0.22 22.30 -2.70 -0.73 -24.87 -1.01 1.80 0.0014 2.02

297 Q.TGW(I)_7B.1 7B 60.03 4.71 -16.85 -5.24 -1.80 17.86 9.29 0.96 3E-07 4.8

298 Q.GAI.841_7B.1 7B 147.07 -0.02 0.00 0.00 -0.02 -0.01 -0.01 -0.02 0.0001 6.87

299 Q.Grains.m
-2

.(I)_7B.1 7B 109.14 1394.64 -1599.07 -2237.67 -3007.09 4271.40 -8434.36 -368.24 0.0011 3.42

300 Q.GAI.1630(R)_7B 3B 154.44 0.15 0.15 0.19 0.12 0.20 0.12 0.13 0.0014 1.15

301 Q.GAI.841_7B.2 7B 90.07 0.06 0.03 0.06 0.03 0.06 -0.02 0.02 7E-05 2.89

303 Q.NDVI.1409(R)_7B 7B 255.55 -0.01 0.02 -0.02 0.02 NA -0.02 0.01 2E-10 2.67

304 Q.NDVI.1555(R)_7B 7B 255.55 0.04 -0.15 -0.11 -0.06 NA -0.10 -0.08 8E-07 1.89

305 Q.TGW(I)_7B.2 7B 274.13 -3.02 1.59 -0.38 -0.22 NA 4.89 1.19 6E-05 1.44

306 Q.Grains.m
-2

.(I)_7B.2 7B 287.41 5008.97 1588.83 -1670.76 4134.22 NA 1183.35 -735.50 0.0019 3.14

307 Q.Grains.m
-2

.(R)_7D 7D 31.95 -6764.21 14851.88 4065.09 459.69 -17356.66 -1554.77 NA 1E-09 2.93

308 Q.Grains.E
-1

.(I)_7D 7D 63.26 1.22 -5.39 8.52 -30.74 -2.33 6.12 NA 3E-08 1.59

309 Q.CTD(I)_7D 7D 117.36 0.00 -0.15 -0.23 -0.17 -0.68 -0.56 NA 0.0002 2.13
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Figure S3. 1 UK rainfall anomaly map for (a) April 2017, (b) spring 

2017 (Met office 2017) 
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Figure S3. 2 Average Changes of the MAGIC population in (a) GAI; (b) NDVI, (c) 

cumulative precipitation and (d) soil moisture deficit, from germination to late grain filling 

over thermal time (expressed in degree days). Blue and red lines show irrigated and rainfed 

treatments respectively. The green vertical line indicates the time of onset of supplementary 

irrigation. 
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Figure S3. 3 Density plots of phenotypes data for MAGIC population response to drought. 
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Figure S3. 4 Aerial (RGB) field view at mid-May 

 

 

2 m 



98 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

NDVI.(1409dd)          NDVI.(1555dd)            NDVI.(1976dd)      NDVI.(2553dd             

 

NDVI.(1409dd)          NDVI.(1555dd)            NDVI.(1976dd)      NDVI.(2553dd             

Figure S3. 5 Aerial field view for time series NDVI. 
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4 Chapter 4: Genomic regions associated with response of 

MAGIC wheat to Piriformospora indica symbiosis under 

drought 

4.1 Abstract 

Globally, wheat growing areas are experiencing significantly increased incidents of drought, 

negatively impacting wheat growth and development and resulting in reduced grain yield. 

Piriformospora indica (Serendipita indica), a root-colonizing endophyte of Sebacinales is 

known to improve drought stress tolerance in wheat and other field crops, but quantitative 

trait loci (QTL) underpinning drought-resistance traits influenced by endophytic growth in 

wheat were not reported before. A representative subset of the elite winter wheat MAGIC 

population consisting of 200 RILs was phenotyped for the presence/absence of fungal 

inoculation under both well-watered and drought stress conditions. Overall, P.indica 

conferred an increase in plant height and grain yield, however, for most traits, there was 

significant difference in genotypes responses to colonization under both water availability 

regimes. Several QTL unique to colonized plants were detected on most chromosomes and 

linked to measured traits under drought. For grain yield two associated QTL were detected on 

chromosomes 5A and 7B accounting for 2.95% and 12.3% of the variation in yield, 

respectively, moreover, P. indica colonization masked the detection of QTL tagging known 

genes, such as reduced height locus Rht-B1 on chromosome 4B and photoperiod sensitivity 

locus Ppd-D1 on chromosome 2D. We conclude that the genotypic specific variation in 

response can be used in breeding for highly responsive lines and improved wheat performance 

under drought and after validating these findings with more replicated trials, the identified 

QTL can be investigated for candidate genes governing the symbiosis between wheat and P. 

indica. 

 

Keywords: wheat, Piriformospora indica, drought stress tolerance, MAGIC population, 

QTL 
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4.2 Introduction 

 Yield improvement through conventional breeding either under standard management or 

stress conditions is always slow and impaired by its complex polygenic nature, suggesting the 

promising idea to utilize the genotypic differences in response to endophyte inoculation to 

improve plant performance and breed for better response to inoculation (Galván et al., 2011, 

Fester and Sawers, 2011). 

 Increased attention is being paid to the growth enhancing effect of endophytes on plants 

driven by relatively recent reports indicating fungal endophytes effectively increase crop 

productivity by means of boosting the plant tolerance to abiotic stresses such as heat (Hubbard 

et al., 2012), drought (Hubbard et al., 2012, Hubbard et al., 2014) high salinity (Ghaffari et 

al., 2016) and heavy metals (Dourado et al., 2015). Fungal endophytes are known to be 

capable of increasing resistance to biotic stresses as well (Rabiey et al., 2015, Rabiey and 

Shaw, 2016). 

Symbiosis between endophytes and plants started and evolved around 400 million years ago, 

mediating water and nutrients to terrestrial plants (Taylor et al., 1995). Currently, mycorrhizal 

symbiosis is found in many land plants, using the symbiotic interface to transfer nutrients to 

the host plant and acquire photosynthetic assimilates (Smith and Read, 2008, Pellegrino et 

al., 2015). Plant performance enhancement by symbiosis is well known in favourable 

conditions, but more imminent under stress or resource limited conditions. Nevertheless, the 

host plant response is largely dependent on plant species, genotype x endophyte interaction 

and environmental conditions (Johnson et al., 1997, Johnson et al., 2015). Mycorrhizal 

endophytes were extensively studied in the previous decades regarding their interaction with 

host plants and ecology. However, recent research designed to investigate endophytic Basidio 

and Ascomycota interaction with different plant tissues, illustrated the potential increase in 

growth parameters and yield in presence or absence of stress (Redman et al., 2002, Sun et al., 

2010, Hubbard et al., 2012, Rabiey and Shaw, 2016). 

 The root endophytic fungus Piriformospora indica is the archetype for the mutualistic 

symbioses between fungi and Angiosperms with a broad range of compatible hosts (that were 

tested in the last years under field and/or controlled environment conditions) exceeding 50 

different species which encompass monocots, dicots, perennial and annual plants (Kost and 

Rexer, 2013); most of them share the responses of increased yield, promoting plant growth 

and resistance to biotic and abiotic stresses (Gill et al., 2016). In durum wheat, inoculation 
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with P. indica showed about 40% increase in unstressed plants and up to 2.2-fold increase in 

total seed weight for drought conditions relative to controls (Hubbard et al., 2014). Spring 

wheat inoculated with P.indica showed improved vegetative growth under various moisture 

levels and significantly suppressed levels of hydrogen peroxide and lipid peroxidation rate 

under drought compared to control (Yaghoubian et al., 2014). This enhancement interaction 

was reported in other crops under drought, such as Arabidopsis (Sherameti et al., 2008), 

Chinese cabbage (Sun et al., 2010), quinoa (Hussin et al., 2017), maize (Xu et al., 2017, 

Zhang et al., 2018) and barley (Ghabooli et al., 2013, Ghaffari et al., 2016). In these cases, 

drought effect mitigation is mainly obtained through upregulating drought associated genes 

expression, such as DREB2A, CBL1, ANAC072 and RD29A and a boost in the activity of 

antioxidant enzymes and modulating ROS system. In stress-free experiments, P. indica 

produced IAA and mediated nutrient transfer to host plants resulting in enhanced plant growth 

(Archana et al., 2000, Sherameti et al., 2005, Sirrenberg et al., 2007, Schäfer et al., 2009). 

Genotypic differences in mapping populations or association panels are used to identify 

quantitative trait loci (QTL) linked to drought associated traits, which can then be used for 

marker assisted selection or for further investigation to identify candidate genes. For example, 

QTL associated with response to mycorrhizal inoculation were identified in Allium species 

and maize (Kaeppler et al., 2000, Galván et al., 2011), but so far there have been no reports 

regarding the genetic underpinnings of response to P.indica inoculation under drought. 

Therefore, a representative subset of the highly recombined winter wheat MAGIC population 

was used to address the following aims: (a) investigating wheat response to P.indica 

inoculation under contrasting water availability regimes and (b) identifying QTL involved in 

governing these responses under drought. 

4.3 Materials and methods 

4.3.1 Plant Material 

The eight founder varieties of winter wheat elite eight-founder MAGIC population (Mackay 

et al., 2014) were used for the pilot experiment, while 200 high yielding recombinant inbred 

lines (RILs) of the population alongside the eight founders were used in the main trial. 

4.3.2 Fungal inoculation 

The P.indica isolate (Mycobank#812127) was obtained from Warwick University, UK. It was 

then multiplied by sub-culturing on Potato dextrose agar (PDA) and incubated for 7 days at 

22 0C. The inoculum was produced by adding five plugs (approximately 5mm each) of the 
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fungus culture to 250 ml flasks of CM medium (Pham et al., 2008) and incubated at room 

temperature for 14 days on an orbital shaker (Stuart SLL1, Bibby Scientific Ltd, UK) at 140 

rpm. 

Seeds were placed in plastic trays containing compost (John Innes Composts, BHGS Ltd, 

UK) and spent 9 weeks of vernalizing at 2 0C post-sowing, then transplanted to 3 L Pots 

(270g) filled with 1:1, sand: compost (John Innes Composts, BHGS Ltd, UK) mixed with 

Osmocote slow-release granules (2 kg/m3) containing a ratio of 15:11:13:2 of 

N:P2O5:K2O:MgO. 

Inoculation was performed the next day to transplanting by mixing 4 ml of liquid CM medium 

containing unquantified amount of P. indica mycelia and chlamydospores into the surface 

layer of the soil and a control CM medium was added to the control pots, A week later random 

root samples per pot were collected for microscopic inspection following Vierheilig et al. 

(1998), by soaking for 1 hour in 10% KOH(w/v) at 80oC, then for 30 minutes in 2% HCl(v/v), 

before covering roots with 50g L-1 black ink for 30 minutes and examined microscopically 

confirming the success of inoculation (Figure 4.1) 

 

 

 

 

 

 

 

  

 

 

 

 

 

Figure 4.1 Piriformospora indica chlamydospores in wheat 

roots (seven days post inoculation) indicated by arrows. 
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4.3.3 Pilot experiment 

This was started November 2016 in a glass house compartment in the crop environment 

laboratory facility, University of Reading. The eight founder varieties were tested in a split-

split plot experiment, where the whole plots were meant for the drought/well-watered, the 

subplots for genotypes and the sub-subplots for the +P.indica/-P.indica, with 4 seedlings/pot, 

each treatment was replicated 3 times. Irrigation was applied to maintain soil moisture at 75% 

of field capacity for all treatments, then reduced for the drought treated pots to 50% field 

capacity around growth stage GS14-16 (Zadoks stages) before undergoing further reduction 

of 25% field capacity after two weeks. Plant height, TGW and grain yield/plant were 

measured. 

4.3.4 Main trial 

Seeds were sown in November 2017 to complete vernalisation requirements in growth 

chamber before being transplanted into 3L pots with 3 seedlings/pot, in an open sided 

polyethylene tunnel. Well-watered pots were maintained at 75% field capacity until two 

weeks before harvesting, drought stress treatment pots started receiving 50% field capacity at 

early tillering (GS 21) and were reduced to 25 % field capacity two weeks later. 

The whole set of genotypes was replicated twice in the drought treatment, while only 40 of 

them were represented in the replicated well irrigated pots to investigate the differential 

impact of P. indica in contrasting water availability regimes. 

4.3.5 Phenotyping 

The measured traits were estimated as the average of plants/pot : Plant height (cm) was 

measured at grain filling stage from the soil surface to the top of the ears (excluding awns); 

flowering time (FT) was recorded as number of days from 1st of May to Zadok’s growth stage 

(GS67) where about 75% of anthers are extruded in more than 50% of the plants in the pot 

and expressed in thermal degree days; number of ears/plant, thousand grain weight (TGW), 

number of grains/ear and grain yield /plant(g). Responsiveness in yield and growth parameters 

was calculated for each genotype following the equation, relative response = [(Tp - Tn)/Tn] 

*100, where Tp is the genotype mean of P.indica inoculated plants and Tn is the genotype 

mean of non-inoculated plants. 

4.3.6 Statistical analysis 

R software R3.3.4 (R development core team, 2017) was used to analyse experimental data. 

Means and standard errors were calculated using ANOVA to identify differences between 
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treatments, Within the ANOVA the Genotypes were defined as a fixed effect so was water 

stress, while replicates were treated as random. Broad sense heritability of phenotype data 

(Supplementary material, Table S4. 1) was defined as: 𝐻2=𝜎2𝐺/𝜎2𝑃. 

where H2 is the broad sense heritability, σ2G is the genotypic variance and σ2P is the total 

phenotypic variance.  

Table 4.1 Phenotypes abbreviation description 

Abbreviation Trait 

Grains.E-1 Number of grains per ear 

TGW* Thousand grain weight 

FT* Flowering time 

P.ht* Plant height 

GY* Grain yield 

Ears.p-1 Ears per plant 

*TGW (g), FT (thermal degree days), P.ht (cm), GY (g/plant) 

 

4.3.7 QTL analysis 

The MAGIC linkage map was constructed using R/ mpMap (Huang and George, 2011) based 

on 3535 unique SNP markers. Founder haplotype probabilities were computed with the 

mpprob function in mpMap using a Hidden Markov model implemented in R/qtl (Broman et 

al., 2003). Composite interval mapping exploiting the eight founders’ identity by-descent 

haplotype probabilities (IBD-CIM). For interval mapping, a linear model was fit by estimating 

separated fixed effects for each of the eight founders at each putative QTL position (‘Xi-19’ 

was arbitrarily set as the reference haplotype), using the mpIM function in mpMap (program 

‘qtl’). When determining whether QTL listed independently in the R/mpmap outputs were 

redundant or co-located (same locus detected independently in different inoculation 

treatments across different traits), initially only QTL confidence intervals sharing a flanking 

marker were considered redundant/co-located. Further inspection of QTLs for the same trait 
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separated by only a few CM highlighted instances where direction and magnitude of parental 

effects led us to override the strict positional criterion. 

 

4.4 Results 

 

4.4.1 Pilot experiment 

Table 4.2 ANOVA P-values of all factors combinations for measured traits of pilot 

experiment 

Trait 

Genotype Stress P.indica Stress x 

P.indica 

Stress x 

Genotype 

Genotype x 

P.indica 

Genotype x 

Stress x P.indica 

P.ht 0.041* 0.003** 0.012* 0.001*** 0.574 0.032* 0.042* 

GY 0.035* <.001*** <.001*** 0.985 0.978 0.028* 0.487 

TGW 0.038* 0.031* 0.183 0.476 0.467 0.398 0.728 

*, **, *** Statistically significant at p≤0.05, 0.01, 0.001, respectively. 

Drought caused about 81% drop in yield, which was amplified due to uncontrolled heat rising 

in the compartment during above average hot summer (peaking to 38oC inside glass house) 

and a 15% reduction in height. P.indica inoculation reduced the drought response to 75 % 

drop, not all genotypes responded in the same way to colonization (Table 4.2) as ANOVA 

finds P.indica x genotype as significant and P.indica x water stress interaction was highly 

significant. Plant height appears to be affected by all main effects and interactions except 

water stress x genotype. Total seed yield showed similar trend to plant height except the lack 

of significance of the 3-way interaction. TGW was significantly affected only by the main 

effect of the genotype and water treatment, where it may be accepted that the severe heat wave 

that took place in the grain filling stage (raising the temperature inside the glass house up to 

35oC for more than a week) has masked a great proportion of the interactions. This pilot 

experiment indicated the potential of P.indica to induce increase in yield and growth 

parameters under both well-watered and drought conditions. 

4.4.2 Main experiment 

Based on 40 MAGIC RILs that were tested under all combinations of fungal inoculation and 

water stress treatments, there was a significant main effect of both genotype and drought stress 

in all measured traits, while inoculation with P.indica had a positive significant main effect 
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only on P.ht and GY (Table 4.3). The P.indica effect appeared conditioned by water 

availability in GY (Figure 4.2.e) as it did not change significantly under drought, but was 

significantly higher in the well-watered treatment, mainly caused by an increase (although 

not significant per se) in ears.p-1, TGW and grains.E-1. The interaction of the RILs set with 

P.indica inoculation was significant for all measured traits except ears.p-1 indicating a genetic 

basis of these responses. This is reflected in the moderate to high heritability of all traits but 

grains.E-1 which had the second lowest heritability after GY (Supplementary table S4.1). As 

expected from the genetic diversity within the RILs, significant interaction was found 

between genotypes and irrigation treatments except for FT, TGW and ears.p-1. 

Table 4.3 ANOVA P-values of all factors combination for measured traits of main trial. 

Trait Genotype Stress P.indica Stress x 

P.indica 

Genotype x 

P.indica 

Stress x 

Genotype 

Genotype x 

stress x 

P.indica 

FT < .001*** < .001*** 0.554 0.087 0.042* 0.119 0.328 

P.ht < .001*** 0.012* 0.010** 0.884 0.024* < .001*** 0.432 

Ears.p-1 < .001*** < .001*** 0.855 0.115 0.349 0.082 0.031* 

TGW < .001*** < .001*** 0.539 0.070 0.050* 0.073 0.487 

GY < .001*** 0.010** 0.037* <.001*** 0.020* 0.010** 0.033* 

Grains.E-1 <.001*** < .001*** 0.554 0.219 0.010** 0.010** 0.091 

*, **, *** Statistically significant at p≤0.05, 0.01, 0.001, respectively. 

 

The three way interaction showing genotypes responding differently to P.indica inoculation 

depending on irrigation treatment was significant for ears.p-1 and GY. Table 4.4 illustrates the 

ranges for traits under treatment combination and shows the phenotypic range of the progeny 

under both treatments greatly exceeded the range of the parental lines indicating transgressive 

segregation in the MAGIC panel for response to P.indica under both water availability 

regimes. 
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Table 4.4 Means, minimum, maximum and standard error for measured traits of main trial. 

 

 

 
Trait FT P.ht Ears.p-1 TGW GY Grains.E-1 

Irrigated 

(+) P.indica 

Mean 1321.00 70.40 3.20 42.10 7.31 
175.10 

s.e 7.96 1.22 0.09 2.69 0.28 
5.92 

Min. 1191.00 49.00 2.00 33.47 3.21 
114.00 

Max. 1435.00 96.00 5.00 55.44 11.54 
311.00 

Min. parent 1210.90 59.00 2.00 41.84 4.93 
120.00 

Max. parent 1402.21 78.00 4.50 47.52 11.00 
311.00 

(-) P.indica 

Mean 
1329.00 69.09 3.11 41.41 6.44 164.30 

s.e 
8.25 1.41 0.08 0.86 0.26 5.04 

Min. 1211.00 48.50 1.50 23.94 3.42 115.30 

Max. 1453.00 94.50 4.00 
55.81 7.52 269.00 

Min. parent 1340.00 69.00 2.33 
44.67 4.10 117.30 

Max. parent 1402.00 71.00 4.00 
44.89 4.94 253.00 

Drought 

(+) P.indica 

Mean 1254.00 54.79 2.23 35.98 2.63 78.00 

s.e 6.58 1.03 0.08 0.97 0.10 2.69 

Min. 1104.00 36.00 1.33 22.30 1.04 33.67 

Max. 1354.00 69.00 3.50 56.75 4.71 108.5 

Min. parent 1104.00 42.75 1.66 32.40 2.11 50.67 

Max. parent 1323.00 67.00 3.00 48.26 3.99 106 

(-) P.indica 

Mean 1248.00 52.85 2.26 35.06 2.81 73.07 

s.e 
5.76 0.74 0.10 0.91 0.11 2.97 

Min. 1104.00 36.00 1.00 24.01 1.22 35.67 

Max. 1340.00 64.00 4.00 54.66 4.44 113.67 

Min. parent 1104.00 45.50 1.00 24.01 2.13 44 

Max. parent 1323.00 62.00 4.00 54.66 4.19 111 
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Figure 4.2 Boxplots of genotype means for the 40 RILs under combination of drought and 

fungal inoculation treatments for (a) flowering time, (b) plant height, (c) number of 

ears/plant, (d) thousand grain weight, (e) grain yield/plant, (f) number of grains/ear. 

(W) and (D) refer to the well-watered and drought treatments, respectively. 

 

 

Figure 4.3 Pearson’s correlation coefficient for the measured 

phenotypes’ response to inoculation of the 200 MAGIC lines 

under drought. 
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Correlation among trait responses to P.indica inoculation ranged from weak to highly 

significant (Figure 4.3). For example, P.ht response was significantly correlated only to GY 

response (r=0.19), TGW response negatively correlated to grains.E-1 which follows the 

expected trade-off between number of grains and grain weight. The positive correlation 

between FT and ears.p-1 might suggest that delaying flowering offered more time for tillering 

and bearing more ears/plant. The strong correlation between GY response and responses of 

ears.p-1 and grains.E-1 was (r=0.76) and (r=0.94), respectively, depicting these two phenotypes 

as responsive phenotypes with biggest contribution to GY response. 

4.4.2.1 Genetic analysis 

A total of 89 significant non-redundant QTL were found for the measured traits under drought 

treatment in presence/absence of P.indica inoculation (Table 4.5), 40 of them were unique to 

the P.indica colonized treatment. Most QTLs were found on chromosomes 2B and 7A with 

12 QTL each and the least on 5D having only one QTL, while none were detected on 

chromosomes 3D and 7D. The few major endophyte-independent QTL are FT associated 

QTL on 2B, grains.E-1 revealing two separate loci on 4A and P.ht and TGW on 4D. Although 

these loci were detected in both inoculated and control treatments, the effect size of 

phenotypic variation was significantly altered for two of them, Q.Grains.E-1.(-p)_4A.2 and 

Q.Grains.E-1.(+p)_4A.2 explained 1.14% and 10.48% of the phenotypic variation and 

Q.P.ht(-p)_4D and Q.P.ht(+p)_4D explained 11.43 and 4% of the phenotypic variation, 

respectively. 

Nine QTL regions on chromosomes 2A, 2B, 3B, 6A, 6B, 6D and 7A were associated with 

Ears.p-1 inoculated with P.indica, explaining a sum of 45.06 % of variation, where Q.Ears.p-

1(+p)_6A alone accounts for 9.8% and 10 QTLs on chromosomes 1B, 2B, 3A, 3B, 4A, 4B, 

4D, 6A and 7A accounting for 39.4 % in fungus free treatment with two big size effect loci, 

Q.Ears.p-1(-p)_3B and Q.Ears.p-1(-p)_7A explaining 9.2 and 9.4% of the variation, 

respectively. 

Nine chromosomal regions with QTL associated with FT inoculated with P.indica were 

detected on chromosomes 1D, 2B, 5A, 5D and 7A explaining 23.4% and seven significantly 

associated loci to FT in P.indica-free plants on chromosomes 1A, 2B, 2D, 3A, 5A, 6A and 

7A explaining 23.6%, 6.65% came from Q.FT(-p)_2D which tags photoperiod sensitivity 

locus Ppd-D1. 
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Chromosomes 2B, 4A, 5B, 6A and 7A had six QTL for grains.E-1 in the presence of P.indica, 

summing 36.9% of phenotypic variation, with the biggest impact of 10.48% contributed by 

Q.Grains.E-1.(+p)_4A, while in the absence of P.indica eight QTL were identified on 

chromosomes 1A, 3B, 4A, 6A, 6B and 7A accounting for a total phenotypic variation of 

30.28%, Q.Grains.E-1.(-p)_6B had the biggest effect size of 7.73%. 

For GY, only two QTL were detected in the presence of P.indica on chromosomes 5A and 

7B explaining 15.27% where Q.GY.(+p)_7B accounted for 12.32%, in the absence of 

P.indica, six QTL were found on chromosomes 2B, 3B, 4A and 6B summing 28.2% of the 

variation as Q.GY.(-p)_3B explained 7.13%. 

P.ht in the presence of P.indica had five QTL explaining 27.4% on chromosomes 1D, 2B, 4B, 

4D and 7B, Q.P.ht(+p)_2B contributed the biggest effect size of 12.9%. Six QTL associated 

with P.ht in the fungus-free treatment explaining 29.12% on chromosomes 1A, 1B, 1D, 4B, 

4D and 5A. 

TGW had the largest number of individual QTL, 14 in the P.indica inoculated treatment 

accounting for 51.7% of phenotypic variation, Q.TGW(+p)_4D which had the biggest effect 

of 8.23% is co-locating the pleiotropic genomic region tagging the reduced height locus Rht-

D1. 1o genomic regions associated with TGW in P.indica free treatment, explaining 48.4%. 

4.5 Discussion 

The drought stress negative impact on wheat performance and yield and advancing flowering 

was previously reported in field and controlled environment experiments (Dodig et al., 2012, 

Edae et al., 2014, Liu et al., 2017, Elfeki et al., 2018, Lehnert et al., 2018, Yadav et al., 2019). 

We obtained similar results for the set of 40 RILs investigated under both water regimes, as 

all measured traits were significantly reduced in various degrees leading to average GY 

reduction of 62% which could be attributed to reduction in ears.p-1, TGW and grains.E-1 by 

31.5, 13.9 and 57.3%, respectively. This indicates grains.E-1 as the main cause of yield loss 

while TGW ranked least, this can be confirmed as the strongest correlation of GY response 

to P.indica was detected with grains.E-1 (r=0.94). This high influence of number of grains per 

ear and lower impact of TGW on yield agrees with Dolferus et al. (2011) and Dodig et al. 

(2012), specially as extended drought stress during flowering and grain filling severely affects 

meiosis and reduces fertility, resulting in reduced number of grains per ear (Onyemaobi et al., 

2017). However, we found a decrease in TGW, other researchers reported significant increase 
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in TGW under early induced drought, where assimilates are translocated to a smaller number 

of grains (Lehnert et al., 2018). 

In this study, inoculation with P.indica mitigated the drought effect on GY in a genotype 

dependent scheme, as well as increasing GY in well-watered treatment, where the effect size 

was stronger in well-watered treatment. This result contradicts Vahabi et al. (2015) who found 

the mutualistic interaction of P.indica with Arabidopsis is promoted under stress and Hubbard 

et al. (2014) who found P.indica yield increase response is significantly higher under drought. 

The positive effects, alleviating drought stress effects induced by P.indica are proposed in 

different crop plants to be associated with enhancing the electron transfer chain and 

photosystem activity (Ghaffari et al., 2019), improved water balance by increasing leaf water 

potential (Hussin et al., 2017), increased water absorbance potential reflected by increase in 

root mass (Ghabooli and Mondani, 2016) and upregulating activities of catalases and 

superoxide dismutases and drought related genes such as ANAC072, RD29A, DREB2A and 

CBL1 (Xu et al., 2017). In wheat, it increased Fv/Fm values (Hubbard et al., 2014) and 

significantly decreased hydrogen peroxide and lipid peroxidation rate (Yaghoubian et al., 

2014). 

In the main trial, for most measured traits there was significant interaction between P.indica 

and the genotypes. However, all genotypes exhibited successful inoculation, the colonisation 

rate was not investigated in this experiment, which might have had a significant role in the 

differential response of the genotypes as observed in barley where cultivars varied in their 

colonization rate of P.indica (Gravouil, 2012) and perhaps needs to be addressed in future 

experiments.  

Combined heritability estimates were moderate to high, which is typical of controlled 

environment experiments, with lowest heritability detected for GY, as it is known by its 

genetic complexity and significant response to environment. Heritability estimates were lower 

under P.indica interaction compared to control, since part of the variation is deducted from 

the genotypic effect and attributed to the fungal interference. 

To our knowledge, no information is available about QTL associated with P.indica 

mutualistic interaction with wheat; here we report our findings of QTL governing wheat 

response to P.indica under drought. QTL analysis in both cases of presence/absence of 

P.indica showed the previously reported pleiotropy of Rht-D1 Locus on chromosome 4D to 

be associated with P.ht and TGW in this study as it did for both traits in Jackson (2019). 

https://paperpile.com/c/HtmiCQ/S9YO
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Interestingly, the effect size of Rht-D1 locus dropped from 11.43% to 4% upon inoculation, 

while Q.P.ht(-p)_4B tagging Rht-B1 on chromosome 4B did not show any detectable effect 

in the P.indica inoculated plants. The strong interference with reduced height genes might be 

explained by the reported upregulation of GA in several plants, such as maize and tomato (Liu 

et al., 2019) and reduction in expression of some members of the DELLA gene family, such 

as RGA1 in Arabidopsis as found by Pan et al. (2017). Q.FT(-p)_2D which tags the 

photoperiod sensitivity locus Ppd-D1 was detected only in fungus-free treatment and was 

masked by P.indica inoculation, indicating profound interference with Ppd-D1 locus mode of 

action. 

Upon investigating co-location of the detected loci with those previously reported, it was 

noticed that those found in P.indica inoculated treatment coincided with QTL detected in 

growing seasons receiving above average rainfall, while the fungus-free ones co-located those 

found in dry year, for example Q.TGW(+p)_2D was found co-locating with grain weight QTL 

in 2016 rainy year and missed in 2015 dry year and Q.FT(+p)_5A coincided with the locus 

associated with FT in 2016 rainy year (Jackson, 2019). Also Q.GY.(-p)_3B which is missed 

in the inoculated plants was co-located with a previously detected QTL for number of 

grains/m2 in drought stressed field in 2017 (Chapter 3) as shown (Figure 4.4). 

Interestingly, Q.Grains.E-1._4A that showed a minimal effect in the absence of P.indica 

(1.14%) and revealed amplified effect by the fungal interaction up to 10.48% (Figure 4.4). 

This was the same QTL identified for Grains.E-1 in well-irrigated field but missed in the 

drought stressed treatment in 2017 field trial (Chapter3), which supports the proposed 

P.indica mitigation effect of drought effect. 

Q.GY.(+p)_5A, one of the two loci identified associated with GY under inoculated conditions 

is coinciding with a QTL associated with canopy temperature depression (CTD) in the well 

irrigated field treatment, this might suggest the potential of P.indica potential to reduce plant 

temperature, where cooler canopies are known to correlate to higher yield (Tattaris et al., 

2016). 

The presence of 40 QTL (for different traits) unique to the colonized plants and the fact that 

the common QTL did not exceed five loci with major effect, suggest a significant effect of 

the P. indica on gene expression of phenotypes of growth development and yield. 
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QTL name Chromosome Position Left marker Right marker

Left marker 

position

Rightmarker 

position p- value R
2

1 Q.FT(-p)_1A 1A 40.51 wsnp_Ex_c64327_63176640 BS00078982_51 40.51 41.51 0.0105 2.28

2 Q.Grains.E
-1

.(-p)_1A 1A 106.72 IACX3496 RFL_Contig3203_1971 105.21 106.72 0.0027 3.18

3 Q.P.ht(-p)_1A 1A 161.25 BS00073413_51 Excalibur_c97157_65 161.25 162.25 2.00E-13 1.54

4 Q.TGW(+p)_1A.1 1A 178.52 Excalibur_c66_147 JD_c13024_360 178.52 179.53 7.00E-07 2.3

5 Q.TGW(+p)_1A.2 1A 220.84 BS00022514_51 Excalibur_c12932_2102 220.84 221.84 3.00E-08 7.64

6 Q.Ears.p
-1

(-p)_1B 1B 21.72 Kukri_c29655_194 RFL_Contig4140_1135 21.72 22.72 1.00E-08 2.71

7 Q.P.ht(-p)_1B 1B 87.54 BS00108806_51 Kukri_c18052_356 87.54 89.04 5.00E-05 3.54

8 Q.TGW(+p)_1B 1B 321.3 RAC875_c9082_267 wsnp_CAP11_c2596_1325540 316.63 321.30 9.00E-13 6.53

9 Q.FT(+p)_1D 1D 0 D_GDS7LZN02IXNP1_255 BS00022323_51 0.00 6.33 4.00E-05 2.11

10 Q.TGW(-p)_1D 1D 71.23 RAC875_rep_c105196_532 IAAV4656 66.65 71.23 4E-13 4.54

11 Q.P.ht(-p)_1D 1D 75.67 IAAV4656 BS00038418_51 71.23 75.67 4E-08 4.75

12 Q.P.ht(+p)_1D 1D 84.41 Ra_c3045_1739 Excalibur_c3596_144 83.40 84.41 0.0016 6.18

13 Q.TGW(+p)_2A.1 2A 76.42 BS00022332_51 BS00049937_51 76.42 77.93 0.0001 2.49

14 Q.Ears.p
-1

(+p)_2A 2A 78.93 BS00049937_51 IAAV7468 77.93 78.93 1E-09 1.51

15 Q.TGW(+p)_2A.2 2A 162.06 wsnp_BE445431A_Td_2_1 wsnp_Ra_c32271_41304469 162.06 163.06 0.0091 2.76

16 Q.TGW(+p)_2A.3 2A 240.68 BS00062869_51 wsnp_Ex_rep_c108004_91402649 240.68 244.25 5.00E-11 4.45

17 Q.GY.(-p)_2B.1 2B 57.75 BobWhite_c30520_323 Kukri_c40764_367 51.42 57.75 6.00E-06 5.25

18 Q.TGW(+p)_2B 2B 76.16 wsnp_Ex_rep_c72527_70882805 wsnp_Ex_c1962_3696265 74.65 76.16 2E-08 2.34

19 Q.P.ht(+p)_2B 2B 81.2 wsnp_Ex_c14711_22788263 BS00071995_51 81.20 82.20 0.0015 12.9

20 Q.GY.(-p)_2B.2 2B 100.99 Kukri_c16479_765 BS00067962_51 99.47 100.99 7.00E-08 5.09

21 Q.FT(-p)_2B 2B 165.81 BS00092273_51 BobWhite_c7786_376 165.81 167.33 0.0141 3.92

23 Q.FT(+p)_2B.1 2B 171.86 Excalibur_c19344_137 BobWhite_c892_73 170.86 171.86 1E-08 2.66

24 Q.Ears.p
-1

(-p)_2B 2B 208.43 wsnp_Ex_c4218_7618252 BS00066545_51 208.43 212.56 1.00E-10 2.34

25 Q.Grains.E
-1

.(+p)_2B 2B 248.88 BobWhite_c38001_528 BobWhite_c3146_128 243.11 248.88 0.0018 6.46

26 Q.FT(+p)_2B.2 2B 248.88 BobWhite_c38001_528 BobWhite_c3146_128 243.11 248.88 0.00001 2.08

27 Q.Ears.p
-1

(+p)_2B 2B 285.43 CAP11_c2941_210 BS00026432_51 283.93 285.43 3.00E-12 3.35

28 Q.FT(+p)_2B.3 2B 351.13 BS00083998_51 Excalibur_c48871_625 351.13 352.63 0.0002 3.12

29 Q.TGW(-p)_2B 2B 375.98 RAC875_c3259_276 BS00064483_51 373.94 375.98 6.00E-11 3.42

30 Q.FT(-p)_2D 2D 62.71 Kukri_c27309_590 wsnp_CAP12_c1503_764765 55.40 62.71 0.0006 6.65

31 Q.TGW(+p)_2D 2D 113.91 wsnp_Ex_rep_c68555_67394261 Kukri_c54059_654 113.91 117.99 0 2.37

32 Q.FT(-p)_3A 3A 76.83 Tdurum_contig91865_242 Kukri_c64268_101 76.83 78.85 2.00E-05 2.32

33 Q.TGW(-p)_3A.1 3A 174.7 BS00070870_51 BS00056089_51 163.97 174.70 5.00E-10 1.99

34 Q.Ears.p
-1

(-p)_3A 3A 224.76 BS00022459_51 BS00022368_51 221.19 224.76 1.00E-06 3.61

35 Q.TGW(+p)_3A 3A 237.62 BS00026396_51 Excalibur_c24354_465 232.95 237.62 2.00E-07 2.07

36 Q.TGW(-p)_3A.2 3A 274.05 CAP7_c3178_52 BS00048633_51 270.21 274.05 2.00E-07 1.7

37 Q.GY.(-p)_3B.1 3B 68.17 wsnp_Ku_c17659_26797674 RAC875_c46194_201 68.17 69.68 2.00E-05 7.13

38 Q.TGW(+p)_3B 3B 109.12 wsnp_JD_c17082_16025440 BobWhite_c634_420 108.12 109.12 2.00E-11 1.81

39 Q.Ears.p
-1

(-p)_3B 3B 112.15 Kukri_c26490_145 Jagger_c2707_152 112.15 113.15 3.00E-09 9.17

40 Q.Ears.p
-1

(+p)_3B 3B 153.44 BS00073011_51 wsnp_Ku_rep_c72504_72191206 153.44 154.44 2.00E-10 3.19

41 Q.GY.(-p)_3B.2 3B 205.69 BobWhite_c6015_141 Excalibur_c33274_498 205.69 207.73 8.00E-05 2.22

42 Q.Grains.E
-1

.(-p)_3B 3B 269.25 BS00044942_51 Excalibur_c3556_1758 269.25 270.25 0.0012 1.81

43 Q.Grains.E
-1

.(-p)_4A.1 4A 6.73 Ku_c2478_227 BS00021716_51 6.23 6.73 0.0003 1.92

44 Q.Grains.E
-1

.(+p)_4A.1 4A 6.73 Ku_c2478_227 BS00021716_51 6.23 6.73 0.00001 1.99

45 Q.Ears.p
-1

(-p)_4A 4A 54.62 Tdurum_contig11919_360 Kukri_c10501_313 54.62 55.12 0.0041 2.61

46 Q.TGW(-p)_4A 4A 110.57 Ex_c66324_1151 Jagger_c4331_105 110.57 113.10 0.0014 2.53

47 Q.Grains.E
-1

.(-p)_4A.2 4A 133.75 wsnp_Ex_c41074_47987860 BS00039641_51 133.75 135.26 0.00001 1.14

48 Q.Grains.E-1.(+p)_4A.2 4A 137.78 wsnp_Ex_c3988_7221220 IAAV5722 137.28 137.78 0.0087 10.5

Table 4.5 QTL analysis QTL table for MAGIC lines measured phenotypes. Trait 

abbreviations are as shown in (Table 4.1). 

   and (R) indicate irrigated and rainfed treatments, respectively. 

 

 

Table 4.6 QTL analysis QTL table for measured phenotypes. Trait abbreviations are as 

shown in Table 4.1. 

   and (R) indicate irrigated and rainfed treatments, respectively. 

 



114 
 

Table 4.5 (continued) 

 

 

 

 

 

 

 

 

 

QTL name Chromosome Position Left marker Right marker

Left marker 

position

Rightmarker 

position p- value R
2

49 Q.GY.(-p)_4A 4A 182.89 RAC875_c33109_72 Excalibur_c6050_323 180.88 182.89 2.00E-06 2.88

50 Q.Ears.p-
1
(-p)_4B.1 4B 7.88 Tdurum_contig5427_314 BS00106142_51 7.88 9.92 0.0001 3.47

51 Q.TGW(-p)_4B.1 4B 14.02 Excalibur_c7581_1266 wsnp_Ex_c30695_39579408 14.02 18.73 4.00E-05 4.39

52 Q.TGW(-p)_4B.2 4B 51.16 BS00084070_51 BS00033614_51 49.66 51.16 0.0008 6.49

53 Q.P.ht(-p)_4B 4B 53.17 Tdurum_contig42229_113 IAAV585 52.17 53.17 2E-10 4.74

54 Q.Ears.p
-1

(-p)_4B.2 4B 53.17 Tdurum_contig42229_113 IAAV585 52.17 53.17 0.00004 1.33

55 Q.P.ht(+p)_4B 4B 93.39 Ex_c32540_659 Excalibur_c42450_727 92.39 93.39 0.0077 3

56 Q.P.ht(-p)_4D 4D 24.93 Kukri_rep_c68594_530 Excalibur_c19078_210 24.93 32.24 2E-06 11.4

57 Q.TGW(-p)_4D.1 4D 24.93 Kukri_rep_c68594_530 Excalibur_c19078_210 24.93 32.24 0 13.1

58 Q.P.ht(+p)_4D 4D 32.24 Excalibur_c19078_210 RAC875_rep_c105718_304 32.24 40.11 6E-09 4

59 Q.TGW(+p)_4D 4D 32.24 Excalibur_c19078_210 RAC875_rep_c105718_304 32.24 40.11 0 8.23

60 Q.Ears.p
-1

(-p)_4D 4D 32.24 Excalibur_c19078_210 RAC875_rep_c105718_304 32.24 40.11 2E-07 1.17

61 Q.TGW(-p)_4D.2 4D 106.01 Excalibur_c79009_131 IAAV5607 106.01 110.72 2.00E-12 4.01

62 Q.FT(+p)_5A 5A 56.05 wsnp_Ex_c1981_3728899 BS00021660_51 56.05 58.07 0.0007 2.01

63 Q.GY.(+p)_5A 5A 99.27 BS00015653_51 Tdurum_contig69079_300 98.27 99.27 5.00E-05 2.95

64 Q.P.ht(-p)_5A 5A 177.07 Excalibur_c9210_168 wsnp_Ex_c18941_27840714 176.07 177.07 0.0054 3.12

65 Q.FT(-p)_5A 5A 216.05 Excalibur_c37943_221 wsnp_Ex_c37943_45584325 211.51 216.05 0.0063 2.12

66 Q.TGW(+p)_5B 5B 14.17 wsnp_Ex_c26252_35497729 BobWhite_c5887_1277 13.16 14.17 3.00E-12 4.27

67 Q.Grains.E
-1

.(+p)_5B 5B 258.41 BS00039874_51 Kukri_c87328_116 257.41 258.41 5.00E-05 6.39

68 Q.FT(+p)_5D 5D 11.57 BS00065296_51 BS00003975_51 11.57 12.57 0.0036 4.4

69 Q.FT(-p)_6A 6A 81.29 IAAV7418 IAAV7349 81.29 84.65 0.0014 2.09

70 Q.Ears.p
-1

(+p)_6A.1 6A 92.56 BS00023627_51 BS00063296_51 92.56 96.41 6E-11 9.83

71 Q.Grains.E
-1

.(+p)_6A 6A 103.35 wsnp_Ku_c26784_36748247 Tdurum_contig50698_601 102.35 103.35 2E-06 7.88

72 Q.Ears.p
-1

(-p)_6A 6A 215.25 RFL_Contig5037_560 Excalibur_c52196_235 210.63 215.25 3.00E-07 3.56

73 Q.Grains.E
-1

.(-p)_6A 6A 223.42 RAC875_c103443_475 BS00000750_51 223.42 227.59 7E-10 6.02

74 Q.Ears.p
-1

(+p)_6A.2 6A 223.42 RAC875_c103443_475 BS00000750_51 223.42 227.59 0.0002 5.29

75 Q.TGW(+p)_6B 6B 15.73 wsnp_Ku_c2119_4098330 BobWhite_c20959_229 14.47 15.73 0.0019 3.04

76 Q.Grains.E
-1

.(-p)_6B 6B 69.86 CAP8_rep_c9477_231 Excalibur_c63243_434 69.86 72.95 0.0054 7.73

77 Q.GY.(-p)_6B 6B 76.72 Excalibur_c48499_250 BS00074041_51 75.72 76.72 2E-08 5.62

78 Q.TGW(-p)_6B 6B 185.6 BobWhite_c3392_749 BS00109036_51 185.60 186.60 1.00E-08 5.02

79 Q.Ears.p
-1

(+p)_6B 6B 201.81 RAC875_c12907_515 BS00023080_51 199.77 201.81 0.0003 2.35

80 Q.Ears.p
-1

(+p)_6D 6D 192.69 BobWhite_c22280_104 wsnp_Ex_c10718_17457870 190.15 192.69 1.00E-10 3.74

81 Q.FT(-p)_7A 7A 65.48 Kukri_c79627_494 BS00110940_51 65.48 74.73 0.0002 4.25

82 Q.TGW(+p)_7A 7A 100.88 RAC875_c52560_123 BS00061012_51 100.88 104.47 4.00E-09 1.49

83 Q.Grains.E
-1

.(-p)_7A.1 7A 105.98 BS00061012_51 Ex_c9615_1202 104.47 105.98 7.00E-13 6.71

84 Q.Ears.p
-1

(-p)_7A 7A 110.06 BobWhite_rep_c58252_112 BS00007429_51 110.06 112.62 9.00E-05 9.37

85 Q.FT(+p)_7A.1 7A 161.15 BS00040657_51 Excalibur_c20062_195 161.15 162.15 0.001 1.13

86 Q.Grains.E
-1

.(-p)_7A.2 7A 202.68 BS00030028_51 BS00030940_51 202.68 203.68 1.00E-07 1.77

87 Q.FT(+p)_7A.2 7A 216.28 tplb0024l08_1395 BobWhite_c44628_61 216.28 217.28 0.0091 2.61

88 Q.TGW(-p)_7A 7A 234.92 BS00064351_51 BS00110561_51 232.90 234.92 9.00E-08 1.27

89 Q.Ears.p
-1

(+p)_7A 7A 296.59 wsnp_Ex_c23102_32328851 Kukri_c19696_60 296.59 298.60 0.0015 7.57

90 Q.FT(+p)_7A.3 7A 304.72 JD_c149_1700 IACX2471 304.72 305.72 5E-06 3.27

91 Q.Ears.p
-1

(+p)_7A 7A 361.69 RAC875_c2532_64 Tdurum_contig97505_172 360.69 361.69 5.00E-09 8.23

92 Q.Grains.E
-1

.(+p)_7A 7A 365.23 wsnp_Ex_c6142_10746442 wsnp_Ex_c53387_56641291 365.23 366.23 0.0022 3.72

93 Q.P.ht(+p)_7B 7B 168.07 Kukri_c15912_1189 BS00047083_51 168.07 171.16 0.003 1.33

94 Q.GY.(+p)_7B 7B 187.3 BS00066479_51 BS00023166_51 187.30 188.82 3.00E-06 12.3
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Figure 4.4 Circos plot showing a genetic map of the 21 wheat chromosomes; LOD scores of 

individual significant SNPs (coloured dots on inner light grey segments- dot size is 

proportional to the effect size of QTL). LOD 5 and LOD 10 thresholds are marked by 

concentric circular lines. Chromosomal units in CM. Tracks inner to outer illustrate + 

P.indica, -P. indica, rainfed field and irrigated field treatments, respectively. Orange, purple 

and red dots indicate GY, Grains.E-1 and grains.m-2, respectively. Black vertical lines link 

QTL on the same genomic position. 



116 
 

 

 

4.6 Conclusion 

In this study, it has been shown that wheat inoculation with P.indica increased grain yield 

under both well water and drought stress conditions and that the response of GY, that most of 

the measured trait responses are genotype specific and that GY response is highly correlated 

to response of ears.p-1 and grains.E-1. The moderate to high heritability in the presence 

/absence P.indica interaction allowed us to detect a few major and several minor effect QTL 

for grain yield and all measured traits. The absence of some major QTL under P.indica 

interaction confirms the interference of the fungus with gene action and metabolic pathways. 

Given the detection of loci specific to P.indica interaction in a subset of the MAGIC lines, 

the genotypic specific variation in response can be proposed for breeding to select highly 

responsive lines and improve wheat performance under drought. This study might be 

considered the first report identifying QTL that can be used to investigate for candidate genes 

associated with wheat response to endophyte fungal inoculation and propose informative SNP 

markers for wheat breeding under drought. 
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4.8 Supplementary materials 

 

 

 

 

 

 

Table S4. 1 Broad sense heritability. 

Trait H2 combined H2(-) P.indica H2(+) P.indica 

P.ht 0.84 0.72 0.70 

FT 0.82 0.65 0.62 

Ears.p-1 0.63 0.45 0.42 

TGW 0.75 0.59 0.57 

GY 0.54 0.42 0.26 

Grains.E-1 0.59 0.54 0.36 

 

 

 

Figure S4. 1 Open-sided polytunnel of the main trial. 
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Table S4. 2 Means, minimum, maximum and standard error for measured traits of pilot 

experiment 

 
irrigated 

drought 
 

(+) P.indica  (-) P.indica (+) P.indica  (-) P.indica 

Trait Mean s.e Min. Max.  Mean s.e Min. Max. Mean s.e Min. Max.  Mean s.e Min. Max. 

P.ht 44.36 1.48 40.25 51.60  41.97 1.44 35.25 49.00 39.11 0.54 37.00 41.00  36.78 0.93 33.36 40.20 

GY 9.85 1.07 6.00 13.82  8.01 0.54 5.70 10.08 2.03 0.26 1.02 3.19  1.15 0.17 0.30 1.73 

TGW 27.30 1.33 21.40 32.40  23.78 1.38 20.00 30.90 20.80 1.42 15.66 28.15  18.32 0.89 14.6 21.21 
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QTL name Chromosome Position Alchemy Brompton Claire Hereward Rialto Robigus Soissons p  value R
2

1 Q.FT(-p)_1A 1A 40.51 -0.81 11.06 38.06 -19.87 0.63 -13.97 -13.39 0.0185 2.28

2 Q.Grains.E
-1

.(-p)_1A 1A 106.72 -5.62 17.60 106.01 -71.39 -1.75 -18.84 19.90 0.0027 3.18

3 Q.P.ht(-p)_1A 1A 161.25 18.20 8.07 NA 4.31 8.77 2.73 13.19 2E-13 1.54

4 Q.TGW(+p)_1A.1 1A 178.52 -11.14 -12.28 10.86 -1.55 -2.63 2.80 -0.18 7E-07 2.3

5 Q.TGW(+p)_1A.2 1A 220.84 -9.73 11.51 NA 0.95 3.22 5.14 -0.07 3E-08 7.64

6 Q.Ears.p
-1

(-p)_1B 1B 21.72 -0.89 0.35 -0.59 -0.73 -2.54 -0.47 -0.37 1E-08 2.71

7 Q.P.ht(-p)_1B 1B 87.54 -5.17 -1.92 -4.73 -0.74 -5.04 -4.22 -5.47 5E-05 3.54

8 Q.TGW(+p)_1B 1B 321.30 -2.67 -2.38 -0.82 -3.69 -1.98 -3.87 0.37 9E-13 6.53

9 Q.FT(+p)_1D 1D 0.00 -159.55 -166.15 -163.31 -380.10 -125.58 -153.71 -166.17 4E-05 2.11

10 Q.TGW(-p)_1D 1D 71.23 0.85 -4.66 1.72 -4.50 -0.53 0.89 -0.84 4E-13 4.54

11 Q.P.ht(-p)_1D 1D 75.67 -18.50 -19.32 -8.44 -15.19 -34.14 -10.47 -17.49 4E-08 4.75

12 Q.P.ht(+p)_1D 1D 84.41 -12.40 -8.35 -2.44 -12.85 -18.73 -7.81 -10.70 0.0016 6.18

13 Q.TGW(+p)_2A.1 2A 76.42 1.05 2.68 4.49 3.29 4.80 3.28 1.22 0.0001 -2.49

14 Q.Ears.p
-1

(+p)_2A 2A 78.93 -0.43 -0.31 -0.73 -0.40 -0.52 0.31 0.42 1E-09 -1.51

15 Q.TGW(+p)_2A.2 2A 162.06 1.72 1.17 0.65 -0.66 1.57 0.33 2.26 0.0091 -2.76

16 Q.TGW(+p)_2A.3 2A 240.68 3.05 -1.80 3.68 3.28 0.92 2.81 1.40 5E-11 4.45

17 Q.GY.(-p)_2B.1 2B 57.75 0.76 -0.71 -0.22 1.67 -0.13 -0.30 0.34 6E-06 5.25

18 Q.TGW(+p)_2B 2B 76.16 -0.76 -4.61 0.72 -1.89 4.14 1.57 -2.88 2E-08 2.34

19 Q.P.ht(+p)_2B 2B 81.20 2.74 -1.89 2.56 1.19 8.31 2.85 -3.50 0.0015 12.92

20 Q.GY.(-p)_2B.2 2B 100.99 1.07 1.93 1.69 -0.12 4.64 1.77 0.88 7E-08 5.09

21 Q.FT(-p)_2B 2B 165.81 -99.90 -318.69 -108.11 -0.35 -93.01 -98.08 -105.90 0.0141 3.92

23 Q.FT(+p)_2B.1 2B 171.86 10.80 -167.05 13.66 179.98 -46.45 27.46 -4.68 1E-08 2.66

24 Q.Ears.p
-1

(-p)_2B 2B 208.43 -1.22 7.65 7.29 -3.09 -12.57 0.21 0.96 1E-10 2.34

25 Q.Grains.E
-1

.(+p)_2B 2B 248.88 -134.69 109.52 -41.11 -272.05 -78.99 -59.76 -70.66 0.0018 6.46

26 Q.FT(+p)_2B.2 2B 248.88 134.76 182.01 221.24 147.01 152.50 108.78 125.69 1E-05 2.08

27 Q.Ears.p
-1

(+p)_2B 2B 285.43 -1.02 3.56 -3.73 0.55 -1.86 -0.11 0.01 3E-12 3.35

28 Q.FT(+p)_2B.3 2B 351.13 15.75 12.10 -17.11 -37.29 -4.99 6.41 4.69 0.0002 3.12

29 Q.TGW(-p)_2B 2B 375.98 -9.74 -2.12 -3.47 1.47 -2.46 -4.33 -5.67 6E-11 3.42

30 Q.FT(-p)_2D 2D 62.71 -21.78 -3.28 -19.10 9.67 -7.86 -13.70 -36.47 0.0006 6.65

31 Q.TGW(+p)_2D 2D 113.91 -4.18 -4.36 5.41 -3.93 0.48 2.44 -2.35 0 2.37

32 Q.FT(-p)_3A 3A 76.83 -1.37 -31.47 -20.24 -27.89 -24.98 -13.96 -11.87 2E-05 2.32

33 Q.TGW(-p)_3A.1 3A 174.70 -0.09 -1.71 -2.29 0.16 -5.80 -1.09 -0.38 5E-10 -1.99

34 Q.Ears.p
-1

(-p)_3A 3A 224.76 0.35 0.61 -0.04 0.22 0.90 0.81 0.11 1E-06 3.61

35 Q.TGW(+p)_3A 3A 237.62 0.97 0.76 0.63 0.43 -4.45 0.61 1.49 2E-07 2.07

36 Q.TGW(-p)_3A.2 3A 274.05 1.48 -0.38 -4.42 1.16 1.42 0.33 1.99 2E-07 1.7

37 Q.GY.(-p)_3B.1 3B 68.17 3.50 -0.12 -3.12 -0.54 -0.50 -0.73 -0.83 2E-05 7.13

38 Q.TGW(+p)_3B 3B 109.12 2.56 -2.39 1.43 1.13 -0.90 -1.86 -2.73 2E-11 -1.81

39 Q.Ears.p
-1

(-p)_3B 3B 112.15 -1.41 -2.53 -2.17 -2.06 -3.11 -2.38 -2.17 3E-09 9.17

40 Q.Ears.p
-1

(+p)_3B 3B 153.44 4.44 5.04 3.08 5.40 9.87 3.94 4.52 2E-10 3.19

41 Q.GY.(-p)_3B.2 3B 205.69 0.05 -0.78 -2.06 -1.55 -0.20 -0.20 NA 8E-05 2.22

42 Q.Grains.E
-1

.(-p)_3B 3B 269.25 6.69 31.25 -6.87 -20.17 -7.90 -22.27 NA 0.0012 -1.81

43 Q.Grains.E
-1

.(-p)_4A.1 4A 6.73 -36.20 -118.65 -27.64 -5.26 29.84 -36.14 -26.20 0.0003 -1.92

44 Q.Grains.E
-1

.(+p)_4A.1 4A 6.73 82.20 -54.48 72.08 75.16 159.95 105.71 69.69 1E-05 1.99

45 Q.Ears.p
-1

(-p)_4A 4A 54.62 0.40 0.96 -0.03 -0.98 1.28 -0.38 -0.07 0.0041 2.61

46 Q.TGW(-p)_4A 4A 110.57 0.79 0.76 1.12 2.44 0.15 -0.50 2.08 0.0014 2.53

47 Q.Grains.E
-1

.(-p)_4A.2 4A 133.75 -0.34 5.80 21.80 25.32 17.08 58.36 -17.24 1E-05 -1.14

48 Q.Grains.E
-1

.(+p)_4A.2 4A 137.78 -66.32 -36.77 -9.32 -73.26 -34.94 25.43 -51.91 0.0087 10.48

Table S4. 3 Parental effect (relative to founder Xi-19) for the detected QTL. 
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Table S4.3(continued) 

 

 

 

QTL name Chromosome Position Alchemy Brompton Claire Hereward Rialto Robigus Soissons p  value R
2

49 Q.GY.(-p)_4A 4A 182.89 -4.21 -0.76 2.00 -0.72 -1.26 -0.59 -2.72 2E-06 2.88

50 Q.Ears.p
-1

(-p)_4B.1 4B 7.88 -0.05 0.10 -0.08 -0.20 0.69 -0.15 0.16 0.0001 3.47

51 Q.TGW(-p)_4B.1 4B 14.02 -1.32 2.00 -0.60 -1.88 1.53 0.00 -1.10 4E-05 4.39

52 Q.TGW(-p)_4B.2 4B 51.16 0.81 0.23 2.00 0.32 0.36 2.49 -1.66 0.0008 6.49

53 Q.P.ht(-p)_4B 4B 53.17 -2.72 -2.62 -1.79 -3.50 -3.42 -5.62 -11.76 2E-10 4.74

54 Q.Ears.p
-1

(-p)_4B.2 4B 53.17 0.82 0.45 0.19 -0.02 0.29 -0.52 0.13 4E-05 -1.33

55 Q.P.ht(+p)_4B 4B 93.39 2.11 3.43 3.31 -1.38 -0.52 -2.90 -0.79 0.0077 3

56 Q.P.ht(-p)_4D 4D 24.93 -0.86 0.50 NA 1.33 10.34 5.01 6.48 2E-06 11.43

57 Q.TGW(-p)_4D.1 4D 24.93 -5.25 -3.62 NA 1.79 3.95 -1.01 4.30 0 13.06

58 Q.P.ht(+p)_4D 4D 32.24 6.07 4.46 NA -5.04 5.11 4.62 7.59 6E-09 4

59 Q.TGW(+p)_4D 4D 32.24 3.11 0.95 NA -2.83 5.09 3.59 4.24 0 8.23

60 Q.Ears.p
-1

(-p)_4D 4D 32.24 -1.08 0.35 NA -1.21 0.02 0.13 -0.63 2E-07 -1.17

61 Q.TGW(-p)_4D.2 4D 106.01 2.97 8.20 NA -1.61 1.68 2.29 -4.44 2E-12 4.01

62 Q.FT(+p)_5A 5A 56.05 7.43 -29.92 18.32 15.70 12.90 -5.40 4.89 0.0007 2.01

63 Q.GY.(+p)_5A 5A 99.27 -1.30 1.12 -0.98 -1.67 -1.65 -2.11 -1.25 5E-05 2.95

64 Q.P.ht(-p)_5A 5A 177.07 4.32 4.21 7.27 3.63 6.68 4.32 0.40 0.0054 3.12

65 Q.FT(-p)_5A 5A 216.05 -2.37 -20.88 -5.06 6.50 -10.31 -17.72 3.19 0.0063 2.12

66 Q.TGW(+p)_5B 5B 14.17 -9.24 0.80 4.20 -1.30 2.26 -1.15 3.18 3E-12 4.27

67 Q.Grains.E
-1

.(+p)_5B 5B 258.41 -88.64 156.14 -7.56 -4.51 -29.80 -30.99 11.52 5E-05 6.39

68 Q.FT(+p)_5D 5D 11.57 32.72 -1.86 8.79 0.32 21.61 4.29 NA 0.0036 4.4

69 Q.FT(-p)_6A 6A 81.29 -14.26 -2.99 -3.87 -1.94 8.87 -7.02 -18.88 0.0014 2.09

70 Q.Ears.p
-1

(+p)_6A.1 6A 92.56 -0.81 -1.09 -1.26 -0.74 -0.38 0.14 -0.89 6E-11 9.83

71 Q.Grains.E
-1

.(+p)_6A 6A 103.35 -17.54 -85.40 -12.54 16.02 0.30 32.16 -19.87 2E-06 7.88

72 Q.Ears.p
-1

(-p)_6A 6A 215.25 0.31 -0.19 -0.48 0.73 -1.16 0.41 -0.04 3E-07 3.56

73 Q.Grains.E
-1

.(-p)_6A 6A 223.42 31.30 2.51 -23.90 56.46 -23.63 41.95 -8.14 7E-10 6.02

74 Q.Ears.p
-1

(+p)_6A.2 6A 223.42 -0.36 -0.46 -0.12 0.44 0.01 -0.36 -0.24 0.0002 5.29

75 Q.TGW(+p)_6B 6B 15.73 3.12 -2.90 -1.70 -0.86 -3.44 -1.19 -0.68 0.0019 3.04

76 Q.Grains.E
-1

.(-p)_6B 6B 69.86 23.33 21.83 -7.53 -55.61 76.79 10.37 27.24 0.0054 7.73

77 Q.GY.(-p)_6B 6B 76.72 2.24 0.84 -0.87 -3.28 3.48 1.80 0.49 2E-08 5.62

78 Q.TGW(-p)_6B 6B 185.60 -0.90 1.77 3.29 -3.15 -2.28 1.26 1.31 1E-08 5.02

79 Q.Ears.p
-1

(+p)_6B 6B 201.81 0.59 0.38 0.03 -0.48 0.16 -0.72 0.21 0.0003 2.35

80 Q.Ears.p
-1

(+p)_6D 6D 192.69 7.48 -0.06 NA -4.54 NA -0.37 1.02 1E-10 3.74

81 Q.FT(-p)_7A 7A 65.48 19.76 -13.31 -31.47 47.07 33.36 9.88 4.12 0.0002 4.25

82 Q.TGW(+p)_7A 7A 100.88 -2.42 3.66 NA 0.04 -1.24 1.79 2.08 4E-09 1.49

83 Q.Grains.E
-1

.(-p)_7A.1 7A 105.98 74.08 7.23 NA -16.11 -24.49 25.57 51.66 7E-13 6.71

84 Q.Ears.p
-1

(-p)_7A 7A 110.06 -0.64 -0.20 0.47 -0.83 -0.10 0.46 -0.12 9E-05 9.37

85 Q.FT(+p)_7A.1 7A 161.15 11.13 -30.43 -57.69 -2.20 -17.87 -24.35 -24.89 0.001 1.13

86 Q.Grains.E
-1

.(-p)_7A.2 7A 202.68 322.33 170.50 NA 108.35 190.04 144.51 140.36 1E-07 -1.77

87 Q.FT(+p)_7A.2 7A 216.28 -68.92 -60.03 -22.36 -78.77 -44.10 -55.98 -76.73 0.0091 2.61

88 Q.TGW(-p)_7A 7A 234.92 3.40 2.09 1.65 -0.32 1.09 3.75 2.06 9E-08 1.27

89 Q.Ears.p
-1

(+p)_7A 7A 296.59 -1.13 -0.84 -0.66 -1.52 -1.31 -1.04 -0.45 0.0015 7.57

90 Q.FT(+p)_7A.3 7A 304.72 5.48 1.36 0.04 45.57 2.32 5.53 -10.83 5E-06 3.27

91 Q.Ears.p
-1

(+p)_7A 7A 361.69 0.77 0.65 1.26 1.17 1.09 0.87 1.15 5E-09 8.23

92 Q.Grains.E
-1

.(+p)_7A 7A 365.23 8.39 25.63 47.54 16.11 35.62 34.45 29.52 0.0022 3.72

93 Q.P.ht(+p)_7B 7B 168.07 1.96 -3.13 1.31 0.57 -0.49 1.28 5.46 0.003 -1.33

94 Q.GY.(+p)_7B 7B 187.30 -0.64 0.93 1.34 -1.14 -2.34 0.28 0.68 3E-06 12.32
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5 Chapter 5: Discussion 

5.1 Thesis Overview 

Wheat yield stability under drought as a complex trait is the result of various morphological 

and physiological responses, including water use efficiency and stomatal conductance 

(Kimurto et al., 2009), canopy temperature depression (Thapa et al., 2018), increased root 

length density (Ehdaie et al., 2012), senescence rate (Foulkes et al., 2007, Lopes and 

Reynolds, 2012), thousand grain weight, grains/ear and tillers/plant (Afzal et al., 2017), 

presence of long awns (Taheri et al., 2013) and NDVI measurements (Tattaris et al., 2016). 

The relative importance of these traits depends on timing, severity of drought, accompanying 

environmental factors and the extent of GxE interaction (Mir et al., 2012). In addition to the 

genetically determined morpho-physiological responses to drought, symbiotic interaction 

between wheat and endophytic fungus Piriformospora indica represents extrinsic potential 

factor to enhance growth and development and yield. 

This PhD thesis aimed to conduct an in-depth study of the genetic architecture of wheat 

responses to drought, deciphering the genetic basis of both source and sink traits under field 

conditions, as well as investigating the ability of P. indica to increase yield in both well-

watered and drought conditions and identifying QTL underpinning drought-resistance traits 

influenced by endophytic growth. To accomplish this, a representative subset of the winter 

wheat elite 8-founder MAGIC population was tested under contrasting water availability 

regimes under field conditions and adding the P. indica in controlled environment trials. A 

representative subset of the population was phenotyped throughout the growing season for 

crop canopy indices, yield and yield components. 

5.2 The three main hypotheses examined in this study were: 

1. The ability of a given wheat genotype to withstand limited periods of drought results from 

multiple interacting quantitative traits expressed throughout the life cycle including 

phenology, canopy development and architecture, and regulation of photosynthesis, 

evapotranspiration and canopy temperature in response to fluctuating environmental 

conditions. 

2. There are significant heritable differences in the phenological and developmental traits 

between MAGIC genotypes which cause heritable differences in the final yield under 

contrasting water availability regimes. 
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3. The extent to which P. indica may buffer a particular wheat genotype against drought stress 

is conditioned by a specific set of P. indica response QTL, understanding of which would 

contribute to a better mechanistic understanding of mutualistic symbiosis. 

5.3 Level of drought in the field 

The research conducted in Chapter 2 showed spring 2017 to be marked by historic levels of 

drought: rainfall over the whole spring was less than half the historic 30-year UK average, 

and was especially acute during April where less than 20% of annual average and 13.6% of 

the onsite weather station 60-year average. As a consequence, in the rainfed block, a 

prolonged large SMD >100 mm lasted from 13th June to 18th July with maximum SMD 

peaking at 120 mm and in contrast, SMD dropped rapidly in the irrigated block compared to 

the rainfed by 30 mm within ten days post-irrigation and the difference between the two 

reached a difference of 93 mm within two months of commencement of supplementary 

irrigation, and soil moisture content in the irrigated blocks were shown to be twice that in the 

rainfed blocks in all depths. The suppressed canopy coverage reduced above ground biomass 

and significant loss of yield in the rainfed blocks agrees with previous field experiments under 

UK conditions, where SMD exceeding 75 mm was reported (Foulkes et al., 2001, Foulkes et 

al., 2002, Foulkes et al., 2007). However, these researchers reported a significant reduction 

in the number of grains/ear and TGW, which was not the case in this study, and an advance 

in flowering time by up to 9 days, while it was advanced by 2 days only under rainfed 

treatment in this study. The stress during late grain filling in this experiment was slightly 

mitigated by rainfall so it did not exceed 120 mm and during tillering stage in April, SMD 

ranged between 70-85 mm, significantly restricting the tillering capacity, while SMD 

exceeded 160 mm in (Foulkes et al., 2001, Foulkes et al., 2002), during grain filling 

significantly restricting grain filling and it did not exceed 50 mm during tillering, causing no 

significant effect on number of tillers; however, Fang et al. (2017) found significant reduction 

in ears/plant in a moderately droughted spring. These differences underline the reality that 

seasonal differences of timing, severity and duration of the drought can trigger markedly 

difference crop responses. This may point to an inherent difficulty in breeding for resilience 

to drought as traits that preserve the ability to tiller well during a period of early drought may 

require different traits and mechanisms compared to traits which preserve grain number 

during ear development and grain size during grain filling. On the other hand, it is possible 

that traits e.g. deep rooting, that might mitigate water limitation at any stage in crop 

development could have a generic positive impact on the resilience to all manifestations of 
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drought. Genetic mapping of quantitative responses offers a route to differentiating between 

stage-specific and all-stage drought resilience as QTL for the latter would be expected to 

appear consistently in a number of different drought scenarios. 

Root system response measurements were not feasible in this experiment, but the average 

daily temperature in the topsoil layer (at 50 cm depth) was recorded throughout the growing 

season and showed drought stressed blocks to be warmer by 1-2oC from mid-June to mid-

July. Cooler topsoil under stress was reported as being associated with delayed senescence 

(Wraith and Hanks, 1992) and delayed cumulative soil water depletion (Wraith and Hanks, 

1994) in wheat and maize, warmer soils reduced root length and were associated with 10% 

yield loss (Dong et al., 2016). By quantifying SMD and tracing its effects on various traits 

responses of highly replicated check variety ‘Kielder’, and by demonstrating that the 

differential treatment had been relatively evenly applied across the large spatial scale of the 

experiment, we provide the justification and the means to dissect the genetic basis of wheat 

MAGIC population responses to a moderate/severe spring drought in the unsheltered field. 

5.4 Genetic responses to drought 

The limited water availability had a significant negative effect on all measured traits causing 

an average yield loss of 3.74 t/ha in the rainfed blocks. As expected from a population whose 

founders were chosen to encompass wide variation in most traits (Mackay et al., 2014), 

transgressive segregation was detected as the phenotypic range of the progeny under both 

treatments greatly exceeded the range of the parental lines and there were significant 

differences among genotypes for all measured traits. Critically for the aims of this thesis, 

highly significant interactions between drought treatment and genotypes were found for key 

traits, such as GY, FT, P.ht, CTD and late season spectral indices NDVI.(1976dd) and 

NDVI.(2553dd). This result indicates a strong genetic basis for the detected responses, which 

is confirmed by moderate to high heritability of 0.45 and 0.87 for these traits, except for the 

NDVI measurements marked with low heritability of 0.34-0.36 which might be explained by 

inevitable noise in this environmental sensitive spectral index, GY had moderate heritability 

of 0.53, which is typical for such a polygenic trait, highly influenced by environment, 

especially factoring in the significant environmental variance due to drought stress treatment 

(Huang et al., 2006, Cuthbert et al., 2008, Tyagi et al., 2015, Gahlaut et al., 2017, Elfeki et 

al., 2018). 
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Previous studies investigating the association between green area peak and accumulation as 

well as NDVI measurements at different time points and final grain yield, reported significant 

positive correlations with yield ranging between 0.42 and 0.83 (Brian et al., 2004, Pennacchi 

et al., 2018, Guan et al., 2019). As treatments differed significantly in water availability, crop 

indices differed in their significance in the stepwise prediction model of yield, tagging mid-

grain filling as the key canopy index in irrigated treatment represented by NDVI.1976, which 

coincides with the key stage reported by Brian et al. (2004), Pennacchi et al. (2018) and Guan 

et al. (2019) as highly correlated to grain yield. For the rainfed treatment, green canopy cover 

(GAI.1388) at tillering stage appeared as the key canopy index, which can be associated to a 

big reduction in Grains.m-2 and confirmed by a significant reduction in ears/unit area detected 

in highly replicated ‘Kielder’ plots. In this experiment, we believe that the observed reduction 

in Grains.m-2 was mainly a product of reduction in ears/unit area (restricted tillering), since 

the decrease in grains.E-1 was minimal. 

Grains.m-2 appeared as the strongest source trait correlated to yield (r=0.72) and (r=0.68) in 

rainfed and irrigated treatments, respectively. However, it showed a strong source-sink trade-

off by having a significantly negative correlation with TGW (r=-0.44) and (r=-0.46) in rainfed 

and irrigated treatments, respectively. Seemingly, the increase in the number of ear-bearing 

tillers was accompanied by a decrease in assimilates available for individual grains. This 

trade-off between Grains.m-2 and TGW, matches the same trend detected by Jackson (2019) 

in two consecutive field trials using the same elite MAGIC population used in this study. 

CTD significantly differed between treatments by an average of 4.9oC, CT negative 

correlation with grain yield under drought stress was reported by Thapa et al. (2018) and 

Crain et al. (2016) and associated with an average increase in yield of 13% (Li et al., 2019). 

Lopes and Reynolds (2010) reported a significant correlation between cooler canopy 

temperature and root mass and deep-water extraction ability. CTD estimated for the MAGIC 

lines under both treatments, agreed with the literature, as it showed strong significant 

correlation (r=0.52) and (r=0.61) for rainfed and irrigation treatments, respectively. 

5.5 QTL analysis 

In Chapter 3, a total of 309 significant QTL were detected for the traits under both treatments, 

explaining individually 0.92 to 15.18% of the phenotypic variation, 53 QTL locations were 

associated with two or more traits and eight were major QTL detected in both environments 

for AUC, FT, P.ht and GY.  
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As GAI was measured over the growing season, QTL analysis was conducted for individual 

dates as well as cumulative green cover (AUC), indicating significantly associated markers 

with each phenotype and giving an insight on when these markers signals are peaking or 

decaying. Among the 110 QTL identified in both water availability regimes, five loci were 

detected in at least one of single GAI dates and the AUC, in addition to a novel pleiotropic 

locus (independent of Rht-B1b locus)  on chromosome 4B harbouring other traits beside GAI 

and AUC with different size effects explained by the QTL, as follow, Q.GAI.1192_4B 

explained (4.35%), Q.GAI.1630(R)_4B (5.7%), Q.GAI.1630(I)_4B (4%), Q.AUC(R)_4B 

(4.12%), Q.AUC(I)_4B (3.83%), Q.GY.(R)_4B (1.7%), Q.NDVI.1976(R)_4B (3.6%), 

Q.NDVI.2553(R)_4B (1.52%) and Q.P.ht(I)_4B.2 (5%). 

Major QTL for plant height tagging Rht-D1b and Rht-B1b loci on chromosomes 4D and 4B, 

respectively and flowering time QTL tagging known locus of photoperiod sensitivity Ppd-D1 

on chromosome 2D were identified with big size effect of 11.23%-15.18% individually. 

Moreover, major loci for other traits were found to match those identified in previous 

research, such as the grains.E-1 two big size effect loci Q.Grains.E-1.(R)_2A (11%) and 

Q.Grains.E-1.(R)_4A (7.8%) fall close to the same trait loci identified in (Echeverry-Solarte, 

2015) explaining 12.3% and 12.5% on chromosomes 2A and 4A, respectively. 

 Of 17 QTL detected for GY, only one of them was treatment-independent, explaining 3.4% 

and 2.14 % of the phenotypic variation in rainfed and irrigated treatments, respectively. This 

falls within the expectation of such a complex trait, highly influenced by environment and 

might propose rainfed specific QTL as candidates to describe yield underpinnings under 

drought stress. This was also reflected in the low GY heritability of 0.53 which matches 

typical value of GY heritability in the literature (Huang et al., 2006, Cuthbert et al., 2008, 

Elfeki et al., 2018) and was higher than estimated in the same population in other trials, where 

Jackson (2019) found GY heritability of 0.26 combined over 2 years. The low heritability 

might explain the limited number of GY QTL to co-locate with those found for other traits, 

where two loci on chromosomes 3A and 6B detected as follow, Q.GY.(I)_3A (3.7%) co-

located Q.Grains.m-2.(I)_3A.2 (6.4%) and Q.GY.(I)_6B (2%) coincided with both 

Q.CTD.(I)_6B (1.3%) and Q.GAI.1994.(I)_6B.2 (4.7%), in addition to the Q.GY.(I)_4D 

(3.42%) falling within the pleiotropic region tagging Rht-D1. 

In GY as a complex trait, epistatic SNP pairs are expected to explain significant variation 

beside the main effect QTL as found by Assanga et al. (2017), Jiang et al. (2017) and Sehgal 
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et al. (2017). In this study, after stringently selecting the most significant interactions, we 

identified six two-way interactions, two rainfed-specific and four irrigated-specific, 

highlighting either positive or negative effect allele combinations causing average 

decreases/increases of 1.5-2 t/ha. As might be expected, we found cases of co-location 

between one or both of the interacting SNPs pair with QTL previously identified for other 

traits, mainly those of crop canopy indices. Moreover, one of the two interacting SNPs for 

rainfed yield (wsnp_CAP12_c1503_764765) on 2D is tagging the Ppd-D1 photoperiod 

sensitivity locus that is the same case found by Sehgal et al. (2017). More investigation is 

needed for the epistatic SNPs associated with phenotypes measured in this experiment, which 

could provide a better in depth understanding of shared genetic basis of grain yield and its 

source and sink traits components. 

5.6 MAGIC responses to Piriformospora indica 

Improving wheat performance and increasing yield is always slowed down by the polygenic 

nature of yield and significance of environmental parameters, giving rise to the possibility of 

utilizing the promising potential of endophyte inoculation to improve plant performance and 

breed for better response to inoculation (Fester and Sawers, 2011, Galván et al., 2011). 

Piriformospora indica is one of the most promising potential symbiotic fungi. It belongs to 

the order Sebacinales, an order widely involved in mutualistic symbiosis, increases host plant 

resistance to biotic and abiotic stresses, with availability in soils of almost all habitats (Weiß 

et al., 2011). The interaction of P.indica with other microorganisms of endo/epiphytic 

populations, regarding diversity and density reveal paradoxical reports according to plant part, 

where significant increase found in fungal and bacterial diversity in the soil and root 

microflora of P.indica inoculated wheat (Rabie, 2015) or no effect in aerial parts 

microorganisms of barley, probably as it does not colonise plant shoots (Gravouil, 2012). 

The wide host range of P.indica and its beneficial impact on nutrients mediation, inducing 

biotic and abiotic stress resistance and yield increase is detailed in Chapter 4. However, 

P.indica is native to hot dry environment dominating its native habitat of Thar desert in India, 

Rabiey et al. (2017) reported the ability of P.indica to successfully colonize spring and winter 

wheat and survive the UK winter and summer conditions and Varma et al. (2014) found it to 

promote seed germination in temperatures as low as 4oC, indicating the climatic resilience of 

such species. 
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In the experiment conducted in Chapter 4, drought negatively affected yield and growth and 

development of the MAGIC lines, with significantly varying degrees among genotypes, 

confirming the wide range of responses in MAGIC that was found in the field trial (Chapter 

3). Drought reducing ears.p-1, TGW and grains.E-1 by 31.5%, 13.9% and 57.3%, respectively, 

leading to a loss of 60.5% of yield. Drought imposed throughout flowering and grain filling 

is reported to significantly reduce numbers of grains/ear as consequence of reduced fertility 

(Onyemaobi et al. 2016). However, others monitoring drought in pot experiments found this 

reduction in grains number associated with increased TGW such as Lehnert et al. (2018); we 

found drought to decrease them both. 

The main factor of yield increase as a response to P.indica inoculation was response of 

grains.E-1 as it showed strong significant correlation (r=0.94) with GY response, confirming 

the significance of this trait under drought, followed by response of ears.p-1 (r=0.76), while 

no significant correlation was detected between yield response and other traits response to 

P.indica, suggesting the endophyte’s potential to mitigate negative effects of drought relies 

mainly on sustaining tillering and potential fertility, but to a much lesser extent on assimilate 

translocation to the fertilized grains. P.indica generally increased GY, however, the effect 

size was bigger under well-watered conditions, in contrast to findings of stronger effect under 

stresses reported for mycorrhiza (Lehnert et al. 2018) and P.indica (Hubbard et al., 2014, 

Vahabi et al., 2016). 

The significant interaction between genotypes and P.indica either as a main effect or in the 

three way interaction with drought treatment, indicates heritable genetic variation controlling 

individual genotype responses to P.indica inoculation. Since successful colonization was 

confirmed via microscopic inspection of sampled roots, the varying degrees in response might 

be due to differences in colonization rate, which was also observed in barley where cultivars 

varied in their colonization rate of P.indica (Gravouil, 2012); more future experiments are 

needed to evaluate colonization rates in MAGIC RILs. 

In previous research, P.indica was found to increase root mass (Ghabooli and mondai, 2016), 

increase leaf water potential (Hussin et al., 2017), enhance the electron transfer chain and 

photosystem activity (Ghaffari et al., 2019) and increase Fv/Fm (Hubbard et al., 2014). In 

this thesis, P.indica successfully colonised winter wheat MAGIC lines and increased yield 

and growth parameters under both water availability regimes, but the detailed physiological 

and biochemical basis of these responses need to be addressed in future experiments. 
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The QTL analysis conducted to dissect candidate QTL associated with wheat response to 

P.indica colonisation under drought, revealed significant impact on major known QTL, such 

as totally masking the effect of reduced height locus Rht-B1 on chromosome 4B and dropping 

the effect size of Rht-D1 on 4D from 11.43% to 4% upon colonisation. This alteration in effect 

sizes of genes associated with DELLA protein and gibberellic acid pathway coincides with 

previous reports of reduction in expression of some members of the DELLA gene family, 

such as RGA1 in Arabidopsis colonised plants (Pan et al., 2017) and upregulation of GA in 

maize and tomato (Liu et al., 2019). 

An interesting comparison of QTL specific to presence/absence in P.indica with results of 

QTL analysis in field trials of contrasting soil water availability showed cases where the same 

loci were found in dry field conditions and fungus-free drought pots, while others detected in 

well irrigated pots and above average rainfall fields. For example Q.TGW(+p)_2D was found 

co-locating with a grain weight QTL in 2016 rainy year and missed in 2015 dry year and 

Q.FT(+p)_5A coincided with the locus associated with FT in 2016 rainy year (Jackson, 2019). 

Also Q.GY.(-p)_3B which is missed in the inoculated plants was co-locating with a 

previously detected QTL for number of grains/m2 in drought stressed field in 2017 (chapter 

3). These findings indicate that the mitigating effect of P.indica might be equivalent to 

increased water availability, which could be validated by more experiments using the same 

MAGIC population either in the field or in controlled environments. 

5.7 Limitations of the study 

Limitations varied according to the nature of each experiment. In 2017 field trial it was 

necessary to subset from the >1000 RILs of the MAGIC population, even after selecting 

representative 384 RILs, the population founders and a check variety under two water 

availability regimes in two replicate; this resulted in 1600 field plots which were challenging 

to phenotype regarding man-power and the time needed, especially the proximal sensing ones. 

Piriformospora indica is non-native to the UK, implying the experiment to be confined in 

glass houses and polytunnels, missing the natural field conditions and the ability to use the 

‘phenocart’ platform and drone-based measurements to phenotype around 1000 pots, this 

might be tackled by looking for P.indica closely related species from the widely spread 

Sebanicales and investigate it for the potential of improving wheat performance, in addition 

to confounding heat effect in glass house during above average hot days. Another difficulty 

in interpreting the genetic analysis of wheat X P.indica interaction, is the lack of studies 
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looking at QTL underpinning wheat responses to P.indica, as most published literature 

reported only the impact of P.indica on wheat yield and morpho-physiological responses in 

few number of cultivars in each study. 

A time limitation of the PhD span was a main reason of having experiments not repeated over 

years. However, the year-replication bottleneck was compensated by the available literature 

reporting genetic study on the same MAGIC population (using 800 RILs) over two 

consecutive years of the 2015 and 2016 growing seasons (Jackson, 2019). 

5.8 Future work 

This PhD project found the MAGIC population to encompass transgressive segregations in 

the tested RILs with potential yield sustainability under drought. These lines could be used as 

a breeding material for drought resistant cultivars under mild drought episodes expected in 

the UK. The high correlation between yield and UAV measurements, indicates these traits 

potential to be applied in yield predictive models; however, the variation among key indices 

under different water availability regimes implies the need to carry out more field trials with 

different scenarios of drought timing and severity. There is an opportunity that these indices, 

especially canopy temperature depression under drought are associated with root system traits 

and architecture, stomatal density and stomatal conductance which need to be investigated in 

future trials. 

The genotype X P.indica responses and the QTL identified in association with these 

responses, give an insight into the need of validating these QTL by replicating them over 

years and include canopy indices, root traits, physiological parameters and biochemical 

responses and test their association to underpinning QTL and their response to P.indica 

inoculation under drought.  

5.9 Concluding remarks 

This study adds evidence for the potential of sporadic drought episodes in the UK to 

significantly reduce wheat grain yield, highlights the availability of MAGIC genotypes with 

the ability to sustain yield under drought, identifies key traits for predicting yield under given 

water availability regimes, shows the potential of Piriformospora indica in enhancing yield 

in both well-watered and drought conditions and identifies QTL underpinning wheat 

responses to drought and those associated with wheat responses to P.indica colonisation. The 

results presented in this study have the potential to be used in wheat breeding programs for 

drought tolerance and wheat symbiosis with endophyte fungi. 
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