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Glossary 

Adaptation – a process of genetic change of a population owing to natural selection, whereby 

a feature becomes prevalent in a population as it is a selective advantage. Due to the 

population becoming better suited to some feature in its environment. 

Additive variance - the deviation from the mean phenotype due to the inheritance of 

particular alleles.  

Adenocarcinoma - cancers that are epithelial in cell origin 

Alleles - an alternate form of a gene; a single gene can have multiple versions, called alleles. 

Aneuploidy - the presence of an abnormal number of chromosomes in a cell. 

Broad-sense heritability (H2) - the proportion of phenotypic variation due to genetic variation. 

Cancer – is the name given to a group of diseases involving abnormal cell growth and 

proliferation. 

Carcinogenesis – also known as tumorigenesis. The formation of cancer whereby ‘normal’ cells 

are transformed into cancer cells, characterised by changes at the cellular, genetic and 

epigenetic levels and abnormal cell division.  

Carcinoma – a cancer originating from cells in the endoderm, mesoderm or ectoderm of a 

tissue lining. 

Cell lines – a population of cells from a multicellular organism that are able to proliferate 

indefinitely. 

Cell migration – the movement of a cell (or cells) from one location to another. 

Cell motility – the ability of a cell to move independently using metabolic energy. 

Chromothripsis - multiple chromosomal rearrangements localized to a limited number of 

genomic regions can be acquired in a single catastrophic event 
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CpG Islands - regions with a high frequency of C and G nucleotide sites. A region with at least 

200 bp with a GC percentage greater than 50% and an observed-to-expected CpG ratio greater 

than 60%. [(No of C * No of G)/length of sequence].  

Cytokinesis - part of the cell division process during which the cytoplasm of a single eukaryotic 

cell divides into two daughter cells. 

Darwinian evolution (Darwinism) – a theory of biological evolution stating all species of 

organisms arise and develop through natural selection.  

Differentiation - The acquisition of cell-specific differences during a multicellular organism's 

embryonic development or adult life; reflects gene expression and activation of transcription 

factors. 

Dominance variance - caused by interactions between alternative alleles at a specific locus it is 

the extent to which a trait appears in a population or an individual.  

Dispersal – the movement of individuals to different localities. 

Dispersal theory – the theory that competition for resources within a population selects for 

individuals better adapted for dispersal. 

Dysregulation – abnormality or impairment in the regulation of a metabolic, physiologic or 

psychological process. 

Environments – anything external to the object of interest that may influence its activity or 

function. 

Environmental variation – differences in the environment that can occur spatially and 

temporally. 

Epigenetics – the study of heritable phenotype changes that do not involve alterations in DNA 

sequence. 

Epigenetic mutations – functionally relevant alterations to the genome that don’t alter the 

nucleotide sequence of a gene. 
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Epigenome – a record of the chemical changes to DNA and histone proteins of an individual 

that can be passed to progeny via transgenerational inheritance.  

Evolution – the origin of individuals possessing different states of one or more traits and 

changes in their proportion over time. 

Evolvability – the capacity of a system for adaptive evolution. 

Extracellular matrix (ECM) – collection of extracellular molecules such as collagen, enzymes 

and glycoproteins that give tissues their mechanical properties and provide structural and 

biochemical support of surrounding cells. 

Experimental evolution – the study of evolutionary processes within a population in response 

to experimental conditions imposed. 

Fibrosarcoma - tumours of mesenchymal cell origin from fibrous connective tissue 

Fitness – the success in an entity in surviving or reproducing hence it is the average 

contribution of an allele or genotype to the population. 

G1 phase - the first of four phases of the cell cycle that takes place in eukaryotic cell division. 

The cell synthesizes mRNA and proteins in preparation for subsequent steps leading to mitosis.  

G2 phase - the third phase in the cell cycle directly preceding mitosis. A period of rapid cell 

growth and protein synthesis during which the cell prepares itself for mitosis. 

Gene – the functional unit of heredity. 

Genetic drift – random changes in the frequency of two or more alleles or genotypes within a 

population. 

Genetic instability – a high frequency of mutations within the genome of a cell line. 

Genetic mutations – permanent alteration of the nucleotide sequence of the genome. 

Genetic variance – variation in a trait within populations, as measured by the variance due to 

genetic differences amongst individuals.  
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Genome – all the genetic material of an individual, includes coding and non-coding DNA as 

well as mitochondrial or chloroplast DNA. 

Genotype – the set of genes possessed by an individual. 

Heritability – statistic summarising the amount of variation in a phenotype due to genetic 

factors. 

Heterogeneous – composed of different elements that are not of the same nature. 

In vitro – meaning “in the glass”, biological studies performed in the laboratory using 

equipment such as test tubes, flasks and petri dishes. 

In vivo – studies performed on whole living organisms such as humans, animals or plants. 

Inbred lines - are individuals of a species which are nearly identical to each other in genotype 

due to long inbreeding. 

Immunoprecipitation (IP) - is the technique of precipitating a protein antigen out of solution 

using an antibody that specifically binds to that particular protein. 

Kin selection – a form of selection where alleles differ in their rate of propagation through 

their influence on the reproductive success of individuals who carry the same alleles by 

common descent. 

Metastasis - the successful migration of cells and the establishment of secondary tumours 

around the body. 

Narrow-sense heritability (h2) - the proportion of phenotypic variation due to additive genetic 

variation. 

Natural selection – non-random differential survival and/or reproduction of individuals due to 

variation in their phenotypes. 

Phenotype – the composite observable characteristics of an individual including 

morphological, physiological, biochemical and behavioural properties. 
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Phenotypic plasticity – the capacity of a genotype to alter or change its phenotype depending 

on the environment. 

Phenotypic variance - measures the degree of phenotypic differences among a group of 

individuals; composed of genetic, environmental, and genetic-environmental interaction 

variances. 

Population – a group of individuals from the same species occupying a geographic region and 

exhibiting reproductive continuity from generation to generation. 

Proliferation – the reproduction and/or multiplication of similar forms.  

Protein – large biomolecules or macromolecules consisting of one or more chains of amino 

acid residues. 

Pseudodiploid - diploid cells with chromosomal translocations  

Recombinant inbred lines - an organism with chromosomes that incorporate an essentially 

permanent set of recombination events between chromosomes inherited from two or more 

inbred strains.  

Resource – a supply from which a benefit is produced. 

Response to selection – the change in the mean value of a trait over one or more generations 

in response to selection. 

Robustness - persistence of a characteristic or trait even under environmental perturbations. 

Selection – differential survival and/or reproduction or preferential elimination of classes of 

phenotypically different entities by means of natural or artificial controlling factors. 

Selective pressures – a phenomena that alters the behaviour and/or fitness of individuals 

within a given environment shaping their evolution. 

Somatic cell – any diploid differentiated biological cell forming the body of an organism that 

does not give rise to gamete cells. 
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Statistical Power - is the measure of a test's ability to accurately detect that the null 

hypothesis is false. Specifically, power is the probability that a test with the specified 

assumptions (sample size, difference, standard deviation, alpha level, and type of alternative 

hypothesis) correctly rejects the null hypothesis when the alternate hypothesis is true.  

Trait – a morphological, physiological or behavioural feature. 

Tissue – in biology a tissue is a cellular organisational level consisting of similar cell types and 

their extracellular matrix that together carry out a specific function. 

Tumour – abnormal or excessive growth of tissues comprised of heterogeneous cell types 

predominantly cancer cells. 

Tumour microenvironment – the environment around a tumour, including blood vessels, 

immune cells, fibroblasts signalling molecules and the extracellular matrix. 

Variance – the average squared deviation of an observation from the arithmetic mean.  
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Abstract 

Cancer is a disease of evolution. Mutations within a cell lead to the acquisition of cancerous 

phenotypes. Tumour evolution depends on heritable differences between cells. The extent of 

heritable variation has not been measured for any trait in cancer cell populations. In this thesis 

techniques have been developed to estimate the broad-sense heritability (H2) of cancer cell 

traits in vitro and used to estimate the H2 of cell motility. Cell motility is a trait related to the 

cancer hallmark of metastasis. Results show that motility is strongly heritable with H2 values 

ranging from 0.77-0.36 across multiple cell generations. H2 estimates appeared to decrease 

slightly between more distantly related cells, a trend that could occur due to a decrease in the 

genetic contribution to motility or an increase in environmental variation. This was tested by 

treating cells with epigenetic inhibitors and obtaining H2 estimates. Results showed H2 

estimates were not significantly affected by the application of epigenetic inhibitors with values 

ranging from 0.95-0.18. Quantification of the amount of environmental variation in in vitro cell 

culture media was attempted using image analysis of fluorescent particles. Variation in particle 

distribution was found at a range of concentrations, nM – mM. Direct quantitative measures 

of evolvability in cell traits could have valuable applications to cancer research and tumour 

treatment. 

To understand tumour progression, evolutionary theory can be applied to cancer cells in vitro 

to elucidate the selective pressures driving the evolution of cancer cell traits. In this project 

experimental evolution techniques have been adapted from microbiology and applied to 

cancer cell lines in vitro. Adaptation of cell lines to low nutrient environments over 12 weeks 

showed dispersal theory may play a role in the selection of the cancer cell trait motility. 

Understanding the selective pressures driving the acquisition of cancer phenotypes will have 

valuable applications clinically in understanding tumour progression.  
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Chapter 1 - Introduction 

1.1 Cancer 

Cancer is not a single disease but a collection of distinct subtypes all with different clinical 

outcomes1. Globally cancer affects approximately 17 million people every year with an 

estimated 9.6 million deaths in 2018 due to the disease2. 

Excessive cell growth leads to tumour formation. Solid tumours can be benign or malignant. 

Benign tumours are generally slow growing, non-invasive, morphologically similar to their 

parent tissues and usually enclosed within a fibrous capsule3. Prompt diagnosis and treatment 

typically results in a complete cure. Malignant tumours are normally fast growing, invasive and 

morphologically abnormal and are not usually encapsulated3. Malignant tumours can and do 

spread around the body4. 

Cancer is the evolution of somatic cells; over time the ‘normal’ cell population within a tissue 

may be replaced by cells carrying mutations conferring some cancer phenotypes3 5. 

Carcinogenesis is initiated by genetic and epigenetic mutations altering phenotypes leading to 

the acquisition of the ‘cancer hallmarks’1 6 7. Dynamic genetic changes along with clonal 

expansion and selection are thought to lead to a heterogeneous tumour6 8 9. This multi-step 

process is an example of Darwinian evolution with individual cells being the unit of selection6. 

Tumours contain heterogeneous cell populations that vary in the traits under selection8 9. 

Understanding the cellular heterogeneity within cancer is key to developing prevention 

strategies and targeted therapeutic interventions7. In order to understand how these distinct 

cell populations evolve, knowledge is needed of their reaction and response to the 

environment and the role phenotypic plasticity, genetic and epigenetic mutations play in that. 

1.2 Evolution and cancer 

Cancer is a disease of evolution; tumours evolve through selection acting on mutations within 

individual cancerous cells and this process is integral to disease progression10. Most 

multicellular organisms have potent tumour suppressive mechanisms, initially necessary for 

the evolution of multicellularity they also play an important role in allowing large size and 

longevity10 11.  
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Multicellular organisms would not have been able to evolve significant organisation or 

complexity without mechanisms to prevent competition between individual cells10 11. If 

competition is not prevented, then genetic conflict arises when mutant cell lineages promote 

themselves at the expense of the organism11.  

Cancer cells represent a breakdown in multicellular cooperation and dysregulation in the 

control structures imposed during the evolution of multicellularity12 13. The genes mutated in 

cancer are those often used by unicellular organism that have been adapted for 

multicellularity. Adaptations to multicellularity can occur in multiple ways and the traits used 

by unicellular organisms are often integral to survival, as such these traits often show great 

robustness and phenotypic plasticity11-13. The high degree of robustness and plasticity found in 

these traits confer increased adaptability to tumour cells by enabling an effective response to 

environmental pressures12. Cancer is a disease of evolution, applying evolutionary theories to 

cancer will elucidate the selective pressures driving the evolution of cancer cell traits and aid 

understanding in tumour progression. 

A tumour is a microcosm of genetically heterogeneous cells where each clonal lineage is 

competing (or occasionally cooperating) 10. The genetic variability is caused by high mutation 

rates, multiple rounds of selection, variations in the microenvironment and an increased 

proliferative rate10. Selective pressures such as chemotherapeutic agents or hypoxia will select 

for cells best adapted to those conditions. If these selective pressures are very strong an 

evolutionary bottleneck can occur resulting in the selected cells forming the majority of the 

tumour population10. Understanding the evolutionary trade-offs in tumour progression and 

harnessing competition between cell lineages can be used for disease treatment. Targeted 

therapies recognise the adaptive nature of cancer populations but in order for them to be 

effective, understanding is needed of the evolutionary trajectories of cancer in different 

contexts10. 

Within evolutionary biology understanding of how environmental variation can affect 

phenotypic plasticity (the capacity of a genotype to alter or change its phenotype depending 

on the environment14) in genotypes is crucial to understanding the evolution and maintenance 

of biodiversity15. These same theories can be applied to cancer biology where the tumour 

microenvironment may cause or select for increased genetic instability and tumour 

progression has been linked to genetic heterogeneity16 17. Hanahan and Weinberg (2000) 

predicted that the future of cancer biology would develop into a logical science where the 
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complexities of the diseases would become understandable in terms of the underlying 

principles1. Using evolutionary biology principles could help to do this. This thesis aims to 

apply novel evolutionary concepts to cancer biology and in particular to develop and adapt 

experimental evolution techniques to cancer biology.  

1.3 Metastasis 

Metastasis is the spread of cancer cells around the body and the growth of secondary 

tumours4 18 as such it is the main clinical challenge in treating cancer. Clinically, the evolution 

of metastasis is one of the most important transitions in tumour progression. Prior to 

metastasis many solid tumours can be cured surgically and 5-year survival rates are often 

above 90 %. However, once a cancer has spread to distant sites systemic therapy is necessary, 

and 5-year survival rates often fall below 15 %19. It is currently impossible to predict or detect 

whether metastasis has occurred until there is a relatively large secondary tumour, and 

available therapies only target detectable tumours to prevent or reduce their growth or 

prevent dissemination20. 

As seen in figure 1.1 metastatic tumours are the final stage of a multi-step process termed the 

invasion-metastasis cascade21. The first step is when cancer cells in the primary tumour invade 

their local surroundings into and through the extracellular matrix. Next is intravasation, where 

cells move into the blood or lymphatic vessels. These cells then have to survive in circulation 

before coming to a rest at a distant site and extravasating – moving out of the vessel, into the 

distant tissue. Cancer cells that have achieved all this still need to adapt and survive in the 

foreign microenvironment before proliferating and forming metastatic tumours21. These 

events are driven by genetic and/or epigenetic changes within the tumour cell as well as 

alterations in the tumour microenvironment21. Whilst metastasis is composed of multiple cell 

traits, cell migration is integral to cancer metastasis. Cells must migrate out of the primary 

tumour and both into and out of the circulatory system21. 
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Figure 1.1: The invasion-metastasis cascade; taken from Valstyan and Weinberg (2011) 21. 

Cancer cells leave the primary tumour and intravasate into the circulatory system. They travel to 

a distant site before extravasating into the distant tissue. These cancer cells form micro 

metastases whilst surviving and adapting to the foreign microenvironment. Once adapted they 

continue proliferating until a secondary metastatic tumour is formed. 

1.3.1 Cell migration 

Cell migration is the movement of cells and involves an array of different mechanisms22 

controlled by the cytoskeleton and driven by actin polymerisation23. Cell migration can occur 

naturally during embryonic development, physiological homeostasis and wound repair24. Cells 

can move either individually or as a group22. Individual migration can be further classified into 

amoeboid migration - the cell moves via rapidly alternating cycles of morphological expansion 

and contraction; and mesenchymal migration – involving proteolytic remodelling of the 

matrix22 24. When undergoing collective cell migration the cell-cell junctions between migrating 

cells are maintained and they move as connected strands or chords into tissues22.  

Cancer cells have been shown to utilise multiple different types of migration and in solid 

tumours it is thought to be the underlying cause of cancer metastasis24. The role of cell 

motility in the progression of metastasis has been established experimentally and empirically24 
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making it an important therapeutic target for cancer treatment. However, after years of in 

vitro study there are very few clinical interventions designed to specifically target cell 

migration23 24.   

1.3.2 The evolution of cancer metastasis 

Metastasis is a recurring trait in cancer progression25, for many types of cancer (such as breast 

or skin) it is metastasis that causes these tumours to become deadly2. However there is a 

paradox in our understanding of the evolution of metastasis. Genetic and epigenetic 

mutations generate new clones of cells and those with a survival or proliferative advantage 

should expand and spread within a tumour. Unlike the other cancer hallmarks (apoptosis 

resistance, autonomy in growth signals, replicative immortality and sustained angiogenesis1) 

metastasis does not appear to directly enhance cell survival or proliferation6 25. If a cell 

acquired a metastatic phenotype it is likely to be at a disadvantage within the tumour as some 

of its reproductive fitness is lost to emigration. Therefore it might be expected that cells 

without a metastatic phenotype would have a fitness advantage and the metastatic 

phenotype would be driven extinct6. The cost of dispersal to individual cancer cells has been 

demonstrated experimentally, a high number of cancer cells can be detected in patients’ blood 

(a daily average of 106-107 cells) however few secondary tumours form at distal sites26-28. The 

majority of cells that disperse must either die or return to the primary tumour26, indicating 

that genetic alterations promoting metastasis do not confer any advantage within the primary 

tumour as the majority of motile cells either ‘waste’ energy that could be spent on growth and 

proliferation or die6. 

Tumours are heterogeneous, both genotypically and phenotypically9. The multistep nature of 

metastasis coupled with the diversity and complexity of cancer cells poses difficulties in 

experimental design and interpretation. A biopsy taken from a patient or a cell line studied in 

the lab, may not be representative of the tumour as a whole due to natural selection acting 

over time and space9 29. Tissue studies of patients are complicated by the cellular 

heterogeneity of a tissue mass and also by the variance in genetic background between 

individuals7 20.  

Theoretical models and ecological observations seem to agree that populations that are very 

phenotypically and genetically diverse tend to occupy broader ecological niches30-32. Increased 

diversity seems to reduce intraspecific competition and extinction risk, increase population 

growth, establishment success and invasiveness and decrease vulnerability to environmental 
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changes and changes in population size14. These traits nearly all apply to metastatic cancer and 

could suggest that the phenotypic and genetic diversity seen in tumours contributes to the 

severity of the disease.  

There is no single ‘metastatic gene’, many studies have indicated there are lots of genes or 

signalling pathways and molecules that can be co-opted or altered to confer a metastatic 

phenotype33-35. This could suggest something in the environment triggers these genetic and 

epigenetic mutations or there is a selective pressure maintaining the metastatic phenotype in 

the primary tumour. In order to understand how these distinct cell populations evolve, 

knowledge is needed of their reaction and response to the environment and the role 

phenotypic plasticity and genetic or epigenetic mutations play in that.  

1.3.3 Dispersal theory and metastasis 

In ecology, dispersal theory suggests that competition for resources within a population would 

select for individuals better adapted for dispersal29 36 37. Cell migration is a key part of the 

metastasis cascade1, if we apply ecological dispersal theory to cancer this could help to explain 

why tumours metastasise. Dispersal theory could explain how a metastatic phenotype is 

maintained within a primary tumour population6 38. 

Despite the energy demands of motility and the uncertain advantage to cell fitness, dispersal 

allows migration away from areas of resource restriction29 38. Cells able to disperse increase 

their own chances of survival as they may migrate to an area with less competition or higher 

resource concentration39. Kin selection – where selection on individuals favours traits that 

increase the fitness of close relatives, will also act to increase dispersal when competition is 

high as dispersing cells reduce competition at the original site increasing survival of their 

relatives39. As cancer cells are clonal a dispersing cells genome should be preserved within the 

original population, even if the dispersing cell is unsuccessful the increased chance of survival 

for the remaining clonal population increases and the genome is maintained and propagated 

throughout the population39.  

Dispersal theory has been tested experimentally by Taylor & Buckling (2010) who used 

bacterial populations of Pseudomonas aeruginosa. They found that bacteria which dispersed 

further reduced cell-cell competition increasing population fitness even when the cost of 

dispersal was high40. Mathematical models also predict that even in environments with very 

low resource heterogeneity, adaptations for dispersal will still be selected for as migration 
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away from resource competition increases offspring survival and genotype frequency is 

increased if this competition is not against kin14 41.  

Primary tumours have been shown to be highly heterogeneous in their microenvironment8. In 

ecology, resource heterogeneity has been shown to initiate dispersal in the stream 

salamander Gyrinophilus porphyriticus, with low habitat quality selecting for dispersal42. 

Resource limitation has also been closely linked to dispersal of female African buffalos43. The 

resource heterogeneity within a tumour could be driving selection of the motile phenotype 

promoting dispersal away from resource limitation19 36 38 44. Explaining the evolution of 

metastasis requires cells to vary heritably in their dispersal behaviour45. However, heritability - 

a statistic that summarises the amount of variation in a phenotype due to genetic factors46 47 

has never been directly measured for any trait in cancer cell populations. Before testing 

ecological dispersal theory, it would be helpful to obtain heritability estimates of the 

phenotypic variation in the cell trait motility. 

1.4 Experimental evolution 

Experimental evolution is the study of evolutionary processes within a population in response 

to experimental conditions imposed48. Experimental evolution uses replicate populations of 

organisms (microorganisms, such as bacteria, are ideal for such experiments as they have large 

populations and short generation times) 37 to study evolutionary processes in real time36 37 48. 

The environmental conditions under which evolution occurs are carefully controlled allowing 

monitoring of the effect of specific selective pressures on the trait of interest37. This research 

approach is used to study adaptation, estimate evolutionary parameters and test evolutionary 

hypotheses37 48.  

Evolutionary theories are usually inspired through studying outcomes of past evolution (such 

as phylogeny, divergence of species, genome structure and sequence) 48. Gerlinger et al (2012) 

performed genomic analysis on multiple tumour regions from primary and metastatic renal 

tumours. They found substantial intratumour heterogeneity and using phylogenetic 

reconstruction hypothesised that it was this that allowed tumour adaptation leading to 

therapeutic failure through Darwinian selection9. Signatures of natural selection on gene 

sequences have been detected in tumours and evolution can be inferred using techniques 

such as phylogenetic reconstruction of the cancer genome, however these methods can only 

hint at how selection shaped adaptation9 49 50. Few of the evolutionary and ecological theories 

behind tumour evolution have actually been tested experimentally.  
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 In contrast, experimental evolution techniques offer the prospect of actually observing 

evolution in real time37 48. Adapting experimental evolution techniques to cancer cells in 

culture would allow direct observation of which phenotypic traits are under selection. These 

techniques are widely used and have fundamentally changed our understanding of 

evolutionary processes30 50-58. For example, in microbiology Pseudomonas fluorescens have 

been used to study the underlying causes of adaptive radiation and its role in biological 

diversity30. The longest running, and possibly best known, evolution experiment has been 

conducted by Lenski et al51 and involves 12 populations of Escherichia coli derived from the 

same ancestral strain that have been continuously grown in glucose limited media since 1988 

(now over 60,000 generations)52. This experiment has given rise to many new insights and 

testing of evolutionary theories such as the trade-offs between growth rates and yields53 and 

the relationship between the rate of genomic evolution and adaptation54. Such techniques 

have a wide range of uses, not only in bacteria. Barrett et al (2011) used experimental 

evolution techniques to investigate the effects climate change could have on populations of 

the stickleback fish, Gasterosteus aculeatus, by artificially exposing them to alterations in their 

environment and monitoring population adaptation over time55.  

Use of experimental evolution techniques and their application to cancer biology will allow 

testing of evolutionary theories to further understanding of the clinical progression of 

tumours36 38. The application of such techniques will allow the ecological causes of natural 

selection to be investigated and the genetic basis of evolutionary changes to be determined36. 

In vitro cell cultures are well suited for use in experimental evolution, sharing many similarities 

with bacteria. Cancer cell cultures are easy to grow, and many cell lines are well studied, they 

have relatively fast generation times (≈1 day) allowing experiments to run for multiple 

generations. They can be stored easily and indefinitely, and large populations of cells take up a 

small volume allowing multiple cell lines and experimental conditions to be cultured 

simultaneously as well as storage and resurrection of ancestor populations for comparison38 59. 

However, cancer cells in culture are also fastidious in their growth conditions and individual 

cells do not grow well in isolation. They are also visually indistinguishable from each other, 

making experiments requiring co-culturing of populations’ difficult60. Cancer cells are also 

more complex than the organisms typically used in experimental evolution, they evolved as 

part of a multicellular eukaryotic organism before undergoing their own individual mutations 

and evolution to form the cancerous cell and tumour12. As a result their genomes are far more 

complex than unicellular organisms as they include multiple levels of gene regulatory 
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systems12 61. There are also intricate levels of heterogeneity which exist within tumour 

populations62 63. Using adapted experimental evolution techniques allows evolution to be 

observed in real time as populations of cells adapt to new environmental conditions by natural 

selection. 

1.5 Using cell culture as an experimental evolution technique 

Avoidance of cell death is one of the main cancer hallmarks1 and means that cancer cells are 

well suited for in vitro cell culture as they continue to divide indefinitely64. Immortal cell lines 

are a very important tool for research into the biochemistry and cell biology of multicellular 

organisms. Cells can be grown indefinitely in culture simplifying analysis of the biology of cells 

which may otherwise have a limited lifetime65.  

1.5.1 Advantages and limitations to cell culture 

There are many advantages to starting with in vitro studies using cancer cell lines. Cell lines are 

derived from human tumours, so carry some clinical relevance. Most cancer cell lines have 

been well studied and characterised. Studying multiple different cell lines has similar 

advantages to studying multiple individuals, but in a simpler system with fewer ethical 

concerns7. Many specific pathways and functions remain in cells in culture. A major advantage 

of in vitro cell culture is the ability to precisely control the environment. Variations between 

repeats can be kept to an absolute minimum and experimental parameters repeated or 

altered with relative ease.  

No matter how carefully controlled and regulated an in vitro environment is, it will always be 

simpler and lack some elements of an in vivo environment. This may lead to a more constant 

cell metabolism in vitro. Whilst useful experimentally this may not be truly representative of 

the in vivo tissue or cell behaviour64. 

There are limitations to in vitro cell culture. Cells from multicellular organisms do not normally 

exist in isolation. Those cells that survive the culture process may not represent the 

multicellular organism they come from62. Differences between cells in vitro and in vivo mostly 

arise from the dissociation of cells from a three-dimensional structure and their culture on a 

two-dimensional substrate. When a cell line forms it may represent only one or two cell types 

from the original tissue hence many cell-cell interactions may be lost62 63. Care must be taken 
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when extrapolating results from in vitro experimentation and applying them to an in vivo 

environment62.  

Whilst there are many differences between in vivo and in vitro, and some limitations to in vitro 

cell culture, there are also many advantages. Provided the limitations of cell culture are 

acknowledged and understood, it remains an important tool for the study of cell biology from 

multicellular organisms. Cell culture thus provides an in vitro model of a cell or tissue type in a 

well-defined environment which can be easily manipulated and analysed64. 

1.6 Choosing cell lines for experimental work 

Using just one cell line, or even one type of cancer, to test new hypotheses on cancer 

progression and treatments, limits understanding of how disease progression occurs and risks 

missing potential treatments for subsets of cancer types63. Using multiple cell lines and 

different types of cancer makes results more robust in their applicability to cancer as a 

disease66 67. Particularly so in this study where theories of evolution are being applied to 

explain disease progression.  

For this study four cancer cell lines were chosen. These cell lines were chosen to represent not 

only genetically distinct cancers but also different cancer types. Including different cell types 

and different cancer types will give a broad range of comparison, making results more 

robust64. 

 In 2015, breast cancer was the most common cancer in the UK, accounting for approximately 

15 % of all new cancer cases2. Two of the four cell lines chosen originated as breast cancer, 

MDA-MB-231 and MCF7. They were both established from pleural effusions of metastatic 

adenocarcinomas (cancers that are epithelial in cell origin) 68 69 but are genetically quite 

different.  

MCF7 is the most commonly used breast cancer cell line in the world70 71. MCF7 cells are 

particularly useful for in vitro studies as they have retained characteristics of clearly defined 

mammary epithelia. The MCF7 cell line is very genetically unstable with differences in 

genotype between batches72. This genetic instability may cause MCF7 cells to react 

unpredictably and the differences in gene expression may result in diverse responses between 

the cell lines70. MDA-MB-231 cells are epithelial breast cancer cells and are a commonly used 

breast cancer cell line in medical research laboratories68. By using two types of breast cancer 
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cell lines comparisons can be made in how diverse cancer characteristics react to the 

experimental conditions.  

The third cell line chosen was HeLa cells, one of the most commonly used cell lines for 

studying human cellular and molecular biology73 74 they have been extensively characterised73.  

Similar to both MDA-MB-231 and MCF7 cells, they are also adenocarcinoma, but originate 

from cervical cancer74. As HeLa cells are so widely used, any results will have meaningful 

comparisons to relevant cancer literature. When the HeLa cell genome was compared to a 

human reference genome there were both single nucleotide and structural variants; a high 

number of these were in genes effecting proliferation, transcription and DNA repair73 75. Like 

MCF7 cells their genetic instability75 76 may make them react not only unpredictably, but 

radically different to the other cell lines chosen.  

Lastly the HT1080 cell line is different to the others chosen as they originate from a 

fibrosarcoma77. Fibrosarcomas are tumours of mesenchymal cell origin from fibrous 

connective tissue. They do show genetic abnormalities, but these are relatively stable and well 

characterised to the cell line77.  

1.7 Project aims 

The aim of this project is to test whether an evolutionary approach to natural selection in 

cancer is appropriate and to adapt experimental evolution techniques and use these on cancer 

cell lines in vitro to study cancer metastasis.  

For experimental evolution techniques to be successful natural selection must be able to act, 

natural selection relies on heritable variation in a cell trait. As such the first step was to 

measure the heritability of the cell trait motility. Cell motility is a readily quantifiable trait 

which has been used as one representation of a cell’s metastatic potential. Whilst heritably of 

cell traits has often been assumed, testing of this assumption is a fundamental pre-requisite in 

order to quantify the evolvability of motility in cancer cell lines. When measuring heritability of 

cell motility, the hypothesis was that there would be heritability of cancer cell traits and that 

these experiments would provide proof of concept.  

The second step involved adapting the experimental evolution techniques commonly used on 

microbes to cancer cells in culture. Whilst cancer cell lines and bacteria share many similarities 

modifying methods to make them suitable for cancer cell cultures was no trivial process.  
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Once adapted, these techniques could be used to test whether dispersal theory applies to 

cancer. Selective pressures could be applied to cancer cells in culture and their motility 

measured over time. As metastasis is a composite trait a range of methods were used to 

measure multiple cell phenotypes. If dispersal theory does apply to cancer cells then it would 

be expected that competition for resources promotes increases cell motility.  
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Chapter 2 – General methods 

2.1 Cell lines 

Cell culture is the process by which cells of interest (in this case cancer cells) are isolated from 

living tissue and grown under carefully controlled conditions outside of their natural 

environment64 67.  

Multiple cell lines have been used throughout this project and are detailed below. These cell 

lines represent not only genetically distinct cancers but also a broad range of cancer types. Cell 

lines were chosen that allowed comparisons to current results in the cancer literature, all the 

cell lines selected have been well documented and are widely used in in vitro studies. Where 

the same cell lines have been acquired from different sources they are numbered sequentially 

in the order in which they were obtained.  

2.1.1 HeLa cells 

HeLa (ATCC® CCL-2™) cells are cervix epithelial cells taken from a 31-year-old black female in 

195174. Similar to MCF7 and MDA-MB-231 cells, they are an adenocarcinoma. The HeLa cell 

line has been reported to contain HPV-18, have a low expression of p53 and to be highly 

motile and fast proliferators73. 

Characterisation of HeLa cells chromosomes have shown high levels of aneuploidy and many 

large structural variants73. They have been shown to have substantial chromosomal 

aberrations, including evidence of chromothripsis (where a limited number of genomic regions 

have undergone multiple chromosome rearrangements) 76.  

 HeLa cells were obtained from Public Health England - Lot 14G005 acquired at passage 3. 

2.1.2 HT1080 cells 

The HT1080 (ATCC® CCL-121™) cell line was isolated in July 1972 from a fibrosarcoma of the 

connective tissue in a 35-year-old caucasian male78. They are also highly motile with a high 

rate of proliferation77. HT1080 cells are different to the other cell lines as they originate from a 

fibrosarcoma, not a carcinoma77. They show genetic abnormalities, but these are relatively 
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stable and well characterised to the cell line. HT1080 cells have a modal chromosome number 

of 46 and show signs of pseudodiploidy (diploid cells with chromosomal translocations)77. 

 HT1080 cells were obtained from Public Health England - Lot 14A031 acquired at passage 

3. 

2.1.3 MCF7 cells 

MCF7 (ATCC® HTB-22TM) is a breast cancer cell line. It was established at the Michigan Cancer 

Foundation and is derived from the epithelial mammary gland cells of a metastatic pleural 

effusion obtained from a 69-year-old caucasian woman. They are generally non-motile, 

oestrogen receptor expressing cells69.  

The MCF7 cell line is classified as Luminal A based on its expression of both oestrogen and 

progesterone receptors and its absence of human epidermal growth factor 2. Expression of 

Ki67 (a proliferation marker) is low70 and the cell line has been shown to be very genetically 

unstable with differences in genotype between batches72. This project used three separately 

sourced MCF7 cell lines. 

 MCF7-1 cells were obtained from ATCC - HTB-22, acquired at passage 17. 

 MCF7-2 cells were obtained from Public Health England - Lot 13K023 acquired at passage 

15. 

 MCF7-3 cells were obtained from Public Health England - Lot 14I018 acquired at passage 

13. 

2.1.4 MDA-MB-231 cells 

MDA-MB-231 (ATCC® HTB-26 TM) cells are epithelial mammary gland cells. They were derived 

in 1973 from a pleural effusion of a metastatic mammary adenocarcinoma from a 51-year-old 

caucasian female68. They are a highly motile breast cancer cell line68.  

The cell line is characterised as a claudin-low breast carcinoma. It is triple-negative (lacks 

oestrogen and progesterone receptors and does not express human epidermal growth factor 

2), has down-regulation of claudin-3 and claudin-4, low expression of Ki67 and increased 

expression for markers associated with the epithelial-mesenchymal transition70 79. The cell line 

is aneuploid with near triploid chromosome numbers, it has a modal chromosome number of 

6468. This project used two separately sourced MDA-MB-231 cell lines. 
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 MDA-1 cells were obtained from Dr. P Darbre’s Lab acquired at passage 4. 

 MDA-2 cells were obtained from Public Health England - Lot 13J001 acquired at passage 

40. 

2.2 Cell culture 

All cells were grown as a monolayer at 37 °C in 5 % atmospheric CO2. The standard culture 

conditions are listed below for each cell type. The culture medium provides the necessary 

nutrients, growth factors and hormones for cell growth as well as helping regulate pH and 

osmotic pressure. Basal media contain amino acids, vitamins, inorganic salts and a carbon 

source, but these media must be supplemented with serum64 80 81.  

Any deviations are stated in the specific methods section of each chapter. Unless otherwise 

stated all cell media reagents were obtained from ThermoFisher Scientific Inc (UK). All cell 

culture work was done in a sterilised tissue culture hood with sterile equipment. Cell cultures 

were checked every 2 or 3 days using a light microscope. Cells were either passaged or had the 

media changed as required. 

Cell lines have been grown in media following the recommended guidelines from Public Health 

England or, where cell lines have obtained from an alternative source, culture has been 

continued in their previous media.  

Both Eagle’s minimum essential media (MEM) and Dulbecco’s modified MEM (DMEM) are 

commonly used culture media that are suitable for a wide range of mammalian cells64. DMEM 

has a greater concentration of vitamins, amino acids and bicarbonate buffer than MEM81.  

Phenol red is often added to cell media as a colour indicator of pH. It is red at pH 7.4, changing 

to yellow if the pH drops, or purple if pH increases64. Phenol red interferes with 

spectrophotometric and fluorescent assays82. It is also a weak oestrogen mimic so can 

enhance the growth of cells with oestrogen receptors, such as MCF7 cells83. For these reasons 

phenol red free media has been used throughout this project. 

Cells were grown in culture flasks or dishes as specified in the specific methods section of each 

chapter. Table 2.1 shows the various sizes and cell numbers of culture vessels used throughout 

this project. 
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Table 2.1: Information required for cell culture in various culture vessels. Adapted from Useful 

Numbers for Cell Culture by ThermoFisherScientific. 

Name Surface area 
(cm2) 

Recommended 
seeding 
density 

Average cell 
number at 
confluency 

Volume of 
media (mL) 

Volume of 
Trypsin (mL) 

35 mm Dish 8.8 0.3 x 106 1.2 x 106 2 0.5 

6-well plate 9.6 0.3 x 106 1.2 x 106 3 1 

12-well 
plate 

3.5 0.1 x 106 0.5 x 106 1 0.5 

24-well 
plate 

1.9 0.05 x 106 0.24 x 106 1 0.2 

T-25 Flask 25 0.7 x 106 2.8 x 106 5 2 

T-75 Flask 75 2.1 x 106 8.4 x 106 10 4 

T-175 Flask 175 4.9 x 106 23.3 x 106 35 15 

T-225 Flask 225 6.3 x 106 30 x 106 45 20 

2.2.1 MCF7-1, MCF7-2 and MDA-1 culture media 

Cells were grown in low glucose (1 g/L) DMEM containing 4 mM glutamax, 1 mM sodium 

pyruvate and 10% foetal bovine serum (FBS).  

2.2.2 MDA-2 culture media 

MEM containing 10 % FBS and 2 mM glutamine. 

2.2.3 MCF7-3, HeLa and HT1080 culture media 

MEM containing 10 % FBS, 2 mM glutamine and 1 % non-essential amino acids. 

2.3 Passaging cells 

Passaging (also known as subculturing or splitting cells) involves removing a small number of 

cells from the culture and transferring them into a new flask. If passaged regularly most cancer 

cells can be cultured indefinitely, as this avoids senescence associated with high cell density84. 

As cells are randomly mixed at each passage, replicate samples of each culture are considered 

similar to each other and the characteristics of the cell line may be perpetuated indefinitely64.  

The various sizes of culture flasks and their average confluent cell number (the number of cells 

at which the entire surface area is covered) can be seen in table 2.1. When cells reached 

approximately 80-90 % confluency in their culture they were passaged, this varied depending 

on cell type and culture conditions but occurred approximately once a week. The average 
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generation time for a cancer cell in vitro is 24 hours meaning on average populations were 

passaged every 7 days. All cells were removed from the flask and a subset of the population 

transferred into a new culture. All media was pipetted off and the cells washed in phosphate 

buffered saline (PBS).  

To detach cells from the culture surface enough Trypsin-EDTA (an enzyme that degrades the 

cell attachment proteins) to lightly cover the cell culture was added and the culture placed 

into the incubator for 4 minutes. After this time cells were checked under an inverted light 

microscope to confirm detachment from the surface.  

1 mL more than the volume of Trypsin-EDTA of the appropriate medium was then added and 

the cell solution pipetted thoroughly to ensure mixing, if needed the cell concentration was 

then calculated using a haemocytometer.  

The cell solution was pipetted into new cultures. If passaging to maintain culture, then enough 

solution was taken for approximately 10-20 % confluency in the new flask. If a specific cell 

concentration was required, then the volume of cell solution required was calculated from the 

haemocytometer count.  

Fresh medium was then added to the new cell cultures which were clearly labelled before 

being placed back into the incubator. 

Even with short term cultures, heterogeneity in growth rate and differentiation within a 

population can produce variability between passages. Replication of experiments and 

comparison of the results is essential for reliable analysis and conclusions. Keeping passage 

numbers low and within a short range between experiments will reduce genetic drift within 

the population as this reduces the number of generations and the time frame over which 

mutations have to accumulate within a population. Maintaining large population sizes reduces 

bottlenecking and means sample populations are more representative of the cell line. 

2.4 Cell counting 

The ability to count cells in culture is essential for standardisation of culture conditions, 

replication between experiments and measuring the effect of experimental parameters. The 

rate of cell proliferation is often used to determine the response of cells to experimental 

parameters, such as nutrient levels or drug concentration. Quantifying culture growth is also 



42 
 

an important aspect of routine cell culture to ensure consistency in technique; a change in 

growth rate may be an indication of contamination or equipment failure. There are many ways 

to measure cell proliferation, the simplest being to place a culture on a microscope and count 

the cells41. A direct cell count can be obtained using a haemocytometer or an indirect count 

can be obtained through methods such as tetrazolium reduction assays64 85.  

2.4.1 Haemocytometer 

To determine the cell concentration using a haemocytometer, a known volume of cell solution 

is placed within a defined area of an optically flat chamber. The number of cells are counted 

using a microscope and the overall cell concentration is calculated from this sample.  

The advantages of using a haemocytometer are that it is very easy and cheap to count large 

samples and conduct multiple repeats. The disadvantages are that it is labour intensive and 

requires a considerable amount of time, it is also affected by human error as the cell number 

is obtained by manual counting64. The haemocytometer protocol was adapted from protocol 

20.1 of Freshney’s book64. 

During cell passaging, before seeding the cell solution into culture, 20 µl of cell solution was 

mixed 1:1 with 0.4 % Trypan blue in an Eppendorf tube. Trypan blue stain is not taken up by 

live cells, counting only clear cells allows a viable cell count to be obtained. 10 µl of this 

mixture was added to one side of the haemocytometer. The haemocytometer was then placed 

under an inverted light microscope on a 10x objective.  

A minimum of two large corner squares (one corner square is highlighted in blue in figure 2.1) 

and 100 cells were always counted. Cells lying on the top or left-hand side of the square 

boundaries were counted but not those lying on the right or bottom boundary lines. As the 

volume of one square is known (1 mm3) the following formula can be used to calculate cell 

concentration; 

𝑇𝑜𝑡𝑎𝑙 𝐶𝑒𝑙𝑙𝑠/𝑚𝐿 = 𝑇𝑜𝑡𝑎𝑙 𝑐𝑒𝑙𝑙𝑠 𝑐𝑜𝑢𝑛𝑡𝑒𝑑 ×  
𝐷𝑖𝑙𝑢𝑡𝑖𝑜𝑛 𝑓𝑎𝑐𝑡𝑜𝑟

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑆𝑞𝑢𝑎𝑟𝑒𝑠 𝑐𝑜𝑢𝑛𝑡𝑒𝑑
 × 10,000 
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Figure 2.1: Diagram of a haemocytometer grid. Made by Ana Wass using PowerPoint with 

reference to a Bright-Line Haemocytometer as viewed using an inverted light microscope. 
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2.4.2 MTT cell viability assay 

Viability stains can be used to give a more precise measurement of the live cell concentration. 

One of the most frequently used methods for measuring cell viability is reduction of MTT 3-(4, 

5-Dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) 86, a monotetrazolium salt. 

Tetrazolium salts are a large group of heterocyclic organic compounds that when reduced 

form formazans (insoluble coloured compounds) 86.  

MTT assays provide an indirect measure of the number of viable cells in a culture. They involve 

the conversion of the water soluble MTT to an insoluble (purple) formazan. Only metabolically 

active cells convert MTT into formazan. Cells quickly lose the ability to perform this function 

after death. Formazan accumulates as an insoluble precipitate inside viable cells. This is then 

solubilized, and its concentration determined by optical density. The optical density being 

proportional to the number of viable cells present85. 

MTT assays take time and planning to set up but give very quick results and are well suited to 

high throughput screening as they can test multiple different growth parameters in the same 

assay85. Cells can be plated down at a variety of concentrations and in different media. Plates 

are read automatically by a plate reader, measuring absorbance and giving precise results 

each time87. The exact mechanism of MTT conversion is not understood but is thought to 

involve MTT gaining electrons during reactions with reduced nicotinamide adenine 

dinucleotide, thus MTT assays provide only an indirect measure of cell number85 86.  

The MTT assay was obtained from ThermoFisher Scientific Inc.88 and their quick protocol 

option followed (adapted from Twentyman and Luscombe89). 

A 12 mM MTT stock solution was prepared by mixing 1 mL sterile PBS with 5 mg of MTT 

powder. This was mixed by vortexing until all the powder dissolved and then filter sterilised 

using a 0.2 µm filter. The stock solution was aliquoted and stored at 4 °C in centrifuge tubes 

wrapped in foil to protect the solution from light. 

Cells were plated in a 96-well plate (density specified in individual results sections) in 200 µl of 

medium and left for 24 hours. A negative control of media only, with no cells, was included in 

every experiment. 

The 12 mM MTT stock solution was mixed with the appropriate medium to give 10 µl MTT and 

100 µl medium for every 110 µl of solution. This solution was vortexed and 110 µl of 
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MTT/medium solution was added to each well. The plate was incubated in the dark at 37 °C in 

5 % CO2 for 4 hours. 

After incubation, 85 µl of solution was removed from each well and 50 µl of sterile dimethyl 

sulfoxide (DMSO) added. The plate was then placed on a plate shaker for 20 seconds before 

being incubated for 10 minutes at 37 °C. After which time the plate was put back on the plate 

shaker for 10 seconds and then placed on an Emax precision microplate reader and 

absorbance recorded at 540 nm.  

The mean average absorbance value of the control (media only) was calculated and subtracted 

from each individual wells absorbance value to give the live cell concentration of each well, 

accounting for optical density differences between media and allowing comparison of results 

between groups and repeats. These standardised absorbance values have been used in 

statistical testing of comparison between groups. 

2.5 Cell cryogenics 

Being able to cryogenically preserve cells means cell lines can be stored long term and 

defrosted for use at a later date.  Cell lines in continuous cell culture are prone to genetic drift. 

Cryogenic storage of cell lines means passage numbers can be maintained at a low range, 

reducing genetic drift. Cell cultures are also susceptible to contamination and accidents that 

could destroy them. Having frozen stock ensures cultures can always be re-initiated64. 

2.5.1 Freezing cells 

Methods used in the cryopreservation of cells have been adapted from the techniques 

outlined by Yokoyama et al (2012) as well as standardised techniques used in the laboratory90. 

Cells were passaged and their concentration calculated using a haemocytometer.  

The cell solution was then placed in a 15 mL centrifuge tube and centrifuged at 1500 rpm for 5 

minutes to pellet the cells. The supernatant was discarded and the cell pellet re-suspended in 

a solution made of 10 % DMSO and 90 % FBS. The volume of solution was calculated to give a 

final cell concentration of approximately 1 x 105 – 10 x 105 cells/mL.  

1 mL aliquots of cell solution were then placed into cryovials. Cryovials were clearly labelled 

with the name, date, cell line, passage number and medium before being placed into the 

CoolCell® Freezing Container and the -80 °C freezer for 24 hours. After 24 hours the CoolCell® 
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container was removed and the cryovials relocated onto aluminium racks before being placed 

into liquid nitrogen. 

2.5.2 Defrosting cells 

To defrost cells the required cryovials were removed from the liquid nitrogen storage tanks 

and placed into a 37 °C water bath for 5 minutes. Pre-warmed medium was added to a culture 

flask and the defrosted cell solution added to this. The solution was then gently pipetted to 

ensure cell dispersal. The culture was left for 24 hours to allow cell adherence. After which 

time the medium was changed to remove all traces of DMSO from culture and the cells 

checked to ensure viable cells had adhered to the flask.  

2.6 Contamination testing 

All culture techniques must be carried out using strict aseptic techniques, this is because many 

contaminants such as yeast or bacteria have a much higher growth rate than animal cells. Even 

with aseptic conditions care must be taken to avoid cross-contamination between cell stocks. 

If cross-contamination between cell lines does occur, one cell type may outcompete the other. 

Experiments would become compromised as it would not be possible to state which cell type 

was being tested64 91 92.   

Current guidelines strongly recommend routine culture is performed without antibiotics and 

that approach has been used throughout this project64. Adding antibiotics to culture media 

encourages the evolution of antibiotic resistant organisms, can hide low level contaminants 

and has anti-metabolic effects93. 

Every time cultures were removed from the incubator they were placed on an optical 

microscope and checked for signs of infection. These checks included looking at the colour and 

opacity of the media (yellow/white cloudy media indicates infection) and checking cell growth, 

the number and morphology of cells. 

Contamination of cell lines by mycoplasma remains a major problem in cell culture. Using 

antibiotics in culture medium masks the infection, so cell lines may be unknowingly 

contaminated64 93. Mycoplasmas are a group of microorganisms between 0.3 and 0.8 µm in 

size, with no rigid cell wall. Their small size and flexible membrane mean they pass through 

most commonly used bacteriological filters94. They have a very wide range of effects on cell 
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culture which depend on the mycoplasma species, culture conditions, type of infected cell line 

and the intensity and duration of the infection. It is estimated that 15 to 35 % of continuous 

cell lines are contaminated94.  

All filters used throughout this project (0.2 µm) were deliberately chosen to reduce the risk of 

mycoplasma infection94. To ensure contamination free culture, all cell lines were tested every 

3 months by lab technicians. This was done by testing the supernatant of the cell culture 

media for the presence of enzymes produced by the majority of mycoplasma species. If 

contamination was found in any cultures within the building, all cell cultures had to undergo 

PCR testing95.  

A mycoplasma infection was detected on one occasion during this project. To ensure no re-

occurrence of the infection the source of the problem (mechanical failure of equipment) was 

identified and fixed. The MCF7-2 cell lines being cultured at the time were destroyed and new 

cell lines were then obtained from Public Health England.  

Whilst not as common as microbial contamination cross-contamination of cell lines can occur. 

This is where cell culture becomes contaminated with multiple cell lines. Fast growing cell lines 

(such as HeLa cells) can establish themselves in other cultures and outcompete the original cell 

line64. Obtaining cell lines from reputable sources and practicing excellent aseptic technique 

reduces the risk64. In this project multiple cell lines where never cultured in the same hood 

unless needed for an experiment (where multiple lines had to be plated on the same well-

plate). When this occurred, the cultures used for the experiment where then disposed of. Each 

cell line culture was checked for characteristics specific to that cell line and experimental 

results compared between repeats to ensure consistency.  

2.7 Microscopy 

Optical, or light microscopy is a type of microscope that uses visible light with a system of 

lenses to magnify small images. An objective lens close to the object being viewed collects 

light reflected from the specimen and focuses it to a real image. This image is then magnified 

by a second lens called the eyepiece, giving an enlarged, and inverted, virtual image96.  

Inverted microscopes place the light source above the stage (the platform on which the 

specimen sits) with the objective and eyepiece lenses below the stage. Inverted microscopes 

are used to observe living cells which adhere to the bottom of the culture flask96. 
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Fluorescence microscopy works by illuminating the fluorescently labelled samples with light of 

a specific wavelength, the excited fluorophores then emit light of longer wavelengths, which 

can then be detected96. This enables specific regions in the samples, those areas that take up 

the fluorophores, to be observed. 

Time-lapse microscopy is when images seen by a microscope are captured using photography. 

A series of photos can be captured over time and viewed in sequence, at speed, to create a 

video of microscopic processes87.  

2.7.1 Time-lapse microscopy 

Cells were passaged and their concentration calculated before being plated onto a well-plate. 

Wells for each cell line or condition were distributed around the plate (non-linearly) and 

cultures left for 24 hours before being placed onto a Nikon TiE time-lapse system microscope. 

All cultures had their media changed approximately one hour before being placed on the 

microscope. An environmental chamber was maintained at 37 °C and CO2 pumped into the 

well plate within the microscope to maintain the cells in their culture conditions. 

Points were chosen randomly within each well and NIS elements photograph software used to 

capture images of the same points at set time intervals for the duration of the experiment. 

Unless otherwise specified a x 4 objective lens was used. NIS software converted these images 

into a video file for each point, ImageJ and MtrackJ97-99 were then used to analyse the videos.   

Using bright-field imaging to photograph live cells can provide information on cell shape, 

position and motility. By taking photos at short time intervals (between 15 to 20 minutes), 

cells can be tracked between frames and cell division noted, allowing cell lineages to be 

tracked87. The exact parameters for each experiment are specified within their specific 

methods sections. 

2.8 ImageJ analysis 

Fiji and MTrackJ were used to analyse time-lapse videos97-99. Fiji – Fiji Is Just ImageJ, is a 

distribution of ImageJ97. ImageJ is an open source programme inspired by NIH image and 

designed for processing and analysis of multidimensional images98 100. NIH Image, the 

predecessor to ImageJ, was created by Wayne Rasband at the National Institute of Health in 

1987100. Its success over the last 30 years is partly due to the thousands of plugins and scripts 
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that can be added to ImageJ. These add-ons mean it has a wide range of complex functions 

reflecting its widespread use throughout a range of fields in both science and engineering97 98 

100.  

Fiji, also an open source programme. It is completely compatible with ImageJ and supports the 

installation and maintenance of ImageJ plugins97. Fiji parcels all the required constituents of 

ImageJ into a self-contained package and collects plugins, organising them into categories97. 

This makes Fiji easier to install, run and maintain. 

MtrackJ is a plugin designed to facilitate motion tracking and analysis of moving objects in 

image sequences99.MTrackJ was written and maintained by Erik Meijering99 and was 

developed at the Biomedical Imaging Group Rotterdam of the Erasmus Medical Center in the 

Netherlands. Using Fiji simplified the installation and maintenance of the MtrackJ plugin as 

there was only one download and updates were automatic101.  

MtrackJ allowed individual cells to be tracked over the course of the experiment. Tracking cells 

involves marking their exact position in each frame of the video. As stated previously, videos 

represented a physical position on a well plate. Each video was labelled numerically. Cell 

tracks within these videos were also labelled numerically in the order they were created. Each 

time a cells position was marked this registered as a new point within a track. Points within 

tracks were also labelled numerically in chronological order. This method allows for 

identification of the experimental parameters as well as the individual cells location in both 

time and space.  In principle there are no limitations to the number of cells that could be 

tracked or the number of positions in each track (other than computer memory) 101. 

A zoom function made it possible to magnify the field of view and enlarge the object or area of 

interest. The time frame on videos could also be scrolled through making it possible to observe 

and assess where the object of interest is going101.  

Pixel calibration had to be checked before any track measurements could be taken. A scale 

was added so that pixel distances were measured in microns97.  All x and y co-ordinates 

(starting at 0, 0 of each individual track) were precisely registered. The tracking and display of 

these co-ordinates is the inverse of the zooming factor; an image displayed at 400 % has 

precision of ¼ of a pixel101. A time scale was also added for each video so that each frame (t) 

related to the time measurements in the experiment. Measurements can be obtained of each 

cell track as well as each point within a track. 
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2.9 Cell tracking 

When tracking cells, video files were opened in ImageJ and then MtrackJ was opened. The 

video file would be set for the first image in the sequence. New tracks could be initiated by 

moving the computer mouse to the cell of interest and pressing the left mouse button once. 

This point is then marked by an overlay shape and the programme automatically moves to the 

next image in the video. The cell track is formed by repeating this process and marking the 

nuclues of the cell in every single image in the video101. As each image is of the same field of 

view and represents a new point in time the cell is tracked over distance (measured in 

microns) and through time (measured in hours). To allow accurate calculation of cell trait 

parameters all cells used in this project had to be observed for a minimum of 4 points.  

For each cell there were four possible outcomes that would finish a track. A cell could divide, it 

could die, it could move out of the field of view or the video ended before any of the other 

outcomes. Cells were tracked until one of these outcomes was reached. Tracks where 

terminated by quickly double clicking (less than 200 milliseconds between clicks) the left-hand 

mouse button101. If a cell became stationary it was possible to move through the images and 

determine if this was just natural cell movement or whether it was about to divide or die. 

What happened to the cell, (it’s ‘fate’) was manually recorded and a note made of why the 

track had been terminated – cell divided, cell died, cell moved off screen or cell did not divide 

(the experiment ended before any of the other outcomes).  

Once a cell had been tracked and a record made of its fate, a new cell could be tracked. The 

video was returned to the first time frame and a new track initiated following the original 

process101. When a cell underwent division it was (usually) possible to track both daughter 

cells. The original cell track was terminated and a new track initiated following one of the 

daughter cells. When the daughter cells track ended and the cell fate had been recorded the 

video could be taken back to the point in time at which the original division occurred. A new 

track would be initiated following the second daughter cell.  Tracks were labelled numerically 

in order of creation allowing a manual record to be maintained of which cells were related to 

each other and how. If either or both of the daughter cells divided the same process would be 

followed with each of them. Manual recording of cell fate and relatedness allowed subsequent 

statistical comparisons between groups of cells. All cells present in the field of view at the start 

of the experiment were treated as the first generation, irrespective of their stage in the cell 



51 
 

cycle. Each cell division and the subsequent daughter cells were treated as a new generation 

for that family, generations were labelled in ascending numerical order.  

For each experiment video files were never processed numerically or in groups related to the 

experimental parameters. This was to ensure no bias in analysis between repeats, e.g. that 

video file 1 was always processed at the start of the analysis and in a morning whereas video 

file 50 was always analysed last thing on a Friday 3 weeks later. Which cell to track was chosen 

at random and the minimum N for each experimental group was decided in advance. 

MTrackJ only allows each track to have one point in each frame. Meaning it would be 

impossible for a cell to have been accidently measured twice and given two positions at the 

same time. It is also possible to delete both entire tracks and individual points within tracks 

and to merge or split existing tracks, this allowed any mistakes during cell tracking to be 

corrected101. 

Measurements for each track and every point within a track were collected and saved101. For 

cell tracks, the ID number, total number of points, total length and duration of the track, the 

average distance travelled from the start point and the average distance travelled between 

each point in time were all extracted and added to the information recorded about cell fate 

and relatedness. A note was made about which video and hence which experiment the data 

came from and further information regarding the specific cell line and experimental 

parameters was added. 

 For the individual points within each track measurements included; the track number each 

point came from as well as a point ID number, x, y and t co-ordinates, all measured from the 

track start point (0, 0, 0), the length of the track from the first point to the current point 

(inclusive), the distance from the first point of the track to the current point and the distance 

from the current to the previous point in the track101. 

2.10 Statistics 

All statistical tests have been conducted using either IBM SPSS statistics102 or Minitab103. Both 

are widely used for statistical analysis in many fields and can conduct many different types of 

statistical tests. Numerous statistical techniques were used throughout this project. All data, 

irrespective of the type of analysis, was examined to determine the distribution and for the 

presence of outliers.  
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2.10.1 Data distribution 

Descriptive statistics are a collection of values about the data that will give an idea of its 

distribution. Commonly these values include the mean, median, standard deviation, range, 

interquartile range, variance and the minimum and maximum values104. A normal distribution 

describes data distributed in a symmetrical, bell-shaped curve, with the greatest frequency of 

values in the middle and smaller frequency of values towards the extremes. Non-normal 

distributions can occur in many ways but are classed as any deviation from a ‘normal’ 

distribution. Skewness and Kurtosis values were obtained as part of the descriptive statistics. 

The skewness value is an indication of the symmetry of the distribution and kurtosis 

represents the peakedness of the distribution. An ideal normal distribution would give 

skewness and kurtosis values of 0. If a sample size is large enough, the impact of skewness and 

kurtosis on the analysis may be reduced104. 

The Lilliefors correction of the Kolmogorov-Smirnov is a non-parametric technique used to 

assess the distribution of a sample. This test compares and tests for significant differences 

between the distribution of the data and a normal distribution. The Lilliefors correction means 

that the normal distribution being compared is not specified. As such a significant result 

violates the assumption of normality, indicating the data is non-normally distributed104. This 

test was chosen over other normality tests (such as Shapiro-Wilk and Anderson-Darling) as 

even though it has slightly less statistical power than alternative techniques it makes less 

assumptions about the data. 

Histograms, box-plots and Q-Q plots were used to visualise the data distribution. Q-Q plots are 

probability plots which compare two probability distributions by plotting their quartiles 

against each other. Normal Q-Q Plots compared the data values against the expected value 

from a normal distribution, a straight line suggests a normal distribution. Detrended Q-Q Plots 

plotted the deviation of the data values from the normal distribution line. These points should 

not cluster together and should generally lie around zero. Q-Q Plots give an idea of whether 

data is normally distributed and the skewness and kurtosis of data104. Histograms are used to 

display the distribution of a single continuous variable. The shape of the histogram provides 

information about the distribution104. Boxplots also display the distribution of a continuous 

variable. They are useful when comparing the distributions of different data sets. Boxplots also 

allow representation of different groups of data104.  
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Where data is non-normally distributed the median and 95 % confidence intervals are used to 

represent the data. Confidence intervals are estimated from the sample data to calculate the 

interval of plausible values for the true value of the population parameter. The confidence 

level (in this case 95 %) represents the frequency of possible confidence intervals that contain 

this true value. Where data has a normal distribution the mean average along with the 

standard error have been used to represent the data. The standard error was chosen as this 

represents the standard deviation of the sampling distribution and data presented in this 

project is a combination of independent repeats containing multiple mathematical repeats. 

2.10.2 Outliers 

Using a combination of techniques to assess data distribution allows a more accurate 

representation of the data to be obtained. The presence and number of outliers and whether 

they impact on data distribution can then be assessed104. 

Many statistical tests will be affected by the presence of outliers. It is not always feasible to 

remove outliers from the data sets in this project as they may represent natural variation 

within a population. The presence of outliers can be checked using histograms and boxplots. 

Boxplots were used to show the presence of outliers and the distribution of data. Histograms 

were used to indicate if outliers were affecting the distribution of the data. If the tails of the 

histogram dropped away in an even slope, the chance that outliers were affecting the 

distribution was reduced. Comparison of the 5 % trimmed mean (where the top and bottom 5 

% of values are removed and a new mean calculated) and the original mean also gave an idea 

as to whether extreme values were influencing the data distribution104.  

2.10.3 Transforming data 

Transforming data involves performing mathematical operations on the data to make the 

distribution appear more normal. The type of transformation undergone depends on the 

original distribution of the data. Once transformed, data gains a normal distribution and 

parametric tests can be used.  

Non-normal distributions could occur for one of two reasons; either the nature of cancer cell 

motility itself has a non-normal distribution or there are outliers present105. In either case 

mathematically transforming data could fundamentally alter it and lead to a misinterpretation 

of the results106 107. In this project outliers cannot be removed from the initial data set as they 
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represent physiological differences in cell types. Whilst being classed as outlying data the few 

cells that exhibit an increase or decrease from the rest of the population may represent 

clinically important subsets. The most common types of data transformation (Log, square root 

and inverse) act by reducing the relative spacing of scores on one side (the side data is skewed 

towards) more than the other105. This can have important effects if the relative distance or 

order between different values is important. The minimum value in a data set can also alter 

how effective a transformation is. As cell lines (and even individual populations) show 

differences between the cells measured, transformations would affect all the data sets in 

slightly different ways105.  

None of the data in this project has been transformed, instead results of the normality test 

along with the descriptive statistics have been given and used to make informed decisions on 

the most suitable techniques needed to analyse the data and the appropriateness of excluding 

outliers for each of those techniques. 

2.10.4 Non-parametric statistical tests 

Non-parametric statistics either make no assumptions about the distribution or leave the 

distributions parameters unspecified, they are also advantageous when the data is better 

represented by the median. Non-parametric tests can be used on non-normally distributed 

data (they compare the median which can be less affected by skew), small N, ordinal or ranked 

data or when outliers cannot be removed.  

Not all outliers could be removed from the data sets and not all data was normally distributed. 

Non-parametric tests can have less statistical power however the large N seen throughout 

these experiments minimises the chances of a type 2 error (failure to reject a null 

hypothesis)102 103. Non-parametric versions of between groups analysis, Kruskal-Wallis and 

Mann-Whitney U tests, convert data into ranks meaning the actual distribution of scores does 

not matter and makes these test suitable for comparisons of data with different 

distributions104.  

The Kruskal-Wallis test is the non-parametric alternative to a one-way between-groups 

analysis of variance. It allows comparison of a cell trait for three or more groups. This 

technique converts the cell traits of each group into ranks and compares the mean rank of 

each group104.  
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The Mann-Whitney U test is similar to a Kruskal-Wallis test but only allows comparisons of cell 

traits between two groups. It is the non-parametric alternative to a T-test for independent 

samples. The test looks for differences between two independent groups by comparing their 

medians. As with the Kruskal-Wallis test the data is converted into ranks and then tested for 

significant differences between the two groups104.  

2.10.5 Examining the data 

Comparisons were made between experimental repeats (the same experiment repeated at a 

different time) as well as between mathematical repeats (replicate wells within one 

experiment). General environmental variation, such as variation in media component 

concentrations, could be caused by differences between the different wells or between 

experimental repeats. Statistical analyses were conducted comparing mathematical and 

experimental repeats for significant differences. No significant differences were found 

between repeats of any experiments so all replicate data was grouped together for further 

analysis. 

Not all cells were observed for a full cell cycle (cytokinesis to cytokinesis or death). There were 

four outcomes for each cell, they could die, divide, move off screen or still be present at the 

end of the video. Comparisons between cells with different fates were done separately for 

each cell line or group. Any differences between the cell fates may explain the presence of 

outliers in the data. 

For each cell line or group comparisons were also made between the different generations of 

cells. This ensured any changes over time would be detected. All cells present at the start of 

the experiment where classed as the first generation, each subsequent division was classed as 

a new generation. The generations to be examined were capped at three for each cell line, 

after this point N became very small and generation number varied dramatically between cell 

lines.  

2.10.6 Ordinary least squares regression 

Regression is a group of techniques used to explore the relationship between a continuous 

variable and a number of predictors. Ordinary least-squares regression estimates the unknown 

parameters in a linear regression model, using the least squares principle: minimising the sum 

of the squares of the differences between the observed dependent variable in the dataset and 
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those predicted by the linear function104 108. Broad-sense heritability (H2) was estimated as the 

slope parameter of an ordinary least squares regression for three cell-cell relationships (see 

figure 3.2). Where a cell had multiple daughters or cousins their mean value was used. H2 was 

estimated using simple unweighted regression of trait values between related cells106. 

Ordinary least squares regression is a parametric test with no non-parametric alternative and 

many stringent assumptions. Data had to be carefully screened to test for normality, linearity 

and homoscedasticity.  Normality for this technique was checked using a normal probability 

plot of the regression standardised residuals. Scatterplots of the standardised residuals were 

used to check for outliers which were then checked using Mahalanobis and Cooks distances. 

Mahalanobis distance identifies multivariate outliers, it is a measure of the distance between a 

point P and a distribution D. It measures the number of standard deviations from P to the 

mean of D. Cook’s distance estimates the influence of a data point when performing a least-

squares regression analysis. It summarises how much all the values in the regression model 

change when the observation under question is removed104. Any outliers or influential data 

points identified after using Mahalanobis and Cooks distances were removed from the analysis 

in order to use this technique. Whilst outliers do represent natural variation in the cell 

population their presence could be explained by bias in the data identified during initial 

examinations (section 2.10.5).  

2.10.6 Bonferroni correction 

Conducting more planned comparisons increases the risk of type 1 errors – rejecting the null 

hypothesis when it is actually true. To avoid this, where appropriate a Bonferroni adjustment 

has been applied. This involves dividing the significant p-value (0.05) by the number of 

comparison tests that will be used. The revised p-value is now used to determine 

significance104. 
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Chapter 3 - The cancer cell trait motility is highly heritable 

3.1 Introduction 

Tumour evolution depends on heritable differences between cells in traits affecting survival 

and proliferation. The evolution of metastasis would require cells to vary heritably in their 

dispersal behaviour and the amount of heritable variation would determine the response to 

selection45. Such assumptions have often been made; for example, models of intratumour 

competition assume heterogeneous populations with heritable differences between cells19 109. 

However, heritability (a statistic summarising the amount of variation in a phenotype due to 

genetic factors) 46 47 has never been directly measured for any trait in cancer cell populations. 

For this reason, the heritability of phenotypic variation in the cancer cell trait of motility has 

been measured. The cell trait motility was chosen, as despite it having an uncertain fitness 

advantage, it is a fundamental first step in the invasion metastasis cascade21. 

The broad-sense heritability of motility is estimated for cancer cell lines in vitro using simple 

unweighted regression of cell speed between related individuals and found to be significantly 

heritable. These estimates are stable across multiple cell generations and between different 

relationships. These results confirm a central yet untested assumption of cancer evolution, 

providing proof of concept and a solid foundation for the study of cancer evolution. 

3.1.1 Natural selection 

Natural selection is the differential survival and/or reproduction of individuals due to variation 

in their phenotypes. It is a key concept in evolutionary biology first formulated by Charles 

Darwin14 110 and combined with Mendelian genetics and developed mathematically by Ronald 

Fisher111.  

Some of the variation of a phenotype in a population occurs due to random genetic mutations. 

Natural selection acts on the phenotype and the genetic (heritable) basis of that phenotype 

changes frequency within a population. As natural selection acts and increases survival and 

reproduction of individuals with certain traits, the population evolves and adapts to the 

environment. This is a continuous process as even if the environment remains uniform, 

genetic mutations will always introduce more variation14.  Natural selection cannot occur 

without inherited variation in fitness. Whilst many studies have shown both phenotypic and 
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genetic variation within a tumour7 29 112 none have yet measured the heritability of cellular 

traits in a cancer cell population.  

3.1.2 Phenotypic plasticity  

Phenotypic plasticity is a change in phenotype, associated with a given genotype, in response 

to different environmental conditions. These genomic interactions with the environment 

cause variation in phenotypic traits between individuals14.  

Within evolutionary biology the knowledge of the causes and mechanisms of phenotypic 

plasticity in genotypes due to environmental variation is considered crucial to understanding 

the evolution and maintenance of biodiversity15. A heterogeneous population can only cope 

with a certain amount of environmental variation. When phenotypic plasticity is no longer 

enough to survive the altered environment, selective pressures will drive the evolution of a 

new phenotype through increased mutations14 113.  

Theoretical and ecological observations tend to agree that populations that are phenotypically 

and genetically diverse occupy broader ecological niches14 15. Increased diversity appears to 

increase population growth, success of establishment and invasiveness and to decrease 

vulnerability to alterations in the environment15. These observations seem to apply to cancer 

and suggest that the phenotypic and genetic diversity seen in tumours contributes to the 

severity of the disease. Phenotypic plasticity would also explain how clonal cells can show a 

variety of phenotypes in a varied tumour microenvironment.  

Whilst cancer progression is accepted to be an evolutionary process involving natural 

selection112 114 115 caution must be taken when inferring selection in cancer. Cancer cells 

develop from a multicellular organism and as such have complex gene regulatory networks 

capable of providing a range of responses to their environment via phenotypic plasticity that 

could be mistakenly attributed to natural selection116.  

3.1.3 Cancer evolution 

The links between evolution and tumours have long been noted114. Cancer is the result of 

natural selection favouring increased proliferation of cells within an individual1. Dynamic 

genetic changes along with clonal expansion and selection leads to a heterogeneous tumour. 

This multi-step process has been likened to Darwinian evolution with individual cells being the 
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unit of selection6. Tumour progression has been linked to genetic heterogeneity and the 

tumour microenvironment may cause or select for increased genetic instability17. Within a 

tumour, heterogeneous cells compete for space and resources, evade the immune system and 

disperse to colonise new tissues29. 

Tumour progression occurs through genetic and epigenetic changes in the constituent cells 

which alter phenotypes and leads to the acquisition of the ‘cancer hallmarks’6 7. These are six 

alterations to cell physiology; self-sufficiency in growth signals, insensitivity to growth 

inhibitory signals, evasion of apoptosis, limitless replicative potential, sustained angiogenesis 

and tissue invasion and metastasis1.  

Metastatic tumours are the final stage of the invasion-metastasis cascade21, which involves 

dissemination of cancer cells to distant sites around the body and their subsequent adaptation 

to these foreign tissues. These events are driven by genetic and/or epigenetic changes within 

the tumour cell as well as alterations in the tumour microenvironment21. As metastasis is a 

multistage process it is difficult to model in vitro. Experimental design can be used to break it 

down into its constituent phenotypes. Motility is thought to be a key parameter in metastasis 

as cells must migrate away from the primary tumour into circulation and also migrate from the 

circulatory system into the new site21.  

Tumour metastasis is a common phenomenon in cancer25. From an evolutionary perspective 

this is puzzling as unlike the other cancer hallmarks metastasis does not directly enhance cell 

survival or proliferation1. Metastatic cells ‘waste’ some of their replicative energy on invasion 

which has little to no chance of establishing secondary tumours19 27. 

Metastasis is one of the main clinical challenges in treating cancer and our understanding of 

how and why metastasis occurs is limited. Most of the current hypotheses rely on natural 

selection25 117. Natural selection is the only process that can lead to adaptation and in order for 

natural selection to act on a population there must be inherited variation in fitness leading to 

differential survival or reproduction14 29.   

3.1.4 Heritability 

Heritability is a statistic that summarises the amount of variation in a phenotype due to 

genetic factors46 47. If a trait is not heritable then natural selection cannot act on it. However, 

no-one has tested whether cancer phenotypes are heritable at the cellular level.  



60 
 

Introduced by Sewall Right118 and Ronald Fisher119 the concept of heritability and its definition 

remain key for the response to selection in evolutionary biology. Only if cancer traits are 

heritable can natural selection act on tumours. If heritable, then estimates will help determine 

a traits response to natural selection and could aid in predicting tumour responses to therapy.  

Heritability estimates allow comparison of the relative importance of genetics on the variation 

in phenotypic traits within a population46. Variance is a measure of the spread of numerical 

observations. It is usually calculated as the average of the squared deviation from the mean. 

Heritability estimates the degree of phenotypic variation in a population that can be attributed 

to genetic variation14. It is estimated by comparing individual variation in a specific phenotype 

between differently related individuals within a population. The heritability is the proportion 

of this total variation due to genetics and can range from 0 (no genetic contribution to the 

variability) to 1 (all variation due to genetics) 46 47 113. Heritability estimates are relative to the 

genetic and environmental factors in a population14. In ecology, heritability has been 

estimated for various traits in many species with traits associated with fitness in natural 

populations varying in heritability between 0.1 - 0.7120-125.  Heritability can be measured in two 

ways, broad- and narrow- sense heritability.  

3.1.4.1 Narrow-sense heritability 

Narrow-sense heritability (h2) is the proportion of phenotypic variation (VP) due to additive 

genetic variation (VA) 126. 

ℎ2 =
𝑉𝐴

𝑉𝑃
 

VA refers to the deviation from the mean phenotype due to the inheritance of particular 

alleles127 128. As the majority of individuals inherit only one copy of each gene from each parent 

the amount of the genotype inherited by direct descent can vary based on relatedness, making 

the narrow-sense heritability the best parameter for predicting selection response in sexually 

reproducing species129. As cancer cells are clonal, daughter cells should inherit the full genome 

of the mother cell, meaning that the narrow-sense heritability would not be an appropriate 

estimate 46 47 129.  
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3.1.4.2 Broad-sense heritability 

Broad-sense heritability (H2) is the proportion of phenotypic variation (VP) that is due to 

genetic variation (VG) 47 126. 

𝐻2 =
𝑉𝐺

𝑉𝑃
 

The broad-sense heritability takes into account all the genetic variation; the additive, 

dominant, epistatic variation and maternal effects that contribute to a population’s 

phenotype130. The maternal effects in this experiment are the mother cells microenvironment 

and cytoplasmic state46 129 131. The additive variation of a particular trait depends not only on 

the allele’s frequency in the population but also the effect of each genotype that includes that 

allele128. In sexually reproducing populations each parent usually passes on one allele per locus 

however in clonal populations all the alleles passed on should be the same between both 

mother:daughter and sister:sister cells. Both epistatic and dominant genetic variation involve 

the interactions between alleles. Dominant variance occurs between alternative alleles at 

specific loci and epistatic variance involves an interaction between alleles at different loci. 

Both types of variance can change in a population when inheritance of a specific allele affects 

expression of another128. Genetic variation within cancer cell lines should only arise as a result 

of mutation meaning the additive, dominant and epistatic variation will vary greatly from that 

of a sexually reproducing population46 129.  

As cancer cells are clonal a modification of standard parent-offspring regression techniques 

could be used to estimate broad-sense heritability46 130. Estimates could be obtained using 

simple unweighted regression comparing motility values between clonal cells and their 

relatives106. Whilst cancer cells are clonal this does not mean estimating heritability is simple. 

Cancer cells arise from multicellular organisms and the complexity of gene regulatory 

pathways and the sensitivity of cancer cells to their environment need to be considered when 

interpreting results38.  

3.1.5 Phenotypic variation 

Phenotypic variation can occur for several reasons. The source of the variation can determine 

whether a trait has the ability to respond to natural or artificial selection. The relative 

importance of genetic and environmental factors to a particular trait can be used to predict 

the evolutionary dynamics of a phenotype in an entire population128 129.  
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Phenotypic variation (VP) can occur between individuals in a population due to the 

environment (VE) as well as their genetics (VG) and is defined as VP= VG+ VE 
128 129. Because of 

this, heritability can alter due to both environmental and genetic variation.  

The main source of genetic variation between individual cells would be expected to arise 

through maternal effects, cytoplasmic factors present before cell division resulting in transient 

similarities between sister and mother/daughter cells after division131. Genetic variation could 

also occur through genetic and epigenetic mutations arising during division. As a result, 

genetic variation may increase over time causing more distantly related cells (cousins) to be 

less similar to each other. Comparison of H2 estimates for multiple cell:cell relationships and 

over several generations can be obtained representing stable differences between clonal cell 

lineages.  

General environmental variation is all the non-genetic sources of variation between individuals 

experienced by multiple individuals within a population128. For these in vitro experiments 

there should be no difference in the environment for families of cells greater than that of the 

population as a whole130. Within a cell family environmental variation can occur both spatially 

– as cells migrate they move into different environments, and temporally – over time cells use 

resources and produce waste products, as a result the local concentration gradient will be in 

constant flux and resource concentrations will decrease. 

Heritability can increase when genetic variation is high or when environmental variation is low, 

what matters is the relative contribution29. 

3.1.6 Aims 

Both tumours and cancer cell lines have been shown to be genetically heterogeneous132-134 

and the tumour microenvironment applies selective pressures to tumours135 yet so far, no 

studies have investigated the heritability of individual cancer cell traits. The aim of this project 

is to measure heritability of cell motility, a vital component of metastasis21 yet one with an 

uncertain selective advantage, in in vitro cancer cell lines. Heritability is a pre-requisite for 

evolution by natural selection129, if found these results will provide a fundamental first step 

towards more detailed research into the role of genes on cell motility131 and in predicting 

cancer cells response to selective pressures20.  
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3.2 Methods  

3.2.1 Cell culture 

All cell lines used were lab adapted. As stated in section 2.1, similar cell lines have been 

obtained from different sources, to distinguish between these they are labelled numerically. 

All cells were cultured as a monolayer in 5 % CO2 at 37 °c. 

MCF7-2 (passage number 16) and MDA-1 cells (passage number 5) were cultured in 75 cm2 

culture flasks (T-75 life technologies) in 15 mL media due to mycoplasma contamination N = 1. 

MCF7-3 (passage number between 15-18), MDA-2 (passage number between 41-44), HeLa 

(passage number between 5-8) and HT1080 (passage number between 5-8) cells were 

cultured in 225 cm2 culture flasks (T-225 life technologies) in 22 mL media, N=3.  

3.2.2 Time-lapse microscopy 

Section 2.7. 1 has details about the overall technique of time-lapse microscopy. For these 

specific experiments, MCF7-2 and MDA-1 cells were plated onto a 12-well plate with 1000-

4000 cells per well. 5000 HeLa, HT1080, MCF7-3 and MDA-2 cells per well were plated onto a 

24-well plate. For all experiments six wells per cell line were distributed around the plate in 1 

mL media. 

NIS elements photograph software and a Nikon TiE time-lapse system microscope were used 

to select five points within each well. Images were taken (as seen in figure 3.1 panels A-D) 

every 15 minutes for 70 hours (MCF7-2 and MDA-1 cells) and every 20 minutes for just over 72 

hours (HeLa, HT1080, MCF7-3 and MDA-2 cells).  

NIS elements photograph software was used to capture images of these exact same points at 

the set time intervals for the duration of the experiments and then convert these 128,880 

images into a video file for each point87. ImageJ and MtrackJ97-99 were used to analyse videos 

and track individual cells, as shown in figure 3.1. In total 1,932 MCF7-2 and MDA-1 cells were 

tracked and 9,131 HeLa, HT1080, MCF7-3 and MDA-2 cells.  
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Figure 3.1: Four representative images of HeLa cells on a Nikon Tie time-lapse microscope taken 

over time (panelled A-D). A – a HeLa cell is chosen and the position of its nuclei marked, MtrackJ 

automatically numbers the track (1) allowing identification. B – As the HeLa cell moves the 

position of its nucleus in each frame can be marked. The track length and position change over 

time and this change is recorded. C – When cell division occurs the first cell track ends. Each 

daughter cell can then be tracked individually as the first cell was. Each new cell track is also 

given a unique identification number allowing records to be kept of how cells are related. D – 

The daughter cells move over time and the position of their nuclei in each frame can be marked. 

This allows comparison of cell motility between related cells. The images in panels A-D were 

taken at 20-minute intervals. 

3.2.2.1 Large image time-lapse microscopy  

An A1-R confocal microscope with super resolution and spectral detection capabilities and a 

Nikon TE200 time-lapse system were used to try and conduct a large image time-lapse. This 

involved the same methods as a time-lapse microscopy experiment however NIS elements 

software was programmed to automatically take multiple photos all bordering the original 

point chosen. These images could be combined to create a video over time with a much wider 

field of whilst maintaining the original magnification. These experiments were unsuccessful 
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due to technical limitations, the software was not able to stitch the images together to form 

an extended field of view. 

3.2.3 Cell tracking 

A total of 273 videos were analysed as shown in figure 3.1 using ImageJ and MtrackJ97-99 this 

method is outlined in section 2.9 and involves marking the position of the cell’s nuclei over 

time. There were 280 images per video for MCF7-2 and MDA-1 cells and 218 images per video 

for HeLa, HT1080, MCF7-3 and MDA-2 cells. A total of 11,063 individual cells where tracked 

with a total of 1,245,411 points within those tracks. As each image is of the same field of view 

and represents a new point in time the cell is tracked over distance (measured in microns) and 

through time (measured in hours).  

Tracks were labelled numerically in order of creation and a manual record of a cells 

relatedness (which other cells it was related to and how), generation (all cells present at the 

start of the experiment where classed as the first generation, each subsequent division was 

classed as a new generation) and fate (whether it died, divided, moved off screen or was still 

present at the end of the video) kept throughout the analysis. Comparisons between groups of 

cells were conducted to ensure consistency within and between experiments and to ensure 

there was no bias within the sample of cells measured (see section 2.10.5). 

Manual tracking of individual cells and recording of generation, fate and relatedness allowed 

three different cell:cell relationships to be used to calculate estimates of H2.  The three cell:cell 

relationships can be seen in figure 3.2 and are; Mother:daughter, a progenitor cell to its first 

generation clonal descendants. Sister:sister, comparing the two cells produced from the same 

progenitor by cell division. Cousin:cousin, comparing the second generation clonal 

descendants of one progenitor cell.  
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Figure 3.2: Schematic diagram of a cell family over three generations showing the different 

cell:cell relationships used to calculate broad-sense heritability. 

3.2.4 Statistical analysis 

All cell track data was collected from MtrackJ101 and stored in excel files. Manual data was 

input into excel files throughout data collection. Statistical analysis was performed using 

Minitab103 and IBM SPSS102. For a full explanation of the techniques chosen see section 2.10. 

Cell motility was calculated as a cell’s average speed over its lifetime, in microns per hour. Cell 

speed was measured as the total distance of the path travelled by the cell (in microns), divided 

by its lifetime (in hours).  
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The Lilliefors correction of the Kolmogorov-Smirnov test is a non-parametric technique and 

was used in conjunction with descriptive statistics to determine the distribution of data104. Any 

non-normal results have not undergone transformation as mathematically transforming the 

original data set could cause fundamental alterations leading to a misinterpretation of the 

results106 107.   

Significant differences in cell motility between repeats, generations and fates were tested for 

using Kruskal-Wallis and Mann-Whitney U tests (section 2.10.5). This was done to ensure that 

any bias in the data was detected; for example, whether cells that moved off screen were 

significantly faster than those that divided or if cells increased or decreased their speed over 

time. The generations to be examined were capped at three for each cell line, after this point 

N became very small and generation number varied dramatically between cell lines. 

Comparisons were done separately for each cell line. As a result of these examinations some 

cell groups have not been used in calculations of heritability (see section 3.3.1). 

Broad-sense heritability was estimated as the slope parameter of an ordinary least squares 

regression (section 2.10.6) for three cell-cell relationships (see figure 3.2). Where a cell had 

multiple daughters or cousins their mean value was used. H2 was estimated using simple 

unweighted regression of trait values between related cells106. Regression between relatives 

was not scaled based on relatedness as cancer cells are considered clonal. If significant, 

genetic variation is occurring between related individuals then only the cousin:cousin 

regression would need altering as these cells would contain double the amount of genetic 

variation as mother:daughter and sister:sister cells (two divisions separate these cells as 

opposed to one division separating the other relationships). Both H2 and R2 values have been 

given in the results. R2 values show how much of the variance in the dependent variable (cell 

speed) is explained by the model104.   
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3.3 Results 

3.3.1 Motility of cell lines 

There was no significant difference in speed between the individual wells of each experiment 

for any cell line (Kruskal-Wallis test; p>0.07). As stated in the methods (section 3.2.1) only one 

experimental repeat could be obtained for the MCF7-2 and MDA-1 cell lines. As seen in figure 

3.3 there was no significant difference in speed between the different experimental repeats 

for HeLa, HT1080, MCF7-3 and MDA-2 cell lines (Kruskal-Wallis test; p>0.05). As a result, all the 

data for each cell line have been grouped together for further analysis.  

 

 

 

 

 

 

 

 

 

Figure 3.3: Distribution of cell speeds for HeLa, HT1080, MCF7-3 and MDA-2 cell lines for each 

experimental repeat. The median is the line within the box and the box represents the 

interquartile range. The whiskers extend to the top and bottom 25 % of data values (excluding 

outliers). Outliers are represented by * and are data values extending at least 1.5 times the 

interquartile range from the box. N for each cell line and repeat is; HeLa repeat 1: 1,125, repeat 

2: 990, repeat 3: 352, HT1080 repeat 1: 947, repeat 2: 810, repeat 3: 805, MCF7-3 repeat 1: 

162, repeat 2: 969, repeat 3: 191, MDA-2 repeat 1: 668, repeat 2: 714, repeat 3: 1070.  



69 
 

All cell lines had a non-normal distribution of cell speeds (Lilliefor corrected Kolmogorov-

Smirnov test; p<0.001). There was a significant difference between all cell lines in their speed 

(Kruskal-Wallis test; p<0.001) apart from HT1080 and MDA-1 (Mann-Whitney U test; p=0.544). 

As seen in figure 3.4 and table 3.1; HT1080 and MDA-1 cells had the fastest cell speeds, then 

MDA-2, MCF7-2 and HeLa with MCF7-3 having the slowest cell speeds. The differences 

between the MCF7 and MDA-MB-231 groups show that the results of similar cell lines 

obtained from different sources cannot be grouped together. These groups of cells; MCF7-2, 

MCF7-3, MDA-1 and MDA-2, will be kept as discrete units and their data tested separately.  

Table 3.1: Median speed and N of HeLa, HT1080, MCF7-2, MCF7-3, MDA-1 and MDA-2 cells. 

Cell line Median Speed (µm/hour) N 

HeLa 11.75 2467 

HT1080 34.05 2562 

MCF7-2 12.19 1520 

MCF7-3 9.76 1322 

MDA-1 33.75 411 

MDA-2 24.28 2452 
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Figure 3.4: Distribution of cell speeds for HeLa, HT1080, MCF7-2, MCF7-3, MDA-1 and MDA-2 cell lines. The median is the line within the box and the box 

represents the interquartile range. The whiskers extend to the top and bottom 25 % of data values (excluding outliers). Outliers are represented by * and are 

data values extending at least 1.5 times the interquartile range from the box. Data gathered from three independent experiments for HeLa, HT1080, MCF7-3 

and MDA-2 cell lines and one experiment for MCF7-2 and MDA-1 cell lines. N for each cell line is; HeLa 2,467, HT1080 2,562, MCF7-3 1,322, MDA-2 2,452, 

MCF7-2 1,520 and MDA-1 411. 
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Table 3.2 shows the median speed for each of the first three generations measured for each 

cell line. No significant difference was found in cell speed between the different generations 

for any cell line (Kruskal-Wallis test, bonferroni correction p>0.003), showing that cell speed 

did not change significantly over the course of the experiment.  

Table 3.2: Median speed and N for each of the first three generations of HeLa, HT1080, MCF7-2, 

MCF7-3, MDA-1 and MDA-2 cells. 

Cell Line Median Speed (µm/hour) [N] 

Generation 1 Generation 2 Generation 3 

HeLa 13.17 [258] 12.61 [495] 11.47 [805] 

HT1080 37.94 [227] 37.43 [372] 36.33 [515] 

MCF7-2 11.34 [275] 12.5 [455] 11.45 [608] 

MCF7-3 9.26 [257] 9.46 [353] 9.58 [374] 

MDA-1 35.78 [43] 34.16 [81] 30.17 [139] 

MDA-2 24.83 [269] 25.06 [451] 23.60 [655] 

Some significant differences were found in cell speed between cells with different fates. Table 

3.3 shows HeLa cells that died and MCF7-3 cells that moved off screen had higher speeds than 

the rest of the population (Mann-Whitney U test; p<0.001). These differences in cell fate may 

explain the presence of outliers or skew heritability estimates as they may represent a bias in 

the population (see section 2.10.5). As such these cells have not been included in estimates of 

H2.   

Table 3.3: Median speed and N for each cell fate of HeLa, HT1080, MCF7-2, MCF7-3, MDA-1 and 

MDA-2 cells. 

Cell line Median Speed (µm/hour) [N] 

Non-divided Divided Died Moved off 

screen 

HeLa 11.42 [1201] 11.73 [1125] 15.32 [130] 12.69 [11] 

HT1080 29.71 [484] 34.76 [1216] 29.36 [15] 35.85 [847] 

MCF7-2 12.22 [895] 12.16 [625]   

MCF7-3 9.62 [718] 9.98 [718] 8.75 [52] 24.29 [16] 

MDA-1 30.47 [226] 36.58 [184]   

MDA-2 22.96 [11260] 25.46 [1129] 23.21 [26] 27.47 [171] 
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3.3.2 Heritability of motility in cell lines 

Cell speed is significantly heritable for all cell:cell relationships in all cell lines. Table 3.4 shows 

H2 values range from 0.770 – 0.364 and R2 values range from 0.59 – 0.13. As stated in section 

3.2.4.3 outliers and influential data points have been removed from this analysis. H2 was 

estimated using simple unweighted regression of cell speeds between related cells. Figure 3.5 

gives an example of how this has been calculated for each of the cell:cell relationships in the 

MDA-2 cell line. 

Table 3.4: Mean trait value, R2 and broad-sense heritability of motility in HeLa, HT1080, MCF7-2, 

MCF7-3, MDA-1 and MDA-2 cell lines for three cell:cell relationships. 

Cell line No. of 

families 

Mean 

speed 

(µm/hour) 

Heritability of cell motility H2 (R2) 

Mother:daughter Sister:sister Cousin:cousin  

HeLa 292 12.75 0.706*** (0.5) 0.704*** (0.5) 0.656*** (0.43) 

HT1080 214 34.95 0.558*** (0.31) 0.545*** (0.3) 0.364*** (0.13) 

MCF7-2 301 14.108 0.573*** (0.33) 0.630*** (0.4) 0.490*** (0.24) 

MCF7-3 98 10.73 0.446*** (0.2) 0.564*** (0.32) 0.407** (0.17) 

MDA-1 73 35.499 0.760*** (0.58) 0.719*** (0.52) 0.596*** (0.36) 

MDA-2 213 26.25 0.770*** (0.59) 0.735*** (0.54) 0.540*** (0.29) 

**p<0.01, ***p<0.001 

Due to the number of post-hoc comparisons it was not possible to determine significance 

either between H2 estimates of the different cell lines or between H2 estimates of the different 

families.  However as seen in table 3.4 and figure 3.6, in all cell lines the H2 estimates for the 

cousin:cousin relationship, whilst still significant, are always lower than those obtained for the 

sister:sister and mother:daughter relationships. R2 is the amount of variance shared between 

the speeds of each group, table 3.4 shows this is also less between cousin:cousin cells than 

sister:sister or mother:daughter cells. As mentioned in section 3.1.4.2 this could occur for 

several reasons. Inclusion of multiple different cell:cell relationships and examination over 

several generations means the significant results seen here represent stable differences 

between clonal cell lineages. 
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Figure 3.5: Example of the cell:cell regression for motility in the MDA-2 cell line. The slope of the regression line is the estimate of broad-sense heritability. Each 

point in the mother:daughter regression represents a mother cell and the mean speed of her daughters; in the sister:sister regression each point represents the 

speed of two cells produced from the same progenitor cell; in the cousin:cousin regression each point represents the second generation clonal descendants of 

one progenitor cell, where two clonal descendants occur (sister cells) their mean average speed has been used. The N for all cell:cell relationships is 213. 
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Figure 3.6: Heritability estimates of cell:cell relationships for HeLa, HT1080, MCF7-3, MCF7-2, MDA-1 and MDA-2 cell lines. N for each group is HeLa = 292, 

HT1080 = 214, MCF7-2 = 301, MCF7- 3 = 98, MDA-1 = 73, MDA-2 = 213. 
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3.4 Discussion 

For all cell lines tested, and for all cell:cell relationships, H2 of motility is highly significant 

(table 3.4 and figure 3.5). The novel results seen here identify cancer cell motility as a 

heritable trait confirming that natural selection can play a role in tumour evolution17.   

3.4.1 Comparing motility between cell lines 

As discussed in section 2.10.3 the decision was made not to transform the data in this 

project106 107. Instead extensive analysis was conducted into the distribution of cell motility 

within and between cell lines. General environmental variation could be caused by differences 

between the different wells or between experimental repeats128. As seen in figure 3.1 when 

comparing the motility of each cell line between repeats no differences were found, 

suggesting spatial effects – which could exacerbate similarities between related cells - are 

minimal130.  

During the experiment there were four outcomes for each cell, they could die, divide, move off 

screen or still be present at the end of the video. HeLa cells that died and MCF7-3 cells that 

moved off screen had higher speeds than the rest of the population (p<0.001). Unsuccessful 

attempts were made to track the cells that moved off screen using large image time-lapse 

microscopy (section 3.2.2.1), this type of microscopy gives a wider field of view and would 

allow tracking of cells over greater distances136 137 This was done to try and determine whether 

the cells that moved off screen were fundamentally faster cells or if they did so by chance, 

they just happened to be near the edge of the field of view.  

Whilst motility is a fundamental prerequisite for metastasis it does not appear to directly 

enhance cell survival or proliferation1. Tracking cells for a longer distance would have helped 

determine whether their increased motility came at a cost of reduced division or increased 

chance of death138. This cost of motility could also explain why HeLa cells that died had higher 

motility than other cell fates. If these cell types were inherently faster than the rest of the 

population then H2 estimates calculated from the remaining cell fates may not be comparable 

to the population as a whole130. Comparisons were made for the speed of each generation, 

with no significant differences being found. This showed motility to be consistent over the 

course of the experiment with no overall increase or decrease in cell speed. Heritability 

estimates are always specific to the population and environment measured46, but these results 
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suggest that the difference in speed between the different cell fates did not affect the overall 

motility of the population. 

Whilst all the cell lines chosen were human cancer cells there are still differences between 

them (see section 2.1). MCF7 and MDA-MB-231 are genetically distinct breast cancer cell 

lines68 70 71. HeLa cells are a cervical epithelial adenocarcinoma73 74 and the HT1080 cell line is a 

fibrosarcoma77. There were significant differences in motility between the distinct cell lines 

(apart from HT1080 and MDA-1) and also within the MDA-MB-231 and the MCF7 cell lines that 

had been obtained from different sources. Heterogeneity within a cancer cell population along 

with natural selection and genetic drift may have caused these groups of cells to diverge 

phenotypically over time139. 

Cancers are known to have elevated mutation rates both in base pair mutations and 

chromosomal rearrangements140 141. There are a range of estimates of the mutation rate for 

cancer cells from 2 x 10-7 – 4.9 x 10-6 mutations per cell per generation140 141, some studies 

have estimated that cancer cells within a tumour have a base pair mutation rate per division, 

105 times higher than non-cancerous somatic cells140. Aneuploidy has also been shown to 

increase the mutation rate due to the imbalance of spindle proteins142. Even though cancer 

cells have been shown to have an elevated mutation rate this may not hold true for cancer cell 

lines which are cultured in vitro. Haplotype-resolved whole-genome sequencing of HeLa cells 

indicated that after initial passaging and adaptation to culture conditions there were relatively 

few point mutations143. The range in mutation rates and lack of comprehensive analysis on in 

vitro cancer cell lines makes it difficult to predict the expected mutation rate. However, in 

highly genetically unstable cell lines mutation rates may be as high as 2 % chromosomal 

rearrangement and 10-4 base pair mutations per cell division140-143.  

It might be expected that cell lines with higher genetic instability would show higher estimates 

of H2 as the comparative increase in genetic instability may increase the mutation rate and 

hence genetic variation. Both the MCF7 and HeLa cell lines are known to be very genetically 

unstable with many instances of regional copy number increase, extensive genome 

rearrangement and high levels of chromosome variability29 76. If true, then estimates of H2 

would be higher for these cell lines than the others tested. The results in table 3.4 and figure 

3.6 show that this is not the case, MDA cells showed the highest estimates of H2. However, 

HeLa and MCF7-3 cells were the only cell lines to show a significant difference in motility 

between the different cell fates. Studies of tumour heterogeneity show that the degree of 

variability can predict tumour progression144 145. This same heterogeneity and variance pose a 
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problem in the study and treatment of tumours as a biopsy taken from a patient; or a cell line 

studied in the lab, may not be representative due to natural selection over time29.  

Unfortunately post-hoc comparisons comparing the significance of H2 estimates between cell 

lines was not statistically possible due to the amount of tests needed and the increased risk of 

type 1 errors (see section 2.10.6)104. Nor was conducting genetic profiling of the cell lines 

possible within the scope of this project. The differences in motility within the MCF7 and 

MDA-MB-231 cell lines suggests that in vitro cell lines cultured under similar conditions are 

likely to have undergone genetic drift and selective pressures causing phenotypic 

divergence139. 

3.4.2 Implications of finding heritability 

Heritability is a pre-requisite for evolution by natural selection129. Finding significant 

heritability shows that in these cell populations in these environments, genetic differences 

influence the variation in motility between individual cells. This is a statistic that has never 

before been measured in any cancer cell line. At the cellular level heritability has been 

demonstrated for proliferation and monoclonal antibody reproduction rates in Chinese 

hamster ovary cells146 and in many traits for unicellular organisms such as yeast147, but never 

for any trait in cancer cell populations.  

Our values of H2 range from 0.36 to 0.77 (table 3.4).  These estimates are at the upper end of 

H2 values compared to fitness traits in natural populations120-125. Cancer cell lines show greater 

genetic instability than non-transformed cells68 69 73. An increased mutation rate could explain 

why in general all the H2 estimates are at the higher end of those seen in natural populations, 

as mutations would act to increase genetic variation120-125. Motility may be a composite trait - 

more loci influencing the trait means it could display higher genetic variation - explaining the 

H2 values124. Other studies found that heritability in fitness traits as low as 10 % still provided 

substantial genetic variance upon which selection can act124. These results indicate that cancer 

cell populations are likely to contain substantial genetic variation for motility upon which 

natural selection could act124. These results provide an essential first step which could lead 

towards more detailed research into the role of genes on cell motility131. 

Lower estimates of heritability might be expected for a trait more closely linked to cell 

fitness123 124. Cell motility has an uncertain selective advantage6 19. Cells that are motile have 

less energy to use on growth or proliferation, however dispersal reduces competition and if 
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successful may result in the cell settling in an area with more nutrients. For a fitness trait it 

would be expected that natural selection would reduce genetic variation as advantageous 

genes increased in frequency124. Metastasis is a multi-stage process resulting in the formation 

of secondary tumours and motility is thought to be a key parameter as cells must migrate into 

local tissue, away from the primary tumour, into circulation and out into a secondary site21. 

The relatively high estimates of heritability measured here could support the hypothesis that 

in this (in vitro) environment motility itself is not directly linked to cell fitness and is instead 

one of many factors in the metastasis cascade. Obtaining heritability estimates for motility has 

implications in the treatment of metastasis as it increases our understanding of how individual 

cell traits respond to selective pressures. Better understanding of cancer cell responses to 

selective pressures, such as chemotherapy treatment, will assist in predictions of disease risk 

and treatments129 148. 

3.4.3 Factors affecting H2 in these experiments 

Low environmental variation will tend to increase H2 values. All experiments were performed 

on cells in vitro. A major advantage of in vitro cell culture is the ability to precisely control the 

environment64. Cell culture provides an in vitro model of cancer in a well-defined environment 

which can be easily manipulated and analysed64. Variations between repeats can be kept to an 

absolute minimum and experimental parameters repeated or altered with relative ease.  

There are limitations to in vitro cell culture. No matter how carefully controlled and regulated 

an in vitro environment is, it will always be simpler and lack some elements of an in vivo 

environment64. Care must be taken when extrapolating results from in vitro experimentation 

and applying them to an in vivo environment64. It’s important to remember that heritability is 

specific to a population in an environment so estimates of H2 in vivo would differ from those in 

vitro. The heritability estimates seen here are likely to be higher than those seen in vivo due to 

the less complex environment. 

Testing of different cell types and different cancer types makes these results more robust and 

less specific to particular cell lines or conditions67. To reduce the effect of genetic drift and 

natural selection between the experimental repeats all cells were used within a small range of 

passage numbers (the number of times each cell line has been cultured). Reducing the amount 

of time between passages means there has been less time for both genetic drift to occur and 

natural selection to act139. Whilst this does not remove the heterogeneity within the cell 

population it reduces the variability between repeats. Whilst it’s important to recognise the 



79 
 

limitations of these results, low environmental variation could increase H2 values, finding 

significant heritability in a cancer cell trait shows that genetic differences have had some 

influence on the variation in motility between individual cells and is a fundamental first step to 

adapting experimental evolution techniques across to cancer cell biology36.  

Another factor to consider is the exclusion of some cell fates from heritability calculations. 

Large image time-lapse microscopy (section 3.2.2.1), whilst unsuccessful in this project due to 

software errors, could be used to track cells moving out of the field of view and determine 

whether their increased motility represents a bias in cell fate. The time-consuming nature of 

data acquisition makes it difficult to simply repeat experiments and increase N. More rigorous 

statistical analysis could address some of these concerns by performing more detailed 

comparisons of cell family dynamics106. The examination of motility over time within 

experiments ensures that any change in population dynamics does not affect the results seen 

here. 

3.4.4 Evolvability 

No single statistic can adequately describe evolvability (an organism’s capacity to generate 

heritable phenotypic variation) and quantifying evolvability can be difficult as it is not possible 

to gain a direct measurement149. These analyses can only give an indirect clue as to the 

phenotypic trait under selection. 

Measuring the mutation rate within a population may give an indication of the potential 

evolvability149 150. Population genetic models show that in a poorly adapted population, genes 

increasing the genomic mutation rate can increase in frequency by hitchhiking with the 

beneficial mutations they produce150. Lenski’s experiments of Escherichia coli populations 

provided evidence that mutator genes increase in frequency because they increase 

evolvability151 however this only applies in poorly adapted populations so any effect would be 

lost over time150 151, particularly when using cell culture as cancer cell lines are lab adapted to 

the in vitro culture environment64. 

A popular test to detect natural selection on gene sequences involves comparing the rate of 

non-synonymous (mutations that alter protein structure and function) to synonymous 

(mutations that are neutral to the amino acid sequence produced) mutations at a particular 

locus. The ratio between the mutations is normalised by the total possible number of non-

synonymous and synonymous mutations (referred to as dN/dS). Deviations from the 
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normalized ratio above 1 infer positive selection (more non-synonymous mutations than 

would be expected randomly) and deviations under 1 infer negative selection (fewer non-

synonymous mutations than would be expected randomly) 49. Applying this type of a statistical 

assessment to cancer evolution is difficult due to the clonal expansion in cancer cells. A single 

mutation may occur that drives the cell to undergo clonal expansion, both passenger 

mutations as well as the driver mutation are increased in frequency making it very difficult to 

identify the original driver mutation49. 

Heritability is a statistic summarising the amount of variation in a phenotype due to genetic 

factors46 47. It is estimated using parent-offspring regression techniques106. Unlike most natural 

population’s cancer cells are clonal meaning the broad-sense heritability is used and estimates 

obtained via simple unweighted regression106. Whilst this statistic is the most appropriate 

measure of evolvability in this study it still does not give a clear picture as to whether or not 

motility itself is under selection. Measuring heritability, a fundamental first step for evolution 

by natural selection, is an essential prerequisite for more detailed research into the role of 

motility genes in metastasis131 and predicting the response to selective pressures. As such 

using heritability as one measure of evolvability paves the way for experimental evolution 

techniques to be applied to cancer biology38. 

3.4.5 The decrease in heritability between more distantly related cells 

These results cannot be considered in isolation. Cancer cells arise from multicellular 

organisms. They have complex gene regulatory pathways and as such the capacity for 

intricate, programmed responses to their environment that could be mistakenly attributed to 

natural selection116. The sensitivity of cancer cells to their environment need to be considered 

when interpreting results38. The results in this project show both R2 and H2 to be less between 

cousin:cousin cells than sister:sister or mother:daughter cells (table 3.4, figure 3.6).  

R2 is the amount of variance in cell motility that can be explained by the related cell104. Its 

decrease could be caused by cytoplasmic factors, these can cause transient similarities 

between sister and mother/daughter cells after division131. These similarities occur when 

daughter cells inherit similar protein states from the cytoplasm of the dividing cell, they last 

for a few hours after division but fade over time as the cell produces its own cytoplasmic 

factors131. This would cause mother:daughter and sister:sister cells to have less variation 

between them than cousin:cousin cells and may inflate the estimates of H2 between closely 

related cells. This could be further investigated by removing the beginning portion of each cell 
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track from heritability calculations and hence the removal of any similarities caused by the 

inheritance of protein states. More in depth and powerful statistical analysis would be 

required to conduct this type of investigation and whilst lower, estimates of H2 for 

cousin:cousin cells are still significant. There are alternative explanations for the variation in 

heritability estimates and shared variance that can be tested experimentally.  

As heritability is a ratio it can decrease for two reasons, if the rate of environmental variation 

increases or if the rate of genetic variation decreases. The estimated mutation rate of the 

human genome152 153 (1.6 x 10-7 – 3.5 x 10-9 base pair mutations per cell division152 154), the 

short time frame of the experiments and the close relationships measured, all suggest that any 

increase in genetic variation is unlikely to be due to genetic mutations alone. An epigenetic 

trait is a stably heritable phenotype resulting in changes in a chromosome without alterations 

in the DNA sequence47 155.  Epigenetic modifications could occur quickly and would enable a 

heritably plastic response, meaning the lower H2 estimates obtained for cousin cells could be 

due to epigenetic rather than genetic mutations112 156. A review by Soo-You (2012) concluded 

that not only do both genetic and epigenetic mutations play a role in disease progression but 

they are not mutually exclusive events157. Alterations in epigenetic mechanisms can lead to 

genetic mutations and genetic mutations in epigenetic regulators can lead to an alteration in 

the epigenome157 158.  

Many studies have looked for a ‘metastatic gene’ or even a gene expression profile common 

to metastatic tumours7. No-one has yet identified tumour-stage specific gene signatures. A 

study by Ramaswamy et al (2002) identified a gene expression pattern that appeared to be 

common in 12 metastatic tumours as well as some primary tumours33. The lack of specific 

metastatic markers suggests that most tumour cells have the genetic potential to be motile 

but display phenotypic plasticity modulated by epigenetic alterations in response to the 

microenvironment. In support of this theory dissimilarities in RNA and protein expression have 

been linked to differences in the metastatic capability of tumour cells21 155.  There is also 

evidence that tumours use epigenetic modifications to alter the surrounding tissue to create a 

more favourable microenvironment159 160. Stromal cells removed from a tumour’s presence, 

maintain their phenotypes in in vitro culture7 34. As tumour cells already use epigenetic 

modifications to influence and adapt their microenvironment, they could use the same 

mechanisms to adapt to the microenvironment as well. This theory could be tested 

experimentally using epigenetic inhibitors. Epigenetic inhibitors would act to decrease the rate 

of epigenetic modification161 162. If true, then the expected results would show a decrease in all 
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the estimates of H2 but an elimination of the differences seen between the groups of related 

cells. If, however increasing environmental variation explained the trend in the results then 

the differences observed in H2 estimates between groups of related cells would remain.  

Cancer cells are clonal, each daughter cell receives one copy of the mother’s genome, hence 

simple unweighted regression was used to estimate H2 between related cells, this was not 

weighted based on relatedness. As discussed in section 3.1.5 genetic variation could arise as a 

result of mutations or maternal effects, either of which would cause genetic variation to 

increase with the number of cell divisions. As such it may be plausible to consider weighting 

the regression between related individuals to take account of this variation. However 

cousin:cousin cells would have approximately double the genetic variation of mother:daughter 

and sister:sister cells (two divisions separate these cells as opposed to one division separating 

mother/daughter and sister cells) and yet the results seen here (table 3.4, figure 3.6) show 

that H2 estimates of cousins is not half that of mother:daughter and sister:sister cells. This 

could suggest that the decrease in H2 estimates is due to an increase in environmental 

variation.  

These experiments were performed on cells in vitro, as stated in section 3.4.3, it is usually 

assumed that cells in culture will have minimal microenvironmental variation64. However, as 

cells travel further away from each other, the environment could change, increasing 

environmental variation between cells. Subtle alteration in a cell’s microenvironment would 

act to increase the environmental variation and hence decrease both H2 and R2. Whilst any 

variation in the in vitro environment would be less than in vivo, the amount of environmental 

variation and whether this occurs at a cellular level could be investigated experimentally. The 

tumour microenvironment can vary dramatically, and many cancer cells display phenotypic 

plasticity17 163. In order to understand how distinct cancer cell populations evolve, knowledge is 

needed of cancer cells reactions and responses to the environment and the role phenotypic 

plasticity and genetic or epigenetic mutations play in that.  

As well as investigating whether epigenetic modifications play a role in the variability in 

heritability estimates between cell relationships, it would also be possible to investigate 

whether there is any environmental variation between cells. Examination of media distribution 

within an in vitro culture could determine if the variation in nutrients at a cellular level. High 

variation in the concentration of nutrients at a cellular level would support the theory that the 

decrease in both H2 and R2 was due to an increase in environmental variation.  
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Regardless of the mechanisms these results show that motility is a heritable trait and 

therefore natural selection may be acting within a tumour to select for this trait. By measuring 

multiple cell:cell relationships the results presented here represent stable differences between 

clonal cell lines.   
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Chapter 4 – Investigating the decrease in broad-sense heritability 

of cell motility between more distantly related cells 

4.1 Introduction 

In this chapter the lower estimates of heritability for more distantly related cells is 

investigated. This study has found relatively high and significant values of broad-sense 

heritability for the cancer cell trait of motility (section 3.3.2). However for all cell lines H2 

estimates from cousin:cousin cells are lower than those obtained for mother:daughter or 

sister:sister cells. The trend in the results is that measurements of heritability decrease slightly 

between more distantly related cells. As cancer cells are clonal, H2 estimates should not vary 

based on relatedness. As discussed in section 3.4.5 this decrease could occur for two reasons, 

either an increase in environmental variation or a decrease in genetic contribution to 

motility46.  

Clonal expansion of cancer cells and the timespan and number of generations measured in 

these experiments make it probable that any change in the genetic contribution to motility is 

regulated via epigenetic modifications164. This will be investigated using epigenetic inhibitors 

and their effect on the heritability of cell motility between related cells. The amount of 

environmental variation is also investigated using fluorescent molecules in culture media. 

Results are inconclusive as to whether the lower H2 estimates between cousin cells is due to 

epigenetic modifications, but results do show spatiotemporal environmental variation at a 

cellular level. 

4.1.1 Epigenetic contributions to evolution by natural selection 

The term epigenetics was first coined by Waddington in 1942, originally it referred to how 

genes interacted with their environment to produce a phenotype165. Today, epigenetic effects 

are changes in gene activity and expression produced by modifications to DNA or chromatin 

structure without altering the nucleotide sequence of a gene47 165 166. These changes can be 

stably passed to subsequent generations of cells or even organisms47 167 168.  

Many studies have found transgenerational epigenetic inheritance via transmission of 

molecular factors determining how the DNA is expressed169, for example Cubas et al (1999) 

showed flower symmetry in Linaria vulgaris was determined via inherited methylation 
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patterns170. Such transgenerational epigenetic inheritance has not only been shown in 

individual organisms but also between generations of mitotically dividing cells168. In sexually 

reproducing organisms such heritable epigenetic modifications in germline cells can transmit 

developmentally induced as well as stochastic phenotypes to subsequent generations168. In 

single celled organisms such as bacteria or Archaea transgenerational epigenetic inheritance 

can lead to the clonal persistence of induced and stochastically generated phenotypic 

variation168 171.  

In order for epigenetic modifications to contribute to natural selection they would need to 

affect phenotype (of the trait under selection) 169. Zhang et al (2018) demonstrated that 

epigenetic modifications play a role in natural selection using populations of epigenetic 

recombinant inbred lines of the plant Arabidopsis thaliana and comparing their heritable 

variation in phenology, growth and fitness to both genetic recombinant inbred lines and 

natural collections172. They found similar magnitudes of variance between all lines showing 

epigenetic modifications can influence phenotypic variance and contribute to adaptation and 

natural selection172. 

Swift and reversible epigenetic alterations may mediate rapid plastic responses to the 

environment173.  Phenotypic plasticity is the capacity to express a different range of 

phenotypes in response to environmental changes47. A plastic response to environmental 

selective pressures could be mediated through epigenetic mechanisms leading to the 

inheritance of an environmentally dependant phenotype169 174. This is well studied in relation 

to transgenerational immune priming, where parent’s immunological experiences are passed 

on to enhance offspring immune defence169. This mechanism could be particularly important 

to organisms with limited genetic diversity as it could allow adaptation to environmental 

perturbation before genetic adaptation occurs166 173. The adaptive value of this will depend on 

the predictability of the environment across generations169. Technological advances, 

particularly the relative speed and ease of gene sequencing, have helped highlight the roles of 

multiple mechanisms of epigenetic inheritance169. Chromatin immunoprecipitation can 

elucidate the association between specific proteins and DNA regions, when combined with 

next generation sequencing (known as ChIP-seq) the binding sites of DNA-associated proteins 

can be narrowed down to base pair resolution175. 
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4.1.2 Epigenetics and cancer cells 

Cancer cells are clonal meaning changes in the genetic contribution to motility should only 

arise via mutations. There are many estimates of somatic cell mutation rate, ranging from 2.5 

x 10-8 mutations per nucleotide site153 to 1.6 x 10-7 – 3.5 x 10-9 base pair mutations per cell 

division152 154. The number of generations measured in these experiments make it probable 

that the majority of any change in the genetic contribution to motility is regulated via 

epigenetic modifications164. 

Both genetic and epigenetic mutations contribute to cancer progression with widespread 

alterations to the epigenetic landscape considered one of the hallmarks of cancer25. Tumours 

alter over time as a result of cellular evolution, driven by both genetic and epigenetic 

mutations, the adaptive value of these mutations is determined by a cells 

microenvironment176. Epigenetic modifications would allow a cell to respond to a changing 

microenvironment meaning epigenetic modifications could create new heritable variation 

ultimately leading to adaptation increasing cell survival166 167.  

Environmentally induced epigenetic modifications have been extensively measured in cancer 

cells. A study by Yang et al (2015) found that heat shock, an environmental stress, increased 

p53 gene acetylation in HCT116, MCF7 and HT29 cells177. Changes in nutrient availability or 

resource competition could cause cells to alter their motility using epigenetic modifications, as 

seen in a study by Deng et al (2018) where hypoxia induced transcriptional modifications 

which increased metastasis in pancreatic cancer cells176.  

Whilst transient, epigenetic modification could be the means by which cells heritably alter 

their motility47 any cells that do not remain in the same environment as their relatives could 

undergo individual epigenetic modifications altering their phenotype to suite their 

microenvironment. A cell’s descendants might undergo individual epigenetic modifications 

which would act to increase the genetic variation between relatives, reducing heritability 

between more distantly related cells.  

Genetic mutations could also be contributing to the lower H2 estimates between more 

distantly related cells; however, the short number of generations measured, and the clonal 

proliferation of cancer cells mean it is more likely to be epigenetic modifications contributing 

to differences in heritability164. This hypothesis can be tested in vitro using epigenetic 

inhibitors. 
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4.1.3 The nature of epigenetic modifications 

Nucleosomes are the smallest unit of chromatin, as shown in figure 4.1 they are formed from 

DNA wrapped round an octamer of histone proteins. The histone amino terminal tails 

protrude and it is these upon which the majority of post translational modifications occur 

(figure 4.1), including acetylation, methylation, phosphorylation, ubiquitination and 

sumoylation179. The histone code - a complex range of modifications resulting in specific 

protein binding and gene regulation47 156, is the combination of these epigenetic modifications 

and influences chromatin structure, hence gene expression can be influenced by several 

epigenetic mechanisms47 (table 4.1). 

Table 4.1: Outline of epigenetic modifications, their mechanisms of action and general effect on 

gene expression. 

Name Mechanism of action General effect on gene 
expression 

Methylation Addition of methyl groups (CH3) to a 
substrate. 

Reduced gene transcription 

Acetylation Addition of an acetyl group (CH3CO) to a 
chemical compound. 

Increased gene transcription 

Phosphorylation Addition of a phosphoryl group (P+O3
2−) to 

a substrate. 
Reduced gene expression 

Ubiquitination Binding of ubiquitin to protein substrate. Increased gene expression  

Sumoylation Post-translational covalent attachment of 
a SUMO protein to a protein substrate. 

Alters transcriptional 
regulation 

Protein methylation and acetylation are two of the best studied and characterized of the 

different types of epigenetic modification180. Impaired acetylation has been linked to tumour 

progression181 and the methylation rate is generally faster than the rate of genetic mutation 

making it likely that epigenetic modifications contribute to tumour evolution29 47 164. Cancer 

cells often show abnormal epimutation rates, particularly in methylation leading to loss of 

activity in tumour suppressor genes47.  

Whilst in general each specific epigenetic modification will be associated with an over-all 

increase or decrease in gene expression the combination of modifications can result in 

unexpected and complicated outcomes and result in a range of stably heritable phenotypes180.  

Chromosome condensation can be altered via DNA methylation and histone modification of 

the N-terminal tail via acetylation, methylation or phosphorylation47.  
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As seen in figure 4.1 whilst methylation of both DNA and histones is usually associated with 

reduced gene expression and histone acetylation with increased gene expression180 there are 

still acetyl and methyl groups present on both eu- and hetero- chromatin, it is the overall 

combination that determines the exact effects on gene expression182. 
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Figure 4.1: Eukaryotic chromatin organisation; modified from Gangisetty et al (2006). Euchromatin is transcriptionally active and characterised with DNA 

hypomethylation and hyperacetylation of histone N terminal lysine residues. Heterochromatin is transcriptionally inactive and characterised with hyper 

methylation of DNA and methylation of histone lysine residues182. 8
9 
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4.1.4 Methylation 

Methylation is one form of epigenetic modification that can alter gene expression. It occurs 

when a methyl group (CH3) is added to a substrate (either DNA or protein). DNA methylation 

involves the conversion of cytosine into 5 methyl-cytosine which binds guanine 1.8 times more 

tightly. This creates heterochromatin (tightly packed regions of DNA) and usually reduces gene 

expression29 47.  

During cell division daughter cells inherit methylated DNA through enzyme recognition of 

hemimethylated regions (methylation on only one strand of DNA) 183. As methylation is not a 

permanent genetic modification, it may be lost over time through imperfect copying after 

division184. Maintenance of methylated DNA using hemimethylated enzymes, boundary 

regions and DNA repair enzymes can result in stably heritable epigenetic gene expression47 181. 

DNA methylation patterns in cancer cells are distorted with both hyper- and hypo- 

methylation of genes shown to be an important mechanism contributing to tumorigenesis185. 

Many intergenic regions of a cancer cell’s genome display hypomethylation, thought to 

contribute to genomic instability, and many tumour suppressor gene promoter regions display 

hypermethylation leading to loss of activity185. This pattern of hypo- and hyper- methylation 

seem to be pre-programmed with the majority of hypermethylation occurring in CpG Islands 

marked by polycomb complex proteins (a family of proteins involved in chromatin structure 

and usually a reduction in gene expression) and hypomethylation being concentrated to 

Lamin-associated domains (genomic regions in contact with the nuclear lamina, thought to be 

involved in chromosome organisation) 186 187. The exact patterns of methylation modifications 

are most likely linked to the specific developmental history of each cell type just as cancer risk 

is associated with an individual’s lifestyle186. 

Methylation patterns are linked to metastasis, for example circulating tumour cells show 

hypomethylation of proliferation associated transcription factors and hypermethylation of 

tumour and metastasis repressor genes188 189. The importance of methylation modifications on 

tumorigenesis has resulted in the epigenome being investigated as a potential therapeutic 

target as well as its use in cancer diagnosis and biomarkers185 190 191. 

Demethylases are enzymes which remove methyl groups from DNA and histones192. Through 

control of DNA and histone methylation they regulate the chromatin state at specific loci 

hence altering transcriptional regulation193. Demethylases have been investigated as new 
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targets for their use in drug discovery194. In this project GSK J4 has been used to investigate 

the link between methylation rates and motility. 

4.1.4.1 GSK J4 demethylase inhibitor 

GSK J4 is an ethyl ester derivative of GSK J1 and a selective inhibitor of the H3K27 histone 

demethylase JMJD3, as such GSK J4 increases methylation162. JMJD3 (also known as KDM6B) 

belongs to the Jumonji family of demethylase enzymes192 195. These demethylases are 

dependent on 2 co-factors, 2-oxoglutarate (also known as α-ketoglutarate) and Fe2+ for 

enzymatic activity194 196. GSK J4 is a competitive inhibitor of both co-factors but not the 

substrate itself197.  

The Jumonji demethylase family play a crucial role in regulating epigenetic processes via the 

removal of methyl groups from histone tails192. In non-malignant cell types these 

demethylases possess tumour-suppressor characteristics as overexpression leads to cell cycle 

arrest198. Jumonji demethylases have been implicated in various human cancers with a wide 

range of roles, in some cancers they were shown to be mutated, deleted or down regulated 

whilst in others they have been shown to be upregulated, over expressed or essential for cell 

survival195. 

JMJD3 accumulation is linked to an increase in the transcription of many genes including BMP-

2. BMP-2 binds TGFβ receptors activating SMAD family transcription factors which inhibit cell 

cycle progression stopping cells from making the G1 to S phase transition199 200. Cells in G1 

phase of the cell cycle exhibit reduced motility so inhibition of JMJD3 might act to increase cell 

cycle progression, increasing division rates and population motility201 202. JMJD3 also interacts 

with NF-κB to increase matrix metalloproteinases and growth factor genes203. Matrix 

metalloproteinases are known to play a major role in cell migration as well as proliferation, 

angiogenesis and apoptosis204. Inhibition of JMJD3 may therefore also be expected to reduce 

cell migration205. Cell signalling pathways are complex, ubiquitination and phosphorylation 

also play a role in SMAD activation and action200 and metalloproteinases are regulated at 

multiple levels including mRNA modulation and protein activation205. This makes it difficult to 

predict the effects of JMJD3 inhibition on population motility. Despite the unknown effects on 

cell phenotype, addition of GSK J4 should reduce demethylase activity. The reduction in novel 

epigenetic modifications is expected to cause an overall decrease in heritability estimates and 

eliminate the differences seen between H2 estimates of cousin-cousin cells and mother-

daughter & sister-sister cells.  
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4.1.5 Acetylation 

Acetylation is another epigenetic modification that regulates gene expression it occurs when 

an acetyl group (CH3CO) is added to a chemical compound164. Acetylation of histone N-termini 

removes the positive charge reducing its interaction with the negatively charged DNA 

phosphate group47 156. This results in euchromatin (lightly packed regions of DNA that are the 

transcriptionally active form of chromatin) and generally increases gene expression164.  

Histone protein acetylation is catalysed by histone acetyltransferase (HAT) or 

histonedeactylase (HDAC) activity196. HDACs are a class of enzymes that remove acetyl groups 

from the lysine residue on the N-terminal of a histone184 206. This allows the histones to wrap 

the DNA more tightly and reduces gene transcription206.  

Acetylation plays an important role in translational protein modification, in particular the 

lysine residues in the N-terminal of histone proteins. In addition to histones, other proteins 

such as p53, E2F, a-tubulin and MyoD have also been shown to be deacetylated by HDACs. 

Many non-histone proteins have been identified that are substrates for at least one type of 

HDAC illustrating the complex function of HDACs in many cell processes206.  

HDAC expression between normal and malignant cell types has not been well characterised 

but acetylation rates have been shown to interact with many oncogenes and tumour 

suppressor genes181 206. Dysregulation of HAT enzymes leads to aberrant HDAC activity causing 

alterations in gene expression and other processes such as cell growth, differentiation and 

apoptosis which have all been shown to contribute to tumour evolution181 206.  

Inhibition of HDACs are being investigated for their use in cancer treatment. HDAC inhibition 

should act to increase gene expression however the complexities of cell signalling and the 

aberrant nature of cancer mean inhibition of specific enzymes may not result in a change of 

phenotype207 208. 

4.1.5.1 MS-275 HDAC inhibitor 

MS-275 (also known as Entinostat) is a benzamide compound that acts to increase 

acetylation209 and has been shown to have anti-tumour activity in vivo184. It is a selective 

inhibitor of HDAC1 and HDAC3184. These enzymes are considered important for tumour cell 

cycling, are mostly localised in the nucleus and play a role in cell survival and proliferation206 

210. HDAC1 and HDAC3 regulate histone deacetylation through multi subunit complexes. 
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Various proteins form a complex with HDAC enzymes to initiate repression of acetylation and 

DNA transcription206. Inhibition of HDAC1 and HDAC3 causes cell cycle arrest and inhibits 

cellular proliferation hence stopping tumour growth207 211.  

HDACs are classified according to their sequence homology, HDAC1 and HDAC3 are 

structurally similar subfamily members of the class 1 enzymes and have zinc dependent active 

sites196. MS-275 inhibits HDACs 1 and 3 by binding to their zinc containing catalytic domain 

resulting in hyper acetylation of nuclear histones and generally increasing gene expression209. 

It has also been shown to induce accumulation of p21 and gelsolin, increases of which have 

been linked to a decrease in cell motility, and to increase apoptosis201 202 212 213.  

Many cancer cells have aberrant signalling pathways214 and structural alterations213 making it 

difficult to predict the exact effects that an inhibitor such as MS-275 will have. Addition of an 

epigenetic inhibitor such as MS-275 should reduce the amount of epigenetic modifications 

occurring, if the lower estimates of H2 between more cousin cells is due to acetylation causing 

a decrease in the genetic contribution to motility then the overall heritability of motility would 

be expected to decrease but the differences between more distantly related cells would 

reduce.  

4.1.6 Environmental variation 

Lower H2 estimates of cousin cells could be due to a decrease in the genetic contribution to 

motility and/or an increase in environmental variation46. In general in vitro culture is 

considered homogenous, especially when compared to an in vivo environment, however over 

time cells will use resources and produce waste products which accumulate in the culture 

media and could cause fluctuations in the microenvironment64. As cell division occurs the 

population of cells increases resulting in more cells being present in the culture, this could lead 

to an increase in the amount of environmental variation over time. Cells which migrate away 

from their relatives may experience differences in nutrient concentration which may also act 

to increase the environmental variation between more distantly related cells. Very little has 

been done to investigate the amount of heterogeneity within a cell culture as when 

conducting in vitro experiments due to the repeatability of experimental conditions and the 

simplicity in comparison to in vivo environments the environmental variation within an 

experiment is usually considered negligible64.  
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Environmental heterogeneity is an important factor in heritability. If the environmental 

variation is high this may cause an increase in phenotypic variation decreasing H2 estimates130. 

Likewise, if environmental variation is low the variation in phenotype may decrease, increasing 

estimates of H2 hence environmental variation may affect H2 estimates irrespective of any 

changes in genetic variation130. A tumour microenvironment can vary dramatically over both 

space and time and many cancer cells display phenotypic plasticity17 163. Phenotypic plasticity 

in cancer cell traits means that environmental variation will have an important effect on 

heritability measurements215. Understanding the types of environmental variation is crucial to 

interpreting results128 129.   

General environmental variation is all the non-genetic sources of variation between individuals 

experienced by multiple individuals within a population128. In vitro experiments have carefully 

controlled and repeatable environments, there may be differences at a cellular level but there 

should be no difference in the environment within a family of cells greater than that of the 

population as a whole130. Specific environmental variation is the deviation from the population 

mean due to the microenvironment experienced by an individual. If high, then this can weaken 

the correlation between genotype and phenotype128.  

When culturing cells in vitro it is often assumed that a uniform environment is maintained at a 

cellular level throughout the culture. Some environmental variation between cells will stem 

from other surrounding cells but little is known about the amount of variation within the 

media of the culture. Culture medium cannot be completely homogenous throughout cell 

culture; however, it is not known how much heterogeneity there is within a flask over short 

periods of time and whether culture media can be considered homogenous or heterogeneous 

at a cellular level. Variation in an in vitro culture would always be less than in vivo however 

whether or not there is variation in vitro at a cellular level could be tested experimentally by 

examining the distribution of fluorescent particles within culture media.  

Fluorescent dyes have long been used to enable quantification of cellular processes216. 

Fluorescence is the absorption and emission of light by a substance and is a three-stage 

process; a photon with energy is absorbed by a fluorescent molecule (known as a 

fluorophore), creating an excited electron state. The fluorophore undergoes a conformational 

change dissipating some of its energy. The third step is emission of a photon with the 

remaining energy, returning the fluorophore to its ground state. The lower energy of the 
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emission photon means it has a longer wavelength and allows detection and quantification of 

the fluorescent signal217. 

Fluorescein is a manufactured organic compound and dye and isothiocyanate is the chemical 

group, –N=C=S. FITC is a derivative of fluorescein containing an isothiocyanate group and has 

excitation and emission spectrum peak wavelengths of approximately 495 nm/519 nm217. 

Dextran is a complex branched glucan which coupled with a fluorescin isothiocyanate (FITC) is 

often used to image and characterize concentration gradients218-220.   

Addition of FITC-Dextran to the media would allow images to be collated displaying the 

concentration and distribution of particles within in vitro culture media. Whilst addition of 

fluorescent particles would not model specific nutrients within the media, it could be a 

fundamental first step to quantifying the amount of environmental variation in in vitro cell 

culture at a cellular level. Any variation may not be on the same scale as that in an in vivo 

environment but might indicate whether in this project an increase in environmental variation 

could be contributing to the reduction in heritability. 

4.1.7 Aims 

In the first set of experiments cells will be exposed to GSK J4 and MS-275 to inhibit HDAC and 

demethylase enzymes. The motility and heritability of these cells can then be measured and 

compared to a control group. If epigenetic modifications are responsible for a decrease in 

heritability between more distantly related cells, then inhibition should show an overall 

reduction in the heritability measured but eliminate the difference seen between more 

distantly related cells. 

The second set of experiments involve the addition of fluorescent particles to culture media 

and measurement of the distribution to enable quantification at the cellular level of particles 

suspended in culture media. Whilst imaging fluorescent molecules in culture media will not 

determine the specific distribution of all supplements it can help establish the uniformity of in 

vitro cultures at the cellular level221 and whether or not environmental variation is increasing 

between more distantly related cells. 
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4.2 Methods  

4.2.1 Cell culture 

Four lab adapted cell lines all obtained from Public Health England were used for all 

experiments; HeLa73, MCF7 (MCF7-3)69, MDA-MB-231 (MDA-2)68 and HT108077. All 

experiments were repeated three times with passage numbers between 40-47 for MDA-2, 14-

19 for MCF7-3, 4-9 for HT1080 and 4-8 for HeLa cells. Cells were cultured as a monolayer in 5 

% CO2 at 37 °c in 25 cm2 culture flasks (T-25 life technologies) containing 7 mL of media. 

4.2.1.2 Epigenetic inhibitor media 

Stock solutions of 10 µM drug in DMSO were made from 10 mg MS-275 and GSK J4 

(Selleckchem). Solutions were filter sterilised using 0.2 µm filters, then aliquoted, labelled and 

stored at -80 °c. Stock solutions were defrosted 30 minutes prior to use in a 37 °c waterbath.  

Cells cultures were exposed to a range of drug concentrations. Concentrations of MS-275 were 

10, 30, 50 and 100 nM. Concentrations of GSK J4 were 10, 30, 60 and 100 nM. To achieve the 

required drug concentration 10 µM stock solutions were added to culture media. The volumes 

needed were calculated using the formula below where C = Concentration, V = Volume and 

the numbers denote the two different solutions. Drug media was vortexed before being added 

to cells ensuring thorough drug dispersal.  

C1V1 = C2V2 

To control for the presence of DMSO in the drug solutions, controls were used containing the 

same volume of DMSO as in the treatment groups but without any drug. This was used in 

every experiment along with a control of standard media (not containing drugs or DMSO). 

Differences were seen between the control group and the DMSO control hence the DMSO 

control has been used for comparison of drug effects on cell traits. 

4.2.1.3 FITC-Dextran media 

A 50 mg/mL stock solution of fluorescein isothiocyanate–dextran (FITC-Dextran) (Sigma) 

average molecular weight of 70, 000, was made in PBS and then filter sterilised using a 0.2 µm 

filter. Stock solution was made approximately 10 minutes before the start of each experiment 
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and was not stored between repeats. Each stock solution was made in a centrifuge tube 

wrapped in tin foil and shielded from the light. 

FITC-Dextran solution was added to culture media to give concentrations of 1 mg/mL, 1 µg/mL 

and 1 ng/mL. Solutions were vortexed to ensure thorough mixing and dispersal of fluorescent 

particles.  

4.2.3 Fluorescently staining cells 

1 L stock solution of 4 % Paraformaldehyde was made in a fume hood by mixing 40 g 

paraformaldehyde with 800 mL PBS. The solution was gently heated to 60 °c then placed on an 

automatic electronic stirrer and drops of 5 M NaOH slowly added until all the 

paraformaldehyde had dissolved. The solution was left to cool to room temperature and made 

up to 1 L with PBS. Drops off HCl were slowly added until pH 7.4 was reached, this was tested 

using an electronic pH meter. The stock solution was made into 50 mL aliquots, clearly labelled 

and stored at -20 °c.  Each aliquot of stock solution was defrosted in the fridge before use. 

A 0.1 % Triton solution was made using Triton X-100 (sigma) and PBS. The required volume of 

solution was made by pipetting Triton X-100 into PBS before gently heating and stirring the 

solution to allow dissolution.  

To make a goat serum solution the required volume of goat serum (lifetechnologies) was 

added to 0.1 % Triton solution i.e 10 µl goat serum and 90 µl 0.1 % Triton to create 1 mL total 

volume 10 % goat serum solution. 

HT1080 cells were plated at 1 x 104 cells per dish onto nine 35 mm glass dishes (IBIDI). 0.5 mL 

standard culture media was added and they were left for 16 hours in an incubator in 5 % CO2 

at 37 °c. 

Media was removed from the cells and 1 mL of 4 % paraformaldehyde added to each glass 

dish. These were left for 12 minutes before removing and adding 1 mL 0.1 % Triton for 5 

minutes. This was removed and 1 mL per well of 10 % goat serum solution was added. The 

dishes were then incubated at 4 °c for 16 hours.  

Each dish was then washed three times for five minutes in 1 mL PBS. 0.5 mL of Phalloidin546 

(lifetechnologies) at a 1:1000 dilution in 2 % goat serum was then added to each dish, this 

selectively stains F-actin present in cells. The dishes were covered and left for 1 hour at room 
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temperature. Three more five-minute PBS washes followed then one drop of DAPI vectashield 

(VectorLabs) was added to each dish, DAPI binds A-T rich regions of DNA and vectashield acts 

as an antifade mounting medium. The fluorescently stained HT1080 cells were taken straight 

to the A1R confocal microscope. 

4.2.4 Fluorescence microscopy 

0.5 mL of FITC-Dextran media (at concentrations of 1 mg, 1 µg and 1 ng /mL) was pipetted 

onto eighteen ibidi glass dishes (six dishes per concentration). Half of the dishes contained 

fluorescently stained HT1080 cells, the other half contained no cells at all. Due to the lack of 

an efficient environmental chamber no live cells could be used.  

A Nikon A1R confocal microscope with NIS elements photograph software was used to take 

pictures of five randomly chosen points within each dish. All images were taken using a x 4 

objective and included all fluorescent channels.  All images were processed using ImageJ97-99.  

Two fluorescence time-lapse videos of FITC-Dextran media at 1 µg/ml, each 1 hour in duration, 

were also taken using the A1R confocal microscope. The time-lapse was not multi-point and 

images were taken every 5 minutes for 1 hour using a x 4 objective. The videos were 

unsuccessful due to technical issues with the microscope and problems with photo bleaching 

degrading the fluorescent signal over time. 

4.2.5 Time-lapse microscopy 

Details outlining the overall technique can be found in section 2.7.1. Cells were plated at 5000 

cells per well onto a 24-well plate in 1 mL media. Wells were divided equally between each cell 

line and the number of treatment groups. One hour prior to the experiment cell media was 

changed. All previous media was removed and the stated concentration of drug, DMSO or 

control media added.  

A Nikon TiE time-lapse system microscope and NIS elements photograph software captured 

three points within each well. Images were then taken at a x4 objective of these points every 

20 minutes for 72 hours.  

The time-lapse experiment was repeated three times for both GSK J4 and MS-275. NIS 

elements photograph software captured a total of 93,312 images which were then converted 

into a video file for each point101. ImageJ and MtrackJ97-99 were used to analyse these videos 
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and track individual cells. The total number of cells tracked in each experiment was; 14,029 

cells in GSK J4 media and 22,464 cells in MS-275 media.  

4.2.6 Cell tracking 

In total 36,493 cells were chosen at random from 432 videos each containing 216 frames 

giving a total of 2,041,597 individual points. ImageJ and MtrackJ97-99 were used to follow the 

movement of the central point in each cell between successive frames101 (as outlined in 

section 2.9). 

At the start of the experiment all cells within the field of view were regarded as the first 

generation, with every new cell division and the subsequent daughter cells regarded as a new 

generation in that family. Cells were tracked until the end of the experiment or until they 

moved off screen, died or divided, known as their fate. A manual record was kept of each cell’s 

fate, which generation it belonged to and how it was related to other cell tracks. This manual 

record was kept throughout the analysis and allowed comparison between groups of cells to 

ensure there was no bias in motility within the sample of cells measured (see section 2.10.5). 

From the data gathered three different cell:cell relationships could be used to calculate 

estimates of H2 (shown in figure 3.2, section 3.2.3).  

4.2.7 Statistical analysis 

For a full explanation of the techniques chosen see section 2.10. All statistical analysis of cell 

tracking was performed using Minitab103 and IBM SPSS102. Cell track data was extracted from 

MtrackJ101 and stored in excel files, manual data was then inputted into these excel files 

throughout data analysis and collection.  

Cell motility was calculated as a cell’s average speed in microns per hour. Cell speed was 

measured as the total distance of the path travelled by the cell (in microns), divided by its 

lifetime (in hours). 

The Lilliefors correction of the Kolmogorov-Smirnov test was used in conjunction with 

descriptive statistics to determine the distribution of the data104. To avoid fundamentally 

altering the original data, which could lead to a misinterpretation of results, non-normal 

results have not been mathematically transformed106 107. Non-parametric tests were used to 
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check for differences in cell motility between drug concentrations, this was done separately 

for each cell line.  

Differences in motility between cell fates, generations, experimental and mathematical 

repeats were tested for using Kruskal-Wallis and Mann-Whitney U tests104. This was done to 

ensure there was no bias between the samples of cells measured.  

The broad-sense heritability was estimated using the slope parameter of an ordinary least 

squares regression of trait values between related cells for the three different cell:cell 

relationships106. When a cell had multiple daughter cells or cousin cells their mean value was 

used and H2 estimated using simple unweighted regression of trait values between related 

cells106. Both H2 and R2 values have been given in the results. R2 values show how much of the 

variance in the dependent variable (cell speed) is explained by the model104. 

4.2.8 Processing fluorescent images 

Images of FITC-Dextran media were opened in ImageJ97 98 with only the green colour channel. 

The images were processed individually, and the X and Y values transformed and data binned 

(the combining of a cluster of pixels into a single pixel) to 4x4, this was done to increase the 

signal level. Images were then heatmapped, using the Heatmap Histogram plugin98, to clearly 

display the FITC-Dextran distribution.  

Images containing the fluorescently labelled HT1080 cells in FITC-Dextran media were opened 

as composite colour files in ImageJ97 98. Composite colour superimposes all three colour 

channels into the same field of view.  If needed images could be opened using the default 

colour mode allowing visualisation of each colour channel separately. The three colour 

channels were the blue; DAPI stained nuclei, red; phailloidin546 (bound to cellular F-actin) and 

green; FITC-Dextran. 
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4.3 Results  

4.3.1 Effect of MS-275 on HeLa, HT1080, MCF7-3 and MDA-2 cells 

4.3.1.1 Motility of cell lines exposed to MS-275 

As seen in figure 4.2 there was no significant difference in speed between the different 

experimental repeats at any concentration of MS-275 for HeLa, HT1080, MCF7-3 and MDA-2 

cell lines (Kruskal-Wallis test; p>0.05). As a result, all the data for each cell line have been 

grouped together for further analysis. 

MS-275 is HDAC inhibitor, it acts to increase acetylation184 209. Five concentrations (chosen 

based on the literature184 207 209 210 211) were tested to determine if there was a dose response 

on cell motility or if there were any detrimental consequences that might preclude its use in 

this project. As seen in figure 4.3 and table 4.2, there is a significant difference in motility 

within each cell line between MS-275 concentrations (Kruskal-Wallis tests p<0.001). However, 

these differences in motility between groups of cells are very small, the range in the median 

values of cell motility are; HeLa, 1.21 µm/hour; HT1080, 10.03 µm/hour; MCF7-3, 3 µm/hour; 

MDA-2, 5.04 µm/hour. There is no correlation for higher MS-275 concentrations to result in 

lower cell speed.  

Apart from the 100 nM group of MCF7-3 cells, all concentrations of MS-275 in all cell lines had 

a non-normal distribution of cell speeds (Lilliefors corrected Kolmogorov-Smirnov test 

p<0.003). As MS-275 does have an effect on motility but there is no correlation between the 

concentration and the size of the effect the decision was made to use all concentrations of 

MS-275 when measuring heritability. 

Table 4.2: Median speed (µm/hour) and N of cell lines for different MS-275 concentrations (nM) 

MS-275 
Concentration 
(nM) 

Median Speed [N] 

HeLa HT1080 MCF7-3 MDA-2 

0 11.18 [1052] 36.91 [1728] 30.66 [828] 26.45 [663] 

10 10.46 [1260] 31.37 [1371] 29.51 [883] 28.53 [705] 

30 9.97 [610] 34.98 [1047] 32.51 [885] 26.39 [622] 

50 10.27 [782] 34.08 [1062] 31.73 [758] 23.49 [429] 

100 10.2 [1014] 26.88 [961] 30.58 [766] 28.49 [526] 
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Figure 4.2: Distribution of HeLa, HT1080, MCF7-3 and MDA-2 cell speeds at MS-275 concentrations 

(nM) for each experimental repeat. The median is the line within the box and the box represents the 

interquartile range. The whiskers extend to the top and bottom 25 % of data values (excluding 

outliers). Outliers are represented by * and are data values extending at least 1.5 times the 

interquartile range from the box. Data gathered from three independent experiments. N for each cell 

line, MS-275 concentration and repeat is; HeLa 0 nM repeat 1: 335, repeat 2: 428, repeat 3: 289, 

HeLa 10 nM repeat 1: 394, repeat 2: 344, repeat 3: 522, HeLa 30 nM repeat 1: 317, repeat 2: 122, 

repeat 3: 171, HeLa 50 nM repeat 1: 304, repeat 2: 269, repeat 3: 209, HeLa 100 nM repeat 1: 357, 

repeat 2: 384, repeat 3: 273; HT1080 0 nM repeat 1: 388, repeat 2: 477, repeat 3: 863, HT1080 10 

nM repeat 1: 432, repeat 2: 310, repeat 3: 629, HT1080 30 nM repeat 1: 285, repeat 2: 392, repeat 

3: 370, HT1080 50 nM repeat 1: 332, repeat 2: 292, repeat 3: 438, HT1080 100 nM repeat 1: 145, 

repeat 2: 463, repeat 3: 353, MCF7-3 0 nM repeat 1: 272, repeat 2: 267, repeat 3: 289, MCF7-3 10 

nM repeat 1: 266, repeat 2: 342, repeat 3: 275, MCF7-3 30 nM repeat 1: 393, repeat 2: 176, repeat 

3: 316, MCF7-3 50 nM repeat 1: 128, repeat 2: 317, repeat 3: 313, MCF7-3 100 nM repeat 1: 158, 

repeat 2: 375, repeat 3: 233, MDA-2 0 nM repeat 1: 204, repeat 2: 220, repeat 3: 239, MDA-2 10 nM 

repeat 1: 270, repeat 2: 205, repeat 3: 230, MDA-2 30 nM repeat 1: 261, repeat 2: 138, repeat 3: 

223, MDA-2 50 nM repeat 1: 215, repeat 2: 148, repeat 3: 108, MDA-2 100 nM repeat 1: 221, repeat 

2: 148, repeat 3: 157.

MS-275 concentration (nM) 

HeLa HT1080 MCF7-3 MDA-2
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Figure 4.3: Distribution of cell speeds for HeLa, HT1080, MCF7-3 and MDA-2 cell lines for MS-275 concentrations (nM). The median is the line within the box 

and the box represents the interquartile range. The whiskers extend to the top and bottom 25 % of data values (excluding outliers). Outliers are represented by 

* and are data values extending at least 1.5 times the interquartile range from the box. Data gathered from three independent experiments. The N for each 

cell line is; HeLa 4,870, HT1080 6,434, MCF7-3 4,236 and MDA-2 3,047. 
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HeLa cells in 100 nM and MCF7-3 cells in 50 nM & 100 nM MS-275 had significant differences 

in cell speed between generations (Kruskal-Wallis tests p<0.001). As seen in table 4.3, for both 

concentrations of MCF7-3 the 1st generation had significantly lower speeds and for HeLa cells 

the 1st generation had significantly higher speeds (Mann-Whitney U tests p<0.001).  

There were also significant differences in motility between cells that had different cell fates 

(Kruskal-Wallis tests p<0.003). Upon further investigation it was found that the differences in 

motility between cell fates could account for the differences in motility between generations. 

For MCF7-3 cells non-dividing cells were significantly slower than cells that moved off screen 

or died (Mann-Whitney U test p<0.001), a higher proportion of this cell fate belonged to 

generation 1 which could explain the overall differences in cell motility.  In HeLa cells those 

that moved off screen (of which there were a higher proportion in the 1st generation) had a 

significantly higher motility than other cell fates (Mann-Whitney U tests p<0.001). By excluding 

the first generation of cells and only using relationships between their clonal descendants to 

calculate the broad-sense heritability, the effect on estimates of H2 caused by variation 

between generations and cell fates will be minimised.   



105 
 

Table 4.3: Median speed (µm/hour) and N for each of the first three generations in HeLa, HT1080, MCF7-3 and MDA-2 cell lines for five concentrations of MS-

275; 0, 10, 30, 50 and 100 nM.  

  

MS-275 
Concentration 

(nM) 

Cell line HeLa HT1080 MCF7-3 MDA-2 

Generation 1 2 3 1 2 3 1 2 3 1 2 3 

0 14.82 
[78] 

13.14 
[152] 

12.33 
[259] 

44.72 
[77] 

41.13 
[138] 

40.06 
[213] 

39.44 
[105] 

27.76 
[151] 

29.37 
[180] 

30.95 
[95] 

28.75 
[148] 

28.34 
[216] 

10 13.06 
[85] 

12.99 
[169] 

11.54 
[314] 

35.66 
[70] 

33.24 
[121] 

32.78 
[181] 

24.37 
[103] 

25.60 
[166] 

25.67 
[218] 

34.62 
[95] 

32.46 
[147] 

29.18 
[214] 

30 13.03 
[51] 

12.34 
[108] 

10.54 
[177] 

39.23 
[100] 

38.99 
[161] 

37.20 
[244] 

28.97 
[88] 

28.09 
[138] 

29.89 
[208] 

29.00 
[95] 

27.79 
[137] 

26.86 
[204] 

50 13.57 
[86] 

12.41 
[166] 

10.83 
[286] 

38.99 
[82] 

37.57 
[138] 

36.42 
[199] 

17.61 
[151] 

31.61 
[94] 

37.01 
[118] 

29.70 
[94] 

25.89 
[116] 

25.03 
[142] 

100 14.25 
[83] 

12.54 
[167] 

10.97 
[296] 

34.57 
[64] 

34.65 
[106] 

29.63 
[148] 

25.57 
[116] 

27.42 
[144] 

31.01 
[154] 

32.25 
[96] 

30.13 
[125] 

28.59 
[156] 

1
05
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Table 4.4: Median speed (µm/hour) and N for each cell fate in HeLa, HT1080, MCF7-3 and MDA-2 cell lines for five concentrations of MS-275; 0, 10, 30, 50 and 

100 nM. 

 

Concentration 
of MS-275 (nM) 

HeLa HT1080 MCF7-3 MDA-2 

Non-
divided 

Divided Died Moved 
off 
screen 

Non-
divided 

Divided Died Moved 
off 
screen 

Non-
divided 

Divided Died Moved 
off 
screen 

Non-
divided 

Divided Died Moved 
off 
screen 

0 10.7 
[538] 

11.7 
[498] 

12.5 
[49] 

 34.2 
[756] 

38.8 
[875] 

36.1 
[14] 

38.2 
[180] 

28.0 
[345] 

32.2 
[369] 

32.1 
[22] 

34.0 
[111] 

24.4 
[317] 

28.2 
[294] 

37.1 
[9] 

29.2 
[65] 

10 10.1 
[651] 

10.9 
[608] 

10.4 
[50] 

 31.2 
[555] 

31.7 
[687] 

30.5 
[31] 

31.2 
[174] 

21.0 
[377] 

30.3 
[399] 

33.0 
[17] 

36.8 
[113] 

25.8 
[352] 

30.0 
[320] 

29.5 
[14] 

30.6 
[51] 

30 9.3 
[298] 

10.5 
[282] 

10.5 
[44] 

 33.0 
[368] 

35.8 
[482] 

35.4 
[82] 

38.7 
[135] 

30.7 
[326] 

32.6 
[414] 

33.1 
[23] 

36.5 
[157] 

24.6 
[297] 

26.6 
[274] 

35.2 
[6] 

32.8 
[67] 

50 9.7 
[369] 

11.0 
[358] 

10.5 
[79] 

 33.4 
[438] 

34.8 
[504] 

28.5 
[27] 

35.4 
[121] 

11.6 
[214] 

33.5 
[311] 

14.3 
[15] 

36.2 
[236] 

23.8 
[225] 

22.3 
[172] 
 

26.4 
[7] 

24.4 
[39] 

100 9.6 
[507] 

10.6 
[475] 

12.2 
[57] 

 25.4 
[417] 

27.6 
[470] 

26.0 
[28] 

31.4 
[90] 

26.3 
[293] 

32.3 
[335] 

27.2 
[24] 
 

33.9 
[135] 

26.7 
[232] 

29.2 
[218] 

28.4 
[16] 

33.2 
[71] 

1
0

6
 



107 
 

4.3.1.2 Heritability in cell lines exposed to MS-275 

Cell speed is significantly heritable for all cell:cell relationships in all cell lines and at all 

concentrations of MS-275. Table 4.5 shows H2 values range from 0.888 - 0.188 and R2 values 

range from 0.78 - 0.04. As stated in  section 4.2.7.3 outliers and influential data points have 

been removed from this analysis. H2 was estimated using simple unweighted regression of cell 

speeds between related cells, figure 4.4 shows how H2 has been calculated between sister 

MCF7-3 cells exposed to each concentration of MS-275. 

Due to the number of post-hoc comparisons it was not possible to determine significance 

either between or within MS-275 concentrations for estimates of H2 of each cell line.  

As seen in table 4.5 and figure 4.5 in all other groups apart from MDA-2 cells in 30 nM MS-275 

the H2 estimates for the cousin:cousin relationship are lower than those obtained for the 

sister:sister and mother:daughter relationships. In the 30 nM group of MDA-2 cells the H2 of 

cousin:cousin cells is slightly higher than that of mother:daughter. There is no general trend of 

heritability estimates correlated to the MS-275 concentrations. 

R2 is the amount of variance in cell motility explained by the concentration of MS-275, table 

4.5 shows this is less between cousin:cousin cells than sister:sister or mother:daughter cells 

for all groups apart from MDA-2 cells in 30 nM and HeLa cells in 0 nM.  

Inclusion of multiple different cell:cell relationships and examination over several generations 

means the significant results seen here represent stable differences between clonal cell 

lineages.
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Table 4.5: Mean trait value, R2 and broad-sense heritability of motility in HeLa, HT1080, MCF7-3 and MDA-2 cell lines for MS-275 concentrations (nM) for three 

cell:cell relationships. 

Cell line 
 

MS-275 Concentration 
(nM) 

No of families Mean speed 
(µm/hour) 

Heritability of cell motility H2 (R2) 

Sister:sister Mother:daughter Cousin:Cousin 

HeLa 0 119 11.94 0.538*** (0.29) 0.620*** (0.38) 0.534*** (0.29) 

10 151 11.31 0.618*** (0.38) 0.601*** (0.36) 0.481*** (0.23) 

30 87 10.48 0.661*** (0.44) 0.548*** (0.30) 0.501*** (0.25) 

50 138 11.08 0.658*** (0.43) 0.594*** (0.35) 0.447*** (0.20) 

100 142 10.98 0.464*** (0.22) 0.611*** (0.37) 0.397*** (0.16) 

HT1080 0 105 37.52 0.571*** (0.33) 0.483*** (0.23) 0.360*** (0.13) 

10 90 32.1 0.570*** (0.33) 0.454*** (0.21) 0.288*** (0.08) 

30 122 36.14 0.485*** (0.24) 0.566*** (0.32) 0.469*** (0.22) 

50 98 35.09 0.615*** (0.38) 0.428*** (0.18) 0.408*** (0.17) 

100 74 28.3 0.631*** (0.4) 0.506*** (0.26) 0.188* (0.04) 

MCF7-3 0 90 29.42 0.863*** (0.75) 0.813*** (0.66) 0.740*** (0.55) 

10 102 28.26 0.858*** (0.74) 0.839*** (0.70) 0.807*** (0.65) 

30 102 30.7 0.863*** (0.75) 0.888*** (0.79) 0.832*** (0.69) 

50 59 30.87 0.731*** (0.54) 0.613*** (0.38) 0.596*** (0.36) 

100 77 30.5 0.726*** (0.53) 0.752*** (0.57) 0.696*** (0.48) 

MDA-2 0 104 27.84 0.630*** (0.4) 0.688*** (0.47) 0.527*** (0.28) 

10 105 30.09 0.658*** (0.43) 0.552*** (0.31) 0.389*** (0.15) 

30 102 27.56 0.686*** (0.47) 0.530*** (0.28) 0.567*** (0.32) 

50 68 25.99 0.596*** (0.36) 0.646*** (0.42) 0.417*** (0.17) 

100 75 30.22 0.533*** (0.28) 0.679*** (0.46) 0.427*** (0.18) 

*p<0.05 ** p<0.01 *** p<0.001 

 1
08
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Figure 4.4: Example of the sister:sister regression for motility of MCF7-3 cells for MS-275 concentrations (nM). Each point represents the speed of one pair of 

sister cells, the slope of the regression line is the estimate of broad-sense heritability. As the cells are clonal, the same method is applicable to other cell:cell 

relationships. N for each group is 0 nM = 90, 10 nM = 102, 30 nM = 102, 50 nM = 59 and 100 nM = 77. 
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Figure 4.5: Heritability estimates of cell:cell relationships for HeLa, HT1080, MCF7-3 and MDA-2 cell lines at MS-275 concentrations (nM). N for each group is; 

HeLa; 0 nM = 119, 10 nM = 151, 30 nM = 87, 50 nM = 138 and 100 nM = 142. HT1080; 0 nM = 105, 10 nM = 90, 30 nM = 122, 50 nM = 98 and 100 nM = 74. 

MCF7-3; 0 nM = 90, 10 nM = 102, 30 nM = 102, 50 nM = 59 and 100 nM = 77. MDA-2; 0 nM = 104, 10 nM = 105, 30 nM = 102, 50 nM = 68 and 100 nM =75.   

1
10
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4.3.2 Effect of GSK J4 on HeLa, HT1080, MCF7-3 and MDA-2 cells 

4.3.2.1 Motility of cell lines exposed to GSK J4 

As seen in figure 4.6 there was no significant difference in speed between the different 

experimental repeats at any concentration of GSK J4 for HeLa, HT1080, MCF7-3 and MDA-2 

cell lines (Kruskal-Wallis test; p>0.05). As a result, all the data for each cell line have been 

grouped together for further analysis. 

GSK J4 is a selective JMJD3 inhibitor, it acts to increases methylation161. Five GSK J4 

concentrations, chosen based on the literature192-195, were tested to determine a dose 

response and investigate any effect on cell motility.  

There were significant differences in motility within each cell line between the GSK J4 

concentrations (Kruskal-Wallis tests p<0.001). As can be seen in figure 4.7 and table 4.6, these 

differences in motility between the groups of cells are very small, the range in median values 

within cell lines is; HeLa, 2.05 µm/hour; HT1080, 7.85 µm/hour; MCF7-3, 21.87 µm/hour; 

MDA-2, 13.08 µm/hour. There is trend for higher GSK J4 concentrations to result in lower cell 

speed. 

Figure 4.7 shows the median value and distribution of motility for each concentration of GSK 

J4 in each cell line. All data had non-normal distribution of cell speeds (Lilliefors corrected 

Kolmogorov-Smirnov test p<0.001). As with MS-275, GSK J4 does impact cell motility but there 

is no correlation between concentrations hence all concentrations of GSK J4 will be used when 

calculating estimates of heritability. 

Table 4.6: Median speed (µm/hour) and N of cell lines for different GSK J4 concentrations (nM)  

GSK J4 
Concentration 
(nM) 

Median Speed [N] 

HeLa HT1080 MCF7-3 MDA-2 

0 13.83 [934] 43.86 [663] 36.06 [304] 37.74 [275] 

10 12.62 [1073] 42.13 [709] 21.21 [444] 24.66 [560] 

30 11.78 [679] 36.01 [747] 27.8 [411] 25.68 [497] 

60 12.59 [577] 38.39 [579] 43.08 [367] 27.68 [482] 

100 12.72 [727] 39.32 [549] 26.64 [498] 26.98 [609] 
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Figure 4.6: Distribution of HeLa, HT1080, MCF7-3 and MDA-2 cell speeds at GSK J4 

concentrations (nM) for each experimental repeat. The median is the line within the box and 

the box represents the interquartile range. The whiskers extend to the top and bottom 25 % of 

data values (excluding outliers). Outliers are represented by * and are data values extending at 

least 1.5 times the interquartile range from the box. Data gathered from three independent 

experiments. N for each cell line, GSK J4 concentration and repeat is; HeLa 0 nM repeat 1: 286, 

repeat 2: 706, repeat 3: 603, HeLa 10 nM repeat 1: 200, repeat 2: 549, repeat 3: 324, HeLa 30 

nM repeat 1: 142, repeat 2: 305, repeat 3: 232, HeLa 60 nM repeat 1: 53, repeat 2: 357, repeat 

3: 167, HeLa 100 nM repeat 1: 109, repeat 2: 339, repeat 3: 279; HT1080 0 nM repeat 1: 113, 

repeat 2: 875, repeat 3: 186, HT1080 10 nM repeat 1: 95, repeat 2: 574, repeat 3: 40, HT1080 

30 nM repeat 1: 92, repeat 2: 567, repeat 3: 88, HT1080 60 nM repeat 1: 83, repeat 2: 409, 

repeat 3: 87, HT1080 100 nM repeat 1: 145, repeat 2: 317, repeat 3: 87, MCF7-3 0 nM repeat 1: 

74, repeat 2: 330, repeat 3: 174, MCF7-3 10 nM repeat 1: 32, repeat 2: 211, repeat 3: 201, 

MCF7-3 30 nM repeat 1: 45, repeat 2: 203, repeat 3: 163, MCF7-3 60 nM repeat 1: 49, repeat 2: 

235, repeat 3: 83, MCF7-3 100 nM repeat 1: 68, repeat 2: 259, repeat 3: 171, MDA-2 0 nM 

repeat 1: 103, repeat 2: 521, repeat 3: 115, MDA-2 10 nM repeat 1: 132, repeat 2: 297, repeat 

3: 131, MDA-2 30 nM repeat 1: 130, repeat 2: 286, repeat 3: 81, MDA-2 60 nM repeat 1: 90, 

repeat 2: 274, repeat 3: 118, MDA-2 100 nM repeat 1: 133, repeat 2: 360, repeat 3: 116. 

HeLa HT1080 MCF7-3 MDA-2

GSK J4 concentration (nM) 
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Figure 4.7: Distribution of cell speeds for HeLa, HT1080, MCF7-3 and MDA-2 cell lines for GSK J4 concentrations (nM). The median is the line within the box and 

the box represents the interquartile range. The whiskers extend to the top and bottom 25 % of data values (excluding outliers). Outliers are represented by * 

and are data values extending at least 1.5 times the interquartile range from the box. Data was gathered from three independent experiments. The N for each 

cell line is; HeLa 3,990, HT1080 3,247, MCF7-3 2,024 and MDA-2 2,423. 
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HeLa cells in 10 & 30 nM and HT1080 cells in 0 & 10 nM GSK J4 had significant differences in 

cell speed between generations in (Kruskal-Wallis tests p<0.001). As shown in table 4.7 for 

both concentrations of HT1080, motility in the 2nd & 3rd generations were higher than the 1st 

generation and at both concentrations of HeLa cells motility in the 1st generation was higher 

than the 3rd generation (Mann-Whitney U tests p<0.004). 

There were also significant differences in motility between cells that had different cell fates 

(Kruskal-Wallis tests p<0.001). As shown in table 4.8 all cell lines showed some differences 

between cell fates but there was no consistent pattern correlated with GSK J4 concentration. 

Upon further investigation it was found that the differences in motility between cell fates may 

account for the differences in motility between generations. In HT1080 cells those that moved 

off screen (of which there were a higher proportion in generations 2 and 3) were significantly 

faster than those that did not divide (of which there were a higher proportion in generation 1). 

For HeLa cells those that did not divide were significantly slower than those that did, meaning 

the increase in speed between generations could show selection over time for increased 

motility. (Mann-Whitney U tests p<0.001).   
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Table 4.7: Median speed (µm/hour) and N for each of the first three generations in HeLa, HT1080, MCF7-3 and MDA-2 cell lines for five concentrations of GSK 

J4; 0, 10, 30, 60 and 100 nM. 

 

GSK J4 

Concentration 

(nM) 

Cell line HeLa HT1080 MCF7-3 MDA-2 

Generation 1 2 3 1 2 3 1 2 3 1 2 3 

0 14.66 

[94] 

15.19 

[159] 

13.59 

[279] 

31.45 

[84] 

43.61 

[77] 

46.22 

[83] 

41.82 

[120] 

40.99 

[100] 

29.20 

[56] 

32.71 

[58] 

25.83 

[78] 

36.86 

[66] 

10 14.79 

[93] 

14.17 

[187] 

12.54 

[321] 

32.45 

[85] 

38.09 

[84] 

40.28 

[104] 

29.48 

[104] 

25.12 

[143] 

18.17 

[109] 

26.74 

[71] 

23.26 

[125] 

22.01 

[199] 

30 13.86 

[77] 

11.97 

[150] 

11.08 

[247] 

32.95 

[91] 

32.54 

[82] 

37.23 

[97] 

39.26 

[118] 

23.99 

[156] 

25.48 

[109] 

28.73 

[74] 

23.38 

[133] 

21.59 

[159] 

60 15.59 

[60] 

14.27 

[112] 

12.57 

[202] 

31.92 

[79] 

31.44 

[78] 

37.05 

[82] 

37.80 

[97] 

43.16 

[118] 

38.78 

[110] 

26.99 

[65] 

27.86 

[106] 

24.15 

[160] 

100 16.07 

[63] 

12.68 

[122] 

12.55 

[217] 

32.04 

[79] 

37.19 

[104] 

41.20 

[118] 

21.30 

[98] 

15.03 

[150] 

16.33 

[138] 

28.34 

[93] 

25.52 

[156] 

23.66 

[206] 

1
15
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Table 4.8: Median speed (µm/hour) and N for each cell fate in HeLa, HT1080, MCF7-3 and MDA-2 cell lines for five concentrations of GSK J4; 0, 10, 30, 60 and 

100 nM. 

GSK J4 
Concentration 
(nM) 

HeLa HT1080 MCF7-3 MDA-2 

Non-
divided 

Divided Died Moved 
off 
screen 

Non-
divided 

Divided Died Moved 
off 
screen 

Non-
divided 

Divided Died Moved 
off 
screen 

Non-
divided 

Divided Died Moved 
off 
screen 

0 12.53 
[427] 

14.29 
[436] 

19.23 
[63] 

10.59 
[8] 

36.85 
[243] 

47.82 
[298] 

27.87 
[23] 

50.32 
[99] 

11.02 
[133] 

26.46 
[93] 

39.24 
[10] 

58.61 
[68] 

31.84 
[113] 

41.41 
[113] 

23.45 
[9] 

41.31 
[40] 

10 12.08 
[518] 

12.97 
[506] 

15.83 
[44] 

19.61 
[5] 

39.16 
[268] 

44.06 
[326] 

24.58 
[34] 

49.09 
[81] 

13.69 
[195] 

18.15 
[171] 

43.23 
[23] 

50.06 
[55] 

22.64 
[274] 

25.42 
[245] 

18.9 
[4] 

37.18 
[37] 

30 10.96 
[316] 

12.12 
[305] 

13.34 
[57] 

 33.13 
[297] 

37.56 
[350] 

26.2 
[22] 

40.61 
[78] 

13.83 
[174] 

26.54 
[144] 

41.24 
[13] 

56.16 
[80] 

22.49 
[219] 

27.06 
[220] 

29.78 
[5] 

29.49 
[53] 

60 12.06 
[276] 

13.68 
[265] 

12.58 
[26] 

17.51 
[10] 

37.12 
[247] 

41.02 
[265] 

29.42 
[21] 

44.5 
[46] 

29.68 
[161] 

41.81 
[137] 

40.69 
[9] 

60.51 
[60] 

23.99 
[224] 

28.11 
[213] 

41.49 
[6] 

45.55 
[39] 

100 12.16 
[336] 

13.50 
[339] 

13.11 
[43] 

14.41 
[9] 

36.42 
[161] 

40.76 
[241] 

24.16 
[20] 

44.62 
[127] 

14.38 
[237] 

26.64 
[202] 

28.54 
[7] 

52.83 
[52] 

24.95 
[275] 

29.16 
[262] 

18.73 
[11] 

34.93 
[61] 

1
16
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4.3.2.2 Heritability in cell lines exposed to GSK J4 

Cell speed is significantly heritable for all cell:cell relationships in all cell lines and at all 

concentrations of GSK J4. Table 4.9 shows H2 values range from 0.953 - 0.264 and R2 values 

range from 0.91 - 0.07. As stated in section 2.10.6 outliers and influential data points have 

been removed from this analysis. H2 was estimated using simple unweighted regression of cell 

speeds between related cells, figure 4.8 shows how H2 has been calculated in MDA-2 cells at 

varying concentrations of GSK J4 for the mother:daughter relationship.  

As seen in table 4.9 and figure 4.9 there is a general trend of H2 and R2 values for cousin:cousin 

cells to be lower than that of mother:daughter and sister:sister cells. However, this is not true 

for all groups; HeLa cells in 100 nM, HT1080 cells in 0 nM and MCF7-3 cells in both 50 and 100 

nM GSK J4 all have cousin:cousin values that are greater than at least one other cell:cell 

relationship.  

Due to the number of post-hoc comparisons it was not possible to determine significance 

either between the concentrations of GSK J4 or between the different cell:cell relationships for 

the estimates of H2 of each cell line. There does not appear to be a clear pattern in either H2 or 

R2 values correlating with GSK J4 concentrations.
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Table 4.9: Mean trait value, R2 and broad-sense heritability of motility in HeLa, HT1080, MCF7-3 and MDA-2 cell lines for GSK J4 concentrations (nM) for three 

cell:cell relationships. 

Cell Line GSK J4 Concentration 
(nM) 

No of families Mean speed 
(µm/hour) 

Heritability of cell motility H2 (R2) 

Sister:sister Mother:daughter Cousin:Cousin 

HeLa 0 135 15.63 0.799*** (0.64) 0.783*** (0.61) 0.717*** (0.51) 

10 159 13.62 0.656*** (0.43) 0.487*** (0.24) 0.479*** (0.23) 

30 123 12.56 0.580*** (0.34) 0.633*** (0.40) 0.459*** (0.21) 

60 101 13.70 0.669*** (0.45) 0.774*** (0.6) 0.673*** (0.45) 

100 107 13.79 0.390*** (0.15) 0.560*** (0.31) 0.438*** (0.19) 

HT1080 0 42 45.20 0.823*** (0.68) 0.749*** (0.56) 0.811*** (0.66) 

10 52 44.38 0.656*** (0.43) 0.738*** (0.54) 0.518*** (0.27) 

30 48 37.6 0.824*** (0.68) 0.697*** (0.49) 0.601*** (0.36) 

60 42 41.19 0.733*** (0.54) 0.768*** (0.59) 0.485*** (0.24) 

100 59 41.33 0.728*** (0.53) 0.720*** (0.52) 0.264** (0.07) 

MCF7-3 0 28 35.52 0.891*** (0.79) 0.909*** (0.83) 0.885*** (0.78) 

10 83 29.1 0.913*** (0.83) 0.870*** (0.76) 0.865*** (0.75) 

30 53 34.96 0.897*** (0.81) 0.910*** (0.83) 0.858*** (0.74) 

60 55 39.11 0.898*** (0.81) 0.917*** (0.84) 0.921*** (0.85) 

100 69 33.06 0.953*** (0.91) 0.884*** (0.78) 0.909*** (0.83) 

MDA-2 0 31 35.62 0.764*** (0.58) 0.806*** (0.65) 0.662*** (0.44) 

10 70 27.03 0.816*** (0.67) 0.677*** (0.46) 0.565*** (0.32) 

30 80 27.32 0.874*** (0.77) 0.824*** (0.68) 0.687*** (0.47) 

60 80 29.84 0.833*** (0.69) 0.803*** (0.65) 0.802*** (0.64) 

100 103 29.80 0.760*** (0.58) 0.786*** (0.62) 0.702*** (0.49) 

**p<0.01, ***p<0.001

 

1
18
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Figure 4.8: Example of the mother:daughter regression for motility of MDA-2 cells for GSK J4 concentrations (nM). Each point represents a mother cell and the 

mean speed of her daughters, the slope of the regression line is the estimate of broad-sense heritability. As the cells are clonal, the same method is applicable 

to other cell:cell relationships. N for each group is 0 nM = 31, 10 nM = 70, 30 nM = 80, 60 nM = 80 and 100 nM = 103. 

60300

80

60

40

20

0
60300 60300 60300 60300

0

Cell Speed of Mother (µm/hour)

Ce
ll 

Sp
ee

d
 o

f 
D

au
gh

te
r(

s)
 (

µ
m

/h
o

u
r) 10 30 60 100

Panel variable: Concentration

GSK J4 Concentrations (nM)

1
19

 



120 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.9: Heritability estimates of cell:cell relationships for HeLa, HT1080, MCF7-3 and MDA-2 cell lines at GSK J4 concentrations (nM). HeLa; 0 nM = 135, 10 

nM = 159, 30 nM = 123, 60 nM = 101 and 100 nM = 107. HT1080; 0 nM = 42, 10 nM = 52, 30 nM = 48, 60 nM = 42 and 100 nM = 59. MCF7-3; 0 nM = 28, 10 

nM = 83, 30 nM = 53, 60 nM = 55 and 100 nM = 69. MDA-2; 0 nM = 31, 10 nM = 70, 30 nM = 80, 60 nM = 80 and 100 nM = 103. 
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4.3.3 FITC-Dextran distribution 

The distribution of FITC-Dextran is not uniform throughout the media for any of the 

concentrations tested. Figure 4.10 shows heatmapped images for the three concentrations of 

FITC-Dextran in media; 1 mg/mL, 1 µg/mL and 1 ng/mL. The images show that particle 

distribution in media is not uniform for a range of concentrations. Figure 4.11 shows the 

distribution of FITC-Dextran media with fluorescently labelled HT1080 cells present it 

demonstrates that there is variation in particle distribution throughout the media at a cellular 

level. These images do not model the specific distribution of all particles within culture media 

but do demonstrate that particles within media are not uniformly distributed. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.10: Representative images of FITC-Dextran at three different concentrations (mg, µg 

and ng /mL) in culture media. Each row represents one of the three FITC-Dextran 

concentrations, with each column being a repeat. Scale bars at 400 µm are shown in black on 

the top left corner of each image and the heatmap indicator bar is also scaled to 800 µm. 

Heatmap indicators show the highest density of particles (red) to the lowest (purple).  
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Figure 4.11: Fluorescently labelled HT1080 cells in 1 mg/mL FITC-Dextran media. Each panel (A-

D) is one fluorescent channel of the same image, a scale bar representing 200 µm is located in 

the top left hand corner of each image. A) Composite image containing all colour channels. B) 

blue channel:DAPI staining A-T rich regions of DNA C) red channel: phalloidin546 staining F-actin 

D) green fluorescent channel: FITC-Dextran.  
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4.4 Discussion  

Epigenetic modifications are not permanent and can be quickly altered. As epimutations occur 

at a higher frequency than genetic mutations164 and can result in stably heritable phenotypes47 

167 168 they may play a role in regulating cell phenotypes such as motility. If true, then this 

might have explained the decrease in H2 estimates seen in chapter 3 as these cells would have 

accumulated more epigenetic modifications since their shared ancestor increasing their 

dissimilarity to each other. 

If epigenetic modifications are responsible for lower H2 estimates between cousin cells, then it 

was hypothesised that inhibition of such modifications should result in a) an overall reduction 

of heritability estimates and b) eliminate differences in H2 between cell:cell relationships. 

Addition of MS-275 and GSK J4 do not appear to affect cell motility or heritability estimates. At 

all concentrations of MS-275 and GSK J4 for all cell lines tested and all cell:cell relationships 

measured, H2 of motility is still highly significant (tables 4.5 and 9, figures 4.4 and 4.8). 

Heritability estimates between cousin:cousin cells remain lower than estimates between 

mother:daughter and sistser:sister cells. These results suggest that no individual epigenetic 

modification examined in isolation, plays a major role in regulating heritability of cell motility.  

Environmental variation was also investigated to see whether this could account for the lower 

H2 estimates. At all three concentrations of FITC-Dextran measured, seen in figures 4.10 and 

4.11, it is clear that there is environmental variation in in vitro culture at a cellular level. These 

results suggest environmental variation may explain at least some of the variation in 

heritability estimates as it suggests the correlation in relative’s motility could be due to a 

correlation in their microenvironment rather than genetic variation. 

4.4.1 Cell motility and the effect of epigenetic inhibitors MS-275 and GSK J4  

Based on the literature five concentrations of GSK J4 and MS-275 were chosen161 162 184 197 209 

210.  These concentrations were tested to determine whether there was a detrimental effect 

on cell motility that might preclude the use of these drugs or certain concentrations from this 

study.  

It was predicted that MS-275 would act to reduce cell motility (section 4.1.5.1) however this 

was not seen in the results (section 4.3.1.1, figure 4.3).  The predicted effects of GSK J4 on cell 

motility were unknown due to the complex nature of cell signalling pathways. For both MS-
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275 and GSK J4 there were significant differences between cell motility of different 

concentrations (p<0.001), however as seen in figures 4.3 and 4.7, these were very small and 

there was no correlation concentration and motility, higher drug concentrations did not 

consistently cause an increase or decrease in cell speed.  

Cell signalling pathways are highly complex and interlinked with cell functions being regulated 

at multiple levels200 205. Many cancer cells have aberrant signalling pathways, abnormal 

epimutation rates and there is extensive evidence of deregulation of transcription factors and 

histone modifying enzymes222. The intricacy of these pathways and aberrant cancer cell 

signalling makes it difficult to predict the effects of inhibiting a single molecule on cancer cell 

phenotype214. Inhibition of specific enzymes (in this case HDAC1, HDAC3 and JMJD3) may not 

be enough to alter gene expression as small alterations in cell signalling pathways could result 

in the maintenance of the motility phenotype208. 

Acetylation and methylation are two of the best studied epigenetic modifications180 and 

methylation is one of the most common types of epimutation29 47 164. It was postulated that if 

epigenetic modifications played a role in regulating cell motility then alteration of either 

acetylation or methylation rates would have an effect. These results suggest that either 

epigenetic modifications do not play a role in regulating cell motility or that the inhibition seen 

in this project was not great enough to have an effect.  

MS-275 acts to increase acetylation and GSK J4 to increase methylation. These drugs should 

generally have opposing effects on gene transcription. Not only was no overall effect on cell 

motility observed but no differences in motility between the two drugs. GSK J4 and MS-275 

treatment may not have resulted in the complete inhibition of their respective enzymes.  

Higher concentrations of each drug were initially trialled but these resulted in complete cell 

death. Use of alternative inhibitors such as siRNA, small double stranded RNA molecules which 

interfere with the expression of specific genes by preventing translation, would ensure 

complete inhibition of these specific enzymes223. MS-275 and GSK J4 are selective inhibitors162 

184 and gene expression can be influenced by multiple epigenetic mechanisms contributing to 

the histone code47 172. Multiple types of inhibitor may be needed to disrupt epigenetic 

inheritance. Complete inhibition of all acetylation or methylation may show that these 

epigenetic modifications do play a role in regulating cell motility however this would require 

further testing as complete inhibition of an epigenetic modification may also result in cell 

death. 
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There was no clear dose response and no single concentration had a detrimental effect on cell 

motility. Thereby all concentrations of drugs were used to measure heritability. 

4.4.2 Checking for bias in cell motility  

As in section 3.4.1 cells were checked to ensure motility did not alter over the course of the 

experiment due to confounding factors, this was checked through comparison of generations 

and cell fate.  

All cells present at the beginning of the experiment were classed as generation 1 irrespective 

of their position in the cell cycle. The decision was made not to perform cell cycle 

synchronisation (addition of chemicals into the culture media causing the cells to pause at a 

specific stage in the cell cycle)224 as this can have negative effects on cell growth and 

proliferation and would add another element of complexity when factoring in heritability 

estimates and comparison between groups224 225.  

As seen in tables 4.3 and 4.7, HeLa and HT1080 cells in GSK J4 and HeLa and MCF7-3 cells in 

MS-275 showed differences in cell motility between generations (p<0.004). For these groups 

of cells, it would appear that motility of the population changed throughout the experiment. 

These trends could be explained by a difference in motility between cell fates (p<0.001) and 

did not correlate to drug concentration. As shown in tables 4.4 and 4.8, a general trend was 

seen in the motility of cell fates, those that moved off screen had higher motility and those 

that did not divide had lower motility. The specific differences between cell fates and the 

proportion of these cell fates within each generation help explain the differences in average 

cell motility between generations.  

As a result of this analysis generation 1 was excluded from estimates of H2 and the relationship 

between their clonal descendants used to calculate heritability (figure 3.2). This an imperfect 

method of analysis as it leads to the exclusion of certain generations from the results. Another 

explanation for a change in population motility over time is the action of the inhibitors added 

to the media. These inhibitors could cause an increase in certain cell fates leading to the 

differences in motility between generations. The proportion of each cell fate for each drug and 

concentration was compared and no significant differences (p>0.07) found between groups. 

Future work involving more powerful and rigorous statistical models could eliminate these 

concerns. Use of statistical software such as R would allow inclusion and comparison of more 

complex family dynamics making results more reliable when making inferences to population 
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dynamics. This examination of motility within experiments ensures that any change in 

population dynamics does not affect the results seen here. 

4.4.3 Heritability in the presence of epigenetic inhibitors, MS-275 and GSK J4 

GSK J4 reduces demethylase activity, leading to an increase in methylation and MS-275 

reduces HDAC activity, leading to an increase in acetylation162 209. The hypothesis was that 

epigenetic modifications may play a role in regulating cell motility and that epimutations were 

responsible for a decrease in the genetic contribution to motility. Hence inhibition of such 

epigenetic modifications would result in an overall reduction in heritability estimates but 

eliminate differences between more distantly related cells. 

For both MS-275 and GSK J4 the H2 of motility is highly significant (tables 4.5 and 4.9, figures 

4.4 and 4.8) however the results do not support the hypothesis. Whilst all estimates are 

significant as seen in figures 4.5 and 4.9 lower H2 estimates are still observed between more 

cousin cells. It may be that due to the complexities of cell signalling, inhibition of a wider array 

of proteins is needed to cause a measurable effect on heritability208. 

The trend for more distantly related cells to have lower heritability does not hold true for all 

groups. As seen in tables 4.5 and 4.9 and figures 4.5 and 4.9, Hela cells in 100 nM, HT1080 cells 

in 0 nM and MCF7-3 cells in 50 and 100 nM GSK J4 and MDA-2 in 30 nM MS-275 all had H2 

estimates for cousin:cousin cells greater than that of other related cells. Whilst not a general 

trend these anomalous results could indicate that the inhibitors are having an effect.  

The results seem to suggest that even with epigenetic inhibitors H2 estimates are still lower for 

cousin:cousin cells than mother/daughter and sister cells. However due to the number of tests 

needed and the increased risk of type 1 errors (see section 2.10.6)105 post-hoc comparisons 

comparing the significance of H2 estimates between cell lines, concentrations and types of 

drug were not statistically possible. It cannot be ruled out that the lower heritability estimates 

are due to a reduction in the genetic contribution to motility and further investigation would 

be needed into whether this reduction is due to complex interactions in epigenetic 

modifications or due to genetic mutations. 

If epigenetic modifications are responsible for a reduction in genetic contribution to motility 

then future work testing a wider range or a combination of epigenetic inhibitors could help to 

show this. Inhibitors targeting phosphorylation could be of interest as histone phosphorylation 
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changes chromatin structure by altering the interactions between protein:DNA and 

protein:protein226 227. As it is not only the chromatin structure that is altered but also protein 

interactions this can induce crosstalk between other chromatin modifications226. Using a 

phosphorylation inhibitor in combination with a methylase inhibitor may have an amplified 

effect on reducing gene expression and the number of epimutations that occur between 

generations. Tests such as PCR and ChIP sequencing could help determine whether genetic or 

epigenetic mutations had occurred however it would only be possible to indirectly compare 

mutations to heritability estimates as it is not possible to measure families of cells228 229.  

4.4.4 General environmental variation 

Environmental heterogeneity is an important factor in heritability. Heritability is not the 

opposite of phenotypic plasticity. A character may have perfect heritability in a population and 

still be subject to great changes resulting from environmental variation130.  Understanding the 

amount of environmental variation is crucial to interpreting heritability results128 129.  The 

results seen here, figures 4.10 and 11, show that the lower H2 estimates for cousin cells could 

be due to an increase in environmental variation46. FITC-Dextran with an average mol. wt. of 

70,000 Da was added to culture media at three concentrations, 1 mg/mL, 1 µg/mL and 1 

ng/mL. Figures 4.10 and 4.11 show that dextran is heterogeneous within the media. 

Using the fluorescent properties of FITC-Dextran has allowed images to be collated on the 

heterogeneity within in vitro culture media. Whilst the heterogeneity seen in cell culture will 

not be on the same scale as that seen in an in vivo environment this variation in dextran 

occurs at a cellular level (average cell size between 20 – 80µm), causing fluctuations in the 

cellular microenvironment. This shows that cells in culture are not in a homogenous 

environment and that there is heterogeneity which could apply selection for dispersal.  

This experiment does not represent the distribution of media components, it merely shows 

that culture media is not evenly distributed. The molecular weight of the dextran used in these 

experiments was chosen as it is relatively close to that of albumin (65-70 kDa), one of the most 

common proteins in serum230. This experiment could be repeated with dextran of different 

molecular weights to check that this heterogeneity is maintained at a cellular level for 

different compounds.  

By comparing the distribution of different concentrations of dextran in media it is possible to 

show that even in in vitro cell culture the cells environment is not uniform. This can be seen in 
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figure 4.10 where the different fields of view show different distributions of dextran for the 

same concentration of solution. This experiment has not specified the distribution of solution 

but visually demonstrated that any liquid will not be uniform in its distribution and, that for a 

range of concentrations the variation in distribution will vary at a cellular level. 

This environmental variation does not appear to have a pattern or vary by a specific amount. 

This apparent ‘randomness’ in variation would appear to support the hypothesis that the 

variation in H2 estimates are caused by an increase in environmental variation. Whilst these 

results show that environmental variation will alter over time this would be expected to vary 

randomly for each generation and between cell types. As heritably estimates are consistently 

lower in more distantly related cells it would be unlikely that an increase in environmental 

variation is the sole factor in the variation of H2 estimates. 

Future work could quantify the environmental heterogeneity as it should be possible to use 

the variogram function, a type of spatial statistics that links the variance of a stochastic 

process and its degree of spatial dependence39 231. Combining information on the amount of 

environmental variation and the epigenetic and genetic mutations that occur would give in 

depth analysis on how selective pressures act on cancer cell lines in vitro.  

It may also be possible to refine the regression analysis to compare related cells that remain 

within close proximity to each other and compare these H2 estimates to those of related cells 

who migrate further away from each other. Whilst not directly measuring the amount of 

environmental variation it would help elucidate the contribution of the environment to H2 

estimates. This would involve complicated analysis at the tracking stage of the data analysis 

and quantification of the temporal-spatial variation to allow definition of proximity 

parameters.  

The results suggest that a heterogeneous environment affects cell motility suggesting that 

dispersal theory could be applied to cancer. Cell motility is a key part of the metastasis 

cascade, a common phenomenon in cancer25, dispersal theory could help to explain why 

tumours metastasise. Culture of cells in different environments and comparisons of their 

heritability and motility will provide further insight into whether dispersal theory applies to 

cancer evolution.  
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Chapter 5 – Applying experimental evolution techniques to cancer 

5.1 Introduction  

As motility has been identified as a heritable trait (chapters 3 and 4), natural selection can be 

used to select for cancer cell populations with this phenotype in a new application of the 

principles of experimental evolution techniques48.  

In this chapter, cell biology methods and experimental evolution techniques are adapted and 

combined to test whether dispersal theory applies to cancer cells in in vitro culture and 

whether the phenotype of cell motility can be selected for over time. Selection experiments, 

culturing of cancer cell populations in resource restricted environments, are conducted and 

multiple phenotypes in both the evolved and ancestral populations measured and compared 

to see whether adaptation has occurred. Results suggest that dispersal theory does apply to 

cancer cells with resource restriction selecting for an increase in cell motility. Not all 

experimental evolution techniques were successfully adapted to cancer cell lines, but these 

experiments are proof of concept and enable further work to be conducted in this area. 

5.1.1 Application of evolutionary theories to cancer biology 

The mechanisms of cancer cell metastasis are well studied however few of the evolutionary 

and ecological theories of metastasis have been tested experimentally. Natural selection is the 

only process that leads to adaptation. As motility has been shown to be a heritable trait, 

experimental evolution techniques can be used on in vitro cancer cells19 44. Applying selective 

pressures for cell motility should cause a shift in the population’s average motility over time. 

How long this shift takes to appear could vary based on other evolutionary processes such as 

mutation, random drift, strength of selection and population size. The rate of selection will 

also depend on the selective pressure applied113. Answers to such questions as how a 

metastatic phenotype is selected for, may eventually lead to new methods of treatment or 

prevention as well as tests for disease progression or severity29 36.  

This project a novel approach and various experimental evolution techniques adapted and 

subsequently tested for their use on cancer cells in culture. These modified techniques will 

permit the study of evolutionary processes in cancer cell culture allowing testing of 

evolutionary theories establishing causality and increasing our knowledge of disease 

progression36 48.  
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5.1.2 Dispersal theory and cell motility 

Dispersal theory proposes that heterogeneity in resources selects for migration as organisms 

able to migrate will reduce their kin competition and be able to exploit more resources29 36 39. 

Dispersal theory has been modelled mathematically19 44 and there is experimental evidence of 

its role in migration in both ecology and microbiology39 231-233.  

Dispersal theory predicts that an individual cancer cell migrating away from the primary 

tumour would reduce competition between its clonal relatives remaining in the primary 

tumour, increasing their chance of survival and proliferation of the genotype, thereby 

indirectly increasing its own fitness even if it is unsuccessful in dispersing19 39 44. The small 

number of dispersing cells that are successful in establishing a metastatic tumour will be able 

to exploit untapped resources with little competition. Dispersal theory explains how motility 

may be selected for and metastasis may evolve even when the individual cost of migration is 

high. 

Application of dispersal theory to cancer biology would allow clarification of the ecological 

causes of natural selection36. Metastasis could be considered an evolutionary consequence of 

this selection19 44. Primary tumours are highly heterogeneous in their microenvironment30 and 

this resource heterogeneity could create competition with selection favouring motile cells able 

to disperse away from resource limitation19 44. Individual cells may become motile to move 

around the tumour either away from hypoxic areas or towards areas with higher nutritional 

resources, metastasis away from the tumour may be a by-product of this dispersal.  

5.1.3 Experimental evolution techniques 

Experimental evolution of cancer cells in vitro will allow testing of multiple different selective 

pressures and their effects on cell motility. Whilst experimental evolution techniques can test 

evolutionary hypotheses, cell biology techniques, such as western blots, will be needed to 

quantify the molecular responses to the selective pressures and elucidate the mechanisms 

causing a change in cell phenotype. A range of methods will be used to quantify cell 

phenotype as differences may be seen between the population as a whole and the individuals 

within that population. A summary of existing experimental evolution and cell biology 

techniques are shown in table 5.1. The majority of experimental evolution techniques need to 

be adapted for use in cancer cell culture36 and there are many methods and techniques 
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already widely used in molecular cell biology which can be co-opted and used to test 

evolutionary hypotheses.  

Table 5.1: Experimental evolution and cell biology techniques that can be combined and adapted 

for testing of evolutionary hypotheses in cancer cell lines. 

Technique Method Outcome 

Selection 
experiments 

Long term culture of cancer cell 
populations under resource 
restriction then measurement of cell 
phenotypes.  

Resource restriction should select 
for increased cell motility. Selection 
experiments should result in 
populations with increased motility. 

Growth 
assay 

Measures the rate of proliferation 
within a population of cells14. 

Population growth can be used as a 
measure of fitness and the 
proliferation rate is often used to 
determine cell response to 
experimental parameters85. 

Common 
garden 
assay 

Populations of cells adapted to a 
specific environment are placed into 
a different environment, usually 
when an evolved population are 
placed back into their ancestral 
environment and vice versa. 

Helps disentangle the effects of 
genotype and the environment234 as 
information provided on whether 
changes in phenotype are an 
adaptive or a plastic response to the 
environment14. 

Competition 
assay 

Co-culture of two cell populations 
creating competition for resources. 
The number of surviving cells in each 
population or each population’s 
contribution to future generations is 
measured14.   

Measures the relative fitness of two 
populations to each other235 and 
shows how successful a combination 
of phenotypes are at ensuring 
survival in the presence of other cell 
types14 51 236.  

Fluorescent 
probes 

Fluorescently label specific cell 
organelles or cellular processes216 236. 

Allows detection of live cells217 and 
makes cells in culture 
distinguishable from each other. 

Wound 
healing 
assay 

Cells are cultured in a confluent 
monolayer and a scratch made; the 
rate of wound healing is then 
measured237. 

Studies the effects of a variety of 
experimental parameters on mass 
cell migration and proliferation237 238. 
 

3D cell 
culture 

Cells ‘stick’ together and grow in 
clumps – termed spheroids, which are 
free floating in the media239. 

Spheroids offer an in vitro model 
that more accurately reflects clinical 
expression profiles compared to 
monolayer cultures240 241. 
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5.1.3.1 Selection experiments   

Selection experiments apply a selective pressure, such as a decrease in nutrients, to cancer 

cells in culture36. If the selective pressure favours dispersal, cell motility would be expected to 

increase as cells disperse to try to locate or exploit resources36. Cryogenic storage of the 

ancestor population allows comparisons of cell phenotypes to determine whether adaptation 

has occurred. Culture of cells in a resource restricted environment over time will increase 

competition and can be used to test whether dispersal theory applies to cancer36.  

Culture medium provides the necessary nutrients, growth factors and hormones for cell 

growth as well as helping regulate pH and osmotic pressure64 80 81. Reducing the concentration 

of media components will create competition for that resource. Cells in culture have been 

shown to be susceptible to alterations in pH, glucose and serum. Glucose is an energy source 

added to culture media at a precise defined concentration242. Unlike glucose, serum is a vital 

source of nutrients which contains many substances whose concentrations and effects are 

unknown and vary from batch to batch243. Reducing the concentration of either will create 

competition between cells64 242 243. Culture pH is not a resource, however hypoxic 

environments (often found in tumours) that can induce an acidic pH have been shown to 

increase metastatic progression and capability244. One study by Rofstad et al (2006) 

demonstrated that acidic extracellular pH increased invasiveness in vitro and increased 

metastatic potential in vivo through acidity-induced upregulation of proteolytic enzymes and 

angiogenic factors245. As acidic pH increases cancer cell metastasis it may be that lowering the 

culture pH could also be a selective pressure for cell motility. Measuring and comparing 

phenotypes, such as cell motility, in both the evolved and ancestral populations will test for 

adaptations to competition. 

5.1.3.2 Growth and common garden assays 

It is already possible to conduct some evolution experiments on cancer cell lines using existing 

cell biology methods. For example, growth assays can be conducted using either MTT assays or 

time-lapse microscopy to quantify cell growth86. Quantification of growth is an important 

measure of a cell’s response to the environment and growth assays are essential in various 

other techniques such as common garden and competition assays. Common garden assays are 

also easily amenable to cancer cell culture as it is possible to change the culture environment 

of a cell population and measure the response. Cells evolved over time under a specific 

selective pressure (for example a decrease in serum) can easily be placed back into their 
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ancestral environment (the original culture media they were adapted to) and the growth rates 

compared to determine the plasticity of response.  

5.1.3.3 Competition assays 

Competition assays are an important measure of fitness as in vivo cancer cells must compete 

against other (non-cancerous) cell types as well as non-clonal cancer cells. Competition assays 

require co-culture of cell populations (table 5.1) and whilst different cell lines may have 

diverse morphologies, in general individual cells in culture are not distinguishable from each 

other without a fluorescent tag. Fluorescent probes can be used to distinguish between cell 

populations however the probes used cannot have an effect on cell fitness as this would add 

another level of selection to the experiments236 246. Therefore, before conducting any 

competition assays a fluorescent probe would need to be found that had no effect on cell 

fitness.  

5.1.3.4 Direct selection of motile cells 

Dispersal theory suggests that competition for resources should be a selective pressure for 

increased motility however cells in culture have no means of escaping from a resource 

restrictive environment once their motility is elevated. As molecule diffusion is isotropic 

(uniform in all directions) and unrestricted in free solution, current techniques cannot produce 

precise, user defined gradients with specified spatial and temporal outlines. This makes it 

impossible to ‘reward’ motile cells within these cultures247 248. As well as culturing cells in a 

resource restricted culture and testing for adaptation it may be possible to directly select for 

cells with altered motility by physically separating those cells with increased motility. These 

cells could then be ‘rewarded’ by being re-cultured under the original conditions. Over time an 

increase in population motility should be selected for and these cells could be compared not 

only to an ancestral population but also to their slower-moving companions. 

5.1.3.5 3D cell culture and collective migration 

3D cell cultures (termed spheroids) express chemical gradients of various nutrients, oxygen 

and catabolites, similar to those found in tumours239 249. There is widespread evidence that 

gradients in various biomolecules play a role in biological processes, including cancer cell 

metastasis248. There is also evidence of differences between collective migration and single cell 

migration250, methods such as time-lapse microscopy provide information on individual cell 
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motility that can be averaged across a population. Alternative techniques such as wound 

healing and spheroid spreading assays measure whole population motility and have been used 

to study spreading behaviour of cancers237 238 251-253. Comparison of motility between 

monolayer and 3D culture will allow scrutiny of the motility phenotype to ensure greater 

relevance to in vivo environments249.  

5.1.4 Aims 

This project aims to adapt and apply experimental evolution techniques across to cancer cells 

in culture. The technical aims of this project involve a) testing of fluorescent tags for their 

suitability for use in competition assays b) in the use of transwell assays and hydrogel layers in 

selection of motile cells. If successful adaptation of these methods will allow a new approach 

for studying cancer cell evolution.  

The scientific aims involve the use of selection experiments for long term cell culture in a 

resource restricted environment to see whether cell motility is selected for over time. 

Experimental evolution and cell biology techniques will then be used to compare between the 

evolved and ancestral populations to see whether dispersal theory applies to cancer and to 

investigate the mechanisms behind any alterations in cell phenotype. Using an experimental 

evolution approach to investigate cancer cell metastasis will allow testing of evolutionary 

hypothesis.  
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5.2 Methods  

5.2.1 Cell culture 

All cell lines used were lab adapted. As stated in section 2.1, similar cell lines have been 

obtained from different sources, to distinguish between these they are labelled numerically.  

In this chapter cell lines have been cultured in media containing different concentrations of 

nutrients, to distinguish between groups of the same cell line the defining element of the 

media has been used as a reference (tables 5.4 and 5.5). All cells were cultured in 5 % CO2 at 

37 °C, unless otherwise specified cells have been cultured as a monolayer. 

5.2.2 Adaptation of HeLa, HT1080, MCF7-3 and MDA-2 cell lines to serum replacement 

media 

The variation in serum between batches makes standardisation of protocols difficult64.  

Standardisation of media would be necessary before beginning selection experiments. To 

solve this problem, many researchers have attempted to create a serum free media and adapt 

cells across to this new media for culture. In this project attempts were made to adapt HeLa, 

HT1080, MDA-2 and MCF7-3 cell lines to culture in serum free media. The specific media for 

each cell line (section 2.1) was supplemented with a replacement serum solution (a premade 

proprietary formula obtained commercially designed to replace FBS in culture media) and 

varying concentrations of hormones; Rolipram and is a phosphodiesterase-4 inhibitor, it 

inhibits degradation of cyclic adenosine monophosphate which is an important intracellular 

signalling molecule254, Epidermal growth factor (EGF) stimulates cell growth and 

differentiation255, Fibroblast growth factor (FGF) is a cell signalling protein that primarily acts 

as a mitogen256 and Dexamethasone is a corticosteroid involved in glucose metabolism257. The 

combination of drugs and concentrations were chosen based on the literature258. The working 

solutions of these are given below. 

 1 x serum replacement solution (sigma) 

 1 mM rolipram (santacruz Biotech) 

 500 ng/mL EGF (jena Bioscience) 

 5 µg/mL FGF (PeproTech) 

 1 mM dexamethasone (Sigma).  
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Initial cultures began with a 90:10 mix of standard media: serum replacement media. All cell 

lines were maintained for 1 week in each ratio of media during which time they were cultured 

as normal. The ratios of media were 90:10, 75:25, 50:50, 25:75, 10:90, 5:95 and 1:99. Cultures 

could not be maintained in a complete serum free media as cell death occurred.  

As cultures could not be maintained without the presence of FBS, the serum replacement 

media was not used for the experimental evolution techniques and variation was reduced 

through the use of one batch of FBS for all experiments. 

5.2.3 Adaptation of HeLa, HT1080, MCF7-3 and MDA-2 cell lines in 10 % and 0.5 % FBS 

media over 72 hours 

For these experiments four cell lines between the stated passage numbers were used; MCF7-3 

passages 14-19, MDA-2 passages 40-47, HeLa passages 4-8 and HT1080 passages 4-9 cells (all 

obtained from Public Health England). These cell lines were cultured in 225 cm2 culture flasks 

in 22 mL media containing either 10 or 0.5 % FBS. 

For each experiment HeLa, HT1080, MCF7-3 and MDA-2 cells were cultured for 72 hours in 10 

% and 0.5 % FBS nutrient media to allow comparison of cellular characteristics whilst 

adaptation to nutrient deprivation occurred.  

5.2.3.1 Direct selection of motile cells 

Attempts were made to culture cells in a specific area, allow them to migrate and then extract 

the migrated live cells for further culture. This would have allowed the direct application of a 

selective pressure in the form of a resource gradient and direct selection of motile cells.  

Within the scope of this project these techniques were unsuccessful. The low N of cells in 

some experiments and the fastidious growth of cancer cells made ongoing culture for 

selection experiments impossible.  

Some success was gained using the transwell assay (table 5.2) which has been built upon and 

taken further within this lab group to successfully use collagen layers for migration and 

selection experiments.   
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Table 5.2: Methods used to try and physically separate motile cells in culture. 

Method Overview Experimental Issues 

Transwell 
assay 

Chambers with 0.4 µm pores were 
suspended over a well248. The pores 
allowed cell migration. 0.5 % FBS media 
was added to the top chamber and 10 % 
FBS media to the bottom to test whether 
nutrient gradients select for cell motility. 

The number of cells which 
migrated through to the bottom 
layer were too few for continued 
culture. 

Hydrogels Hydrogels made from collagen, gelatin 
or matrigel247. Cells were cultured onto 
these surfaces or homogenously mixed 
within the hydrogels. After migration 
hydrogels could be removed leaving 
motile cells in culture. 

Hydrogel layers disintegrated 
upon agitation. Trypsin removal of 
cells which had migrated out of 
hydrogels was possible but 
numbers were too few for 
continued culture. 

Cloning 
rings 

A metal ring was placed into the centre 
of a well and cells cultured inside. Rings 
could be removed and replaced allowing 
migration and isolation. 

Hydrostatic forces made it 
impossible to form a seal between 
the cloning ring and culture 
surface meaning cells could not 
be isolated for removal. 

Wound 
healing 
inserts 

These are silicone inserts with wells 
separated by a 500 µm gap. Cells were 
cultured in each of the wells the insert 
removed allowing migration and then 
replaced to isolate motile cells. 

Hydrostatic forces prevented 
watertight seals from forming 
between the inserts and culture 
surface meaning extraction of a 
specific group of cells was not 
possible. 

Chemotaxis 
chambers 

Chemotaxis chambers contain two wells 
connected by a thin channel, cells were 
cultured in 0.5 % FBS media on one side 
and could migrate to the other well 
containing 10 % FBS media.  

There were issues extracting cells 
from just one well as both wells 
are linked and the small number 
of cells extracted were too few for 
continued culture. 

 

5.2.3.2 Time-lapse microscopy 

HeLa, HT1080, MCF7-3 and MDA-2 cells were plated at 5000 cells per well onto a 24-well plate 

in 1 mL of the 10 % FBS media. Approximately 1 hour prior to being placed onto the Nikon TiE 

time-lapse system microscope all media was removed from all wells and replaced with either 

10 % or 0.5 % FBS media. All wells were divided equally between each group and cell line and 

distributed randomly around the plate. 

For each of three independent repeats, NIS-Elements photograph software captured images of 

three points within each well every 20 minutes for 72 hours. A total of 46,656 images were 

captured and NIS-Elements converted these into 216 video files. These were analysed using 

ImageJ and MtrackJ97 98 to track 16,436 individual cells.  
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5.2.3.3 MTT assays  

MTT assays provide an accurate measurement of live cell concentration and were used to 

quantify cell proliferation (for full protocol see section 2.4.2). HeLa, HT1080, MCF7-3 and 

MDA-2 cells were plated in 48 wells of a 96-well plate at 5000 cells per well in 200 µl of either 

10 % or 0.5 % FBS media, 24 wells per group. 200 µl of each media was also added to 24 wells 

per plate as a control. Plates were left for 72 hours before performing the MTT assay. Three 

independent replicates were obtained for each cell line in both media. 

5.2.3.4 Western blot protein analysis 

Western blotting involves the electrophoretic separation of proteins on an acrylamide gel and 

their transfer onto a membrane to allow immunochemical visualisation, detection and 

quantification259. The solutions used for this method are outlined in table 5.3. 

Cell lysates were prepared following the protocol outlined in Mahmood and Yang (2012) 259 

and the total protein concentration calculated using a bradford protein assay and protocol 

(Bio-Rad) 260. From each cell lysate the volume required to give 50 µg of protein as well as 2 µl 

of stain free protein ladder diluted 1:3 with ddH2O261 were loaded into separate wells of Bio-

Rad pre-cast gels262. To separate the proteins, gels were run at 220 V for 30 minutes259 262 

following the Bio-Rad protocol262. 

Separated proteins were transferred from the gel to a membrane using a mini transfer pack on 

a Trans-blot Turbo Transfer System263 (Bio-Rad) running a turbo 1 mini TGX programme and 

following the Bio-Rad protocol263. After transfer the membrane was placed onto an EZ image 

gel doc machine and ImageLab software was used to activate the membrane by enabling 

reactions between the proteins and trihalo compounds enabling visualisation and 

quantification of the total protein in the membrane (as seen in figure 5.1)262 263. The 

membrane is washed in TBST and blocked in 5 % BSA for 1 hour before being incubated in 5 

mL 1:1000 dilution of primary antibody: 5 % BSA overnight at 4 °C259 264. After further TBST 

washes the membrane was incubated in 5 mL 1:1000 dilution of a HRP conjugated secondary 

antibody: 5 % BSA for 1 hour at room temperature259 252 264. The membrane was washed and a 

1:1 mix of ECL reagent (PRIME) solutions applied for 1 minute. A Luminescent image analyser 

and Image Quant Las 4000 software took images and quantified membrane proteins, as seen 

in figure 5.2. These results were exported into an excel file and the ratio of each protein was 

calculated as the band intensity normalized to total protein259 264 265.  
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Antibodies (from CellSignalling Technology) specific to four different groups of proteins were 

chosen based on availability and applicability to the wider project. The specific proteins tested 

for and the groups they belonged to were; Stress and Apoptosis: P-p53, C-Caspase 3, P-

MAPKAPK-2, C-PARP, P-c-Jun, P-SAPK.JNK. HDACs: HDAC3, HDAC1, P-HDAC4, HDAC4, HDAC2, 

HDAC6. Focal Adhesions: Talin 1, Paxilin, Tensin 2, Vinculin, Arp 3, α-actinin. Actin Nucleation 

and Polymerisation: N-WASP, WAVE 2, Profilin-1, P-Rac 1, and GapDH. 

Table 5.3: Solutions and components used in the western blot procedure. 

Name Total Volume Chemicals 

Lysis buffer 1 mL 10 µl protein inhibitory cocktail 
990 µl RIPA buffer 

5 x Tris glycine electrophoresis 
(5 x Running buffer) 

Made up to 1 L with 
dH20 

15.1 g tris base   
94 g glycine 
50 mL 10 % SDS 

1 x Tris glycine electrophoresis 
(1 x Running buffer) 

Made up to 1 L with 
dH20 

200 mL of 5 x tris-glycine 
electrophoresis running buffer 

10 % sodium dodecyl sulphate 
(SDS) 

Made up to 500 mL with 
dH20 

50 g SDS 

Transfer buffer Made up to 1 L with 
dH20 

2.9 glycine 
2.8 g tris base 
200 mL methanol 

10 x Tris Buffer Saline (TBS) Made up to 1 L with 
dH20 

80 g sodium chloride 
2 g potassium chloride 
30 g tris base 
Adjusted to pH 7.4 with 
concentrated hydrochloric acid 

1 x Tris Buffer Saline (TBS) Made up to 1 L with 
dH20 

100 mL of 10 x TBS 

Tris buffer Saline Tween-20 
(TBST) 

Made up to 1 L with 1 x 
TBS 

1 mL tween-20 

5 x SDS gel loading buffer Made up to 40 mL with 
dH20 

1.514 g tris base 
4 g SDS 
20 g glycerol 
10 g mercaptoethanol 
5 mg Bromophenol Blue 

10 % ammonium persulphate 
(APS) 

Made up to 50 mL with 
dH20 

5 g APS 

1 M Tris (pH 6.8) Made up to 500 mL with 
dH20 

60.57 g tris base  
Adjusted to pH 6.8 using 
concentrated hydrochloric acid 

1.5 M Tris (pH 8.8) Made up to 500 mL with 
dH20 

90.86 g tris base 
Adjusted to pH 8.8 using 
concentrated hydrochloric acid 

PBS Made up to 1 L with 
dH20 

10 PBS tablets 

5 % BSA Made up to 50 mL with 
TBST 

2.5 g powdered BSA 
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Figure 5.1: Image of total protein transferred onto membrane during western blot experiment. Image taken on an EZ image gel doc machine using ImageLab 

software. Lanes are labelled 1 to 9 and contain proteins; Lane 1: protein ladder, lane 2: HT1080 10 %, lane 3: HT1080 0.5 %, lane 4: HeLa 10 %, lane 5 HeLa 0.5 

%. Lane 6: MCF7-3 10 %, lane 7: MCF7-3 0.5 %, lane 8: MDA-2 10 %, lane 9: MDA-2 0.5 %. The protein ladder molecular markers are noted (in kDa) down the 

left-hand side. 
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Figure 5.2: Western blot analysis of cell lysates from HeLa, HT1080, MCF7-3 and MDA-2 cells in 10 and 0.5 % media using Profilin-1 Rabbit mAb. Image taken 

on a Luminescent image analyser using Image Quant Las 4000 software. Lanes are labelled 1 to 9 and contain proteins; Lane 1: protein ladder, lane 2: HT1080 

10 %, lane 3: HT1080 0.5 %, lane 4: HeLa 10 %, lane 5 HeLa 0.5 %. Lane 6: MCF7-3 10 %, lane 7: MCF7-3 0.5 %, lane 8: MDA-2 10 %, lane 9: MDA-2 0.5 %. The 

protein ladder molecular markers are noted (in kDa) down the left-hand side. The dark bands in lanes 2 – 9 are the stained profilin-1 protein.  
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5.2.4 Measuring adaptation of MCF7-1 cells to a 5 % and 0.5 % FBS nutrient environment 

after 12 weeks 

MCF7-1 cells, acquired from ATCC, were cultured in 25 cm2 culture flasks in 7 mL media 

containing either 10, 5 or 0.5 % FBS. MCF7-1 cells were maintained in low (0.5 % FBS) or high 

(5 % FBS) resource media for twelve weeks (passages 17-29). Three replicate lines were 

maintained for each treatment group with each line initiated 2 weeks after the previous one. A 

sample of MCF7-1 cultured in their original 10 % FBS media (passage 17) cells were 

cryogenically stored to act as an ancestral reference. Every 7 days cells approximately 25 % of 

the cell population (see table 2.1) were passaged into new cultures, at each transfer all 

remaining cells were cryogenically stored. 

Table 5.4: MCF7-1 cell groups. The reference name and % FBS culture media of MCF7-1 cells 

split into multiple cultures. 

Reference Name % FBS Media Adaptation Time Passage Number 

Ancestor  10 %  0 weeks  17 

Evolved 5 % 5 % 12 weeks 29 

Evolved 0.5 % 0.5 % 12 weeks 29 

 

5.2.4.1 Time-lapse microscopy  

The three groups of MCF7-1 cells (table 5.4), were plated at 2000 cells per well onto a 12-well 

plate in 2 mL of their respective media. All wells were divided equally between each group and 

distributed around the plate. Approximately 1 hour prior to being placed onto the Nikon TiE 

timelapse system microscope media was removed in all wells and fresh media of the same 

type added. 

NIS-Elements photograph software captured images using a x10 objective at five points within 

each well every 15 minutes for 52 hours 15 minutes. This was repeated three times and a total 

of 37,620 images were captured. NIS-Elements converted these into 180 video files which 

were analysed using ImageJ and MtrackJ97 98 and 1,060 individual cells tracked. The quality of 

the videos along with the smaller field of view due to using a x10 objective resulted in fewer 

cells being tracked. 



143 
 

5.2.4.2 Common garden assay 

All three groups of MCF7-1 cells were plated onto a 12-well plate at 5000 cells per well in 2 mL 

of their respective media. The cells were then left for twenty-four hours to adhere. After this 

time all media was removed and replaced with either 5 or 0.5 % FBS media. The number of 

wells were divided equally between each group and each media resulting in four wells per cell 

group with two wells of each media. 

The well-plate was placed on a Zeiss A1 inverted epifluorescent microscope at x4 objective. 

Seven points were chosen within each well and images taken of these points every 12 hours 

for 72 hours. The number of cells in each image was counted using ImageJ97 98. The number of 

cells in the images was counted giving the proliferation rate in both the adapted and the 

opposing media. 

5.2.4.3 Spheroid spreading assays 

Corning spheroid multi well plates and flasks (Merck) contain a covalently bound hydrogel 

layer that inhibits cellular attachment. To begin a spheroid culture, evolved MCF7-1 cells were 

passaged (section 2.3) from a monolayer culture and pipetted onto spheroid multi well plates. 

Cells were grown as spheroids for 24 hours in 2 mL of their respective media. 

Spheroids were passaged onto standard adhesive 12-well plates very slowly using a wide 

tipped 1000 µl pipette to keep spheroids whole (6 wells for each group). Half the wells for 

each cell group had 2 mL of their adapted media added (the media they had been cultured in 

for 12 weeks), the other half had 2 mL of the opposing media added (the media the other 

groups of evolved MCF7-1 cells had been cultured in for 12 weeks). When returned to flasks 

with a suitable surface, spheroids will adhere and individual cells will disperse outwards, 

eventually forming a monolayer. The spheroids were left to attach to the plate for 4 hours 

then a Zeiss A1 inverted epifluorescent microscope was used to capture images of six 

spheroids within each well every six hours for 72 hours. It was not possible to measure the 

same spheroids between time points due to the magnification adjustments and manual 

tracking required to maintain spheroids within the field of view. Attempts were made to use a 

Nikon TiE time-lapse system microscope to observe spheroid spreading however it was not 

possible to make magnification adjustments over the course of the experiment and automatic 

stage movement, required for multipoint time-lapse images, caused spheroid detachment and 

movement.  
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ImageJ software97 98 was used to calculate the area covered (in µm²) by cells dispersing from 

the spheroids and spheroids within wells were randomly paired between photos taken over 

time points and the change in spheroid area calculated as a percentage increase.  

5.2.4.4 Competition assays 

Competition assays involve co-culture of two cell lines or groups hence they require 

populations easily distinguishable from each other. Before competition assays can be 

conducted fluorescent probes that allow live cell imaging lasting over 48 hours without 

compromising other cell characteristics must be found. Within this project three distinct types 

of fluorescent tag were tested; CellLight, CellTracker and QTracker. 

5.2.4.4.1 CellLight 

CellLight reagents are fluorescent protein-signal peptide fusions that target specific cellular 

structures and can be used in live-cell imaging. CellLight Nuclear BacMam 2.0 GFP 

(Lifetechnologies C10602) accurately targets the cell nucleus, the provided protocol was 

followed217.  

MCF7-1 cells (passage 19-21 in 10 % FBS) were plated in a 6 well-plate in 2 mL media at a 

concentration of 1 x 105 cells per well and left to adhere for 24 hours before transfection. The 

formula below was used to calculate the volume of CellLight to add to each well. The desired 

particles per cell (PPC) were 35 (as recommended in the supplied protocol217).  

𝑉𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝐶𝑒𝑙𝑙𝐿𝑖𝑔ℎ𝑡 =  
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑒𝑙𝑙𝑠 × 𝑑𝑒𝑠𝑖𝑟𝑒𝑑 𝑃𝑃𝐶

1 × 108𝐶𝑒𝑙𝑙𝐿𝑖𝑔ℎ𝑡 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠/𝑚𝐿
 

The media on the cells was removed, each well then had either 2 mL of CellLight media or 2 

mL of standard media added, wells were divided equally between the treatment groups. The 

well-plate was then incubated for 16 hours then placed onto a Zeiss A1 inverted epifluorescent 

microscope and five points chosen at random in each well. Images of these points were 

captured every 12 hours for 72 hours and ImageJ97 98 used to count the cell number. This 

experiment was repeated three times. 
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5.2.4.4.2 CellTracker 

CellTracker Green CMFDA and Red CMTPX dyes (Lifetechnologies C7025 and C34552), are 

cytoplasmic fluorescent dyes217. The protocol from Lifetechnologies217 was followed and a 

range of concentrations tested.  

MCF7-1 cells (passage 20-24 in 10 % FBS) were plated in a 12 well-plate in 1 mL media at 2 x 

104 cells per well and left to adhere for 7 hours. All media was removed and replaced with 1 

mL media containing either no fluorescent tag, green CellTracker or red CellTracker to the 

specified concentrations. All wells were divided equally between treatment groups. The well-

plate was incubated for 45 minutes and after this time the media-CellTracker solution was 

removed and replaced with standard media. The well-plate was kept in the dark at all times 

and the number of wells were distributed evenly between the groups. 

The well-plate was placed on a Zeiss A1 inverted epifluorescent microscope and five points 

chosen at random in each well. Images of these points were captured every 12 hours for 72 

hours. All images were taken twice, once with a fluorescent filter to allow imaging of the 

CellTracker and once with a light filter to allow imaging of all cells present in the field of view. 

All experiments were repeated three times and ImageJ97 98 was used to count the cell number.  

5.2.4.4.3 QTracker 

QTracker (Life technologies Q25049) are a type of nanoparticle designed to fluorescently label 

cells217. QTracker cell labelling kits use target peptides to deliver Qdot nanocrystals into cell 

cytoplasms. The QTracker cell labelling kit was obtained from Thermo Fisher Scientific Inc. and 

their accompanying protocol followed and adapted as stated below217.  

2 × 104 MCF7-1 cells (passage 21-25 in 10 % FBS) were plated onto 35 mm glass culture dishes 

(ibidi) and incubated for 12 hours in 0.5 mL media. QTracker labelling solutions of 2, 5, 10 and 

15 nM were prepared by mixing 1:1 appropriate volume of QTracker component A (2 µM 

nanocrystals in 50 mM borate buffer, pH 8.3) and component B (carrier, PBS pH 7.2). Solutions 

were incubated for 5 minutes in the dark at room temperature, the appropriate volume of 

media was added and the solution vortexed for 30 seconds.  

0.2 mL QTracker media was added to each glass dish and the cells incubated at 37 °C in the 

dark for either 1 or 4 hours. The solution was removed and cells washed twice with 0.3 mL 

media. 0.5 mL media per dish was added and the cells placed onto a Zeiss A1 inverted 
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epifluorescent microscope to try and capture images of fluorescently labelled live cells. 

Despite various concentrations and incubation times being trialled no fluorescence was 

detected. 

5.2.5 Measuring adaptation of MCF7-2 cells after 6 months culture under resource 

restriction 

MCF7-2 cells, obtained from Public Health England, were cultured in 25 cm2 culture flasks in 7 

mL media. These cultures were maintained for six months (passages 23-48) with three 

replicate lines for each treatment group, each line initiated 2 weeks after the previous one. All 

the culture media are listed in table 5.5 along with the name used to refer to each group of 

MCF7-2 cells. Initially (passage 15) MCF7-2 cells were cultured only in the MEM and DMEM 

control media. This allowed adaptation to the lab conditions as well as increasing cell number. 

After adaptation to the control media these cultures were then split into the eight treatment 

groups (shown in table 5.5). Every 7 days cells approximately 25 % of the cell population (see 

table 2.1) were passaged into new cultures. Cryogenic samples of each culture were stored 

monthly and samples of MCF7-2 cells (at passage 23) in the control MEM and DMEM media 

were cryogenically stored to act as an ancestral reference. 

All cultures started with 0.7x106 cells. Cells cultured in the DMEM control media were split into 

the DMEM control, 0 mM Glucose and 1 mM Glucose media. Cells cultured in the MEM 

control media were split into the MEM control, 0.5 % FBS, 5 % FBS, pH 6.5 and pH 7.0 media. 

pH was lowered through addition of lactic acid which was added dropwise to media at 37 °C. 

Media was left in 5 % CO2 for five minutes then a sterile pH meter used to determine pH.  

Due to lab wide mycoplasma infection these cultures had to be destroyed and any results, 

unless gained prior to a clear contamination test, were not able to be used for analysis. 

Spheroid spreading assays were conducted but could not be used in the analysis, data for 

some experimental repeats have also had to be removed. 
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Table 5.5: MCF7-2 cell groups. Culture media and reference name of MCF7-2 cells split into 

multiple cultures 

Reference 
name 

Basal media  FBS 
(%) 

Sodium 
pyruvate 
(mM) 

Glutamine 
(mM) 

Non-
essential 
amino 
acid (%) 

pH Glucose 
(mM) 

MEM 
Control 

Non-phenol 
red MEM 

10 1 2 1 7.0-7.5 5.5 

5 % FBS Non-phenol 
red MEM 

5 1 2 1 7.0-7.5 5.5 

0.5 % FBS Non-phenol 
red MEM 

0.5 1 2 1 7.0-7.5 5.5 

pH 7 Non-phenol 
red MEM 

10 1 2 1 7.0 5.5 

pH 6.5 Non-phenol 
red MEM 

10 1 2 1 6.5 5.5 

DMEM 
Control 

Non-phenol 
red DMEM 

10 1 4 n/a 7.0-7.4 5.5 

1 mM 
Glucose 

Non-phenol 
red DMEM 

10 1 4 n/a 7.0-7.4 1 

0 mM 
Glucose 

Non-phenol 
red DMEM 

10 1 4 n/a 7.0-7.4 0 

 

5.2.5.1 Time-lapse microscopy  

Evolved MCF7-2 cells were plated at 1000 cells per well onto a 12-well plate in 2 mL of their 

respective media. Approximately 1 hour prior to starting the experiment all media was 

removed and replaced. All wells were divided equally between each group and distributed 

around the plate. 

NIS-Elements photograph software captured images of four points in each well every 15 

minutes for 47 hours 15 minutes. A total of 18,144 images were captured and NIS-Elements 

converted these into 96 video files. These were analysed using ImageJ and MtrackJ97 98 to track 

2,897 individual cells, N=2.  

Large image time-lapse microscopy was attempted; where multiple photos are taken all 

bordering the original point allowing videos with a wider field of view at the original 

magnification (see section 3.2.2.1). This was done to obtain heritability data as well as more 

accurate motility however all attempts were unsuccessful.  
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5.2.5.2 MTT assays 

MTT Assays (detailed in section 2.4.2) measure the live cell concentration. MCF7-2 cells were 

plated at 1 x 104 cells per well in 200 µl of their specified media, each group of MCF7-2 cells 

were plated in 24 wells and each plate also contained 24 wells with a control of media only. 

Three independent replicates were obtained for 0 mM Glucose, pH 7 and pH 6.5 and DMEM 

and MEM Control cells, two independent replicates for 1 mM Glucose cells and only one 

replicate for 5 % FBS cells.  

5.2.5.3 Wound healing assay 

Each group of MCF7-2 cells were cultured in three wells of a 6-well plate until they formed a 

confluent monolayer. A 20 µl pipette tip was used to scratch a mark down the centre of each 

well and the media changed to remove any free floating cells237 238. The well-plate was placed 

on a Zeiss A1 inverted epifluorescent microscope and images of several points along the 

wound captured over time. The wound size in each image was measured using ImageJ 

software97 98 and the rate of wound closure calculated. The rate of wound closure is the 

percentage reduction in wound size measured over time. Reduction in wound size is calculated 

as a percentage to account for the differences in size of the initial wounds.  

5.2.6 Cell tracking 

A total of 444 videos were analysed using ImageJ and MtrackJ97 98 cells were chosen at random 

and tracks follow the central position of each cell in each image101. Where cell number was 

very low, either due to experimental parameters or technical limitations all cells in the field of 

view were tracked. A total of 18,873 cells were tracked comprising of 1,487,517 points within 

those tracks.  

A cell’s generation (labelled numerically in ascending order from the first progenitor), fate (the 

outcome of the cell – divided, died, moved off screen or still present at the end of the 

experiment) and its relationship to other cell tracks were manually recorded. Manual 

recording of these characteristics allowed subsequent comparisons between cell groups to 

ensure there was no bias within the population of cells measured.  

Three different cell:cell relationships could be used to calculate estimates of H2. As stated 

previously (chapters 3 and 4) these were mother:daughter, progenitor cell to its first 
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generation clonal descendants. Sister:sister, two cells produced from the same progenitor 

during its division. Cousin:cousin, second generation clonal descendants from one progenitor.  

5.2.7 Statistics 

All statistical analysis was performed using Minitab103 and IBM SPSS102. Throughout this project 

none of the data has undergone transformation105-107.  

5.2.7.1 Motility statistics 

Cell motility is represented as each cell’s average speed, calculated as the total distance of the 

path travelled (in µm) over its lifetime (in hours). The Lilliefors correction of the Kolmogorov-

Smirnov test has been used in conjunction with descriptive statistics to determine the 

distribution of the data104. For all experiments all repeats have been statistically compared to 

ensure no difference either between wells within an experiment or between replicate 

experiments (Kruskal-Wallis p>0.05). The data from all repeats for each group have been 

grouped together for further analysis130. 

As in chapters 3 and 4 any differences in cell motility between cell fates or generations were 

tested for to ensure there was no bias between the samples of cells measured and H2 has 

been estimated using the slope parameter of an ordinary least squares regression of trait 

values between related cells for the three different cell:cell relationships104.  

Outliers (identified using scatterplots of the standardised residuals and checked using 

Mahalanobis and Cooks distances) have been removed from the analysis of H2 and both H2 

and R2 values have been given in the results. R2 values show how much of the variance in the 

dependent variable (cell speed) is explained by the model104. As discussed in the methods, 

section 2.10.6 outliers represent natural variation in the cell population, however their 

presence could be explained by bias in the data identified when comparing cell types 

(generations & fates). Where appropriate such groups have been removed from the analysis, 

details on whether groups have been removed and why are given in the appropriate results 

section. 

5.2.7.3 Calculating cellular growth rates for common garden and competition assays 

For both competition and common garden assays the change in cell number over time was 

calculated using images of cells in culture at set time intervals. For each position at each time 
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interval the number of cells in each image was counted. The difference in cell number 

between time points for each position within the culture was then calculated as a percentage 

change in cell number over time.  

𝐶ℎ𝑎𝑛𝑔𝑒 𝑖𝑛 𝑐𝑒𝑙𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 (%) 

𝑇𝑖𝑚𝑒 (ℎ𝑜𝑢𝑟𝑠)
 

=  
[(𝐶𝑒𝑙𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑎𝑡 𝑇𝑖𝑚𝑒 2 − 𝐶𝑒𝑙𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑎𝑡 𝑇𝑖𝑚𝑒 1) × 100]

𝑇𝑖𝑚𝑒 2 − 𝑇𝑖𝑚𝑒 1
 

The average percentage change over time was then compared between groups. Calculating 

the growth rate as a percentage change in time takes account of any differences in cell 

number at the beginning of the experiments and allows accurate comparison between groups.   
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5.3 Results  

5.3.1 Effect of serum reduction on HeLa, HT1080, MCF7-3 and MDA-2 cells  

Cell lines were cultured for 72 hours in 10 % FBS and 0.5 % FBS nutrient media and multiple 

cell phenotypes measured. Reducing the amount of serum was predicted to increase 

competition between cells selecting for increased dispersal.  

5.3.1.1 Motility of HeLa, HT1080, MCF7-3 and MDA-2 cells over 72 hours culture in 10 % and 0.5 

% FBS media 

As seen in figure 5.3 there was no significant difference in speed between the different 

experimental repeats for HeLa, HT1080, MCF7-3 and MDA-2 cell lines in either 10 or 0.5 % 

media (Kruskal-Wallis test; p>0.06). As a result, all data for each repeat has been grouped 

together for further analysis. 

Time-lapse microscopy was used to track cell motility. It was predicted that increased 

competition would select for increased motility over time. As can be seen in table 5.6 this is 

true for HT1080 cells which have higher motility in the 0.5 % than the 10 % media (Mann-

Whitney U test; p<0.02) but not in the other cell lines. MCF7-3 and MDA-2 cells both have 

higher cell motility in 10 % than 0.5 % FBS media (Mann-Whitney U test; p<0.001) and there is 

no significant difference in motility between the groups for HeLa cells (Mann-Whitney U test; 

p=0.358). 

Figure 5.4 shows the median value and distribution of motility in both media for each cell line. 

All cell lines had a non-normal distribution of cell speeds (Lilliefor corrected Kolmogorov-

Smirnov test; p<0.001) in both 10 % and 0. 5 % media. 

Table 5.6: Median speed and N of HeLa, HT1080, MCF7-3 and MDA-2 cells in 10 and 0.5 % 

media. 

Cell line Median Speed [N] 

10 % 0.5 % 

HeLa 11.75 [2467] 11.89 [1858] 

HT1080 34.05 [2562] 34.98 [2093] 

MCF7-3 9.76 [1322] 8.21 [1977] 

MDA-2 24.28 [2452] 16.24 [1224] 
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Figure 5.3: Distribution of HeLa, HT1080, MCF7-3 and MDA-2 cell speeds in 10 and 0.5 % FBS 

media for each experimental repeat. The median is the line within the box and the box 

represents the interquartile range. The whiskers extend to the top and bottom 25 % of data 

values (excluding outliers). Outliers are represented by * and are data values extending at least 

1.5 times the interquartile range from the box. Data gathered from three independent 

experiments. N for each cell line, media and repeat is; HeLa 0.5 %; 1 = 823, 2 = 681 and 3 = 354. 

HeLa 10 %; 1 = 1125, 2 = 990 and 3 = 352. HT1080 0.5 %; 1 = 592, 2 = 587 and 3 = 914. HT1080 

10 %; 1 = 947, 2 = 810 and 3 = 805. MCF7-3 0.5 %; 1 = 424, 2 = 1190 and 3 = 364. MCF7-3 10 %; 

1 = 162, 2 = 969 and 3 = 191. MDA-2 0.5 %; 1 = 426, 2 = 484 and 3 = 314. MDA-2 10 %; 1 = 668, 

2 = 714 and 3 = 1070. 

HeLa HT1080 MCF7-3 MDA-2 
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Figure 5.4: Distribution of cell speeds in 0.5 % and 10 % FBS media for HeLa, HT1080, MCF7-3 and MDA-2 cell lines. The median is the line within the box and 

the box represents the interquartile range. The whiskers extend to the top and bottom 25 % of data values (excluding outliers). Outliers are represented by * 

and are data values extending at least 1.5 times the interquartile range from the box. Data was gathered from three independent experiments. The N for each 

cell line is; HeLa 4,325, HT1080 4,655, MCF7-3 3,300 and MDA-2 3,676. 
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As shown in table 5.7, generation 1 of MCF7-3 and MDA-2 cells in 0.5 % FBS media had 

significantly higher motility than generations 2 and 3 (Kruskal-Wallis test; p<0.001). 

Table 5.7: Median speed (µm/hour) and N for each of the first three generations in HeLa, 

HT1080, MCF7-3 and MDA-2 cell lines for both 10 and 0.5 % media. 

As shown in table 5.8 all cell lines in both media showed significant differences in cell speed 

between cell fates (Kruskal-Wallis p<0.001). For HeLa, MCF7-3 and MDA-2 cells the differences 

in motility between cell fates were the same for both 10 % and 0.5 % FBS media, cells that died 

(HeLa) or moved off screen (MCF7-3 and MDA-2) had significantly higher speeds (Mann-

Whitney U test, p<0.001). However HT1080 cells showed opposing results between the two 

groups, in 10 % media cells that moved off screen were significantly faster than cells that did 

not divide however in 0.5 % media those cells that did not divide were significantly faster than 

those that moved off screen (Mann-Whitney U test, p<0.001). 

By excluding the first generation of cells and only using relationships between their clonal 

descendants to calculate the broad-sense heritability, the effect on estimates of H2 caused by 

variation between generations and cell fates will be minimised. 

Table 5.8: Median speed (µm/hour) and N for each cell fate in HeLa, HT1080, MCF7-3 and MDA-

2 cell lines for both 10 and 0.5 % media. 

  

Cell line FBS media (%) Median speed [N] 

Generation 

1 2 3 

HeLa 0.5  11.93 [206] 12.39 [367] 11.35 [588] 

10 13.17 [272] 12.61[495] 11.47 [807] 

HT1080 0.5  34.84 [390] 35.20 [659] 36.22 [705] 

10 37.94 [236] 37.43 [373] 36.33 [523] 

MCF7-3 0.5  9.05 [476] 7.95 [665] 7.85 [600] 

10 9.26 [269] 9.46 [359] 9.58 [376] 

MDA-2 0.5  17.87 [639] 15.42 [443] 14.49 [150] 

10 24.83 [272] 25.06 [453] 23.61 [659] 

Cell line FBS media (%) Median speed [N] 

Fate 

Non-divided Divided Moved off screen Died 

HeLa 0.5  11.58 [910] 11.60 [848] 15.19 [130] 12.90 [21] 

10 11.42 [1267] 11.73 [1136] 15.32 [133] 12.69 [11] 

HT1080 0.5  36.47 [629] 34.97 [874] 32.65 [69] 33.67 [555] 

10 29.71 [515] 34.76 [1223] 29.36 [15] 35.85 [921] 

MCF7-3 0.5  7.831 [1164] 8.638 [774] 9.101 [75] 13.62 [12] 

10 9.62 [754] 9.98 [548] 8.75 [52] 24.29 [16] 

MDA-2 0.5  14.94 [837] 18.56 [301] 19.37 [53] 25.13 [51] 

10 22.96 [1208] 25.46 [1131] 23.21 [26] 27.47 [175] 
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5.3.1.2 Heritability of motility in HeLa, HT1080, MCF7-3 and MDA-2 cells over 72 hours culture in 

10 % and 0.5 % FBS media 

Cell speed is significantly heritable for all cell:cell relationships in both 0.5 and 10 % FBS media. 

Table 5.9 shows H2 values range from 0.796 - 0.295 and R2 values range from 0.09 - 0.63. Figure 

5.5 shows how H2 has been calculated for the mother:daughter relationship in both 0.5 and 10 

% media of the HeLa cell line.  

In the HeLa, HT1080 and MCF7-3 cell lines there appears to be a general trend for cells in 0.5 

% media to have higher H2 estimates than those in 10 % media. This is not true in the MDA-2 

cell line or for HT1080 sister:sister and MCF7-3 cousin:cousin relationships. For all groups the 

H2 estimates for the cousin:cousin relationship whilst significant are lower than those obtained 

for both mother:daughter and sister:sister. The number of post hoc comparisons meant it was 

not statistically possible to compare H2 estimates. R2 is the amount of variance in cell motility 

explained by the media group. R2 values appears to correlate with the results seen for H2 

estimates, groups with higher H2 estimates also have higher R2 values. Inclusion of multiple 

different cell:cell relationships and examination over several generations means the significant 

results seen here represent stable differences between clonal cell lineages. 

Table 5.9: Mean trait value, R2 and broad-sense heritability of motility in HeLa, HT1080, MCF7-3 

and MDA-2 cell lines in 0.5 % or 10 % FBS media for three cell:cell relationships. 

**p<0.01, ***p<0.001  

Cell line % FBS 
media 

No of 
families 

Mean 
speed 
(µm/hour) 

Heritability of cell motility H2 (R2) 

Sister:sister Mother:daughter Cousin:cousin 

HeLa 10 296 12.55 0.707 
(0.50)*** 

0.706 (0.5)*** 0.647 
(0.42)*** 

0.5 285 12.64 0.796 
(0.63)*** 

0.733 (0.54)*** 0.724 
(0.53)*** 

HT1080 10 248 37.25 0.545 
(0.3)*** 

0.558 (0.31)*** 0.364 
(0.13)*** 

0.5 295 37.55 0.593 
(0.35)*** 

0.518 (0.27)*** 0.504 
(0.25)*** 

MCF7-3 10 185 9.96 0.479 
(0.23)*** 

0.446 (0.2)*** 0.350 
(0.12)*** 

0.5 163 8.99 0.512 
(0.26)*** 

0.477 (0.23)*** 0.295 
(0.09)*** 

MDA-2 10 201 26.05 0.735 
(0.54)*** 

0.770 (0.59)*** 0.540 
(0.29)*** 

0.5 72 16.06 0.619 
(0.38)*** 

0.475 (0.23)*** 0.322 
(0.10)** 
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Figure 5.5: Example of the mother:daughter regression for motility of HeLa cells in 0.5 % and 10 % FBS media. Each point represents a mother cell and the 

mean speed of her daughters, the slope of the regression line is the estimate of broad-sense heritability. As the cells are clonal, the same method is applicable 

to other cell:cell relationships. 
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Figure 5.6: Heritability estimates of cell:cell relationships for HeLa, HT1080, MCF7-3, MCF7-2, MDA-1 and MDA-2 cell lines in 0.5 and 10 % media. N for each 

group is HeLa 10 %= 296, HeLa 0.5 % = 285, HT1080 10 % = 248, HT1080 0.5 % = 295, MCF7-3 10 % = 185, MCF7- 3 0.5 % = 163, MDA-2 10 % = 201, MDA-2 

0.5 % = 72. 
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5.3.1.3 Live cell concentration of HeLa, HT1080, MCF7-3 and MDA-2 cells over 72 hours culture in 

10 % and 0.5 % FBS media 

MTT assays were used to determine the live cell concentration, a marker for the amount of 

cell proliferation or death. Reducing the amount of serum was predicted to increase 

competition for nutrients and decrease proliferation.  

It appears that reducing the FBS concentration did not significantly alter the rate of 

proliferation in MCF7-3 and MDA-2 cells but did in HeLa and HT1080 cells. Figure 5.7 shows 

the median value and distribution of live cell concentration in both media for each cell line. 

HeLa and HT1080 cell lines had a significantly higher live cell concentration in 10 % media than 

0.5 % media (Mann-Whitney U test, p<0.001). There was no difference in live cell 

concentration between the two media for MCF7-3 or MDA-2 cells (Mann-Whitney U test, 

Bonferroni correction p>0.02). An increase in the rate of cell death in 0.5 % FBS media can be 

discounted due to the comparison of cell fates (section 5.3.1.1) between groups. All cell lines 

had a non-normal distribution of cell concentration (Lilliefor corrected Kolmogorov-Smirnov 

test; p<0.001) in both 10 % and 0. 5% media.  

 

 

 

 

 

 

 

 

Figure 5.7: Distribution of live cell concentration in 0.5 % and 10 % FBS for HeLa, HT1080, 

MCF7-3 and MDA-2 cell lines. The median is the line within the box and the box represents the 

interquartile range. The whiskers extend to the top and bottom 25 % of data values (excluding 

outliers). Outliers are represented by * and are data values extending at least 1.5 times the 

interquartile range from the box. Data was gathered from ten independent experiments.  
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5.3.1.4 Protein concentration of HeLa, HT1080, MCF7-3 and MDA-2 cells after 72 hours culture in 

10 % and 0.5 % FBS media  

Western blots were performed on lysates made after cells had been cultured for 72 hours in 

either 10 or 0.5 % FBS media. It appears that HT1080, MCF7-3 and MDA-2 cell lines show 

similar protein levels in both 10 % and 0.5 % FBS media however HeLa cells seem to show 

lower protein levels in 0.5 % compared to 10 % media. Figure 5.8 shows the difference in the 

ratio of each protein (relative to the total protein) between media groups for each cell line. 

The groups of proteins tested; stress & apoptosis, HDACs, focal adhesions and actin nucleation 

& polymerisation, were all chosen for their links to motility and their role in cell adaptation to 

a resource restricted environment. As seen in chapter 4, research into the role of specific 

epigenetic inhibitors did not yield conclusive results. It was hoped that comparison of a broad 

range of HDAC proteins would elucidate any alterations in expression occurring at a group 

level, i.e. if individual HDAC proteins were not significantly increasing or decreasing in 

expression but overall HDAC protein expression did increase/decrease significantly. Such 

trends could be missed if only studying single proteins individually. Cells in 0.5 % FBS media 

face increased competition for resources which would be expected to increase stress and 

potentially increase the apoptosis rate266 267.  Only the HeLa cell line showed a significant 

difference in both the proliferative rate and protein expression between the medias. However, 

cells in 0.5 % media seemed to have lower expression of stress and apoptosis proteins.  

Focal adhesion and actin nucleation and polymerisation proteins are linked to motility268-270. It 

was predicted that expression of these proteins would be increased in cell groups which 

showed an increase in motility268-270. Actin nucleation and polymerisation proteins may also 

show increased expression correlating to increased proliferative rates270. Neither of these 

correlations was observed in these results. Groups of cells that had increased motility (HT1080 

cells in 0.5 %, MCF7-3 and MDA-2 cells in 10 % media) or proliferation (HeLa and HT1080 cells 

in 10 % media) did not show any alteration in protein expression. The lack of correlation 

between protein expression and cell phenotypes could be due to the low N (=2) of the western 

blot experiments.  
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Figure 5.8: Mean ratio of proteins in 0.5 % and 10 % FBS media for HeLa, HT1080, MCF7-3 and 

MDA-2 cell lines. Data gathered from two independent experiments. 
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5.3.2 Effect of serum reduction on MCF7-1 cells  

MCF7- 1 cells were cultured for 12 weeks in a 5 % and 0.5 % FBS nutrient media and multiple 

cell phenotypes measured. Evolving cells in a resource restricted environment was predicted 

to cause adaptation to competition, particularly an increase in population motility over time. 

5.3.2.1 Motility of MCF7-1 cells evolved for 12 weeks in 5 % and 0.5 % FBS media 

As seen in figure 5.9 there was no significant difference in speed between the different 

experimental repeats for the ancestral or evolved cell lines (Kruskal-Wallis test; p>0.05). As a 

result, all data for each repeat has been grouped together for further analysis. 

 

 

 

 

 

 

 

 

 

Figure 5.9: Distribution of MCF7-1 ancestor and evolved cell speeds for each experimental 

repeat. The median is the line within the box and the box represents the interquartile range. The 

whiskers extend to the top and bottom 25 % of data values (excluding outliers). Outliers are 

represented by * and are data values extending at least 1.5 times the interquartile range from 

the box. Data gathered from three independent experiments. N for each cell line and repeat is; 

Ancestor; 1 = 69, 2 = 192, 3 = 152. Evolved 5 %; 1 = 89, 2 = 84, 3 = 54. Evolved 0.5 %; 1 = 117, 2 = 

123, 3 = 137. 
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MCF7-1 cells evolved for 12 weeks in a resource restricted environment were predicted to 

have increased motility. As seen in table 5.10, the results support this hypothesis, there is a 

significant difference in cell speed between the ancestor population and both groups of 

evolved cells, with evolved cells having significantly faster motility (Mann-Whitney U test, 

p<0.001). There was no significant difference in speed in the two evolved populations (Mann-

Whitney U test, p=0.543). The distribution of cell speeds in each group can be seen in figure 

5.10, all groups had non-normal distributions of cell speed (Lilliefor corrected Kolmogorov-

Smirnov test; p<0.001).  

Table 5.10: Median speed and N of ancestor and evolved MCF7-1 cells. 

MCF7-1 cell group Median Speed (µm/hour) N 

Ancestor 6.34 413 

Evolved 5 % 8.38 228 

Evolved 0.5 % 8.91 377 

No significant difference was found in cell speed between generations in the Evolved 5 % or 

the ancestral population (Kruskal-Wallis p=0.054). In the Evolved 0.5 % group the third 

generation was found to have a significantly higher speed than the first and second 

generations (Mann-Whitney U test, p<0.001). As can be seen in table 5.11, the N for 

generation 3 was very small, H2 estimates have been calculated using the first generation of 

cells and their clonal descendants and H2estimates cannot be calculated for the cousin:cousin 

relationship. No significant differences were found in cell speed between the different cell 

fates for any group (Kruskal-Wallis, p>0.114). As seen in table 5.12 only two types of cell fate 

were observed for this experiment. The lack of other cell fates could be due to the smaller 

time frame (in comparison to previous experiments) that this experiment was conducted over. 

Table 5.11: Median speed and N for each of the first three generations of the ancestral and 

evolved MCF7-1 cells. 

MCF7-1 cell group Median Speed (µm/hour) [N] 

Generation 1 Generation 2 Generation 3 

Ancestor 5.49 [234] 7.09 [176] 8.57 [4] 

Evolved 5 % 8.30 [114] 8.57 [154] 10.32 [116] 

Evolved 0.5 % 7.39 [89] 8.32 [103] 8.09 [52] 

 

Table 5.12: Median speed and N for each cell fate of the ancestral and evolved MCF7-1 cells. 

MCF7-1 cell group Median Speed (µm/hour) [N] 

Non-divided Divided 

Ancestor 6.07 [324] 7.98 [90] 

Evolved 5 % 8.84 [256] 9.13 [142] 

Evolved 0.5 % 8.38 [164] 8.09 [80] 



163 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.10: Distribution of cell speed for MCF7-1 cells evolved over 12 weeks in 0.5 % and 5 % FBS media and the ancestral population. The median is the line 

within the box and the box represents the interquartile range. The whiskers extend to the top and bottom 25 % of data values (excluding outliers). Outliers 

are represented by * and are data values extending at least 1.5 times the interquartile range from the box. Data was gathered from three independent 

experiments. The N for each group is; Ancestor 413, Evolved 0.5 % 377 and Evolved 5 % 228. 
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5.3.2.2 Distance to point of MCF7-1 cells evolved for 12 weeks in 5 % and 0.5 % FBS media  

The distance to point (D2P) of a cell is the distance a single cell moves between time frames. 

Measuring this over the course of an experiment can indicate how the rate of movement 

changes over time. As with motility there is a significant difference in mean D2P between the 

ancestor and both evolved groups with both evolved groups having significantly higher 

average D2P than the ancestor (Mann-Whitney U test, p<0.001). There was no significant 

difference in D2P of the evolved groups (Mann-Whitney U test, p=0.347). Figure 5.11 shows 

the distribution of mean D2P values for each cell group, the distribution of mean D2P for each 

cell group was non-normal (Lilliefor corrected Kolmogorov-Smirnov test; p<0.001). As seen in 

figure 5.12, when comparing D2P for each group over time, cells evolved in 0.5 % FBS have 

fewer non-motile cells than either the ancestor cells or those evolved in 5 % FBS (Kruskal-

wallis p<0.05).  

 

 

 

 

 

 

 

 

 

 

 Figure 5.11: Distribution of distance to point (D2P) measurements for MCF7-1 cells evolved over 

12 weeks in 0.5 % and 5 % FBS media and the ancestral population. The median is the line within 

the box and the box represents the interquartile range. The whiskers extend to the top and 

bottom 25 % of data values (excluding outliers). Outliers are represented by * and are data 

values extending at least 1.5 times the interquartile range from the box. Data was gathered 

from three independent experiments. The N for each group is; Ancestor 413, Evolved 0.5 % 377 

and Evolved 5 % 228.   
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Figure 5.12: Histogram showing distribution of distance to point (D2P) measurements at 0.25, 24 

and 48 hours for MCF7-1 cells evolved over 12 weeks in 0.5 % and 5 % FBS media and the 

ancestral population38.  
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5.3.2.3 Heritability of MCF7-1 cells evolved for 12 weeks in 5 % and 0.5 % FBS media 

Cell speed is significantly heritable for all cell:cell relationships, table 5.13 shows H2 values 

range from 0.816 - 0.214 and R2 values range from 0.05 - 0.67. H2 has been estimated as stated 

in the methods section 5.2.7.3 using simple unweighted regression of cell speeds between 

related cells. Due to low N, H2 could not be estimated for the cousin:cousin relationships of 

any cell group. Figure 5.13 shows how H2 has been calculated for the mother:daughter 

relationship in each group of MCF7-1 cells. Statistical comparison of H2 estimates between 

groups was not possible due to the number of post hoc comparisons. As shown in figure 5.14 it 

appears that both the evolved cell groups have greater heritability than the ancestral group. 

Particularly for the mother:daughter relationships where both the H2 and R2 values of the 

ancestral group is very low. 

Table 5.13: Mean trait value, R2 and broad-sense heritability of motility in MCF7-1 cells evolved 

for 12 weeks in 5 % and 0.5 % FBS media and the ancestral population for two cell:cell 

relationships. 

*p<0.05 **p<0.01, ***p<0.001 

  

Cell group No of 

families 

Mean 

speed 

(µm/hour) 

Heritability of cell motility H2 (R2) 

Mother:daughter Sister:sister 

Ancestor 87 6.83 0.214 (0.05)* 0.656 (0.43)*** 

Evolved 5 % 49 9.44 0.647 (0.42)*** 0.816 (0.67)*** 

Evolved 0.5 % 76 9.63 0.650 (0.42)*** 0.773 (0.6)*** 
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Figure 5.13: Example of the mother:daughter regression for motility in MCF7-1 cells evolved over 12 weeks in 0.5 % and 5 % FBS media and the ancestral 

population. Each point represents a mother cell and the mean speed of her daughters, the slope of the regression line is the estimate of broad-sense 

heritability. As the cells are clonal, the same method is applicable to other cell:cell relationships. 
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Figure 5.14: Heritability estimates of cell:cell relationships for ancestral and evolved MCF7-1 cells. N for each group is Ancestor = 87, Evolved 5 % = 49, Evolved 

0.5 % = 79.  
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5.3.2.4 Common garden assays comparing growth of MCF7-1 cells in 5 % and 0.5 % FBS media 

The rate of proliferation for each cell group was calculated as the percentage change in cell 

number over time (section 5.2.7.3) and measured in both the evolved media; 5 and 0.5 % FBS. 

When comparing growth at 12 hours to 72 hours, only the Evolved 5 % cells showed a 

significant difference with higher growth in the 5 % media (Mann-Whitney U test, p<0.001).  

In both the 5 % and 0.5 % media Ancestor cells showed the lowest growth rates (Mann-

Whitney U test, p<0.001). In the 0.5 % media there was no significant difference between the 

two evolved lines (Mann-Whitney U test, p=0.152) however in the 5 % media Evolved 5 % cells 

showed the highest growth rate (Mann-Whitney U test, p<0.001).  

The percentage change in cell number for each cell group in both media can be seen in figure 

5.15 data had a mix of normal and non-normal distributions (Lilliefor corrected Kolmogorov-

Smirnov test).  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.15: The median percentage change in cell number over time for MCF7-1 cells evolved 

over 12 weeks in 0.5 % and 5 % FBS media and the ancestral population when cultured in 5 % 

and 0.5 % FBS media. N = 3.  
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5.3.2.5 Spheroid spread of MCF7-1 cells evolved for 12 weeks in 5 % and 0.5 % FBS media 

Figure 5.16 is an example of how MCF7-1 cells evolved in 5 % media for 12 weeks cultured as 

spheroids spread over time in 5 % and 0.5 % media. Spheroid spread was calculated as the 

percentage increase in area over 72 hours (section 5.2.4.3) and compared for each group.  

 

 

 

 

 

 

 

Figure 5.16: Example image of MCF7-1 cells evolved in 5 % media for 12 weeks cultured as 

spheroids then left to spread in 5 and 0.5 % media.  

Figure 5.17 shows the mean average change in spheroid area for each group, significant 

differences between groups has been indicated with a red line. Evolved 5 % cells had a greater 

change in area when cultured in 0.5 % FBS media than in their adapted 5 % FBS media 

(independent T-test, p=0.002). This is despite them showing a faster growth rate in the 5 % 

media (as seen in the common garden assay section 5.3.2.4) indicating that migration has 

increased in the 0.5 % media. 

Evolved 0.5 % cells did not show a significant difference in the change in spheroid area 

between the two media (independent T-test, p=0.249). Comparison of spheroid spread 

between the both evolved cell groups in their adapted environments showed no significant 

difference (independent T-test, p=0.057). Independent T-tests were used to compare the 

change in spheroid area between cell groups and between the media for each cell group. 

Parametric tests could be used as all groups had a normal distribution for the change in area 

(Lilliefor corrected Kolmogorov-Smirnov test; p>0.101) and were not heteroscedastic (Levene’s 

test p>0.223).   
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Figure 5.17: Percentage change in spheroid area after 72 hours for MCF7-1 cells evolved over 12 

weeks in 0.5 % and 5 % FBS media in both their adapted and the alternative media. The height 

of the bar is the mean average of each group and error bars extend for two standard errors 

either side. Significant differences between groups are indicated by a red line. Data gathered 

from three independent repeats.  
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5.3.2.6 Testing fluorescent tags for competition assays  

MCF7-1 ancestor cells were labelled with fluorescent probes to test their suitability for use in 

competition assays, the fluorescent signal had to be maintained between cell divisions for a 

period of 72 hours. For all experiments cell number has been calculated as a percentage 

change over time to allow comparisons between groups (section 5.2.7.3). Three fluorescent 

tags were tested, Qtracker was unsuccessful at fluorescently labelling cells. CellLight and 

CellTracker did fluorescently label cells but inhibited cell proliferation so are not suitable for 

use in competition assays. 

5.3.2.6.1 CellLight 

As seen in figure 5.18 cells labelled with CellLight show a significant decrease in cell number 

over time (Kruskal-Wallis, p<0.001) the control group shows a significant increase (Kruskal-

Wallis, p<0.001). This suggests that either CellLight is inhibiting cell proliferation and/or 

increasing apoptosis or that photobleaching is occurring and the fluorescent marker is 

degrading over time leading to an inaccurate cell count. This make GFP CellLight an unsuitable 

fluorescent tag for use in competition assays. The percentage change in cell number over time 

was non-normally distributed (Lilliefor corrected Kolmogorov-Smirnov test; p<0.001).  

 

 

 

 

 

 

 

 

 

 

Figure 5.18: The median percentage change in cell number over time of MCF7-1 cells with or 

without GFP nuclear CellLight. Data gathered from three independent experiments.  
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5.3.2.6.2 CellTracker 

As seen in figure 5.19, there was no significant difference in cell growth between 10 µM red 

CellTracker and the control group (Mann-Whitney U test, bonferroni correction, p=0.03) 

indicating that red CellTracker does not inhibit proliferation and so may be suitable for use in 

competition assays. Caution must be taken when interpreting results as the percentage 

change in cell number over time was non-normally distributed for all groups (Lilliefor 

corrected Kolmogorov-Smirnov test; p<0.001). Even if red CellTracker is suitable for use in 

competition assays green CellTracker will also be needed to distinguish between cell groups.  

There is a significant difference at all time points between the control group and cells labelled 

with 10 µM green CellTracker (Kruskal-Wallis, p=0.276). As mentioned in section 5.3.2.6.1 the 

decrease in cell number over time indicates that either green CellTracker is inhibiting cell 

proliferation and/or increasing apoptosis or photobleaching of the fluorescent label is 

occurring leading to an inaccurate cell count.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.19: The median percentage change in cell number over time of MCF7-1 cells for 

CellTracker concentrations (µM). Data gathered from three independent experiments.  
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To test whether the decrease in cell number is due to inaccurate fluorescent labelling with 

green CellTracker, cell counts were obtained both with a fluorescent filter (only fluorescent 

cells will be counted) and without (the total number of cells present in the field of view). To 

investigate whether the decrease in cell number is due to green CellTracker inhibiting 

proliferation a range of concentrations (0, 2.5, 3.25, 3.75, 5 and 6.5 µM) of the green 

CellTracker were investigated to see if any concentration could stably label cells without 

altering proliferation.  

Only cells labelled with 5 µM green CellTracker showed a significant difference between the 

counts, with higher growth observed without a filter (Mann-Whitney U test, p=0.009). This 

suggests that the fluorescent label is maintained over the 72hour period and is not degrading 

over time leading to an inaccurate cell count.  

As seen in figure 5.20, only cells in 0 µM showed a significant increase in the percentage 

change in cell number over time (Kruskal-Wallis, p<0.001) no other concentration showed a 

significant difference (Kruskal-Wallis, p>0.037). This suggests that green CellTracker is 

inhibiting cell proliferation/or increasing apoptosis, either of which make it unsuitable for use 

in competition assays. The percentage change in cell number over time was non-normally 

distributed for all groups (Lilliefor corrected Kolmogorov-Smirnov test; p<0.001).  
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Figure 5.20: The median percentage change in cell number over time of MCF7-1 cells for green CellTracker concentrations (µM). Cell counts were obtained 

both with (only fluorescent cells counted) and without (all cells present in the field of view counted) fluorescent filters. Data gathered from three independent 

experiments. 
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5.3.3 Effect of resource restriction on MCF7-2 cells 

MCF7- 2 cells were cultured for 6 months in 5 % and 0.5 % FBS media, 0 mM and 1 mM 

Glucose media and at pH 6.5 and pH 7.  Multiple cell phenotypes were then measured and 

compared to test for adaptations in the cell populations. Due to mycoplasma infection it was 

not possible to include all cell groups in each experiment. Unless gained prior to a clear 

contamination test, results could not be included or used for analysis. 

5.3.3.1 Motility of MCF7-2 cells evolved for 6 months in reduced glucose and pH environments 

Time-lapse microscopy measured motility of MCF7-2 cells evolved for 6 months in acidic (pH 

7), low glucose (1 mM and 0 mM Glucose) and their respective control media (MEM and 

DMEM Control).  

The results in table 5.14 suggest that restricting glucose selects for increased motility but 

removing it completely does not as only cells in 1 mM Glucose had significantly higher speed 

than the DMEM control cells (Mann-Whitney U tests, p<0.001). Culturing cells in an acidic 

environment appears to negatively impact cell motility, with cells cultured at pH 7 being 

significantly slower than MEM control cells (Mann-Whitney U tests, p=0.001).  

The distribution of cell speeds in each group can be seen in figure 5.22, all groups had non-

normal distributions of cell speed (Lilliefor corrected Kolmogorov-Smirnov test; p<0.001). Due 

to small N it was not possible to conduct statistical analysis on the generations or fate of cells, 

suggesting that resource restriction over long periods of time may negatively impact cell 

proliferation.   

Table 5.14: Median speed and N of control and evolved groups of MCF7-2 cells. 

MCF7-2 cell group Median speed (µm/hour) N 

MEM Control 12.19 1520 

pH 7 7.42 375 

DMEM Control 8.05 347 

1 mM Glucose 10.59 354 

0 mM Glucose 8.24 301 
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Figure 5.21: Distribution of cell speed for MCF7-2 cells evolved over 6 months in low glucose and low pH media and the ancestral populations. The median is 

the line within the box and the box represents the interquartile range. The whiskers extend to the top and bottom 25 % of data values (excluding outliers). 

Outliers are represented by * and are data values extending at least 1.5 times the interquartile range from the box. Data was gathered from two independent 

experiments. The N for each group is; 0 mM Glucose 301, 1 mM Glucose 354, DMEM Control 347, MEM Control 1,520 and pH 7 375. 
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5.3.3.2 Live cell concentration of MCF7-2 cells cultured in resource restricted media 

MTT assays were used to determine the live cell concentration, a marker for the amount of 

cell proliferation or death. Increasing resource restriction was predicted to increase 

competition and decrease proliferation. This hypothesis is not supported by the results. 

As seen in figure 5.22 and table 5.15, over 72 hours there is a significant difference in live cell 

concentration between groups (Kruskal-Wallis p<0.001) with cells in 5 % FBS showing less 

proliferation than the MEM control and pH 6.5 groups which were all lower than cells in pH 7. 

The DMEM control group had a significantly greater live cell concentration than either 1 mM 

or 0 mM. All groups had a non-normal distribution of cell concentration (Lilliefor corrected 

Kolmogorov-Smirnov test; p<0.01). 

Table 5.15: Median standardised absorbance values and N of control and evolved groups of 

MCF7-2 cells. 

MCF7-2 cell group Standardised Absorbance 
values (OD at 540 nm) 

N 

MEM Control 0.059 192 

pH 7 0.078 209 

pH 6.5 0.054 196 

5 % FBS 0.033 72 

DMEM Control 0.193 208 

1 mM Glucose 0.107 144 

0 mM Glucose 0.117 216 

If resource restriction was causing a reduction in proliferation it would be expected that all of 

the evolved groups would have lower live cell concentrations than their respective controls. 

Cells evolved in pH 7 media have a higher average live cell concentration than their control. As 

seen in figure 5.23 there is a negative correlation (-0.023) between average motility and 

proliferation. These results could suggest a trade-off between increased motility and reduced 

growth, cells in 1 mM and 0 mM Glucose showed less proliferation and greater motility than 

the DMEM control and cells at pH 7 showed more proliferation and lower motility than the 

MEM control.  
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Figure 5.22: Distribution of live cell concentration for MCF7-2 cells evolved over 6 months in low glucose, low pH and low FBS media and the ancestral 

population. The median is the line within the box and the box represents the interquartile range. The whiskers extend to the top and bottom 25 % of data 

values (excluding outliers). Outliers are represented by * and are data values extending at least 1.5 times the interquartile range from the box. Data was 

gathered from three independent experiments for 0 mM Glucose, pH 7 and DMEM Control cells, two independent experiments for 1 mM Glucose and pH 6.5 

cells and only one experiment for 5 % FBS cells. 
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Figure 5.23: Relationship between the average proliferation (standardised absorbance values at OD 540 nm) and motility (µm/hour) for five groups of MCF7-2 

cells. The average is the median of each group and data has been gathered from three independent repeats for the proliferative rate and two independent 

repeats for the motility. 
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5.3.3.3 Wound healing rate of MCF7-2 cells cultured in resource restricted media 

Wound healing assays measure collective migration and were calculated as the percentage 

reduction in wound size over time. It was predicted that decreasing resources would increase 

motility however this was not seen in the results. The only significant difference between 

groups was that cells in 5 % FBS had a significantly faster mean wound healing rate than those 

in pH 7 (ANOVA Tukey p = 0.03) or the MEM control (ANOVA Tukey p = 0.02).  

Figure 5.24 shows the mean percentage change in wound area for all groups, data was 

normally distributed for all groups (Lilliefor corrected Kolmogorov-Smirnov test; p>0.201). 

These results are different to those obtained when individual cell motility was measured and 

demonstrate the importance of measuring different aspects of metastasis. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.24: Wound healing rate for MCF7-2 cells evolved over 6 months in low glucose, low pH 

and low FBS media and the ancestral population. The height of the bar is the mean average of 

each group and error bars extend for two standard errors either side. Data gathered from three 

independent repeats.  



  

182 
 

5.4 Discussion 

In this chapter experimental evolution techniques have been developed to enable the 

application of dispersal theory to cancer cells in vitro. Selection experiments were used to 

culture cancer cells in vitro in resource restricted environments for varying periods of time and 

their response to selection measured. Results suggest that selection for 12 weeks in a resource 

restricted environment does select for increased motility38.  

5.4.1 Adaptation of experimental evolution techniques to in vitro cancer cell culture 

Techniques had to be adapted for use in cancer cell culture36. Whilst cancer cells do bear many 

similarities to microorganisms making them well suited for experimental evolution, they are 

also far more complex having evolved as part of a multicellular organism before undergoing 

their own individual mutations62.  

5.4.1.1 Creating a serum free media 

Cancer cells are fastidious in their growth. Each cell line has specific media requirements and 

‘lab adapted’ strains are those that have adapted to their culture conditions. Whilst many 

media supplements are well defined serum is a very variable media supplement. Serum is the 

liquid component of clotted blood it contains many substances whose concentrations and 

effects are unknown64 243. It is collected from individual animals sent to slaughter so cannot be 

standardised from batch to batch or made specific to a certain cell line230 258 271. This variation 

makes standardisation of protocols difficult both within and between laboratories64. As 

different batches as well as different cell lines have been tested throughout this project this 

could explain some of the variation in results.  

Attempts were made to create a serum free media suitable for cancer cell culture. If 

successful, this serum replacement media would have allowed standardisation across 

experiments64. Cell culture media has been specifically adapted to maintain cell culture in 

vitro. Changing the conditions by removing supplements or altering concentrations resulted in 

cell death. Only a small selection of serum-free media formulations exist and these are 

confined to specific cell lines. Furthermore, these formulations are proprietary, they cannot be 

reproduced and the exact composition remains unknown243. Serum free medium must be cell 

type specific, the lack of success in this project suggests either a lack of essential components 

or incorrect concentrations. Cell survival and proliferation could not be maintained in the 
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serum free media, even when using a commercially available serum replacement supplement. 

The time and cost of developing a serum free media meant that in the scope of this project it 

was more viable and effective to use standard basal medium with serum supplementation64. 

5.4.1.2 Creating a heterogeneous environment 

Biomolecular gradients play a vital role in cell growth, migration and differentiation247 and 

have been linked to cancer metastasis248. It was hoped that culture of cells in a biomolecular 

gradient would demonstrate the selective pressures of resource restriction on motility.  

Cell migration in vitro is a relatively slow process (approximately 10 µm/hour). This creates 

problems in setting up and maintaining a resource gradient over the length of time needed, 

whilst also maintaining a large enough population of cells to be statistically relevant. Attempts 

were made to culture cells in a resource gradient, section 5.2.3.1, these attempts were 

unsuccessful due to the low numbers of cells able to be maintained in the cultures or the low 

motility of the cell populations resulting in low cell numbers (table 5.2).  

Trial of these methods and equipment demonstrated that the transwell assay (table 5.2) 

would be the most suitable technique for selection of motile cells in in vitro culture. Whilst in 

this project the transwell assay proved unsuccessful, this could be due to the small pore size of 

the inserts, 0.4 µm is much smaller than the average cancer cell used in this project (average 

size 40-100 µm). The cell types used could also have played a role in the lack of success, 

smaller more motile cells may migrate in high enough numbers to make re-culture of cells a 

possibility. It could also be that the time period monitored (between 24 hours and 14 days) 

was not long enough for selection to have occurred. Using a transwell insert with larger pore 

sizes as well as culture of cells for an extended period of time in resource restricted 

environments before selection using a transwell assay may increase experiment success.   

Cells in culture are not in an entirely homogenous environment (Figure 4.10, section 4.3.3) the 

effects of kin competition may still act as a selective pressure to increase cell motility even in 

the absence of a predictable controlled resource gradient14 41.   

5.4.1.3 Testing of fluorescent probes for use in competition assays 

Competition assays involve the co-culturing of two populations creating competition for 

resources. They measure the relative fitness of the populations to each other, usually by the 

number of survivors or each population’s contribution to future generations14 235. There may 
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be trade-offs between cell phenotypes such as motility and growth. Competition assays 

provide a comprehensive measure of fitness as they measure how a combination of 

phenotypes enable cell survival14 51 235.  

Before competition assays could be attempted the use of fluorescent probes and their effect 

on cell phenotypes had to be tested. All of the fluorescent tags tried in this project (section 

5.2.4.4) are unsuitable for use in this project. CellLight and CellTracker significantly reduced 

cell growth (figures 5.18 and 5.19) and QTracker was unsuccessful at labelling cells. Whilst red 

CellTracker did not show a significant reduction in cell growth, it did appear to have an effect 

over the 72 hour period (figure 5.19). This makes them unsuitable for use in this project as 

labelling cells for competition assays would add another level of selection to the experiment 

and the reduction in cell growth may invalidate results. 

The fluorescent tags chosen in this project all acted via different mechanisms and targeted 

various locations so would not have been expected to affect cell characteristics in the same 

manner84. CellLight uses endocytosis of BacMam technology (a baculovirus coupled with a 

mammalian promoter) to induce nuclear expression of fluorescent molecules217 272 273. 

Transfection of a cell, forcing it to express a foreign protein may reduce its fitness through 

reduction of resources needed for essential cell functions.  

A range of green CellTracker concentrations were trialled (figure 5.20) to determine if a lower 

concentration would allow its use in competition assays. No concentration was found that did 

not affect cell growth. As seen in figure 5.20 the reduction in growth when cells were labelled 

with CellTracker was not due to a lack of precision in fluorescent labelling or to a reduction in 

the fluorescent signal making it unlikely that the results seen were due to issues with 

fluorescent signalling. CellTracker is a cytoplasmic dye which should passively diffuse through 

the cell membrane and undergo a hydrolysis reaction resulting in glutathione conjugation217. A 

study by Lulevich et al (2010) found a significant effect on the cell characteristics of rigidity 

and adhesion when MDA-MB-468 and MLC-SV40 cells were fluorescently labelled with CMFDA 

(green CellTracker) 274. Glutathione distribution is heterogeneous and whilst abundant (in the 

millimolar range) the CellTrackers reaction with intracellular proteins may be depleting 

glutathione and affecting cell function275.  

These results suggest that fluorescently labelling cells reduces their fitness meaning in vitro co-

culture of cancer cell lines for use in competition assays is not possible. Using competition 

assays as a measure of cell fitness has disadvantages, cell behaviour is comprised of integrated 
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phenotypes and phenotypic variability could arise from either developmental plasticity or 

phenotypic flexibility15. By measuring a discrete phenotypic trait (in this case proliferation in 

co-culture) the population ‘fitness’ could be over or under estimated. Cell lines with a faster 

proliferative rate would be expected to outcompete those with a lower proliferative rate 

irrespective of their environment. An alternative to competition assays would be quantitative 

analysis of multiple cell traits either in an individual cell or in population and comparison 

between cell lines. By using multiple different techniques and comparison of many different 

phenotypes this may give a better representation of fitness and allow comparison between 

groups without modifying populations. 

5.4.2 Selection of cells in serum restricted media 

Dispersal theory predicts that culture of cells in a resource restricted environment would 

increase competition and hence select for increased motility14 36 39. Serum contains growth and 

adhesion factors which promote cell proliferation and cell attachment, it is also a source of 

proteins, minerals, lipids and hormones64. FBS is an essential component of cell culture 

providing many nutrients essential to cell survival64. Reducing the serum concentration was 

predicted to increase competition between cells.   

5.4.2.1 Selection over 72 hours in HeLa, HT1080, MCF7-3 and MDA-2 cells 

Four cell lines, HeLa, HT1080, MDA-2 and MCF7-3 were cultured in a high (10 % FBS) and low 

(0.5 % FBS) nutrient media for 72 hours. For MCF7-3 and MDA-2 cells decreasing the serum 

concentration over a 72-hour period did not increase motility, cells in 10 % FBS displayed 

higher motility than those in 0.5 % FBS. However, there was no difference in the growth of 

these cell lines between the 10 and 0.5 % FBS media. This could suggest that MCF7-3 and 

MDA-2 cells exposed to a reduction in serum maintained their proliferation and reduced their 

motility to do so. Both HeLa and HT1080 cells showed reduced proliferation in the 0.5 % FBS 

media, HeLa cells showed no difference in motility between the media and HT1080 cells 

showed increased motility in the 0.5 % FBS media. This could suggest that these cell lines 

reduced their proliferation in order to maintain cell motility. These results indicate there might 

be a trade-off between proliferation and motility.  

HeLa, HT1080 and MCF7-3 cells tended to show greater H2 estimates for motility in 0.5 % FBS 

than 10 % FBS, MDA-2 cells had greater H2 estimates in 10 % FBS than 0.5 % FBS (table 5.9). 

The magnitude of a phenotypes response to selection depends both on the heritability and 
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strength of selection276. Adaptation is the process of ‘fit’ genotypes (in this case cells with 

higher motility) rising in frequency, the mutation rate and the ancestral range in motility will 

affect how quickly this occurs. In a population with a low mutation rate and a narrow range in 

motility acquisition of new phenotypes may take longer, expansion of the clones already in the 

population will occur meaning the shift in population average is less marked113. HT1080 cells 

had the greatest variance and range in cell motility (seen in figure 5.4), this could explain why 

only this cell line is showing a significant increase in cell motility. HT1080 cells also had the 

fastest average division time, 17.1 hours. This faster division rate along with a greater range in 

cell motility could mean selection is only producing a measurable effect on the HT1080 cell 

line113.  

Studies on phytoplankton have shown that organisms exposed to resource limitation over a 

short period of time show plastic alterations in molecular phenotype including protein 

expression277. Western blot analysis on the protein expression of each cell line in 10 % and 0.5 

% FBS media shows that apart from HeLa cells there does not seem to be a difference in 

protein expression between the two media (figure 5.8). Over 72 hours selection may not have 

had chance to act at a population level; this is partly due to the phenotypic plasticity cancer 

cells display when adapting to their environment 15 29 276. Other studies have shown over short 

time periods (24-48 hours) cancer cells are capable of producing plastic responses to a 

reduction in nutrient levels. These results may simply show a cell populations immediate 

response to the lack of nutrients and not selection for a particular trait. 

5.4.2.2 Selection over 12 weeks in MCF7-1 cells 

MCF7-1 cells were cultured in serum reduced media (5 % and 0.5 %) for 12 weeks. This longer 

time frame allowed selection to have occurred and for populations to have adapted to their 

environments. The results presented in section 5.3.2 are part of a larger project by this lab, 

see appendix A. The data presented in section 5.3.2 has been further expanded on by other 

members of this lab leading to an increase in N and inclusion and testing of more cell groups 

for some experiments. 

Both evolved cell lines had significantly higher motility in comparison to the ancestor (figure 

5.10). In the data gathered as part of this project there was no statistically significant 

difference between the two evolved groups when comparing their migration in the spheroid 

spreading assays (figure 5.17). However further work done by this lab, see appendix A, where 

growth rate was accounted for in spheroid spread, did show a significant difference between 
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groups with Evolved 0.5 % cells having faster spheroid spread than both Evolved 5 % and 

Ancestor cells38. These results suggest that dispersal theory can be applied to cancer cells and 

that resource competition selects for increased motility.  

Spheroid spreading assays involve the collective migration of cells and have been used to 

study spreading behaviours of cancers251-253. This type of migration is different to measuring 

individual cell motility and is a more accurate representation of an in vivo environment249. 

Measuring individual cell motility gives a more precise measure of population motility and 

may be more accurate as it is possible to gather data on each individual cell (generation, fate 

and relatedness to other cells). Using multiple different techniques and applying them to 

experimental evolution methods enables a more accurate measure of cell fitness and more 

robust testing of hypotheses. Resource restriction appears to increase both individual cell 

motility and collective migration. 

Both evolved cell groups also had higher H2 than the ancestor (table 5.13) which indicates that 

the proportion of motility due to genetic components has increased or that the environmental 

variation has decreased. Reducing the serum concentration may well have lowered the 

amount of environmental variation but as shown in figures 4.10 and 4.11 even at very low 

concentrations solutions can still be heterogeneous at a cellular level. The R2 values for 

ancestor mother:daughter cells was very low, indicating that the regression model explained 

the data poorly which could explain why the H2 estimates were much lower in this group than 

in the evolved cells. The increase in H2 estimates could also occur due to genetic drift or if the 

changes in motility of the evolved lines was a plastic response modulated by epigenetic 

mutations38 47.  

When the distance to point was measured (section 5.3.2.2), the distance each cell moves 

between time frames38.  It was found that Evolved 0.5 % cells had fewer non-motile cells at 

any given time point than both Evolved 5 % and Ancestor cells38, seen in figure 5.12. Figure 

5.10 suggests that reducing serum concentration is selecting for increased motility, figure 5.12 

suggests that this increase in motility is due to an increase in the rate of movement. Cells 

cultured in 0.5 % FBS are consistently motile as resource competition is always high however 

in 5 % media cells may increase their motility in response to increased competition, such as an 

increase in the number of surrounding cells.  Further work is currently ongoing in this area to 

investigate motility in response to surrounding cells.  
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Common garden assays showed Evolved 5 % cells had a significant difference between media 

for both their growth rate and spheroid migration. With higher growth in the 5 % media but 

greater migration in the 0.5 % media. This indicates an initial plastic response of increased 

motility, at the cost of decreased proliferation when placed under increased resource 

restriction. Experiments on E. coli have found a trade-off between growth and motility with 

bacteria grown in a cyclical environment showing a plastic alteration of increased motility at 

the cost of reduced growth rates when resource availability becomes heterogeneous278.  

Evolved 5 % cells also showed a higher growth rate than Evolved 0.5 % cells but only in the 5 % 

media. It may be that in 0.5 % media there is a maximum growth rate based on the 

concentration of essential nutrients. If evolved 0.5 % cells have reduced their proliferation due 

to resource restriction it may take time for adaptation to occur and the proliferation rate to 

increase113.  

5.4.3 Selection of MCF7-2 cells over 6 months in resource restricted media 

Lab adapted cell lines acquired from commercial sources come with recommended culture 

media. The culture media provides the necessary nutrients, growth factors and hormones for 

cell growth as well as helping regulate pH and osmotic pressure64 80 81. Attempts were made to 

culture MCF7-2 cells for a longer time period than previously achieved and in a greater range 

of nutrient deprived environments. Media was altered so that cells were cultured in reduced 

glucose and FBS and at an acidic pH.  It was hypothesised that reducing the nutrient 

concentrations in culture will increase the competition between cells, this increased 

competition due to resource limitation would select for an increase in motility as motile cells 

migrate away from competition and towards areas with higher nutrient concentrations38.  

Glucose is an energy source so a reduction in glucose would be expected to increase 

competition, dispersal theory predicts this should select for increased motility. Media contains 

5.5 mM of glucose; this is loosely based on the approximate concentration of glucose in the 

arteries and capillaries279 280. Cells were cultured for 6 months at reduced glucose 

concentrations of 1 and 0 mM.  

Most cell lines, and all those used in this project, grow well at pH 7.4. Media controls and 

buffers the pH of cells in culture by a balance between dissolved carbon dioxide (CO2) and 

bicarbonate ions (HCO3
-)281. Whilst pH itself is not a resource, hypoxic environments that can 

induce acidic pH have been shown to increase metastatic progression and capability244 and 
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molecular processes are greatly influenced by environmental pH. Culture pH was lowered 

using lactic acid to pH 7 and pH 6.5. 

As previously discussed, serum is an essential component of cell culture providing many 

nutrients essential to cell survival64. Reducing the serum concentration to 5 and 0.5 % has 

been shown to select for increased motility but with a potential trade off in reduced 

proliferation (section 5.4.2.2).  Selection of MCF7-2 cells over a longer time period under the 

same serum restricted conditions was conducted to see whether similar adaptations occurred 

and to allow comparison between the glucose restricted and acidic pH cultures.  

5.4.3.1 Selection over 6 months in glucose restricted media 

Figure 5.21 shows cells evolved in 1 mM Glucose have increased motility in comparison to 

both their control and cells in 0 mM Glucose. No significant increase in motility was measured 

for cells cultured in 0 mM Glucose. When comparing the rates of collective migration and 

proliferation no significant differences were seen between the two groups. The similarities 

between groups in their collective migration may be caused by concentration gradients 

created when cells are cultured as spheroids. This increase in resource heterogeneity for other 

nutrients may be causing cells in 0 mM Glucose to display a plastic increase in motility, cells 

increase their motility to migrate to areas with higher resource concentrations, when they 

achieve this their motility may revert to previous levels. Plasticly increasing motility may aid in 

balancing the trade-off seen between motility and proliferation, figure 5.23. 

In cancer cells glucose is metabolised via glycolysis which has been linked to attenuation of 

apoptosis242 282 283. It may be that removing glucose altogether not only completely removes an 

energy source but also increases apoptosis, if a strong selective pressure is applied on a small 

range of phenotypes it may lead to population extinction. This would occur irrespective of 

whether natural selection was occurring113. Whilst population extinction has not occurred it 

may be that cells in 0 mM Glucose may have to expend more energy on maintaining their 

proliferation. 

5.4.3.2 Selection over 6 months at an acidic pH 

Extracellular pH is known to affect cell behaviour in vivo284 and an acidic pH increases the 

metastatic potential of cancer cells245. MCF7-2 cells maintained in culture at pH 7 showed 

reduced motility compared to the control (figure 5.21) however when the rate of collective 
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migration was compared there was no difference between cells cultured at an acidic pH and 

the control (figure 5.24). The growth rate of cells cultured at pH 7 is significantly higher than 

both the control and cells at pH 6.5, figure 5.22. The increased proliferation of cells in pH 7 

could explain why there is no difference in the collective migration of pH 7 cells and the 

control. Wound closure could be accelerated due to higher proliferation not similar motility. 

These results suggest that pH 7 does not select for increased motility.  

As discussed in section 5.4.2.2 there may be a trade-off between motility and proliferation. 

Cells cultured at pH 7 may display significantly lower motility as they have significantly greater 

proliferation. Song et al (2006) found that upon culture in acidic pH initial cell growth was 

reduced but this increased once cells had adapted to the media285. They hypothesised that this 

adaptation may not directly contribute to increased metastatic potential but increase chance 

of survival once a cell extravasates and reaches a foreign tissue285. These results suggest that 

an acidic environment is not a selective pressure for increased motility however other studies 

have shown culture at an acidic pH increases cell invasiveness245 286 287. Metastasis is a complex 

multistage process involving multiple cell phenotypes, in this project migration has only been 

measured in vitro in a 2D environment. Measurements of cell migration in 3 D invasive assays 

conducted on hydrogel layers (table 5.2) or in vivo studies may provide a more comprehensive 

analysis of how acidic pH effects metastasis245.  

5.4.3.3 Selection over 6 months in serum restricted media 

Figure 5.22 shows that cells in 5 % FBS had reduced proliferation compared to all other 

groups. It was not possible to measure the growth rate of cells in 0.5 % FBS however 

observation of cells in culture noted that they seemed to have a reduced growth rate. As seen 

in figure 5.24 there is a significant difference between groups in the collective migration of 

cells, the rate of wound healing is significantly higher in the 5 % group than the control and 

cells in pH 7. When the differences in proliferation between cells in 5 % FBS and the MEM 

control are taken into account this could suggest that cell migration is increased in the serum 

restricted groups. Cells in 5 % FBS have a non-significant higher rate of wound healing than 

cells in 0.5 % FBS. This is different to the results seen when selection occurred over a 12 week 

period (section 5.4.2.2) and could be due to the lower N in these experiments. These results 

support the hypothesis that decreasing FBS concentration increases competition and is a 

selective pressure for motility.  



  

191 
 

Chapter 6 – General discussion and conclusions 

Studying the evolution of cancer progression is of critical importance to clinical treatment of 

the disease10. Understanding the fundamental principles behind cancer evolution will allow us 

to study a tumour microenvironment and predict how tumours may adapt or when disease 

progression may occur288. For example, drug resistance in tumours is one of the key examples 

of how understanding tumour evolution can impact on patient treatment289.  Tumour 

evolution depends on heritable differences between cells in traits affecting cell survival or 

proliferation129. Whilst evolutionary processes are acknowledged to play a significant role in 

the initiation and progression of cancer9 29 114, the underlying assumption that a variety of cell 

traits linked to disease progression are heritable within the cell population has never been 

directly tested. In the course of this project cell motility was shown to be a heritable trait, the 

first-time heritability has been estimated for a cancer cell trait and one of very few estimates 

of H2 in cells of multicellular organisms142.  

This research group has also obtained heritability estimates on the generation times of four 

cell lines, HeLa, HT1080, MCF7-3 and MDA-2, see appendix B. These H2 estimates, whilst still 

significant, were considerably lower than those measured for cell motility. Differences in 

heritability estimates can have a variety of causes though in general lower H2 estimates would 

be expected for a trait closely linked to cell fitness, such as generation time124, as genetic 

variation is likely to be reduced by natural selection124. These results provide evidence of an 

important but previously untested assumption that there is heritable variation in cancer cell 

populations for cell traits114 115. Similar methods could be used to estimate evolvability 

parameters in a range of traits, such as ECM degradation or survival in the circulatory 

system114 115. Gaining heritability estimates in a variety of cancer cell types in a range of traits 

under different environmental conditions is important as heritability is specific to a population 

in an environment and so in order to keep testing evolutionary theories in cancer cell lines 

better understanding is needed of the fundamental principles.  

Using an experimental evolution approach has allowed testing of the dispersal theory 

hypothesis; that when competition for resources is high, selection will favour motile cells29 38.  

The results in chapter 5 indicate that dispersal theory could apply to cancer cells in vitro and 

that serum restriction selects for cell motility (see appendix A). These results may help explain 

why cancer metastasis repeatedly occurs in solid tumour progression19 25. Despite the energy 

demands of motility and the uncertain advantage to cell fitness, cells able to disperse increase 
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their own chances of survival as they may migrate to an area with less competition or higher 

resource concentration29 38 39. Kin selection (where selection on individuals favours traits that 

increase the fitness of close relatives), may also act to maintain a motile phenotype within the 

population as dispersing cells reduce competition at the original site increasing survival of 

their relatives 39. Cancer cells are clonal so a dispersing cell’s genome should be preserved 

within the original population, even if that dispersing cell is unsuccessful, the increased chance 

of survival for the remaining clonal population increases and the genome is maintained and 

increased throughout the population39. H2 estimates of cell motility increased for MCF7-1 cell 

lines cultured under serum restriction for 12 weeks, this implies there was an increase in the 

genetic contribution to motility, indicating that selection favoured motile genotypes47. 

Obtaining H2 estimates for other cell traits – such as proliferation, and comparison of these 

within and between selections lines could be used to investigate potential trade-offs i.e. 

between cell growth and motility (section 5.4.2). 

The results seen in chapter 5 suggest that resource competition is selecting for an increase in 

the motile phenotype however H2 estimates for the evolved cell lines also increases. As 

discussed, this could occur due to an increase in the genetic contribution to motility or a 

decrease in environmental variation. The complexity of the human genome61 as well as the 

genomic instability of cancer cell lines72 76 139 290 and their sensitivity to environmental 

conditions17 163 215 291 means caution must be taken when inferring selection. As discussed in 

chapter 4, phenotypic plasticity in response to the environment can be modulated via 

epigenetic changes154 173 174 and maintained across multiple cell generations168 169. Further 

research is needed to clarify how cancer cells are adapting to their environment and which 

mechanisms of action they are using to do so. If cells increase their motility as a plastic 

response to environmental selective pressures, then focus should be on quantifying and 

controlling the tumour microenvironment38 292. If motility and hence metastasis arise as a 

result of selection on genetic and epigenetic mutations, then preventative treatments might 

focus on minimising tumour cell population and mutation rates38 293.  

6.1 Implications on studying the evolution of multicellularity  

Experimental evolution techniques studying bacteria have already been used to elucidate 

many of the mechanisms leading to the evolution of multicellularity294 295. Use of bacteria as a 

simpler model system has allowed studies of the core fundamental evolutionary principles 

such as which selective forces lead to multicellularity, the genetic underpinnings and their 
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evolutionary history and why multicellularity has evolved multiple times294 295. These same 

techniques could be repeated on cancer cell lines to understand cancer disease progression11.  

Heritability has been measured for proliferation and marker gene expression in Chinese 

hamster ovaries but otherwise there is almost no data on the extent of heritable phenotypic 

variation between clonal somatic cells of multicellular animals142. Heritability data is available 

for a few unicellular eukaryotes; growth traits in Saccharomyces cerevisiae143 and six clock 

traits in Neurospora crassa296. For both studies geographically disparate strains were crossed 

to maximise genetic variation but the broad-sense heritability estimates obtained were similar 

to those gained in this project; 0.77 and 0.42-0.87, indicating that cancer cell lines undergo 

rapid phenotypic diversification. Measuring the extent of heritable phenotypic variation from 

cell populations of multicellular organisms has relevance in examining the evolution of 

multicellularity11. The evolution of multicellularity was one of the most significant events in 

the history of life, it has occurred independently many times across all domains of life, but its 

initial evolution remains poorly understood294 295. Multicellular organisms use cooperation 

between cells with phenotypic diversification to achieve a higher level of functionality13 295. 

Herron et al (2018) demonstrated that the heritability of a collective trait – such as organism 

size, depends on the heritability of the individual cells with that organism and that the 

heritability of the collective trait is usually higher than that of the individual cell trait 

heritability297. There are many mechanisms to ensure and promote cooperation between 

component cells however as can be seen in the evolution of cancer these controls are not 

always successful295. Whilst cancer cells represent a breakdown in multicellularity, tumour 

formation involves multicellular cooperation13. Obtaining heritability estimates of primary 

non-cancerous cell lines and comparing these to H2 estimates of cancer cells may help to 

answer fundamental questions about selection on individual cells within multicellular 

organisms.  

Multicellular development from a single cell minimizes conflict from mutant cell lineages as 

they can rarely succeed beyond the lifespan of the multicellular individual11. Whilst rare, some 

cancers have evolved to become contagious between individuals of the same species; Canine 

transmissible venereal tumour is a sexually transmitted cancer in dogs298, devil facial tumour 

disease is a transmissible cancer in Tasmanian devils299 and transmissible cancers have also 

been found in some marine bivalves300. Heritability estimates are just as important as the 

strength of selection when predicting evolutionary outcomes297. Transmissible cancers 

represent the ‘next step’ in cancer progression as tumours can survive the lifespan of the 
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multicellular organism they derive from. Expanding the research in this project to obtain H2 

estimates for traits in transmissible cancer cells and comparing these to non-transmissible 

cancer cells may provide insight into disease progression and how the heritability of individual 

cell traits affects tumour formation. 

6.2 The experimental approach 

One criticism of in vitro experimental evolution is that the laboratory conditions used to study 

evolution cannot mirror the complexity of a natural environment (in this case in vivo tissue) 37. 

Whilst an in vitro environment will always be less complex than in vivo, this simplicity allows 

environmental control and application of the selective pressures of interest. Environmental 

complexity can be increased using 3 D cell culture methods such as culture on decellularised 

tissue. Decellularised tissues contain ECM components and bound signalling molecules 

meaning in vitro culture on such substrates bears more similarities to an in vivo 

environment301 302. Further quantitative analysis on in vivo tumour cells would be needed to 

enable the evolutionary dynamics of cancer to be understood and used for clinical applications 

such as personalised medicine or new therapeutic targets.  

Another caveat of in vitro cell culture is the frequent bottlenecking of cell populations. In 

order to maintain cells in culture they must be passaged. This involves removal of all cells from 

their culture vessel and a random subset of the population being extracted and re-plated onto 

a new vessel. Whilst attempts are made to minimise the effects of this process by transferring 

25 % of the population this may still create variation in the population’s genome.  

Bottlenecking also occurs when experiments are performed, it is not possible to include the 

entire population of cells in an experiment so again, a random subset of the population is 

chosen. Only these cells will be measured and used to gather results. Bottlenecking will alter 

the effects genetic drift and selection have on the cell population14. This process is not a 

naturally occurring one and is another difference between an in vitro and in vivo environment. 

This project does not aim to mimic an in vivo tumour microenvironment but to capture the 

principles of evolution and elucidate the selective pressures favouring motility. Experimental 

evolution can provide support for a given theory but cannot indicate its relative importance in 

explaining patterns in nature where many selective forces may be acting simultaneously37. 

Once the simple evolutionary parameters are understood they can be studied and tested in 

vivo37. The novel techniques applied here are a proof of concept which can be further adapted 

for future work into the evolution of cancer metastasis. 
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Cell lines are used extensively throughout cancer research to study biochemical pathways and 

processes293. The main advantages of in vitro cancer models is the level of control on 

environmental conditions and the reproducibility7 293. Almost all continuous cancer cell line 

cultures are derived from malignant cancers and all the cells lines used in this project were 

derived from metastatic tumours68 69 73 77 293. Cells that have already undergone metastasis may 

react differently to cells obtained from primary tumours. Cells which have already successfully 

disseminated have already undergone selection for, and acquired, a metastatic phenotype. 

One way of ensuring relevance to a wide array of cancer types is to test a broad range of cell 

lines64. This project has shown applicability in results across three distinct cancer types; breast, 

cervical and fibrosarcoma, but this research could be extended to include cell lines originating 

from primary tumours as well a range of other cancer types. Acquiring additional cell lines and 

including a broader range of cancer types in experimental work would be suitable when trying 

to ascertain mechanistic actions or providing proof of concept. However, long-term robustness 

in results as well as personalisation to individual patients could be better achieved through use 

of patient derived cell lines303.  

6.3 Measuring metastasis in vitro 

The in vivo tumour microenvironment is highly complex17 and metastasis is difficult to 

measure in vitro as it comprises multiple phenotypes18. This is further complicated as fitness is 

measured as the reproductive success of an individual and cannot be measured at a single 

time point14 113. The main limitations of two-dimensional in vitro cultures are the phenotypic 

and genotypic selection that occurs during adaptation to in vitro conditions as well as isolation 

of the cells from an in vivo microenvironment293. The main advantage of studying cancer cells 

in vitro is that it is a much simpler model system that not only enables precise control of the 

environment but also allows composite phenotypes, such as metastasis to be broken down 

into their constituent traits. Using experimental evolution techniques in this simpler model 

system allows specific selective pressures to be applied and measurement of its effect on the 

trait of interest37. In solid tumours cell motility contributes to cancer metastasis as cells must 

be able to migrate away from the primary tumour in order to establish secondary, metastatic 

tumours21 24. Measuring a discrete phenotype, such as motility, in an in vitro environment 

allows testing of individual evolutionary hypotheses and direct observation of selection.  

Measurement of multiple cell traits and comparing their responses to selection will give 

clearer insight into how cells respond to their environment. Spheroid cell culture could provide 
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a more accurate measure of cell migration as the increased complexity of the surrounding 

environment means a cells biological activity is closer to that seen in vivo249 304. Including data 

obtained from spheroid spreading assays will help show whether results gained in a 2 D 

culture environment bear any relevance to an in vivo environment304. 

6.4 Genetics and phenotype 

The reduction in costs of sequencing technology makes it possible to gain gene expression 

data for single cancer cells305. Large scale genomic studies (such as The Cancer Genome Atlas) 

have attempted to catalogue biologically significant mutations within different cancer types306 

307. Genetic profiling of tumour biopsies has provided a personalised prognostic tool to assist 

treatment decisions308, such as patients with HER2 positive breast tumours receiving 

trastuzumab treatment309. Whilst the molecular genetic variation within tumours is known to 

be substantial, little is known about the molecular basis of phenotypic variation310 311. 

Understanding the molecular basis of phenotype variation has implications in tumour 

progression and treatment. Khan et al (2018) demonstrated how knowledge of the molecular 

phenotype of a patient’s tumour, anti-EGFR monoclonal antibody resistance conferred via RAS 

pathway mutations, could be combined with cancer evolutionary dynamics and serial genomic 

profiling to not only detect whether treatment would be successful but also predict the 

expected time until treatment failure289. Study of the molecular basis of phenotype will allow 

better understanding of disease progression and combining this data with evolutionary 

dynamics will allow powerful predictive models on disease treatment and outcome. 

Understanding of how genotype and phenotype are connected will provide information on the 

gene and phenotype under selection312. Whilst the cancer genome can be analysed to reveal 

its temporal history there are problems when inferring causality from a single time point after 

selection has occurred57. Comparisons of gene expression data between cells from the same 

cell line but with varying trait values, or between evolved and control lines in selection 

experiments, could reveal possible targets of selection and help link genotype and phenotype 

together.   

6.5 Future directions 

Recent papers have shown that using an experimental evolution approach to study cancer is 

an emerging field313-315. Jong et al (2019) argue that experimental evolution of cancer cell lines 

is a model system to investigate the impact of phenotypic heterogeneity and phenotypic 

plasticity in response to therapy in vitro and is comparable to the phenotypic landscape in a 
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patient with advanced disease314. They exposed adherent and non-adherent cells from a non-

small cell lung cancer cell line, NCI-H2122, to an acidic and alkaline pH to generate selection 

lines that were genetically related but phenotypically distinct and suggest such a system could 

be used to test the effect of therapies on multiple phenotypes and to design therapies for 

different phenotypes314. This conclusion is supported by Acar et al (2019) who also state that 

in vitro experimental evolution could be used as a model system to study the evolutionary 

dynamics of cancer with implications for therapy development315.  

Acar et al (2019) used experimental evolution to investigate the effects evolutionary herding 

has on the evolution of drug resistance315. Evolutionary herding involves controlling the 

tumour cell population to delay or prevent resistance by exploitation of evolutionary trade-

offs between resistance and growth315. Using HCC827 non-small cell lung cancer cells they 

demonstrated that the evolutionary dynamics of drug resistance are deterministic and 

predictable and that in a highly heterogeneous tumour a more effective therapeutic response 

might be disease management and control aided by modelling of evolutionary dynamics to 

predict therapeutic response315. 

Lai et al (2019) exposed HCT116 cells, a colorectal cancer cell line to 8 rounds of selection via 

spheroid forming assays after which a subpopulation became malignant and expressed stem 

markers, Nanog, Oct4 and Lgr5. Using this experimental evolution approach they identified a 

potential prognostic biomarker for colorectal cancer, DPEP1313. This study has provided proof 

of concept in the use of experimental evolution in the identification of therapeutic targets.  

These recently published papers, along with our own work (appendices A and B) provide a 

strong foundation for the field of cancer experimental evolution. The techniques developed in 

this project and the results gained have already (see appendix A) and will continue to 

contribute to ongoing research in this field. 
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expansion in experimentally evolved 

cancer 

Tiffany B. Taylor1,2*, Anastasia V. Wass1, Louise J. Johnson1 and Phil Dash1 

Abstract 

Background: Tumour progression involves a series of phenotypic changes to cancer cells, 

each of which presents therapeutic targets. Here, using techniques adapted from microbial 

experimental evolution, we investigate the evolution of tumour spreading - a precursor for 

metastasis and tissue invasion - in environments with varied resource supply. Evolutionary 

theory predicts that competition for resources within a population will select for individuals 

to move away from a natal site (i.e. disperse), facilitating the colonisation of unexploited 

resources and decreasing competition between kin. 

Results: After approximately 100 generations in environments with low resource supply, we 

find that MCF7 breast cancer spheroids (small in vitro tumours) show increased spreading. 

Conversely, spreading slows compared to the ancestor where resource supply is high. 

Common garden experiments confirm that the evolutionary responses differ between 

selection lines; with lines evolved under low resource supply showing phenotypic plasticity 

in spheroid spreading rate. These differences in spreading behaviour between selection 

lines are heritable (stable across multiple generations), and show that the divergently 
evolved lines differ in their response to resource supply. 

Conclusions: We observe dispersal-like behaviour and an increased sensitivity to resource 

availability in our selection lines, which may be a response to selection, or alternatively may 
be due to epigenetic changes, provoked by prolonged resource limitation, that have 

persisted across many cell generations. Different clinical strategies may be needed 

depending on whether or not tumour progression is due to natural selection. This study 

highlights the effectiveness of experimental evolution approaches in cancer cell populations 

and demonstrates how simple model systems might enable us to observe and measure key 
selective drivers of clinically important traits. 

Keywords: Experimental evolution, Dispersal, Metastasis, Resource competition, 

Microenvironment, Plasticity, Epigenetic 
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Background 

Solid tumours are largely curable if they 

are treated before they spread. However, 

once cancer cells become metastatic and 

move beyond the location of the primary 

tumour, mortality rates increase drastically 

[1]. Metastatic and invasive tumours – 

those that spread beyond the primary 

location – show increased spreading to 

adjacent tissues, which is caused by 

increased cell motility [2]. As such, 

targeting premetastatic traits might be a 

novel approach to prevent the evolution of 

cancerous traits that would facilitate 

spreading and invasive behaviours [3]. 

Indeed there is some evidence to suggest 

that oxygenation of a tumour inhibits 

metastasis [4]. However, cancer cells do 

not need to evolve motility systems de 

novo, but can co-opt existing mechanisms 

enabling rapid changes in phenotype [5]. 

Motility is a normal cellular behaviour for 

many human cell types, either 

constitutively, or under particular 

conditions such as development and tissue 

repair. Therefore, to understand the 

processes underlying changes in the 

behaviour of cancerous cells we must first 

understand the drivers of change. 

Solid tumours, if left untreated, will often 

progress to metastatic tumours [6]. This is 

puzzling from an evolutionary perspective. 

Unlike other hallmarks of cancer such as 

apoptosis resistance, evasion of growth 

suppression, or replicative immortality [7], 

metastasis is not immediately concerned 

with cell survival or reproduction and 

appears to have no inherent selective 

value within a tumour [8]. Nor does 

motility ensure cell fitness outside the 

original tumour: of the estimated 106–107 

cells that emigrate daily 
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from a developed neoplasm [9], the vast 

majority die rather than initiating secondary 

tumours. 

One potential solution to this evolutionary 

paradox is suggested by an analogy between 

metastasis and ecological dispersal [10]: an 

indirect benefit accrues to dispersers if the 

source population consists of closely related 

individuals competing for scarce resources 

[11]. This key prediction was tested in 

bacterial populations where relatedness 

between spreading and non-spreading 

mutants was experimentally manipulated 

[12]. This study concluded that populations of 

spreading cells that dispersed further 

increased distances between competitors and 

therefore reduced overall cell-cell 

competition. The consequence being that 

even under very high costs of dispersal, clonal 

populations of spreading bacteria were more 

fit compared to a mixed (low related) 

population. Therefore, the benefit to moving 

away from the primary tumour is two-fold: (i) 

the small proportion of dispersers that 

successfully colonise a new site will face less 

competition and reach untapped resources to 

facilitate rapid growth; and, (ii) by moving 

away, the cell is reducing competition 

between its clonemates at the primary 

tumour site. By increasing the fitness of its 

clonemates, who will leave more 

descendants, the disperser is indirectly 

increasing its own fitness – even if it perishes 

and fails to establish a metastatic tumour 

elsewhere [13]. 

Tumour cells are likely to face exploitation 

competition in growing neoplasms [14]. 

Competition will occur for resources including 

nutrients and oxygen in the early stages of 

cancer [15], as these can only diffuse 

approximately 1 mm into a tumour from 

surrounding blood capillaries alone [16–18]. 

There is some evidence that these hostile 

microenvironments favour motility. For 

example, in uterine cancer [19] and soft 

tissue sarcomas [20], hypoxia has been 

shown to be linked with greater likelihood of 

metastases. Therefore, as the primary 

tumour grows, resource competition 

between clonemates is likely to be quickly 

established. Evolutionary theory predicts that 

this will drive selection for dispersal. 

Natural selection has been detected in clinical 

tumour samples by applying statistical 

techniques from population and evolutionary 

genetics to end-point data [21–23]. However, 

to gain a deep understanding of the 

quantitative effect of natural selection in 

cancer progression we must first go back to 

evolutionary basics. The power of an 

experimental evolution approach is that it 

enables causality of selection to be tested 

through hypothesis driven experiments. 
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Recent dispute over the importance of 

natural selection in tumour progression [24, 

25] has highlighted the need for a 

quantitative understanding of the forces 

leading to cancer progression. 

Viewing cancer progression as an 

evolutionary and ecological process is 

becoming more common practise; providing 

new insights into progression and treatment 

of cancers [26–29]. In particular, dispersal 

evolutionary simulation models have been 

utilised to explore the evolution of spreading 

behaviour revealing the role of metabolism 

and nutrient competition [30], the 

microenvironment [31] and resource 

heterogeneity [32] in driving the evolution of 

cell migration. A common theme is that the 

nutrient environment plays a critical role in 

selecting for increased cell motility, which 

provided the context for this study. 

The next step is to experimentally validate 

these predictions for which we must develop 

experimental techniques that can accurately 

measure the effect of key selective drivers on 

the evolution of clinically relevant traits in 

tumour cell populations. In Taylor et al. [33], 

we advocated adapting the techniques of 

experimental evolution in microbes to cancer 

research (see also [34]). Here, we report the 

findings of the experiment we proposed to 

determine the role of cell-cell competition in 

causing increased spheroid spread, which 

models an early stage of metastasis seen 

within primary tumours (for a discussion of 

the advantages and limitations of spheroids 

spread as a model for metastasis, see [35]). 

Methods 

Aim 

The aim of this study was to identify resource 

supply (high or low) as a driver for the 

evolution of spheroid spreading in a 

population of breast cancer cells. Six 

independent selection lines of MCF7 breast 

cancer cells were established; 3 replicate 

lines were maintained under low resource 

supply and 3 under high resource supply. 

Every 7 days, after the cells had become 

confluent, 10% were transferred to fresh 

media. Transfers were made each week for 

12 weeks. Comparisons between lines, and 

with the ancestor, gives a measure of the 

effect of selection over time on cell 

phenotype. 

Cell culture 

Experiments were performed using MCF7 

cells (ATCC® HTB-22™; passage number 17) 

[36], a relatively slow moving, non-metastatic 

cell line (although derived from a metastatic 

site). Cells were grown as monolayers in 25 

cm2 tissue culture flasks with non-phenol red 

Dulbecco’s Modified Eagles Medium (DMEM) 
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containing 0.5% or 5% (depending on 

treatment group) foetal bovine serum (FBS), 

1% Penicillin, 1% streptomycin, and 2 mM L-

glutamine. Incubated at 5% CO2, 37 °C. 

Selection lines 

MCF7 cell lines were maintained in low (0.5% 

FBS) or high (5% FBS) resources for 12 weeks. 

MCF7 cells have a generation time of 

approximately 24 h. Three independent 

replicate lines were maintained within each 

treatment group. Every 7 days a random 

subpopulation of 1000 - 4000 cells were 

transferred to fresh medium. 7 days were 

sufficient to allow cells to cover the base of 

the cell tissue flask, forcing cells to compete 

for space and resources. 

Cells were removed from the incubator and 

the old media was discarded. To detach, cells 

were washed in 5 ml Phosphate Buffered 

Saline (PBS), treated with 2 ml Trypsin-EDTA 

and incubated at 37 °C for approximately 5 

min. Cells were re-suspended in DMEM and 

10% were transferred to fresh media. At each 

transfer a sample of each cell line was frozen 

down to allow resurrection for further post 

hoc phenotypic analysis. Cells were passaged 

as normal and the remaining solution was 

centrifuged at 1000 rpm for 3 min. The 

supernatant was discarded, cells re-

suspended in freezing buffer (10% 

dimethylsulfoxide (DMSO) and 90% FBS) and 

stored at −80 °C. After 24 h, the vials were 

moved and placed in liquid nitrogen. 

Spheroid spread assays 

Spheroids offer a tangible in vitro model that 

more accurately reflect clinical expression 

profiles compared to monolayer cultures [35, 

37], and have been previously used to study 

spreading behaviour of cancers (e.g. [38–40]). 

Cells from the selection lines were grown in 

non-adhesive flasks for 24 h, allowing them 

to form spheroids (small in vitro tumours), 

roughly spherical clusters of approximately 

1000 cells. To avoid any initial responses to 

change in media, spheroids were cultured in 

the same media that they were to be tested 

in. When returned to flasks with a suitable 

surface, spheroids will adhere and the 

constituent cells will move outwards, 

eventually forming a monolayer. We allowed 

spheroids to adhere for 4 h to the surface of 

12well tissue culture plates, and calculated 

the areas covered by cells dispersing from the 

spheroid by analysing images taken on a Zeiss 

A1 Inverted Epifluorescent microscope using 

Nikon NIS Elements and analysed with ImageJ 

software [41]. Six spheroids were measured 

within each well and 3 independent wells 

were measured. Spheroids within wells were 

randomly paired between photos taken at 

time zero and 72 h and the difference 

calculated. We were unable to measure the 



  

224 
 

same spheroids between time points as 

magnification adjustment and manual 

tracking was necessary to accommodate 

rapid spread to keep spheroids within the 

field of view. 

Growth rate assays 

Cells were transferred to 6-well plates and 

seeded at 2% confluency. The number of cells 

present were counted using a 

haemocytometer at time 0 and after 72 h to 

gain an initial cell count prior to cell 

adherence and total end cell count per well, 

respectively. Images were taken at 12 h 

intervals at the same locations within each 

well, and cells counted using ImageJ. The 

average for 3 independent replicates across 

all 3 cell lines was taken. Growth rate was 

calculated using the formula: 

𝑙𝑛 (
𝑁1
𝑁2

)

(𝑡2−𝑡1
)

 

where t2 is the time at the end of the 

experiment (72 h), t1 is the time at the 

beginning of the experiment (12 h), N2 is the 

number of cells present at t2 and N1 is the 

number of cells present at t1. The first image 

was taken at 12 h to allow cells time at 

adhere to the well surface. Between 12 h and 

72 h growth rate is assumed to be 

exponential as cells have not yet reached 

confluency. 

Timelapse cell motility assay 

Cells from the selection lines were seeded in 

a 12-well plate at approximately 5000 

cells/well. Each cell line was cultured in the 

media it had been adapted to and each well 

had 5 points chosen at random from which to 

observe the cells. A Nikon TE200 Timelapse 

System with NIS Elements 3 was used to 

capture a bright-field image at the points 

chosen every 15 min for just over 48 h 

(actual, 52 h and 15-min). These images were 

collated to form a timelapse video allowing 

the individual cells within the field of view to 

be tracked using ImageJ and MtrackJ. This 

tracking allows observation of whether or not 

a cell divides and can be used to calculate the 

speed of individual cells. Speed was 

calculated as the total length (in microns) 

moved by the cell divided by the time (in 

hours) the cell was tracked for. As many cells 

as possible were measured and this was 

repeated for 3 independent replicates. In 

addition, distance to point was also measured 

using tracking data. Here, the distance a cell 

moves between two time-frames (every 15 

min) is recorded against time. The benefit of 

this measurement is that it allows the 

proportion of cells across a population that 

are moving at a particular time point to be 

calculated, rather than tracking the motility 

of an individual cell. This, combined with the 
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cell speed data, gives an indication of 

population behaviour across time. 

Statistics 

Analyses and figures were produced on IBM® 

SPSS® Statistics 24.0. Significance of 

treatment (high or low resource supply) on 

phenotype was analysed parametrically using 

general linear models (GLMs). Terms used in 

the model are defined as the following: 

‘Spheroid area’ [response variable], average 

area covered by spheroid spread after 72 h. 

Areas were square-root transformed to 

correct for right skew that is typical of area 

data, and divided by growth rate to correct 

for expansion of spheroid driven by 

differences in growth rate rather than 

spreading behaviour; ‘Experimental media’ 

[explanatory variable, factor], high or low 

resource supply in experimental conditions; 

‘Evolved environment’ [explanatory variable, 

factor], ancestor and high or low resource 

supply maintained in evolving lines; ‘Cell 

speed’ [response variable], the average 

distance (429 Ancestor, 298 Evolved 

highresource supply and 356 Evolved low-

resource supply) the cells moved in 

micrometres per hour over a 52-h period. A 

Kruskal-Wallis and skew test were used to 

measure the distribution of ‘distance to 

point’ data. In each case the effect of the well 

within the tissue culture plate was measured. 

This was to ensure there were no 

microenvironment differences between wells 

– this was non-significant in all cases and 

therefore removed from the final model. 

Replicate is treated as a random factor. Tukey 

tests were performed between treatment 

groups within cell line. In all cases the area 

dispersed was square-root transformed. 
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Results 

Images of cells across different transfer 

points were taken over 72 h to measure the 

distance of spread of spheroids (clumps of 

around 1000 self-adhered cells; Fig. 1a) from 

an initial adhesion site. The change in area 

over time was used as a measure of spheroid 

spread. At transfer 0, there was no difference 

between spheroid spread in the different 

treatments for resource supply (F1,9 = 1.426; P 

= 0.263). Furthermore, there was no 

significant difference between initial spheroid 

size between selection lines (F2,101 = 0.163; P 

= 0.848). However, over time we find 

resource supply has a significant effect on 

spreading (F1,105 = 103.61; P < 0.001), with 

faster spreading emerging in lines maintained 

under low resource supply (F3,105 = 23.872; P < 

0.001) (Fig. 1b). These effects are unlikely to 

be driven by the microenvironment as there 

was no significant difference between 

spreading distances of replicate spheroids 

between wells (F2,89 = 1.423; P = 0.246). 

After 12 transfers, spheroids from ancestor 

and both selection lines were allowed to 

grow and spread under high and low resource 

conditions (a “common garden” experiment 

in ecology). The ancestor showed no 

difference in spreading area under high or 

low resources supply (F1,4 = 0.613; P = 0.477). 

However, the evolved lines were found to 

respond differently; high-resource selection 

lines showed no difference in motility 

between the two resource conditions, but 

low-resource selection lines showed slower 

motility in high-resource medium compared 

to low-resource medium (Fig. 2; F1,8 = 10.502; 

P = 0.012). 
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To correct for differences in spheroid spread 

that might be due to growth, spreading area 

is divided by growth rate (Fig. 3). We found 

that growth rates of selection lines and 

ancestor were not different with access to 

high resource supply (5.0% FBS) (F2,6 = 1.171; 

P = 0.372), however under low resource 

supply (0.5% FBS) we find significant 

differences between ancestral and evolved 

lines (F2,6 = 17.601; P = 0.003). When grown in 

0.5% FBS (low-resource supply), lines evolved 

under high and low resource supply showed 

lower growth rates than the ancestor, despite 

the low-resource evolved lines showing 

higher spheroid spreading (Tukey: Ancestor v. 

5.0% FBS P = 0.034; Ancestor v. 0.5% FBS, P = 

0.003). This suggests that spreading 

behaviour is not explained by growth. 

The speed of cell movement was measured 

using video tracking of motile cells. Individual 

cell motility in lines evolved in high and low 

resources were not significantly different 

from the ancestor, or each other (Fig. 4; 

Tukey test: 0.5% v. 5.0%, P = 0.968; 0.5% v. 

Ancestor, P = 0.282; 5.0% v. Ancestor, P = 

0.377). In addition, we calculated the 

‘distance to point’, which measures the 

distance a cell moves between time frames 

(Additional file 1: Figure S1). Populations 

evolved in a low resource supply show fewer 

non-motile cells at a given time point 

compared to those evolved with high 

resource supply and ancestral lines. In 

addition, the distribution of ‘distance to 

point’ values across different lines is not 

equal (Kruskal-Wallis, P < 0.05). Ancestors 

show the highest positive skew (4.164 ± 

0.011) followed by lines evolved in high 

resource supply (3.176 ± 

0.015) and lines evolved in low resource 

supply (2.485 ± 0.014). Finally, these trends 

hold true across time, when distance to point 

is measured after 15 min, 24 h and 48 h. 

Together, these data suggest that in low 

resource supply lines: there are fewer non-

motile cells; a greater proportion of cells are 

spreading further between time points; and, 

these differences are sustained across time. 

This would mean that cells evolved in low 

resource supply would spread more quickly, 

as distances between cells increases, 

compared to ancestral and high resources 

supply lines. 
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Discussion 

We grew independent cancer cell 

populations over multiple generations 

to measure the effect of resource 

supply on spheroid spread. We find a 

significant difference in spreading area 

over time driven by resource supply. In 

particular, as predicted by dispersal 

evolutionary theory, when resources 

are scarce (driving competition 

between cells) spheroids are under 

selection to spread further compared to 

when they have access to a high 

resource supply in the same time period 

(Fig. 1b). Despite the energetic 

demands of cell motility, spheroids in 

high resource environments show 

reduced spreading, and spheroids with 

access to low resource supply evolve 

increased spreading. In addition, a 

common garden experiment – where 
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evolved lines are grown in both low and 

high resource environments – reveals that 

cell populations evolved with a low 

resource supply show phenotypic plasticity 

in spheroid spread, such that the rate of 

spread depends on their current nutrient 

environment, inducing faster spreading in 

low resources supply compared to the 

same population in high resource 

conditions (Fig. 2). Cell populations evolved 

with access to a high resource supply do 

not respond to changes in resource 

environment. 

These results are consistent with 

competition selection as a driver of 

dispersal; as 40 generations is a relatively 

short timeframe, this would most likely be 

selection on standing genetic variation, 

which can be substantial in MCF7 due to 

genome instability [42]. However, the 

complexity of human gene regulatory 

pathways and the known sensitivity of 

cancer cell lines to subtle changes in 

environmental conditions [43], as well as 

uncharacterised experimental effects [44] 

necessitates caution in interpretation. 

Epigenetic responses to the environment 

that persist across cell generations could 

also cause stable changes in phenotype 

such as are seen here. Distinguishing 

between these alternative explanations 

should be a high research priority, not only 

out of academic interest in the precise 

level of adaptationism appropriate to 

cancer biology, but also because the 

difference may have clinical implications. If 

metastasis evolves as the result of genetic 

changes, effective preventative treatments 

might be those that focus on keeping the 

cancer cell effective population size and 

mutation rate low; however, if metastasis 

emerges as a response to environment, it is 

of greater importance to understand and 

control tumour microenvironments. 

Hostile microenvironments may both 

directly cause and selectively favour 

tumour spread [45], and could pose 

particular danger in promoting metastasis. 

Human tumour cells contain the whole 

human genome, and so are capable of 

phenotypic change via complex 

physiological, epigenetic and 

developmental responses in addition to 

evolutionary response to natural selection 

[46]. Models from Waclaw [47] suggest 

that even shortrange cellular migratory 

activity can markedly increase the rate of 

tumour growth (i.e. fitness of the tumour 

cells), even in the absence of changes in 

cellular growth rates. We found that 

measurable, stable changes in spheroid 

spreading behaviour occurred quickly 

(within 4 weeks), suggesting this trait could 

evolve rapidly in vivo. Although, care must 

be taken when translating findings from 

the lab to in vivo, as the selective 

environments will greatly differ. 
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A cell’s microenvironment is also a product 

of the population in which it resides. 

Within this experimental setup, we are 

considering motility at the level of the 

population (within a spheroid) rather than 

the individual (a cell). In other words, we 

are looking at the effect of resource supply 

in determining the spread of a tumour 

rather than individual cancer cells. We 

found spheroids that were evolved with 

access to a high resource supply showed 

reduced spread over time (Fig. 1b). This 

pattern was not driven by changes in cell 

motility, as no significant differences in cell 

motility were seen over time (Fig. 4). This 

suggests that access to resources during 

evolution is determining the patterns of 

spheroid spread independently of cell 

motility. One interpretation might be that 

cells evolved in starvation, rather than 

generally getting faster, are more fit if they 

move further from cells around them to 

reduce cell-cell competition – a key 

prediction in dispersal evolution [10]. Our 

data finds support for this hypothesis; we 

find that cells evolved under low-resource 

supply move consistently across time, and 

the distance they move slightly increases. 

In comparison, cells evolved in high-

resource supply move the same distance 

between time points. This suggests that 

cells evolved in low-resource supply are 

moving further from the cells around them. 

The consequence for spheroid spread 

would be that cells towards the centre of 

the spheroid mass would have more space 

to move into if distances between cells at 

the periphery were greater, increasing 

spheroid spreading rate. 

Dispersal plays a crucial role in a range of 

evolutionary and ecological processes and 

as such there has been a major effort to 

understand its evolution. A central factor 

that has been highlighted both 

theoretically [11, 48–50] and empirically 

[12] is that dispersal is likely to be favoured 

by selection if it reduces kin competition 

(here, competition between clonemates). 

These studies find that even under 

extremely high costs, dispersal is still 

favoured when populations are clonal due 

to the indirect fitness benefits gained from 

reducing competition between clonemates 

left in the natal patch. This is because 

these clonemates will pass on genes shared 

by the dispersing cell, even if the dispersing 

cell does not survive to do so itself. 

Dispersal theory has previously been 

applied to cancers to try to predict the 

impact of the microenvironment on the 

emergence of motility and metastasis in 

cancer cell populations [30–32]. However, 

in these cases the evolution of dispersal 

was only considered from the perspective 

of individual cell fitness. Although these 

studies concur that competitive 

environments (low nutrient or hypoxic) 

select for increased tumour spread, they 
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do not consider the role of cell-cell (kin) 

competition as a driver for the evolution of 

cell dispersal. Considering the inclusive 

fitness of the cell – that is, taking into 

account not only its own reproductive 

success, but its effects on its relatives – 

may help solve the paradox as to why 

metastasis evolves despite high mortality 

rates of metastasising cells. 

Dispersal can therefore be considered as a 

social behaviour. Social evolution – 

evolution under the consideration of 

inclusive fitness – is an area that has been 

extensively studied using experimental 

evolution and provides interesting 

opportunities for further study in cancers 

[51]. Cell behaviour is likely to be 

dependent on the social context (i.e. 

cellular behaviour changes when acting as 

an individual cell compared to within a 

tumour) [52, 53]. Our results find that 

individual cell speed and spheroid spread 

are not aligned, possibly because the social 

context is different between the 

experimental setups: cell speed is 

measured in a 2D monolayer culture, 

whereas spheroid spread starts as a 3D 

multi-cell aggregate. Incorporating social 

evolution into cancer evolution is likely to 

reveal new insights into the levels of 

selection across tumours and bridge gaps 

in our understanding of the evolution of 

multicellularity. Recent work has shown 

that even within a tumour, heterogeneity 

is established early and as such, 

evolutionary trajectories could be different 

across a very small scale [54–56]. In this 

study, however, while we do not measure 

a significant difference in cell speed, we do 

find that there are differences in the 

distance travelled between time frames 

between selection lines within a monolayer 

culture. This suggests that selection is 

having a measurable effect on the 

phenotype of cell motility within a 2D 

environment, as motility is a function of 

both speed and frequency of cell 

movement. Moreover, this suggests that 

selective pressures in one environmental 

structure (2D) can have important clinical 

consequences in alternative environments 

(3D) that are not clear until measured. 

It is important to acknowledge that we do 

not claim to replicate in vivo conditions 

within our experimental design, in fact it is 

our aim to simplify the environment as 

much as possible. As such, there will be key 

differences, such as replicating cell 

behaviours from a structured 3D tumour to 

2D in vitro assays. However, by simplifying 

experiments into a 2D environment we can 

develop methods that are easy to repeat 

and measure. Simplicity of design is a 

major strength of experimental evolution 

as it captures the influence of isolated 

selective drivers in the absence of 

biological noise – thus improving overall 

generality of results. Spheroids offer an 
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ideal in vitro model for studying tumour 

spreading. Spheroids are a very simple 3D 

culture; it allows cells to form cell-cell 

adhesions and then spread. This enables us 

to see whether cells change their 

behaviour between a 2D and 3D 

environment. 

Translation of results from experimental 

cancer evolution studies into potential 

preventative or therapeutic approaches to 

cancer treatment is not a trivial task. A 

hypothesis driven approach, as is seen in 

experimental evolution studies, can only 

highlight key selective drivers of clinically 

relevant cancerous traits in the absence of 

in vivo noise. As this field develops this 

information, in combination with front-line 

research from cancer biologists and 

clinicians, will reveal novel treatment 

strategies – such as prevention approaches 

in patients with high-risk of cancer prior to 

tumour detection – and confer greater 

understanding and predictive power to the 

evolution of clinically relevant traits such 

as metastasis and drug resistance. 

Conclusions 

Cancer researchers face a daunting 

challenge – to harness evolutionary theory 

in a clinically meaningful way, and further 

our understanding of the progression of 

cancers. To meet this challenge, we must 

design hypothesis-driven experimental 

systems to effectively test theoretical 

predictions of cancer evolution [33, 34]. An 

experimental evolution approach can help 

systematically address central questions 

such as: what is the balance between 

ecological and evolutionary processes? Can 

we distinguish between genetic and 

epigenetic evolutionary changes? And, can 

we repeat the same evolutionary patterns 

across different environments and across 

different cancers? The next step would be 

to complement experimental evolution 

data with genomics and transcriptomics to 

allow changes in coding and regulatory 

regions to align with phenotypic changes 

over evolutionary time – giving a clearer 

indication of how genotype maps with 

phenotype. 

This study uses experimental evolution to 

observe, in real time, the evolution of a key 

cancer trait and precursor to metastasis – 

tumour spreading. We find that low 

resource supply drives the evolution of 

spheroid spread. This result aligns with 

predictions from dispersal evolutionary 

theory. Seminal experimental evolution 

studies with microbes have fundamentally 

changed our understanding of evolution 

(for review see [57]) and there is strong 

potential for similar advancements in 

cancer biology. However, this task is not as 

simple as repeating existing experiments in 

a new system. While cancer cell 

populations share many similarities with 

microbes that make them amenable to 
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experimental evolution studies [33, 34, 54], 

they also present many new challenges. 

There is much greater potential for both 

stable and transient epigenetic effects on 

phenotype, and factors such as cancer 

types and genetic backgrounds will 

introduce further complexity. However, 

this study introduces a promising starting 

point for the development of experimental 

techniques to detect, measure and 

quantify key evolutionary processes in 

cancers. 

Additional file 

Additional file 1: Figure S1. Histogram 

showing distribution of distance to point 

measurements after 0.25, 24 and 48 h. Blue 

bars represent ancestral populations, green 

bars represent populations evolved in low 

resource supply (0.5% FBS) and pink bars 

represent populations evolved in high 

resource supply (5.0% FBS). (PDF 5 kb) 
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Abstract  

Tumour evolution depends on heritable differences between cells in 

traits affecting cell survival or replication. It is well-established that cancer 

cells are genetically and phenotypically heterogeneous; however, the extent 

to which this phenotypic variation is heritable is far less well-explored.  

Here we estimate the broad-sense heritability (H2) of two cell traits 

related to cancer hallmarks - cell motility and generation time - within 

populations of four cancer cell lines in vitro, and find that motility is strongly 

heritable. This heritability is stable across multiple cell generations, with 

heritability values at the high end of those measured for a range of traits in 

natural populations of animals or plants. These findings confirm a central 

assumption of cancer evolution, provide a first quantification of the evolvability 

of key traits in cancer cells, and indicate that there is ample raw material for 

experimental evolution in cancer cell lines. Generation time, a trait directly 

affecting cell fitness, shows substantially lower values of heritability than cell 

speed, consistent with its having been under directional selection removing 

heritable variation.   
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1. Introduction  

Evolutionary processes are acknowledged to play a significant role in the 

initiation and progression of cancer, as well as in the acquisition of traits such 

as chemotherapy resistance1,2,3. Cancer evolution as a field rests on the 

reasonable, but rarely directly tested, assumption that a variety of cellular 

traits linked to cancer development and progression are heritable at the level 

of the cell population: that is, there is phenotypic variation between cancer 

cells, and that at least some of that variation is due to factors passed on from 

mother cell to daughter cell, rather than being caused by environmental 

factors such as nutrient availability. For example, explaining the evolution of 

metastatic behaviour in terms of dispersal or foraging ecology requires that 

cells should vary heritably in their dispersal behaviours4, and models of intra-

tumour competition5, by definition, assume a heterogeneous population with 

heritable differences between cells. The heterogeneity of cancer cells, 

whether in tumours or laboratory cell lines, is well established - for instance, a 

recent multi-omics study found high levels of both genetic and phenotypic 

heterogeneity between different populations of HeLa cells6. However, 

heritability - which is defined in quantitative genetics as the proportion of trait 

variance in a population that is due to genetic variation, and which determines 

the response to selection7 - has never been directly measured for any trait in 

cancer cell populations.  

 

Drastic reductions in the cost of sequencing technology over recent years 

have provided the cancer research community with an abundance of genome 

sequence data, including at a single-cell level8. Sequence analysis techniques 
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adapted from population and evolutionary genetics can detect and measure 

evolutionary processes in tumours9, and signatures of natural selection can 

be detected by various methods including comparing synonymous and non-

synonymous substitution rates10, or estimating the relative contributions of 

neutral and adaptive evolution using distributions of allele frequencies within 

tumours11. However, while such analyses can show natural selection has 

occurred and sometimes identify target genes, they are not always informative 

as to which phenotypic traits are the targets of selection. Researchers 

increasingly recognise the need to complement sequence data with a clear 

and quantitative understanding of cell phenotypes, and - where possible - to 

link genotype to phenotype12. Theoretical models and simulations of cancer 

evolution, both population-level and agent-based, will undoubtedly guide this 

programme of phenotypic research13, but these approaches could be even 

more valuable if informed by cell-level observational data.  

Based on observations of cancer cells over multiple cell generations, we here 

present cell-level phenotypic data that allows us to estimate broad-sense 

heritability (H2) of two traits within four clonally reproducing cancer cell lines. 

Generation time - the time elapsed between cell divisions - is closely linked to 

cell fitness. Cell motility is a key step toward metastasis, but confers an 

uncertain14, 15, and likely context-dependent16, selective advantage.  

 

Both generation time and cell motility are observable and quantifiable using 

time-lapse video microscopy (Fig. 1a). Cell lineages must be observed over 

several generations to give reliable estimates of heritability, because 
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cytoplasmic factors cause transient similarity between sister cells for several 

hours after cell division17, which will inflate estimates. We therefore estimate 

H2 based on several different cell-cell relationships. By tracking and 

comparing second-generation clonal descendants of the same progenitor cell 

(“cousin cells”; Fig. 1b), which have never directly shared cytoplasm, we can 

provide estimates of H2 that represent stably inherited differences between 

clonal lineages.  

 

Methods 

Cell lines 

All cell lines used were lab-adapted. Three are adenocarcinoma in origin: 

MCF7 (ATCC® HTB-22TM) 18, MDA-MB-231 (ATCC® HTB-26 TM) 19 and HeLa 

(ATCC® CCL-2™)20. HT1080 (ATCC® CCL-121™)21 are fibrosarcoma 

derived. Cell lines were grown as a monolayer in 5% CO2 at 37°C in minimum 

essential media containing 10% foetal bovine serum, 1mM sodium pyruvate 

and 2mM glutamine. MCF7, HT1080 and HeLa cell media also contained 1% 

non-essential amino acid solution. Passage numbers were 15-18 for MCF7, 

41-44 for MDA-MB-231, and 5-8 for both HeLa and HT1080 cells. Typical 

laboratory cell culture maintains cell lines at population sizes of 105 to 106. 

 

Timelapse microscopy and lineage tracking 

In total, 9025 cells were tracked, giving a dataset of 471,573 cell positions at 

known time points. For each of 59 timelapse videos taken, a haemocytometer 

was used to plate 5000 cells per well onto a 24-well plate. Six wells per cell 

line were distributed around the plate. Five points within each well were 
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chosen at random and images were taken every 20 minutes over 72 hours 

with a Nikon TiE Time Lapse system. NIS software was used to convert 

images into a video file for each point. ImageJ and MtrackJ22, 23 were used to 

analyse videos, recording cell positions at each timepoint and cell division 

events. 22.7% of cells tracked (2048 individual cells) met the requirements to 

be used in the analysis. Our final dataset consisted of cell families: groups of 

related cells for which we had whole-lifespan data on cell motility and 

generation time over three cell generations (Fig. 1b). These comprised 52 

families for the cell line MCF7, 141 families for MDA-MB-231, 134 families for 

HeLa and 110 families for HT1080.  

 

Statistical analysis 

Statistical analysis was performed in R24. The generation time for a given cell 

is the time taken for a full cell cycle from cytokinesis to cytokinesis. Cell 

motility was calculated as the curvilinear speed of a cell over its entire 

individual lifetime: the total Euclidean distance of the path travelled from cell 

division to cell division, in microns, divided by its generation time in hours. All 

cells included in our analysis were observed for a complete cell cycle; the 

cells originally plated were therefore excluded, as were those that moved off-

screen, died, or had not divided by the end of the tracking period. For this 

reason some cell families contained fewer than six cells. We could detect no 

significant differences in cell speed (t-test, p>0.05 in every cell line) between 

families containing different numbers of cells, suggesting that faster cells were 

not substantially more likely to move off-screen over the tracking period. 

There was also no significant difference between wells (Kruskal Wallis test; 
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p>0.05), suggesting that spatial effects - which could exacerbate similarities 

between related cells and inflate estimates of heritability - are minimal. We 

then estimated broad sense heritability as the slope parameter of an ordinary 

least squares regression of trait values between clonal cells and their 

relatives, for all three cell-cell relationships (Fig. 1c). This is a modification of 

standard parent-offspring regression techniques25 for determining heritability 

in clonally reproducing cell families, and provides a straightforward way to 

compare heritability values calculated from different cell-cell relationships; the 

structure of our dataset, with some wells containing very few families, made 

this a more appropriate method of analysis than a linear mixed model. Where 

a cell had multiple daughters or “cousins” their mean value was used.  

 

3. Results and Discussion 

Cell motility 

For all four cell lines, and for all cell-cell relationships considered, the broad-

sense heritability (H2) of motility is highly significant (Fig. 1c; Table 1). Values 

of H2 ranged from 0.45 to 0.84, which is high compared to that of a range of 

traits in natural26, 27 and agricultural28 populations. Although no one statistic 

adequately describes evolvability, this result does imply that cancer cell 

populations contain substantial variation for motility on which natural selection 

could act. Mutations, stable epimutations, or both may contribute to this 

heritable variation29, and potentially to evolutionary change30. 

 

Generation time 
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Generation time shows a very different pattern of heritability (Table 1). For all 

lines and all cell relationships, H2 values are lower than those for motility. 

There is no consistent relationship between the two traits: in two cell lines, 

faster-dividing cells were slower-moving (for HeLa, Spearman's ρ = -0.068; p 

<0.001; for MCF7, ρ = -0.178; p <0.005); in HT1080, faster-dividing cells were 

faster-moving (ρ = 0.072; p <0.005); and no significant correlation was seen in 

MDA-MB-231 (ρ = -0.002; p >0.1).  

 

Apart from in the HeLa cell line, only sister-sister heritability is consistently 

significant for generation time, consistent with variation in this trait being 

attributable to transient cytoplasmic or nutritional differences - the MDA-MB-

231 cell line shows only marginally significant H2 for generation time between 

cousins. As the low R2 values indicate, the regression model explained the 

data poorly, suggesting there may be other factors not included in our model 

which would explain more of the variation.  

 

Differences in heritability between traits could have a variety of causes: traits 

are likely to vary in sensitivity to environmental factors, and contributing genes 

may show different levels of standing variation. Generally, however, lower 

values of heritability might be expected for traits such as generation time 

which are highly correlated with fitness, as genetic variation is likely to be 

removed by natural selection31.  Conversely, selection can maintain 

phenotypic variation as well as remove it, and one might expect to see high 

heritability of traits under fluctuating or frequency-dependent selection - which, 

under some models of evolution, would include motility traits.  
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The cell lines MCF7 and HeLa are both highly genetically unstable, showing 

extensive genome rearrangement32, high levels of chromosome number 

variability33 and many instances of regional copy number increase34. Such cell 

lines might be expected to show higher H2 values, and greater evolvability, 

due to a greater level of standing genetic variation. This was not borne out for 

MCF7 in our data, although HeLa did show high H2 values compared to the 

other cell lines tested.  

 

Conclusions and future directions 

Our results confirm an important but previously untested assumption of 

cancer evolution35,36, and are encouraging for the prospect of experimental 

cancer evolution in vitro, an emerging field that is beginning to provide new 

insights into cancer biology and evolution37,38,39 in the same way as microbial 

experimental evolution has advanced our understanding of adaptation more 

generally40.  

 

Similar methods could be used to estimate evolvability parameters in a range 

of traits, such as cell adhesion or extracellular matrix degradation, and a 

range of cell populations.  It would be interesting to compare a range of 

cancer types with differing tendencies to metastasis - perhaps including 

transmissible cancers - and cancers from different patients, including recently-

isolated lines and biopsy samples. Primary non-cancerous cells should also 

be tested: currently, beyond a few measures of proliferation rate and marker 

gene expression in Chinese hamster ovaries41, almost no data are available 
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on the extent of heritable phenotypic variation between clonal somatic cells of 

multicellular animals, despite this question being highly relevant to the 

evolution of multicellularity42.  

 

Good data on trait heritability are available for a few model species of 

unicellular eukaryotes. Broad-sense heritability estimates obtained for 46 

growth traits in Saccharomyces cerevisiae43 had a median value of 0.77, and 

in Neurospora crassa, the heritability of six clock traits44 ranged from 0.42 to 

0.87.  However, both of these experiments started with crosses between 

geographically disparate strains to maximise genetic variation. We obtain 

similar heritability estimates within individual clonal cell lines, suggesting that 

cancer cells undergo comparatively rapid phenotypic diversification.  

 

Gene expression data from cells with varying trait values within the same cell 

line, or comparisons between selection and control lines after experimental 

evolution, could reveal possible targets of selection. Little is currently known 

about the molecular basis of phenotypic variation within tumours, although 

molecular genetic variation is known to be substantial45, 46.  

 

Because heritability is affected by levels of environmental variation47, values 

of heritability in vivo are likely to differ from in vitro estimates. Further 

quantitative data on cancer cell populations either in culture conditions 

simulating particular conditions of interest in tumour microenvironments, or 

within real tumours, is needed to enable the evolutionary dynamics of cancers 

to be understood and translated into meaningful in vivo predictions for 
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personalised medicine, and to reveal new targets and therapies for future 

clinical interventions. 
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Table and Table Legend: 

 

Table 1 

Mean trait value (± standard deviation) and broad-sense heritability of motility and generation time, in four cell lines, for three 

relationships between cells in tracked clonal families. R2 is also given for each regression.    

 

Cell line 
No. of 

families 

Mean speed 

(µm/hour) 

Mean generation 

time (hours) 

Heritability of cell motility H2 (R2) Heritability of generation time H2 (R2) 

Sister: 

sister 

Mother: 

daughter 

Cousin: 

cousin 

Sister: 

sister 

Mother: 

daughter 

Cousin: 

cousin 

MCF7 52 10.76 ± 3.74 24.78 ± 5.88 
0.5***  

(0.28) 

0.46***  

(0.33) 

0.58**  

(0.27) 

0.49*** 

(0.35) 

0.15  

(0.01) 

0.27  

(0.03) 

MDA-

MB-231 
141 26.82 ± 11.37 22.46 ± 6.62 

0.82***  

(0.65) 

0.59***  

(0.55) 

0.56*** 

(0.41) 

0.47*** 

(0.23) 

0.10  

(0.00) 

0.27*  

(0.06) 

HT1080 110 37.55 ± 10.03 14.22 ± 4.15 
0.62***  

(0.44) 

0.45***  

(0.3) 

0.56***  

(0.3) 

0.45*** 

(0.11) 

0.15*  

(0.02) 

0.26  

(0.02) 

HeLa 134 12.48 ± 5.23 24.43 ± 4.46 
0.82***  

(0.6) 

0.69***  

(0.61) 

0.85*** 

(0.60) 

0.56*** 

(0.27) 

0.4***  

(0.08) 

0.62*** 

(0.36) 

 

*p<0.05, **p<0.01, ***p<0.001 



  

257 
 

Figures and Figure Legends: 

 

Fig. 1 

a)  Example image from a time-lapse video, showing one HT1080 cell lineage 

as tracked for 11h 40min during the 72h observation period. Here, a mother cell 

moved from the upper middle part of the frame to the lower middle (red line) 

and divided into two daughter cells, which have since moved outwards to the 

left and right (green and yellow lines). See Supplementary Files for video. 

 

b) Schematic diagram of a cell family over three cell divisions showing the three 

cell-cell relationships used to calculate broad-sense heritability. 

 

c) Example of parent-offspring regression for motility, shown here for the 

mother cell/daughter cell relationship, in all four cell lines tested. Each point 

represents a mother cell and the mean speed of her daughters, and the slope 

of the regression line is the estimate of broad-sense heritability. Note that axes 

differ between graphs due to differences in speed between cell lines. As the 

cells reproduce clonally, the same method is applicable to other cell-cell 

relationships. H2 values for all cell-cell relationships are shown in Table 1.  
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