
Response of simulated burned area to 
historical changes in environmental and 
anthropogenic factors: a comparison of 
seven fire models 
Article 

Published Version 

Creative Commons: Attribution 4.0 (CC-BY) 

Open Access 

Teckentrup, L., Harrison, S. P. ORCID: https://orcid.org/0000-
0001-5687-1903, Hantson, S., Heil, A., Melton, J. R., Forrest, 
M., Li, F., Yue, C., Arneth, A., Hickler, T., Sitch, S. and 
Lasslop, G. (2019) Response of simulated burned area to 
historical changes in environmental and anthropogenic factors:
a comparison of seven fire models. Biogeosciences, 16 (19). 
pp. 3883-3910. ISSN 1726-4170 doi: 
https://doi.org/10.5194/bg-16-3883-2019 Available at 
https://centaur.reading.ac.uk/89766/ 

It is advisable to refer to the publisher’s version if you intend to cite from the 
work.  See Guidance on citing  .
Published version at: http://dx.doi.org/10.5194/bg-16-3883-2019 
To link to this article DOI: http://dx.doi.org/10.5194/bg-16-3883-2019 

Publisher: Copernicus Publications 

All outputs in CentAUR are protected by Intellectual Property Rights law, 
including copyright law. Copyright and IPR is retained by the creators or other 
copyright holders. Terms and conditions for use of this material are defined in 

http://centaur.reading.ac.uk/71187/10/CentAUR%20citing%20guide.pdf


the End User Agreement  . 

www.reading.ac.uk/centaur   

CentAUR 

Central Archive at the University of Reading 
Reading’s research outputs online

http://www.reading.ac.uk/centaur
http://centaur.reading.ac.uk/licence


Biogeosciences, 16, 3883–3910, 2019
https://doi.org/10.5194/bg-16-3883-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.

Response of simulated burned area to historical changes in
environmental and anthropogenic factors: a comparison
of seven fire models
Lina Teckentrup1, Sandy P. Harrison2, Stijn Hantson3, Angelika Heil1, Joe R. Melton4, Matthew Forrest5, Fang Li6,
Chao Yue7, Almut Arneth3, Thomas Hickler5, Stephen Sitch8, and Gitta Lasslop1,5

1Max Planck Institute for Meteorology, Land in the Earth System, Bundesstraße 53, Hamburg, Germany
2School of Archaeology, Geography and Environmental Sciences (SAGES), University of Reading,
Whiteknights, Reading, UK
3Karlsruhe Institute of Technology, Institute of Meteorology and Climate Research, Atmospheric
Environmental Research, 82467 Garmisch-Partenkirchen, Germany
4Climate Research Division, Environment Canada, Victoria, BC, V8W 2Y2, Canada
5Senckenberg Biodiversity and Climate Research Institute (BiK-F), 60325 Frankfurt am Main, Germany
6International Center for Climate and Environment Sciences, Institute of Atmospheric Physics, Chinese Academy of
Sciences, Beijing, China
7Laboratoire des Sciences du Climat et de l’Environnement, LSCE/IPSL,CEA-CNRS-UVSQ, Université Paris-Saclay,
Gif-sur-Yvette, France
8College of Life and Environmental Sciences, University of Exeter, Exeter, UK

Correspondence: Gitta Lasslop (gitta.lasslop@senckenberg.de)

Received: 30 January 2019 – Discussion started: 28 February 2019
Revised: 13 August 2019 – Accepted: 15 August 2019 – Published: 9 October 2019

Abstract. Understanding how fire regimes change over time
is of major importance for understanding their future impact
on the Earth system, including society. Large differences in
simulated burned area between fire models show that there
is substantial uncertainty associated with modelling global
change impacts on fire regimes. We draw here on sensitivity
simulations made by seven global dynamic vegetation mod-
els participating in the Fire Model Intercomparison Project
(FireMIP) to understand how differences in models translate
into differences in fire regime projections. The sensitivity ex-
periments isolate the impact of the individual drivers on sim-
ulated burned area, which are prescribed in the simulations.
Specifically these drivers are atmospheric CO2 concentra-
tion, population density, land-use change, lightning and cli-
mate.

The seven models capture spatial patterns in burned area.
However, they show considerable differences in the burned
area trends since 1921. We analyse the trajectories of dif-
ferences between the sensitivity and reference simulation to
improve our understanding of what drives the global trends

in burned area. Where it is possible, we link the inter-model
differences to model assumptions.

Overall, these analyses reveal that the largest uncertain-
ties in simulating global historical burned area are related
to the representation of anthropogenic ignitions and suppres-
sion and effects of land use on vegetation and fire. In line
with previous studies this highlights the need to improve our
understanding and model representation of the relationship
between human activities and fire to improve our abilities
to model fire within Earth system model applications. Only
two models show a strong response to atmospheric CO2 con-
centration. The effects of changes in atmospheric CO2 con-
centration on fire are complex and quantitative information
of how fuel loads and how flammability changes due to this
factor is missing. The response to lightning on global scale is
low. The response of burned area to climate is spatially het-
erogeneous and has a strong inter-annual variation. Climate
is therefore likely more important than the other factors for
short-term variations and extremes in burned area. This study
provides a basis to understand the uncertainties in global fire
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modelling. Both improvements in process understanding and
observational constraints reduce uncertainties in modelling
burned area trends.

1 Introduction

Wildfires are an important driver of vegetation distribution
and regulate ecosystem functioning, biodiversity and carbon
storage over large parts of the world (Bond et al., 2005;
Hantson et al., 2016a). Fire has strong impacts on climate
through changing land surface properties, through atmo-
spheric chemistry and hence radiative forcing and through
biogeochemical cycling (Bowman et al., 2009; Randerson
et al., 2012; Ward et al., 2012; Yue et al., 2016; Li and
Lawrence, 2017; Li et al., 2017; Lasslop et al., 2019). Es-
timates of the net effect of fire on the Earth system vary.
Analyses based on observations of the pre-industrial period
suggest that the contribution of fire to the overall climate–
carbon–cycle feedback is substantial with 5.6± 3.2 ppm K−1

CO2 (Harrison et al., 2018) while the strength of the global
land climate–carbon–cycle feedback estimated from Earth
system simulations (Arora et al., 2013) is 17.5 ppm K−1

(Harrison et al., 2018). However, comparing potential fire-
induced losses from terrestrial carbon pools and stocks of
solid pyrogenic carbon in soils and ocean, fire may also be a
net sink of carbon, and Earth system simulations show a neg-
ative effect of fire on radiative forcing (Lasslop et al., 2019).
In addition to these consequences for the Earth system, wild-
fires directly impact society and economy (Gauthier et al.,
2015), and human health can be seriously impaired (John-
ston et al., 2012; Finlay et al., 2012).

Given the various impacts of fire on natural and human
systems, and the large uncertainties, it is important to im-
prove the understanding of what controls the occurrence of
wildfires and to know how fire regimes might change in the
future.

Based on current process understanding, the following
drivers influenced burned area over the last decades to cen-
turies. Increasing atmospheric CO2 concentration leads to in-
creases in net primary production (Hickler et al., 2008), and
decreased stomatal conductance reduces the plant transpi-
ration and enhances water conservation in plants (Morison,
1985). It can lead to an increase in the abundance of woody
plants (“woody thickening”; Wigley et al., 2010; Bond and
Midgley, 2012; Buitenwerf et al., 2012) because C3 plants
are generally more competitive than C4 plants under higher
atmospheric CO2 concentration (e.g. Ehleringer and Björk-
man, 1977; Ehleringer et al., 1997; Wand et al., 2001; Sage
and Kubien, 2007). The impact of these various changes on
burned area is complex. Increased productivity can lead to in-
creased fuel availability, which can lead to increased burned
area in water- and fuel-limited regions (Kelley and Harrison,
2014). On the other hand, decreased stomatal conductance

and lower transpiration can lead to enhanced water conser-
vation in plants. This increases the moisture content of soil,
as well as vegetation moisture content, and consequently in-
creases live and dead fuel moisture contents, which decreases
flammability and reduces burned area. Woody thickening can
lead to a reduction in burned area through changing the na-
ture of fuel loads (Kelley and Harrison, 2014).

There is still controversy about whether humans increase
or decrease fire overall. Although there is broad agreement
that humans suppress fires in regions with high population
density, observational studies are less clear about what hap-
pens in areas of low population density and show both in-
creases or decreases due to human activities (see for instance
Marlon et al., 2008; Bowman et al., 2011; Marlon et al.,
2013; Vannière et al., 2016; Andela et al., 2017; Balch et al.,
2017). Studies of the covariation between population density
and number of fires have shown that increasing population
density leads to an increase in the number of ignitions or
in the number of individual fires until peaking at interme-
diate population densities and then subsequently dropping
(Syphard et al., 2009; Archibald et al., 2010). Burned area
can be expressed as the number of fires multiplied by their
fire size. The increase in burned area due to changes in ig-
nitions is expected to differ between regions with varying
population density as the largest fires occur in unpopulated
areas (Hantson et al., 2015a). Global analyses find that the
net effect of population density is a decrease in burned area
(Bistinas et al., 2014; Knorr et al., 2014), with high uncer-
tainties for low population density if the method allows for
non-monotonic relationships (Knorr et al., 2014). Regional
analyses tend to confirm this, but positive relationships be-
tween burned area and population density have been shown,
for instance, for the least disturbed areas in the USA (Parisien
et al., 2016).

Fire was used to manage croplands in pre-industrial
times (e.g. Dumond, 1961; Otto and Anderson, 1982; John-
ston, 2003) and is still common practice mainly in non-
industrialized areas (i.e. sub-Saharan Africa, parts of South-
east Asia, Indonesia and Latin America; e.g. Conklin, 1961;
Rasul and Thapa, 2003). However fires in agricultural ar-
eas are common all over the world (Korontzi et al., 2006).
Global analyses indicate a decrease in burned area (Bistinas
et al., 2014; Andela and van der Werf, 2014) and fire size
(Hantson et al., 2015b) with increases in cropland fraction.
Fires on pasturelands have been estimated to contribute over
40 % of the global burned area (Rabin et al., 2015). Analy-
ses of global datasets have found an increase in burned area
with increases in grazing land cover (Bistinas et al., 2014)
but found reduced burned area on intensely grazed areas (An-
dela et al., 2017). Despite these analyses, the severe data gaps
limit our level of understanding on how humans use fire in
land management (Erb et al., 2017).

Lightning is the main source of natural ignitions (Scott
et al., 2014). It is connected to convective activity and is
therefore expected to change with global warming (Krause
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et al., 2014). Most of the burned area in boreal regions results
from a few large fires (Stocks et al., 2002); these large fires
are frequently ignited by lightning (Peterson et al., 2010).
Veraverbeke et al. (2017) have shown that lightning igni-
tions drive the inter-annual variability as well as the long-
term trends of ignitions in boreal regions.

Climate influences burned area through weather condi-
tions and through its influence on vegetation (Bistinas et al.,
2014; Forkel et al., 2017). Weather conditions (precedent
precipitation, temperature and wind speed) influence fuel
drying, and wind speed additionally affects the rate of fire
spread (Harrison et al., 2010; Scott et al., 2014). Vegetation
type and fuel load are driven by climate, and both strongly in-
fluence fire occurrence (Chuvieco et al., 2008; Pettinari and
Chuvieco, 2016). Fires are limited under dry conditions due
to low vegetation productivity and therefore insufficient fuel,
and are limited under wet conditions because the fuel is too
wet to burn. The highest burned areas are therefore found in
areas with intermediate moisture conditions (Krawchuk and
Moritz, 2011). There is no obvious disagreement in literature
about how specific climatic factors influence fire. However,
the relative importance of each factor, e.g. weather vs. veg-
etation, is still uncertain and varies spatially (Forkel et al.,
2017). Fire models are sensitive to meteorological forcing,
and different forcing datasets already lead to large differ-
ences in simulated burned area (Rabin et al., 2017a; Lasslop
et al., 2014). The importance of factors also varies between
small and large scales. Wind speed is an obvious driver of
fire spread on the local scale, but it is difficult to extract this
influence on the spatial resolution of global models (Lasslop
et al., 2015).

Fire-enabled vegetation models simulate fire regimes in re-
sponse to the combination of individual forcings, including
atmospheric CO2 concentration, population density, land-use
change, lightning and climate. Individual fire-enabled vege-
tation models have been shown to simulate observed global
patterns of burned area and fire emissions reasonably well
(Kloster et al., 2010; Prentice et al., 2011; Li et al., 2012;
Lasslop et al., 2014; Yue et al., 2014), but there are large
differences between models in terms of regional patterns,
fire seasonality and inter-annual variability, historical trends
(Kelley et al., 2013; Andela et al., 2017) and responses to
individual factors (Kloster et al., 2010; Knorr et al., 2014,
2016; Lasslop and Kloster, 2017, 2015). The Fire Model In-
tercomparison Project (FireMIP, Hantson et al., 2016a; Ra-
bin et al., 2017a) provides a systematic framework to con-
sistently analyse and understand the causes of these differ-
ences and to relate them to differences in the treatment of key
drivers of fire in individual models. FireMIP provides simu-
lations for a systematic comparison of fire model behaviour
based on outputs of a large range of models with identical
forcing inputs. In addition to a reference historical simula-
tion, sensitivity simulations were conducted for individual
forcings, specifically atmospheric CO2 concentration, pop-
ulation density, land-use change, lightning and climate. A re-

cent evaluation of the FireMIP models indicates that the rela-
tionship with climatic parameters is captured well by models,
the response to human factors is captured by some models
and the response to vegetation productivity or the allocation
of carbon to fuels needs refinement for most models (Forkel
et al., 2019a). Comparisons of the FireMIP historical simu-
lations found differences in transient model behaviour in the
20th century (Andela et al., 2017; van Marle et al., 2017).
The causes of the differences and the reasons why different
models show different responses are not yet understood.

In this multi-model study we use the historical simula-
tion to show the overall modelled response of burned area to
changes in environmental and human factors. We then com-
pare the sensitivity experiments of the five most commonly
used driving factors to document how simulated burned area
responds to the individual forcing factors and relate inter-
model differences of the burned area response to differences
in model assumptions or parametrization. We finally suggest
implications of our results for model development and appli-
cation.

2 Methods

The baseline FireMIP experiment (SF1) is a transient simula-
tion from 1700 to 2013, in which atmospheric CO2 concen-
tration, population density, land use, lightning and climate
change through time according to prescribed datasets. The
baseline and sensitivity simulations start from the end of a
spin-up simulation with equilibrated carbon pools (see Rabin
et al., 2017a, for details of the experimental protocol). The
five sensitivity experiments (SF2) are designed to isolate dif-
ferences in model behaviour associated with individual forc-
ing factors. The model inputs and setup are the same as in
SF1, but one of the forcings is kept constant at the value used
in the spin-up throughout the experiment (see Table 1). Thus,
for example in SF2_CO2, population density, land use, light-
ning and climate inputs change each year, but atmospheric
CO2 concentration is held constant at 277.33 ppm for the
whole of the simulation. The resulting difference in burned
area between the simulations is then a combination of the
changes in the forcing and the sensitivity of the model to that
forcing factor. Not all models performed every sensitivity ex-
periment due to limitations in model structure (see Table 2).
Detailed model descriptions can be found in the correspond-
ing literature listed in Table A1. Two of the models (CLASS–
CTEM and CLM) started the simulations later than the oth-
ers (1861 and 1850, respectively), and due to limitations in
data availability the reference year of the forcings used in
the spin-up varies (see Table 1). We account for these dif-
ferences in starting years between models and in the forcing
factors by limiting our analysis to the period where all factors
are different from the ones used in the spin-up (after 1921).
These differences still influence the absolute differences, and
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we therefore quantify the strength of the impact through the
slope of a regression line and do not interpret the offset.

2.1 Data processing and analysis of simulation results

Our analyses of the SF1 and SF2 simulations focus on the
simulation of burned area but are complemented by effects
on vegetation carbon pools for the SF2_CO2 simulation. We
focus on the time series of global burned area over the his-
torical simulation and the spatial patterns of differences in
burned area between 1921 and 2013, as in this period all
forcings are transient and different from the values used in
the spin-up. Annual global values are an area weighted av-
erage using the grid cell area. We quantify the response of
the models to each driving factor using the absolute differ-
ence in burned area between the baseline and the respec-
tive sensitivity experiment (SF1-SF2_i, with i in CO2, FPO,
FLA, FLI, and CLI; see Table 1 for details). Positive differ-
ences mean that the transient change of the factor leads to
an increase in burned area. We use the Climate Data Op-
erators (CDO version 2018: Climate Data Operators; avail-
able at: http://www.mpimet.mpg.de/cdo, last access: 30 Jan-
uary 2019) to process and remap the simulated outputs. We
test the difference time series for trends over the period from
1921 to 2013 using the Mann–Kendall test, implemented in
the R package Kendall (McLeod, 2011). We quantify the
global trend as the slope of a linear regression and summa-
rize the spatial distribution of trends by quantifying the area
with significant positive trends and the area with significant
negative trends.

Due to a postprocessing error, INFERNO lacks 2 years in
SF2_CO2 (2001 and 2002).

2.2 Model–data comparison

To evaluate the simulations of burned area, we compare the
simulated burned area with remote sensing data products.
Global burned area observations from satellites still suffer
from substantial uncertainty, as reflected by the consider-
able differences in spatial and temporal patterns between dif-
ferent data products (Humber et al., 2018; Hantson et al.,
2016a; Chuvieco et al., 2018; van der Werf et al., 2017). Us-
ing multiple satellite products in model benchmarking is one
approach which takes into account these observational un-
certainties (Rabin et al., 2017a). In this study, we use three
satellite products: GFED4 (Giglio et al., 2013), GFED4s
(van der Werf et al., 2017) and FireCCI50 (Chuvieco et al.,
2018). GFED4 is a gridded version of the MODIS Collec-
tion 5.1 MCD64 burned area product. It is known that this
product strongly underestimates small fires, including crop-
land fires (e.g. Hall et al., 2016). In GFED4s, burned area
due to small fires is estimated based on MODIS active fire
(AF) detections and added to GFED4 burned area. However,
this methodology may introduce significant errors related to
erroneous AF detections (Zhang et al., 2018). As a comple-

mentary product, FireCCI50 was developed using MODIS
spectral bands with higher spatial resolution than MCD64.
A higher resolution enhances the ability to detect smaller
fires; however, this improvement is partially offset by sub-
optimal spectral properties of the bands. Both GFED4s and
FireCCI50 have a larger burned area than GFED4. Since all
three products are based on MODIS data, the inter-product
differences probably underestimate uncertainties associated
with these products. A recent mapping of burned area for
Africa using higher-resolution Sentinel-2 observations in-
dicates that all three products substantially underestimate
burned area (Roteta et al., 2019). For the model evalua-
tion we use temporally averaged burned area fraction for
the years 2001–2013, which is the interval common to all
three satellite products and the model simulations. We re-
sample the model outputs to the lowest model resolution
(CLASS-CTEM: 2.8125◦×2.8125◦) with first-order conser-
vative remapping. We quantify the agreement between mod-
els and observations by providing the global burned area and
the Pearson correlation coefficient for the between grid cell
variation (see Table 3). We choose the Pearson correlation as
it quantifies the covariation of the spatial patterns and is less
sensitive to the highly uncertain absolute burned area val-
ues. Burned area has a strongly skewed distribution, with few
high values and many small values close to, or equal to, zero.
These few high values have a much higher contribution to the
overall correlation (see Fig. A9 in Appendix), and therefore
the metric is strongly determined by the performance of the
model in areas with high burning. Square root or logarithmic
transformation leads to more normally distributed values that
reduce this bias (see Fig. A9). As the logarithm transforma-
tion excludes grid cells with zero burned area, we adopt the
square root transformation.

In spite of major advances in mapping burned area based
on satellite data, these data products include major uncertain-
ties. GFED4 and FireCCI50 provide uncertainty estimates
for the burned area. Applying Gaussian error propagation,
which assumes that errors are independent and normally dis-
tributed, yields uncertainty estimates of 0.01 % (GFED4) and
0.2 % (FireCCI50) of the global burned area, which is cer-
tainly an underestimation. The assumptions of normal dis-
tribution and independence are likely violated. The spread
between global burned area datasets is probably a more real-
istic estimate. Since all the products rely on the MODIS sen-
sor, this approach will not capture the full uncertainty. Nev-
ertheless, to investigate the effect of data quality in the ob-
servations on the model–data comparison we use the burned
area product uncertainty estimates (aggregated to model res-
olution assuming independence) to group the observations
into points with low, medium and high uncertainty (low:
within the 0–33rd percentile, medium: within the 33rd–66th
percentile and high: within the 66th–99th percentile of the
relative uncertainty; estimates= uncertainty / burned area).
We then compute the correlations for datapoints with low,
medium and high uncertainty separately.

Biogeosciences, 16, 3883–3910, 2019 www.biogeosciences.net/16/3883/2019/
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Table 1. Overview over the sensitivity experiments conducted by FireMIP models (Rabin et al., 2017a). Rptd indicates the forcing was
repeated over the given years. SF2_CO2 stands for fixed atmospheric CO2 concentration, SF2_FPO for fixed population density, SF2_FLA
for fixed land use, SF2_FLI for fixed lightning and SF2_CLI for fixed climate.

Sensitivity experiments

Driving factor SF2_CO2 SF2_FPO SF2_FLA SF2_FLI SF2_CLI

CO2 277.33 ppm transient transient transient transient
Population density (PD) transient fixed transient transient transient

year 1
Land-use change (LUC) transient transient fixed transient transient

year 1
Lightning transient transient transient rptd: transient

1901–1920
Climate transient transient transient transient rptd:

1901–1920

Table 2. Sensitivity experiments conducted by FireMIP models.

Sensitivity experiments

Model SF2_CO2 SF2_FPO SF2_FLA SF2_FLI SF2_CLI

CLASS–CTEM X X X X X
CLM X X X X X
INFERNO X X X
JSBACH–SPITFIRE X X X X X
LPJ–GUESS–SIMFIRE–BLAZE X X X X
LPJ–GUESS–SPITFIRE X X X X
ORCHIDEE–SPITFIRE X X X X X

3 Results and discussion

3.1 Simulated historical burned area

The models show magnitudes of annual global burned area
between 354 and 531 Mha yr−1 for present day. This is com-
parable to the estimates obtained from the satellite prod-
ucts, which range from 345 to 480 Mha yr−1 (see Fig. 1, Ta-
ble 3). The correlation coefficients between all of the sim-
ulations and the satellite observations are reasonable, with
values ranging from 0.51 (CLASS–CTEM and GFED4s) to
0.8 (ORCHIDEE–SPITFIRE and GFED4; see Table 3). In
general, the correlations with GFED4 are highest and with
GFED4s being the lowest for almost all models – which may
reflect the fact that most models do not explicitly simulate
agricultural fires or may indicate inaccuracies in the map-
ping of agricultural fires in the GFED4s dataset. The corre-
lation coefficients strongly decrease with increasing observa-
tional relative uncertainty (see Table A2 in Appendix). This
shows that part of the mismatch in the spatial patterns be-
tween simulations and observations is a consequence of un-
certainties in the satellite products themselves. The FireMIP
models simulate the broad-scale patterns in burned area rea-
sonably well (see Fig. A1), with maxima in the major fire-
affected regions of the Sahel, southern Africa, northern Aus-

tralia and the western USA. All of the models tend to over-
estimate the burned area in South America and also in the
temperate regions of the USA. For a more detailed evalua-
tion of the burned area see Forkel et al. (2019a).

The simulated trend in burned area in the historical simula-
tion differs between the models (see Fig. 1). All models show
a significant trend over the time series from 1921 to 2013
(see Table 4). Models that have a relatively high total burned
area initially (LPJ–GUESS-SIMFIRE–BLAZE and CLASS–
CTEM) show a decline in burned area over the 20th cen-
tury. Most models that have a low burned area (INFERNO,
ORCHIDEE–SPITFIRE and LPJ-GUESS-SPITFIRE) show
an increasing trend. JSBACH–SPITFIRE and CLM have in-
termediate levels in burned area and show a weak decreasing
trend over the 20th century.

Satellite records show a decline in global burned area since
1996 (Andela et al., 2017). However, as Forkel et al. (2019b)
have shown, the significance of the observed global decline
is strongly affected by the length of the sampled interval be-
cause of the high inter-annual variability in burned area and
trends between products show only a low correlation (Forkel
et al., 2019b).

No observations document the longer-term trends in
burned area. Charcoal records (Marlon et al., 2008, 2016) and

www.biogeosciences.net/16/3883/2019/ Biogeosciences, 16, 3883–3910, 2019
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Table 3. Global burned area averaged over 2001–2013 in megahectare per year (Mha yr−1) and the Pearson correlation coefficients between
the baseline experiment SF1 for all FireMIP models and the respective observation data. We use a square root transformation on both model
and observations. All correlation coefficients are significant (p value< 0.05).

Model Burned area R(GFED4, model) R(GFED4s, model) R(FireCCI50, model)
(Mha yr−1)

CLASS–CTEM 531 0.58 0.51 0.56
CLM 451 0.73 0.68 0.74
INFERNO 354 0.70 0.64 0.69
JSBACH–SPITFIRE 455 0.66 0.57 0.62
LPJ–GUESS–SIMFIRE–BLAZE 482 0.67 0.60 0.62
LPJ–GUESS–SPITFIRE 404 0.55 0.56 0.59
ORCHIDEE–SPITFIRE 474 0.80 0.72 0.79

GFED4 345
GFED4s 480
FireCCI50 389

carbon monoxide data from ice-core records (Wang et al.,
2010) are a proxy for biomass burning and show a global
decrease in biomass burning over most of the 20th century.
However, the charcoal records show an increase in burning
since 2000 CE, but this discrepancy might reflect regional
undersampling (for instance in Africa) or taphonomic issues
of the charcoal record. A recent fire emission dataset (van
Marle et al., 2017) merges information from satellites, char-
coal records, airport visibility records and if no other infor-
mation was available uses simulation results of the FireMIP
models. This dataset is not included to evaluate the models
here as it is partly based on the simulations of the FireMIP
models and as it provides only estimates for emissions not
burned area.

The understanding of the drivers on simulated trends that
we give below provides insights on what causes the simu-
lated trends and which assumptions control the trend. These
insights will help to understand which observational con-
straints and process understanding is required to improve
global fire models.

3.2 Response of simulated burned area to individual
drivers

The response of burned area to the individual factors is deter-
mined by the changes in the driving factors and the sensitivity
of the model to these changes. The population density forcing
dataset has the strongest trend in the relative differences be-
tween the transient forcing and the year 1920 value followed
by the land-use and land-cover change dataset. The trend in
atmospheric CO2 concentration is higher than the trend in
the lightning dataset, which is more than twice as strong as
in the air temperature. Wind speed shows the lowest trend
of all investigated driving factors (see Table 4). Population
density (SF2_FPO) and land-use change (SF2_FLA) cause
the largest divergence between models in trends of burned
area (slope between −1.05 and 1.345 Mha yr−1 and between

−1.485 and 1.845 Mha yr−1, respectively). All models have
a statistically significant trend in burned area for SF2_FPO
as well as for SF2_FLA, except for CLM for SF2_FLA
(see Table 4, Fig. 2b and c). For SF2_CO2 all models have
a significant trend, however, the magnitude of the trend is
much smaller compared to the trend due to anthropogenic
factors. LPJ–GUESS–SPITFIRE and JSBACH–SPITFIRE
have strong trends (> 0.5 Mha yr−1), for all other models
the slope is close to zero (< 0.15 Mha yr−1; see Table 4,
Fig. 2a). The differences between models are increasing over
the 20th century for these first three experiments. The re-
sponse to changes in lightning and climate generally shows
much smaller trends but high inter-annual variability: none
of the models has a significant trend for climate. Three
models show significant (but inconsistent 0.014, 0.334 and
−0.074 Mha yr−1) trends for lightning (see Table 4). The
inter-annual variability is stronger for climate. The mean
standard deviation of the absolute differences averaged over
all models is 30 Mha for climate and 7 Mha for lightning
(only 3 Mha if the model with the strongest response is ex-
cluded; see Fig. 2d and e).

The spatial patterns of trends in burned area are mostly
heterogeneous (see Figs. A3–A7). The global trend can be
dominated by changes in limited areas of the world, while
the lack of a global trend can reflect opposing trends in differ-
ent regions. A detailed regional analysis is beyond the scope
of this study, but we provide an alternative global view by
quantifying the area affected by positive or negative trends
(see Fig. 3). This comparison shows that for most models
larger areas show significant positive trends for the reference
simulation (5 models), increasing atmospheric CO2 concen-
tration (5 models) and varying climate (5 models and 1 equal
areas). There is no clear signal of either positive or nega-
tive trends across the models for the other simulations. For
climate and lightning smaller areas have significant trends
(see Fig. 3). For ORCHIDEE–SPITFIRE and LPJ–GUESS–
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Table 4. Trends (slope and standard error of a linear regression, megahectare per year, Mha yr−1) in annual global burned area for the years
1921–2013 for the baseline experiment SF1 and absolute difference time series of annual burned area. The trends for the forcing datasets are
based on the relative difference between the transient forcing and year 1920 values for SF2_CO2, SF2_FPO and SF2_FLA and are based on
the relative difference between the transient and the recycled forcing for SF2_FLI and SF2_FCL for the years 1921–2013 (%) (see Table 1).
Bold values indicate significance based on a Mann–Kendall test (p value< 0.05). Experiments that are not available for specific models are
indicated with NA.

Model Sensitivity experiments

SF1 SF2_CO2 SF2_FPO SF2_FLA SF2_FLI SF2_CLI

CLASS–CTEM −2.238 −0.059 −0.754 −0.922 0.000 0.072
± 0.116 ± 0.008 ± 0.052 ± 0.049 ± 0.001 ± 0.134

CLM −0.277 0.065 −1.05 −0.065 −0.048 0.046
± 0.083 ± 0.018 ± 0.044 ± 0.027 ± 0.023 ± 0.05

INFERNO 0.256 0.118 −0.571 0.303 NA NA
± 0.063 ± 0.007 ± 0.031 ± 0.01

JSBACH–SPITFIRE −0.304 0.574 −0.182 −0.873 −0.074 0.097
± 0.077 ± 0.020 ± 0.038 ± 0.051 ±0.014 ± 0.099

LPJ–GUESS–SIMFIRE–BLAZE −2.161 −0.145 −0.847 −1.485 NA 0.249
± 0.138 ± 0.016 ± 0.047 ± 0.067 ± 0.144

LPJ–GUESS–SPITFIRE 2.351 0.986 1.345 1.845 0.015 NA
± 0.087 ± 0.032 ± 0.050 ± 0.044 ± 0.006

ORCHIDEE–SPITFIRE 1.383 0.035 0.520 0.859 0.334 0.033
± 0.113 ± 0.026 ± 0.022 ± 0.036 ± 0.072 ± 0.120

CO2 Population density Land cover Lightning Temperature

Forcing 0.946 13.868 0.903 0.219 0.086
± 0.033 ± 1.363 ± 0.033 ± 0.037 ± 0.009

Wind speed

0.012
± 0.006

Figure 1. Annual global burned area (BA) in megahectare per year
(Mha yr−1) for all FireMIP models for 1921–2013 for the base-
line experiment SF1. The shaded area indicates the range of annual
global burned area values for the observations.

SPITFIRE all factors but climate cause a significant posi-
tive trend globally (see Table 4), and larger areas have posi-
tive trends for all factors, with the exception of lightning for
LPJ–GUESS–SPITFIRE (see Fig. 3). On the other end of the
model range, LPJ–GUESS–SIMFIRE–BLAZE only shows a
positive global trend for climate and shows positive trends in-
duced by atmospheric CO2 concentration in larger areas (see
Fig. 3).

In the following paragraphs we detail the inter-model dif-
ferences and their causes for each sensitivity experiment.

3.2.1 Response of simulated burned area to
atmospheric CO2 concentration

The overall changes in burned area in individual simulations
as a result of atmospheric CO2 concentration changes are a
complex response to multiple changes in vegetation, changes
in land cover, fuel load, fuel characteristics and fuel mois-
ture. Burned area can either increase due to higher availabil-
ity of fuel loads or decrease due to changes in flammabil-
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Figure 2. Absolute difference in annual global burned area (1BA) in megahectare (Mha) from 1921 to 2013 between the baseline experiment
SF1 and the sensitivity experiments SF2_CO2 (a), SF2_FPO (b), SF2_FLA (c), SF2_FLI (d) and (e) SF2_CLI, in which the specific forcing
factors were set to the values used during the spin-up simulation (see Table 1).

Figure 3. Area with a significant positive trend (red bar) or with a significant (Mann–Kendall test p < 0.05) negative trend (blue bar) in
burned area fraction averaged over the years 1921–2013 for the baseline experiment SF1 and for the absolute differences in burned area
fraction between the sensitivity experiments SF2 and SF1 (see Table 1). See Figs. A2–A7 for comparison.
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ity caused by different fuel properties. The FireMIP mod-
els react to increasing atmospheric CO2 concentration in dif-
ferent ways: some models (JSBACH–SPITFIRE and LPJ–
GUESS–SPITFIRE) show a strong increase in burned area,
some (CLM and INFERNO) show a moderate increase,
CLASS–CTEM shows a slight decrease, and LPJ–GUESS–
SIMFIRE–BLAZE and ORCHIDEE–SPITFIRE show a
non-monotonic response (see Fig. 2a). For all models, the
trends over the 20th century are significant (see Table 4).

We use changes in vegetation carbon to understand
changes in fuel load and composition because information
on the amount of fuel used within the fire models was not
available for individual plant functional types (PFTs). All
models show an increase in total vegetation biomass (“to-
tal” is indicated by solid lines; see Fig. 4) as expected be-
cause of higher productivity (Farquhar et al., 1980; Hickler
et al., 2008) and increased water use efficiency (De Kauwe
et al., 2013). The response of specific types of vegetation
carbon to increasing atmospheric CO2 concentration varies
between the vegetation models. The biomass of C3 vegeta-
tion (trees and C3 grasses) increases in all of the models.
The biomass of C4 grasses increases in CLASS–CTEM, IN-
FERNO and JSBACH–SPITFIRE, but it does not change in
ORCHIDEE–SPITFIRE. Since ORCHIDEE–SPITFIRE was
run with fixed vegetation distribution, changes in the extent
of different PFTs can be ruled out as a cause of changes in
vegetation carbon. There is a decrease in burned area in re-
gions with abundant C4 grasses (Sahel and north Australia)
in this model, suggesting that changes in fuel type (increased
C3 tree biomass) result in changes in flammability in these
regions. The carbon stored in C4 grasses is reduced in re-
sponse to increasing atmospheric CO2 concentration in CLM
and LPJ–GUESS–SIMFIRE–BLAZE and is fairly constant
in LPJ–GUESS–SPITFIRE. This can be a result of a de-
crease in C4 grass cover in LPJ–GUESS–SIMFIRE-BLAZE
and LPJ–GUESS–SPITFIRE. However, since CLM was run
with prescribed vegetation cover, the reduction in C4 carbon
must reflect the fact that any increase in C4 grass biomass due
to higher atmospheric CO2 concentration is offset by greater
losses through burning due to the increased total fuel load.

CLM and LPJ–GUESS–SIMFIRE–BLAZE include an in-
teractive nitrogen cycle, and CLASS–CTEM includes a non-
interactive nitrogen downregulation. Effects of atmospheric
CO2 concentration on vegetation biomass for these three
models are therefore at the lower end of the model ensem-
ble. The strength of atmospheric CO2 concentration effects
on productivity is still uncertain and quantitative informa-
tion about effects on fuel loads is not available. Comparisons
with experimental data suggest that models that do not in-
clude the nitrogen cycle overestimate the effect on produc-
tivity (Hickler et al., 2015). However, an analysis using an
observation-based emergent constraint on the long-term sen-
sitivity of land carbon storage shows that models from the
Coupled Climate Model Intercomparison Project (CMIP5)
ensemble, which includes an interactive nitrogen cycle, un-

derestimate the impact of atmospheric CO2 concentration on
productivity (Wenzel et al., 2016).

Soil moisture is used by several models to compute fuel
moisture (see Fig. 5). Soil moisture can be influenced by
different atmospheric CO2 concentrations as reductions in
stomatal conductance can lead to increases in soil moisture,
whereas increases in the leaf area index (LAI), caused by in-
creased biomass of increased tree cover, lead to higher tran-
spiration and therefore lower soil moisture. Soil moisture in-
creases slightly in four models (INFERNO, CLASS–CTEM
and CLM, JSBACH–SPITFIRE) and decreases slightly
in ORCHIDEE–SPITFIRE. Only LPJ–GUESS–SPITFIRE
shows a strong decrease (5 % in global average) in soil mois-
ture (see Fig. 6).

Models which include fuel load and moisture effects
through threshold functions (see Fig. 5; CLASS–CTEM, IN-
FERNO and CLM) tend to show muted responses. Decreases
in burned area appear to be largely caused by increases in
soil moisture or tree cover. Increases associated with increas-
ing fuel load are limited to regions with low biomass. The
balance between these effects differs between the models.
CLASS-CTEM shows a small decrease in burned area glob-
ally, and the spatial pattern is dominated by areas with nega-
tive trends in burned area, but there are positive trends in dry
regions (see Fig. A3). The small global increase in burned
area in INFERNO is likely related to increased fuel loads,
while negative trends in burned area only occur in the tropical
regions (see Fig. A3). INFERNO uses a constant burned area
per PFT that is set to 0.6, 1.4 and 1.2 km2 for trees, grass and
shrubs, respectively. CLM shows increased global burned
area, but increases are located in dry areas while the bo-
real regions show decreases. JSBACH–SPITFIRE and LPJ-
GUESS–SPITFIRE respond to elevated atmospheric CO2
concentrations with a strong increase in burned area, likely
driven by increases in fuel load. LPJ–GUESS–SPITFIRE ad-
ditionally shows a strong decrease in soil moisture, which
might explain why this model shows the strongest increase
in burned area. ORCHIDEE–SPITFIRE shows lower burned
area in response to elevated atmospheric CO2 concentrations
but the decreases are mainly localized in the regions with
very high burned area (Sahel and northern Australia; see
Fig. A3) and are likely driven by the increase in C3 woody
biomass (see Fig. 4) as SPITFIRE is very sensitive to this
type of fuel (Lasslop et al., 2014). LPJ–GUESS–SIMFIRE–
BLAZE shows an initial increase and then a decrease in
burned area at the end of the simulation. The spatial pattern
is mixed, and the decrease in C4 grass biomass indicates that
woody thickening, either due to changes in land-cover frac-
tion or fuel composition is the reason for this reduction in
burned area. An increase in woody plants with higher atmo-
spheric CO2 concentration is expected (Wigley et al., 2010;
Buitenwerf et al., 2012; Bond and Midgley, 2012). Their
coarser and less flammable fuel can lead to reduced burned
area. A recent study using an optimized empirical model in-
dicates that increases in biomass lead to decreases in burned

www.biogeosciences.net/16/3883/2019/ Biogeosciences, 16, 3883–3910, 2019



3892 L. Teckentrup et al.: Response of simulated historical burned area

area in regions with high fuel loads, which is likely due to
increases in coarser fuels and to increases in burned area in
fuel-limited regions (Forkel et al., 2019b).

3.2.2 Response of simulated burned area to population
density

The population density forcing used for FireMIP increases in
every region of the globe over time as well as in annual global
values (Goldewijk et al., 2010). This increasing population
density is associated with a monotonic increase in global
burned area for LPJ–GUESS–SPITFIRE, and monotonic de-
creases for LPJ–GUESS–SIMFIRE–BLAZE and CLM. The
remaining models show a peak in the impact of population
density on burned area around 1950 and a subsequent decline
(see Fig. 2b). Models, however, largely agree on a decreas-
ing trend due to the impact of population density since 1921
(see Table 4), and the ones that show a positive trend did not
reproduce the relationship between population density and
burned area in a multivariate model evaluation (Forkel et al.,
2019a). Changes in population density therefore, very likely,
contributed to a decrease in global burned area since 1921.

All the models, except LPJ–GUESS-SIMFIRE–BLAZE,
include the number of anthropogenic ignitions (IA) or the
probability of fire due to anthropogenic ignitions (Pi,h in
CLASS–CTEM) in the calculation of burned area. Most of
the models represent the number of anthropogenic ignitions
with an increase up to a certain threshold number and then
a decline, implicitly assuming that for high population den-
sities humans suppress fires (SPITFIRE–models, INFERNO
and CLM; see Fig. 7). CLASS–CTEM, JSBACH–SPITFIRE
and CLM include explicit terms to account for the effects
of suppression not only on ignitions but also on fire size,
or duration or both (see Fig. 8). The combination of the
ignition and suppression terms in CLASS–CTEM leads to
a maximum impact of humans on burned area at interme-
diate population density. The combination of ignition and
suppression mechanisms dependant on population thresh-
olds explains why most of the models have non-monotonic
changes in burned area as population increases during the
20th century. LPJ–GUESS–SPITFIRE is the only model that
shows a monotonic increase in burned area in response to in-
creasing population density; other models that include the
SPITFIRE fire module (JSBACH and ORCHIDEE) show
the non-monotonic trajectory that results from the shift from
the dominance of ignitions to that of suppression on burned
area. ORCHIDEE–SPITFIRE has a much lower contribution
from anthropogenic ignitions than LPJ–GUESS–SPITFIRE
and therefore different spatial patterns of burned area (see
Fig. A1); JSBACH–SPITFIRE has an additional suppression
term based on fire size data (Hantson et al., 2015a). The in-
clusion of additional suppression mechanisms may also ex-
plain the behaviour of CLM, which shows a monotonic de-
crease in burned area over the 20th century.

LPJ–GUESS–SIMFIRE–BLAZE does not include anthro-
pogenic ignitions explicitly but rather treats the net effect of
changes in population density, which was optimized using
burned area satellite data (Knorr et al., 2014). This optimized
net effect is a monotonic decrease in burned area with in-
creases in population density. This explains why this model
shows a monotonic decrease overall (see Fig. A4).

The models all agree that at high population density fire
is suppressed. This leads to similarities in the spatial pat-
terns of the effect of population changes (see Fig. A4), but
they differ in their assumptions for low population density,
for the threshold where humans start to suppress fire and
whether explicit suppression is included. The net or emerg-
ing effect of humans on burned area in models, however, also
depends on the presence of lightning ignitions. The presence
of lightning ignitions reduces the limiting effect of a lack
of human ignitions on burned area. For the CLASS-CTEM
model as soon as lightning ignitions are present, the net ef-
fect of humans is to suppress fires, even though the underly-
ing relationship assumes an increase in ignitions with pop-
ulation density (Arora and Melton, 2018, Supplement). This
may explain why global models assuming an increase in igni-
tions with increases in population density are able to capture
the burned area variation along population density gradients
(Lasslop and Kloster, 2017; Arora and Melton, 2018) and
why global statistical analyses find a net human suppression
also for low population density (Bistinas et al., 2014).

3.2.3 Response of simulated burned area to land-use
change

The land-use change imposed in SF2_FLA is characterized
by a strong decrease in forested areas and an increase in pas-
tures and croplands (Hurtt et al., 2011). The FireMIP models
do not show a uniform response of burned area to land-use
change. LPJ–GUESS–SPITFIRE shows the strongest reac-
tion with a monotonic increase in burned area with land-use
change. INFERNO and ORCHIDEE–SPITFIRE also show
an increasing trend but of lower magnitude. CLASS–CTEM,
JSBACH–SPITFIRE and LPJ–GUESS–SIMFIRE–BLAZE
show a decreased burned area due to increased land use.
CLM also shows a decrease in burned area, but this change
is not significant (see Fig. 2c).

The FireMIP models handle land-cover dynamics, the
expansion of agricultural areas and fire in agricultural ar-
eas differently. Some of the models (CLASS–CTEM, CLM,
JSBACH–SPITFIRE and ORCHIDEE–SPITFIRE) prescribe
the vegetation distribution so that the land-cover fraction for
all PFTs does not change through time in SF2_FLA, while in
the SF1 simulation the cover fractions of natural PFTs are re-
duced according to the expansion of agricultural areas. The
other models simulate the distribution of the natural vege-
tation dynamically but prescribe the agricultural areas. All
models decrease the tree cover to represent the expansion of
croplands over time. Land conversion due to the expansion
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Figure 4. Relative difference in global carbon stored in C4 grasses (dashed lines), in C3 trees (dotted lines), in C3 grasses (dash-dotted lines)
and in total global carbon stored in vegetation (solid lines) between the baseline experiment SF1 and the sensitivity experiment SF2_CO2 (see
Table 1; CV,CO2 ) for 1950–2013 in percent (annual averages). C4 and C3 grasses, as well as C3 trees, only include natural PFTs (pastures
and croplands excluded). Note that the y axis limits differ between the panels. Due to a postprocessing error, INFERNO lacks 2 years (2001
and 2002).

Figure 5. Impact of fuel load on fire for CLASS-CTEM, INFERNO and CLM. Impact of fuel load on the probability of fire (Pb) for CLASS-
CTEM, on the fuel load index (fL,PFT) for INFERNO and on fuel availability (fb) for CLM (a, b, c). Impact of soil moisture content and
soil wetness on fire for CLASS-CTEM, CLM and INFERNO (d, e, f). In order to facilitate comparability, the soil moisture function for CLM
is scaled to the value range (0,1).
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Figure 6. Annual average of the relative difference in volumet-
ric soil moisture (CLM) and total soil moisture content (remaining
models) between the baseline experiment SF1 and the sensitivity
experiment SF2_CO2 (see Table 1; 1θCO2 ) for 1950–2013 in per-
cent. Due to a postprocessing error, INFERNO lacks 2 years (2001
and 2002).

of pasture is not represented in CLASS–CTEM. Only CLM
includes cropland fires, INFERNO treats croplands as nat-
ural grasslands, and all the other models exclude croplands
from burning (see Table 5). Therefore for all models, except
CLM and INFERNO, increases in cropland area lead to a re-
duction in burned area, and the reasons for the divergence
between the other models must be caused by the treatment of
pastures.

In LPJ–GUESS–SIMFIRE–BLAZE pastures are har-
vested; this reduction in biomass leads to a decrease in
burned area in addition to the decrease caused by exclusion
of fire in croplands. In JSBACH–SPITFIRE, the expansion
of pastures occurs preferentially at the expense of natural
grassland and does not affect tree cover until all the nat-
ural grassland has been replaced (Reick et al., 2013). This
assumption decreases the effect of land-cover conversion on
tree cover. Additionally, in JSBACH–SPITFIRE the fuel bulk
density of pastures is higher than that of natural grass by a
factor of 2, which decreases fire spread and thus burned area
(Rabin et al., 2017b). This difference reduces burned area in
pastures compared to natural grassland. In CLASS–CTEM,
which also shows a decline, pastures are not included, and the
only land conversion is due to the expansion of croplands.

LPJ–GUESS–SPITFIRE and ORCHIDEE–SPITFIRE re-
act with an increase in burned area to the expansion of land
use since they treat pastures as natural grasslands. The SPIT-
FIRE fire module is very sensitive to the vegetation type with
very high burned area for natural grasslands due to higher
flammability compared to woody PFTs (Lasslop et al., 2014,
2016). Fuel bulk density is an important parameter, but ad-
ditionally grass fuels dry out faster leading to an increase
in flammability. Therefore an increase in burned area is ob-
served if forested areas are converted to grasslands. LPJ–

GUESS–SPITFIRE computes the vegetation cover dynam-
ically, so that an increase in burned area reduces the cover
fraction of woody types, which might explain the stronger
response compared to that of ORCHIDEE–SPITFIRE. In
CLM, pastures are represented by increased grass cover. The
biomass scaling function does not distinguish fuel types (see
Fig. 5); therefore the lower fuel amount of grasslands could
lead to a decrease in fire probability, while the maximum
fire spread rate depends on the vegetation type and is higher
for grasslands (Rabin et al., 2017b). The inclusion of crop-
land and deforestation fires dampen the effect of land-cover
change on global burned area. In INFERNO, agricultural re-
gions are not defined explicitly. Instead, woody PFT types
are excluded from the agricultural area (Clark et al., 2011).
INFERNO includes an average burned area for each PFT in
the calculation of the burned area per PFT, which leads di-
rectly to increasing grass cover and results in higher burned
area (Mangeon et al., 2016; Rabin et al., 2017b).

Land use was already identified as a main reason for inter-
model spread in the CMIP5 ensemble (Kloster and Lasslop,
2017). We show that this largely reflects the way pastures
are treated, as most models used here (except CLM and IN-
FERNO) simply exclude croplands from burning.

3.2.4 Response of simulated burned area to lightning

Most of the models show a low response of burned area to
lightning (see Fig. 2), although lightning rates increase by
20 % over the simulation period – an increase that is much
larger than the 3.3 % change, between pre-industrial times
and the present, estimated from a recent modelling study
(Krause et al., 2014). ORCHIDEE–SPITFIRE shows an in-
crease in burned area between 1940 and 1960 and towards the
end of the simulation. In comparison to the other SPITFIRE-
models the differences seem to be related to two points.
Firstly, ORCHIDEE–SPITFIRE uses a 12-times higher fac-
tor to convert lightning strikes to actual ignitions and an-
thropogenic ignitions that are 100-times lower than for the
other models (see Rabin et al., 2017b). Secondly, although a
partitioning factor (SGFED) varies regionally, the per capita
ignition frequency is constant; in JSBACH–SPITFIRE and
LPJ–GUESS–SPITFIRE, the per capita ignition frequency
varies regionally. This results in strong differences in the
spatial patterns of burned area (see Fig. A1). Consequently,
the strength of regions contributing to the global burned area
varies between the models; ORCHIDEE–SPITFIRE shows
much more burning in the tropical and far less burning in
the temperate region. Whether a lightning turns into a fire
depends on the local conditions at the time of the light-
ning strike. Differences in the spatial distribution and tim-
ing of fires can therefore lead to different responses between
models even if lightning is used in the same way within
the model. Our results show that even a substantial increase
(20 %) in lightning has little influence on simulated global
burned area. This is consistent with Krause et al. (2014), who
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Figure 7. Variation in probability of fire due to human ignitions (Pi,h), anthropogenic ignitions (No IA) or number of fires (No IF) for
changes in population density. Since all models use different units, the values are scaled to the value range (0,1).

Figure 8. Suppression effects of population density on fire duration (SPD,tfire ) for CLASS-CTEM and JSBACH SPITFIRE and suppression
effects on fire size (SPD,ba) for CLASS-CTEM and CLM. All models are scaled to the value range (0,1).

found that the pre-industrial-to-present increase in lightning,
although this increase is much smaller, had little impact on
burned area.

3.2.5 Response of simulated burned area to climate

Simulated burned area in FireMIP responds to changes in
climate with strong inter-annual variability but only weak
trends in burned area (see Fig. 2e). Only three models show
a statistically significant trend in the global burned area
according to a Mann–Kendall test (CLM, LPJ–GUESS–
SIMFIRE–BLAZE and ORCHIDEE–SPITFIRE; see Ta-
ble 4). However, in all models the area showing an increased
burned area in response to climate is higher than the area
with decreased burned area (see Fig. 3). Agreement in spa-
tial patterns of trends between the models is however low
(see Fig. A7).

The influence of climate on burned area is complex: it in-
fluences burned area through the meteorological conditions
and through effects on vegetation conditions that influence
fuel load and fuel characteristics (Scott et al., 2014). We
therefore correlated for each grid cell changes in physical
parameters (precipitation, temperature, wind speed and soil
moisture) and vegetation parameters (litter, vegetation car-
bon and grass biomass) with changes in burned area. We
find that the correlation between the individual parameters
and burned area is low (see Fig. A8). The absolute rank cor-
relations are lower at the monthly scale than at the annual
scale. However, at the monthly scale the number of grid cells

showing significant correlations with physical parameters
is higher than the number showing significant correlations
with vegetation parameters, indicating that changes in phys-
ical parameters have more influence at shorter timescales
than changes in vegetation parameters. This difference dis-
appears with the aggregation to annual timescale. On the an-
nual timescale, however, the mean absolute rank correlation
is slightly higher for the vegetation parameters. Soil moisture
which is also influenced by vegetation has a slightly higher
correlation compared to precipitation, temperature and wind
speed. This indicates that vegetation parameters are more in-
fluential on the longer annual time step and physical parame-
ters on the monthly time step. The relationship between pre-
cipitation or soil moisture and burned area is expected to be
negative, while the impact of temperature is expected to be
positive. This is clearly reflected in the percentage of pos-
itively significant correlations at the annual scale but is less
clear at the monthly time step. This might reflect that the sea-
sonality of temperature, precipitation and vegetation param-
eters is often synchronized, and therefore the effects of the
parameters cannot be separated. The low correlation between
individual parameters and burned area reflects the complex
interactions between the climatic drivers, vegetation condi-
tions and fire weather.

The impact of climate on the inter-annual variability, how-
ever, is strongly expressed in the simulated burned area.
This is consistent with the finding that recent precipitation
changes influence inter-annual variability in fire but have lit-
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Table 5. Treatment of agricultural fires (Rabin et al., 2017b). “None” indicates the vegetation type does not burn or that deforestation fires
are not represented in the model. The models treating pasture fire the same as grassland do not treat pasture as a specific PFT. The indication
“no pasture” means that there is no land-cover change due to pastures.

Model Cropland fire Pasture fire Deforestation fire

CLASS-CTEM None No pasture None
CLM Yes Same as grassland Yes
INFERNO Same as grasslands Same as grassland None
JSBACH-SPITFIRE None Higher fuel bulk density than grasslands None
LPJ-GUESS-SIMFIRE-BLAZE None Harvest of biomass None
LPJ-GUESS-SPITFIRE None Same as grassland None
ORCHIDEE-SPITFIRE None Same as grassland None

tle impact on recent longer-term trends (Andela et al., 2017).
To fully understand the impact of the changes in climate, a
number of simulations would be necessary, in which only in-
dividual climate parameters change while the others are kept
constant. In addition, simulations in which combinations of
variables change might give further insights into the syner-
gies between the variables. An alternative approach, given
the complex interactions between climate and vegetation pa-
rameters, might be to disentangle the model signals using
multivariate analysis (see e.g. Forkel et al., 2019a; Lasslop
et al., 2018).

3.3 Implications for model development and
applications

Global vegetation models are an important tool for examin-
ing the impacts of climate change and are used in policy-
relevant contexts (IPCC, 2014; Schellnhuber et al., 2014;
IPBES, 2016). Given the various influences of fire on the
ecosystems (Bond et al., 2005), the carbon cycle and climate
(Lasslop et al., 2019) improvements of global fire models are
particularly important.

The main concern for model applications is the large
spread of the historical simulated burned area. It remains dif-
ficult to evaluate and optimize the transient burned area sim-
ulations as the period observed by satellites is still short, and
the trends are not robust (Forkel et al., 2019b). Fire proxies
(charcoal and ice cores) give information on biomass burning
over longer timescales. They do not confirm the recent de-
crease in burned area detected by satellites but also only con-
tain very few datapoints for that period (Marlon et al., 2016).
For a valid comparison with the long-term fire proxies, the in-
clusion of estimates of deforestation fires in the models will
be crucial as land-use change fire emissions will likely have
a strong contribution to the signal (Marlon et al., 2008). An
improved understanding of uncertainties in observed trends
of fire regimes is therefore necessary. Only robust informa-
tion should be included in models.

Our analysis shows which parts of the models are particu-
larly important to simulate changes in burned area and need
additional observational constraints or improved process un-

derstanding. In line with previous research (Bistinas et al.,
2014; Hantson et al., 2016a, b; Andela et al., 2017), the large
divergence in the response to human activities between the
FireMIP models shows that the human impact on fires is
still insufficiently understood and therefore not constrained
in current models.

We identify land-use change as the major cause of inter-
model spread. Only one model explicitly includes fires asso-
ciated with land-use and land-cover change (cropland and de-
forestation fires), and all the other models only include such
effects through changes in vegetation parameters and struc-
ture. The inclusion of cropland fires is certainly important
to understand and project changes in emissions, air pollu-
tion and the carbon cycle (Li et al., 2018; Arora and Melton,
2018). Cropland fires are, due to their small extent and low
intensity, still a major uncertainty in our current understand-
ing of global burned area (Randerson et al., 2012). Biases in
the spatial patterns of burned area and the relationship be-
tween cropland fraction and burned area can therefore be ex-
pected. High-resolution remote sensing may help to improve
the detection (Hall et al., 2016). Moreover, understanding
why and when humans burn croplands on a regional scale
may help to find an adequate representation of cropland fires
within models and help avoid overfitting to observational
datasets. As croplands are simply excluded from burning in
most models (except two), the spread of the other models is
likely related to the treatment of pastures. Fires on pasture-
lands have been estimated to contribute to over 40 % of the
global burned area (Rabin et al., 2015). Pasture fires are not
treated explicitly in any of the models, although some mod-
els slightly modify the vegetation on pastures by harvesting
or changing the fuel bulk density (see Table 5). Expansion
of pastures is mostly implemented by simply increasing the
area of grasslands. Information on how fuel properties differ
between pastures and natural grasslands could therefore help
to improve model parameterizations. Prescribing fires on an-
thropogenic land covers can be a solution for certain appli-
cations of fire models (Rabin et al., 2018). Grazing intensity
was found to be related to decreases in burned area (Andela
et al., 2017). Models so far represent the area that is con-
verted due to land-cover change but not the intensity of land
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use. This was partly due to the lack of global data regard-
ing land-use intensity, which is now becoming available and
provides new opportunities for fire model development (e.g.
the LUH2 dataset; Hurtt et al., 2017). In the sensitivity sim-
ulations shown here, even models that decrease burned area
due to land-use and land-cover change do not show a fur-
ther decrease over the last decade. This indicates that model
input datasets, explicit in time and space, for land-use inten-
sity and grazing intensity are necessary for fire projections.
The level of socioeconomic development also modifies the
relationship between humans and burned area (Andela et al.,
2017; Forkel et al., 2017). Regional analysis of remote sens-
ing data could be highly useful, as a global relationship be-
tween burned area and individual human factors, as assumed
in many models and also statistical analyses, is not likely. As-
sumptions on how different human groups (hunter-gatherers,
pastoralists and farmers) use fire have been included in a pa-
leofire model (Pfeiffer et al., 2013). The development of such
an approach for modern times would be highly valuable for
fire models that aim to model the recent decades and future
decades. Deforestation fires are only included in one model
(CLM). As deforestation fires are likely a strong source of
biomass burning over the longer timescales, accounting for
deforestation fires will be crucial for a model comparison
with the charcoal record.

We also find inter-model agreement for certain aspects.
For instance, burned area is suppressed at high population
densities, which leads to a similar spatial response to popu-
lation density (see Fig. A4). Moreover, most models show a
reduction of the global burned area due to changes in popu-
lation density. The response functions of burned area to pop-
ulation density of the two models that increase burned area
is less in line with response functions derived from global
datasets (Forkel et al., 2019a). As a strong human suppres-
sive effect is well supported by satellite observations (An-
dela et al., 2017; Hantson et al., 2015b), a reparametrization
of these responses would be reasonable.

We show that, although all models show an overall in-
crease in biomass as a consequence of increasing atmo-
spheric CO2 concentration, models disagree about whether
this results in an increase or decrease in burned area. The
disagreement reflects the complex ways in which changes in
atmospheric CO2 concentration influence vegetation proper-
ties, which results in different responses in different ecosys-
tems. For LPJ-GUESS-SPITFIRE and JSBACH-SPITFIRE,
the CO2 fertilization effect considerably contributed to an in-
crease in burned area. Such an effect is so far only supported
for fuel-limited areas (Forkel et al., 2019b). Limiting the ef-
fect of increasing fuel load on burned area in regions with
high fuel load as used in other models could help to reduce
the increase in burned area simulated by JSBACH- and LPJ-
GUESS-SPITFIRE.

Climate and lightning have a much lower effect on the
trends than the other factors. While this study focuses on
the trends, research on the short-term variability and extreme

events will be highly useful to investigate fire risks. The influ-
ence of climate and lightning on fire are therefore important
research topics even if we find a comparably low influence on
the long-term trends. Moreover the trends in climate param-
eters may increase for the future, and therefore the influence
on burned area might increase.

In contrast to many model simulations that use a light-
ning climatology based on satellite observations, the FireMIP
experiments were driven by a transient dataset of lightning
activity created by scaling a mean monthly climatology of
lightning activity using convective available potential energy
(CAPE) anomalies of a global numerical weather predic-
tion model. Since climate changes can be expected to cause
changes in lightning, it will be important to develop transient
lightning datasets for climate change studies on fire. The use
of present-day lightning patterns, for example, will certainly
lead to an overestimation of lightning strikes in regions with
drier climate projected in the future. But not only spatial pat-
terns of lightning are important, the covariation with climate,
as well as the temporal resolution of the input dataset, deter-
mines the influence on burned area (Felsberg et al., 2018).
Although we do not detect large signals in global burned
area due to changes in lightning, lightning is known to be
an important cause of ignitions regionally and is potentially
involved in more complex interactions between fire, vegeta-
tion and climate, which can speed up the northward expan-
sion of trees to the north in boreal regions (Veraverbeke et al.,
2017). Thus, although our results suggest that the influence
of increasing lightning is negligible at a global scale, it is
a potentially important factor for process-based models that
aim to model interactions between fire, vegetation and cli-
mate.

Recent advances in remote sensing products have high po-
tential to support model development. However, remotely
sensed burned area datasets alone are not a sufficient basis
to evaluate fire models as many model structures can lead
to reasonable burned area patterns. The emergence of longer
records of burned area and the increasing availability of in-
formation on other aspects of the fire regime considerably
improve opportunities to evaluate and improve our models.
The FRY database (Laurent et al., 2018) and the global fire
atlas (Andela et al., 2019), for example, provide information
on fire size, numbers of fire, rate of spread and the charac-
teristics of fire patches. These datasets will be useful to, for
instance, separate effects of ignition and suppression. Rate
of spread equations in global fire models are at present ei-
ther very simple empirical representations tuned to improve
burned area or based on laboratory experiments (Hantson
et al., 2016a). The mentioned datasets now offer the oppor-
tunity to derive parameters for rate of spread equations at the
spatial scales these models operate on. Fire size and rate of
spread are important target variables besides burned area that
can determine the impacts of fire. The effects on vegetation
(combustion of biomass and tree mortality; Williams et al.,
1999; Wooster et al., 2005) and on the atmosphere (Veira
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et al., 2016) are a function of fire intensity, which is also
included in the FRY database (Laurent et al., 2018). A better
evaluation of such parameters can enhance the usability of
fire model simulations.

The specific model application has a strong influence on
judging the validity of a model. Our analyses of the controls
on the variability of fire suggest that human activities drive
the long-term (decadal to centennial) trajectories, while con-
sidering climate variability may be sufficient for short-term
projections. Changes in the trends of the driving factors may
change this balance. For instance, stronger changes in cli-
mate into the future may increase the relative importance of
climate for long-term fire projections in the future.

4 Summary and conclusions

This comprehensive analysis of the influences of climate,
lightning, atmospheric CO2 concentration, population den-
sity and land-use and land-cover change provides improved
understanding of the relation between simulated historical
trends in burned area and process representations in the mod-
els. It shows in detail which model responses of burned area
to environmental factors can be understood, how these are
related to the model equations, and how these translate into
trends of burned area for the historical period.

The analysis of the sensitivity experiments shows that the
increase in atmospheric CO2 concentration over the 20th
century leads to increased burned area in regions where fuel
loads increase, but it leads to decreased burned area in re-
gions where tree density or coarse fuels with lower flamma-
bility increase, or in regions where elevations in soil mois-
ture decrease flammability. Although models agree that the
amount of available fuel increases, the type of fuel and veg-
etation composition are critical for understanding the influ-
ence of atmospheric CO2 concentration on simulated burned
area.

Most models agree on a decrease in burned area due to
increases in population density. Most models link the num-
ber of ignitions to population in a way that ignitions increase
initially at low population densities. In densely populated re-
gions, all models assume that the effect of anthropogenic ig-
nitions is outweighed by fire suppression and the increased
fragmentation of the landscape by anthropogenic land use. It
would be useful to develop an approach that represents local
human–fire relationships, but this will likely remain a long-
term challenge and requires the synthesis of knowledge from
various research fields.

The simulated response of burned area to land-use and
land-cover change depends on how fires in cropland and pas-
tureland are treated in each model. Most models simply ex-
clude croplands from the burnable area; therefore the treat-
ment of pastures causes the largest part of the model spread.
Models that do not allow fire in croplands, and either har-
vest biomass in pastures or assume specific vegetation pa-

rameters, show a reduction in burned area. Models that treat
pastures as natural grasslands and distinguish different fuel
types or strongly increase burned area for grasslands show
an increase in burned area. Improved knowledge on the ef-
fects of land-use intensity on burned area and the develop-
ment of appropriate forcing datasets could strongly support
model development.

The models are comparatively insensitive to changes in
lightning, likely because lightning ignitions are not a limit-
ing factor in many regions with very high burning activity.
Previous studies however show the importance of lightning
and changes in lightning for burned area in the boreal region.
Therefore especially regional studies should pay attention to
this factor.

None of the models shows a strong trend due to changing
climate but all of them show a strong influence of climate on
the inter-annual variability. Climatic and ecosystem parame-
ters are only able to explain a rather small part of this varia-
tion, with stronger correlations for the ecosystem parameters
on the longer annual timescale and a stronger relationship
with climatic parameters on the monthly timescale.

Different drivers of burned area affect different timescales:
the anthropogenic factors influence long-term variability,
while climate and lightning affect short-term variability. Un-
derstanding the influence of climate and lightning is es-
pecially important for inter-annual variability and extreme
events. On the other hand, understanding the impact of an-
thropogenic drivers is likely more important for the longer-
term changes of fire, which is for instance needed in Earth
system models. Changes in the trends of the forcing parame-
ters might however affect the balance between them.

The uncertainties in global fire models need to be taken
into account in model applications, for instance if model sim-
ulations are to be used to support climate adaptation strate-
gies. Model ensemble simulations can give indications of
such uncertainties. Therefore the results of this study pro-
vide a basis to interpret uncertainties in global fire modelling
studies. The information content on the spatial variability of
burned area has been well exploited in previous studies, and
models reproduce the spatial patterns in a reasonable way.
The temporal information of the satellite data is increasing
with the increasing length of the record and has a higher po-
tential to contain new information to support the improve-
ment and evaluation of global fire models. Here we pro-
vide a summary of which model assumptions need additional
constraints to efficiently reduce the uncertainty in temporal
trends.

Code and data availability. Processed data and processing scripts
are available upon request to publications@mpimet.mpg.de.
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Appendix A

Figure A1. Spatial distribution of annual burned area fraction (BAF) in percent for the baseline experiment SF1 and observation data,
averaged over 2001–2013.

Figure A2. Spatial distribution of regression slopes for the baseline experiment SF1 over 1921–2013.
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Figure A3. Spatial distribution of regression slopes for the difference between the baseline experiment SF1 and the sensitivity experiment
SF2_CO2 (SF1–SF2_CO2; see Table 1) over 1921–2013.

Figure A4. Spatial distribution of regression slopes for the difference between the baseline experiment SF1 and the sensitivity experiment
SF2_FPO (SF1–SF2_FPO; see Table 1) over 1921–2013.
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Figure A5. Spatial distribution of regression slopes for the difference between the baseline experiment SF1 and the sensitivity experiment
SF2_FLA (SF1–SF2_FLA; see Table 1) over 1921–2013.

Figure A6. Spatial distribution or regression slopes for the difference between the baseline experiment SF1 and the sensitivity experiment
SF2_FLI (SF1–SF2_FLI; see Table 1) over 1921–2013.
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Figure A7. Spatial distribution of regression slopes for the difference between the baseline experiment SF1 and the sensitivity experiment
SF2_CLI (SF1–SF2_CLI; see Table 1) over 1921–2013.

Figure A8. Spearman rank-order correlation coefficient for each grid cell over 1921–2013 for the difference between the baseline experiment
SF1 and the sensitivity experiment SF2_CLI (see Table 1) for annual burned area fraction, precipitation, temperature, wind speed, carbon
stored in litter, carbon stored in vegetation, carbon stored in grass and in soil moisture, respectively. Panels (a) and (b) show the mean absolute
rank correlation, i.e. the spatial average over the absolute and significant (p value < 0.05) Spearman rank-order correlation coefficients, in
which the relative difference in burned area fraction is> 0.1. Panels (c) and (d) show the proportion of grid cells with a significant correlation.
Panels (e) and (f) indicate the percentage of significant grid cells with a positive correlation.
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Figure A9. Scatter plots for the GFED4 and FireCCI50 dataset without transformation, square root transformation and log transformation
(a). The colour indicates the influence of individual datapoints on the correlation (computed as the difference in the correlation with and
without that datapoint). Cumulative influence of datapoints in the dataset on the correlation (b). Without transformation a very small fraction
has a strong influence on the correlation; these are grid cells with high burned area fraction (as can be seen in a).

Table A1. Reference literature for FireMIP models.

Model Land or vegetation model Fire model

CLASS-CTEM Arora and Boer (2005) Arora and Boer (2005)
Melton and Arora (2016) Melton and Arora (2016)

CLM Oleson et al. (2013) Li et al. (2012, 2013, 2014)

INFERNO Best et al. (2011), Clark et al. (2011) Mangeon et al. (2016)

JSBACH-SPITFIRE Reick et al. (2013) Lasslop et al. (2014)
Hantson et al. (2015a)

LPJ-GUESS-SIMFIRE-BLAZE Smith et al. (2001, 2014) Knorr et al. (2016)
Lindeskog et al. (2013)

LPJ-GUESS-SPITFIRE Smith et al. (2001) Lehsten et al. (2009, 2015)
Sitch et al. (2003)
Ahlström et al. (2012)

ORCHIDEE-SPITFIRE Krinner et al. (2005) Yue et al. (2014, 2015)
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Table A2. Correlation coefficients between burned area simulated by the FireMIP models within the baseline experiment SF1 and the
respective observation data. Due to the very skewed distribution of burned area, we use a square root transformation on both the models
and the observations. Numbers in brackets show the Pearson correlation coefficients for not-transformed data. Only GFED4 and FireCCI50
provide uncertainty estimates; therefore GFED4s is not included. Correlation coefficients for 33 % show the correlation between all grid
points that lie within the 0 % and 33 % percentile of the relative standard error. Values for 66 % lie within the 33 %–66 % percentile of
the relative standard error, and values for 99 % lie within the 66 %–99 % percentile. Bold numbers indicate correlation coefficients that are
significant (p value < 0.05).

GFED4 FireCCI50

Model 33 % 66 % 99 % 33 % 66 % 99 %

CLASS–CTEM 0.59 (0.41) −0.08 (−0.07) 0.04 (−0.03) 0.58 (0.38) −0.02 (−0.04) 0.06 (0.003)
CLM 0.78 (0.72) 0.13 (0.14) 0.09 (−0.03) 0.80 (0.73) 0.11 (0.10) 0.09 (−0.03)
INFERNO 0.76 (0.68) −0.18 (−0.13) 0.05 (−0.02) 0.77 (0.64) −0.01 (0.01) 0.05 (0.03)
JSBACH–SPITFIRE 0.69 (0.62) −0.08 (−0.11) 0.02 (−0.05) 0.68 (0.56) −0.01 (−0.04) 0.06 (0.01)
LPJ–GUESS–SIMFIRE–BLAZE 0.70 (0.55) −0.06 (−0.07) −0.05 (−0.10) 0.67 (0.48) 0.03 (0.04) −0.04 (−0.08)
LPJ–GUESS–SPITFIRE 0.56 (0.46) 0.42 (0.41) 0.31 (0.17) 0.61 (0.48) 0.40 (0.33) 0.47 (0.34)
ORCHIDEE–SPITFIRE 0.82 (0.74) 0.51 (0.35) 0.48 (0.36) 0.81 (0.74) 0.49 (0.31) 0.47 (0.30)
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