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Abstract: Data assimilation for multi-scale models is an important contemporary research topic. Especially
the role of unresolved scales andmodel error in data assimilation needs to be systematically addressed. Here
we examine these issues using the Ensemble Kalman �lter (EnKF) with the two-level Lorenz-96 model as a
conceptual prototype model of the multi-scale climate system. We use stochastic parameterization schemes
to mitigate the model errors from the unresolved scales. Our results indicate that a third-order autoregressive
process performs better than a �rst-order autoregressive process in the stochastic parameterization schemes,
especially for the systemwith a large time-scale separation. Model errors can also arise from imprecisemodel
parameters. We �nd that the accuracy of the analysis (an optimal estimate of a model state) is linearly cor-
related to the forcing error in the Lorenz-96 model. Furthermore, we propose novel observation strategies
to deal with the fact that the dimension of the observations is much smaller than the model states. We also
propose a new analog method to increase the size of the ensemble when its size is too small.

1 Introduction
Forecasting the state of the atmosphere, ocean or climate system requires a numerical model that computes
the time evolution of the system, on the one hand, and an estimate for the current state which is used to ini-
tialize themodel, on the other hand.While the number of observations of the atmosphere and ocean are ever
more increasing, we currently still observe the states of the atmosphere and ocean only partially [36].

The uncertainty of predictions ismainly created by two factors:model error and the uncertainty in the ini-
tial conditions. Model error is the imperfect representation of the actual system dynamics in a model, which
comes from various sources, such as: incomplete dynamics in the numerical model, imprecise knowledge
of model parameters in the governing equations, unresolved small-scale processes and numerical approxi-
mations, among others [29]. These drawbacks of the model cannot be eliminated because of limited intellec-
tual and computational resources; all discrepancies between a numerical model and the actual system are
not necessarily known. The uncertainty in the initial conditions is an additional factor preventing us from
achieving skillful forecasts. With advanced techniques, the state of a system can be measured with high pre-
cision. But in real world applications, some direct measurements of a system state are not feasible and the
observations typically have a much lower resolution in space and time compared to the numerical models.
Therefore, the observations are not su�cient to initialize the numerical models and we need to use all useful
available observations to estimate initial values of all model variables. Data assimilation is such a method
which extracts information from observations and model forecasts and provides improved state estimates of
relevant variables and reconstructs the 3-dimensional state variables [13]. Data assimilation is widely applied
to atmospheric and oceanic systems [13, 25, 36] and also extended to the coupled climate system for seasonal
forecasts.
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One e�cient data assimilation scheme is the ensemble Kalman �lter (EnKF) proposed in [17]. It has been
applied in a number of di�erent contexts [19], and its skill is examined with the applications to various mod-
els, from ocean models [14, 30, 38] to atmospheric models [46, 60], from conceptual climate models [18] to
global general circulation models [52]. The performance of the EnKF can be limited by an insu�cient ensem-
ble size and sparse observations. A small number of the ensemble members can introduce sampling errors
and potentially the forecast error covariance is incorrectly estimated. Covariance in�ation and localization
are two common methods which are used to correct the error covariance [2, 3, 24, 28, 31]. Grooms et al. [27]
pointed out that stochastic subgrid-scale parameterizations have the same e�ect as the covariance in�ation
techniques, because they increase the ensemble spread. Moreover, instead of using the ensemble evolved
from the past analyzed ensemble states, Tardif et al. [58] used the ensemble formed by randomly drawing
model states from preexisting integrations to estimate the background error covariance.

An important problem in contemporary climate science is the assimilation of observations into opera-
tional coupled seasonal and decadal prediction models. The climate system can be seen, to �rst order, as
a system with two time scales: the slow ocean and the fast atmosphere. The two-level Lorenz-96 model pro-
posed in [42] is an ideal testbed for numerical experiments considering the computational requirements, pos-
sibility for de�ning the truth and the chaotic, strongly nonlinear nature [18, 44, 45]. Hence, the results can
potentially be seamlessly extended to realistic applications with sophisticated and comprehensive models
[8, 45]. The Lorenz-96 system contains coupled equations in two sets of variables. By appropriately choos-
ing the parameter values, we can set the time-scale separation between the two sets of variables and test
the sensitivity of data assimilation on di�erent time-scale separations. A major challenge in data assimila-
tion is the presence of model error [29]. To address this issue, we de�ne two kinds of imperfect models in
our numerical experiments. They contain the model errors from the imprecise forcing values and unresolved
processes, respectively. Instead of resolving small-scale variables in the Lorenz-96 model, we use stochastic
parameterization schemes to represent the in�uence of the unresolved processes on the resolved large-scale
variables. The stochastic parameterization schemes are able to mitigate the model errors due to unresolved
scales [5, 29, 50, 53, 54]. A perfect model is used to compare with the imperfect models. The perfect model
has a speci�ed forcing value which is considered as the true value and resolves the small-scale variables.

The outline of the paper is as follows: In the next section, the two-level Lorenz-96model is discussed. We
will discuss the time-scale separations, imprecise forcing values and stochastic parameterization schemes
for the unresolved small-scale variables. In Sec. 3, brief introductions of data assimilation and the EnKF al-
gorithm are presented. We carry out numerical experiments of data assimilation and give the results in Sec.
4. Finally, we end the paper with a discussion and draw a conclusion from our results.

2 The Lorenz-96 System
We reformulate the two-level Lorenz-96 model [42, 45] in such a way that it explicitly contains a parameter ε
determining the time-scale separation between the two sets of variables of the coupled equations [11, 20]:

dXk
dt = −Xk−1(Xk−2 − Xk+1) − Xk + F −

h
J

J∑
j=1

Yj,k , (1a)

dYj,k
dt = 1

ε (−Yj+1,k(Yj+2,k − Yj−1,k) − Yj,k + hXk). (1b)

The large-scale Xk variables and small-scale Yj,k variables are de�ned for k = 1, . . . , K and j = 1, . . . , J.
Each large-scale variable contains J subgrid-scale variables. In our computations, we set the parameters as
follows: K = 18, J = 20, coupling coe�cient h = 1.0, and forcing F = 10 as standard values. The parameter ε
determines the time-scale separation between the Xk and Yj,k variables. For ε = 1.0, the Xk and Yj,k variables
have the same time scale. For ε < 1.0, the Xk variables have a larger time scale than the Yj,k variables. The
smaller the value of ε, the larger the time-scale separation. We can also describe the Xk variables as slow
variables and the Yj,k variables as fast variables when ε < 1.0. The model also has a hidden slow time scale
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term [20]: the sum over the fast variables in Eq. (1a).
We list the statistical information of the Xk and Yj,k variables of the Lorenz-96 model with di�erent time-

scale separations in Table. 1. All Xk and Yj,k variables have identical statistical properties, respectively. The
statistics are calculated from a long-term integration of the Lorenz-96 model with a integration time step
dt = 0.001. The values of time-scale separation are chosen as ε = 0.125, ε = 0.25, ε = 0.5 and ε = 1.0.
Generally, a greater variation of the statistics of the Yj,k variables compared to the Xk variables are found. As
the time-scale separation increases, themaximumand standard deviation of the Yj,k variables become larger,
while the minimum and mean decrease. Both Xk and Yj,k variables are approximately Gaussian distributed.
A change of the time-scale separation does not alter the distribution.

Table 1: The maximums, minimums, means, and standard deviations of the Xk and Yj,k variables in the Lorenz-96 model with
di�erent time-scale separations (ε).

Xk Yj,k
ε Max Min Mean Sd Max Min Mean Sd

0.125 13.72 −7.33 2.63 3.57 17.58 −13.50 1.03 2.37
0.25 13.59 −7.25 2.53 3.51 17.50 −12.22 1.04 2.35
0.5 13.33 −7.35 2.45 3.54 16.17 −11.50 1.15 2.16
1.0 13.18 −9.04 2.45 3.67 12.91 −10.26 1.25 1.87

2.1 Imprecise Forcing

In a dynamical system which is highly sensitive to the initial conditions, small initial perturbations will lead
to widely diverging outcomes. Hence, the medium-term behavior of the system is unpredictable, while the
long-term behavior will be determined by the attractor. This behavior is known as deterministic chaos.

The behavior of the Lorenz-96 system is largely determined by the forcing F; the value of F determines
the presence or absence of chaos, or appearance of other behaviors [20, 42–45]. For a very small value of
F, all trajectories of the Lorenz-96 system will converge to a steady state, and all Xk and Yj,k variables will
have an identical value. When the value of F becomes somewhat larger, the steady state solution turns into
�ow regimes where most solutions are periodic or quasi-periodic, but still not chaotic. When the value of F is
large enough (the exact value depends on the dimension of the Xk variables), chaotic �ows emerge. The three
di�erent behaviors of the Lorenz-96 system are illustrated in Fig. 1. The time series of the �rst component of
the Xk variables are presented after transients. We observe cyclic behaviors on two time scales when F = 2.
We calculate the maximal Lyapunov exponent (MLE) of the system. The numerical estimates of them are
−1.57, 0.0002 and 7.83 for F = 1, F = 2 and F = 10, respectively.a The MLE describes the predictability of a
dynamical system. Generally, a strictly positive MLE indicates exponential instability and is often considered
a signature of deterministic chaos, and a strictly negative MLE indicates stability.

2.2 Unresolved Processes and Parameterizations

Regarding many practical applications, we are only interested in predictions of atmospheric processes on a
particular scale rather than the detailed evolution of quantities at smaller scales. In this situation, small-scale
processes are not necessary to be resolved and in practice, somepredictions are impractical to be resolveddue

a The MLEs are computed using the fortran code written by Dr. Schubert (https://github.com/seschu/lorenz96_fortran).

https://github.com/seschu/lorenz96_fortran
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Figure 1: Time series of the X1 variable in the Lorenz-96 model with the forcing values (a) F = 1, (b) F = 2 and (c) F = 10. The
time-scale separation is ε = 0.125.

to computational restrictions. The impacts of these unresolved processes on the evolution of large-scale pro-
cesses can be represented to some degree by suitable deterministic or stochastic terms [4, 23]. This approach
is aimed to obtain a reduced model that involves only the variables of interest. To derive reduced versions
of the Lorenz-96 model, we use the parameterization schemes introduced in [65], the key idea in which is to
use a polynomial equation and a noise term that represent the model error when only the Xk variables are
resolved in place of the full dynamics. The polynomial equation with noise is written as follows:

P(Xk) = a0 + a1Xk + a2X2k + a3X
3
k + ek(t). (2)

It is used to replace the last term in Eq. (1a). The Xk variables used in Eqs. (2), (5) and (6) are on time step
t and for concision, the time index is omitted. Eq. (2) mainly depends on the resolved Xk variables and it is
based on the notion that the large scales determine the properties of the unresolved subgrid scales [8]. The
cubic form of the parameterization is consistent with stochastic climate theory [22, 23, 26, 47–49]. The cubic



122 | Guannan Hu and Christian L. E. Franzke

term can be viewed as a nonlinear damping. The coe�cients {a0, a1, a2, a3} are determined by �tting a time
series of the residuals by a standard least squares method. The time series of the residuals is obtained by
taking the di�erence between the tendency of the full dynamics and reduced tendency with a short time step
δt = 0.005:

P(Xk(t)) ≈
(
Xk(t + δt) − Xk(t)

δt

)
− (−Xk−1(t)(Xk−2(t) − Xk+1(t)) − Xk(t) + F). (3)

The �rst four terms of the right-hand side of Eq. (2) are deterministic and the noise term ek(t) is the residual
from the polynomial �tting. If we set ek(t) = 0, then we obtain a deterministic parameterization scheme for
the unresolved Yj,k variables. If ek(t) are further �tted by an autoregressive process, then we get a stochastic
parameterization scheme. The autoregressive process has the form:

ek(t) = ϕ1ek(t − δt) + ϕ2ek(t − 2δt) + · · · + ϕpek(t − pδt) + η(t), (4)

where the parameter p denotes the order of the autoregressive process and determines the memory depth
of the time series of the residuals. The η(t) are Gaussian noise variables with mean zero and variance σ. The
coe�cients {ϕi , i = 1, · · · , p} and the noise variance σ are estimated by the Yule-Walker equations [61, 66]. In
addition to a �rst-order autoregressive process, denoted as AR(1) process, which is considered in [65], we also
consider an autoregressive process of order 3, denoted as AR(3) process, in our experiments. This ismotivated
by the fact that themodel reduction introducesmemory into the reduced system [26] and should be explicitly
modeled.

In summary,wehaveusedpolynomial equations andautoregressive processes to represent the variability
of the unresolved Yj,k variables, and the entire governing equations of two reduced versions of the Lorenz-96
model are given as

dXk
dt = − Xk−1(Xk−2 − Xk+1) − Xk + F − a0 − a1Xk − a2X2k − a3X

3
k

− ϕek(t − δt) − η(t),
(5)

and
dXk
dt = − Xk−1(Xk−2 − Xk+1) − Xk + F − a0 − a1Xk − a2X2k − a3X

3
k

− ϕ1ek(t − δt) − ϕ2ek(t − 2δt) − ϕ3ek(t − 3δt) − η(t),
(6)

where dt = δt = 0.005. The reduced models contain two parts: the tendency of the Xk variables and the
stochastic parameterizations of the Yj,k variables. Here, we call the model described by Eq. (5) the L96-AR1
and Eq. (6) the L96-AR3. In comparison to them, we call Eqs. (1a) and (1b) the full dynamic model (FDM).
Parameter values of the L96-AR1 and L96-AR3 are listed in Table. 2. The noise variance σ in the L96-AR3 is
one or twoorder ofmagnitude lower than in the L96-AR1.Note that the estimatedparameter values for each Xk
variable are slightly di�erent.We show themean values of them in the table anduse the corresponding values
for each Xk variable in the numerical experiments.We compare the probability density functions (PDF) of the

Table 2: Parameter values of the L96-AR1 and L96-AR3.

Polynomial terms AR(1) process AR(3) process

ε a0 a1 a2 a3 ϕ σ ϕ1 ϕ2 ϕ3 σ

0.125 0.18 0.42 −0.002 −0.0015 0.9932 0.0031 2.73 −2.58 0.85 9.6e−05
0.25 0.15 0.37 0.008 −0.0019 0.9983 0.0013 2.69 −2.41 0.72 1.7e−05
0.5 0.35 0.22 0.025 −0.0017 0.9994 0.0009 1.92 −0.84 −0.08 1.8e−05
1.0 0.72 0.09 0.022 −0.0011 0.9997 0.0005 1.73 −0.47 −0.26 1.4e−05

Xk variables in the reduced models to the FDM in Fig. 2. The FDM is integrated with a time step dt = 0.001
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and the reduced models are with dt = 0.005. For all values of the time-scale separation, there are small
discrepancies between the FDM and reduced models, and they are smaller when the time-scale separation
is larger. Fig. 3 presents the autocorrelation functions (ACF) of the Xk variables in the three models. Similar
to the comparison of the PDFs, the reduced models well reproduce the ACF of the FDM. Di�erences are only
found in the oscillation of the ACF, especially for the smaller time-scale separations. The L96-AR1 and L96-
AR3 are able to capture the features of the Xk variables in the FDM. The model errors of the reduced models
are smaller when the time-scale separation is larger.
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Figure 2: Probability density functions of the Xk variables in three models with the time-scale separations (a) ε = 0.125, (b)
ε = 0.25, (c) ε = 0.5 and (d) ε = 1.0.
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Figure 3: Autocorrelation functions of the Xk variables in three models with the time-scale separations (a) ε = 0.125, (b) ε =
0.25, (c) ε = 0.5 and (d) ε = 1.0.

3 Data Assimilation
Data assimilation is the combination of the information from observational data and a numerical model
forecast. Data assimilation schemes can be roughly divided into two categories: ensemble-based methods
[1, 17, 19, 31, 32, 64] and variational methods [10, 39, 40, 56]. Variational methods such as three-dimensional
or four-dimensional variational data assimilation (3D-Var or 4D-Var) rely on tangent linear operators and
adjoint equations. Ensemble-based data assimilation techniques include the ensemble Kalman �lter (EnKF),
ensemble Kalman smoother (EnKS) and ensemble transformKalman�lter (ETKF), which all depend on statis-
tical estimates from ensemble forecasts. Most practical ensemble-based data assimilation schemes are some
kind of approximations of the celebrated Kalman �lter [34, 35]. All of them are aimed to either reduce the
computing requirements or to improve the statistical forecasts, or both. The EnKF is an e�cient ensemble-
based data assimilation scheme [16, 17, 19]. This Monte Carlo approximation of the Kalman �lter e�ciently
reduces the computational requirements and directly provides initial perturbations for ensemble forecasts.
The main disadvantages of the EnKF are that an insu�cient ensemble size and sparse observations limit the
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quality of the produced analysis �elds. These shortcomings of the EnKF contrast the advantages of 4D-Var,
which produces useful analysis even when observations are sparse and do not need ensembles. The disad-
vantages of 4D-Var include the developing and maintenance of tangent linear and adjoint models and that
many physical parameterization schemes contain step functions. If the assimilation window for 4D-Var is too
short, the EnKF performs better than 4D-Var, while for infrequent observations 4D-Var gives more accurate
estimates [15, 21, 33, 37, 40, 63]. In practice, hybrid approaches are often adopted [6, 7, 9, 62]. In this paper
we use the EnKF.

3.1 The Ensemble Kalman Filter

Here, we brie�y introduce the algorithm of the EnKF. Comprehensive theoretical aspects and the numerical
implementation are provided in [19]. There are two stages involved in a sequential data assimilationmethod-
ology: (i) the forecast and (ii) the update stage. During the forecast stage, we use a, possibly nonlinear, model
to forecast the systemstate of dimension n,ψf

t ∈ Rn and the error covarianceof themodel forecast,Pft ∈ Rn×n,
where f denotes forecast and t is the time index. When we assimilate observations to the Xk variables in the
FDM and reduced models, ψf

t represents the Xk variables and n = K. When we assimilate observations to
the Yj,k variables in the FDM, ψf

t represents the Yj,k variables and n = KJ. In a deterministic model, ψf
t only

depends on the former state ψf
t−1. P

f
t is de�ned in terms of the true state ψref

t as:

Pft = (ψf
t − ψ

ref
t )(ψf

t − ψ
ref
t )T , (7)

where the overbar denotes an expectation value and T means the transpose of a matrix. The true state is un-
known and di�erent algorithms are used to estimate Pft . For a linear model, the evolution equation is written
in discrete form as:

ψf
t = Ftψ

a
t−1 + wt , (8)

where Ft is a transition matrix, a denotes analysis which is obtained in the update stage, and wt is a Gaus-
sian noise vector with zero mean, representing the model error. The evolution equation of the forecast error
covariance becomes

Pft = FtP
a
t−1FTt + Qt , (9)

where Qt is the error covariance matrix for the model error wt. With a nonlinear model written as:

ψf
t = ft(ψ

a
t−1) + wt , (10)

where ft is the forecast operator, the evolution equation of the forecast error covariance is the same as Eq. (9),
but with Ft being the tangent linear operator of ft. In the EnKF, the forecast error covariance is computed by
Eq. (7), using the ensemble mean ψf

t to replace the unknown true state ψref
t [19]. Considering an ensemble

of model forecasts with a size of N, Eq. (7) becomes

Pft =
1

N − 1

N∑
i=1

(ψf ,i
t − ψf

t )(ψ
f ,i
t − ψf

t )
T . (11)

The second stage in a sequential data assimilation methodology is the update stage, or analysis step. The
update stage takes place when the observations d ∈ Rm of a system state are available. We neglect the time
index t of this stage, because all vectors and matrices in this stage are at the same time step. Observations
usually have a smaller dimension compared to the model state, m 6 n. The observation data may also need
to be transformed in order to �t the model output. Therefore, a linear measurement operator H ∈ Rm×n is
used, which relates the true state to the observations

d = Hψref + ϵ, (12)

where ϵ is measurement errors. H ∈ Rm×n maps the model state in Rn to the observation space in Rm. Now
we have both observations and model forecasts of a system state, and we can use them to estimate the true
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state. The estimated system state is called analysis ψa in data assimilation. The analysis is determined as a
weighted linear combination of forecasts and observations:

ψa = ψf + K(d − Hψf ), (13)

whereK ∈ Rn×m is called theKalmangainmatrix,which is determinedby the error covariance of the forecasts
and observations:

K = PfHT(HPfHT + R)−1, (14)

where R ∈ Rm×m is the error covariance matrix for the observations and de�ned as

R = ϵϵT . (15)

The error covariance of the forecast is also called background error covariance in the update stage. The error
covariance of the analysis is obtained by updating the background error covariance:

Pa = (I − KH)Pf . (16)

Eqs. (13), (14) and (16) are the equations of the standard Kalman �lter in the update stage. In the EnKF, the
computation of the error covariance of the analysis is not required, because at each analysis step, the back-
ground error covariance used in Eq. (14) is directly calculated by Eq. (11) instead of using Eq. (9) to evolve Pa.
In addition, an ensemble of observations is de�ned as:

di = d + ϵi , i = 1, . . . , N, (17)

where ϵi are Gaussian noise variables with zero mean and prescribed variance. The error covariance of the
observations becomes

R = 1
N − 1

N∑
i=1

(di − d)(di − d)T . (18)

As described above, the analysis ψa and the error covariance of the analysis Pa are computed during the
update stage. They are used to initialize the Eqs. (8) and (9) for linear models and the Eqs. (9) and (10) for
nonlinear models in the prediction stage, then the model state and the error covariance are integrated for-
ward in time. Whenever observations are available, the update stage takes place and the analysis and error
covariance of the analysis are calculated and used again to initialize the model in the next prediction stage.
In the EnKF, the evolution and update of the error covariance of the forecast are not required.

4 Numerical Data Assimilation Experiments
In this section, we perform the EnKF with the FDM, L96-AR1 and L96-AR3. We will �rst describe the experi-
mental settings and the performance measures of the EnKF we use. Next, we will show the in�uence of the
ensemble size on the performance of the EnKF and give a method to in�ate an ensemble which has an insuf-
�cient size. Then, we will discuss how the distribution of observations a�ects the performance of the EnKF
and give observation strategy. Finally, we compare the imperfect models, in which model errors come from
the imprecise parameters and unresolved processes.

4.1 Experimental Setup

As described in Sec. 3.1, in order to implement the ensemble Kalman �lter (EnKF), a forecast model and ob-
servation data are needed. In our numerical experiments, we use the FDM, L96-AR1 and L96-AR3 described
in Sec. 2 to generate ensemble forecasts. Observations are created by adding ϵ ∼ N(0, 0.1) to the true states
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generated by the FDM with standard forcing value. Our results are not sensitive to the exact value of the ob-
servation noise. To generate truth, the FDM is integrated using a fourth-order Runge-Kutta scheme, with a
time step of dt = 0.001. The initial values are randomly sampled from a Gaussian distribution and we take
the true trajectory after a transient.

Themaximal Lyapunov exponent (λmax) of the FDMproportionally increaseswith an increase of the time-
scale separation. We get λmax ≈ 7.83 for the time-scale separation ε = 0.125. Using the equation given by

E(t) = E0eλmax t

1 + E0(eλmax t − 1)
(19)

we can estimate the doubling time of small errors in initial conditions [36, 41]. The doubling time is the pe-
riod of time over which the magnitude of a quantity will double. E represents the root-mean-square average
forecast error and it is scaled so that at long forecast leads E → 1. E0 is the initial error and grows to E(t) by
time t. For a initial error E0 = 0.02 and a λmax of value 7.83, the doubling time is about 0.09model time unit
(MTU). The value of the initial error is the averaged analysis error of the FDM. In practice, small initial errors
in synoptic scales double in about 2 days [12, 57, 59] and the data assimilation window lengths are 3h, 6h or
12h. If we calibrate the interval between two analysis steps in our experiments to the assimilation window in
practice via the doubling time, then the interval is too short and the EnKF will diverge. Therefore, we choose
the error doubling time 0.09 MTU as the analysis interval.

In our experiments, the analysis and forecast errors are measured in terms of root-mean-square error
(RMSE), which is used as the performance measure of the EnKF. The error is de�ned as the di�erence be-
tween the analysis (forecast) and true state of the control simulation. The equation for calculating the RMSE
is given as

RMSE =

√√√√ 1
KN

N∑
i=1

K∑
k=1

(Xa(f ),ik − Xctrlk )2, (20)

where k counts for each state variable and i for each ensemble member. We only calculate the RMSE of the
Xk variables in order to make fair comparison between the FDM and reduced models. Unlike the control sim-
ulation (generation of the truth), model forecasts are produced by using a fourth-order Runge-Kutta scheme,
with a time step dt = 0.005 (MTU). We implement the EnKF every 18 time steps (analysis interval dt = 0.09)
in 10-MTU simulations, which means 111 analysis steps in each simulation. The EnKF converges during the
�rst several analysis steps and after it has converged, we generate 10-MTU forecasts from the desired initial
conditions provided at the analysis steps. We calculate the RMSE of the Xk variables at each analysis step
and each integration time step in forecasts. We use plots of themean and standard deviation and box plots to
present the values of the RMSE of the analysis. We average the values of the RMSE over the same integration
time steps in forecasts and show the averaged RMSE value as a function of forecast lead time.

We apply the same observation errors and observe the same subset of variables for all three models. In
Secs. 4.2, 4.4 and 4.5, we observe all Xk variables. In Sec. 4.3, we observe the Xk variables, the Xk and Yj,k vari-
ables and other 4 di�erent subsets of variables.We choose ensemble size N = 100 for the reducedmodels and
the FDM when only the Xk variables are observed. If we also assimilate observations to the Yj,k variables in
the FDM, then we need a larger ensemble size, which is N = 2000, and also a larger analysis interval, which
is dt = 0.27, to prevent the divergence of the EnKF. The �gures in Sec. 4 show the results of the time-scale
separation ε = 0.125, when we do not give the time-scale separation in the captions.

4.2 Ensemble Size

Whenwe apply the EnKF, a proper size of the ensemble has to be chosen. On the one hand, the ensemble size
has to be large enough in order to reduce the sampling error which causes the inaccurate estimation of the
error covariance of the forecasts. This in�uences the performance of the EnKF. On the other hand, we need
to avoid a too large number of ensemble members which requires and takes up a lot of computing resources.
The performance of the EnKF reaches a plateau for a certain ensemble size, beyond this ensemble size the
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improvement in the performance is very small. It is possible to use thousands or even more ensemble mem-
bers for the Lorenz-96 system in our numerical experiments and we could demonstrate this saturation e�ect.
However, this is impossible for seasonal prediction systems, which only use on the order of 10 to 60 ensemble
members.

To estimate a proper ensemble size for our numerical experiments, we implement the EnKF in threemod-
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Figure 4:Means and standard deviations of the RMSE of the analysis for di�erent sizes of the ensemble.

els with the ensemble size changing from 30 to 100 with interval 10. Fig. 4 shows the means and standard
deviations of RMSE of the analysis for di�erent ensemble sizes. The RMSE of the analysis is larger for the
smaller ensembles, especially in the reduced models, and decreases rapidly with an increase in ensemble
size, but it cannot drop to zero because of observational noise, imperfection of the model, and the represen-
tation of the truth by the ensemble mean. The analysis error of the L96-AR1 reaches to a plateau when the
ensemble size is about N = 100, which is greater than the ensemble sizes the FDM and L96-AR3 need.

Using Monte Carlo simulations to obtain the background error covariance is an e�cient modi�cation of
the extended Kalman �lter (EKF) in the EnKF [18, 51, 55]. It reduces the computational demands in the nonlin-
ear dynamical system (e.g., the computation of the tangent linear operator). However, for largemodels it also
becomes expensive due to the requirement of a su�cient number of ensemble members. An insu�cient en-
semble sizewill introduce sampling error and lead towrong estimates of the background error covariance.We
can use some methods to increase the sample size. For instance, we can draw model states from preexisting
integrations to form ensembles [58]. However, if these model states are randomly drawn, they will increase
the background errors. Therefore, we use observations to �nd so-called analogs in the model states and use
them as additional ensemblemembers. We de�ne the analogs as themodel states which have small values of
the root-mean-square deviation to the observations. The values should be smaller than a prescribed thresh-
old. However, if we set the threshold too low, no or only a small amount of analogs can be found and they
only slightly improve the performance of the EnKF. If the threshold is too high, the analogs bring too much
error which makes the skill of the EnKF worse. To overcome this problem, we only pick the analog which is
closest to the observations at each analysis step, and duplicate it many times to form the ensemble with the
desired size. For instance, we duplicate the analog 10 times, and use themwith 10 regular ensemblemembers
to form a 10 + 10-member regular + analog ensemble. The analogs are only used to estimate the background
error covariance and not integrated in the prediction stage to make forecasts. We compare a 10-member reg-
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ular ensemble, a 10 + 10-member regular + analog ensemble, and a 20-member regular ensemble in Fig. 5.
We only calculate the analysis and forecast errors of the 10 regular ensemble members in the 10 + 10-member
ensemble. The results show that using analogs to in�ate an insu�cient ensemble greatly improves the anal-
ysis and forecast of the regular ensemble members. Moreover, even for the ensembles with the same size, the
EnKF slightly performs better when using analogs to replace part of the regular ensemble members. This is
because the analogs have smaller errors than the regular ensemble members in the experiments of the FDM.
Wemay also think of using analogs instead of analysis as the initial conditions. However, the averaged RMSE
value of the analogs is greater than the averaged RMSE value of the analysis obtained by using the analogs.
In some cases, even though the analogs have larger errors than the regular ensemble members and actually
increase the background error, using them to in�ate an insu�cient ensemble still improves the accuracy of
the analysis and forecast. This is found in the experiments of the reduced models (not shown).
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Figure 5: (a) Box plots of the RMSE of the analysis and (b) averaged RMSE of the forecasts as a function of forecast lead time
of the FDM. Black: 10-member regular ensemble. Red: 10 + 10-member regular + analog ensemble. Blue: 20-member regular
ensemble.

4.3 Observation Strategy

In the Lorenz-96 model, the large-scale variables Xk are coupled to many small-scale variables Yj,k, and they
dominate the activity of the Yj,k variables. If the Xk variables have large positive values, then the correspond-
ing Yj,k variables, those with the same k values, become active, otherwise they evolve with a small amplitude
in time [42]. Unlike this great e�ect of the Xk variables on the Yj,k variables, the impact of the Yj,k variables
on the Xk variables is much smaller. When we use the reduced models to produce forecasts, we can only as-
similate observations to the Xk variables, since the Yj,k variables are not resolved any longer. When using
the FDM, we also resolve the Yj,k variables. If we need to predict the Yj,k variables, it is necessary that both
Xk and Yj,k variables are assimilated with observations. If we are only interested in the forecasts of the Xk
variables, the question arises, whether we should assimilate observations to the Yj,k variables and how large
its in�uence is on the forecasts of the Xk variables. There are manymore Yj,k than Xk variables. Therefore, we
would need many more ensemble members to estimate the background error covariance when we assimilate
observations to the Yj,k variables. This is time consuming and, thus, undesirable.

Fig. 6 shows the in�uence of assimilating observations to the Yj,k variables on the analysis and forecasts
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of the Xk variables for di�erent values of the time-scale separation. We present the averaged RMSE of the
forecasts as a function of forecast lead time, as well as the box plots of the RMSE of the analysis. The Yj,k
variables are not modi�ed at the analysis steps when we only assimilate observations to the Xk variables.
When the time-scale separation is larger, the di�erence of the forecasts between assimilating and not assimi-
lating observations to the Yj,k variables is smaller. There is a trade-o� between the e�ort of observing the Yj,k
variables and assimilating observations to them and the accuracy of the forecasts of the Xk variables. Clearly,
the e�ort is independent of the time-scale separation while the improvement of the forecasts becomes less as
the time-scale separation increases. This suggests that we can consider assimilating only slow variables in a
system with a large time-scale separation.

In our numerical experiments, we can simply generate observations of every variable. But in real world
predictions, the dimension of available observations is much smaller than the number of model variables.
Therefore, we choose m = 9, half of the number of the Xk variables, as the dimension of the observations for
the models. The Xk variables can be thought of as values of some atmospheric quantity discretized at K grid
points andwe can onlymeasure half of them. Imagine thatwe useArgo �oats tomeasure the temperature and
salinity of the ocean and need to consider the changing positions of the Argo �oats. For the given observa-
tion dimension, there are many di�erent subsets of the Xk variables which are observed. Using the equation
C(K,m) = K!

(K−m)!m! , we get the number of 9-combinations of 18 which is 48620. The number of the combina-
tions is too large for us to compare all of them.We consider four cases of observed variables: 1) all Xk variables
are observed; 2) half of the Xk variables with continuous values of k are observed, i.e. X1, X2, . . . , X9; 3) ev-
ery other of the Xk variables are observed, i.e. X1, X3, . . . , X17; and 4) �rst half Xk variables are observed
at the �rst (odd) analysis step, i.e. X1, X2, . . . , X9, then second half Xk variables are observed in the next
(even) analysis step, i.e. X10, X11, . . . , X18. Fig. 7 presents the box plots of the RMSE of the analysis and
averaged RMSE of the forecasts as a function of forecast lead time in these four cases. The results in the three
models are consistent: case 3) and 4) show the smallest analysis and forecast errors when only half of the
Xk variables are observed and the EnKF also converges faster in case 3) and 4) (not shown). In the L96-AR1,
the analysis error is greater than the observation error in all three cases of observing half of the Xk variables,
while this only happens in case 2) of the L96-AR3. We only show the results when the time-scale separation
is ε = 0.125, because for all values of time-scale separation considered, consistent results are found.

4.4 Full Dynamic Model with Imprecise Forcing

The forcing value in our control simulation is F = 10. Di�erent values of F will result in di�erent dynamics
of the system. The larger the di�erence, the greater the change of the dynamics. A too small forcing value
will lead to the appearance of di�erent behaviors of the Lorenz-96 system while a too large forcing value
will greatly increase the saturation error, which is the maximal forecast error caused by the uncertainty in
the initial conditions. We now choose imprecise forcing values from 9 to 11 with interval 0.2, which have the
forcing error smaller or equal to 10% of the standard forcing value. We do not want to change the dynamics
and reduce the predictive skill of the imprecise models too much. Fig. 8 shows the analysis and background
errors of the FDMwith di�erent forcing errors. The positive errors mean that the errors are added to the stan-
dard forcing value and the negative errors mean subtraction. Although the Lorenz-96 system is chaotic and
strongly nonlinear, the RMSE of the analysis linearly increases as the forcing error becomes larger. When the
forcing error is greater than 0.6, the analysis error is larger than the observation error. Moreover, the RMSE of
the background also has a linear correlationwith the forcing error. This is the reason for the linear correlation
of the analysis and forcing errors. Because the analysis is obtained by a linear combination of the background
and observations (Eq. (13)). There is no obvious di�erence between the negative and positive errors for the
RMSE of the analysis and background. Fig. 9 presents the forecast errors of the FDM with di�erent forcing
values as a function of forecast lead time. As the forcing error increases, the forecast error becomes larger.
Unlike the analysis error, there is an obvious di�erence of forecast error between the positive and negative
forcing errors: the positive forcing errors lead to faster growths of the forecast errors in the medium-term and
long-termpredictions and also larger saturation errors. This di�erence ismore obviouswhen the forcing error
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Figure 6: Averaged RMSE of the forecasts as a function of forecast lead time. The time-scale separations are (a) ε = 0.125, (b)
ε = 0.25, (c) ε = 0.5 and (d) ε = 1.0. Box plots of the RMSE of the analysis: (e) All Xk variables and (f) all Xk and Yj,k variables
are assimilated.

is larger. The reason is that the Lorenz-96 model with a larger forcing value is more chaotic, which is revealed
by the larger maximal Lyapunov exponent. We only show the �gures for the time-scale separation ε = 0.125,
and for the other three values of ε, the results are consistent.
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Figure 7: Box plots of the RMSE of the analysis and averaged RMSE of the forecasts as a function of forecast lead time of the
FDM (a, b), L96-AR1 (c, d) and L96-AR3 (e, f). Cases 1) - 4) are explained in the main text.

4.5 Reduced Model with Stochastic Parameterization

As described in Sec. 2.2, we have de�ned two reduced models, the L96-AR1 and L96-AR3, which contain
stochastic parameterization schemes including a �rst-oder autoregressive process and an autoregressive pro-
cess of order 3, respectively. The stochastic parametrization schemes mitigate the model errors arising from
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Figure 8:Means and standard deviations of the RMSE of the (a) analysis and (b) background of the FDM with di�erent forcing
errors.
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Figure 9: Averaged RMSE of the forecasts of the FDM with di�erent forcing values as a function of forecast lead time.

not resolving the Yj,k variables, but it cannot eliminate the model errors. As shown in Fig. 10, the FDM has
the smallest RMSE of the analysis for all values of the time-scale separation considered. For the time-scale
separations ε = 0.125 and ε = 0.25, the L96-AR3 has smaller analysis errors than the L96-AR1. This indicates
that thememory is essential for a better representation of the e�ect of the unresolved scales.We list themeans
and standard deviations of the ensemble spread and RMSE of the background at analysis steps in Table. 3.
We can �nd that the accuracy of the analysis mainly depends on the RMSE of the background; the smaller
the RMSE of the background, the smaller the RMSE of the analysis. The L96-AR1 has the largest RMSE of the
background for all values of the time-scale separation, and it reduces as the time-scale separation decreases.
Compared to the L96-AR1, the L96-AR3 has a smaller RMSE of the background, but it increaseswith a decrease
of the time-scale separation. Besides the RMSE of the background, the ensemble spread also in�uences the
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accuracy of the analysis; the larger the ensemble spread, the smaller the RMSE of the analysis. For time-scale
separations ε = 0.5 and ε = 1.0, even though the L96-AR3 has a slightly smaller RMSE of the background
than the L96-AR1, but it has a worse analysis because of the smaller ensemble spread.

Fig. 11 presents the forecast errors of the threemodels with di�erent time-scale separations. For all values
of the time-scale separation, the forecast error grows slower in the L96-AR3 compared to the L96-AR1. The
larger the time-scale separation, the better the predictive skill of the L96-AR3. When there is no time-scale
separation (ε = 1.0), the forecast errors of the L96-AR1 and L96-AR3 are close. For the time-scale separations
ε = 0.125 and ε = 0.25, the L96-AR3 has themost accurate forecastswhich aremuch better than the L96-AR1.

In summary, the L96-AR3 has a better predictive skill when the time-scale separation is larger. On the
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Figure 10: Box plots of the RMSE of the analysis. The time-scale separations are (a) ε = 0.125, (b) ε = 0.25, (c) ε = 0.5 and (d)
ε = 1.0.

other hand, the short-term predictive skill of the L96-AR1 drops with an increase of the time-scale separation.
The L96-AR3 performs better than the L96-AR1, especially for a system with a large time-scale separation.
This suggests that memory e�ects are important for the reduced Lorenz-96 model.
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Figure 11: Averaged RMSE of the forecasts as a function of forecast lead time. The time-scale separations are (a) ε = 0.125, (b)
ε = 0.25, (c) ε = 0.5 and (d) ε = 1.0.

Table 3: The ensemble spread (ES) and RMSE of the background (RMSE_b) of the three models with di�erent time-scale separa-
tions (ε).

FDM L96-AR1 L96-AR3

ε ES RMSE_b ES RMSE_b ES RMSE_b

0.125 0.02 ± 0.002 0.03 ± 0.004 0.24 ± 0.005 0.25 ± 0.005 0.04 ± 0.001 0.06 ± 0.006
0.25 0.03 ± 0.002 0.04 ± 0.005 0.16 ± 0.003 0.17 ± 0.005 0.02 ± 0.001 0.07 ± 0.011
0.5 0.03 ± 0.001 0.04 ± 0.005 0.13 ± 0.003 0.15 ± 0.007 0.02 ± 0.001 0.11 ± 0.032
1.0 0.02 ± 0.002 0.03 ± 0.004 0.10 ± 0.002 0.13 ± 0.010 0.02 ± 0.001 0.10 ± 0.019
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5 Discussion and Conclusion
We have carried out numerical experiments of data assimilation with a prototype multi-scale model of the
climate system. We evaluated the e�ects of di�erent representations of model error and their sensitivity to-
ward time-scale separations. We considered two kinds of model error. The �rst one is an incorrect parameter
setting, by changing the forcing value in the Lorenz-96 model. The forcing value largely determines the be-
havior of the Lorenz-96 system. The system becomes chaotic only when the forcing value is large enough. For
all forcing values considered in our experiments, the Lorenz-96 model is chaotic. The results show that the
increase of the forcing error leads to a linear growth of the analysis error, although the Lorenz-96 model is
strongly nonlinear. The analysis error is only a�ected by the absolute value of the constant-in-time forcing
error, while the forecast error is also in�uenced by the sign of the forcing error. For a pair of positive and
negative errors which have the same absolute value, the positive errors cause larger forecast errors than the
negative errors. The greater the absolute value of the forcing error, the larger the di�erence in the forecast
errors. This is because, if the forcing value is larger, then the maximal Lyapunov exponent of the Lorenz-96
system is also larger. A larger maximal Lyapunov exponent means that the system is more chaotic and un-
predictable.

The second type of model error is from unresolved processes. In order to mitigate this kind of model
error, we applied stochastic parameterization schemes to the unresolved processes. The stochastic parame-
terization schemes represent the e�ects of the unresolved processes on the resolved variables. They contain
deterministic and stochastic terms. The deterministic term is a cubic polynomial equation and the stochastic
term is an autoregressive process. Our results show that an autoregressive process with a higher order im-
proves over a �rst-order autoregressive process in parameterizing the fast dynamics in the Lorenz-96 model.
The L96-AR3, which contains an autoregressive process of order 3, has a more accurate analysis and a better
predictive skill than the L96-AR1, which contains a �rst-order autoregressive process. This better performance
is more obvious when the time-scale separation is larger. Both the L96-AR1 and L96-AR3 more closely repro-
duces the statistic of the FDM when the time-scale separation is larger, while the short-term predictive skill
of the L96-AR1 decreases with an increase of the time-scale separation. Overall, our results on the Lorenz-96
model indicate that the modelling of memory e�ects improves data assimilation performance.

As discussed in Sec. 3, the sparse observations limit the performance of the EnKF. In realistic circum-
stances, the dimension of observations is always much lower than the dimension of the model state. There-
fore,wewant to �ndoutwhich variables aremore useful to be observed for a givendimension of observations.
Our results on the Lorenz-96 model indicate that assimilating observations to the fast variables has smaller
in�uence on the forecasts of the slow variables when the time-scale separation between the fast and slow
variables is larger. Certainly, we need less observations and a smaller ensemble if we only assimilate obser-
vations to the slow variables. Therefore, we can consider not observing the fast variables and not assimilating
observations to them for the systemswith a large time-scale separation.We also found that the EnKFperforms
better with the widely distributed observations than with observations concentrated on a region. Moreover,
if we observe di�erent subsets of the variables at each analysis step, andmake sure all variables are observed
in a short observation window, then we can get an accurate analysis which is close to the analysis obtained
by observing all variables at one analysis step.

An insu�cient size of the ensemble is the other factor which restricts the performance of the EnKF. For
largemodels, a su�cient number of ensemblemembers is often una�ordable. In the EnKF, the ensembles are
used to compute the background error covariance at the analysis steps. To reduce the sampling error caused
by a small ensemble, which leads to wrong estimates of the background error covariance, we increase the
ensemble size by adding analogs at each analysis step. Our results show that the performance of the EnKF
is greatly improved when we add analogs in an ensemble which has an insu�cient size. In our experiments,
we used a simple method to �nd the analogs. At each analysis step, we calculated the root-mean-square de-
viation of each model state to the observations and chose the model state which has the smallest deviation
as the analog. Model states were drawn from a preexisting long-term integration. This selection procedure of
the analogs can be easily done in the Lorenz-96 model, but in real world prediction system we need a very
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large disk space to store the long-term integrations and the selection procedure ismuchmore time consuming
because of the larger resolution and number of the model variables.
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