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Abstract 
 

We have previously reported the synthesis of a poly(ethylene glycol)-haloperidol (PEG-

haloperidol) conjugate that retained affinity for its target D2 receptor and was stable in 

simulated physiological conditions. We hypothesised that this polymer-drug conjugate would 

localise haloperidol’s activity either centrally or peripherally, dependent on the location of 

administration, due to the polymer preventing penetration through the blood-brain barrier 

(BBB). Herein, we validate this hypothesis using in vitro and in vivo studies. We first 

demonstrate, via a [35S]GTPγS-binding assay, that drug activity is retained after conjugation 

to the polymer, supportive of retention of effective therapeutic ability. Specifically, the PEG-

haloperidol conjugate (at 10 and 100 nM) was able to significantly inhibit dopamine-induced 

G-protein activation via D2 receptors, albeit with a loss of potency compared to the free 

haloperidol (~18-fold at 10 nM). This loss of potency was further probed and rationalised 

using molecular docking experiments, which indicated that conjugated haloperidol can still 

bind to the D2 receptors, albeit with a flipped orientation in the biding pocket within the 

receptor, which may explain the reduced activity. Finally, rat catalepsy studies confirmed the 

restricted permeation of the conjugate through the BBB in vivo. Rats treated intravenously 

with free haloperidol became cataleptic, whereas normal behaviour was observed in rats that 

received the PEG-haloperidol conjugate, suggesting that conjugation can effectively prevent 

unwanted central effects. Taken together these results demonstrate that conjugating small 
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molecules to polymers is effective at prohibiting penetration of the drug through the BBB and 

is a valid targeting strategy for drugs to facilitate peripheral (or central) effects without 

inducing side effects in other compartments.   

Keywords: 

Nanotechnology, nanomedicine, polymer-drug conjugate, blood-brain barrier, haloperidol, 
PEG. 
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1. Introduction 
 

Penetration through the blood-brain barrier (BBB) is recognised as a significant challenge 

when developing therapeutic agents for diseases of the central nervous system, for example, 

for psychiatric disorders and Alzheimer’s disease [1]. What is less well articulated, however, 

is the requirement to prevent certain peripheral therapeutic drugs from crossing the BBB 

[2,3]. This need can be demonstrated by considering first-generation antihistamine agents 

where beneficial peripheral effects can be compromised by unwanted sedative effects when 

the drug crosses the BBB and acts centrally [4]. Since the size is a key parameter affecting 

permeability across the BBB, with 500 Da typically being considered as the maximum 

threshold for BBB permeability, one strategy to reduce penetration through the BBB is to 

form a polymer-drug conjugate (PDC) [5,6]. A very limited number of studies (three to the 

best of our knowledge) have previously demonstrated that PDCs can indeed restrict drug 

activity to peripheral organs and prevent undesired effects in the CNS. A PDC of an N-(2-

hydroxypropyl)methacrylamide (HPMA) copolymer and TNP-470, an anti-tumour agent, 

using a biologically labile tetrapeptide linker, significantly reduced TNP-470-related 

neurotoxicity in comparison to the free TNP-470 [7]. Movantikâ,  a PDC in which naloxol 

(an opioid antagonist) is covalently linked to poly(ethylene glycol) (PEG) via a biologically 

stable ether linkage, has been used clinically to prevent opioid-induced constipation [8]. 

Third, and of particular relevance to the work presented here, we have reported the synthesis 

and characterisation of a non-prodrug PDC in which the D2 antagonist haloperidol was 

conjugated to PEG via a biologically stable carbamate linkage (Fig. 1) [9]. We demonstrated 

stability of the linker in vitro and presented evidence of potential activity by demonstrating 

that the PEG-haloperidol conjugate retains binding affinity (albeit reduced) to D2 receptors; 

we also showed initial evidence that PEG conjugation could prevent haloperidol crossing the 

BBB through a simple single in silico equation, based on methodology reported in Fu et al 

[10].  
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Fig. 1. Panel A, Distribution of free haloperidol in the central nervous system (CNS) and peripheral tissues after its 
peripheral administration and the ability of the conjugate to localise the effect of haloperidol peripherally; Panel B, Chemical 
structure of haloperidol; Panel C, Chemical structure and characterisation of PEG-haloperidol. 

In the present study, and for the first time, we robustly demonstrate the feasibility of using 

PEG to prevent penetration of the haloperidol through the BBB using in vitro and in vivo 

approaches. Specifically, the pharmacological activity of the PEG-haloperidol conjugate was 

assessed in vitro by measuring the inhibition of dopamine-induced [35S]GTPγS-binding via 

D2 receptors. Next, we interpret the retained biological potency of conjugated haloperidol by 

looking at the effect of PEGylation on haloperidol binding to D2 receptors using in silico 

molecular docking studies. Finally, and of particular significance, we extended our study and 

evaluated the penetration of peripherally administered PEG-haloperidol conjugate through 

the BBB in vivo. This was carried out by recording catalepsy in rats, as an indication of 

haloperidol-induced CNS extrapyramidal side effects.  

We demonstrate that the PEG conjugation strategy used was capable of preventing the 

penetration of conjugated haloperidol through the BBB and propose that such strategies can 

prevent unwanted central side effects of peripherally administered drugs (and/or vice versa), 
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and would form a strong base to re-direct the use of haloperidol, and similar drugs, to treat 

peripheral non-CNS diseases such as cardiovascular diseases and cancers. 

 

2. Materials and methods  
 

2.1. Materials 

Alpha,omega-di-succinimidyl ester poly(ethylene glycol) (MW 6,429 Da) was obtained from 

Iris Biotech GmbH, Germany. Haloperidol was purchased from Sigma-Aldrich (UK).  The 

radioligand [35S]GTPγS was purchased from PerkinElmer (UK). All other chemicals and 

solvents were purchased from Fisher Scientific (UK) and Sigma-Aldrich (UK), respectively 

and utilised without any further purification unless otherwise stated. 

 

2.2. The synthesis and characterisation of PEG-haloperidol 

PEGylation of haloperidol was carried out as described previously with minor modifications 

[9]: anhydrous DMF was replaced with anhydrous THF, and NHS-PEG-NHS was purchased 

rather than activating PEG-COOH in house. Further details are provided in the Supporting 

Information.   

 

2.3 In vitro assessment of the biological activity 

Cell culture 

CHO expressing dopamine D2 receptors were cultured in Dulbecco’s modified Eagle’s 

medium (high glucose, supplemented with 1% L-glutamine; Sigma-Aldrich, UK), 5% fetal 

bovine serum (GibcoÔ, UK), 1% non-essential amino acids (GibcoÔ, UK). To maintain 

selection pressure, 500 µg/mL of geneticin (GibcoÔ, UK) was added to the growth medium. 

The cells were incubated in a humidified atmosphere with 5% CO2 at 37 ºC.  

 

Cell membrane preparation 

Cell membranes from CHO cells stably expressing the dopamine D2 receptors were prepared 

as previously described in [11]. Briefly, confluent cells in 175 cm2 flasks were washed twice 

with 5 mL HEPES buffer (20 mM HEPES, 1 mM EDTA, and 1 mM EGTA; pH 7.4). Cells 

were then detached from the flask surface using glass beads and ~ 8 mL of HEPES buffer. 

The collected cells were homogenised using an Ultra-Turax homogeniser (4 x 10 second 

run). The homogenate was centrifuged at 1000 g for 10 min at 4 ºC. The supernatant was then 
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centrifuged at 39000 g for 1 h at 4 ºC. Next, the pellet was resuspended in HEPES buffer and 

stored as aliquots at -80 ºC. The amount of protein (D2 receptor) was determined using Lowry 

et al method [12]. Further details are provided in the Supporting Information. 

 

[35S]GTPγS -binding assay 

Cell membrane (20 µg) was incubated with dopamine (a D2 receptor agonist) at a range of 

concentrations 1 nM to 10 mM either alone or with: a) the D2 receptor antagonist haloperidol; 

b) PEG-haloperidol; or c) PEG-COOH (6,000 Da) (negative control) at two concentrations 

(Table 1) in 900 µL HEPES buffer (20 mM HEPES, 60 mM NaCl, 3 mM MgCl2 and 1 mM 

EGTA, 0.5 mg /mL fatty acid - free BSA; pH 7.4) supplemented with (100 µM) dithiothreitol 

and (10 µM) GDP for 30 min at 30 ºC. 

 
Table 1. Drugs and their concentrations used in the [35S]GTPγS -binding. 

Drugs  Tested concentrations 
Dopamine 1 nM-10 mM 
Dopamine + Haloperidol  1 nM-10 mM of dopamine + 10 nM or 100 nM of haloperidol 
Dopamine + PEG-haloperidol 1 nM-10 mM of dopamine + 10 nM and 100 nM of PEG-haloperidol 

(haloperidol equivalent) 
Dopamine + PEG-COOH 1 nM-10 mM of dopamine + 10 nM and 100 nM of PEG-COOH 

(haloperidol equivalent) 
 

To initiate the reaction, [35S]GTPγS (100 µL) was added to give a final concentration of 100 

pM [35S]GTPγS. The reaction mixture was further incubated for 30 min at 30 ºC. The 

reaction was then terminated by rapid filtration through Whatman filters (GF/C), using a 

Brandel cell harvester, followed by 4 cycles of wash with ice-cold PBS (~ 4 mL, 5 mM 

Na2HPO4, 1.5 mM KH2PO4, 3 mM KCl, 0.14 M NaCl; pH 7.4) to remove unbound 

[35S]GTPγS. The filters were soaked in 2 mL of scintillation fluid overnight and the bound 

radioactivity ([35S]GTPγS) was determined via liquid scintillation counting. All data were 

performed in triplicate. pEC50 values were determined, using GraphPad Prism (v5.04) 

software. 

2.4. Molecular Docking 

Molecular docking studies were performed using the programme Surflex-Dock (SFXC) [13], 
as provided by Sybyl-X 2.1. The X-ray crystallographic structure of human D2 receptor 

complexed with risperidone (an antagonist) was retrieved from the Protein Data Bank 

(PDBid 6CM4, 2.87 Å resolution) [14]. The protein structure was prepared for docking, using 

the Biopolymer Structure Preparation Tool, with the implemented default settings provided in 
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the SYBYL programme suite. The 3D structures of haloperidol and PEG-haloperidol (1 to 5 

ethylene oxide monomers) were drawn using ChemDraw Professional 16, MarvinSketch 

18.8.0 and Maestro program [15]. Preparation of the ligands was carried out using the Ligand 

Preparation tool in Sybyl-2.1. Further details of the docking procedure can be found in the 

Supporting Information. The docking results were visualised using the programme PyMOL 

and MAESTRO [15–17] and the molecular interactions of the docked ligands were analysed 

using the programme MAESTRO. Potential hydrogen bonds were assigned if the distance 

between two electronegative atoms was less than 3.3 Å, whereas any separation greater than 

3.3 Å, but less than 4.5 Å, was considered a van der Waal interaction. Further details are 

provided in the Supporting Information.   

 

2.5. In vivo catalepsy recording test 

 Animals 

10 Female and male Wistar rats weighing (mean weight 315 g) were used in this study. All 

animals were kept in standard vivarium conditions with a natural light-dark cycle, and they 

were allowed to access a full-balanced diet. All usage of the animals and the experimental 

procedures were in compliance with the International Recommendations of the European 

Convention for the Protection of Vertebrates, and the rules of laboratory practice for carrying 

out preclinical research in the Russian Federation (GOST G 51000.3-96 and 51000.4-96). All 

studies were approved by the ethical review committee (approval no. 10 from 19th December 

2017). 

 

Catalepsy test 

In this test, the front paws of the animal were gently placed on a horizontal plastic bar located 

at a height of 10 cm in a wooden box. The time the animal spent in maintaining this abnormal 

posture was recorded. A commercial formulation of haloperidol was used as received (5 

mg/mL haloperidol sterile solutions containing lactic acid, Ozone Pharmaceutica Ltd, 

Russian Federation); PEG-haloperidol was dissolved in sterile water. All drugs were 

administered intravenously at a dose of 1 mg/kg (haloperidol equivalent) via the tail vein 

(mixed male and female rats, 5 rats/group). The animals were placed on the bar at different 

time intervals for 3 hours after the administration. A scoring system (from 1 to 6) was used to 

rate the time the rat spent on the bar (0–10 s = 1, 11–20 s = 2, 21–30 s =3, 31–40 s =4, 41–50 

s = 5 or 51–60 s or more =6). A score of at least 3 was used as a cut-off score of catalepsy 

[18]. 
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2.6. Statistical analysis 

Data are presented as mean ± s.e.m (standard error of mean, n=3 unless otherwise stated). 

Statistical significance was predicted using the unpaired Student’s t-test or one-way ANOVA 

(Analysis of Variance) test prior to Bonferroni’s post hoc test. Statistical significance (*: p < 

0.05, ***: p < 0.001, ns: not significant) was set in the parameters. 

 

3. Results and Discussion 
This work studied the impact of conjugating haloperidol to PEG through a biologically stable 

linker on the biological activity of haloperidol and its ability to penetrate the BBB. 

Bifunctional conjugation of PEG was chosen to balance the need for appropriate drug loading 

of haloperidol (w/w) with using an appropriate PEG chain length that would prevent 

penetration of the conjugated haloperidol through the BBB whilst also producing a clinically 

relevant half-life. The average haloperidol content in the conjugate, as determined via 1H-

NMR spectroscopic analysis, is 8.5% w/w and that is equivalent to an average (1.6) 

haloperidol molecules per PEG chain. Biological activity was assessed in vitro by assaying 

inhibition of dopamine-mediated G protein turnover via D2 receptors by PEG-haloperidol as 

a non-prodrug system. This was followed by in silico molecular docking studies to 

understand the consequence of conjugation on the biological activity of haloperidol. The 

restricted penetration of PEGylated haloperidol through the BBB was confirmed by recording 

catalepsy in rats.  

 

3.1. PEG-haloperidol inhibition of dopamine-induced activity in D2 receptors 

In order for the PDC to be effective as a non-prodrug therapeutic agent, it is essential that it 

retains biological activity at the target of the free drug. Since our PDC contained haloperidol, 

we sought to determine the ability of PEG-haloperidol to inhibit dopamine-induced G protein 

activation as an indication of its retained biological activity on D2 receptors. We have 

previously demonstrated that PEG-haloperidol can bind to the D2 receptors in the system used 

[9]. Here, we investigated the effects of PEGylation of haloperidol on its ability to modulate 

agonist-induced G protein turnover via D2 dopamine receptors using the well-established 

[35S]GTPγS-binding assay. Dopamine was used as a control that exhibits full agonist 

stimulation, whereas free haloperidol and PEG were used as a positive and negative control, 

respectively. The ligands (haloperidol and PEG-haloperidol) were tested at 10 and 100 nM, 

based on our previous findings [9]. Indeed, dopamine alone was able to induce G protein 
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activation (EC50= 0.26 µM, Table 2, Fig. 2), in agreement with the literature [19]. As 

expected, the addition of free haloperidol was able to significantly inhibit dopamine-induced 

stimulation of [35S]GTPγS-binding (dopamine EC50 increased to 11.5 and 91.8 µM, in the 

presence of haloperidol at 10 and 100 nM, respectively, Table 2, Fig. 2).  

 
Table 2. Inhibition of dopamine-stimulated [35S]GTPγS-binding by haloperidol, PEG-haloperidol, and PEG. Values are 
expressed as Mean ± SEM (n=3).  

Drug pEC50 EC50 (µM) 

Dopamine 6.59 ± 0.07 0.26  

Dopamine + haloperidol 10 nM 4.94 ± 0.04 *** 11.5 

Dopamine + haloperidol 100 nM 4.05 ± 0.09 *** 91.8 

Dopamine + PEG-haloperidol 10 nM (haloperidol equivalent) 6.19 ± 0.02 * 0.65  

Dopamine + PEG-haloperidol 100 nM (haloperidol equivalent) 5.81 ± 0.11*** 1.64  

Dopamine + PEG (control for the conjugate with 10 nM, 

haloperidol equivalent) ‡ 

6.52 ± 0.06 ns 0.3  

Dopamine + PEG (control for the conjugate with 100 nM, 

haloperidol equivalent) ‡ 

6.39 ± 0.09 ns 0.43  

‡ no haloperidol present in the PEG controls, and the concentration of PEG in the PEG controls was identical to 

the concentration of PEG in the conjugate which the PEG acted as control for. 

 

Interestingly, PEG-haloperidol retained biological activity with significant inhibition of the 

dopamine-induced stimulation of [35S]GTPγS-binding at 10 and 100 nM (haloperidol 

equivalent). However, dopamine EC50 (0.26 µM) was left-shifted relative to that of free 

haloperidol in the presence of 10 and 100 nM conjugated haloperidol (haloperidol equivalent) 

to 0.65 and 1.64 µM, respectively (Table 2, Fig. 2).  

However, the conjugated haloperidol increased dopamine EC50 (0.26 µM) more modestly 

than the free drug with EC50 of 0.65 vs 11.5 µM at a concentration of 10 nM (haloperidol 

equivalent) and 1.64 vs 91.8 µM at 100 nM (haloperidol equivalent) (Table 2, Fig. 2). 

Thus, both PEGylated and free haloperidol could inhibit the dopamine-stimulated G protein 

activation, as the log concentration-response curves for dopamine were shifted to the right in 

a progressive manner by increasing concentrations of haloperidol and PEG-haloperidol, 

which were both significantly different from dopamine (P <0.05).  However, the potency of 

the conjugated haloperidol was weaker than that of free haloperidol (~18 fold at 10 nM and 

~56 fold at 100 nM), these values are in line with our previous binding study [9].  

 



 
 

10 

 
Fig. 2. Effects of haloperidol, PEG-haloperidol and PEG on dopamine stimulation of [35S]GTPγS binding. Dopamine 
stimulation of [35S]GTPγS binding to D2 receptors was assessed in the presence of two concentrations of tested compounds 
(10 and 100 nM, haloperidol equivalent). Panels A, B and C, Dopamine log concentration-response curves in the presence of 
haloperidol, PEG-haloperidol and PEG, respectively. Panel D, Estimates of haloperidol and PEG-haloperidol effects using 
dose-ratios. Data are presented as Mean ± SEM, n=3. 

Inhibitory effects of free and conjugated haloperidol on [35S]GTPγS-binding assay can also 

be visualised using dose-ratio data derived from the same log concentration-response curves 

(Fig. 2. D). Based on the two concentrations, it was confirmed that PEGylated haloperidol 

was less effective at inducing a response than free haloperidol, and at 100 nM, PEGylated 

haloperidol had more pronounced effects than at 10 nM. Of potential interest was that slopes 

generated by this analysis can be estimated to 0.90 for free haloperidol vs 0.50 for PEGylated 

haloperidol. These data are consistent with the hypothesis that the conjugated haloperidol 

may behave differently from free haloperidol (whose action is consistent with competitive 

antagonism), in that PEGylated haloperidol may act non-competitively. 

These data are likely to be related to the lower affinity of PEG-haloperidol for the D2 

receptors, due to conjugation (as further explored in section 3.2) and due to the reduced 

dynamic equilibrium during the experiment [20]. This condition might be related to the low 

diffusion rate and reduced uptake of conjugated haloperidol compared to the free haloperidol 

by D2 receptors of the isolated membrane due to conjugation to a large molecule. 

Importantly, free PEG had no significant effect on dopamine-induced G protein turnover (P 

>0.05), which indicated that the inhibition induced by PEG-haloperidol was related to the 

effects of haloperidol moiety on D2 receptors. 

Given the loss in potency of the conjugate compared to free haloperidol and the 

administration as a conjugate rather than a free drug, one might conclude that the conjugate 

would need to be administered at a significantly higher (and, arguably, not practical) dose 
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than the free drug. In fact, other factors are expected to counterbalance the need for an 

increased dose, namely: (a) increased bioavailability from administering the conjugate i.v. 

(100%) compared to oral administration of haloperidol (60%) [21]; (b) expected decrease in 

plasma protein binding compared to free haloperidol, which is heavily bound to plasma 

proteins (only ~8% of total haloperidol in serum is available as the free form in the blood 

[22,23]); (c) if required, loading can be further increased by decreasing PEG’s molecular 

weight. Taking (a) (b) and (c) together, we are estimating that the dose required, will be 

practically feasible. 

 

3.2. Molecular Docking 

In light of the in vitro [35S]GTPγS -binding assay and our previous study of D2 receptor 

affinity binding of haloperidol and PEG-haloperidol [9], we conducted a molecular docking 

study in order to understand the impact, at a molecular level, of conjugating haloperidol to a 

polymer on its binding to D2 receptors. 

First, we investigated the interactions of free haloperidol with D2 receptors. Haloperidol (Fig. 

3) was docked sequentially into the binding sites, retrieved from [24], the X-ray 

crystallographic structure of human D2 receptor complexed with risperidone (PDB code 

6cm4, 2.87 Å resolution) [14], using a previously validated docking procedure.  

 
Fig. 3. The chemical structure of haloperidol at pH 7.4 representing different ring structures and functional groups. 

The results showed that the space occupied by haloperidol was in agreement with data 

previously reported for haloperidol interacting with a homology model developed for D2 

receptors [24–27] (Fig. 4A, I). A 3.0 Å salt bridge interaction was formed between the 

protonated nitrogen of the piperidine   in haloperidol and Asp 114 (TM3 of the D2 receptor). 

In addition, a 3.4 Å hydrogen bond was established with Ser 197 on TM5. While distant to 

what has been previously reported [24], ring A of haloperidol formed complementary 

heteroatom interactions with Trp 386 and Phe 390 at 4.9 Å and 5.3 Å, respectively. 

Moreover, our results showed that the carbonyl group of the butyrophenone fragment was 

involved in a hydrogen bond with Cys 118 (TM3) at 3.2 Å (Fig. 4A, II). Both ring B and the 

Ring A

Ring B
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hydroxyl group of haloperidol (which is axial) were solvent accessible (Fig. 4A, III). Ring A 

was buried in the pocket and parallel to Trp 386 (TM6), while its fluorine atom was directed 

to Ile 128 (TM3) (Fig. 4A, IV). It is important to highlight that we found the molecular 

orientation of haloperidol within the D2 receptor to be different from the previously reported 

docking studies of haloperidol with a 180° rotation of predicted orientations [24–26]. 

However, our results are in line with recently published data predicting the binding pathways 

of haloperidol in D2 receptors [27].  
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Fig. 4. Panel A, a cartoon representation of haloperidol docking in D2 receptors. Panel B, a cartoon representation of PEG-
haloperidol docked into the D2 receptor. (I) data of the ligand in the binding pocket of D2 receptors; (II) detailed ligand-D2 
receptor interactions; (III) solvent accessibility of the hydroxyl group and ring B in the case of free haloperidol or solvent 
accessible positions of ring A and the carbonyl group in the case of PEG-haloperidol; (IV) alignment of ring A and its 
fluorine of free haloperidol or alignment of ring B of and its chlorine of PEG-haloperidol. 

In an attempt to mimic the binding of PEG-haloperidol conjugate to the D2 receptor, five 3D 

structures of PEG-haloperidol conjugates were prepared using ethylene oxide monomers in 

the PEG chain, ranging from 1 to 5 monomers. The data presented herein represents a PEG-
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haloperidol 3D structure with 1 ethylene oxide monomer, which provides an indication of the 

possible poses of longer conjugated haloperidol molecules within the D2 receptor. The 

remaining 4 conjugate haloperidol structures provided similar results to the monomeric 

conjugate (data not shown). The molecular docking studies of PEG-haloperidol conjugates 

revealed that the salt bridge between the protonated nitrogen of the piperidine ring in 

conjugated haloperidol and Asp 114 (TM3), which is essential for the biological activity, was 

preserved at 2.6 Å, however, the poses of conjugated haloperidol were flipped in the binding 

pocket compared to free haloperidol. Ring A and the carbonyl group both became solvent 

accessible and these were not involved in any significant interactions (Fig. 4B, I-III). 

However, as observed for the docked free haloperidol, ring B of conjugated haloperidol 

formed heteroatom interactions with Trp 386 and Phe 390 at 4.8 Å and 5.1 Å, respectively 

(Fig. 4B, II). Ring B was buried in the pocket facing Ile 128 (TM3), instead of ring A 

observed for free haloperidol (Fig. 4B, IV).  

These findings may provide possible explanations for the retained but reduced biological 

potency of PEGylated haloperidol in vitro. The retained biological activity for conjugated 

haloperidol might be directly related to the salt bridge interaction with a key Asp 114 residue, 

which both free and conjugated haloperidol are able to exploit. This aspartate residue plays 

an important role in specific binding of ligands to G protein-coupled receptors, and 

mutations, typically to alanine, result in a loss of ligand binding to the receptors [28,29]. On 

the other hand, the change in space occupied by haloperidol after its conjugation could 

account for the reduction in activity (Fig. 5) 

 

 
Fig. 5. Overlaid docked poses for haloperidol (in green) and PEG-haloperidol (in red) in the binding pocket. 

The conjugation of haloperidol to PEG apparently results in a flipped orientation in the 

binding mode, making ring A and the carbonyl group (a butyrophenone moiety) solvent-

accessible rather than binding deep into the pocket of the D2 receptor. These results are in 

agreement with other experimental studies, which support the observation that the 
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butyrophenone moiety must bind deep into the binding pocket in order to retain binding 

affinity towards D2 receptors [30,31]. Furthermore, the involvement of the hydroxyl group of 

haloperidol in the conjugation to PEG might be another reason for the reduced affinity and 

activity of PEG-haloperidol compared to free haloperidol. Different studies have reported 

that the presence of a hydroxyl group in the haloperidol structure at a position bound to the 

piperidine ring is not essential for haloperidol to bind to D2 receptors, however, its presence 

significantly increases affinity towards these receptors [32–34]. 

Although the PEG-haloperidol conjugate contains two haloperidol moieties, it is anticipated 

that, similarly to the unconjugated form, only one haloperidol will bind to the receptor due to 

the architectural restrictions in the binding site. It is possible that the other haloperidol could 

independently and simultaneously bind to a different D2 receptor nearby, but this is likely to 

be disfavoured from entropy considerations. 
 

3.3. Prevention of permeability, in vivo catalepsy recording test 

As a preliminary screen to determine the enthalpic impact of conjugation on permeability 

across the BBB, theoretical calculations were carried out using literature-retrieved equations 

to predict log BB values for both haloperidol and the conjugate. These demonstrated that, as 

per our design, in all cases, PEG-haloperidol was dramatically less permeable than the free 

haloperidol (Fig. S1, Fig. S2, Table S3, Table S4) (Supporting Information). However, it 

should be noted that these models do not account for entropic factors (which would also 

disfavour permeability across the BBB) and for pathways alternative to passive diffusion 

(which could potentially determine some permeability across the BBB). Therefore, to 

robustly test our hypothesis that polymer conjugation can be used to prevent permeability 

across the BBB, the conjugate was evaluated in vivo. Therefore, the cataleptogenic effects of 

PEG-haloperidol were monitored in rats. Neuroleptic drugs (typical antipsychotics such as 

haloperidol) are well-known to induce catalepsy via inhibitory effects on the nigrostriatal 

dopamine system [35]. In addition, cataleptic symptoms in animals are used to predict the 

unwanted extrapyramidal side effects induced by antipsychotics due to their permeation 

through the BBB [36]. 

With the aim of assessing the penetration of free or conjugated haloperidol through the BBB, 

catalepsy was recorded in rats, at different time intervals, after the peripheral administration 

of the drug. Cataleptic responses were readily apparent in animals treated with haloperidol. 

The cataleptic effects of haloperidol commenced after 5 min of administration and lasted for 

at least 180 min (the duration of the test) (Fig. A).  
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Fig. 6. In vivo catalepsy test in rats. Panel A, Time (min) recorded chart representing episodes of catalepsy induced after i.v. 
administration of free haloperidol and PEG-haloperidol; Panel B, Catalepsy response scores for free haloperidol and PEG-
haloperidol and the scoring system used. The red dashed line represents the catalepsy cut off (Mean ± SEM, n=5). n 
represents a single animal in the experiment. 

Even when the rats fell from the bar, they exhibited abnormal behaviour characterised by 

reduced activity. All haloperidol treated animals achieved scores higher than the catalepsy 

cut-off score (i.e. >3) (Fig. B). Rats showed normal behaviour with no sign of catalepsy was 

recorded, with significant differences to haloperidol treated animals (P<0.001) (Fig. A, 6B).   

The i.v. treatment of rats with free haloperidol led to episodes of catalepsy, consistent with 

antagonism of dopamine effects in the brain, in agreement with previous works [37–40]. 

However, when PEG-haloperidol was administered, the CNS-associated side effects of 

haloperidol on rats were absent. The normal behaviour seen in PEG-haloperidol treated 

animals is most likely related to the absence of haloperidol in the CNS. The lack of catalepsy 

observed following administration of the conjugate indirectly shows that haloperidol is not 
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released from PEG in plasma. This is desirable and in line with our previously reported 

stability data [9]. Furthermore, PEG is well known to be biologically stable. Therefore, with 

respect to overall metabolism, it is likely that the conjugate will be excreted unmodified in 

the urine, following glomerular filtration, in line with other studies on PEG 6000 that report 

elimination (96%), renally [41].  

It is important to highlight that haloperidol and PEG-haloperidol were i.v. injected at a dose 

~13 fold higher than the dose required to induce catalepsy in rats after s.c. injection [42]. As 

such, the lack of catalepsy observed after injection of the conjugate is most likely the result of 

the conjugate preventing haloperidol’s permeability across the BBB, rather than the result of 

a loss of potency.  

Hence, we demonstrate that the conjugation strategy used was capable of preventing the 

penetration of conjugated haloperidol through the BBB.  

 

4. Conclusions 
This study uses a PEG-haloperidol conjugate as a non-prodrug system to validate the 

hypothesis that conjugation to a polymer can localise a drug peripherally and avoid central 

effects. The approach relies on (a) polymer conjugation being effective at preventing BBB 

permeation and (b) the conjugated drug therapeutic activity being retained. In vivo studies in 

rats demonstrated strong evidence for (a), in that no unwanted cataleptogenic effects were 

observed when the rats were treated intravenously with PEG-haloperidol, in marked contrast 

to rats treated with haloperidol. With respect to (b), in vitro studies showed that PEG-

haloperidol was biologically active as an antagonist of D2 receptors by inhibiting the 

dopamine-induced stimulation of [35S]GTPγS-binding (although some loss of activity was 

observed). Molecular docking studies also confirmed that after conjugation, haloperidol 

preserved its ability to bind to D2 receptors, whilst also providing a possible explanation for 

the reduced activity of conjugated haloperidol compared to the free haloperidol. Taken 

together these findings suggest that PEGylation via a biologically stable linkage is a highly 

viable strategy to minimise penetration of a therapeutic drug through the BBB hence allowing 

drugs to be localised either within the CNS, or within the peripheral system, dependent on the 

point of administration. Future work will now look to interrogate this further, for example to 

realise the clinical applications of this work by probing the therapeutic activity of the 

conjugate for peripheral applications.  
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