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Abstract. We present ScAmPER, a tool that generates test suites that
maximise coverage for a class of interactive fiction computer games from
the early 1980s. These games customise a base game engine with scripts
written in a simple language. The tool uses a heuristic-guided search
to evaluate whether these lines of code can in fact be executed during
gameplay and, if so, outputs a sequence of game inputs that achieves
this. Equivalently, the tool can be seen as attempting to generate a set
of test cases that maximises coverage of the scripted code. The tool also
generates a visualisation of the search process.
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1 Introduction

A common complaint concerning tools in automated verification is that they
are inadequate for handling the complex software of today, written in modern
programming languages. What about the software of yesterday?

Interactive fiction or text adventure games are a genre of computer game
that peaked in popularity in the 1980s, although a small but active community
continues to create and play new games. The games take the form of a tex-
tual dialogue between a player, who gives commands, and the computer, which
executes the commands and describes their effect in a game world.

These games are conceptually easy to understand, but making progress within
them often involves a mixture of high-level planning (such as deciding in which
order to solve in-game puzzles) and low-level execution (such as moving objects
to specific locations). For this reason, they present an appealing case study for
the application of automated verification tools.

An occasional complaint concerning research in automated verification is
that tools are sometimes benchmarked either against large, inaccessible, incom-
prehensible pieces of commercial software, or against unrealistic toy examples
that have been chosen to showcase the strengths of a tool. Using older software
as a benchmark addresses some of these concerns, as while it is still covered by
copyright, it is often freely available and small enough to be comprehensible, yet
still realistic.

In terms of implementation detail, two aspects of interactive fiction games
make them relevant to modern software. Firstly, the structure of an interpreter
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loop, which is used to execute scripted actions in many games, is commonly used
in software that features scripting. Secondly, the pattern of repeatedly reading
user input and responding by updating internal state or occasionally triggering
events is also used in GUI applications and some control software.

We investigated whether tools from automated verification and formal meth-
ods could be used to explore, test and solve interactive fiction games, considering
specifically the Scott Adams Grand Adventures (SAGA) series. When we dis-
covered that they were unsuccessful, we wrote a specialised tool to tackle this
problem.

Our tool, ScAmPER (Scott Adams exPlicitly Evaluating Reachability), is
an explicit-state on-the-fly model checker that uses a heuristic-guided search to
determine whether certain lines of script code within these games are reachable.
When it finds that they are, it outputs a sequence of game inputs to witness
this. Equivalently, this sequence of game inputs is a test for the reached line
of script code. Taken together, these tests form a suite that aims to maximise
both branch coverage and modified condition/decision coverage (MC/DC) of the
script code. In addition, the tool generates a visualisation of the search process.
The tool is available online [9,3].

Appendix A gives some background on SAGA games. Section 2 outlines our
initial attempts to analyse them with existing tools. Section 3 demonstrates how
our tool works, describes how it works and evaluates its performance. We con-
sider related work on interactive fiction games and more generally in Section 4,
concluding with lessons learned and suggestions for future work in Section 5.

2 Preliminary Investigation

We thought it was plausible to use automated tools on interactive fiction games
for two reasons. Firstly, measured by number of player actions, solutions to
interactive fiction games are often relatively short. A game might be solvable
with a hundred commands or under, compared with thousands of joystick inputs
for an arcade game. This limits the depth of search tree that must be considered,
although the range of possible commands means the branching factor may be
large. Secondly, many interactive fiction games published by the same company
consisted of a generic interpreter and a game-specific data file. Many of these
interpreters have now been rewritten in C, allowing the games to be played on
modern computers. This meant we could use off-the-shelf tools for C programs.

We initially attempted to use off-the-shelf tools for C programs to determine
reachability of scripted events within a game. Bounding loops with constants
allowed bounded model checkers such as CBMC to unroll them. We replaced the
input of commands with a nondeterministic choice of a sequence of verb/noun
pairs and tested reachability by adding an assertion that a line of script would not
be executed. Then, a counterexample trace would give the inputs necessary to
reach the assertion. However, neither of the tools we tested could produce plays
of the game longer than a single command. We concluded that this was because
a single command involved executing every line of script, each of which executed
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the script interpreter, meaning that the unrolled straight-line code could be tens
of thousands of lines per game command.

We also tried using the fuzzing tool American Fuzzy Lop (AFL). While its
genetic algorithms generated plays of reasonable length, most of the commands in
them did not progress through the game. Movement commands or commands to
pick up or drop objects usually fail if their sequence is changed, so combining two
interesting plays is unlikely to produce an interesting new play. AFL instruments
the code it is fuzzing to identify when it has found a new path of execution.
However, in an interpreter loop, almost all executions will pass through the same
lines of source code, just with different data, making this technique ineffective.

3 ScAmPER

Usage. ScAmPER takes as input the database that defines a game. It uses a
heuristic search to find sequences of commands that reach novel states. Novel
states are those in which, for the first time during play, the player enters a room,
triggers execution of a line of script (action), or sees a message. States where
the conditions in the guard of an action take on a new permutation of truth
values, thereby increasing MC/DC coverage, are also novel. The tool outputs the
commands needed to reach these novel states and a visualisation of the search
process. ScAmPER stops when it has explored an initial pre-defined number
of states and has not recently encountered any novel states. It prints statistics
showing what percentage of rooms, actions and messages it could reach, as well
as MC/DC coverage.

Fig. 1 shows a still from a visualisation, which is rendered using GraphViz’s
dot and animated using gifsicle. The main part of the image shows the game
map, with rooms that have been reached filled in. The two grids show the IDs of
the game’s scripted actions and messages. Again, those that have been reached
are filled in. Next to the still is an example of a sequence of input commands
needed to trigger a scripted action.

0: nowhere

1: gorgeously decorated

2: square chamber

s n

3: gloomy dungeon

e w

4: dungeon cell

n

5: damp dismal crypt

n s

Messages
0 1 2 3 4 5

Actions
0 1 2 3 4 5 6

GO WEST

GET CROSS

GO EAST

GO NORTH

GET KEY

GO SOUTH

OPEN DOOR

GO DOOR

Fig. 1. Left: Still image from visualisation of Tutorial 4 of Scott Adams Compiler [14].
Right: A sample test input trace generated by ScAmPER to trigger action 4.
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Game Rooms reached Messages shown Actions reached MC/DC Time (s) Mem (MB)

1 88 % / 34 80 % / 77 75 % / 170 76 % 209 431
2 77 % / 27 75 % / 90 66 % / 178 64 % 25 37
3 54 % / 24 65 % / 82 54 % / 162 64 % 18 32
4 92 % / 26 80 % / 100 83 % / 190 83 % 96 105
5 86 % / 23 89 % / 89 84 % / 220 78 % 39 51

Fig. 2. Benchmarks of ScAmPER on 5 SAGA games.

Benchmarks. We tested ScAmPER on the first 5 original SAGA games [1].
Results are shown in Fig. 2. By various metrics, coverage is typically 60–90%.
Timings are for an Intel Core i7-7500U at 2.70 GHz with 16 GB of RAM.

Architecture. Fig. 3 shows the architecture of ScAmPER. In order to ensure
that it accurately models the behaviour of a game, it makes heavy use of the
existing ScottFree interpreter [2]. The first component of ScAmPER is a modified
version of the interpreter that, rather than running a game, loads its database,
then dumps it as a series of variable definitions in a C header file. The second
component, which actually performs the search, links against a modified version
of the interpreter that includes the header file, effectively hard-coding the game’s
database.

The second modified version of the interpreter is heavily optimised for use
in the search. All startup code and any code handling message display has been
removed. Code to get user input and parse it has also been removed. Instead, a
“next state” function has been added that takes as arguments the game state and
the numeric IDs of a verb and a noun; these are passed directly to the code that
evaluates the user’s commands. In order to support this, the game’s mutable data
has been separated from its immutable data and bundled in a single, fixed-size
C struct. As the game’s database is hard-coded, variables referring to the sizes

game
database
adv01.dat

dumper

hardcoded
database
db.h

maps
map00.dot

input
traces

path00.txt

logs
log00.txtlogger

search
algorithm
scamper.cpp

instrumented
game engine
scottfree.c

dot &
gifsicle

search
visualisation
map.gif

Fig. 3. The architecture of ScAmPER.
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of arrays of rooms, items and so on have been replaced with defined constants,
enabling more optimisation by the compiler.

Search algorithm. Before the search starts, the tool uses a simple static analysis
to determine all possible commands accepted by the game. A few commands are
hard-coded into the game engine. These are navigation commands (“GO X”,
for any direction X) and commands to pick up or drop an item (“GET X” or
“DROP X”, for any movable item X). The possible directions are hardcoded
into the game engine and the movable items are marked with a flag in the
game database, so these are easy to determine. All other valid commands are
handled by scripted actions. These are also easy to determine, as the verb/noun
combination that triggers an action must be stored in a specific field in the game
database.

The search algorithm itself is relatively straightforward. A game tree is ini-
tialised with a node containing the starting state of the game. On each iteration
of the search, a state is picked (according to heuristics) to expand as follows.
Firstly, a breadth-first search using navigation commands finds all rooms acces-
sible using “GO X” only. From each of these rooms, the search tries: picking up
or dropping any item (“GET X” or “DROP X”); and any combination of verb
and noun that is listed as a trigger in the game’s scripts. This is sufficient to
solve a large number of in-game puzzles, many of which involve taking an item
to a certain location and entering a specific command.

Rather than attempting to determine in advance whether these commands
will be fruitful, ScAmPER simply tries them all, as that is likely to be faster.
Most of the commands will fail with an error, for example if the command
was “GO NORTH”, but there was no exit to the north, or the command was
“GET KEY”, but the key was not in the player’s current room. In order to
detect this, the interpreter has been instrumented with a flag that is set when a
command fails. If a command fails, the resulting state is discarded. Otherwise,
it is added to the game tree. If the command triggered a previously unseen
message or unexecuted line of script, this is recorded. Again, the interpreter is
instrumented with flags to detect this. The goal of this expansion strategy is to
find all currently accessible scripted actions, without wasting time moving back
and forth aimlessly between locations in the game’s map.

The interpreter is also instrumented to evaluate and record the value of all
conditions in the guards of scripted actions after every move. This is necessary
in order to determine MC/DC coverage, as if any condition in a guard is false,
the subsequent conditions would not normally be evaluated.

Explored states are stored in a hash table for easy lookup. If a duplicate state
is ever encountered, it is immediately discarded. This cuts out many pointless
sequences of commands, such as returning to the room from which the player
just came, or dropping an object and immediately picking it up again.

A small number of scripted actions occur with random probability. For the
sake of reproducibility, we decided to use a simplified random number generator
and store its state as part of the game state. However, we ignore it when hashing
states or comparing them for equality in order to avoid filling the game tree with
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Fig. 4. Average coverage over first 5 SAGA games with different search heuristics.

many copies of the same state that differ only by random number generator
state. Similarly, we also ignore the state of the counter that records how much
longer a light source will last for. These simplifications aside, the search process
is complete, in the sense that it will eventually explore all possible states of a
game, although in practice this only happens within reasonable time/memory
limits for extremely small examples.

ScAmPER uses two main heuristics to pick the node to expand. Firstly,
novel states (as described above) are preferred. Secondly, new states encountered
during expansion are themselves immediately expanded, as are those encountered
during this second round of expansion; this ensures that paths from any state
chosen for expansion are explored to a reasonable depth. The rationale is that
games usually feature a number of dependent puzzles. Completion of one puzzle
grants access to a new item or location, or sets a flag, which enables other
puzzles to be completed. In order to complete the later puzzles (and execute
their associated lines of script), the search must focus on states where the earlier
puzzles have already been solved; these are more likely to be the novel states
and deeper in the game tree.

We evaluated both heuristics on the first 5 SAGA games, stopping the search
after 100,000 states had been explored. Our results are shown in Fig. 4. Both
heuristics improved coverage, but novelty was far more significant. For compar-
ison, we also evaluated a search strategy that randomly picks a state to explore
and tries all available commands when it does so. This performed acceptably
and was comparable to our expansion strategy without the novelty heuristic.

4 Related Work

Machine learning for playing video games. The successful application of machine
learning to playing old Atari video games [10,11] has captured the interest of
both researchers and the general public. There are several key differences in the
problem we chose to tackle. Firstly, in many interactive fiction games, there is no
equivalent of the player’s score for assessing the success or progress. Secondly,
we allow tools to access the internal state and code of the program we are
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analysing. Thirdly, the tree of game states has a higher degree of branching (as
there are more possible actions at any point), but successful or interesting paths
are shorter while potentially more intricate.

Narasimhan and others [12] investigated the use of deep learning to solve
interactive fiction using only the text output of the game. Its success was limited
in games without a score to guide play.

Model checking for solving interactive fiction games. The idea of applying model-
checking to interactive fiction was first investigated by Pickett, Verbrugge and
Martineau [13]. They introduced the NFG (Narrative Flow Graph), a formalism
based on Petri nets, and the higher-level PNFG (Programmable Narrative Flow
Graph). They manually encoded some existing games as PNFGs, used a compiler
to translate those into NFGs, then used the model-checker NuSMV to attempt to
find solutions. They also discussed other properties of such games that one might
check, such as the player being unable to reach a state in which the game had
not been lost, yet was no longer winnable. Verbrugge and Zhang later addressed
the problem of scalability using a heuristic search [15], which was able to solve
several NFGs that were infeasibly large for NuSMV.

Our main criticisms of this work concern the choice to re-encode the games
as PNFGs. Firstly, the manual translation of games into PNFGs might not be
entirely accurate. Looking at the C code for the script interpreter in ScottFree,
the behaviour of some scripted events is quite subtle, and it is likely that a
manual translation would not capture all the details correctly. Secondly, it is
often the case that expressing a problem in a different format makes it easier for
automated tools to solve, as it reveals the high-level structure of the problem.
If the translation is done manually, the translator may have introduced this
structure, and it is not clear that it could be derived automatically.

Automated test case generation. A key problem with automated test generation
is generating tests that cover difficult-to-reach parts of a system, in particular
when tests are generated randomly. Testar [16], a tool for automated generation
of GUI test cases, addresses this using Q-learning. The tool identifies possible
actions in a GUI application using its accessibility API. It runs the program
being tested and uses instrumented versions of GUI libraries to gather infor-
mation about the state of GUI widgets; it uses this to determine whether an
action caused the application to enter a new state. Q-learning is used to tune
the frequency with which different GUI actions are taken in order to maximise
the chances of reaching a new state. In contrast, as ScAmPER has access to
the internal state of the game and is not limited to constructing whole paths of
execution, tuning the frequency with which different actions are taken is less im-
portant. All actions from a state of interest can be taken with ease. Nonetheless,
this approach could lead to better heuristics for choosing which state to expand.

Fuchs presents a tool [5] for generating test cases for Web applications written
in Java. These applications provide a user interface to a database, which is built
by combining and customising ready-made components. In that regard, they are
somewhat similar to SAGA games. The tool constructs tests using simulated
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interactions with the application, making use of the compiled application code.
Their tool is augmented with a symbolic execution engine.

Julliand and others [8] consider test generation for abstracted event systems.
Their approach, called concrete exploration, is based on models written in B,
but applicable to other settings. The games we consider could be viewed as event
systems, with the obvious abstraction being to group concrete game states in
which the player is in the same room; the scripted actions in a game would cor-
respond to guarded actions in the event system. Their work proposes a strategy
for covering the abstract transitions of a system by trying to extend existing
concrete paths to cover new abstract transitions.

5 Future Work and Conclusions

Despite their relative simplicity, SAGA games were extremely popular and ported
to at least 10 different home computer systems. After source code for two games
and their interpreter were published in magazines in 1980, the style of the inter-
preter was copied by other developers. This led to the creation of game author-
ing packages such as The Quill and Graphic Adventure Creator. Combined, over
500 games were published using these packages. We are highly confident that
our techniques are applicable to these engines too, but we leave that for future
work. We suspect that adapting our work to more complex and dynamic game
engines, such as Infocom’s Z-Machine, would prove much more difficult.

Old computer and video games present an appealing challenge for program
analysis and automated verification, with relevance to current problems, such as
GUI test case generation. Explicit state methods have proven to be successful
in model-checkers such as SPIN [7] and FDR [6]. ScAmPER shows once again
that explicit state methods can beat symbolic methods when the “next state”
function of a system is complex, but can be evaluated cheaply.

One blind spot of ScAmPER is that it only finds when an action can be
executed; it never proves that it cannot. Our tool could be improved with better
heuristics, by using techniques from model-checking such as CEGAR, or by using
symbolic execution to gather constraints and help to guide the search. But we
are more interested in how to encode the problem so that it can be handled
better by existing tools, or in finding improvements for those tools.

Off-the-shelf verification tools cannot yet handle games from 40 years ago
without help, and even then they struggle. ScAmPER shows that a custom tool
can tackle these examples. It is unsurprising that a specialised tool should out-
perform a generic tool on a particular problem. However, it is not clear whether
a clever generic tool or a stupid specialised tool, such as ours, is likely to per-
form better. Our work provides one datapoint to suggest that, for the moment,
a stupid specialised tool is better. We hope that it will motivate future develop-
ments in verification tools and that its performance on SAGA games will provide
a benchmark for others to beat.
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A Scott Adams Grand Adventures

In an interactive fiction game, the computer displays a textual description of the
player’s location. The player types a command, such as “GO NORTH”, “GET
KEY” or “OPEN DOOR”. The computer parses the command, evaluates its
effect on the game world, and displays a textual description of any outcomes.
The process repeats until the player wins (for example, by defeating a monster
or finding a treasure) or loses (often by dying).

The most popular of the generic interactive fiction interpreters was Info-
com’s Z-Machine. However, its flexibility, which allows games to include their
own customised command parsers, makes it a difficult target for automated
analysis. Instead, we decided to tackle an earlier and simpler format, namely
Scott Adams Grand Adventures (SAGA) and the corresponding open-source in-
terpreter ScottFree [2]. This format supports only very limited scripting, which
makes the behaviour of the games far less dynamic.

Games consist of a fixed number of rooms and objects (usually 20–40 each).
Commands consist of one or two words (a verb and a noun), which are taken
from a fixed list. The player can move between rooms and pick up and drop
objects; this is hard-coded into the engine. A limited scripting system allows
the behaviour of each game to be customised. Scripts allow the player to trigger
special events by entering certain rooms or typing certain commands, provided
a guard consisting of a conjunction (AND) of conditions is satisfied. Examples
of conditions that can be checked include the location of a certain object or
the value of a finite number of flags and bounded counters. Examples of events
include moving objects, moving the player, displaying messages and adjusting
the values of flags and counters.

Fig. 6 shows pseudocode illustrating the structure of the game engine and
some possible scripted events. Despite the relatively simple structure of the en-
gine, the open source implementation ScottFree is around 1,500 lines of C, of
which around 600 implement an interpreter for the scripting language. Scripts
can check around 20 different kinds of condition and trigger around 40 different
kinds of event. The state space of a game is finite but too large to enumerate.
Its size is dominated by the potential for any movable object to be in any room,
ranging from roughly 240 combinations in adventure 11 to 2114 in adventure 9.

Fig. 5. Coverage achieved by ScAmPER with different metrics on SAGA games.
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// Game engine
while (not game_over) {

print(current_room.description());
execute_automatic_scripts();
(verb, noun) = parse_player_input();
if (scripted_action(verb, noun)) {

execute_scripted_action(verb, noun);
}
else if (verb == "go") {

current_room = current_room.exit[noun];
}
else if (verb == "get" and items[noun].location == current_room) {

items[noun].location = carried;
}
else if (verb == "drop" and items[noun].location == carried) {

items[noun].location = current_room;
}

}

// Example scripted actions
// Action 0:
if (verb == "score") {

print_score();
}
// Action 1:
else if (verb == "inventory") {

print_inventory();
}
// Action 2:
else if (verb == "open" and noun == "door" and items["locked door"].location == current_room and

items["key"].location != carried and items["key"].location != current_room) {
print("It’s locked.");

// Action 3:
else if (verb == "open" and noun == "door" and items["locked door"].location == current_room) {

swap(items["locked door"].location, items["open door"].location);
}
// Action 4:
else if (verb == "go" and noun == "door" and items["open door"].location == current_room) {

current_room = rooms["cell"];
}

// Example automatic scripts
// Action 5:
if (items["vampire"].location == current_room and items["cross"].location != carried) {

print("Vampire bites me! I’m dead!);
exit();

}
// Action 6:
if (items["vampire"].location == current_room and items["cross"].location == carried) {

print("Vampire cowers away from the cross!);
}

Fig. 6. Pseudocode for the structure of the game engine and some scripted events.
Scripted events are taken from Tutorial 4 of Mike Taylor’s Scott Adams Compiler [14].
The functions invoked by actions 0 and 1, which display the player’s score and inventory
(list of items carried), are built into the game engine.
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