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RANK DEFICIENCY OF KALMAN ERROR COVARIANCE3

MATRICES IN LINEAR TIME-VARYING SYSTEM WITH4
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Abstract. We prove that for-linear, discrete, time-varying, deterministic system (perfect-model)8

with noisy outputs, the Riccati transformation in the Kalman filter asymptotically bounds the rank9

of the forecast and the analysis error covariance matrices to be less than or equal to the number10

of nonnegative Lyapunov exponents of the system. Further, the support of these error covariance11

matrices is shown to be confined to the space spanned by the unstable-neutral backward Lyapunov12

vectors, providing the theoretical justification for the methodology of the algorithms that perform13

assimilation only in the unstable-neutral subspace. The equivalent property of the autonomous14

system is investigated as a special case.15
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1. Introduction. The problem of estimating the state of an evolving system20

from an incomplete set of noisy observations is the central theme of the state es-21

timation and optimal control theory [7], also referred to as data assimilation (DA)22

in geosciences [6, 20]. In the filtering procedure, based on the concept of recursive23

processing, measurements are utilized sequentially, as they become available [7]. For24

linear dynamics, and when a linear relation exists between measurements and the25

state variables, and when the errors associated to all sources of information are Gaus-26

sian, the solution can be expressed via the Kalman filter (KF) equations [8]. The KF27

provides a closed set of equations for the first two moments of the posterior probabil-28

ity density function of the system state, conditioned on the observations. In the case29

of nonlinear dynamics, the first order extension of the KF is known as the extended30

Kalman filter (EKF) [7], whereas a Monte Carlo approximation is the basis of a set31

of methods known as the ensemble Kalman filter, both of which have been studied32

extensively in geophysical contexts [13, 5].33

Atmosphere and ocean are example of dissipative chaotic systems. This implies34

sensitivity to the initial condition [11] and the fact that the estimation error strongly35
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projects on the unstable manifold of the dynamics [18], which has inspired the devel-36

opment of a class of algorithms known as assimilation in the unstable subspace (AUS)37

[23]. In AUS, the span of the leading Lyapunov vectors (to be defined precisely in38

later sections), or a suitable approximation of this span, is used explicitly in the anal-39

ysis step: the analysis update is confined to the unstable subspace [16]. AUS has40

been formalized in the framework of the EKF, the EKF-AUS [22], and the variational41

(smoothing) procedure, 4DVar-AUS [21]. Applications with atmospheric, oceanic, and42

traffic models [24, 3, 17] showed that even in high dimensional systems, an efficient43

error control is achieved by monitoring only a limited number of unstable directions,44

making AUS a computationally efficient alternative to standard procedures. The AUS45

methodology is based on and at the same time hints at a fundamental observation:46

the span of the estimation error covariance matrices asymptotically (in time) tends47

to the subspace spanned by the unstable-neutral Lyapunov vectors.48

The search for a formal proof of this aforesaid property is the basic motivation of49

the present work, which is focused on linear nonautonomous and linear autonomous50

perfect-model dynamical systems. The main results of the paper are as follows. In51

Theorem 3.5 we show that the error covariance matrices, independent of the initial52

condition, asymptotically become rank deficient in time, and then in Theorem 3.7 we53

characterize their null spaces by proving that the restriction of the these matrices onto54

the stable backward Lyapunov vectors converges to zero in time. When restricted to55

the linear, autonomous system with the time invariant propagator A, we establish that56

the stable space of the time independent backward Lyapunov vectors equals the stable57

space of AT—span of generalized eigen-vectors of AT corresponding to eigen-values58

less than one in absolute magnitude—in Theorem B.3. Consequently, in Corollary 4.259

we show that the null space of the error covariance matrices contain the stable space60

of AT asymptotically.61

The paper is organized as follows. After describing the general notation in sec-62

tion 2, the nonautonomous case is considered in section 3. The assumptions used63

in proving our main result, other useful results such as the Oseledets theorem, and64

the concepts of observability and controllability for noiseless systems are described65

in sections 3.1, 3.2, and 3.3. Theorem 3.5 discussing the rank deficiency of error co-66

variance matrices is presented in section 3.4 and the proof of Theorem 3.7 using the67

geometric viewpoint of Kalman filtering [2, 25, 1] is detailed in section 3.5. Section 3.668

presents some numerical results buttressing the theorem. Section 4 includes the proof69

of Corollary 4.2 along with a numerical illustration supporting the analytical findings70

for autonomous systems. We conclude in section 5.71

Although the extension of these results to the general nonlinear case is the object72

of active research [19], the current findings already provide a formal justification to73

the AUS foundation and further motivate its use as a DA strategy in nonlinear chaotic74

dynamics.75

2. Notation. The dimension of the state space is represented by d. For any76

square matrix Z ∈ Cd×d let the set {λ1(Z), . . . , λd(Z)} represent the eigen-values of77

Z, where |λ1(Z)| ≥ · · · ≥ |λd(Z)|. Similarly, let the set {σ1(Z), . . . , σd(Z)} stand for78

the singular values of Z with σ1(Z) ≥ · · · ≥ σd(Z). We define the column vectors79

of the matrix VZ = [v1(Z), . . . ,vd(Z)] to be the generalized eigen-vectors of Z of80

satisfying the relation ZVZ = VZJ(Z), where J(Z) is the Jordan canonical form of81

Z. In the event that Z is diagonalizable (J(Z) is diagonal), let the entries of the82

diagonal matrix ΛZ = J(Z) symbolize the eigen-values of Z and the columns of VZ—83

the eigen-vectors—be of unit magnitude. Z∗ denotes the adjoint of Z for the scalar84
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product under consideration in Cd and Z† represents the conjugate transpose of Z.85

For the canonical scalar product 〈u,v〉 = u†v in Cd, Z∗ = Z†, and when confined to86

the real space Rd where 〈u,v〉 = uTv, Z∗ = ZT . Unless explicitly stated we assume a87

real vector space endowed with a canonical scalar product. The matrix norm ‖Z‖ we88

consider is the largest singular value σ1(Z) of Z. The notation Z > 0 (Z ≥ 0) is used89

when Z is symmetric positive-definite (positive-semidefinite). For any two symmetric90

matrices Z1, Z2, the notation Z1 ≥ Z2 means Z1 − Z2 ≥ 0. The following definitions91

are useful.92

Definition 2.1 (real span). The real span of a complex vector w = u + iv where93

u,v ∈ Rd is the vector space Tw ⊂ Rd defined as94

Tw ≡ {αu + βv : α, β ∈ R}.95

Definition 2.2 (α-eigenspace). Given α > 0, the α-eigenspace of a square matrix96

Z denoted by Eα(Z) is the real span of the generalized eigen-vectors of Z corresponding97

to eigen-values λ with |λ| < α.98

3. Nonautonomous systems.99

3.1. Setup and assumptions. We define the general linear nonautonomous100

dynamical system at time n ≥ 0 by101

xn+1 = An+1xn + Fn+1pn+1,(3.1)102

yn+1 = Hn+1xn+1 + qn+1,103
104

where xn ∈ Rd, qn ∈ Rq, pn ∈ Rp. The xn are the state variables, pn represents105

model noise, yn represents observational variables, and qn is the observational noise106

term. The basic random variables {x0,q1,q2, . . . ,p1,p2, . . .} are all assumed to be107

independent and Gaussian with108

x0 ∼ N
(
x0|0,∆0

)
, qn ∼ N (0, Qn), pn ∼ N (0, I)109

such that ∆0 ∈ Rd×d is the initial error covariance matrix of the state variable x0,110

Qn ∈ Rq×q is the observation error covariance matrix at time n, and Fn ∈ Rd×p.111

The matrices ∆0, Qn, Fn, An, Hn are known for all time n. Further, An and Qn are112

considered to be nonsingular, ‖An‖ ≤ cA, ‖Qn‖ ≤ cQ, and ‖Hn‖ ≤ cH ∀n ≥ 1, where113

cA, cQ, and cH are positive constants. The model noise error covariance is given by114

Pn ≡ FnFTn . Unless explicitly stated ∆0 > 0, i.e., its eigen-values are strictly positive.115

Filtering theory deals with the properties of the conditional distribution, called116

the analysis in the context of DA, of the state xn at time n conditioned on observations117

Y0:n = [y1,y2, . . . ,yn] up to time n where the first observation y1 is assumed to occur118

at time n = 1. This conditional distribution provides an optimal state estimate in119

the least squares sense [7]. Under the assumptions of linearity and Gaussianity stated120

above, this conditional distribution is Gaussian, with mean and covariance denoted121

by xn|n, and ∆n respectively:122

xn|n = E[xn | Y0:n] and ∆n = E[(xn − xn|n)(xn − xn|n)T | Y0:n] .123

We also note that the conditional distribution, called the forecast in DA literature,124

of the state xn+1 conditioned on observations Y0:n up to time n is Gaussian with its125

mean and covariance denoted by xn+1|n and Σn+1, respectively:126

xn+1|n = E[xn+1 | Y0:n] and Σn+1 = E[(xn+1 − xn+1|n)(xn+1 − xn+1|n)T | Y0:n] .127
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In this work we concern ourselves with systems that have no model error, i.e.,128

Fn ≡ 0 ∀n ≥ 1, and investigate the dynamics129

xn+1 = An+1xn and yn+1 = Hn+1xn+1 + qn+1 .(3.2)130
131

We will be interested in asymptotic properties of the conditional error covariances132

Σn and ∆n. The KF provides a closed form, iterative formula for obtaining these133

quantities [7]. Under the assumption of no model noise, the update equation for the134

forecast error covariance is135

(3.3) Σn = An∆n−1A
T
n .136

By defining the Kalman gain matrix Kn as137

(3.4) Kn ≡ ΣnH
T
n

[
HnΣnH

T
n +Qn

]−1
,138

the analysis error covariance equals139

(3.5) ∆n = (I −KnHn)Σn .140

The update equations for the means are given by141

xn+1|n = An+1xn|n,(3.6)142

xn+1|n+1 = xn+1|n +Kn+1

(
yn+1 −Hn+1xn+1|n

)
.(3.7)143

144

Defining the sequence of matrices Mn as145

(3.8) M1 ≡ (I −K1H1)A1, Mn ≡ (I −KnHn)AnMn−1146

and writing the propagator Bm:m+n from time m to time m+ n by147

Bm:m+n ≡ Am+nAm+n−1 · · ·Am+1,(3.9)148
149

the analysis covariance at time n can be expressed as150

∆n =(I −KnHn)An · · · (I −K1H1)A1∆0A
T
1 · · ·ATn = Mn∆0B

T
0:n.(3.10)151

152

This equation clearly shows that the asymptotic properties of ∆n are closely related to153

those of B0:n and Mn. The notation in (3.10) is suggestive of the line of argument we154

will take in the following sections. To outline, we may consider the singular-value de-155

composition of the propagator BT0:n = VnSnU
T
n and decompose the error covariances156

into a basis of the left singular vectors. In particular, we know that this decom-157

position may be written as a function of the singular values, provided we have an158

appropriate bound on Mn in (3.10). Moreover, the left singular vectors of the prop-159

agator B0:n will become arbitrarily close to the backward Lyapunov vectors of the160

system.161

The properties of B0:n are basically determined by the dynamical system and162

are discussed in the next section, while those of Mn are commonly discussed in the163

context of control theory and are discussed in section 3.3, where we prove a useful164

bound on its matrix norm in Lemma 3.3.165
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3.2. Oseledets theorem. Note that the boundedness condition on An implies166

the bound ‖B0:n‖ ≤ (cA)n ∀n. Then the Oseledets multiplicative ergodic theorem in167

[15] states that for each nonzero vector u ∈ Rd the limit168

µ = lim
n→∞

1

n
log
‖B0:nu‖
‖u‖

169

exists and assumes up to d distinct values µ1 ≥ · · · ≥ µd which are called the Lyapunov170

exponents. We will assume171

0 > µd0+1(3.11)172
173

so that exactly d0 < d of the Lyapunov exponents are nonnegative. Further, defining174

the matrices175

(3.12) Ebn(m) ≡ [Bm−n:m(Bm−n:m)∗]
1
2n , Efn(m) ≡ [(Bm:m+n)∗Bm:m+n]

1
2n ,176

the Oseledets theorem guarantees that the following limits exist, namely,177

Eb(m) ≡ lim
n→∞

Ebn(m),(3.13)178

Ef (m) ≡ lim
n→∞

Efn(m).(3.14)179

180

The eigen-vectors of Eb(m) and Ef (m) represented as the column vectors of Lb(m) =181

[lb1(m), . . . , lbd(m)] and Lf (m) = [lf1 (m), . . . , lfd(m)], respectively, are defined as the182

backward and the forward Lyapunov vectors at time m [10]. We note that the183

asymptotic results in later sections will essentially use the backward Lyapunov vectors184

Lb(m).185

The convergence of the individual matrix entries in (3.13) and (3.14) guarantee the186

convergence of their characteristic polynomials—whose coefficients are well-defined187

functions of the matrix entries—the roots of which are the eigen-values. Therefore,188

lim
n→∞

ΛEbn(m) = ΛEb(m), lim
n→∞

ΛEfn(m) = ΛEf (m),189

where we recall that ΛZ is a diagonal matrix comprising eigen-values of Z. Using the190

notation from section 2 we additionally find191

‖λj
(
Eb(m)

)
vj
(
Ebn(m)

)
− Eb(m)vj

(
Ebn(m)

)
‖ ≤

∣∣λj (Eb(m)
)
− λj

(
Ebn(m)

)∣∣192

+ ‖Ebn(m)− Eb(m)‖193
194

from which we can infer that195

lim
n→∞

‖λj
(
Eb(m)

)
vj
(
Ebn(m)

)
− Eb(m)vj

(
Ebn(m)

)
‖ = 0196

leading to limn→∞ VEbn(m) = VEb(m) = Lb(m). Similarly, limn→∞ VEfn(m) = VEf (m) =197

Lf (m).198

The Oseledets theorem also asserts the eigen-values of Eb(m) or Ef (m) do not199

depend on the initial time m, are the same for the forward and backward matrices,200

and relate to the Lyapunov exponents as201

(3.15) µj = log(λj(E)), j ∈ {1, . . . , d},202
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where we deliberately drop the index m and the superscript b or f on E. However,203

the forward and backward Lyapunov vectors are different from each other and they204

also depend on the time m, i.e., Lb(k) 6= Lb(m) 6= Lf (m) 6= Lf (k) for k 6= m.205

Consider the singular-value decomposition B0:n ≡ UnSn(Vn)T so that under the206

canonical inner product207

Efn(0) =
[
(B0:n)TB0:n

] 1
2n = [Vn(Sn)2(Vn)T ]

1
2n = Vn(Sn)

1
n (Vn)T ,208

209

implying VEfn(0) = Vn and210

(3.16) lim
n→∞

‖vj,n − lfj (0)‖ = 0,211

where vj,n (and similarly uj,n below) is the jth column vector of Vn (respectively,212

Un). Likewise, we obtain213

Ebn(n) =
[
B0:n(B0:n)T

] 1
2n =

[
Un(Sn)2(Un)T

] 1
2n = Un(Sn)

1
n (Un)T ,214

215

from which we can deduce that VEbn(n) = Un and216

(3.17) lim
n→∞

‖uj,n − lbj(n)‖ = 0.217

We also infer that218

(3.18) (σj(B0:n))
1
n = λj(E

b
n(n)) = λj(E

f
n(0)).219

3.3. Controllability and observability for linear dynamics. The notions of220

observability and controllability are dual notions within filtering problems. Roughly,221

observability is the condition that given sufficiently many observations, the initial222

state of the system can be reconstructed by using a finite number of observations.223

Similarly, controllability can be described as the ability to move the system from any224

initial state to a desired state over a finite time interval. This is formally stated as225

follows.226

Definition 3.1. The system (3.1) is defined to be completely observable if227

∀n≥1,228

(3.19) det

(
d−1∑
m=0

(Bn:n+m)
T
HT
n+mQ

−1
n+mHn+mBn:n+m

)
6= 0,229

and it is defined to be completely controllable if ∀n ≥ 0,230

(3.20) det

(
d∑

m=1

Bn+m:n+dFn+mF
T
n+m (Bn+m:n+d)

T

)
6= 0.231

In addition we describe the system as uniformly completely observable (respectively,232

uniformly completely controllable) if (3.19) (respectively, (3.20)) is bounded from zero233

uniformly in n.234

We will assume that the system in (3.2) is uniformly completely observable, i.e.,235

the inequality (3.19) is uniformly bounded away from zero. Note, however, that236

this system cannot be controllable since the determinant in (3.20) is identically zero237

for a deterministic, perfect-model system as Fn = 0 ∀n. The hypothesis of uniform238

complete observability ensures that the error covariance matrices remain bounded239

over time, as seen below.240
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Lemma 3.2. Suppose that the linear, nonautonomous system (3.2) where the ini-241

tial state x0 has a Gaussian law with mean x0|0 and covariance ∆0 is uniformly242

completely observable (Definition 3.1). Then the error covariance matrices remain243

bounded for all time, i.e., there exist constants cΣ and c∆ such that ∀n, ‖∆n‖ ≤ c∆244

and ‖Σn‖ ≤ cΣ.245

Proof. The result is proven for autonomous systems in Kumar and Varaiya [9,246

Chapter 7, equations (2.36) and (2.37)]. Extension to the nonautonomous case is247

straightforward by rehashing the steps and changing the constants of the autonomous248

system to their time-varying counterparts.249

One should note the recent work of Ni and Zhang [14] has demonstrated a stronger250

result: in continuous, perfect-model systems the assumption of uniform complete251

observability is sufficient to demonstrate the stability of the KF. In particular this252

shows that all solutions to the continuous Riccati equation for any choice of initial253

error covariance are bounded and converge to the same solution asymptotically. This254

strongly suggests the same can be shown for the discrete time system, and we will255

return to this point in our discussion of results in section 5.256

Utilizing only the boundedness of the error covariance matrices, we demonstrate257

that the matrix Mn stays bounded in the following lemma.258

Lemma 3.3. Consider the uniformly completely observable, perfect-model, linear,259

nonautonomous system (3.2) where the initial state x0 has a Gaussian law with co-260

variance ∆0 > 0. Then the matrix Mn defined in (3.8) is uniformly bounded, i.e.,261

there exists a constant cM such that ‖Mn‖ ≤ cM ∀n.262

Proof. We first show that the analysis error covariance matrix satisfies the recur-263

sive equation264

(3.21) ∆n = (I −KnHn)An∆n−1A
T
n (I −KnHn)T +KnQnK

T
n .265

Plugging in the Kalman update equations (3.3) and (3.3), the right-hand side of (3.21)266

equals ∆n − (∆nH
T
n − KnQn)KT

n . Equation (4.29) in [4] establishes the equality267

Kn = ∆nH
T
nQ
−1
n from which the recursion (3.21) follows, further implying that268

∆n ≥ (I −KnHn)An∆n−1A
T
n (I −KnHn)T .269

Recursively applying the above inequality gives ∆n ≥Mn∆0M
T
n . Decomposing ∆0 =270

V∆0
Λ∆0

V T∆0
and employing Lemma 3.2 we find271 ∥∥∥MnV∆0

Λ
1
2

∆0

∥∥∥2

≤ ‖∆n‖ ≤ c∆.272

As ‖Mn‖ ≤ ‖MnV∆0
Λ

1
2

∆0
‖‖Λ−

1
2

∆0
V T∆0
‖ the result follows. Note that as ∆0 > 0 the273

matrix Λ
− 1

2

∆0
is well-defined.274

Bearing this bound in mind we shall proceed to discuss the asymptotic properties275

of the error covariance matrices.276

3.4. The asymptotic rank deficiency of the error covariance. We begin277

by introducing a lemma which allows us to formally describe the collapse of the278

eigen-values of the error covariance matrix.279

Lemma 3.4. For a given ε > 0, let Z ∈ Rd×d be a symmetric matrix such that280

there is a k ≤ d dimensional subspace W ⊂ Rd for which281

sup{‖Zu‖ : ‖u‖ = 1,u ∈ W} < ε.282
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Then dim (Eε(Z)) ≥ k, where the subspace Eε is in accordance with Definition 2.2.283

Proof. Let {v1, . . . ,vd} be an orthonormal eigen-vector basis for Z corresponding284

to | λ1(Z) |≥ · · · ≥| λd(Z) |, and let {u1, . . . ,uk} be a basis for W of unit magnitude,285

such that we write286

ul =

d∑
j=1

βl,jvj ; l ∈ {1, 2, . . . , k},287

and the matrix of coefficients288 
β1,1 β1,2 · · · β1,d−k+1 0 · · · 0
β2,1 β2,2 · · · β2,d−k+1 β2,d−k+2 · · · 0

...
...

...
...

. . .
...

...
βk−1,1 βk−1,2 · · · · · · · · · βk−1,d−1 0
βk,1 βk,2 · · · · · · · · · βk,d−1 βk,d

289

is in column echelon form where for every column index j > d− k + 1, the entries290

β1,j = · · · = βk+j−d−1,j = 0291

and for every row index l ≤ k,
∑d−k+l
j=1 β2

l,j = 1 corresponding ‖ul‖ = 1. Furthermore,292

as Z is symmetric its eigen-vectors form an orthonormal basis and hence ‖Zul‖2 =293 ∑d−k+l
j=1 β2

l,jλ
2
j (Z). For every 1 ≤ l ≤ k, setting s = k − l + 1 we find294

ε2 > ‖Zus‖2 =

d−k+s∑
j=1

β2
s,jλ

2
j (Z) ≥ λ2

d−k+s(Z) = λ2
d−l+1(Z).295

Hence the k smallest eigen-values in absolute magnitude satisfy296

| λd(Z) |≤ · · · ≤| λd−k+1(Z) |< ε297

and the result follows.298

Theorem 3.5. Consider the uniformly completely observable, perfect-model, lin-299

ear, nonautonomous system (3.2) where the initial state x0 has a Gaussian law with300

covariance ∆0. Then ∀ε > 0, ∃n1 > 0 such that if n ≥ n1, Σn and ∆n will each301

have at least d− d0 eigen-values which are less than ε where d− d0 is the number of302

negative Lyapunov exponents of the system (3.2), i.e.,303

(3.22) dim (Eε(Σn)) ≥ d− d0, and dim (Eε(∆n)) ≥ d− d0,304

where the subspace Eε is in accordance with Definition 2.2.305

Proof. As denoted earlier, let µ1 ≥ µ2 ≥ · · · ≥ µd be the Lyapunov exponents of306

the system (3.2) where d0 < d of them are nonnegative. The forward stable Lyapunov307

vectors based at time zero are the set {lfj (0)}dj=d0+1 which by definitions (3.13) and308

(3.15) satisfy309

lim
n→∞

1

n
log
(∥∥∥B0:nlfj (0)

∥∥∥) = µj .(3.23)310

311

Rewriting the analysis error covariance update equation in terms of the transpose312

∆n = Mn∆0B
T
0:n = B0:n∆0M

T
n313
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we get ∆nM
−T
n ∆−1

0 = B0:n and in particular314

∆nM
−T
n ∆−1

0 lfj (0) = B0:nlfj (0).315

Let us therefore define the sequence of vectors316

wj,n ≡M−Tn ∆−1
0 lfj (0).(3.24)317

318

By Lemma 3.3 we know that Mn is bounded above, so that the sequence of vectors319

wj,n = M−Tn ∆−1
0 lfj (0) must be bounded below. As such, there is a constant cw such320

that cw ≤ ‖wj,n‖ ∀n and j ∈ {d0 + 1, . . . , d}. Choose a ρ > 0 such that for each321

j ∈ {d0 + 1, . . . , d}, ρ + µj < 0. Define wj,n ≡ wj,n
‖wj,n‖ . Then for a given ε > 0, ∃n1322

such that for n ≥ n1323

‖∆nwj,n‖ =
1

‖wj,n‖
‖B0:nlfj (0)‖ ≤ 1

cw
e(µj+ρ)n < ε.(3.25)324

325

The theorem is therefore an immediate consequence of Lemma 3.4. The proof for Σn326

follows along similar lines.327

3.5. Null space characterization and assimilation in the unstable sub-328

space. The sequence of subspaces defined by the span of {wj,n}dj=d0+1 will be the329

object of study for the remainder of this section. In particular, we wish to estab-330

lish the connection between this sequence of subspaces and AUS which utilizes the331

backward Lyapunov vectors.332

Definition 3.6. Define Λs
Efn(0)

to be the d − d0 × d − d0 diagonal matrix with333

diagonal entries given by
{
λj
(
Efn(0)

)}d
j=d0+1

. Also, let us define the following d ×334

d− d0 operators:335

Usn = [ud0+1,n, . . . ,ud,n] ,(3.26)336

V sn = [vd0+1,n, . . . ,vd,n] ,(3.27)337

Lbsn =
[
lbd0+1(n), . . . , lbd(n)

]
.(3.28)338

339

Note that (3.17) implies that340

lim
n→∞

‖Usn − Lbsn ‖ = 0.(3.29)341

342

Consider (3.10), namely, ∆n = Mn∆0VnSnU
T
n , for the analysis error covariance343

∆n at time n in terms of the matrix Mn and the singular-value decomposition of the344

propagator B0:n. Noting that BT0:nuj,n = σj(B0:n)vj,n and utilizing the relation (3.18)345

we get346

∆nU
s
n (Usn)

T
= Mn∆0V

s
n

(
Λs
Efn(0)

)n
(Usn)

T
.(3.30)347

348

Likewise, recalling that Σn = An∆n−1A
T
n , we can express the restriction of the fore-349

cast error covariances as350

ΣnU
s
n (Usn)

T
= AnMn−1∆0V

s
n

(
Λs
Efn(0)

)n
(Usn)

T
.(3.31)351

352

Making use of the above relations we now prove one of our main results, which353

states that the norm of the restriction of the analysis and forecast error covariances354

onto the backward stable Lyapunov subspaces must tend to zero.355
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Theorem 3.7. Consider the uniformly completely observable, perfect-model, lin-356

ear, nonautonomous system (3.2) where the initial state x0 has a Gaussian law with357

covariance ∆0. The restriction of ∆n and Σn into the span of the backward stable358

Lyapunov vectors, {lbj(n)}dj=d0+1, tends to zero as n→∞. That is,359

lim
n→∞

‖∆nL
bs
n

(
Lbsn
)T ‖ = 0,(3.32)360

lim
n→∞

‖ΣnLbsn
(
Lbsn
)T ‖ = 0.(3.33)361

362

Proof. By definition log(λj(E
f (0))) = µj , so that the eigen-values λj(E

f (0)) < 1363

correspond to the stable Lyapunov exponents. Recalling that λd0+1(Efn(0)) ≥ · · · ≥364

λd(E
f
n(0)) we find ‖Λs

Efn(0)
‖ = λd0+1(Efn(0)) and365

(3.34) lim
n→∞

∥∥∥Λs
Efn(0)

∥∥∥ = λd0+1(Ef (0)) < 1.366

Consequent to (3.34) we can choose a small 0 < ρ < 1 and sufficiently large n1 such367

that when n ≥ n1, ‖Λs
Efn(0)

‖ ≤ 1− ρ.368

The restriction of ∆n into the span of the columns of Usn is given by (3.30). Note369

the column vectors of V sn and Usn are orthogonal and of unit norm, hence ‖V sn ‖ =370

‖Usn‖ = 1. We then find for n ≥ n1371

(3.35) ‖∆nU
s
n (Usn)

T ‖ ≤
∥∥∥Λs

Efn(0)

∥∥∥n ‖Mn‖‖∆0‖ ≤ (1− ρ)ncM‖∆0‖.372

Consider373

‖∆nL
bs
n

(
Lbsn
)T ‖ ≤ ‖∆n‖‖Lbsn

(
Lbsn
)T − Usn (Usn)

T ‖+ ‖∆nU
s
n (Usn)

T ‖,(3.36)374
375

and Lemma 3.2 states ‖∆n‖ is bounded. Therefore,376

lim
n→∞

‖∆nL
bs
n

(
Lbsn
)T ‖ = 0(3.37)377

378

by (3.17) and (3.35). This may be similarly stated for the forecast error covariance.379

The forecast and analysis error covariance matrices for a generic nonautonomous380

system in general do not converge, but the above results entail that asymptotically the381

only relevant directions for the error covariance matrices are the backward unstable-382

neutral Lyapunov directions validating the central hypothesis made by Trevisan and383

Palatella [22] in their proposed reduced rank Kalman filtering algorithms.384

An intriguing consequence from (3.25) in Theorem 3.5 is the following corollary.385

Corollary 3.8. Suppose that for some ε0 > 0, N0 > 0, and for every 0 < ε < ε0,386

n > N0,387

dim (Eε(∆n)) = d− d0,(3.38)388
389

i.e., asymptotically the rank deficiency of the analysis error covariance ∆n is exactly of390

dimension d−d0. Then the transformation M−Tn ∆−1
0 asymptotically maps the forward391

stable vectors {lfj (0)}dj=d0+1 into the span of the backward stable vectors {lbj(n)}dj=d0+1392

as n→∞.393
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Fig. 2. Norm of the projection coefficients
‖∆nuj,n‖ for varying observation time n.
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3.6. Numerical results for a 30-dimensional system. Below we provide394

an illustration for this asymptotic rank deficiency property of the error covariance395

matrices. The state space vector xn and the observation vector yn have dimension396

d = 30 and q = 10, respectively. This choice is arbitrary and our simulations with397

different d and q have shown qualitatively equivalent results.398

The time-varying, invertible propagators An ∈ R30×30, the observation error co-399

variance matrices Qn ∈ R10×10, and the observation matrices Hn ∈ R10×30 were all400

randomly generated for sufficiently large n. We employed the QR method [10] to401

numerically compute the Lyapunov vectors and the Lyapunov exponents and it was402

found that the number of nonnegative Lyapunov exponents was d0 = 14. Starting403

from a random positive-definite ∆0, the sequence (Σn,∆n) was generated based on404

the Kalman update equations (3.3)–(3.5). For every n we computed the eigen-values405

of ∆n sorted in descending order.406

Figure 1 shows the eigen-values of ∆n as a function of n. Barring the dominant 14407

eigen-values, the rest converge to zero, serving as a visual testament to Theorem 3.5.408

Furthermore, we also calculated the norm ‖∆nuj,n‖, j ∈ {1, 2, . . . , d},∀n and plot409

them in Figure 2. These norm values are unsorted, meaning that the topmost line in410

Figure 2 represents the values ‖∆nu1,n‖ and the bottommost line denotes ‖∆nud,n‖411

for different values of n. For j > d0 = 14, ‖∆nuj,n‖ approaches zero, suggesting that412

as n → ∞, the row space of ∆n (and also Σn) coincides the space spanned by the413

unstable-neutral, backward Lyapunov vectors, i.e., the bounds in inequalities (3.22)414

are saturated.415

4. Autonomous linear dynamical systems.421

4.1. Null space characterization for autonomous systems. The noiseless,422

linear autonomous system can be defined from (3.2), with the additional assumptions423

that An ≡ A, Hn ≡ H, Qn ≡ Q are fixed matrices ∀n—therefore the results about424

the asymptotic rank deficiency property of the error covariance matrices in section 3425

also apply to autonomous systems. However, a stronger statement can be made for426

time invariant systems because the backward Lyapunov vectors will not vary in time.427

In fact, the result in this section is valid even for the case when only the dynamical428

system is autonomous (An ≡ A) but the observation process is time dependent (Hn429

and Qn depend on n).430

Akin to the nonautonomous case we define431

(4.1) Ebn ≡ [An(An)∗]
1
2n , Efn ≡ [(An)∗An]

1
2n

432
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and the similarity with (3.12) can readily be seen by setting Bm:m+n = An ∀m in433

(3.9) (hence the omission of the time index m). As before, the existence of the limits434

(4.2) Eb ≡ lim
n→∞

Ebn , Ef ≡ lim
n→∞

Efn435

is guaranteed by the Oseledets theorem [10]. The eigen-vectors of Eb and Ef are called436

the backward and forward Lyapunov vectors, represented here as the column vectors437

of Lb and Lf ordered left to right from the most unstable direction—corresponding to438

the largest Lyapunov exponent—to the most stable direction—corresponding to the439

smallest Lyapunov exponent. Specifically, the Lyapunov vectors are defined globally440

and have no dependence on the time in the linear, autonomous case. Without the time441

dependence on the backward stable Lyapunov vectors, we obtain a stronger statement442

about the asymptotic null space of the covariance matrices.443

Definition 4.1. Let Lbs ≡ Lbsn =
[
lbd0+1, . . . , l

b
d

]
. Note that Theorem B.3 proved444

in Appendix B states that the span of the columns of Lbs is equal to E1(AT ).445

Corollary 4.2. Consider the uniformly completely observable, perfect-model,446

linear, autonomous system defined from (3.2) where An ≡ A, but Hn and Qn may447

depend on n and the initial state x0 has a Gaussian law with covariance ∆0. Then448

the restriction of the analysis and forecast error covariances onto E1(AT ) tend to zero449

as n→∞. That is,450

lim
n→∞

‖∆nL
bs
(
Lbs
)T ‖ = 0,(4.3)451

lim
n→∞

‖ΣnLbs
(
Lbs
)T ‖ = 0.(4.4)452

453

Proof. Combining Theorem 3.7 with Theorem B.3 this is a straightforward454

consequence.455

In our numerical simulations with arbitrary (and completely observable) choices456

of A, H, and Q we have additionally observed convergence of ∆n and Σn to a fixed457

∆ and Σ, respectively, and seen their null spaces contain E1
(
AT
)

as stated by Corol-458

lary 4.2 (refer to section 4.2). Considering the recent work of Ni and Zhang [14], this459

strongly suggests that the classical result of the stable Riccati equation for completely460

observable and controllable, discrete autonomous systems [9] has an analogue in the461

case of completely observable, perfect-model systems.462

4.2. Numerical results for linear autonomous system. We choose a non-463

singular matrix A ∈ R30×30 (d = 30) consisting of random entries and set d0 = 12 of464

its eigen-values to be greater than or equal to one in absolute magnitude. We ran the465

Kalman filtering system long enough and observed that the analysis error covariances466

do converge to a fixed ∆ and then projected ∆ onto the generalized eigen-space of AT .467

Figure 3 plots the absolute magnitude of eigen-values of A sorted in descending order468

(| λ1(A) |≥ · · · ≥| λd(A) |) in blue and shows the Lyapunov exponents for this system469

in red, where we note that the number of nonnegative Lyapunov exponents is exactly470

12 tantamount to the number of eigen-values of A greater than or equal to one in471

magnitude. Additionally, it can be verified that the Lyapunov exponents are just the472

logarithm (to the base e) of the absolute magnitude eigen-values of A. Recalling the473

definition of the Lyapunov exponents from (3.15), this equality also lends credence474

to our Theorem A.3. The plot in Figure 4 displays ‖∆
(
vj
(
AT
))
‖; j ∈ {1, 2, . . . , d},475

where vj
(
AT
)

is the generalized eigen-vector of λj(A). Observe that when j > 12,476

the norm of the projected coefficients is zero, rendering a visual confirmation to477

Corollary 4.2.478
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482

5. Discussion. We have shown that under sequential Kalman filtering, the error483

covariance for a linear, perfect-model, conditionally Gaussian system asymptotically484

collapses to the subspaces spanned by the backward unstable Lyapunov vectors. This485

has been known to practitioners in the forecasting community [1] but had yet to be486

stated in precise mathematical terms. In particular, this foundational work validates487

the underlying assumptions and methodology of AUS.488

At the same time, these results open many new questions for ongoing research489

related to AUS algorithms. For instance, the present results do not formally show490

the equivalence of a fully reduced-rank algorithm such as EKF-AUS applied in such a491

setting. The conditions that imply the convergence of the covariance matrices, given492

arbitrary low rank symmetric matrices chosen as initial conditions have yet to be493

established. Recent work strongly suggests that filter stability for discrete, perfect-494

model systems can be demonstrated under sufficient observability hypotheses alone495

[14]. Determining the necessary hypotheses for stability of the discrete with low rank496

initializations of the prior covariance matrix in perfect-model systems will be the497

subject of the sequel to our work.498

Additionally there are conceptual issues to be resolved in bridging the results499

for linear systems to nonlinear settings, the former having the advantage of Lyapunov500

vectors being defined globally in space, whereas the formulation must change in a non-501

linear setting, respecting the dependence on the underlying path. Both of these direc-502

tions of inquiry open rich areas for mathematical research and future algorithm design.503

While the ultimate goal of DA is a precise estimate of state for chaotic dynam-504

ics, it is critical to understand the uncertainty of the prediction. An exact calcula-505

tion of the posterior distribution of states for a high dimensional, complex system is506

computationally intractable; as computational resources increase, so will model com-507

plexity and thus computational efficiency alone will not resolve this issue. This work508

provides an idealized but general framework for future investigations into low dimen-509

sional approximations for uncertainty calculation. We hope that a precise mathemati-510

cal framework for understanding the nature of uncertainty for linear systems will lead511

to innovative research to surmount these challenges.512

Appendix A. Eigen-values, singular values, and Lyapunov exponents513

of linear autonomous systems. The results established in this appendix and514

Appendix B should be treated as an independent body of work elucidating the rela-515

tionship between various concepts in linear, autonomous systems and not restricted516

to the domain of DA and filtering theory. While these relationships are known and517

can be retrieved from multiple sources in the literature, we have explicitly proved518

them here for completeness. Readers familiar with these mathematical connections519

may choose to skip through these sections without any loss of continuity.520
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Based on the definition of the matrix Efn in (4.1) we find λj(E
f
n) = [σj(A

n)]
1
n .521

As Efn → Ef we also have522

(A.1) lim
n→∞

λj(E
f
n) = lim

n→∞
[σj(A

n)]
1
n = λj(E

f ) j ∈ {1, 2, . . . , d},523

where the eigen-values λj and singular values σj are ordered descending in norm.524

Dropping the label for brevity let J = V −1
A AVA (instead of J(A)) be the Jordan525

canonical form of A. It is straightforward to see that An = VAJ
nV −1

A for any integer526

n. The following inequality stated in Theorem 9 of [12] is quite useful. For any two527

square matrices Z1 and Z2 we have528

(A.2) σj(Z1)σd(Z2) ≤ σj(Z1Z2) ≤ σj(Z1)σ1(Z2).529

Since the singular values of both the matrix and its transpose are the same, it follows530

that531

(A.3) σd(Z1)σj(Z2) ≤ σj(Z1Z2) ≤ σ1(Z1)σj(Z2).532

533

Lemma A.1. For any square matrix Z = VZJ(Z)V −1
Z534

lim
n→∞

[σj(Z
n)]

1
n = lim

n→∞
[σj(J(Z)n)]

1
n .535

Proof. Inequalities (A.2) and (A.3) lead to536

σd (VZ)σd
(
V −1
Z

)
σj(J(Z)n) ≤ σj(Zn) ≤ σ1 (VZ)σ1

(
V −1
Z

)
σj(J(Z)n).537

Raising each term to the power 1/n and letting n→∞ proves the result.538

Corollary A.2. For any matrix A let Ef be defined as in (4.2) and J be the539

Jordan canonical form of A. Then λj(E
f ) = limn→∞ [σj(J

n)]
1
n , j ∈ {1, 2, . . . , d}.540

Proof. The results follow immediately when we employ Lemma A.1 setting Z = A541

in conjunction with (A.1).542

The theorem below establishes the relation between the eigen-values of the time543

invariant propagator A and the limit matrix Ef .544

Theorem A.3. For any matrix A let the matrix Ef be defined as in (4.2). Then545

the eigen-values of Ef equal the absolute magnitude eigen-values of A, i.e., λj(E
f ) =546

|λj(A)| , j ∈ {1, 2, . . . , d}.547

Proof. We consider two different cases.548

Case 1: A is diagonalizable. When J is diagonal then σj(J) = |λj(J)| = |λj(A)|.549

Recalling that λj(J
n) = [λj(J)]

n ∀n, we get [σj(J
n)]

1
n = |λj(A)| and the result550

follows from Corollary A.2.551

Case 2: A is not diagonalizable. Let Jλ(A) denote the Jordan block of size k× k552

corresponding to an eigen-value λ of A of the form553

(A.4) Jλ(A) ≡


λ 1 0 · · · 0
0 λ 1 · · · 0
...

...
...

...
...

0 0 0 λ 1
0 0 0 0 λ

 .554

The following lemma is useful in proving Theorem A.3.555
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Lemma A.4. For any matrix A let Jλ(A) be a Jordan block corresponding to556

eigen-value λ of A as defined in (A.4). Then the singular values of Jλ(A) respect the557

following equality, namely,558

(A.5) lim
n→∞

[σj (Jnλ )]
1
n = |λ|, j ∈ {1, 2, . . . , k},559

i.e., the limiting singular-values are the absolute magnitude of their respective eigen-560

values.561

Proof. Following the standard proof technique for equality results we individually562

show that563

(A.6) lim
n→∞

[σj (Jnλ )]
1
n ≤ |λ|, j ∈ {1, 2, . . . , k},564

and565

(A.7) lim
n→∞

[σj (Jnλ )]
1
n ≥ |λ|, j ∈ {1, 2, . . . , k}.566

Let the Nilponent matrix N ≡ Jλ − λI with Nk = 0. When n ≥ k − 1 we get567

Jnλ = (λI +N)
n

=
k−1∑
r=0

(
n
r

)
λn−rNr.568

Further, the highest singular-value σ1(Nr) = 1 for r ∈ {0, 1, . . . , k−1}. If λ = 0, then569

Jnλ = 0 when n ≥ k − 1 and the result is trivially true. Suppose λ 6= 0 define δ ≡ 1
λ .570

Using the identity that for any two matrices Z1 and Z2, σ1(Z1+Z2) ≤ σ1(Z1)+σ1(Z2)571

as stated in Theorem 6 of [12], we have572

(A.8) σ1 (Jnλ ) ≤ |λ|n
[
k−1∑
r=0

(
n

r

)
|δ|r
]
.573

Let |δ| = εξ for any 0 < ε ≤ |δ|. Then574

σ1 (Jnλ ) ≤ |λ|nξk
[
k−1∑
r=0

(
n

r

)
εr

]
575

≤ |λ|nξk
[

n∑
r=0

(
n

r

)
εr

]
= |λ|nξk(1 + ε)n.576

577

Raising to the power 1/n and taking the limit we get578

lim
n→∞

[σ1 (Jnλ )]
1
n ≤ |λ|(1 + ε).579

The above inequality is also true for the rest of the singular values as σ1(.) is the580

largest. Since ε is arbitrary the first inequality (A.6) follows. If λ = 0 we get the581

desired, stronger equality result in (A.5) as the singular values by definition are non-582

negative. It suffices to focus on the case λ 6= 0, where Jλ is invertible.583

To establish the reverse inequality (A.7), let Tλ be the Jordan canonical form of584

J−1
λ given by585

Tλ ≡


1
λ 1 0 · · · 0
0 1

λ 1 · · · 0
...

...
...

...
...

0 0 0 1
λ 1

0 0 0 0 1
λ

 .586
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Lemma A.1 entails that587

lim
n→∞

[
σj

((
J−1
λ

)n)] 1
n

= lim
n→∞

[σj(T
n
λ )]

1
n .588

Applying the inequality (A.6) on Tλ gives us589

lim
n→∞

[σj (Tnλ )]
1
n ≤ 1

|λ| , j ∈ {1, 2, . . . , k}.590

In particular,591

lim
n→∞

[
σ1

((
J−1
λ

)n)] 1
n

= lim
n→∞

1

[σk (Jnλ )]
1
n

≤ 1

|λ|
,592

where the equality stems from the fact that for any invertible matrix Z of size k × k593

σj
(
Z−1

)
=

1

σk−j+1 (Z)
.594

We then get595

(A.9) lim
n→∞

[σk(Jnλ )]
1
n ≥ |λ|.596

Since σk(.) is the smallest singular value the inequality (A.9) is also valid for the597

rest.598

Now to prove Theorem A.3 note that for any n599

Jn =


Jnλ1

0 · · · 0
0 Jnλ2

· · · 0
...

...
. . .

...
0 0 · · · Jnλl

600

is a block diagonal matrix and the eigen-(singular) values of Jn equal the disjoint601

union of eigen-(singular) values of individual Jordan blocks Jnλ1
, . . . , Jnλl . In accor-602

dance with Corollary A.2 and Lemma A.4 we find ∀j ∈ {1, 2, . . . , d},603

λj(E
f ) = lim

n→∞
[σj(J

n)]
1
n = |λj(J)| = |λj(A)| .604

605

Appendix B. Eigen-spaces and Lyapunov vectors of linear autonomous606

systems. By a suitable coordinate transformation, namely, zn = V −1
A xn, studying607

the dynamics xn+1 = Axn is tantamount to investigating zn+1 = Jzn, where J =608

V −1
A AVA is the Jordan canonical form of A. Indeed,609

zn+1 = Jzn = V −1
A AVAV

−1
A xn = V −1

A xn+1.610
611

Corresponding to the definitions of the matrices Efn and Ef in (4.1)–(4.2), let Gn ≡612

[(Jn)∗Jn]
1
2n and let G ≡ limn→∞Gn.613

We consider the two systems in the different d dimensional spaces RdA and CdJ ,614

where the underlying propagators are A and J , respectively. Note that as the matrix615

VA might be complex (though A is real) the dynamics for the propagator J is examined616

in a complex state space.617
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Lemma B.1. If the scalar product in CdJ is the canonical one, namely, 〈u,v〉J =618

u†v, then VG = Id, where Id is the d× d identity matrix.619

Proof. We find it convenient to handle the following scenarios separately.620

Case 1: A is diagonalizable. J is diagonal and so is Jn. In the canonical inner621

product setting the entries of the diagonal Gn are the absolute magnitude entries of622

J . It follows that G is diagonal and VG = VJ = Id.623

Case 2: A is not diagonalizable. As before, consider the Jordan block Jλ given in624

(A.4) of size k×k corresponding to the eigen-value λ. DefineGλ ≡ limn→∞ [(Jnλ )∗Jnλ ]
1
2n .625

Since Gλ is symmetric it is diagonalizable and by Theorem A.3 we have λj (Gλ) =626

|λ| ∀j ∈ {1, 2, . . . , k}. As all the eigen-values of Gλ are equal, it is a scalar matrix and627

therefore we can choose VGλ = Ik. Since628

G =


Gλ1

0 · · · 0
0 Gλ2 · · · 0
...

...
. . .

...
0 0 · · · Gλl

629

the result follows.630

Lemma B.2. Under the definition of the scalar products 〈u,v〉J = u†V †AVAv in631

CdJ and 〈u,v〉A = uTv in RdA, VG = V −1
A VEf .632

Proof. For the aforesaid considerations of the scalar products in CdJ and RdA,633

J∗ = (V †AVA)−1J†V †AVA and A∗ = AT , respectively. Recalling that J = V −1
A AVA we634

have635

(Jn)∗ =
(
V †AVA

)−1

V †A (An)
T (
V −1
A

)†
V †AVA = V −1

A (An)
T
VA636

⇒ Gn =
[
V −1
A (An)

T
VAV

−1
A AnVA

] 1
2n

=
[
V −1
A (An)

T
AnVA

] 1
2n

.637

638

As
(
Efn
)2n

= (An)
T
An is symmetric, it is diagonalizable by an orthonormal matrix639

VEfn and carries a representation
(
Efn
)2n

= VEfn(ΛEfn)2nV T
Efn

. We find ΛGn = ΛEn and640

VGn = V −1
A VEn ∀n and the result follows by letting n→∞.641

Recall the real span Tw from Definition 2.1 bearing in mind the complex gen-642

eralized eigen-vectors of any matrix Z always occur in conjugate pairs {w,w} with643

Tw = Tw. We have the following theorem.644

Theorem B.3 (eigenspace equality). For any matrix A let the matrix Ef be645

defined as in (4.2). Then for any α ≥ 0 the corresponding α-eigenspaces of Ef and A646

are the same, i.e., Eα
(
Ef
)

= Eα(A). Equivalently, Eα
(
Eb
)

= Eα
(
AT
)
.647

Proof. By Theorem A.3 we have λj(G) = |λj(J)| = |λj(A)| = λj(E
f ). Recall648

that the eigen-values are ordered with λ1(G) and λd(G) being the largest and the649

smallest, respectively. The Oseledets theorem states that there exists a sequence of650

embedded subspaces651

0 ⊂ Fd ⊂ Fd−1 ⊂ · · · ⊂ F1 = CdJ652

such that on the complement Fj\Fj+1 of Fj+1 in Fj the growth rate is at most λj(G)653

[15]. The subspaces Fj can be obtained as the direct sum of the eigen-vectors vj(G)654

as655

Fj = vd(G)⊕ vd−1(G)⊕ · · · ⊕ vj(G),656
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where vj(G) is the eigen-vector of G corresponding to λj(G). Further, though the657

eigen-vectors of G depend on the underlying scalar product in CdJ , the embedded658

subspaces Fj and the eigen-values λj(G) are independent of it [10].659

Corresponding to the two inner product definitions in CdJ , specifically 〈u,v〉J =660

u†v and 〈u,v〉J = u†V †AVAv, we denote the respective eigen-vectors with the super-661

script symbols 1 and 2. By Lemma B.1 we have V 1
G = Id = V −1

A VA and Lemma B.2662

declares that V 2
G = V −1

A VEf , where VEf is computed using the canonical inner product663

in RdA. For the given α let q = argminj λj(G) ≤ α. The invariance of the embedded664

subspace Fq to the underlying scalar product signifies that the real span of the vectors665

{VAv1
d(G), . . . , VAv1

q(G)} equals the real span of the vectors {VAv2
d(G), . . . , VAv2

q(G)}.666

As ∀j ∈ {1, 2, . . . , d}, VAv1
j (G) = vj(A) and VAv2

j (G) = vj(E
f ), the result follows.667
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