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Abstract—Automated classification of Schistosoma mansoni 

granulomatous microscopic images of mice liver using Artificial 

Intelligence (AI) technologies is a key issue for accurate diagnosis 

and treatment. In this paper, three grey difference statistics-based 

features, namely three Gray-Level Co-occurrence Matrix 

(GLCM) based features and fifteen Gray Gradient Co-occurrence 

Matrix (GGCM) features were calculated by correlative analysis. 

Ten features were selected for three-level cellular granuloma 

classification using a Scaled Conjugate Gradient Back-

Propagation Neural Network (SCG-BPNN) in the same 

performance. A cross-entropy is then calculated to evaluate the 

proposed Sigmoid input and the ten-hidden layer network. The 

results depicted that SCG-BPNN with texture features performs 

high recognition rate compared to using morphological features, 

such as shape, size, contour, thickness and other geometry-based 

features for the classification. The proposed method also has a 

high accuracy rate of 87.2% compared to the Back-Propagation 

Neural Network (BPNN), Back-Propagation Hopfield Neural 

Network (BPHNN) and Convolutional Neural Network (CNN). 

 

Keywords: back-propagation neural network; gray gradient co-

occurrence matrix; gray level co-occurrence matrix; microscopic 

image classification; scaled conjugate gradient 

 

I. INTRODUCTION 

Schistosoma mansoni granulomatous is a parasite egg 

deposited in a host leading to fibrosis diseases due to the 

mansoni infection. Granulomatous diseases of the liver span a 

huge range of infectious, drug-related, and immunologic 

disorders, which have different granulomas types and fibrosis 

stages [1]. Recently, researchers have conducted several 

experimental analyses on cellular granuloma of mice liver using 

high-resolution microscopes, such as cell phase-contrast 

microscopy and probe-based confocal laser endomicroscopy 

[2] [3]. Accordingly, image processing has a significant role to 

separate surrounding tissues based on shape, color and texture 

analysis to distinguish between normal and abnormal liver 

cases using the captured microscopic images for further 

diagnosis [4]. For automated computer-aided diagnosis 

systems, medical image processing, including image 

 

 
 

preprocessing, feature extraction and classification have all 

been developed. 

For mice liver cellular granulomatous detection and 

classification, feature extraction has a significant role to 

measure and digitalize the inherent nature of the fibrosis regions 

and their attributes as well as to decompose and symbolize these 

regions to form the feature vector for further classification. 

Most researchers have focused on morphological feature based 

automatic recognition of microscopic images [5], while 

morphological feature calculations take more of a geometrical 

analysis on the microscopic images. On the contrary, texture 

analysis is an important research content for image 

understanding, analysis, recognition, and description of the 

difference of the structure, direction, granularity and regularity 

of the different regions of the microscopic image [6-7]. 

Moreover, texture contains not only the surface 

properties/characteristics but also some extent that reflects the 

relationship between them and the environment. Therefore, the 

texture features in gray statistical information can reflect the 

distribution structure and spatial information [8]. For diagnosis 

and treatment, the feature extraction process is followed by the 

classification process, where image quantitative analysis is used 

to calculate the texture of the Region of Interest (ROI) and 

morphological features, and form a feature vector space for the 

purposes of classification. In microscopic image classification, 

an artificial neural network is extensively used for prediction 

and classification. The artificial neural network has high-speed 

information processing ability and large knowledge storage 

capacity, and typical algorithms include the Back-Propagation 

Neural Network (BPNN), Competitive Kohonen Neural 

Network (CKNN), Feed-forward Neural Network (FNN) and 

Hopfield Neural Network (HNN). Hence, artificial neural 

networks have a significant role in medical image analysis and 

classification. 

For microscopic liver image analysis and classification, 

Akram et al. [9] selected features based on texture and color 



properties for further classification of the abnormal liver images 

using the Support Vector Machine (SVM) to perform 

classification. The results depicted that the extracted texture-

based features with the SVM classifier achieved an accuracy of 

83% on a mice liver dataset. Furthermore, Amin and Mahmoud-

Ghoneim [10] applied statistical texture analysis approaches, 

namely run-length matrices and co-occurrence on microscopic 

images of rats’ samples followed by classification using linear 

discriminant analysis and agglomerative hierarchical 

clustering. The classification results proved that texture 

analysis was successful to discriminate between the control and 

fibrosis groups with 100% sensitivity and specificity. Meng et 

al. [11] implemented texture features based histology image 

supervised classification and multimodal fusion. Xie et al. [12] 

used tumor color, texture and border features for melanoma 

classification; Kosmas Dimitropoulos et al. [13] used adaptive 

neuro-fuzzy inference systems for automatic detection of 

centroblasts (CBs) in microscopic images. 

Texture features calculation to find the defects of parameters, 

such as texture features that are specific to a pathological region 

has been shown to be difficult and time-consuming using 

BPNN based classification [14]. Therefore, it becomes 

necessary to develop techniques, such as conjugate gradient, to 

overcome this shortcoming. The conjugate gradient method is 

a special conjugate direction method, also related to the 

gradient, which utilizes the gradient information of an objective 

function (the product of the gradient and the direction satisfies 

the “descent” condition). The conjugate gradient method differs 

from that in the negative gradient direction of the current point 

and is conjugate with the search direction in front to obtain a 

new search direction [15~16]. Chen et al. [17] proposed a 

regularized deep feature extraction method using a 

Convolutional Neural Network (CNN) for hyperspectral image 

classification. Geng et al. [18] introduced deep supervised and 

contractive neural network using a Gray Level-Gradient Co-

occurrence Matrix (GLGCM). Furthermore, Chen et al. [19] 

used BPNN for recognition on oceanic internal waves based on 

Gray Gradient Co-occurrence Matrix (GGCM). Yu used an 

improved LBP algorithm for texture and face classification 

[20]. 

In this paper, the gray level co-occurrence matrix (GLCM) is 

improved according to a weighting coefficient. The redundant 

features are removed through the analysis of the correlation of 

texture features of the microscopic image of Schistosoma 

mansoni based cellular granulomatous of mice liver. The gray-

difference based features, GLCM based features, combined 

with GGCM for cellular granuloma microscopic image of mice 

liver feature calculations is thus proposed in this paper. 

Furthermore, a scaled conjugate gradient BPNN (SCG-BPNN) 

for classification is deployed. The organization of the remaining 

sections is as follows. Section 2 presents the methods for image 

classification and the experimental process. Section 3 addresses 

the results and comparative analysis. Section 4 involves the 

conclusions of the present study.  

 
II. METHODOLOGY 

A. Texture-based Features Extraction 

Statistical computation is carried out in regions containing 

multiple pixels and often has strong resistance to noise. In this 

work, 21 texture-based features were calculated, including grey 

difference statistics-based features (mean, contract, and 

entropy), GLCM (energy, correlation, and inertia moment) and 

GGCM based features (T1-T15). By correlative analysis, 10 

features are then selected as a vector input for the Scaled 

Conjugate Gradient Back-Propagation Neural Network (SCG-

BPNN) [21]. 

Assume ( ),x y  is a pixel’s coordinates in a microscopic 

fibrosis image, where  1,2, ,x m , and  1,2, ,y n , 

which contains L  gray levels. Accordingly, ( ),x x y y+  +   

is the
 
nearby pixel, where 0x  , and 0y   as ( ),f x y  is 

the intensity value of this pixel. So, the gray value can be 

calculated by: 

( )( ) ( )( ) ( )( ), , ,g f x y g f x y g f x x y y = − +  +                                                   

(1) 

where g  is the gray difference. Thus, for m  levels, by 

counting g  in each m , the probability ( )p i  on each g  can 

be obtained, where ( )1, ,i m= . 

(1) Gray Difference-based Features 

Hence, the features of mean, contract, and entropy are given 

from [22]: 

( )
1

1 m

i

mean ip i
m =

=     (2) 

( )2

0

m

i

contract i p i
=

=                                   (3) 

( ) ( )( )2

0

log
m

i

entropy p i p i
=

= −             (4) 

(2) Gray-level Co-occurrence Matrix-based Features 

The GLCM is a common method to describe the texture by 

examining the spatial correlation characteristics of the gray 

level. It is based on the statistical analysis of two pixels with a 

given distance. Intuitively speaking, if the image is constituted 

with similar blocks of pixels’ gray value, the GLCM is diagonal 

elements with relatively large value; if the pixel gray value 

change in the local area, then the off-diagonal elements will 

have relatively large values. The energy, correlation and inertia 

moment can be calculated as [6, 22, 23]: 
1 1
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0 0

m m

xy
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energy P
− −

= =

=                              (5) 

( )( )
1 1

0 0

1 m m

X Y xy

x yX Y

correlation x y P 
 

− −

= =

= − −            (6) 

1 1
2

0 0

L L

ij

i j

im i j P
− −

= =

= −         (7) 

where 
xyP  is the probability of point ( ),x y  in the 1, ,i m=  

gray level, 
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which are the variances and the standard deviations at both the 

x  and y pixel location.  

For rough texture, 
ijP  are close to main diagonal, so that im  

is smaller, while for fine texture, im  is larger. 

(3) Gray Gradient Co-occurrence Matrix 

The GGCM includes the extracted texture features by using 

gray and gradient synthetic information, which is similar in 

process to the GLCM. The Sobel operator may be applied to 

( ),f x y  and let ( ),g x y  refer to gray that have the digitized 

form ( ),G x y , thus the new gray gL is used to calculate the new 

gray image ( ),G x y  as: 

( )
( ) ( )( )

( )( ) ( )
( )

, min ,
, 1

max , min ( , )
g

g x y g x y
G x y L

g x y g x y

−
= −

−
         (8) 

The gray gradient co-occurrence matrix 
ijH  is defined as 

number of ( ) ( ) ( ) , | , 0, ,x y f x y G x y j= = , which has 

the normalized form of: 

1 1

0 0

ij

ij L L

ij

i j

H
H

H
− −

= =

=


                                            (9) 

According to ijH , 15 features are defined and extracted as 

reported in TABLE I [19]. The features mentioned above were 

then normalized and organized as an input vector for 

classification using SCG-BPNN, while the target used fewer 

features under the same performance by SCG-BPNN. 

 

B. Scaled Conjugate Gradient Back-propagation Neural 

Network 

The BPNN is a multilayer network with the Widrow-Hoff 

learning algorithm and nonlinear differentiable transfer 

function. A typical Back-Propagation (BP) network uses a 

gradient descent algorithm, defined by the Widrow-Hoff 

algorithm. It is a method for computing the gradient of a 

nonlinear multilayer network [24]. The input of the Jth output 

layer unit is: 

1

net
P

J y J

J

c W b
=

=                  (10) 

where the actual output is given by: 

( )J JC f netc=                                           (11) 

The weighted input of the hidden layer unit I  is given by: 

1

n

I y

k

netb v a
=

=                                               (12) 

Thus, the actual output of the unit I is: 

( )I Ib f netb=                                              (13) 

where f  is a differential decreasing function, given by: 

( )
1

1 x
f x

e−
=

+
                  (14) 

The algorithm of these steps is described in Algorithm 1. 

 

 

Algorithm 1: Proposed BPNN 

Step 1: Initialize the network and learning 

parameters, such as setting the initial weights of the 

network, and learning factors 

 Step 2: Provide training mode, and training 

network to meet the learning requirements. 

 Step 3: Process the forward propagation as 

follows:  

   (1) the input mode for a given training mode 

    (2) the output of the network model 
    (3) compared with the desired model 

    (4) If the error occurs, then go to Step 4; 

otherwise, return to Step 2. 

 Step 4: Process the backward propagation steps:  

    (1) calculates the error of the same cell;  

    (2) corrects the weights and thresholds;  

    (3) returns to Step 2 

To guarantee fast/accurate convergence of the neural 

networks, the Scaled Conjugate Gradient (SCG) algorithm was 

applied. The conjugate gradient method uses the first derivative 

information, but overcomes the disadvantage of slow 

convergence of the steepest descent method. Additionally, it 

avoids the need to store and compute the Hesse matrix and the 

shortcomings of the inverse of the Newton method. It only 

requires a small storage capacity and provides fast convergence 

and high stability without any external parameters. However, 

the SCG uses second order information from the NN but 

requires only ( )O N  memory usage, where N  is the number 

of weights in the network. 

The performance of SCG was benchmarked against the 

performance of the standard BP, the Conjugate Gradient Back-

propagation (CGB) algorithm and the one-step Broyden-

Fletcher-Goldfarb-Shanno memoryless quasi-Newton 

algorithm (BFGS) [15]. The SCG process is described in 

Algorithm 2. The used pseudo-code is given in Algorithm 3. 

 

Algorithm 2: Scaled conjugate gradient (SCG) 

algorithm 

Step 1: Given an initial iterates (0)X  and precision of 

iterative coefficient h  

Step 2: Let negative gradient of (0)X  be the search 

direction: 
(0) (0)( )S f X= −  

Step 3: One dimensional search via ( )kS  as 
( 1) ( ) ( ) ( )k k k kX X S+ = +  

Step 4: Check convergence:  

 If
( 1)|| ( ) ||kf X h+   then 

  
* ( 1)kX X +=  ; * ( 1)( ) ( )kf X f X +=  

  Output optimization solution; go to End. 

  Else go to Step 5 

Step 5: If k n=  then let 
(0) ( 1)kX X += , go to Step 2 

      Else go to Step 6 

Step 6: Construct new gradient direction 



  
2

2

|| ( ( 1)) ||

|| ( ( )) ||

f x k

f X k


 +
=


 

  ( 1) ( ) ( ) ( )( )k k k kS f X S+ = − +  

  1k k= +  go to Step 3 

 

Algorithm 3: GGCM H- matrix Calculation 

INPUT: image file, grey 

OUTPUT: H basic-normalized scale matrix 

INimread('D1_03.png'); % image input 

Imshow (IN) 

gray256; 

[R, C]size (IN) 

% Calculating gradients matrix using square sum  

GMzeros (R-1, C-1) 
FOR i (1 to R-1) 

  FOR j (1 to C-1) 

    n_GM(IN (i, j+1)-IN(i,j))^2+(IN(i+1,j)-

IN(i,j))^2 

    GM(i,j)sqrt(double(n_GM)) 

  ENDFOR 

ENDFOR 

// Minimum and maximum 

n_minmin (GM (:)); 

n_maxmax (GM (:)); 

// Discrete the gray level of the gradient image 
// Set new gray as new_gray 

new_gray32; 

// Let new gradient matrix be new_GM 

new_GMzeros (R-1, C-1); 

new_GMuint8((GM-n_min)/(n_max-n_min) * 

(new_gray-1)) 

// Gray gradient co-occurrence matrix calculation 

//The gradient matrix is 1 less than the gray scale matrix 

and ignores the most outlying of the gray scale matrix 

Hzeros (gray, new_gray) 

FOR i (1 to R-1) 
  FOR j (1 to C-1) 

    H(IN(i,j)+1,new_GM(i,j)+1) H(IN(i,j)+1,       

new_GM(i,j)+1)+1 

  ENDFOR 

ENDFOR 

// Let normalized gray gradient matrix be H_basic 

Totali*j 

H_basicH/total 

 

III. RESULTS AND DISCUSSION 

In the current study, microscopic images of magnification 

3400 were acquired and examined in the Medical Parasitology 

Department, Faculty of Medicine, Tanta University, Egypt. 

These acquired liver samples from normal and Schistosomiasis 

mansoin infected mice are illustrated in Fig. 1. Some 
representative images of histopathological samples are obtained 

from the control liver group; fibrosis and granuloma are 

illustrated in Fig. 1(a)–(c). Fig. 1(a) demonstrated that the 

histological analysis of healthy liver shows a normal liver 

lobular architecture, while the liver fibrosis in Fig. 1(b) has 

disruption of the tissue architecture, the extension of fibers, and 

fibers accumulation. In addition, the liver granuloma in Fig. 

1(c) shows multinucleated giant cells and lymphocytes or a 

conglomeration of smaller granulomas. Images were encoded 

at 24-bits per pixel on red, green, and blue channels.  

 

The colored images were processed using Matlab (version 

2017a) to create grey level images of size 256*3*256 and to 

compute the gradient vectors matrices. To increase the dataset 

size, each healthy liver image was divided into two sub-images 

of 256*3*128 size. Thus, 20 images of each class were used in 

this study. The training phase used 30 images (10 of each class) 

and the test phase used the rest of 30 images. 

 

A. Features Calculation 

Mean (M), Contract (Co), Entropy (E), Energy (En), 

Correlation (C), and Inertia Moment (IM) of 30 images were 

calculated and shown in Table 1. The four directions of 0, 45, 

90, and 135 on En, C, and IM were calculated and the mean of 

these four directions was adopted for the next step. The GGCM 

features in Tables 2-4 list the 1st, 2nd, and 3rd level-fibro 

cellular granuloma. 

 

B. Training process 

A ten-hidden layer NN design with three grey difference 

statistics-based feature (M, Co, E), three gray-level co-

occurrence matrix-based features (En, C, IM), and gray gradient 

co-occurrence matrix-based features (T1-T15) was constructed. 

There were 21 features of images, 3200 data applied. Thus, the 
input matrix is 21*3200, and the target matrix is 3*3200, in 

which 1st level-fibro cellular granuloma is [1,0,0]T
, 2nd level-

fibro cellular granuloma is [0,1,0]T
, and the 3rd level-fibro 

cellular granuloma is [0,0,1]T
. The cross-entropy was 

performed with the proposed SCG-BPNN training process as 

shown in Fig. 2. Setting 70% of data for training (2240 

records), was presented to the network during training, and the 

network was adjusted according to its error; 15%  for 

validation (480 records), which is used to measure network 

generalization, and to halt training when generalization stops 

improving; and 15% for testing (480 records), which is to 

provide an independent measure of network performance 

during and after training as shown in Fig. 3 [25].  

 

Fig. 1.  Samples from the three levels of cellular granuloma 

microscopic images of mice liver, where (a) first level-fibro 

cellular granuloma, (b) second level-fibro cellular granuloma, 

and (c) third level-fibro cellular granuloma. 
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Fig. 2.  10 hidden layers BPNN using SCG. 



 

Table 1 GLCM Features’ value of three classifications 

Images Mean(M) Contract (Co) Entropy (E) Energy (En) Correlation (C) 
Inertia Moment 

(IM) 

A1 0.5846 2.27E+04 5.9544 0.0205 0.8963 2.5124 

A2 0.549 2.01E+04 5.9662 0.0214 0.9061 3.5518 

A3 0.5728 2.18E+04 5.9897 0.0201 0.8857 2.8477 

A4 0.5474 2.00E+04 5.9863 0.0187 0.9063 3.2446 

A5 0.5516 2.01E+04 5.2921 0.0443 0.9440 0.8211 

A6 0.5508 2.01E+04 5.5094 0.0344 0.9400 1.9194 

A7 0.5935 2.33E+04 5.6296 0.0359 0.9148 1.3437 

A8 0.6669 2.92E+04 4.8391 0.0453 0.9684 0.5520 

A9 0.5909 2.30E+04 5.3227 0.0359 0.9404 1.2386 

A10 0.5029 1.68E+04 5.6044 0.0263 0.9174 2.7570 

B1 0.5737 2.18E+04 5.8114 0.0223 0.9184 2.4489 

B2 0.5116 1.73E+04 5.1946 0.0353 0.9442 1.1807 

B3 0.5505 2.01E+04 5.5709 0.0245 0.9296 1.9294 

B4 0.5551 2.04E+04 5.7232 0.0219 0.9124 2.4392 

B5 0.5675 2.13E+04 5.4361 0.0264 0.9358 1.6751 

B6 0.5775 2.20E+04 5.6042 0.0284 0.9194 1.7089 

B7 0.5741 2.18E+04 5.7882 0.0216 0.9148 2.2714 

B8 0.5574 2.06E+04 5.5938 0.0276 0.9242 2.3149 

B9 0.5567 2.06E+04 5.7916 0.0202 0.8831 3.3948 

B10 0.5366 1.91E+04 5.6746 0.0240 0.9223 2.6020 

C1 0.5103 1.76E+04 6.4062 0.0176 0.7574 5.5554 

C2 0.4928 1.64E+04 6.2778 0.0209 0.7753 4.9723 

C3 0.4978 1.69E+04 6.5513 0.0162 0.7270 6.2586 

C4 0.5263 1.87E+04 6.3818 0.0149 0.7163 5.3177 

C5 0.5113 1.78E+04 6.5959 0.0145 0.6927 7.2491 

C6 0.5217 1.83E+04 6.3612 0.0197 0.7039 5.3325 

C7 0.5216 1.82E+04 6.0952 0.0247 0.8114 3.8107 

C8 0.4977 1.69E+04 6.5391 0.0164 0.6755 6.9137 

C9 0.5084 1.75E+04 6.3609 0.0194 0.7469 5.0677 

C10 0.4994 1.70E+04 6.5444 0.0149 0.7167 5.1681 

Table 2. 1st level-fibro cellular granuloma 

T1 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 

T1 0.3019  0.3139  0.3024  0.3152  0.3294  0.3257  0.3141  0.3364  0.3248  0.3390  

T2 15.5918  15.3242  15.6748  14.6702  10.7114  12.3308  12.9371  9.2091  12.1174  13.3615  

T3 48666.9506  60813.9609  48886.0521  53214.4055  60096.4041  53995.5007  59367.6702  51247.4335  54294.4579  73663.4528  

T4 1912331.3988  2016587.3570  1950295.7037  1879498.2690  1302821.3737  1488417.5935  1433212.6591  1282583.9918  1419916.1481  1752166.1768  

T5 0.0011  0.0026  0.0011  0.0018  0.0009  0.0011  0.0009  0.0008  0.0009  0.0035  

T6 105.5963  114.8666  103.9456  109.8143  101.2361  98.2116  96.8497  115.6000  105.9825  117.0239  

T7 15.5918  15.3242  15.6748  14.6702  10.7114  12.3308  12.9371  9.2091  12.1174  13.3615  

T8 57.2349  69.7490  58.3750  68.3788  45.4182  59.3752  46.3586  52.3749  53.7958  71.3283  

T9 13.2476  13.4091  13.2915  13.2480  11.1861  12.2821  12.2932  10.1674  12.0661  12.9066  

T10 -111.5312  -206.1009  -123.9672  -104.1345  -9.1072  -3.0095  -44.2040  -50.1271  -10.8259  -155.0087  

T11 2.3345  2.3310  2.3326  2.3464  2.2555  2.3066  2.2602  2.3081  2.2974  2.3194  

T12 0.9691  0.9452  0.9604  0.9744  1.1261  1.0684  1.0835  1.1341  1.0891  1.0085  

T13 3.2876  3.2281  3.2747  3.2829  3.3727  3.3461  3.3356  3.4238  3.3682  3.2780  

T14 11775.2088  15365.6265  11623.9618  14111.8418  10364.4484  11057.7967  9429.9789  14065.2696  11871.8984  16310.2245  

T15 0.0083  0.0109  0.0095  0.0131  0.0029  0.0076  0.0052  0.0012  0.0037  0.0106  

Tables 3. 2nd level-fibro cellular granuloma 

T1 B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 

T1 0.3086  0.3142  0.3199  0.3102  0.3150  0.3131  0.3054  0.3293  0.3246  0.3314  

T2 14.2179  12.1362  13.1355  14.0665  12.8627  13.5024  14.2457  13.2809  14.1569  13.7770  

T3 47471.7426  52280.3008  51809.5428  48676.1086  52538.3466  52287.9610  47559.9637  59497.6592  57677.1244  64358.5400  

T4 1690970.5634  1355140.5665  1536245.5592  1649390.1181  1437381.0482  1523692.4917  1637523.8702  1646636.8041  1771055.6159  1780784.7645  

T5 0.0010  0.0009  0.0013  0.0011  0.0011  0.0009  0.0009  0.0021  0.0021  0.0028  

T6 105.2023  104.3330  114.8417  106.4662  105.0355  102.4853  105.1254  106.3970  116.4003  115.0945  

T7 14.2179  12.1362  13.1355  14.0665  12.8627  13.5024  14.2457  13.2809  14.1569  13.7770  

T8 62.1734  58.1669  61.5291  61.1262  58.5088  53.8183  59.3140  67.2009  65.6223  69.0537  

T9 12.9438  11.9675  12.5391  12.8662  12.2912  12.5619  12.8598  12.7302  13.0260  13.0237  

T10 -51.0151 -20.1204  -48.5817 -56.4202 -44.0639 -25.8506 -60.6437 -92.3635 -127.3191 -130.2682 

T11 2.3454  2.3147  2.3329  2.3392  2.3152  2.3102  2.3408  2.3217  2.3324  2.3277  



T12 1.0162  1.1017  1.0574  1.0280  1.0810  1.0604  1.0299  1.0316  1.0025  0.9988  

T13 3.3391  3.3880  3.3610  3.3432  3.3731  3.3571  3.3522  3.3137  3.2961  3.2809  

T14 12413.2483  11986.6066  14384.3877  12552.4968  12158.3096  11023.8733  12063.9336  13533.3587  15184.3276  15463.8116  

T15 0.0091  0.0050  0.0052  0.0086  0.0066  0.0059  0.0083  0.0109  0.0076  0.0093  

Table 4. 3rd level-fibro cellular granuloma 

T1 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 

T1 0.3111  0.3168  0.3101  0.2995  0.3037  0.3068  0.3066  0.3002  0.3022  0.2985  

T2 16.7161  16.1987  17.3973  17.1418  17.5933  16.8010  15.3368  17.5719  16.8337  17.4637  

T3 9173.0569  9215.6099  9269.3695  7711.2967  7637.8552  8235.4866  10043.9520  7975.3021  9375.5377  6902.9449  

T4 419324.6869  370394.6909  450648.6879  350891.7553  411413.7763  365925.4825  353987.2040  413205.5556  428587.4277  359326.2402  

T5 0.0021  0.0023  0.0025  0.0015  0.0021  0.0015  0.0014  0.0017  0.0015  0.0016  

T6 110.5868  110.2067  116.5026  94.5674  111.8048  94.4182  99.4258  100.8519  99.9060  119.8363  

T7 16.7161  16.1987  17.3973  17.1418  17.5933  16.8010  15.3368  17.5719  16.8337  17.4637  

T8 63.2031  63.5937  63.2421  53.1304  62.1079  54.4959  58.5130  58.1464  57.8339  52.7525  

T9 13.7180  13.6377  13.8599  13.6579  13.8366  13.6584  13.2450  13.7858  13.6211  13.7487  

T10 -191.5271  -208.2920  -233.2392  -156.7994  -196.6382  -139.1340  -101.1759  -177.5633  -133.8385  -178.7957  

T11 2.3314  2.3186  2.3295  2.3024  2.3376  2.2991  2.3055  2.3193  2.3176  2.3199  

T12 0.8608  0.8897  0.8072  0.8580  0.8022  0.8681  0.9699  0.8148  0.8761  0.8268  

T13 3.1541  3.1664  3.0936  3.1414  3.1029  3.1432  3.2454  3.1049  3.1672  3.1246  

T14 13377.5885  13484.2243  14479.9928  9317.7039  13317.9315  9459.0545  10872.5308  10861.7394  10698.9772  13809.5914  

T15 0.0090  0.0090  0.0077  0.0106  0.0085  0.0108  0.0098  0.0101  0.0100  0.0047  

 

Table 5. Predictive accuracy rate with different neural 

networks 

T1 CE MSE PAR 

BPNN [21] 0.62 0.077 0.855 

CNN [27] 0.71 0.068 0.788 

BPHNN [23] 0.61 0.066 0.685 

FUZZY NN [28] 0.65 0.082 0.752 

SCG-BPNN-10  0.67 0.066 0.872 

SCG-BPNN-21 0.75 0.071 0.821 

Table 6. Comparing to time consuming in large scale dataset 

(70% for training) 

Samples SCG-BPNN-10 SCG-BPNN-21 

1020 0.077 0.62 

2050 0.068 0.71 

3600 0.066 0.61 

5400 0.082 0.65 

7200 0.071 0.75 

1020 0.066 0.67 

By correlative analysis of the features’ calculations, 

especially for texture-based features, M, Co, E, C, IM and T2, 

T4, T6, T7, T15 were selected as a vector input for the SCG-

BPNN by correlative analysis, where the results are illustrated 

in Fig. 4. The results establish the superiority of the proposed 

features with the SCG-BPNN classifier. Additionally, the 

prediction result is very important for NN models. The learning 

process in fact is to adjust system parameters to make the results 

more and more accurate, which are the accuracy rate, is to 

accumulate the "loss" of each sample, and then calculate the 

average value [24-25]. 

A comparative study was performed with other related 

studies using the BPNN, CNN, BPHNN, and fuzzy NN with the 

proposed methods SGC-BPNN-10 and SGC-BPNN-21. All 

features are reported in Table 5 showing the Predictive 

Accuracy Rate (PAR), Cross Entropy (CE) and Mean Squared 

Error (MSE). The different algorithms listed in TABLE V were 

used for the same dataset from Section 3.2. It is obvious that the 

proposed method SCG-BPNN-10 has higher PAR with low 

MSE. Furthermore, the SCG-BNPP-21 took higher 

computation time compared to the SCG-BPNN-10 as 

demonstrated in Table 6.  

 



 

Fig. 3.  Performance by epochs, training state, error histogram 

and receiver operating characteristic with all features. 
 

 

 

Fig. 4.  Performance by epochs, training state, error histogram 

and receiver operating characteristic with ten features after 

correlative analysis. 

 

IV. CONCLUSIONS 

Pathologists primarily use microscopic methods to 

qualitatively analyze microscopic images of cancer cells by 

using visual methods. The use of empirical knowledge to 

diagnose people's health has a significant role in clinical 

pathology. However, such methods are subjective and consume 

significant time. Furthermore, the captured microscopic images 

may be blurred, noisy, have poor contrast, unclear boundary, 

and human visual fatigue caused by long-term reading. These 

drawbacks will affect the accuracy of diagnostic analysis and 

judgment. With the rapid development of computer technology 

and the maturity of image graphics processing technology, the 

requirements for detecting objectivity are getting higher and 

higher, and computer image processing and analysis technology 

plays an increasingly important role in clinical diagnosis and 

treatment. The traditional method is to explore the 

classification, cell counting and texture analysis of 

precancerous lesions, pathology image retrieval and 



management, visualization surgery and reconstruction of 

human body models. This paper diagnoses diseases by 

identifying and analyzing microscopic images of diseased cells 

and can accurately identify and classify microscopic images 

[26]. The results are as follows: 

(1)  Realizing the automatic classification of microscopic 

images of Schistosoma mansoni granuloma using AI 

technology, 

(2) Texture features such as CGCM and GGCM are 

calculated, and the SCG-BPNN based network training has 

been verified. 

(3) Through cross entropy evaluation, Sigmod input and ten 

hidden layer network, the training results show that our SCG-

BPNN-10 has a high recognition rate with texture features. 

Compared with BPNN, back-propagation BPHNN and CNN, 

the proposed method also has higher accuracy. 

In the future, insufficient training data, the design of neural 

network structures, and the definition of loss functions will all 

be considered. 
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