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a  b  s  t  r  a  c  t

A  comparative  study  between  simulated  residential  electricity  demand  data  and  metered  data  from  the
UK Household  Electricity  Survey  is  presented.  For  this  study,  a  high-resolution  probabilistic  model  was
used  to  test  whether  this  increasingly  widely  used  modelling  approach  provides  an  adequate  represen-
tation  of the  statistical  characteristics  the  most  comprehensive  dataset  of  metered  electricity  demand
available  in  the  UK. Both  the  empirical  and  simulated  electricity  consumption  data  have  been  analysed
on  an  aggregated  level,  paying  special  attention  to the  mean  daily  load  profiles,  the distribution  of  house-
holds  with  respect  to  the  total annual  demands,  and  the  distributions  of the  annual  demands  of  particular
appliances.  A  thorough  comparison  making  use  of  both  qualitative  and  quantitative  methods  was  made
lectricity demand load profiles between  simulated  datasets  and  it’s metered  counterparts.  Significant  discrepancies  were found  in  the
distribution  of  households  with  respect  to both  overall  electricity  consumption  and  consumption  of
individual  appliances.  Parametric  estimates  of the  distributions  of  metered  data  were  obtained,  and  the
analytic  expressions  for both  the density  function  and cumulative  distribution  are  given.  These  can  be
incorporated  into  new  and  existent  modelling  frameworks,  as  well  as  used  as tools  for  further  analysis.

©  2017  The  Authors.  Published  by  Elsevier  B.V.  This  is  an open  access  article  under  the  CC  BY  license
(http://creativecommons.org/licenses/by/4.0/).
. Introduction

It is a well-known fact that the residential sector is a major
ontributor to overall electricity consumption in most countries.
esidential electricity consumption in the UK accounts for over a
hird of the national total [5]. Moreover, it is also well known that
he domestic sector contributes significantly to peak demand, espe-
ially during winter. Over the last decade, however, the potential
f this sector to contribute towards reductions in energy consump-
ion and CO2 emissions has been increasingly recognised. This, in
urn, has sparked the interest in this research area.

In particular, there is an increasing interest in understanding
he consumption patterns of the residential sector, and how these

ight change in response to changes in climate and energy prices,
nd the implementation of new supply-demand balancing strate-

ies and other low-carbon measures.

To this end, several efforts have been made to model electricity
emand, seeking to quantify the energy requirements at different
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levels of analysis. Two  fundamentally different approaches divide
these modelling efforts: top-down and bottom-up. This terminol-
ogy refers to the hierarchical level of the data inputs. Top-down
models focus on describing the overall trends observed in historical
records, with little or no interest in individual end-uses. In contrast,
bottom-up models focus on representing the contribution of each
end-use towards the aggregate consumption and overall trend. A
more detailed description of these two  approaches can be found in
[19].

Electricity demand modelling has proved very important in
both academia and industry. In particular, bottom-up models’ abil-
ity to incorporate many different factors into the modelling has
been key to identifying and understanding the essential elements
associated with the production of demand loads. As the transition
towards low-carbon energy systems progresses, robust modelling
tools become even more relevant. The effectiveness of low-carbon
measures such as the implementation of Demand-Side Manage-
ment (DSM) strategies relies heavily on the extent to which we
understand residential electricity consumption. A better under-
standing of the electricity consumption patterns, and the potential

changes these may undergo, would allow us to devise the most
suitable measures.

nder the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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As new, relevant data become available, opportunities for fur-
her improvement in our models arise. The lack of information
bout consumer behaviour and appliance usage during the devel-
pment of models such as the one used in this study (see Section
) may  lead to problems which could not have been revealed with
he data available at the time. However, by applying these mod-
ls in a different context to the one in which they were validated,
hese issues can now be revealed and explored. Moreover, the new
ources of data currently available provide us with an opportunity
o re-assess the models’ performance. In particular, it is worth ver-
fying that the simulated electricity consumption data produced
y the models aggregate such that the statistical characteristics
bserved in the metered data are well represented, as this is key to

 robust bottom-up model.
In the following section brief descriptions of the evolution of

esidential energy demand modelling and the state of the art are
iven. The next two sections concern a description of the key ele-
ents of the analysis presented, namely the probabilistic demand
odel used and the sub-metered electricity consumption data.

he methodology for the comparative analysis, which encompasses
oth qualitative and quantitative methods, is discussed in Section
.1. This is followed by a discussion of the analysis results, where the
ritical shortcomings identified are highlighted. Finally, a summary
f concluding remarks based on the results previously described is
iven, as well as further details about potential directions of future
ork.

. Residential electricity demand modelling

In terms of demand for electricity, the variability across
ouseholds is high. In the UK, for instance, according to data

rom the Office of Gas and Electricity Markets (Ofgem), ‘Typical
omestic Consumption Values’ for electricity range from 2000 to
200 kWh/year [13]. The results of the most detailed study (to date)
f electricity use in English households would appear to indicate
hat there is an even higher variability, with values ranging from
60 to 14580 kWh/year [16].

There are many factors associated with this variability. The
ariations in energy consumption associated with differences in
welling characteristics and the impact of ambient tempera-
ure/climate conditions have been extensively studied. However,
he impacts of the differences in dwellings’ appliance content, and
he usage patterns of such appliances have not been studied as

uch.
Accounting for the impact different combinations of these fac-

ors have is critical in representing the range of consumptions
urrently observed. Consequently, the bottom-up approach to
emand modelling has been favoured for this purpose. Method-
logies that follow this approach offer the advantage of modelling
emand with greater level of detail. Demand estimates can be cal-
ulated at the household or even end-use level.

A branch of bottom-up modelling is characterised by a focus on
ser activity-based simulations of demand patterns. Models falling
ithin this group can be further divided into deterministic and
robabilistic models. Deterministic models are based on assump-
ions about seemingly direct causal links between chosen drivers
nd expected outcomes. In contrast, probabilistic models make use
f stochastic methods for the simulation of electricity consump-
ion patterns. This kind of models make predictions about different
utcomes based on the stochasticity of the input data. These mod-
ls have, therefore, the ability to represent the diversity of energy

emand across time and populations.

The model developed by Yao and Steemers [26] is a good exam-
le of a deterministic model. The simulation of demand loads

s based on fixed, pre-determined household activity patterns
d Buildings 151 (2017) 121–131

characterised mainly by the periods of absence. Appliances are
allocated based on national ownership statistics. Their associated
demand is calculated based on average ratings and frequency of
use estimates. The model is able to produce rough estimates of
half-hourly daily load profiles. Another example of a deterministic
model is presented in [23].

Recognising the limitations of the deterministic approach, sev-
eral attempts to capture the variability observed in real households
were made. An emerging approach, which continues to attract
interest, is based on the use of data from Time-Use Surveys (TUS)
for the extraction of characteristic activity patterns. These, in turn,
are used in the development of probabilistic models. Page et al. [15]
developed a general methodology for the use of Markov chain mod-
elling techniques for the simulation of activity sequences. Several
variations of this methodology, supported by the use of country-
specific TUS data were implemented. Some of the most commonly
cited examples are the models developed by Widén and Wäckel-
gård [24] and Richardson et al. [18], which are based on Swedish
and UK data, respectively. The reader is referred to [20] for a more
comprehensive review of models based on this approach.

A few attempts at improving this widely adopted modelling
approach have been made. These, however, have focused on the
refinement of the simulation of occupancy profiles. To this end,
different methods have been applied.

One of these approaches has focused on improving the represen-
tation of the duration of the occupancy states through the use of
semi-Markov models. In the model presented in [25] the transition
probabilities are based on the French TUS, and Weibull distribu-
tions are used to model the duration of the occupancy states. In the
model presented in [1] the transition probabilities are based on the
Belgian TUS and non-parametric estimates are used to model the
duration of the occupancy states.

Another approach has focused on the identification of char-
acteristic activity patterns which exhibit statistically significant
differences. In the model presented in [4] a Bayesian clustering
technique is used for the identification of household-level activity
profiles. In the model presented in [1], a hierarchical agglomerative
clustering approach is used for identifying characteristic individ-
ual occupancy patterns. In both models, the clustering approach
is complemented by the development of a Markov model for the
identified clusters.

The model presented in [10] is an extension of the model devel-
oped by Richardson et al. [18]. In addition to the extension of
the model to include thermal demand loads, the simulation of
occupancy sequences was  refined. The original model was based
on two-state occupancy patterns simulations. The refined ver-
sion is based on the simulation of four-state occupancy patterns.
Both models, however, make use of the first-order Markov chain
technique for the production of the occupancy sequences. The
electricity demand model was left largely unaltered. The only mod-
ification being the removal of end-uses associated with thermal
demand loads. This original model for electricity demand has found
widespread applications in academia and industry, for instance
[6,11,3,2,8].

The structure of the model developed by Richardson et al. [18],
also known as the CREST model, shows great similarity to that
of other, more recent models. There are, however, differences
between some of the key elements of the structure. The main differ-
ence concerns the approach to simulating occupancy patterns, as
discussed in the paragraphs above. A lesser difference concerns the
use of country-specific TUS data and statistics on appliance own-
ership and average ratings. Despite these differences, the approach

to converting activity patterns into electricity demand loads has
remained essentially the same. Therefore, although this model is
based on UK-specific data, the results of the analysis presented in
this paper are relevant to any model using a similar approach. In the
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ollowing section, a more detailed description of the CREST model
s presented.

. The CREST model

In 2010 a new model for residential electricity demand was
eveloped at CREST (Centre for Renewable Energy Systems Tech-
ology, Loughborough University). This is a probabilistic model that
rovides an estimate of the electricity consumption of individual
ouseholds based on the number of residents, occupancy patterns
nd dwelling appliance content. Based on the approach developed
y Page et al. [15] for the implementation of Markov chain models
ased on time-use data, Richardson et al. developed a residential
uilding occupancy model [17]. Later on, this occupancy model was
ombined with the approach developed by Yao and Steemers [26]
or generating switch-on events of electric appliances to create a
ew probabilistic model that has found widespread application in
he literature [18]. The model is capable of generating electricity
oad profiles of individual households as derived from the simu-
ated use of individual appliances.

.1. Structure

The model is divided into two modules. The first one is respon-
ible for the simulation of dwelling occupancy patterns. The second
ne is responsible for the conversion of the simulated activity
atterns into electricity demand loads. Occupancy profiles are sim-
lated for each household, for each day of the simulated period.
hese profiles are based upon data from the UK 2000 Time-Use
urvey [9]. The data from this survey is representative of national
ime budgets [12]. The version of the model used for the simula-
ions described in this paper features a two-state occupancy model.
ndividual occupancy profiles are essentially binary sequences of
tates corresponding to periods of active and inactive occupancy.
he active occupancy states also take account of the number of
ousehold members currently active.

Each simulated household is allocated a particular set of appli-
nces. Appliances are taken from a pre-defined set of 33 common
ppliances and randomly allocated based on national ownership
tatistics. The simulated appliances are configured using statis-
ics that include their mean total annual electricity consumption,
verage power rating, and average cycle length. This configura-
ion is meant to ensure that the appliances represent some general
ehaviour or pattern rather than emulate some specific real-life
ppliance (a specific make, or any other specific characteristics). In
his sense, CREST’s ‘appliances’ are rather categories of sorts into
hich many real-life appliances are expected to fit.

The activation of some of these ‘appliances’ during the simula-
ions depends on the presence of active occupants in the dwelling.
herefore, the variation in appliance usage is based upon the activ-
ty of the members of the household and their number. A demand
oad profile is generated for each allocated appliance for each day
f the simulated period. The loads generated depend on the occu-
ancy profiles previously generated. The total daily load profile is
he result of aggregating all of the appliances’ daily demand loads.

The variation in electricity consumption between different
ouseholds is achieved through changes in the household compo-
ition, set of appliances, and occupancy patterns of each simulated
welling. Moreover, a calibration factor provides a means to align
he overall average household consumption of the simulated sam-
le to the relevant average annual consumption (e.g. sample group,

egional or national average). For the simulations used in the
riginal validation analysis this value was set between 4100 and
300 kWh; this in order to represent dwellings from a specific
egion in the UK. The calibration of the model is meant to ensure
d Buildings 151 (2017) 121–131 123

that the overall average annual consumption of the simulated set
of households is around a particular value, which is one of the input
parameters for the model.

3.2. Validation

For the purpose of validating the CREST model, household-level
electricity consumption data was  metered from 22 households in
the East Midlands [18]. The households’ electricity consumption
was monitored for a full year. Thus, the resulting metered dataset
contained around eight thousand 1 min  resolution daily load pro-
files. The model was then calibrated against the collected data, and
used for simulating the electricity consumption from the 22 mon-
itored households. The simulations runs covered the equivalent of
a full year period, and generated data with the same resolution as
the metered data.

The simulation output was  compared against the original
metered data. The validation analysis was based on comparisons
of different aspects, including the variation of annual demand
between dwellings. One of the aims was to formally assess the
extent to which these datasets differ from one another in terms of
this variation. To this end, a statistical significance test, namely the
Mann-Whitney U test, was used [18]. The purpose of this test is to
determine how likely it is that the simulated dataset corresponds to
a sample drawn from the same population as the reference sample
(metered dataset). One of the advantages of this test is that it can
be applied even when the distributions of the data are not known.
The resulting measured and simulated annual consumptions are
shown below in Fig. 1(A).

In summary, the comparison between metered and simulated
datasets appeared to show that there was  no significant statisti-
cal difference between them, thus validating the model. The CREST
model is a good example of the attempts to link activity profiles to
electricity consumption via the simulation of appliance usage. For
this reason, we  were particularly interested in looking at how well
represented is this link by the simulations when compared with
a larger, highly disaggregated metered dataset. A more detailed
description of the data used for this purpose is given below in
Section 4.

4. The UK Household Electricity Survey

The UK’s Household Electricity Survey (HES) was the result of a
study jointly commissioned by Defra, DECC and the Energy Saving
Trust [7]. The study had four main objectives:

• To identify the range and quantity of electrical appliances found
in the typical home.

• To understand their patterns of use and their impact on peak
electricity demand.

• To monitor total electricity consumption of the homes as well as
that of individual major appliances in the household.

• To collect user habit data when using the range of appliances
present in the households.

For this study 250 owner-occupier households were monitored
over the period May  2010 to July 2011. The final report on this study
observes that the monitored households were chosen such that the
statistical characteristics of the sample would match closely those
of the typical socio-economic mix  [27]. Only owner-occupiers were
recruited for the study. The households, however, were still fairly

typical in terms of socio-demographic factors. The average annual
electricity consumption across the sample was 4093 kWh/year,
which compares very well to the 4115 kWh/year average (as of
2015) across all UK homes [5].
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Fig. 1. Annual electricity demands by household, ranked by magnitude: (A) Annual
demands of both metered and simulated households in CREST22 dataset (adapted
from  Ref. [18, Fig. 6]). (B) Annual demands of both metered and simulated house-
holds in HES24 dataset. (C) Annual demands of both metered and simulated
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closer comparison between the results of the analysis of this HES24
ouseholds in HES243 dataset. Households were grouped in sets of five. The levels
bserved correspond to the average consumption of each set.

Appliance-level electricity consumption was recorded for each
f the 250 households for each day of the monitoring period. For
ome households total demand load, as read from the mains, was
lso recorded. The overall length of the monitoring period varies
cross households. 26 of them were monitored for a full year. The
est were monitored for “one-month-long” periods with effective
engths varying between 20 and 30 days, and covering different
arts of the trial period.

The resolution of the metered electricity consumption profiles
lso varies. For households monitored for a full year, electricity con-
umption was metered every 10 min. For the rest of the households,
t was metered every 2 min. The resulting dataset is a collection
f highly detailed electricity consumption profiles, which already
as provided very important insights into the way  electricity is
sed in the UK’s residential sector. However, the opportunities for
xploiting such a rich source are far from exhausted. Further anal-
sis would allow us to have a better understanding of some of the

ssues associated with residential electricity consumption, such as
he scope for demand shifting, estimation of stand-by consump-
ion, the effects of changes in the size and efficiency of appliances,
d Buildings 151 (2017) 121–131

and differences in the way different socio-economic groups use
electricity.

The characteristics of this dataset make it ideal for testing
current approaches to modelling of residential electricity use. In
particular, we are interested in testing whether a model such as
CREST could provide us with simulated data that adequately rep-
resents the statistical characteristics observed in HES data.

5. Comparison of CREST model’s simulations against HES
data

The information about the relationship between consumer
behaviour and appliance usage was  more limited at the time mod-
els such as CREST’s were developed. The issues caused by such lack
of information could not be revealed using the metered electric-
ity consumption data available at the time. However, the arrival
of richer datasets allows us to explore these issues now by apply-
ing these models in a different context to the one in which they
were validated. Now that more comprehensive datasets are avail-
able, such as the one provided by HES, this paper re-assesses CREST
model’s assumptions on appliance usage and their correspond-
ing impacts on daily electricity load profiles and the variability of
annual consumption across households.

The interest in testing this model against the HES data resides
in great measure in the fact that the group of monitored house-
holds is much more diverse than any previous group. Moreover, the
appliance-level electricity consumption profiles provide us with a
further point of comparison between simulated and metered data.

5.1. Methodology

We  wanted to reproduce, to some extent, the original model
validation. For the original validation a relatively small sample con-
sisting of 22 households was used (see Section 3.2). Total daily
demand for electricity was monitored for a full year. These metered
data allowed for comparisons of total annual demands and aggre-
gated load profiles between metered and simulated households. In
contrast, HES data offers the opportunity to compare total annual
consumption levels, individual appliances’ annual consumption
and aggregated load profiles of a group of households over 10 times
larger.

5.1.1. Data processing
Preliminary analysis of HES data revealed that some of the

households monitored during the study are composed of 6+ mem-
bers. Based on its present configuration, the CREST model can only
simulate households of up to 5 members. For this reason and
the sake of consistency, the original HES sample was “filtered”
so as to be able to make a direct comparison between metered
and simulated samples. The final sample resulting from exclud-
ing 6+ member households consisted of a total of 243 households,
of which 24 had annual records. We  will refer to this dataset as
HES243. The extent to which this filtering affects the analysis will
be discussed in Section 7.

In order to test the simulation outputs against the whole HES
dataset, the comparative analysis between simulated and metered
data was  divided into two parts. Firstly, we focused on the 24 HES
households that were monitored for a full year. The correspond-
ing dataset will be referred to as HES24 throughout the rest of
the paper. The existence of this sub-set of households with annual
records proves important, as it gives us the opportunity to make a
sub-set and the set of 22 households used for the original model
validation (See Section 3.2). We  will refer to the latter dataset as
CREST22.
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Table  1
Categories of appliances and the appliances contained in each one, according to the appliances present in both metered and simulated datasets.

Categories Appliances contained

CREST HES

Cooking Hob, oven, microwave, kettle cooker1, cooker2, hob1, hob2, oven1, oven2, hob+oven, microwave1, microwave2, kettle1, kettle2
achine
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This method offers a way  of obtaining an accurate non-parametric
estimate of the PDF of a given dataset. This estimate is in fact the
best possible estimate of the distribution of the original population
Washing Washing machine, Tumble dryer, Dish-washer Washing m
TV  watching TV1, TV2, TV3 TV1, TV2, TV
ICT  related PC Desktop PC

Secondly, we then extended the analysis to the rest of the HES
ample so as to be able to assess the model’s ability to represent
he statistical characteristics observed in a larger, more compre-
ensive metered dataset. However, the sub-set of 219 households

or which only monthly records were present had to be processed
n a different way to the set of households with full year records.

Total household annual consumptions are not explicitly
ncluded in the HES data. This information had to be extracted
rom the records available for each household. Most households
ad monthly records only, so these had to be used for produc-

ng an estimate of the household’s total annual consumption. For
ach household with monthly records only the available data was
sed for calculating total daily consumptions for each day in the
onitoring period. Then, based on the distribution of total daily

onsumptions, the total daily consumptions for the missing days
eeded to complete a full year were generated stochastically to
dd some variation. The generated daily consumptions were then
rouped into the months corresponding to the same monitoring
eriod as that of households with annual records, and the corre-
ponding monthly seasonal factor was applied. Finally, all daily
oads were added up thus providing an estimate of the total annual
onsumption of that particular household. The case of the 24 house-
olds with annual records was more straightforward as we  only had
o add up the consumptions recorded throughout the year. In addi-
ion to the total annual consumption, a mean daily load profile for
he whole HES sample was calculated based on all available data.

For the simulation of electricity consumption data the CREST
odel was used. A full version of the CREST model is publicly

vailable in the form of an Excel spreadsheet model (See [18]).
owever, for the purpose of simulating the electricity consump-

ion of the same number of households as in the HES sample, the
REST model was re-implemented in Python in order to allow for
aster, multiple automated runs. Features, functionality and results
f Python and Excel versions of the model are equivalent. We
sed this Python implementation for generating a year’s worth
f artificial electricity consumption data for 243 households. Each
imulated household profile was matched to a metered counterpart
n the HES243 dataset. Since it is possible to specify both the day
nd the month when running simulations, the simulated period
as also matched to the monitoring period of the corresponding
etered households. Total annual consumptions corresponding to

ach household were calculated, as well as the mean daily load
rofile for the whole simulated HES243 sample. For the first part
f the analysis, which focused on the HES24 dataset, simulations
ere run based on the specifications of this sub-set of households

nly.
As the electricity consumption of individual appliances is avail-

ble from both metered and simulated data, there was  an interest
n looking at how the estimates of the annual consumptions of the
imulated appliances are distributed and how these distributions
ompare to those of the corresponding metered appliances. To this
nd, we also extracted the total annual consumptions of individual

ppliances for the households in the HES243 dataset.

As observed in Section 3.1, the CREST model generates artificial
lectricity consumption data based on the simulation of appliance
sage for a pre-defined set of appliances. Among the model’s pre-
, washer dryer, Tumble dryer, Dish washer
T TV, LCD TV, plasma TV, Audio-visual site
ktop PC 2, Computer site, Laptop 1, Laptop 2

defined set, there are ‘appliances’ which are meant to represent the
consumption of the appliances listed in Table 1. This pre-defined
set includes some other ‘appliances’ which represent the electricity
consumption of some other devices with more predictable con-
sumption patterns (e.g. cold appliances). However, we focus the
analysis on the appliances listed in Table 1, as the electricity loads
generated by the use of these appliances are the ones with direct
links to households’ activities. We  compare the simulated demand
of these appliances with the data from their corresponding metered
counterparts.

The appliances of interest were grouped based on the activities
they are associated with: cooking, washing, TV watching, and ICT
related activities. Both CREST and HES appliances are grouped in
these more general categories, as shown in Table 1. In most cases
it is possible to make a one-to-one comparison between HES and
CREST appliances in spite of the differences that may  exist between
them.

In order to obtain the distributions of the simulated total annual
consumption of individual appliances, it was  necessary to run a
new set of simulations. Based on the original model configuration,
appliances are allocated to the simulated households on a random
basis. Therefore, the original model implementation had to be mod-
ified so as to ensure that the appliances of interest were allocated
to the relevant households. The goal was  to match the appliance
configuration of the simulated households to that of the metered
counterparts.

HES records show which appliances are owned by which
households. Based on this information, households were grouped
accordingly. Using the modified model implementation, simulation
runs corresponding to one year long periods were carried out.

5.1.2. Comparative analysis
In order to assess whether the simulated data is consistent with

the metered one, both qualitative and quantitative methods were
used.

The qualitative comparison between datasets focused on the
Empirical Cumulative Distribution Function (ECDF) of the differ-
ent datasets. The ECDF is a formal direct estimate of the Cumulative
Distribution Function1 from which simple statistical properties can
be derived. Moreover, the ECDF properties form the basis of various
statistical significance tests.

The Probability Density Function (PDF) of the total annual con-
sumptions was  obtained as well, as it provides a better graphical
representation of some of the statistical characteristics of the
metered HES243 dataset. In order to obtain a reliable representa-
tion of the PDFs, the Kernel Density Estimation (KDE) method was
used. Kernel Density estimation is often used as a data smooth-
ing technique. However, KDE is not simply a smoothing method.
1 Cumulative distribution function (CDF) – It is a function whose value is the
probability that a corresponding continuous random variable has a value less than
or  equal to the argument of the function.
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results of this part of the analysis seem to be well in agreement with
those of the original validation, thus confirming that the model pro-
duces reasonable estimates when dealing with small samples (∼20
26 J.L. Ramírez-Mendiola et al. / Ene

rom which the sample was drawn. It can be shown that the kernel
ensity estimate converges to the real distribution as the sample
ize increases, and it’s convergence rate is the highest among all
stimates [22].

As observed above, some statistical significance tests are based
n the properties of ECDFs. This leads naturally to the quantita-
ive part of this comparative analysis, which focuses on the use of
uch tests. For the quantitative comparison we will use two  tests,
amely, the Kolmogorov–Smirnov test and the Mann-Whitney U
est. Both tests are non-parametric, which means they do not make
ssumptions about the distribution of the data. Both tests can be
sed to compare two unpaired datasets, both focus on comparing
he statistical characteristics of the distributions of the two datasets
eing compared, and both are robust to the presence of outliers.
owever, the two tests work in a very different way.

The Kolmogorov–Smirnov (KS) test compares the cumulative
istribution of the two data sets in question, and calculates a p-
alue that depends on the largest difference between the two
istributions. The test is sensitive to any differences in the two dis-
ributions. Significant differences in shape, spread or median values
ill result in a small p-value. The KS test can also be used to test
hether an empirical distribution is consistent with an ideal dis-

ribution, and therefore, it is commonly used as a test of goodness
f fit, or for testing for normality. In essence, this test answers the
uestion: If the two samples were randomly drawn from different
arent populations, how likely it is that the two parent populations
ave the same statistical distribution?

The Mann–Whitney (MW)  test compares two datasets by rank-
ng the elements in the dataset from smallest to largest, and
alculating the average of the rank scores of the elements in the
wo datasets. A p-value is calculated which depends on the differ-
nce between the average ranks of the two datasets. Compared to
he KS test, the MW test is mostly sensitive to changes in the median
alue. The MW test is closely related to the t-test. However, the MW
est is more widely applicable than other more popular tests such
s the t-test, as it does not require the assumption of normally dis-
ributed data, and it is much more robust to the presence of outliers.
n essence, the MW test answers the question: If both samples come
rom the same population, how likely it is that random sampling
ould result in the differences observed in this particular case?

As we are interested in determining whether the simulated data
enerated by the model accurately capture the statistical character-
stics of the metered data, we use these test to obtain a quantitative

easure of how closely related the two datasets are. In other words,
e use these tests to assess whether both datasets are consistent

nough with statistical samples drawn from the same population,
r whether the two datasets are consistent with samples drawn
rom populations which follow the same statistical distribution.
he MW test provides us with a quantitative measure of how likely
he former situation is, whereas the KS test provides us with a

easure of how likely it is the latter.
The MW test was also used in the original validation of the CREST

odel (see Section 3.2). The positive results of the test were one of
he arguments in favour of the validation of the model. We  take this
s an opportunity to show the effect that sample size may  have
hen using this kind of test by applying the test to the datasets
ES24 and HES243 separately and comparing the results.

. Analysis results

.1. Variations in annual demand levels
The high variability observed in annual demand levels across the
onitored households clearly reflects the fact that different house-

olds mean different needs, lifestyles and consumption patterns. In
d Buildings 151 (2017) 121–131

this context, when we  talk about variability, we refer to the natural
variation that is observed in the demand levels as a result of the
differences in the underlying causes of said demand.

Fig. 1 shows both simulated and metered annual demands,
obtained from the different datasets. Both the variability of annual
demand among households and the differences between the
metered and simulated levels can be appreciated, as well as how
they compare across datasets. This figure starts to show that the
empirical data has greater diversity than the model simulations
would suggest. The red horizontal lines indicate the overall average
annual consumption of the corresponding metered dataset. Only
one line per section is needed because, as observed in Section 3,
an adequate calibration of the CREST model ensures that the over-
all average annual consumption of the simulated sample is around
a specified value. The corresponding values are listed in Table 2
which shows, in numbers, how the variability of both simulated
and metered data compares across the different datasets.

The mean annual electricity demands per dwelling calculated
from metered and simulated data for each of the analysed datasets
differ by around 1%. The fact that this difference is small only
shows that the model was  appropriately calibrated. Despite this,
it is observed that the differences in standard deviations are con-
siderably larger. For both HES24 and HES243 datasets the standard
deviation of the metered annual consumptions is about 40% higher
than the standard deviation of the simulated ones.

The results of the first part of the analysis, concerning the HES24
dataset, already appeared to suggest that the variation in annual
demand levels was being under-represented. However, the simu-
lated HES24 dataset used for this study appears to be consistent
with the simulated CREST22 dataset used in the original validation
analysis2 (See Table 2).

The analysis of CREST22 datasets showed that the standard devi-
ation of the metered annual consumptions was about 30% higher
than the standard deviation of the simulated ones. Despite this
seemingly large difference, the result of applying a statistical sig-
nificance test would appear to indicate that the datasets were not
significantly different (See Section 3.2).

6.2. Empirical cumulative distributions and significance tests

The HES24 dataset is very similar in size to the CREST22 dataset
used for the original validation. As part of the original validation
analysis, a Mann-Whitney (MW)  test with a 5% level of significance
was used to compare metered and simulated CREST22 datasets.
Based on the test results, it was  concluded that there was  no
significant difference between them (Section 3.2). In addition to
verifying this, and in order to further test how well represented
was the metered data by the simulations in the original analysis,
we extracted the annual consumption data from the original vali-
dation results and performed a Kolmogorov–Smirnov (KS) test on
these datasets. The results of this test also supported the hypothesis
that the two  datasets are consistent with each other.

The same tests were then applied to metered and simulated
HES24 datasets. With a p-value of 0.38, the MW test with 5% signif-
icance level suggests that it is likely that these two samples were
drawn from the same population. Moreover, with a p-value of 0.44,
the KS test with 5% significance level suggests that it is likely that
these two samples come from populations equally distributed. The
households).

2 CREST22 data was taken from [18]).
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Table  2
Mean values and standard deviations of annual electricity consumptions datasets.

CREST22 HES24 HES243

Metered Simulated Metered Simulated Metered Simulated

4624.6 4629.7 3944.5 3942.9
2510 1545 2348 1405
0.54 0.33 0.60 0.36
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Table 3
Trimodal Gaussian mixture model’s parameters.

N1(�1, �1) N2(�2, �2) N3(�3, �3)
Mean annual demand (kWh/y) 4172 4124 

Standard deviation (kWh/y) 1943 1372 

Coefficient of variation 0.47 0.33 

The second part of the analysis, which focused on the HES243
atasets, was aimed at determining whether the model simulations
roduce a reasonable representation of the statistical characteris-
ics of a larger, more diverse set of households. Both MW and KS
est were used again to provide a quantitative measure of the differ-
nces between metered and simulated datasets. On this occasion,
owever, the tests results revealed the existence of important dif-

erences in the statistical characteristics of both datasets. With a
-value of 0.049, the MW test with 5% significance level now sug-
ests that it is unlikely that the metered and simulated HES243
amples come from the same population. In a similar manner, with

 p-value of 0.001, the KS test with 5% significance level suggests
hat it is very unlikely that these two samples come from popula-
ions with the same statistical distribution. Moreover, by using the
S test to test for normality, we found that the simulated HES243
ataset appears to be consistent with normally distributed data (p-
alue of 0.81). The metered HES243 sample is not. These results
re best appreciated graphically. As Fig. 2 shows, the simulated
ES243 dataset is well in agreement with its corresponding normal
t (dashed line).

Probability Density Functions corresponding to each set of
nnual consumptions can also be appreciated in Fig. 2. The Kernel

ensity Estimate of the distribution of metered annual con-

umptions revealed the existence of a more complex underlying
istribution. Based on this estimate, three clusters can be readily

ig. 2. Distribution of total annual consumptions: (A) Probability Density Functions
f  metered and simulated HES243 datasets. (B) Empirical Cumulative Distribution
f metered and simulated data. The dotted lines around the ECDF of the metered
ES243 dataset are the 95% confidence bounds.
Ci 0.261 0.622 0.115
�i 1.575 3.92 7.85
� i 0.78 1.28 1.0

identified. What this shows is that the distribution of house-
holds with respect to total annual consumption is concentrated
in three clusters, centred around the values (modes): 1.58 MWh,
3.92 MWh  and 7.85 MWh.  Based on this information, and on the
same principles behind the Kernel Density Estimation, we produced
a parametric estimate for the empirical PDF observed in Fig. 2.
This estimate can be expressed by the following trimodal Gaussian
mixture:

f (x) ∼C1N1(x | �1, �1) + C2N2(x | �2, �2)

+C3N3(x | �3, �3) (1)

where Ni(x | �i, �i) = 1
�i

√
2�

e
− 1

2

(
x−�i

�i

)2

is the general normal dis-

tribution with mean �i and standard deviation �i, and Ci is a
proportionality constant.

A summary of the parameters of this estimate and their corre-
sponding values can be found in Table 3. Fig. 3(A) shows how this
trimodal Gaussian model compares to the empirical PDF.

The ability to produce a parametric estimate for the PDF means
that it is also possible to find an expression (F(x)) for the CDF, as
these two  functions are related analytically by the equation: F(x) =∫ x

−∞ f (t)dt. Therefore, by integrating f(x) we obtain that the CDF is
given by:

F(x) =
3∑

i=1

Ci

2

[
1 + erf

(
x − �i

�i

√
2

)]
(2)

where erf(x) is the error function, and Ci, �i and �i are the same
parameters used in Eq. (1) (see Table 3). The way  this estimate
compares to the ECDF is shown in Fig. 3(B).

In order to gain a better insight into the relationship between
household size and total annual consumption, we looked at the
sub-groups of households characterised by these features in two
different ways. Firstly, we grouped the households according to
size, and used the KDE method to obtain an estimate of the empir-
ical PDF corresponding to each group. These distributions can be
observed in Fig. 4(A). The number of households with 5 members
is not large enough as to provide a reliable estimate of the overall
distribution of annual consumptions for this sub-group. Therefore,
this distribution was omitted. Secondly, based on the parametric
estimate we obtained for the overall distribution, we  grouped the
households according to the three observed clusters. The crite-
ria for the allocation of households to the different clusters was

whether their annual consumption falls within the interquartile
range of the cluster in question. Households in each cluster were
further grouped according to size. The percentage composition of
each cluster is shown in Fig. 4(B).
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Fig. 3. Total annual consumptions distributions: (A) Probability Density Function of
metered HES243 dataset and trimodal Gaussian mixture fit. Each vertical bar at the
bottom of the plot represents a data point. (B) Empirical Cumulative Distributions of
metered annual consumptions and trimodal Gaussian mixture fit. The dotted lines
around the ECDF of the metered HES243 dataset are the 95% confidence bounds.

Fig. 4. Distribution of households according to size and annual consumption range:
(A)  EPDFs corresponding to households grouped by size. The vertical line in each
distribution indicates the mean value. (B) Percentage composition of household sizes
for  each cluster.

Table 4
Summary of parameters of the Weibull distributions fitted to the annual consump-
tions ECDFs of individual appliances.

Weibull fit parameters

Scale Shape

Main cooking 356.54 1.26
Cooker 344.72 1.28
Oven 248.34 1.04
Microwave 57.66 1.19
Toaster 21.90 0.94
Kettle 188.20 1.82
Washing machine 164.85 1.20
Tumble dryer 367.87 0.96
Washer dryer 262.81 1.06
Dishwasher 301.57 1.47
TV1  174.90 0.86
TV2  109.22 0.69

Laptop 24.34 0.87
Desktop 156.37 0.89
Computer site 213.01 0.98

6.3. Individual appliances: total annual consumptions

We  looked at the appliance content of the HES243 households
and, based on the list of appliances of interest presented in Section
5.1, we  grouped the households that contained each one of those
appliances. We  then calculated the ECDF of both simulated and
metered data for each one of those groups. Examples of the obtained
distributions are shown in Fig. 5.

The results of this analysis made evident that the variability
observed in the annual consumption of individual appliances is
completely misrepresented by the simulated data. In some cases
(see Fig. 5(A) and (D)) the average annual consumption of both
datasets is well in agreement. In some others (Fig. 5(B) and (C)), the
differences between the average annual consumptions are evident
as well.

In general, it was  observed that the empirical distributions of
individual appliances’ annual consumptions were skewed. Log-
normal and Weibull models were tested for possible fits, as these
models are particularly good at representing skewed data.3 The
analysis revealed that the best fits were provided by Weibull mod-
els. The summary of parameters of the distributions fitted to the
ECDFs of the annual consumptions of individual appliances is pre-
sented in Table 4.

6.4. Mean daily load profile general features

Mean daily load profiles were obtained from both metered and
simulated HES243 datasets. These can be observed in Fig. 6, along
with the typical UK profile. This typical UK load profile corre-
sponds to the half hour load profile for the average Profile Class
1 customers4[21], and is presented for comparison purposes only.

Both the metered and simulated mean daily load profiles have,
generally speaking, similar shapes to that of the typical profile.

However, when the profiles are compared in more detail, marked
contrasts are observed:

3 A more empirical argument for the use of these models is rooted in the fact
that they are generally applicable for modelling size/magnitude distributions (e.g.
particle size, wind speed).

4 Profile Class 1 customers are domestic customers supplied on unrestricted tar-
iffs, with a maximum demand below 100 kW as measured by metering systems
containing only one meter register. There are eight profile classes, and for each pro-
file class a sample group of electricity supply customers is randomly drawn from the
population of electricity supply market customers. These samples are designed to
provide an accurate estimate of the load pattern for each class of customers for use in
electricity settlement. Consumption data is obtained by either installing half-hourly
meters at the sites or getting half-hourly consumption data directly from suppliers.
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Fig. 5. Annual consumptions ECDFs of individual appliances: (A) Main cooking applianc
simulated and monitored kettles. Present in 94% of households. (C) ECDFs of simulated and
and  monitored main TVs. Present in 98% of households.

Fig. 6. Mean daily load profiles corresponding to metered and simulated HES243
d
(

•

•

•

p
m
a

appliance consumption data. Due to the technical limitations of
atasets. Typical UK profile corresponds to the load profile of the average class 1
unrestricted domestic tariff) customer.

There are significant differences between the values of the lowest
and highest demands observed in the two profiles.
The simulated profile appears to overestimate the duration of the
peak period.
The variations observed in the CREST profile, such as the tran-
sitions between periods of low/high demand and periods of
high/low demand, correspond to more abrupt changes than those
observed in the other two profiles.

Further analysis of the characteristics and differences of these

rofiles may  be desirable, and indeed, necessary. In particular, it
ight be interesting to pay a closer look at how the activity profiles

nd the use of appliances are linked, and how well represented the
es: cooker, or equivalently, hob + oven. Present in 70% of households. (B) ECDFs of
 monitored washing machines. Present in 83% of households. (D) ECDFs of simulated

duration of certain activities is. However, a more detailed analysis
of these profiles falls beyond the scope of this paper. The prospects
for a more detailed study on the intra-day variability of demand are
left to be discussed in the next section.

7. Discussion and future work

The primary aim of the analysis presented in this paper was  to
determine whether a probabilistic model based on currently used
approaches is capable of providing a good representation of the
variability observed in the electricity consumption levels of a highly
detailed dataset. The choice of the CREST model for this study was
due in great measure to the fact that this model seeks to emu-
late the variability of household electricity use [18]. According to
the way in which the model was constructed, the simulated appli-
ances are configured such that their annual consumptions result
in figures typical of an average household. Moreover, the overall
average annual consumption of the simulated households was  also
expected to be in agreement with the national figures. The model
calibration involves the scaling of the simulated sample’s annual
consumptions. This is meant to ensure that the simulated average
annual consumption matches the average annual consumption of
the real-life counterpart (see Section 3).

The high level of detail offered by HES data justifies its use
for the analysis. The appliance-level metered electricity consump-
tion records make it ideal for a comparison against the simulated
the model discussed in Section 6, the original HES dataset had to
be filtered so as to allow for a consistent analysis. The filtering
consisted in removing the households with more than five mem-



1 rgy an

b
i
t
p
a
I
h
s
a
o
i
c
o

t
s
f
d
u
m
E
i
i
A
r
t
t
h
h
t
o
c
s
l
g
f
g

f
r
o
t
m
r
b
l

i
e
t
d
r
c
c

b
c
R
i
d
i
H
w
t
t
v

30 J.L. Ramírez-Mendiola et al. / Ene

ers from the sample. However, we believe this filtering had little
mpact on the overall statistical characteristics of the dataset and
he analysis results. The proportions of households in the HES sam-
le corresponding to household sizes ranging from 1 to 4 are well in
greement with the proportions observed at the national level [14].
f we extrapolate this, by assuming that the proportion of house-
olds with five and 6+ residents are equally well represented in the
ample, this would mean that households with 6 or more members
ccount for just over 2% of households in the UK. A sense of the scale
f the effect of removing said households can be given by compar-
ng the overall average annual consumptions; the average annual
onsumption across the whole 250 households HES sample is just
ver 3% higher than the average across the HES243 dataset.

Great part of the analysis presented in this paper focused on
he distribution of households with respect to their annual con-
umptions. The analysis of the annual consumption data extracted
rom the HES dataset revealed the existence of a complex trimodal
istribution (see Section 6.2). Further analysis revealed that the
nderlying distribution appears to be very well estimated by a tri-
odal Gaussian mixture with analytical expression given by Eq. (1).

ach of the three clusters identified in the empirical distribution
s consistent with a normal distribution. The resultant compos-
te distribution, however, does not exhibit normal-like features.

 breakdown into sub-groups of households characterised by size
evealed that: (1) Over 50% of the households concentrated around
he first cluster are one-person households. The first cluster is also
he largest one, which means that the majority of the one-person
ouseholds are found in this consumption range. (2) Over 40% of the
ouseholds concentrated around the second cluster correspond to
wo-people households, making this sub-group the predominant
ne. (3) Over 33% of the households concentrated around the third
luster are 4-people households. The second biggest group corre-
ponds to two-people households (see Fig. 4). It appears to be a
inear correlation between the household size of the predominant
roup and the mean value of the corresponding cluster. However,
urther analysis is needed in order to determine whether this is a
eneral trend or just an interesting coincidence.

The distributions of the simulated annual consumptions were
ound to be consistently normal. It would appear that the cur-
ent simplifying modelling assumptions are causing simulation
utputs consistent with normally distributed data. These assump-
ions would appear to lead to reasonable first-order estimates as

isrepresentation issues appear less severe when simulations are
estricted to small sets of households. However, the differences
etween simulated and metered data become evident when simu-

ating larger samples.
Modelling assumptions concerning the conversion of activ-

ty profiles into electricity consumption patterns have remained
ssentially the same over the last decade. It is therefore necessary
o reassess these assumptions. Assumptions leading to normally
istributed data will need to be modified or replaced entirely. If
eplacing these assumptions in their entirety proves overly compli-
ated, then the implementation of mixture models based on normal
omponents might be a good alternative.

In addition to the differences in the overall shape of the distri-
utions, it was observed that the variability in the levels of annual
onsumption is consistently misrepresented in the simulated data.
egardless of sample size, it was found that the level of variabil-

ty observed in the metered data is consistent across independent
atasets. Moreover, the variability observed in the metered data

s about 20% higher than in the simulated data (see Table 2). The
ES sample is still arguably small, statistically speaking. However,

e presume it provides a better insight into the kind of distribu-

ion and variability that would be observed in larger samples. Given
he method used for estimating the overall distribution, it is also
ery likely that the statistical characteristics observed in the esti-
d Buildings 151 (2017) 121–131

mate are close to those of the true population distribution. It is
important that a refined representation of the characteristics of the
distributions observed in Fig. 3 is achieved, as this is key to a robust
approach to residential electricity demand modelling.

The analysis of the distribution of metered annual consumptions
generated many interesting results, which include analytic expres-
sions for the Probability Density Function (PDF) and the cumulative
distribution function (CDF) (see Section 6.2). Knowing the analyt-
ical expression for the cumulative distribution allows for the use
of methods such as the inverse transform sampling. Given a cumu-
lative distribution function, this method allows for the generation
of samples consistent with data drawn from said distribution. A
better idea of the statistical characteristics of the distribution of
annual consumptions gives us the opportunity to fine tune demand
models. The improvements derived from this would be reflected
in simulated datasets that are more in agreement with the kind
of distribution and levels of variability observed across real-life
households.

Total annual consumptions from individual appliances were
used as a further point of comparison between simulated and
metered datasets. Based on each dataset, distributions of total
annual consumptions were obtained for the appliances listed in
Table 1. The choice of the appliances of interest was based on the
reasonable expectation that their demand loads would be linked to
households activities. In the CREST model’s simulations, a calibra-
tion factor is calculated for each appliance. According to the model
documentation, this factor is adjusted so that over a large number
of runs the average annual consumption of the appliance would
match typical levels [18]. In some cases it was  found that the aver-
age annual consumption of the simulated appliances was  well in
agreement with that of their metered counterparts (see Fig. 5(A)
and (D)). In most cases, however, discrepancies were found. In
general, the simulated values are consistently higher than those
obtained from the metered data. In terms of the distribution, similar
problems to those of observed in the distributions of total house-
hold annual consumptions were found. The variability observed in
the metered data is consistently under-represented by the simu-
lations’ output. Moreover, the annual consumptions of individual
simulated appliances present skewed distributions. These distri-
butions were found to be consistent with Weibull distributions. A
summary of the parameters for the fitted models is presented in
Table 4.

A comparison was also made between metered and simulated
mean daily load profiles extracted from the corresponding HES243
datasets. Important differences in the overall features of both pro-
files were identified. Further in-depth analysis is needed in order
identify the underlying causes of these issues. However, a more
detailed characterisation of said differences falls beyond the scope
of this paper. In particular, it would be interesting to investigate in
more detail the relationship between household activity patterns,
appliance usage and the intra-day variations in demand levels. This
will be the subject of future work.

8. Conclusions

In this paper, a comparative analysis of the statistical char-
acteristics of metered and stochastically simulated electricity
consumption datasets was  presented. Metered household- and
appliance-level electricity consumptions were extracted from the
UK’s Household Electricity Survey dataset (see Section 4). Corre-
sponding electricity consumptions were simulated using a widely

implemented probabilistic model based on the UK residential
sector (see Section 3). The model was  configured such that the sim-
ulated households matched the relevant features of the metered
counterparts. The analysis of the differences between datasets
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llowed us to provide a measure of how well represented are the
bserved features by probabilistic models based on currently used
pproaches and to identify key shortcomings.

In particular, we compared the way simulated and metered
ouseholds and individual appliances are distributed with respect
o total annual consumptions. An element of the assessment of the

odel’s performance concerns how well represented are these dis-
ributions by the simulated output. Based on the analysis presented
n this paper we can conclude that current probabilistic models
ail to capture some of the key characteristics observed in the

etered datasets (see Section 6.2). Significant discrepancies were
ound when the corresponding distributions were compared (see
igs. 2 and 5). In particular, it was found that metered household
nnual consumptions follow a complex distribution from which
hree clusters can be identified. The distributions observed in the
imulated data are much simpler. Current underlying assumptions
bout electricity use appear to lead to normally distributed data
ith consistently limited variability. Therefore, these assumptions
eed to be rectified so as to prevent the misrepresentation of the
tatistical characteristics observed in metered data.

The diversity of real-life households is reflected by the com-
lexity of the distribution of total annual consumptions. A more
omplex distribution does not necessarily mean over-complicated
ssumptions need to be used in the models. We  propose a trimodal
aussian mixture model which provides a very good estimate of

he observed distribution. Analytical expressions for both the den-
ity function and cumulative distribution are given. In a similar
anner, the distributions of annual consumptions of individual

ppliances were found to be well represented by Weibull models.
s this paper demonstrates, it is possible to use estimates that cap-

ure reasonably well the complexity of the observed distribution
hile preserving models’ simplicity.

The analysis presented shows that residential demand for elec-
ricity is more diverse than hitherto assumed. A better idea of how
ouseholds and individual appliances are distributed with respect
o annual consumption provides us with opportunities for fur-
her refinement of current probabilistic models. In addition, the
esults further support the fact that current and future modelling
pproaches would benefit greatly from the use of larger, highly
esolved metered datasets.
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