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In personalized medicine, it is often desired to determine if all patients or only
a subset of them benefit from a treatment. We consider estimation in two-stage
adaptive designs that in stage 1 recruit patients from the full population. In stage
2, patient recruitment is restricted to the part of the population, which, based
on stage 1 data, benefits from the experimental treatment. Existing estimators,
which adjust for using stage 1 data for selecting the part of the population from
which stage 2 patients are recruited, as well as for the confirmatory analysis after
stage 2, do not consider time to event patient outcomes. In this work, for time to
event data, we have derived a new asymptotically unbiased estimator for the log
hazard ratio and a new interval estimator with good coverage probabilities and
probabilities that the upper bounds are below the true values. The estimators
are appropriate for several selection rules that are based on a single or multiple
biomarkers, which can be categorical or continuous.

K E Y W O R D S
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1 INTRODUCTION

Clinical trials in personalized medicine involve assessing whether a patient's characteristic(s), known as biomarkers, can
be used to determine their best care. A biomarker may influence the progression of disease without treatment (prognostic
biomarker) or the size of the effect of a treatment (predictive biomarker).1 We focus on predictive biomarkers, where the
effects of a new treatment in different subpopulations defined by biomarker values are assessed. Several efficient two-stage
adaptive designs with an interim analysis to determine the part of the population (subpopulation) to benefit most from a
new treatment have been proposed.2-6 The general framework of such designs is that patients are recruited from the full
population in stage 1, with an interim analysis performed to determine the subpopulation where the new treatment is
apparently beneficial. In stage 2, patients are recruited from this group. Confirmatory analysis then includes data from
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both stages. Appropriate analysis of two-stage adaptive trials needs to adjust for the bias arising from using stage 1 data
for both subpopulation selection and the final analysis.

Time to event patient outcomes are considered in several clinical trials assessing predictive biomarkers.7-10 For
two-stage adaptive trials, methods for controlling type I error rate and/or increasing power have been developed.2,3,7 How-
ever, existing point estimators and confidence intervals that adjust for subpopulation selection do not consider time to
event data.4-6,11 Li et al12 quantify the bias of the naive estimator for time to event data but do not derive unbiased esti-
mators. Thus, there is a need to develop point and interval estimators for time to event data in two-stage adaptive trials
with subpopulation selection. This is the aim of this article. Using the asymptotic distribution of the log hazard ratio,
we extend existing methods for normally distributed data to time to event patient outcomes. We also address the addi-
tional complexity associated with following in stage 2 the stage 1 patients without the event of interest at the interim
analysis.

For normally distributed outcomes, estimators that adjust for subpopulation selection may be obtained in three ways.
The first involves estimating and subtracting the bias of the naive estimator.6,13-15 The second utilizes the empirical Bayes
technique to obtain shrinkage estimators.6,15-17 The third is based on the Rao-Blackwell theorem that the expected value
of the unbiased stage 2 estimator conditional on the selected subpopulation and a sufficient statistic is the uniformly
minimum variance conditional unbiased estimator (UMVCUE).4,6,18-22 Kimani et al6 compared the estimation approaches
in the context of subpopulation selection, concluding that the UMVCUE was superior. As we expect the same conclusion
if the three estimators are extended to time to event data, in this article, we have only extended the UMVCUE. To address
the complexity associated with time to event data, we assume hypothesis testing similar to that proposed by Jenkins
et al3 and use the duality with hypothesis testing to construct confidence intervals with desired properties as proposed
for non-time to event data by Magirr et al.23

Previous research has considered biomarkers of various forms (a binary biomarker, a continuous biomarker, or multi-
ple biomarkers) and different subpopulation selection rules. Our point and interval estimators are appropriate for different
selection rules and biomarkers of many forms.

2 SETTING AND NOTATION

2.1 Partitioning the population and general concepts in selecting partitions

This section describes the partitioning of the full population (F) and general approaches for specifying selection rules.
Specific selection rules will be described in Section 2.3. Figure 1 summarizes the partitioning of F. We first describe
concepts common to all settings that we consider, indicated as general concepts in the figure. Assume that F con-
sists of K (K ≥ 2) distinct partitions. For partition j (j = 1,… ,K), we denote the true prevalence of patients by pj
and hazard functions for the control and experimental groups by hCj(t) and hEj(t), respectively. Assuming propor-
tional hazards within a partition, we denote the log hazard ratio (HR) for partition j (j = 1,… ,K) by 𝜃j, with 𝜃j <

0 indicating that the experimental treatment delays occurrence of the event in partition j and hence is superior to
the control.

Let ⊆ {1,… ,K} be the subset of indices corresponding to the partitions selected to continue to stage 2. The partitions
are selected based on the stage 1 estimate for (𝜃1,… , 𝜃K)′. At the end of the trial, for each j ∈  , the aim is to estimate
𝜃j. We will obtain log HR estimates in selected partitions separately, corresponding to a stratified model. Consequently,
although the selection rules we consider in this paper are aimed at identifying predictive biomarkers, as shown in Figure 1,
control group hazard functions in different partitions may be different so that the biomarker may also be prognostic. A
disadvantage of this approach is that in some cases, such as when the biomarker is neither predictive nor prognostic, it
would be better to obtain a single estimate using the data from all the partitions while assuming proportional hazards
overall in F rather than separate estimates of effects assuming proportional hazards only within a partition. A model
with partition membership as a categorical covariate and an interaction term for partition and treatment would enable an
estimator of a combined effect. However, this model is not as general as the stratified model, imposing more restrictions
on the hazard functions.

The expected relationship between biomarker and treatment effect informs the partitioning of F and the selection
rule. Figure 1 gives an example of the two-stage adaptive threshold enrichment design.6,24 Here, it is assumed that a single
continuous biomarker and the treatment effect are monotonically related with higher biomarker values associated with
bigger treatment effects. Consequently K candidate threshold values c1 > c2 > … > cK are specified to subdivide F into K
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F I G U R E 1 Partitioning of the full population

distinct partitions. Setting c0 = ∞, partition j (j = 1,… ,K) consists of patients with biomarker values in [cj, cj−1]. As it is
expected that 𝜃1 ≤ 𝜃2 ≤ ⋅ ⋅ ⋅ ≤ 𝜃K , a selection rule is prespecified to test partitions in stage 2 with biomarker values above
cs (s ∈ {1,… ,K}).

Partitioning of F and selection rules can be similarly given for biomarkers of other forms. Common cases are a single
binary biomarker and multiple biomarkers. A single binary biomarker where the effect in one partition is expected to
be bigger than in the complementary partition is a special case of the continuous biomarker with K = 2. For multiple
biomarkers, we consider two scenarios. In the first, we assume biomarkers' values can be combined into an aggregate
score with a monotonic relationship with the treatment effect, with this score used to define partitions and a selection rule
as for a single continuous biomarker. In the second scenario, the partitions consist of different combinations of biomarker
level categories. A monotonic relationship between the biomarker values and treatment effects is not assumed and so a
selection rule where partition j (j = 1,… ,K) is considered for continuing to stage 2 based on the stage 1 estimate for 𝜃j
only is specified. A single binary biomarker, where there is no knowledge of the partition that is more likely to benefit,
can be considered a special case of the second scenario with K = 2.

2.2 Analysis times and notation of estimates for different subsets of trial data

Figure 2 shows the available data at different times in the trial. Each horizontal line that ends with a circle corresponds
to a patient, with the line's length being the patient's survival time in the trial. The left hand end of each line corresponds
to the calendar time a patient was recruited. Filled and non-filled circles correspond to an event having occurred and not,
respectively.

The trial starts recruiting at some time t0 and an interim analysis is performed at time t1. In Sections 4 and 5, we will
take t1 to correspond to when a prespecified number of events is observed. Alternatives include t1 being a prespecified
date.3,25 Stage 1 consists of the data that are used in the interim analysis, with the survival times being the lengths of
continuous lines in Figure 2. As described below, we obtain estimates from these data based on the distribution of the
score statistic. Estimates based on the distribution of the score statistic are similar to those from the Cox's proportional
hazards model.26 The choice of the model used to obtain estimates is discussed in Section 6. Let S1,j and V1,j (j = 1,… ,K)
be the score statistic and Fisher information, respectively, obtained from analyzing partition j stage 1 data at t1. Based on
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F I G U R E 2 Various time points in the adaptive design with time to event data

the score statistic theory, asymptotically S1,j ∼ N(𝜃jV1,j,V1,j). Note that the estimator �̂�1,j defined by S1,j∕V1,j is N(𝜃j, 𝜎
2
1,j),

where 𝜎2
1,j = 1∕V1,j (for example, see chapter 3 of Whitehead27 and chapter 13.4 of Jennnison and Turnbull28).

Based on the stage 1 observed value for the vector (�̂�1,1,… , �̂�1,K)′, the trial stops for futility or continues to stage 2
with F or some part of F. Various selection rules are described in Section 2.3. Stage 2 patients are recruited only from the
selected partitions. Recruitment and follow-up of stage 2 patients stops at calendar time t2. In Sections 4 and 5, we take t2
to correspond to when a prespecified number of events from stage 2 patients is observed but alternatives such as t2 being
a prespecified date can be used. In Figure 2, the survival times of stage 2 patients correspond to the lengths of the dotted
lines.

At the interim analysis, some stage 1 patients will not have had the event of interest. As following these patients
further gives estimators with smaller standard errors, we assume that they are followed up to time t̃1. The choice of t̃1 is
described below. We refer to the data collected from stage 1 patients after the interim analysis as the incremental data.

For j ∈  , let SNj and VNj denote the score statistic and Fisher information obtained from all patients recruited in
partition j with the survival times and status for stages 1 and 2 patients determined at times t̃1 and t2, respectively.
Similar to above, �̂�Nj defined by SNj∕VNj is asymptotically N(𝜃j, 𝜎

2
Nj
), where 𝜎2

Nj
= 1∕VNj . In the next paragraph, we will

describe a strategy for achieving approximate independence between data collected before and after the interim anal-
ysis. When independence can be assumed, score statistic theory has been extended to a setting with repeated analyses
of data, such as analyzing all patients' data at t1 and t2.26,29 This gives SNj − S1,j independent of S1,j and asymptot-
ically N(𝜃j(VNj − V1,j),VNj − V1,j).26,29,30 It follows that �̂�2,j defined as (SNj − S1,j)∕(VNj − V1,j) is N(𝜃j, 𝜎

2
2,j), where 𝜎2

2,j =
1∕(VNj − V1,j). Note that

�̂�Nj =
𝜎2

2,j�̂�1,j + 𝜎2
1,j�̂�2,j

𝜎2
1,j + 𝜎2

2,j

. (1)

Estimators developed in Section 3 require SNj − S1,j to be independent of S1,j (the independent increment structure),
where test statistics based on the data from before and after the interim analysis are independent.3,31,32 However, adap-
tation such as subpopulation selection may induce correlation.33 If, as we propose above, ti (i = 1, 2) depends on stage
i patients only, conditional on the selection made, stage 2 patients' data are independent of S1,j and so any correlation
between SNj − S1,j and S1,j is assumed to be induced by the stage 1 patients' incremental data. Some authors ignore this
correlation noting that the independent increment structure assumption holds approximately. We follow Jenkins et al3
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who, in addition to setting t1 and t2 independent of each other, for example, as described above, suggest improving the
independent increment structure assumption by fixing in advance the rule for how long the stage 1 patients without
events of interest at t1 are followed post stage 1. This ensures independence of Fisher information for stage 1, stage 2, and
the incremental data. We suggest two rules for fixing the length of post stage 1 follow-up, and hence t̃1. These rules are
valid when t1 and t2 are determined as above, that is independently, and they (t1 and t2) are either prespecified dates, cor-
respond to observation of prespecified numbers of events or are based on any other method for prespecifying duration of
trials with time-to-event data.3,25 In the first, a fixed time between t1 and t̃1 is prespecified. This rule achieves approximate
independence for whether or not stage 1 patients from the dropped partitions without events at t1 are followed until t̃1,
though this should be specified before the trial and also, they should only be followed as part of the trial if they continue
with the allocated treatments and adhere to the trial protocol. In the second rule, t̃1 is the time when a prespecified num-
ber of events from stage 1 patients without events at t1 is obtained. For the approximate independence to work well, this
rule requires that the patients from dropped partitions are followed until t̃1. Therefore, we only recommend this rule if it is
plausible for the stage 1 patients from the dropped partitions to continue with the allocated treatments and adhere to the
trial protocol. In Sections 4 and 5, we used the first rule. To assess the approximate independence assumption with this
approach, we computed correlations between �̂�1,j and �̂�2,j for some scenarios in Section 5 (not presented) and obtained
similarly small values as Tsiatis et al.29 Note that if t1 and t2 correspond to prefixed dates, it is valid to set t̃1 = t2.

In some cases, such as when t2 corresponds to the time when a prespecified number of events from stage 2 patients
is obtained and t̃1 is a prefixed date, it is possible to have t̃1 > t2. In practice, this is undesirable since stage 2 patients'
follow-up information beyond t2 is not included in data analysis. Therefore, in practice, t̃1 should be fixed in such a way
that t̃1 > t2 is very unlikely.

In this section, we have made the assumption that, for j (j = 1,… ,K), �̂�1,j ∼ N(𝜃j, 𝜎
2
1,j), and for each j ∈  , �̂�Nj ∼

N(𝜃j, 𝜎
2
Nj
) and �̂�2,j ∼ N(𝜃j, 𝜎

2
2,j). We emphasize that these distributional assumptions are conditional on the selection made.

For example, while deriving unbiased estimators in Section 3.1, we will adjust for subpopulation selection by taking
the expectation over the region of the decision made based on the interim analysis results. Also, since there is no over-
lap of patients among the partitions, estimates from different partitions are independent. For example, for j ≠ j′, �̂�1,j is
independent of each of �̂�1,j′ , �̂�Nj′ , and �̂�2,j′ .

2.3 Selection rules

Estimators proposed in this article can be used to adjust for any subpopulation selection rule based only on the stage 1
observed value for the vector (�̂�1,1,… , �̂�1,K)′. In this section, we review selection rules suggested by various authors. The
first is appropriate for the two-stage adaptive threshold enrichment design described in paragraph three of Section 2.1.6,7

Let 𝜏s denote the subpopulation consisting of partitions 1 to s and let p′
j =

∑j
i=1 pi (j = 1,… ,K). To maximize the number of

partitions tested in stage 2, we continue with the largest subpopulation 𝜏s (s = 1,… ,K) such that
∑s

j=1 pj�̂�1,j∕p′
s ≤ b, where

b is a prespecified value. Note that although
∑s

j=1 pj�̂�1,j∕p′
s is not interpretable, it can give an indication of the treatment

effects in the s partitions included. Figure 3A shows the decision regions for this rule when K = 2 and p1 = p2. The filled
square is an example of a case where both partitions would continue to stage 2, while the filled circle is an example of a
case where only partition 1 would continue.

The selection rule just described is appropriate when a monotonic relationship between the biomarker and the
treatment effect is expected. However, as described in Section 2.1, sometimes it is not expected that the relationship is
monotonic. In such a case, for a binary biomarker, a selection rule should enable the trial to continue to stage 2 with
partition 1 (biomarker +ve), partition 2 (biomarker -ve) or both (F). As described in Section 2.1, this can be extended to
K > 2. A common selection rule in this setting is to decide whether partition j (j = 1,… ,K) continues to stage 2 based
on �̂�1,j only.12 Thus, with a futility boundary, partitions with stage 1 estimates below b continue to stage 2. The decision
regions for this rule when K = 2 are shown in Figure 3B.

We will demonstrate the estimators developed in Section 3 with the above two selection rules. Other selection
rules4,5,12,34 are reviewed in the supplementary material. For all selection rules, for some values of (𝜃1,… , 𝜃K), even when
F is selected, the naive estimates are biased because of subpopulation selection. The new estimators in Section 3 correct
for this bias since they condition on the selection rule, the selected partitions, and the observed data. The estimators also
correct for bias appropriately when the selection rule does not reflect the true underlying relationship between biomarker
and treatment effect.
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(A) (B)

F I G U R E 3 Decision regions for two selection rules when K = 2. The continuous lines are the decision boundaries. The filled circle and
square are two possible stage 1 results that lead to selecting partition 1 and F, respectively. The edges of the vertical dashed and dotted lines
give the bounds for estimating 𝜃1 that are denoted by l1 (lower bound) and w1 (upper bound). The edges of the horizontal dashed lines give
the bounds for estimating 𝜃2 and are denoted by l2 (lower bound) and w2 (upper bound). A, Adaptive threshold enrichment design. B,
Selecting partitions independently

2.4 Naive estimation

We will consider �̂�Nj , given by expression (1), as the naive point estimator. Note that �̂�Nj is not simply the estimate based on
all data available at the end of the trial because, as described in Section 2.2, it is based on the data where the independent
increment is assumed. For the special case of t̃1 = t1, the bias of �̂�Nj corresponds to the subpopulation selection bias. The
difference in biases for �̂�Nj computed at t̃1 = t1 and �̂�Nj computed at t̃1 > t1 gives an indication of the bias attributable to
the incremental data.

For the naive confidence interval, we assume that for each j ∈  , the naive estimator �̂�Nj ∼ N(𝜃j, 𝜎
2
Nj
). Consequently,

for each j ∈  , the two sided naive confidence interval for 𝜃j that splits 𝛼 equally among the || selected partitions is

�̂�Nj
±z𝛼∕(2||)𝜎Nj , (2)

where z𝛼∕(2||) = Φ−1 {1 − 𝛼∕(2||)}. This naive confidence interval addresses the issue of the independent increments as
described in Section 2.2 and adjusts for multiple hypotheses but not the subpopulation selection.

3 BIAS ADJUSTED ESTIMATORS

3.1 New approximately conditionally unbiased point estimator

To adjust for the subpopulation selection, for each j ∈  , we derive a UMVCUE for 𝜃j. The UMVCUE is based on the
Rao-Blackwell theorem, which was initially proposed in adaptive designs by Cohen and Sackrowitz18 and subsequently
extended to several treatment and subpopulation selection rules.4,6,19-22,35,36

Conditional on the selection made, for each j ∈  , the estimator �̂�2,j provides an unbiased estimator for 𝜃j. By the
Rao-Blackwell theorem, the UMVCUE is the expected value of this estimator given the sufficient and complete statistic.
Here, the UMVCUE is conditional on the subpopulation selection rule used, the partitions selected to continue to stage
2 and the observed data. This is reflected in the UMVCUE for 𝜃j by its expression having terms for the lower and upper
bounds for �̂�1,j that are determined based on the selection rule, the selected partitions, and the observed stage 1 data.
Since the lower and upper bounds depend on the stage 1 data, they are random variables which we denote by Lj and
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Wj, with observed values lj and wj, respectively. Let p′
j =

∑j
i=1 pi (j = 1,… ,K). For the adaptive threshold enrichment

design selection rule in Section 2.3, when a subpopulation consisting of s (s = 1,… ,K) partitions is selected, for each

j ∈ {1,… , s} =  , wj =
(

p′
sb −

∑s
i=1
i≠j

pi�̂�1,i

)/
pj (the term

∑s
i=1
i≠j

pi�̂�1,i is set to zero when s = 1) and

lj = max
⎧⎪⎨⎪⎩

p′
s+1b −

∑s+1
i=1
i≠j

pi�̂�1,i

pj
,

p′
s+2b −

∑s+2
i=1
i≠j

pi�̂�1,i

pj
,… ,

p′
Kb −

∑K
i=1
i≠j

pi�̂�1,i

pj

⎫⎪⎬⎪⎭
,

with lj set to be −∞ if all partitions are selected. For the selection rule of continuing to stage 2 with any partition whose
treatment effect is ≤ b (second rule in Section 2.3), for all j ∈  , lj = −∞ and wj = b. For K = 2, the points corresponding
to the expressions for lj and wj are illustrated in Figure 3. For estimating 𝜃1, l1 and w1 are the lower and upper edges of the
vertical dashed and dotted lines that go through the stage 1 estimates, respectively. For estimating 𝜃2, l2 and w2 are the
right and left hand edges of the horizontal lines that go through the stage 1 estimates, respectively. The details of how the
bounds for the adaptive threshold enrichment design selection rule and some other selection rules suggested in literature
are derived are given in the supplementary material.

Let Q denote the event of the observed data and  . Suppose that || = s and that the s selected parti-
tions are indexed 1,… , s. Define �̂�N∗

1
= (𝜎2,1∕𝜎1,1)�̂�1,1 + (𝜎1,1∕𝜎2,1)�̂�2,1, the vector (�̂�N∗

1
, �̂�1,2,… , �̂�1,K , �̂�2,2,… , �̂�2,s)′

is sufficient and complete for estimating 𝜃1. Therefore, the UMVCUE for 𝜃1 is the expression for
E[�̂�2,1|�̂�N∗

1
, �̂�1,2,… , �̂�1,K , �̂�2,2,… , �̂�2,s,Q ]. The expression is obtained by deriving the conditional density

fQ
(�̂�2,1|�̂�N∗

1
, �̂�1,2,… , �̂�1,K , �̂�2,2,… , �̂�2,s) with E[�̂�2,1|�̂�N∗

1
, �̂�1,2,… , �̂�1,K , �̂�2,2,… , �̂�2,s,Q ] obtained by deriving the expression

for ∫ �̂�2,1fQ
(�̂�2,1|�̂�N∗

1
, �̂�1,2,… , �̂�1,K , �̂�2,2,… , �̂�2,s)d�̂�2,1. The UMVCUEs for the effects in the other selected partitions are

obtained similarly. We show in the supplementary material that for each j ∈  , the UMVCUE for 𝜃j is given by

�̂�Uj = �̂�Nj −
𝜎2

2,j√
𝜎2

1,j + 𝜎2
2,j

𝜙(g(Lj)) − 𝜙(g(Wj))
Φ(g(Lj)) − Φ(g(Wj))

, (3)

where g(x) =
√

𝜎2
1,j+𝜎

2
2,j

𝜎2
1,j

(
�̂�Nj − x

)
, and 𝜙 and Φ denote the density and distribution functions of a standard normal,

respectively.
For the special case of t̃1 = t1, �̂�Uj is an asymptotic UMVCUE for 𝜃j. However, when patients without events at t1 are

followed in stage 2, that is, t̃1 > t1, �̂�Uj is an approximate asymptotic UMVCUE for 𝜃j meaning in some scenarios it may
have small biases because as described in Section 2.2, the independent structure which is assumed in the derivation of
�̂�Uj is an approximate assumption. Like any estimator based on the asymptotic score statistic distribution(s), �̂�Uj may be
biased because score statistic distributions, such as those summarized in the last paragraph of Section 2, are asymptotic
distributions that assume the value of 𝜃j is close to zero, that is, a small effect size. These aspects will be explored further
in a simulation study in Section 5.

3.2 A new method for constructing confidence intervals

In this section, we construct new simultaneous confidence intervals that are based on the duality between hypothesis
testing and confidence intervals. To account for the stage 1 patients that are followed further in stage 2 because they did
not have an event at the interim analysis, we propose hypothesis testing using the strategy suggested by Jenkins et al.3
They combine evidence from stages 1 and 2 using a P-value combination function and adjust for multiple hypotheses by
the closure principle (CP).37 Let Hj (j = 1,… ,K) denote the elementary null hypothesis 𝜃j = 0 and HI (I ⊆ {1,… ,K}) the
intersection null hypothesis ∩i∈IHi, where for simplicity, for example, we write H12 for H{1,2}. We derive the expressions
for the lower and upper bounds separately based on one-sided tests. For the lower bounds, the alternative hypothesis
for HI (I ⊆ {1,… ,K}) is that for at least one j ∈ I, 𝜃j > 0 and we denote the corresponding one-sided P-value for HI
obtained using data from patients recruited in stage k (k = 1, 2) only by p+

k,I . Note that 𝜃j > 0 indicates that the experimen-
tal treatment is inferior in partition j and that a lower bound below 0 is not sufficient to conclude that the experimental
treatment is significantly beneficial. The P-value p+

k,I (k = 1, 2) is obtained using stage k patients only since the P-value
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combination functions assume that p+
1,I and p+

2,I are independent. Therefore, p+
2,I is computed by separately analysing the

patients whose survival times correspond to the wholly dotted lines in Figure 2. For the selected partitions, while com-
puting p+

1,I using the stage 1 patients, so as to include the incremental data in hypothesis testing, following Jenkins et al,
the survival time and status are determined at time t̃1. Consequently, the survival times for patients with events at the
interim analysis correspond to the continuous lines in Figure 2, while the survival times for patients without events at
the interim analysis correspond to the lines consisting of continuous and dashed segments. While computing p+

1,I , if the
patients in the dropped partitions are followed after the interim analysis, as for the selected partitions, their survival times
and status are determined at t̃1. However, if the patients in the dropped partitions are not followed after the interim anal-
ysis, their survival times and status are determined at t1 in the computation of p+

1,I so that their survival times correspond
to the continuous line segments in Figure 2. We described in Section 2.2 how to decide whether to follow up to t̃1 stage 1
patients from dropped partitions. For stage k (k = 1, 2) patients, since there is no overlap in the data used to obtain p+

k,I and
the data used to compute p+

k,i′ (i ≠ i′), we recommend the Šidak adjusted P-value given by p+
k,I = 1 − (1 − mini∈I{p+

k,i})
|I|

because its type I error rate is exact. Using the weighted inverse normal method38 to combine the evidence from the two
stages, the combined P-value C(p+

1,I , p+
2,I) = 1 − Φ{𝜔1Φ−1(1 − p+

1,I) + 𝜔2Φ−1(1 − p+
2,I)}, where 𝜔1 and 𝜔2 are prespecified

weights such that 𝜔2
1 + 𝜔2

2 = 1. We take 𝜔k (k = 1, 2) to be the square root of the proportion of the prespecified total num-
ber of events from stage k patients. To control the type I error rate by the CP, it is concluded that 𝜃j > 0 (j = 1,… ,K) if
all hypotheses HI (I ⊆ {1,… ,K}), with j ∈ I are rejected or equivalently if the adjusted P-value maxI{C(p+

1,I , p+
2,I)} ≤ 𝛼∕2,

with j ∈ I. To allow for the dropped partitions, the stage 2 P-value p+
2,I is obtained using the test for HI∩ , with p+

2,I set to
be 1 if I ∩  = ∅.

Stage 1 pairwise P-values p+
1,j (j = 1,… ,K) that are required in the expression for the Šidak adjusted P-value, p+

1,I ,
can be obtained using statistics similar to those in Section 2.2. Let S̃1,j and Ṽ1,j (j = 1,… ,K) denote the score statistic
and Fisher information for partition j stage 1 patients with survival time and status evaluated at t̃1 if partition j patients
without events at t1 are followed in stage 2 until t̃1 and at t1 if partition j patients without events at t1 are not followed in
stage 2. Defining 𝜃1,j = S̃1,j∕Ṽ1,j and �̃�2

1,j = 1∕Ṽ1,j, p+
1,j = 1 − Φ(𝜃1,j∕�̃�1,j). Similarly, for each j ∈  , stage 2 pairwise P-value

p+
2,j that is required in the expression for the Šidak adjusted P-value, p+

2,I , is computed using the score statistic and Fisher
information obtained by separately analyzing the patients corresponding to the dotted lines in Figure 2.

Magirr et al23 developed simultaneous confidence intervals following two-stage adaptive clinical trials with treatment
selection that are based on the duality between confidence intervals and hypothesis testing. They assume a hypothesis
testing approach that is similar to that we have proposed above. Following their work, we give simultaneous confidence
intervals following two-stage adaptive clinical trials with subpopulation selection that are compatible with the above
testing procedure. Magirr et al describe the theory of how to obtain a confidence region with the correct coverage and
subsequently how to extract simultaneous confidence intervals. We do not repeat the theory and only focus on giving the
expressions for the confidence intervals in our setting. We give the expressions assuming that the Šidak adjustment is used
for the intersection hypotheses. The expressions are functions of the P-values for the generalized null hypotheses. Let
Hj(𝜃∗j ) denote the generalized null hypothesis 𝜃j = 𝜃∗j and for I ⊆ {1,… ,K}, we write HI(𝜃∗) for the generalized intersec-
tion hypothesis ∩i∈IHi(𝜃∗i ). For an observed stage k (k = 1, 2) dataset xk, the generalized P-value for HI is p+

k,I(𝜽
∗, xk) and is

computed as Prob(Xk ≥ xk;𝜽∗), where 𝜽∗ = (𝜃∗1 ,… , 𝜃∗K)
′. The combined P-value for HI(𝜃∗) is C(p+

1,I(𝜽
∗, x1), p+

2,I(𝜽
∗, x2)) =

1 − Φ{𝜔1Φ−1(1 − p+
1,I(𝜽

∗, x1)) + 𝜔2Φ−1(1 − p+
2,I(𝜽

∗, x2))}. The Šidak adjusted generalized P-value, p+
k,I(𝜽

∗, xk) (k = 1, 2), is
given by 1 − (1 − mini∈I{p+

k,i(𝜃
∗
i , xk)})|I|, where p+

k,i(𝜃
∗
i , xk) is the generalized pairwise P-value. As an example, p+

1,j(𝜃
∗
j , x1)

(j = 1,… ,K) is given by 1 − Φ((𝜃1,j − 𝜃∗j )∕�̃�1,j).
Let p+

M be the maximum stage 1 P-value for all the intersection hypotheses HI (I ⊆ {1,… ,K} ∖ ). For example if K = 4
and  = {1, 2}, p+

M = max{p+
1,3, p+

1,4, p+
1,34}. If all partitions are selected to continue to stage 2 so that {1,… ,K} ∖  = ∅, p+

M
is set equal to 0. If at the end of stage 2 it is concluded that 𝜃j > 0 for all j ∈  , then for each j ∈  , the lower bound for
the effect in partition j is given by

𝜃j,L = max
[
0, sup

{
v ∶ C

(
max{p+

M , 1 − (1 − p+
1,j(v, x1))K}, 1 − (1 − p+

2,j(v, x2))||
)
≤ 𝛼∕2

}]
. (4)

Note that p+
k,j(v, xk) (k = 1, 2) is a generalized pairwise P-value for Hj and so it is computationally quick to find

the root.
If at the end of the trial, for some j ∈  , it is not concluded that 𝜃j > 0, the expression for the lower bound of the effect

in a partition depends on the outcome of the hypothesis testing. For j ∈  where it is concluded that 𝜃j > 0, the lower
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bound for 𝜃j is

𝜃j,L = 0. (5)

For HI (I ⊆ {1,… ,K}), based on stage k (k = 1, 2) patients' data, we define p+
k,I(j, v) = Prob(Xk ≥ xk;𝜽j,v), where 𝜽j,v is a K ×

1 vector whose jth entry is v and the other entries are zero. For I ⊆ {1,… ,K} with j ∈ I, we define 𝜃I
j,L = ∞ if C(p+

1,I , p+
2,I) <

𝛼∕2 and 𝜃I
j,L = sup{v ∶ C(p+

1,I(j, v), p+
2,I(j, v)) ≤ 𝛼∕2} otherwise. For j ∈  where it is not concluded that 𝜃j > 0, the lower

bound for 𝜃j is

𝜃j,L = min
I⊆{1,…,K}

{𝜃I
j,L}. (6)

Note that in this case where at the end of the trial, for some j ∈  , it is not concluded that 𝜃j > 0, the confidence intervals
for the effects in the partitions where it is concluded that the log HRs are greater than 0 are not informative. This is
because from expression (5), the lower bounds for those partitions are fixed to be 0 regardless of the values of the point
estimates and the adjusted P-values. This is a drawback of the method.23 We emphasize that the lower bounds obtained
using expression (6) are informative and those obtained using expression (4) would be expected to be informative most
of the time. So non-informative lower bounds are mostly obtained when more than one partition is selected to continue
to stage 2 and it is concluded that the log HR in at least one partition is not greater than 0 (the lower bounds in such
partitions are informative) and it is concluded that the log HR in at least one partition is greater than 0 (the lower bounds
for such partitions are set to be 0 and hence non-informative).

To derive the upper bounds, the alternative hypothesis for HI (I ⊆ {1,… ,K}) is that for at least one j ∈ I, 𝜃j < 0. Note
that, when the upper bound is less than 0, then the experimental treatment is significantly superior. Let 𝛿∗j = −𝜃∗j and
𝛿k,j = −𝜃k,j, the stage 1 “conventional” and generalized P-values in this case are p−

1,j = Φ(𝜃1,j∕�̃�1,j) = 1 − Φ(𝛿1,j∕�̃�1,j) and
p−

1,j(𝜃
∗
j , x1) = Φ((𝜃1,j − 𝜃∗j )∕�̃�1,j) = 1 − Φ((𝛿1,j − 𝛿∗j )∕�̃�1,j), respectively. Note that p−

1,j is the P-value for the hypothesis test
𝜃j = 0 against 𝜃j < 0 as well as for the hypothesis test 𝛿j = 0 against 𝛿j > 0, where 𝛿j = −𝜃j. Therefore, as we do in Sections 4
and 5, the upper bound for the effect in partition j, 𝜃j,U , can be obtained as follows. Change the signs of the point estimates,
for example, changing 𝜃1,j to −𝜃1,j, and then obtain the lower bound, 𝛿j,L, for 𝛿j = −𝜃j as described for 𝜃j above. The upper
bound for the effect in partition j is 𝜃j,U = −𝛿j,L. As with the lower bounds, the upper bounds can be non-informative.

4 EXAMPLE

To illustrate how to compute the various estimates, we construct a two-stage enrichment trial using data from a
single-stage trial that compared intravenous methotrexate (C-MTX) and high-dose methotrexate (HDMTX) in the treat-
ment of T-cell acute lymphoblastic leukemia (T-ALL) in children.10 The numbers of patients allocated to C-MTX and
HDMTX were 519 and 512, respectively. Based on the clinical features, the patients were categorized as low risk (LRi),
intermediate risk (IRi), and high risk (HRi). The analysis included assessing separate effects in 109 LRi, 707 IRi, and 215
HRi patients and so we take the risk level as the biomarker. So as not to have too few events in each stage of the constructed
example, we use disease free survival (DFS). The conclusion from the trial was that C-MTX is superior to HDMTX. The
observed advantage of C-MTX over HDMTX increased with risk level and was statistically significant for intermediate
and high risk levels. Although the aim of the trial was to assess which of C-MTX and HDMTX is superior, for the con-
structed example, we take HDMTX and C-MTX to be the control and experimental treatment, respectively. Also, because
of the few LRi patients and events from them, for the constructed example, we combine LRi and IRi patients into one
category. Therefore, we have two partitions, one consisting of the HRi patients and the other consisting of the LRi and
IRi (LRi/IRi) patients.

We take the futility boundary b = 0. Based on the observed monotonic relationship between treatment effect and risk
level on the initial categorization (LRi, IRi, and HRi), the adaptive threshold enrichment design could be used. For this
design, based on Figure 1, partitions 1 and 2 correspond to HRi and LRi/IRi patients, respectively. If for this design we
use the first selection rule in Section 2.3, we need to specify the prevalences of the partitions, which we have assumed to
be known. In this illustrative example, we use the observed prevalences in the entire trial (p1 = 0.2 and p2 = 0.8). Since
we do not pool estimates from multiple partitions, the estimates remain valid for any set of prevalences. However, if
better guesses of the prevalences are available, for example, from historical data, they could be used as they influence the
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T A B L E 1 Summary of the estimates from the constructed example

Stage 1a All dataa Incrementa UMVCUE (�̂�Uj
)a Confidence intervals

�̂�1,j (𝝈2
1,j
) �̂�Nj

(𝝈2
Nj
) �̂�2,j (𝝈2

2,j
) ATb INDc Naive Duality

Partition 1 −0.902 (0.191) −0.746 (0.089) −0.609 (0.167) −0.737 (−0.631) (−1.415, −0.077) (−1.499, 0.000)

Partition 2 −0.419 (0.103) −0.362 (0.053) −0.301 (0.108) −0.359 (−0.335) (−0.876, 0.153) (−0.911, 0.093)

a j = 1 for partition 1 and j = 2 for partition 2.
b AT=Adaptive threshold design.
c IND=Independently selecting partitions.

probability of selecting the desired partitions. The selection rule of continuing with any partition whose stage 1 estimate
is ≤ b can also be used with this example. We will demonstrate how to compute estimates based on both selection rules.

Patients were recruited in 2720 days, the last follow-up was 3644 days after recruitment started, and there were 122
events. We assume that the interim analysis was conducted after 60 events (21 in partition 1 and 39 in partition 2), which
corresponds to 2176 days after recruitment started and when 80% of the patients (stage 1 patients) had been recruited.
The number of events from the 20% of the patients who were recruited after the interim analysis (stage 2 patients) is
31 (13 in partition 1 and 18 in partition 2). The number of events from stage 1 patients who did not have events at the
interim analysis was 31 (11 in partition 1 and 20 in partition 2). The last follow-up of stage 2 patients was 3644 days from
when the trial first recruited. We assume that it was prespecified that the follow-up of stage 2 patients will stop after
31 events were observed from them and that this happened 3644 days from when recruitment started. This assumption
enables us to describe how t̃1 that is different from t2 can be prespecified, and the consequences of this. We assume that
it was prespecified that stage 1 patients without events at the interim analysis will be followed for 3.5 years after the
interim analysis, which corresponds to 3455 days from when recruitment started. This resulted in not including in the
final analysis one DFS event from stage 1 patients who did not have events at t1. Note that t1, t̃1, and t2 correspond to
calendar dates 2176, 3455, and 3644 days from the date of first enrolment, respectively.

Details of formatting the data and the R39 code used to analyze them are provided in the supplementary material.
The estimates are summarized in Table 1. The stage 1 estimates in partitions 1 and 2 are �̂�1,1 = −0.902 and �̂�1,2 = −0.419,
respectively. For the adaptive threshold enrichment design selection rule, since (p1�̂�1,1 + p2�̂�1,2) = −0.516 < b (= 0), both
partitions (F) are selected to continue to stage 2. The naive estimates for partitions 1 and 2 are �̂�N1 = −0.746 and �̂�N2 =

−0.362, respectively. Since F is selected, from Section 3.1, l1 = l2 = −∞, w1 =
(

p′
2b −

∑2
i=1
i≠1

pi�̂�1,i

)/
p1 = (b − p2�̂�1,2)∕p1 =

(0 − [0.8 × −0.419])∕0.2 = 1.676.Similarly, w2 = (b − p1�̂�1,1)∕p2 = 0.226. For example, for partition 1, substituting �̂�Nj , 𝜎
2
1,j,

𝜎2
2,j, Lj and Wj in Equation (3) with �̂�N1 = −0.746, 𝜎2

1,1 = 0.191, 𝜎2
2,1 = 0.167, l1 = −∞, and w1 = 1.676, respectively, the

UMVCUE for the effect in partition 1 is �̂�U1 = −0.737. Similarly, the UMVCUE for the effect in partition 2 is �̂�U2 = −0.359.
The UMVCUEs are closer to zero than the corresponding naive estimates. With the selection rule of continuing with any
partition whose stage 1 estimate ≤ b(= 0), F is selected since �̂�1,1 = −0.902 < 0 and �̂�1,2 = −0.419 < 0. From Section 3.1,
l1 = l2 = −∞ and w1 = w2 = b = 0. All the other quantities to substitute in Equation (3) are the same as for the adaptive
threshold rule. The UMVCUEs for the rule of continuing with any partition whose the observed stage 1 effect is ≤ 0
(independently selecting partitions) are closer to zero ( �̂�U1 = −0.631 and �̂�U2 = −0.335) than the corresponding naive
estimates and the UMVCUEs for the adaptive threshold design. This indicates that the naive estimates may have bigger
biases when a partition is selected independent of the observed effects in the other partitions compared to when partitions
are selected using the adaptive threshold design selection rule.

The naive and duality confidence intervals are conditional on the number of partitions selected and not the selection
rule used to select the partitions. Hence, since F was selected with the above two selection rules, the naive and duality
confidence intervals are the same for the two selection rules. For the naive confidence interval, for 𝛼 = 0.05, z𝛼∕(2||)
in expression (2) is z𝛼/(2×2) = 2.241. The values for �̂�Nj and 𝜎Nj (j = 1, 2) are given in Table 1. Consequently, the naive
confidence intervals for the effects in partitions 1 and 2 are (−1.415, −0.077) and (−0.876, 0.153), respectively. For the
duality confidence intervals, we take the weights 𝜔1 =

√
0.75 and 𝜔2 =

√
0.25. These are approximately proportional to

the number of events from stages 1 and 2 patients, which is optimal in combining stages 1 and 2 evidence.38 This assumes
that, in advance, we could tell how many events will be observed from patients recruited in each stage. In practice, it may
not be possible to specify optimal weights. Since there are two partitions, the null hypotheses tested are H1(𝜃1 = 0), H2(𝜃2 =
0), and H{1,2}(𝜃1 = 𝜃2 = 0). For the lower bound, the alternative hypothesis for Hj (j = 1, 2) is 𝜃j > 0, while the alternative
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hypothesis for H{1,2} is 𝜃1 > 0 or 𝜃2 > 0. The stagewise and the combined P-values are given in the supplementary material
(Figure S2). The adjusted P-values for partitions 1 and 2 are both equal to 0.998 so that we do not conclude the effects
are greater than 0. Therefore, to get the lower bounds of the effects in both partitions, we use expression (6) giving the
lower bounds for the effects in partitions 1 and 2 as −1.499 and −0.911, respectively. For the upper bound, the alternative
hypothesis for Hj (j = 1, 2) is 𝜃j < 0, while the alternative hypothesis for H{1,2} is 𝜃1 < 0 or 𝜃2 < 0. The stagewise and the
combined P-values are given in the supplementary material (Figure S3). The adjusted P-values for partitions 1 and 2 are
0.0179 and 0.0601, respectively, so that the conclusion is that the log HR in partition 1 is less than 0, while we do not
conclude that the log HR in partition 2 is less than 0. Hence, the confidence interval for the effect in partition 1 is not
informative with upper bound fixed to be 0 by expression (5). When the duality confidence interval upper bound is not
informative, in Section 6, we propose using the naive upper bound to make a decision on the treatment effect. For the
upper bound for the effect in partition 2, we use expression (6) and the last paragraph in Section 3.2 to obtain 0.093.

To assess the impact of a bigger trial and to demonstrate how to use expression (4) to compute duality confidence
intervals' limits, we combined the above data with a bootstrap sample with the same number of patients. The proportion
of events at the interim analysis is the same. The results are in the supplementary material (Table S2 and Section 5.3).
The bias corrections for some of the naive estimates are smaller. This may be attributed to more precise stage 1 estimates,
which may indicate the treatment effects are less than 0 and hence less correction for the futility rule. Also, the log HRs in
both partitions are concluded to be less than 0 and so the duality confidence intervals for the effects in the two partitions
are informative.

5 SIMULATION STUDY

5.1 The simulation study setting

For data generation, we assumed the Weibull distribution with the hazard function for death for treatment i (i = C,E) in
partition j (j = 1,… ,K) parameterized as

hij(t) = 𝜆ij𝛾ij t
𝛾ij
−1
,

where t is time (in days for the simulation study), and 𝜆ij and 𝛾ij are the scale and shape parameters, respectively. In all
simulation scenarios, we considered the case of 𝛾ij = 𝛾 . For two scenarios where the HRs in partitions are the same, but
in one scenario the biomarker is prognostic while in the other the biomarker is not prognostic, the properties of the new
estimators are expected to be the same. Therefore, in all simulation scenarios, we only considered the case of a biomarker
that is predictive but not prognostic taking the scale parameter for the control group in all partitions to be 𝜆Cj = 𝜆C. In
most simulations, we will take 𝛾 = 0.5 but in order to assess the effect of the shape parameter, we will compare some
results for 𝛾 = 0.5 with the cases of 𝛾 = 1 (exponential distribution) and 𝛾 = 1.5.

The log HR in partition j (j = 1,… ,K) is given by 𝜃j = ln
(
𝜆Ej∕𝜆C

)
. In most simulations, we considered four partitions

of equal prevalences (quartiles) and three configurations for (𝜃1, 𝜃2, 𝜃3, 𝜃4)′, which are (0.0198, 0.0198, 0.0198, 0.0198)′,
(−0.2231,−0.0953, 0.3364, 0.4055)′, and (−0.4055,−0.2231,−0.0953, 0)′. Log HRs equal to −0.4055, −0.2231, −0.0953,
0, 0.0198, 0.3364, and 0.4055 correspond to HRs equal to 0.6667, 0.80, 0.9091, 1, 1.02, 1.4, and 1.5, respectively. In all
simulations, we set the futility boundary b = 0.

Sample sizes in the simulations are selected such that a power of approximately 80% would be obtained in a
single-stage one-year trial with a HR of 0.8. This corresponds to a setting typical of many oncology trials. The hazard
function parameters and the required number of deaths and patients are given in Table 2. For the control arm, we set
the scale parameters so that the median survival time is 400 days, with the scale parameters for the experimental arm
chosen so that 𝜆E∕𝜆C = 0.8. For 80% power, the required number of deaths is 630 in all scenarios, while the required num-
bers of patients are 2060, 2600, and 3300 for 𝛾 = 0.5, 𝛾 = 1.0, and 𝛾 = 1.5, respectively.40 Informed by these sample sizes
for one-year single-stage trials, we considered two-stage trials with an interim analysis after 300 deaths and with stage
2 patients followed until 300 deaths are observed from them. For 𝛾 = 0.5, 𝛾 = 1, and 𝛾 = 1.5, we assumed, respectively,
2200, 2800, and 3400 patients can be recruited uniformly over two years.

We will assess the properties of the various estimators for the case where stage 1 patients without events at t1 are not
followed in stage 2, that is, t̃1 = t1, and for the case where they are followed in stage 2 up to time t̃1 > t1, which corresponds
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Shape parameter Control Experimental Required Required

(𝜸) 𝝀C Median days 𝝀E Median days deaths patients

0.5 ln(2)∕20 400 ln(2)∕25 625 630 2060

1.0 ln(2)∕202 400 ln(2)∕500 500 630 2600

1.5 ln(2)∕203 400 ln(2)∕104 465 630 3300

T A B L E 2 Sample sizes for
1-year single-stage trials

T A B L E 3 Selection probabilities

True log hazard ratios Ideal Partitions selected

(Configuration) selection Distribution 1, 2, 3, and 4 1, 2, and 3 1 and 2 1 Stop

𝜃1 = 𝜃2 = 𝜃3 = 𝜃4 = 0.0198 Stop 𝛾 = 0.5 0.4329 0.0876 0.0764 0.0812 0.3219

(Configuration 1) 𝛾 = 1.0 0.4306 0.0866 0.0752 0.0841 0.3235

𝛾 = 1.5 0.4308 0.0872 0.0766 0.0834 0.3220

𝜃1 = −0.2231; 𝜃3 = 0.3364; 1 and 2 𝛾 = 0.5 0.1838 0.3022 0.3387 0.0756 0.0997

𝜃2 = −0.0953; 𝜃4 = 0.4055 𝛾 = 1.0 0.1830 0.3026 0.3373 0.0758 0.1014

(Configuration 2) 𝛾 = 1.5 0.1850 0.3008 0.3374 0.0765 0.1003

𝜃1 = −0.4055; 𝜃3 = −0.0953; All 𝛾 = 0.5 0.9395 0.0323 0.0146 0.0065 0.0070

𝜃2 = −0.2231; 𝜃4 = 0.0000 𝛾 = 1.0 0.9389 0.0332 0.0140 0.0068 0.0070

(Configuration 3) 𝛾 = 1.5 0.9386 0.0334 0.0144 0.0065 0.0071

a prespecified number of days after t1. Since it is expected that stage 2 is about 1 year, we set t̃1 to correspond to 250 days
after t1 for 𝛾 = 0.5. We choose fewer than 365 days so that it is unlikely that t̃1 > t2. In a real trial, for 𝛾 = 1.0 and 𝛾 = 1.5,
we would also choose t̃1 to correspond to 250 days after t1. However, so that we have approximately the same total number
of events in the simulated trials for 𝛾 = 0.5, 𝛾 = 1.0, and 𝛾 = 1.5, we set t̃1 to correspond to 110 days and 77 days after t1 for
𝛾 = 1.0 and 𝛾 = 1.5, respectively. With these specifications for t̃1, in the selected partitions, the average number of events
at t̃1 for stage 1 patients without events at t1 is approximately 40.

The scenarios we have described in this section cover a subset of the simulations undertaken. Other scenarios are
considered in the last paragraph of Section 5.2 and in Section 5.3. For each scenario, we simulated 100 000 trials. For each
simulated trial, for each selected partition, we computed two naive estimates corresponding to t̃1 = t1 and t̃1 > t1 and
similarly two UMVCUE estimates. We also computed the naive confidence interval and the duality confidence interval.

5.2 Simulation results for the adaptive threshold enrichment design

We first consider the case of selecting partitions to continue to stage 2 using the adaptive threshold enrichment design
selection rule described in Section 2.3. Table 3 shows the simulated probabilities of selecting different partitions under
different settings. The probabilities for 𝛾 = 0.5, 𝛾 = 1.0, and 𝛾 = 1.5 are similar. For the first two configurations, the prob-
abilities of making the ideal decisions (shown in bold in Table 3) are relatively small (32% and 34%, respectively). The
naive estimators have more bias when the ideal decision is not made6 and so the naive estimators would be expected to
have large biases when the probability of making the ideal decision is small.

Table 4 shows the simulated biases and root mean square errors (RMSEs) of the point estimators for 𝛾 = 0.5. Columns
labeled t̃1 = t1 correspond to when stage 1 patients without events at the interim analysis are not followed after t1, while
columns labeled t̃1 > t1 correspond to when stage 1 patients without events at the interim analysis are followed until t̃1.
A positive bias indicates that the estimator is overestimating the true effect size while a negative bias indicates that the
estimator is underestimating the true effect size. We first describe the biases and RMSEs for the naive estimator (�̂�Nj).
For both t̃1 > t1 and t̃1 = t1, �̂�Nj can be positively or negatively biased. The biases for �̂�Nj are smaller when t̃1 > t1 than
when t̃1 = t1. Hence, the incremental data induce negative bias when subpopulation selection bias is positive and the
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incremental data induce positive bias when subpopulation selection bias is negative. In all cases, the RMSEs for �̂�Nj when
t̃1 > t1 are smaller than when t̃1 = t1. Thus, the naive estimator has better properties when patients without events of
interest at the interim analysis are followed further in stage 2. Next, for t̃1 > t1, we compare the naive estimator (�̂�Nj)
to the UMVCUE (�̂�Uj). Estimator �̂�Uj evaluated when t̃1 > t1 is slightly biased in some cases but its biases are smaller
than those for �̂�Nj evaluated when t̃1 > t1, and the differences are big in some cases. Still focusing on when t̃1 > t1, the
RMSEs for �̂�Uj and �̂�Nj are close, sometimes with negligible difference so that when t̃1 > t1, we consider �̂�Uj to be a better
estimator than �̂�Nj since the two estimators have close RMSEs but the former has smaller biases. The summary so far
is that we consider the UMVCUE (�̂�Uj) when t̃1 > t1 to be better than the naive estimator (�̂�Nj) both when t̃1 > t1 and
t̃1 = t1. Finally, we compare �̂�Uj when t̃1 > t1 and when t̃1 = t1. For t̃1 = t1, �̂�Uj is mean unbiased. This is expected since
by derivation, when t̃1 = t1, �̂�Uj is an asymptotic UMVCUE. Although �̂�Uj when t̃1 = t1 is mean unbiased, it has bigger
RMSEs than �̂�Uj when t̃1 > t1. We consider �̂�Uj when t̃1 > t1 to be better than when t̃1 = t1, since in the former, �̂�Uj is only
slightly biased but has smaller RMSEs. The results for the first row in Table 4 for Scenario 1 (𝜃1 = 𝜃2 = 𝜃3 = 𝜃4 = 0.0198),
the first two rows for Scenario 2 (𝜃1 = −0.2231, 𝜃2 = −0.0953, 𝜃3 = 0.3365, 𝜃4 = 0.4055), and the first row for Scenario 3
(𝜃1 = −0.4055, 𝜃2 = −0.2231, 𝜃3 = −0.0953, 𝜃4 = 0) are complemented by Figure 4A-D, respectively. We note that, even in
the cases in Table 4 where �̂�Uj for t̃1 > t1 seems to have noticeably more bias than when t̃1 = t1, the median 50% estimates
and the maximum values for �̂�Uj when t̃1 > t1 are closer to the true value. Hence, the conclusion from Figure 4A-D is
the same as that made from Table 4. Thus the summary from Table 4 and Figure 4 is that, for an adaptive trial with
subpopulation selection, it is better to follow stage 1 patients without events of interest at the interim analysis up to a
prespecified time t̃1 > t1 in stage 2 and estimate the effects in partitions using the approximate asymptotic UMVCUE.
Additionally, we note that for both �̂�Nj and �̂�Uj , the estimators have smaller RMSEs when t̃1 > t1 than when t̃1 = t1. This
feature would be expected in all scenarios since for t̃1 > t1, �̂�Nj and �̂�Uj contain additional information collected from stage
1 patients without events of interest at the interim analysis, which asymptotically are approximately an independent
increment.

Table 5 summarizes the simultaneous properties for the confidence intervals of the effects in the selected partitions
for 𝛼 = 0.05. In most scenarios, the naive confidence regions have at least the desired 95% coverage probability. However,
there are also several scenarios where they do not. Moreover, the “type I error” rate (non-coverage at upper end, which
is defined as the probability that at least one upper bound is less than the true value) seems to be more severe than the
violations of general coverage. Consequently, in general, the naive confidence intervals do not have the desired properties.
For the duality confidence regions, in all scenarios, as desired, the coverage probabilities for the confidence regions are
at least 95%. The confidence regions are not symmetric but the probabilities that at least one upper bound is less than
the true value are below the desired 2.5%. However, these probabilities tend to be very small compared to the target 2.5%.
This is partly due to the non-informative upper bounds. Hence, although the simultaneous duality confidence intervals
have the desired coverage probabilities and type I error rates, they may be non-informative.

Results for other scenarios (𝛾 = 1, 𝛾 = 1.5, slower recruitment rate, more events from stage 1 patients without events
at t1, fewer events in a trial and conducting subpopulation earlier in the trial) are given in the supplementary material
(Section 7, Tables S4 to S17, and Figures S5 to S11). In all scenarios, we recommend having t̃1 > t1 and obtaining point
estimates using �̂�Uj . Furthermore, we consider the duality confidence regions to have at least the nominal coverage prob-
abilities and the probabilities that at least one upper bound is less than the true value to be less than the target 2.5% but
usually very small, which is partly explained by non-informative confidence intervals.

5.3 Simulation results for a different selection rule

To assess the characteristics of the various estimators when a different selection rule is used, we performed simula-
tions for the case of continuing with any partition whose stage 1 log hazard ratio estimate is ≤ 0. This corresponds to
the second selection rule in Section 2.3, with b = 0. The other aspects of the simulations are the same as those used to
obtain the results in Table 4. The results for the point estimators for the three configurations of (𝜃1, 𝜃2, 𝜃3, 𝜃4)′, which are
(0.0198, 0.0198, 0.0198, 0.0198)′, (−0.2231,−0.0953, 0.3364, 0.4055)′ and (−0.4055,−0.2231,−0.0953, 0)′ are given in the
supplementary material in Tables S18 to S20, respectively. The biases of the naive point estimator �̂�Nj are positive in all
cases. This is because a partition is selected if it has a positive effect. In several scenarios, biases are larger than in the case
of the adaptive threshold enrichment design (Results in Section 5.2). When t̃1 > t1, the UMVCUE �̂�Uj is slightly biased
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Simulated bias Root mean squared error

Selected �̂�Nj
�̂�Uj

�̂�Nj
�̂�Uj

partitions () Partition t̃1 > t1 t̃1 = t1 t̃1 > t1 t̃1 = t1 t̃1 > t1 t̃1 = t1 t̃1 > t1 t̃1 = t1

True log hazard ratios: 𝜃1 = 𝜃2 = 𝜃3 = 𝜃4 = 0.0198

All 1 0.0423 0.0537 0.0142 0.0012 0.1469 0.1653 0.1514 0.1845

2 0.0406 0.0518 0.0126 −0.0006 0.1466 0.1655 0.1513 0.1856

3 0.0422 0.0531 0.0145 0.0012 0.1472 0.1654 0.1516 0.1846

4 0.0419 0.0529 0.0142 0.0010 0.1472 0.1655 0.1515 0.1846

1, 2, and 3 1 0.0235 0.0289 0.0101 0.0050 0.1322 0.1455 0.1501 0.1939

2 0.0192 0.0237 0.0039 −0.0048 0.1324 0.1450 0.1508 0.1947

3 0.0221 0.0277 0.0075 0.0013 0.1314 0.1442 0.1502 0.1945

1 and 2 1 0.0235 0.0274 0.0074 0.0015 0.1181 0.1268 0.1339 0.1595

2 0.0237 0.0278 0.0079 0.0022 0.1182 0.1266 0.1338 0.1584

1 1 0.0214 0.0241 0.0028 −0.0008 0.0927 0.0969 0.1043 0.1141

True log hazard ratios: 𝜃1 = −0.2231, 𝜃2 = −0.0953, 𝜃3 = 0.3365, 𝜃4 = 0.4055

All 1 0.0765 0.0964 0.0271 0.0010 0.1676 0.1915 0.1656 0.2084

2 0.0697 0.0889 0.0226 −0.0017 0.1602 0.1834 0.1600 0.2020

3 0.0613 0.0767 0.0213 0.0004 0.1475 0.1681 0.1479 0.1855

4 0.0597 0.0746 0.0209 0.0010 0.1462 0.1646 0.1460 0.1797

1, 2, and 3 1 0.0274 0.0334 0.0088 0.0002 0.1392 0.1532 0.1552 0.1948

2 0.0265 0.0332 0.0086 0.0014 0.1367 0.1500 0.1516 0.1891

3 0.0240 0.0295 0.0087 0.0026 0.1276 0.1389 0.1401 0.1712

1 and 2 1 −0.0098 −0.0114 −0.0017 0.0015 0.1207 0.1295 0.1353 0.1573

2 −0.0107 −0.0123 −0.0030 −0.0003 0.1190 0.1276 0.1332 0.1540

1 1 −0.0128 −0.0138 −0.0008 0.0019 0.0942 0.0983 0.1059 0.1149

True log hazard ratios: 𝜃1 = −0.4055, 𝜃2 = −0.2231, 𝜃3 = −0.0953, 𝜃4 = 0

All 1 0.0056 0.0063 0.0010 −0.0018 0.1504 0.1681 0.1534 0.1752

2 0.0062 0.0074 0.0020 0.0000 0.1460 0.1633 0.1485 0.1694

3 0.0068 0.0085 0.0027 0.0013 0.1426 0.1592 0.1451 0.1653

4 0.0057 0.0072 0.0017 0.0004 0.1401 0.1567 0.1426 0.1624

1, 2, and 3 1 −0.0671 −0.0805 −0.0245 −0.0014 0.1498 0.1658 0.1573 0.2004

2 −0.0624 −0.0769 −0.0221 −0.0038 0.1454 0.1619 0.1519 0.1928

3 −0.0574 −0.0678 −0.0189 0.0035 0.1396 0.1551 0.1468 0.1860

1 and 2 1 −0.0652 −0.0769 −0.0190 −0.0033 0.1348 0.1488 0.1363 0.1613

2 −0.0611 −0.0730 −0.0167 −0.0030 0.1291 0.1414 0.1306 0.1532

1 1 −0.0471 −0.0523 −0.0109 −0.0046 0.1001 0.1044 0.1007 0.1067

T A B L E 4 Simulated biases
and root mean squared errors of
the estimators for the log hazard
ratios (𝛾 = 0.5)
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(A) (B)

(C) (D)

F I G U R E 4 Boxplots for estimates in partition 1 (panels A, B, and D) and partition 2 (panel C) when the full population is selected to
continue to stage 2 for Weibull distribution (𝛾 = 0.5). The horizontal dashed and dotted line corresponds to the true log hazard ratio

in some cases but has smaller RMSE than when t̃1 = t1. Hence we recommend having t̃1 > t1 and using �̂�Uj to obtain
estimates.

We expect the magnitudes of the biases for the point estimators for most selection rules that have a futility
element to fall between the biases for the selection rule used in this section and the adaptive threshold selection
rule considered in Section 5.2. This is because the selection rule in this section selects a partition based on the
stage 1 observed effect in that partition only, while the adaptive threshold design considers stage 1 observed effects
in all partitions and also assumes a relationship between the treatment effect and the biomarker value. Conse-
quently, for most selection rules, we expect having t̃1 > t1 and using estimator �̂�Uj as the best way of obtaining point
estimates.

The simultaneous properties of the naive and the duality confidence intervals are summarized in the supplementary
material (Table S21). For the two scenarios where the values for (𝜃1, 𝜃2, 𝜃3, 𝜃4)′ are (0.0198, 0.0198, 0.0198, 0.0198)′ and
(−0.4055,−0.2231,−0.0953, 0)′, unlike the naive confidence regions, the duality confidence regions have at least 95%
coverage and the probabilities that at least one upper bound is less than the true value are less than 2.5%. For the other
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Selected Coverage (Type I error rate)a

True log hazard ratios partitions () Naive Duality

All 94.8 (4.5) 98.3 (1.7)

𝜃1 = 𝜃2 = 𝜃3 = 𝜃4 = 0.0198 1, 2, and 3 96.1 (3.0) 99.1 (0.9)

1 and 2 96.0 (3.1) 99.2 (0.8)

1 96.3 (2.9) 99.6 (0.4)

All 93.0 (6.6) 98.4 (1.5)

𝜃1 = −0.2231, 𝜃2 = −0.0953, 1, 2, and 3 96.0 (3.1) 99.1 (0.5)

𝜃3 = 0.3365, 𝜃4 = 0.4055 1 and 2 96.3 (1.4) 99.2 (0.0)

1 96.1 (1.5) 99.4 (0.0)

All 95.4 (2.6) 98.7 (0.7)

𝜃1 = −0.4055, 𝜃2 = −0.2231, 1, 2, and 3 93.3 (0.3) 97.6 (0.0)

𝜃3 = −0.0953, 𝜃4 = 0 1 and 2 93.8 (0.7) 98.2 (0.0)

1 94.0 (0.9) 98.6 (0.0)

a Type I error is the probability that at least one upper bound is less than the true value.

T A B L E 5 Coverage probability and
type I error rate (Weibull distribution,
𝛾 = 0.5)

scenario of (𝜃1, 𝜃2, 𝜃3, 𝜃4)′ equal to (−0.2231,−0.0953, 0.3364, 0.4055)′, the simulated probabilities (not reported in the
table) for  equal to ∅, {1, 2}, {1} and {2} are 5.9%, 48.1%, 25.5%, and 10.9%, respectively. In these cases that constitute
more than 90%, the duality confidence regions have at least 95% coverage probability and the probabilities that at least one
upper bound is less than the true value are less than 2.5%. For the remaining cases, the naive confidence intervals have
undesirable properties because the coverage probabilities are as small as 88% and the probabilities that at least one upper
bound is less than the true value are as high as 12%. The coverage probabilities for the simultaneous duality confidence
intervals are generally at least the target 95% but the probabilities that at least one upper bound is less than the true value
are mostly above 2.5%, although much smaller than those of the naive confidence intervals. We note that this is driven
by the upper bounds for the treatment effects in partitions 3 and 4. This may be considered to be of less practical impact
since the log hazard ratios in these partitions are above 0 and the upper bounds are also mostly above 0 so that the new
treatment would not be recommended in partitions 3 and 4. The reason that the duality upper bounds for the effects in
partitions 3 and 4 do not show the desired properties is because the hypothesis testing described in Section 3.2 does not
control the type I error rate conditional on the selection made but controls the probability of selecting any partition where
the treatment is not effective and concluding it is effective. When the treatment is effective in some partitions and not in
others, conditional on the selection, the type I error rate is above the target 2.5%. Hence, since we assessed the properties
of the simultaneous confidence intervals conditional on the selection made, tail probabilities for such scenarios can be
above 2.5%.

Based on the selection rule used in this section, we also performed simulations to assess the properties of the
estimators for the case of bigger treatment effects. The simulated probabilities for  = {1, 2, 3, 4} and  = {1, 2, 3}
are 49.8% and 50.1%, respectively. The point estimation results are presented in the supplementary material (Table
S22 and Figure S12). Even in scenarios where the selection bias is negligible, the point estimators are slightly neg-
atively biased when the true hazard ratio is < 0.4. We describe the consequence of this finding in Section 6. We
attribute the bias to the fact that the asymptotic distributions in Section 2.2 are based on the approximation of Tay-
lor's expansion of the likelihood function, and the accuracy improves as the effect size gets closer to zero.27 We
have also assessed the properties of the confidence intervals for a scenario with big treatment effects and where
the probability of having noninformative bounds with the duality confidence intervals is small (results in sup-
plementary material Table S23). For both the naive confidence intervals and the duality confidence intervals, the
probabilities that at least one upper bound is below the true value are smaller than 2.5%. As with point esti-
mates, we attribute this to the underestimation of the treatment effects so that consequently the upper bounds are
underestimated.
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6 DISCUSSION

We have used the Rao-Blackwell theorem to derive a point estimator that adjusts for any subpopulation selection rule
that is based on stage 1 estimates only in two-stage adaptive trials with time to event data. It is an asymptotic UMVCUE if
the patients without events at stage 1 are not followed further in stage 2, while it is an approximate asymptotic UMVCUE
if they are followed further in stage 2. When the stage 2 follow up length for stage 1 patients without events is specified
before the trial, based on our simulation, the approximate asymptotic UMVCUE performed best. Unlike the case of nor-
mally distributed outcomes,4,6 compared with the naive estimator, this estimator did not have markedly higher RMSE
and in some simulation scenarios, it outperformed the naive estimator in terms of RMSE. With time to event data, it is
difficult to explore all factors that influence the properties of the various estimators. However, in our simulations, we con-
sidered several factors that may be encountered in real clinical trials and hence we expect the recommendation that the
approximate UMVCUE is the best estimator to hold in most settings.

We have also described a new method for constructing simultaneous confidence intervals based on the duality between
hypothesis testing and confidence intervals. In simulations, unlike the naive confidence intervals, the confidence regions
corresponding to the new confidence intervals had at least the nominal coverage probability and also the probabilities
that at least one lower bound was below the true value were acceptable. However, for example, as in the results in Table 1,
the new confidence intervals can be non-informative. Focusing on the upper bounds, the non-informative confidence
intervals are obtained in partitions where the treatment is concluded effective whenever in at least one selected partition,
the treatment is not concluded effective. The probability of this happening depends on aspects such as the true treatment
effects in partitions, the interim analysis sample size (events), the overall sample size (events), the selection rule, and the
number of partitions. In the simulations, there was a high probability of this happening since most scenarios consisted
of partitions where the new treatment is not effective and the futility rule only required stage 1 estimates to indicate the
new treatment is as good as the control. More research to develop methods that do not give non-informative confidence
intervals, such as extending existing work,41 is required.

We have assumed that there is no endpoint change between stages 1 and 2, such as using an early endpoint to make
subpopulation selection in stage 1. This is appropriate in disease conditions such as pancreatic cancer where survival
times are short and hence there is no practical advantage of considering an early endpoint in stage 1 and conditions such as
uveal melanoma where an early endpoint does not exist.42 Increasingly, however, whenever practically feasible, adaptive
clinical trials with time to event endpoints as the primary outcome(s) use time to some earlier event or different endpoints
that are observed earlier than the primary outcome(s) to make adaptations in stage 1.12 The UMVCUE developed in this
article can be extended by combining the techniques presented here and the techniques that consider using an early
endpoint to make an adaptation.43,44 For the confidence intervals, the expressions for the new confidence intervals when
there is change of endpoint are exactly the same as those in this article since they apply to any selection rule and hence
no additional methodology is required. The coverage probabilities are, however, likely to be larger than those in this
article since following Kimani et al,45 we expect the coverage probability to be closest to the nominal coverage if the same
endpoint is used for subpopulation selection and estimation.

We have based the methodology on the score statistic. This has the advantage of producing estimates that align with
the commonly used log rank test. However, since the asymptotic distribution of the score statistic holds best when the
log hazard ratio is close to zero, we observed from the simulation study that for the cases where the true hazard ratio is
< 0.4, the proposed approximate UMVCUE underestimates the treatment effect slightly. In real trials, this will have little
impact since it is unlikely that the true hazard ratio is as small as 0.4. For example, for the stem cell therapies where
relatively big treatment effects are observed, a simple online search of “stem cell therapies hazard ratios” did not identify
a publication where the hazard ratio was less than 0.5. Furthermore, if the observed hazard ratio is smaller than 0.4,
although possibly biased, the clinical decision that one treatment is superior would be unchanged if the expression for the
proposed approximate UMVCUE is used to compute an estimate. An alternative to using the score statistic is to determine
the asymptotic distribution of the log hazard ratio from the Cox's proportional hazards model using techniques described
by several authors.26,46,47 This would be expected to give similar results to those based on score statistics in most realistic
trials where the treatment effects are not expected to be very big. However, in the instance with a very big treatment effect,
the hazard ratio estimate based on the Cox's model may be smaller than the one that is based on the score statistic. Also,
the Cox model has the advantage of being able to incorporate covariates.26 Similarly, the upper bounds based on the score
statistic distribution were observed to be conservative, which as with approximate UMVCUE will have little impact on
trials. Using the Cox model to obtain the duality confidence intervals is straightforward because the stagewise P-values
are obtained from stages 1 and 2 patients separately.
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Since from our simulation study and previous work,4-6,48 the naive point estimator can have substantial bias, we rec-
ommend using the approximate UMVCUE. The expression for the UMVCUE given by (3) is straightforward to implement.
Also, the naive confidence intervals do not have the desired properties. Hence, we recommend the confidence intervals
obtained by using the bounds of the simultaneous duality confidence intervals that we have developed when they are
informative, and using the naive confidence intervals bounds when the bounds of the simultaneous duality confidence
intervals are not informative. For example, using the results in Table 1, the confidence interval for the effect in partition
1 would be (−1.499, −0.077). It is straightforward to obtain the naive confidence intervals using expression (2). While
demonstrating how to compute the duality confidence intervals in Section 4, we have written R functions to solve expres-
sions (4) and (6) that can be used with any number of partitions. The code that includes the R functions is available in
the supplementary material and we have also provided the key estimates to input in the functions to enable reproducing
the worked example results.
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