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A method to identify individually physiological response 

differences to heat exposure using Comprehensive Deviation 

Coefficient (CDC) 

Yongqiang Li, Chenqiu Du, Runming Yao, Guoqing Li, Baizhan Li 

Abstract 

With increasing global warming, a method to identify individual heat exposure risk and 

conduct interventions is essential, in order to mitigate impacts of extreme climates on 

people’s health. This paper aims to examine the differences of individual’s physiological 

response in hot environments and consequently proposes a personal-based method to 

identify potentially vulnerable populations with high risk. A heat exposure experiment was 

carried out in a climate chamber to build datasets, with nine conditions combining air 

temperature (35°C/38°C/40°C) and relative humidity (25%/40% /60%). The rectal 

temperature (Tre), skin temperature (Tsk) and heart rate (HR) of 10 subjects were 

monitored. Data were analyzed using multiple-dimensional metrics of average 

deviation(AD), coefficient of variation(CV) and skewness(SKEW). The study introduced the 

Moment of Inertia (MI) and the Simulated Mass System (MS) in a multidimensional 

coordinate system and developed a Comprehensive Deviation Coefficient (CDC) method. 

Using various combinations of AD/CV/SKEW, the values of CDCTre, CDCTsk, CDCHR were 

calculated; the high-risk thermal environment (40°C/60%) and subject were thus identified. 

The proposed CDC method enables to distinguish the individual’s physiological response 

differences, under different hot environments and personal characteristics. The equations in 

this method can be programed in computer and integrated with smart sensor technology, 

contributing to identify the high-risk environments and provide precautions for susceptible 

populations, to mitigate the heat exposure hazards on people’ health and safety.  

Keywords 

Hot environment; Physiological response; Individual difference; Multidimensional metrics; 

Comprehensive Deviation Coefficient(CDC) method; Heat stress risk. 

 

 



 

 

 

 

 

 

Nomenclature 

AD average deviation HRt total heart rate (beat/minute) 

ADu DuBois body surface area (m2) HRS static exertion heart rate 
(beat/minute) 

ADTre,in,i 

ADTsk,in,i 

ADHR,in,i 

AD of Tre/ Tsk/ HR under the 
influence of internal personal 

difference 

HRT thermal strain heart rate 
(beat/minute) 

ADTre,out,i 

ADTsk,out,i 

ADHR,out,i 

AD of Tre/ Tsk/ HR under the 
influence of external hot 

environments 

MI moment of inertia (kg•m2) 

AV average value  MSi simulated mass system 

AVTre,in,i 

AVTsk,in,i 

AVHR,in,i 

AV of Tre/ Tsk/ HR under the 
influence of  internal personal 

difference 

n size of the sample 

AVTre,out,i 

AVTsk,out,i 

AVHR,out,i 

AV of Tre/ Tsk/ HR under the 
influence of external 

environment difference  

Nor normalization process 

Cmj characteristic parameter of 
“Vj” under the influence of “fi” 

(i=m) 

SD standard deviation 

Ck characteristic parameter of 
“Vj” (AV/ AD/ CV/ SKEW, k≥1) 

SKEW skewness 

Cs,fi characteristic parameter C 
under the influence of “fi” 

SKEWTre,in,i 

SKEWTsk,in,i 

SKEWHR,in,i 

SKEW of Tre/ Tsk/ HR under the 
influence of internal personal 
difference 

CV coefficient of variation 
(dimensionless) 

SKEWTre,out,i 

SKEWTsk,out,i 

SKEWHR,out,i 

SKEW of Tre/ Tsk/ HR under the 
influence of external environment 
difference  

CVTre,in,i 

CVTsk,in,i 

CVHR,in,i 

CV of Tre/ Tsk/ HR under the 
influence of  internal personal 

difference  

Sum summation 

CVTre,out,i 

CVTsk,out,i 

CVHR,out,i 

CV of Tre/ Tsk/ HR under the 
influence of  external 

environment difference 

Tre rectal temperature (°C) 

fi variable factors affecting W 
(dimensionless, i=1,2,3…m) 

Tsk skin temperature (°C) 

HR heart rate (beat/minute) Vj variation of W caused by “fi” 
(dimensionless, j=1,2,3…n) 

HR0 thermal neutrality heart rate 
(beat/minute) 

W target parameter (as Tre/ Tsk/ HR) 

HRe residual heart rate (beat/ 
minute) 

Wfi target parameter W under the 
influence of “fi” (as Tre/ Tsk/ HR) 

HRM metabolic heart rate (beat/ 
minute) 

x each sample of the target 
parameter 

HRN emotion heart rate 
(beat/minute) 

∆ the comprehensive MI 
(dimensionless) 



 

 

PHS predicted heat strain model SWreq Required sweat rate, W/m2 

HSI heat stress index 
(dimensionless) 

WBGT wet bulb globe temperature (°C) 



 

 

1. Introduction 

According to the newly issued report on the State of the Global Climate by World 

Meteorological Organization (WMO), the average global temperature for 2013-2017 was the highest 

compared to the recorded five-year averages before[1]. For example, in 2017, there was a Level 2 

heatwave alert issued by the Public Health England(PHE) in England in June, with some areas 

reaching their highest temperatures since June 1976 [2]. Just over the past summer in 2019, Europe 

boiled in soaring temperatures and 40°C heatwave swept from south to north, especially in 

France[3]. The climate change and globe warming [4] further accompanied with the increased 

frequency and intensity of extreme heatwave events in many regions [5-6]. Exposures to such 

extreme heat conditions has led to heat stroke, heat exhaustion, heat cramps, and heat rashes [7]. 

Evidence from a large number of epidemiological studies[8-10] have revealed that the hot 

environments and extreme heatwaves aggravated the heat-related mortality and morbidity of 

populations, especially for cardiovascular and respiratory diseases, resulting in a more severe and 

widespread health risk impact[11-13]. A report in Lancet analyzed 74,225,200 deaths in various 

periods between 1985 and 2012 and concluded that extreme cold and hot temperatures were 

responsible for 0.86% (0.84%-0.87%) of total mortality[14]. In particular, excess mortalities of nearly 

19,000 occurred during the 2003 European extreme heat event[15], especially in France inside of 

households (appropriately 50%) [16]. After implementing the heat health action plans, for example, 

in Frankfurt, the excess mortality for the overall population in the heatwaves was decreased, 

comparing 2003 (77.8%) to the following years (2006: 12%, 2010: 22.7%, 2015: 38.1%)[17]. In fact, 

many at-risk populations are exposed to warm temperatures inside buildings. For example, in New 

York, almost 85% classified hyperthermia cases succumbed to heat in their own home [18]. In 

another tropic region, Huang[19] analyzed the heatwave events in 60 provinces in Thailand and also 

found that mild heatwaves were associated with greater cumulative effects on total and cause-

specific mortality, partly due to the protection awareness in extreme heatwave events.  

In recent years, combined with the “The Belt and Road Initiative” development, China is 

experiencing a rapid urbanization and increased urban population. However, in the context of on-

going climate change, the magnitude of heatwave impacts increased by intensities and durations of 

the heatwaves, according to a study in 31 Chinese capital cities during 2007–2013[20]. In such cases, 

occupational heat exposure and injury risk for people, like workers in construction sites, has been 

increasingly a focused question so that how to mitigate the impacts due to heat exposure is among 

the most urgent of people’ needs. According to the US Census of Fatal Occupational Injuries[21], 

workers account for 36% of the heated-related mortalities from 2003 to 2008. In China, quite a 

number of occupational workers are involved in physically demanding tasks under hot environments 

both indoors and outdoors. In such contexts, a concerted effort must be made to promote the 

health and safety for people, develop targeted protection policies and managements, and minimize 

the productivity/performance loss.  

Exposing to high temperature would cause various physiological strains (e.g. increase body and 

skin temperatures, metabolic rates, sweating, heart rates), deteriorate performance and 

productivity, increase the incident rates of health-related illness[22, 23]. To prevent body heat 

strain, a series of practice guidelines/strategies, including permitted work, recover time, work 

shelters[24], improving thermal environments and ventilation [25] have been studied; more than 

100 heat stress indices and models have been developed [26]. Some more complex models, like the 

required sweat rate (SWreq) and predicted heat strain (PHS) model, were subsequently proposed and 

adopted in ISO7933 standard[27], based on the human heat production and dissipation 

mechanism[28]. However, they were built by an averaging method [29] and were representative for 



 

 

an average European people [30]. The prediction performance has been challenged with various 

deviations in applications [31, 32]. It is known that human heat stress results from a combination of 

factors, including environmental conditions, work demands, and individual characteristics[33, 34]. 

The differences significantly exist among individuals that make the rational models less valid in 

practical prediction. Therefore, a method to evaluate the individual differences is of importance, in 

order to identify the individuals who are vulnerable with increasing health risks in hot environments 

and to provide early interventions for people, as well as management for supervisors.   

However, the inter-individual variability is evident, due to the characteristics of different 

physiological indices[35]. Heat causing mild stimulus in one person may induce heat-related risk in 

another [36]. Study from Racinais et al. [37] found a high inter-individual variation in the adaptive 

responses to a 6-day heat acclimatization experiment (e.g. change in plasma volume from -10% to 

+20%) with apparent “responders” and “non-responders”; the individual differences were also 

reported by the authors in another experiment with two-week acclimatization interventions [38]. 

Recently, Yi et al. [39] established an artificial neural networks method to predict the perception 

rating of perceived exertion for construction workers and developed an early-warning system 

against hot and humid climates, based on a database containing 550 sets of synchronized work-

related, environmental, and personal data. Chan et al. [40, 41] conducted a multiple regression to 

relate human physiological responses to environmental, worked-related and personal factors in hot 

environments. However, in most cases, human heat stress is not linear to these influencing factors; 

knowledge with respect to risk identification at individual levels remains incompletely understood 

[30]. 

To sum up, it poses challenge to use readily-available measurements of individuals to predict 

different thermal responses accurately [30] and promote protections more effectively[42]. To this 

end, this study aims to propose a new method to evaluate the individual differences during heat 

exposures. This is achieved through introducing a multidimensional model, and a Comprehensive 

Deviation Coefficient(CDC). The method enables to evaluate the degrees of physiological responses 

of different individuals regarding to environmental and personal parameters, which is expected to 

fill the knowledge gap of identifying the harsh environments and vulnerable populations during heat 

exposure, and benefit for targeted protection policies and interventions for people’ health and 

thermal safety.  

 

2. Method of Comprehensive Deviation Coefficient (CDC) evaluation 

2.1 Evaluation indices in multiple dimensions 

The human physiological strain in hot environments depends on both individual factors (e.g. 

health status, heat tolerance, sweat rate, regulation degree) and environmental factors (e.g. physical 

parameters, exposure time). The triggered variability in typical physiological indices (e.g., rectal 

temperature(Tre), skin temperature(Tsk), heart rate(HR)[30, 43, 44]) contain both absolute changes 

in the original dimension, like maximum, minimum, mean, standard deviation, and the relative 

changes in multiple dimensions, like variability, skewness. 

① Absolute Variation (AD) 

From the measurement point of view, both the system errors and random errors affect the 

average value(AV) and standard deviation(SD). In contrast, the AD takes AV as reference system and 

is less susceptibly affected by random errors compared to the SD. The SD is based on the variance by 



 

 

squaring while AD does the logic judgment for data fluctuation[45]. Therefore, the AD is introduced, 

as shown in Equation (1). 

AD=
∑|x-AV|

n
                                      (1) 

② Coefficient of Variation (CV) 

The CV is a dimensionless statistical index to measure the data dispersion correlating to the AV 

[46, 47]. Although some other statistics such as the quartiles and SD are commonly used to measure 

data variability, the CV takes advantage of cross-dimension analysis, which has been widely applied 

in biomedicine, environmental analysis, manufacturing, dynamics studies, etc.[48, 49]. The CV can be 

calculated in Equation (2). 

CV=
SD

AV
                                       (2) 

③Skewness (SKEW) 

The SKEW is adopted to measure the degree of data skewing. The SKEW measures the 

asymmetry distribution of data, reflecting the third order central moment of variables. The SKEW for 

a normal distribution is zero; when the SKEW is negative, the data distribution is partial to left, 

otherwise to right. The definition of SKEW is shown in Equation (3). 

SKEW=
n

(n-1)(n-2)
∑ (

xi-AV

SD
)                              (3) 

2.2 Development of CDC method 

Given the human physiological regulations are affected by environmental and individual 

factors, a single mathematics metrics, like AV, SD, AD, CV, SKEW, or a parameter combination of 

some of these metrics, cannot describe the fluctuation characteristics well. As these metrics reflect 

information for a target variable in multiple dimensions, a multidimensional coordinate system is 

necessary, to evaluate the regulations of human physiological parameters and identify the 

differences systematically. Therefore, with the above mentioned AD/ CV/ SKEW as three dimensions 

in the coordinate system, this study develops a CDC method through introducing the Moment of 

Inertia (MI) in the Simulated Mass System (MS). Details are introduced in the following section.  

2.2.1 Multidimensional coordinate system 

This method is based on a multidimensional decoupling and reorganizing process, which has 

been widely used in multi-target assessment [50, 51]. The method provides quantitative descriptions 

of the inner-balance, compliance and deviation for a specific system. The CDC method is originally 

used to analyze the certain changes under the coupled impacts of multiple variables, and provide 

quantitative evaluation of these factors. A variable W is assumed with a variety of influencing factors 

fi (i = 1, 2, 3…m), and shows different variations Vj (j =1, 2, 3…n). The characteristic feature Ck (k≥1) 

is proposed as the corresponding parameter under each Vj so there is one-to-one relation between 

the Cj and Vj (k = 1 in this study). After that, factor fi (i = 1, 2, 3…m) is transferred to a group of 

characteristic parameters Cj (j = 1, 2, 3…n). The relationship between both forms the subjective 

mapping through the intermediate function Vj. In this case, each Cj value represents a combined 

effect of fi, but this makes it difficult to reflect the comprehensive effect of Vj (j =1, 2, 3…n), through 

a single value of C, or a group values of Ci. Therefore, a multidimensional coordinate system is 

adopted using Vj (j = 1,2,3…n) as variable in each dimension, to describe the factor fi and the effect 

on W. 



 

 

2.2.2 Simulated Mass System(MS) 

In the coordinate system, the W is reflected by the characteristic parameter Cj (j =1, 2, 3…n, k = 

1), using the specific locations (C1, C2, C3 ... Cn). When studying the single impact of factor fm, the 

other factors of 1, 2, 3…m-1, are fixed. That is, the Cj responding to other factors in the range of 1 to 

m-1 is averaged. Then the unique Cmj (j = 1-n) can be obtained and a fixed value Wm under factor 

fm is drawn. In summary, the MS is built with the specific values of W1, W2, W3 ... Wm and their 

corresponding coordinate positions at Cm1, Cm2 ... Cmj ... Cmn. The mass distribution, location and 

size of MSm are all under the control of factor fm, to reflect the effect of fm on W. The remaining 

MS1, MS2, MS3… MSm-1 can be obtained from the individual influence of each variable. In addition, 

when comparing the impact of different fi on W1, W2, W3 ... Wm, to avoid the influence caused by 

the uncertainty of the number “m”, normalization process is carried out among W1, W2, W3 ... Wm 

to build the final Simulated Mass System. 

2.2.3 Moment of Inertia(MI) 

The origin in the coordinate system means that the variable shows absolute stabilization in the 

coordinate system with the AD, CV and SKEW at value of 0. A distance from the origin, or a greater 

abstractive mass point indicates a remarkable fluctuation. The MI is then introduced to describe the 

deviation between MS and the origin, which demonstrates the comprehensive volatility of each 

parameter. The MI, as a concept from the physical point of view, can express both the quality and 

distance deviation of a particle, a rigid object or a mass system responding to a fixed point in two-

dimensional space, or a fixed shaft in three-dimensional space. The values are only determined by 

the size and position. The MI has been used in various areas of scientific experiments, engineering, 

aerospace, biological research and other industrial and social practices [48, 49]. The definition of MI 

is shown in Equation (4). 

MI=∑ MR2n

i
                                   (4) 

Where M represents the mass; R2 represents the distance to certain shaft or point. 

The MIi of a specific particle in mass system MSc is then achieved in Equation (5). 

MIi=(Wi)×[∑Cj(j=1,2,3…n)]2                         (5) 

In order to ensure comparability between different individuals, taking the individual Wi divided 

by AV (Wi) as each mass point, the two parts of MIi, i.e., M and R2 are expressed using dimensionless 

DML (Mi)(Equation (6)) and DML (R2) (Equation(7)). 

DML(Mi)=
m×Wi

∑ (Wi)
m
i=1

                               (6) 

DML(R2)=∑[Nor(Cj(j=1,2,3…n))]2                      (7) 

Then the influence of factor fi on MI is expressed in Equation (8). 

MIfi=∑ {
m×Wi

∑ (Wi)
m
i=1

×∑[Nor(Cj(j=1,2,3…n))]2}m
i=1                     (8) 

From Equations (6)(7), the average maximum values of DLM (MIi)and DLM (R2) are 1 and n 

respectively. Therefore, the theoretical range of MIfi is from 0 to n. Then the CDC method can be 

defined by dividing MIfi by the dimension number “n”, as shown in Equation (9). 



 

 

CDC=
∆

n
=

1

n
∑ {

m×Wi

∑ (Wi)
m
i=1

×∑[Nor(Cj(j=1,2,3…n))]2}m
i=1                 (9) 

The calculation process of the CDC values is demonstrated in Figure 1. In this study, three 

typical physiological parameters of Tre, Tsk and HR of 10 subjects are adopted. Changes of these 

parameters under nine experimental conditions are analyzed, by calculating AD/ CV/ SKEW in three 

dimensions. Under such cases, k = 1, n = q = 3, p = 9, m = 10. The f(in) represents the individual 

difference factors and f(out) represents the environmental factors. The W reflects the fluctuation 

characteristics of Tre, Tsk and HR with the influence of individual and environmental factors. Finally, 

the CDC values for different physiological parameters can be calculated.  

 

 
Figure 1 Calculation flow chart for CDC method 

 

Here, taking the physiological parameter of Tre as an example, the mass system of MS(in) for 
Tre can be built according to Figure 1, and the CDC method to evaluate the individual differences for 
Tre, namely CDCTrein can be expressed in Equation (10). 

CDCTrein
=

1

n
∑ {

m×Trein,i

∑ (Trein,i)
m
i=1

×[Nor(ADTrein,i
)
2
+Nor(CVTrein,i

)
2
+Nor(SKEWTrein,i

)
2]}m

i=1       (10) 

Meantime, the physiological response differences of Tre caused by environmental factors can 
be evaluated and the CDCTreen is defined in Equation (11)  

CDCTreen
=

1

n
∑ {

m×Treen,i

∑ (Treen,i)
m
i=1

×[Nor(ADTreen,i
)
2
+Nor(CVTreen,i

)
2
+Nor(SKEWTreen,i

)
2]}m

i=1    (11) 

Similarly, for physiological parameters of Tsk, HR in this study, the CDCTskin
, CDCTsken

, CDCHRin, 

CDCHRen can also be defined through replacing the corresponding parameters in Equations (10)(11).  



 

 

Taken together, Section 2.2 adopts three typical physiological indices, i.e. Tre, Tsk, HR, and 

elaborates the calculation process in a multidimensional system. Based on these multidimensional 

parameters, the CDC method for each physiological index is built and the values can be judged and 

compared responding to environmental and individual factors.   

3. Data collection 

To verify the proposed CDC method, a heat exposure experiment was conducted in a simulated 

climate chamber. We collected data from 10 Chinese labor workers, who were exposed to hot 

environments, with combinations of three temperature levels and three relative humidity levels 

(nine conditions). The details for experimental designs have been described in Ref. [52].  

3.1 Experimental conditions 

The experimental design was referred to Ref. [53, 54], regarding environmental parameters, 

activity level, resting time and measuring intervals. Totally 9 typical conditions were designed, as 

shown in Table 1. Table 1 meantime shows the measured parameters during experiments. The 

measured temperature and RH values in Table 1 were close to the designed conditions, suggesting 

the thermal environments in climate chamber met the experimental demands. Besides, due to the 

inner enclosure structure in the climate chamber, the measured black-bulb temperatures were close 

to the dry-bulb temperatures in the chambers, the differences between both being less than 0.5°C. 

In the following study, the radiant temperature was thus hypothesized being equal to air 

temperature. 

Table 1 Condition designs and measured parameters in experiments 

Conditions Designs 
(T/RH) 

Measured dry-bulb 
temperature(°C) 

Measured black-bulb 
temperature(°C) 

RH 
(%) 

C1 35°C/25% 35.1±0.2 34.5±0.2 25.9±3.1 
C2 35°C/40% 34.8±0.3 34.4±0.3 41.1±2.2 
C3 35°C/60% 35.0±0.2 34.6±0.2 58.9±3.6 
C4 38°C/25% 37.7±0.1 37.5±0.2 25.4±2.7 
C5 38°C/40% 37.8±0.2 37.4±0.3 39.6±2.3 
C6 38°C/60% 38.3±0.2 37.6±0.2 59.1±1.7 
C7 40°C/25% 39.9±0.2 39.3±0.2 25.3±2.4 
C8 40°C/40% 40.1±0.1 39.1±0.3 39.4±2.8 
C9 40°C/60% 39.9±0.1 39.3±0.2 57.9±2.9 

 

3.2 Subjects selection 

Considering the labor workers were one of the populations who may be in high risk to heat 

exposure, a group of 25 healthy male candidates were randomly selected from a local construction 

industry in Chongqing. Then they were asked to participate in a pre-experiment of walking on the 

treadmill at 0.5m/s for 60min under 38°C/40%. Their Tre, Tsk and HR were continuously measured 

during exposures. After tests, candidates whose Tre, Tsk and HR exceeded the mean±3SD were 

excluded[55], to minimize the individual differences. The screening principles and standards for 

subjects were elaborated in Ref. [52] and finally 10 subjects were selected for the formal 

experiments. Their basic information is shown in Table 2. Subjects were required to be in accordance 

with normal resting habits and ensure good sleep 24 hours before tests; no heavy physical work, or 

drink were allowed.  

 



 

 

Table 2 Basic information for the 10 selected subjects 

Items  Mean ± SD Range 

Age 39.4±3.6 35-48 
Height/m 168±2.3 164-173 
Weight/kg 59.8±2.3 55.4-65.6 

BMI index/kg.m-2 21.2±0.7 20.1-22.5 
Resting HR/bpm 68.3±5.7 59-76 

 

3.3 Experiment procedure 

The experiment was performed in accordance with the 1964 Helsinki declaration and its later 

amendments and comparable ethical standards [58]. Participants were allowed to terminate the 

tests at any time if they felt uncomfortable during experiments. In addition, according to the 

recommendations by WHO[59], when a subject’ s HR exceeded 180bpm for more than 3 min, or Tre 

was higher than 39°C under continuous monitoring, the test was terminated.  

Subjects were asked to arrive at the preparation room 30min in advance and change the 

uniform experimental clothes (T-shirt, shorts, shoes and socks). Then they were asked to attach the 

thermocouples (TMCx-HD, accuracy: ±0.2°C) on local four body parts (i.e. chest, left upper arm, left 

thigh, left calf). Data of local skin temperatures were continuously recorded every 10s and the mean 

skin temperature for each subject was calculated by the area-weighed four-point method [56]. The 

rectal temperature was measured by putting sterilized thermocouple probe into subject’s rectum at 

a depth of 10cm above the anal sphincter, according to the standard method in ISO 9886 [57]. A 

heart rate sensor (Polar RS800, Finland, accuracy: ±1bpm) was placed at the left of chest with skin 

contact, to monitor subjects’ heart rate, in the time interval of 1min. After preparations, they were 

sedentary for 30min in the preparation room to eliminate the effects of outdoor environments and 

metabolic rates. Note that during this period subjects whose measured Tre were higher than 37.4 °C 

were excluded for attending tests.  

The formal experiment commenced when subjects entered the chamber. Then they were 

asked to walk on the treadmill at a speed of 0.5m/s at a 10% grade. According to the guideline of ISO 

8996 [60], the estimated metabolic rate was ～160W/m2. The test lasted 120min and Tre, Tsk and 

HR of subjects were monitored and recorded continuously. They were free to drink water but the 

amount was recorded to correct the sweat produced during heat exposure. The instruments and 

onsite test are shown in Figure 2.   

 

 

Figure 2 Instruments and onsite experiment in climate chamber 



 

 

4. Results 

Experimental termination was conducted seriously based on the aforementioned situations. To 

sum up, subjects exhibited different heat tolerance abilities under the same heat exposure 

condition. Totally 64.7% of the 90 cases were finished (55 out of 90) in 120min exposure; for the 

remaining conditions, subjects terminated at different stages within the time length of 120min. 

About 85.7% (30 out of 35) terminated the test when their rectal temperature exceeded the 

threshold.  

The mean values of Tre, Tsk and HR of each subject in the whole test (≤120min) were 

averaged. The indices of AD, CV and SKEW of the 10 subjects for the mean Tre, Tsk and HR values 

were calculated. The following analyzed the comprehensive controllability of these physiological 

indices and compared the differences among 10 10 subjects) and for the 9 experimental conditions 

in Section 4.1. The heat risk was evaluated in Section 4.2 through calculating the CDC values for Tre, 

Tsk and HR.  

4.1Evaluaiton of subjects’ physiological responses 

4.1.1 Tre variation 

Figure 3 shows the comprehensive changes of Tre of 10 subjects in the 9 conditions (see Table 

1), which are displayed in AD, CV, and SKEW. From Figure 3, the values of AD and CV of subjects’ Tre 

increased with temperature under the same RH level. The volatility of Tre also increased with 

increasing RH under each temperature level. That is, the AD and CV increased gradually with RH 

from 25% to 40%, and to 60%. In addition, there were obvious coupling effect of temperature and 

RH under 35°C/38°C/40°C, where the RH was high (60%). This indicated that the Tre of subjects was 

significantly affected by high temperature, especially coupled with high relative humidity.  

 

 

Figure 3 AD, CV and SKEW values of Tre in 9 conditions 

 



 

 

The SKEW of Tre indeed reflects the curvature and the second derivative in its change trend. In 

Figure 3, compared to AD and CV, a larger SKEW was found at RH=25%, and decreased conversely 

with increasing temperature and RH, indicating an increased control of body to retain the increase of 

rectal temperature caused by heat stimulus. In particular, the SKEW values were relatively much 

smaller under conditions of 35°C/60%, 38°C/60%, 40°C/60%. The SKEW was close to zero, comparing 

-0.30 at 40°C/60% to -0.67 at 35°C/60%. Overall, the values of SKEW were negative in all 9 

conditions, indicating the body physiological regulation for Tre was gradually restrained. The control 

degree was enhanced with increased temperature and humidity, manifesting a determinant 

protection for body internal heat balance.  

4.1.2 Tsk variation 

Figure 4 shows the results of the AD/CV/SKEW variations of Tsk of 10 subjects, which shares a 

similar trend to Tre in Figure 3. According to experimental results, the measured mean Tsk of 

subjects fluctuated in a narrow range of 34.4–36.8°C, regardless of a wide temperature range from 

35oC to 40oC. As a result, the AD and CV values of Tsk were small. Moreover, the SKEW distributions 

of Tsk and Tre were similar to each other but the average value of SKEW for Tsk in 9 conditions was 

bigger than that for Tre (1.51>1.14). This was inferred that the heat transfer on skin surface by 

convection and evaporation was more significant compared to the heat exchange in inner body, 

leading to stronger regulation response on Tsk to alleviate heat strain. 

 

 
Figure 4 AD, CV and SKEW values of Tsk in 9 conditions 

Further comparing the changes of SKEW of Tre and Tsk, the mean values of SKEW of Tre 

decreased by 0.21 between 38°C-25%/40%/60% and 40°C-25%/40%/60%; while the SKEW for Tsk 

was less affected by environmental temperature and RH and the value was only 0.08. Besides, the 

increased RH had negative effects on SKEW(Tsk), comparing 25% to 60% respectively. This was 

attributed to that the higher RH inhibited the body sweat regulation and evaporative heat loss, 

especially when the air temperature was higher than the skin temperature. An interesting finding 

was that the maximum SKEW for both Tre and Tsk occurred at 38°C/25% rather than under high 

temperature and humidity conditions. We inferred that the 38°C/25% condition provided a stronger 

heat stimulus on body compared to 35°C-25%/40%/60%, which enhanced the convective heat 

transfer between skin surface and ambient environment. On the other hand, compared to much 

stronger heat stimulus, the water vapor pressure differences between skin surface and surroundings 

was bigger at 38°C/25%, leading to stronger sweating regulation in body.   



 

 

4.1.3 HR variation 

 
Figure 5 AD, CV and SKEW distribution of HR in 9 conditions 

Figure 5 shows the changes of SKEW/AD/CV, demonstrating a comprehensive controllability of 

HR of subjects. In general, the AD, CV and SKEW of HR fluctuated among different conditions but did 

not show significant increasing/decreasing trends with temperature and RH, compared to the Tre 

and Tsk. This was reflected by the small ratios of max/min of AD and CV, about 1.70 and 1.57 

respectively; while the values were 4.68 and 3.99 for Tre, and 3.54 and 3.10 for Tsk. The SKEW 

variation of HR showed an opposite change compared to Tre and Tsk: when the temperature and RH 

gradually increased, the values of SKEW increased. This indicated that the human body presented 

effective controls on body heart rates, to respond to temperature and humidity increasing.  

4.2. Comparisons between external and internal effects 

Figures 3-5 shows the Tre, Tsk and HR variations of subjects in response to environmental 

temperature and RH, from a multidimensional point of view. Our initial assumption was: when there 

were no individual differences among 10 subjects, theoretically there would be no differences for 

Tre, Tsk, and HR regulations after they were exposure to the same heat stimuli. Figure 6 shows the 

actual values of AD/CV/SKEW of Tre/Tsk/HR among the 10 subjects. The 10 kinds of colors in Figure 

6 represent the 10 subjects; the 9 inside-to-outside rings represent 9 indices among 10 subjects, i.e. 

AD(Tre), AD(Tsk), AD(HR), SKEW(Tre), SKEW(Tsk), SKEW(HR), CV(Tre), CV(Tsk) and CV(HR), according 

to Equations (1-3). In theory, for each metric, the proportion of AD/CV/SKEW among the 10 subjects 

should be distributed evenly, namely 10% for each ring in Figure 6. However, there were significant 

variations of subjects’ physiological regulations. For SKEW, the negative values suggested the skew 

was left and the median for measured Tre, Tsk and HR were distributed on the right of means, which 

was consistent with Figures 3-5. The absolute values of AD/CV/SKEW of Tre/Tsk/HR among the 10 

subjects varied between 7% and 14%, rather than being equal to 10%. In fact, despite the strict 

control in experiments for age, gender, weight, height and fat ratio [28] of subjects, some 

unpredictable factors still existed, resulting in the different thermal responses to heat stimuli. 

However, in most studies for heat stress, the average values are usually adopted and such individual 

differences are largely simplified or neglected, which lead to a deviation when predicating health 

risks for personal individual[31, 32]. 

 



 

 

 

Figure 6 Distribution of AD/ SKEW/CV of Tre/Tsk/HR among 10 subjects  

Figure 6 provides an intuitive description of physiological differences among 10 subjects. To 

evaluate the integrated impacts of both individual factors and environmental factors, we 

recalculated the CV values of AD/CV/SKEW variations for Tre/Tsk/HR, expressed as 

CV[AD(Tre/Tsk/HR), CV (Tre/Tsk/HR), SKEW (Tre/Tsk/HR)] and made a comparison between 

environment and individual, as shown in Figure 7. From Figure 7, whatever the dimensions were, the 

values of CV-environment were greater than that of CV-individual, revealing the dominant role of 

environmental factors on human heat strain during heat exposure. In addition, the HR showed the 

smallest variability in CV[AD/CV/SKEW], which was followed by Tsk. While the values of 

CV[AD/CV/SKEW] for Tre were the biggest, showing the largest variability of human rectal 

temperatures influenced by both individual and environmental factors. 

 

 

Figure 7 CV[AD/CV/SKEW (Tre/Tsk/HR)] with individual and environmental factors 



 

 

4.3 Evaluation for CDC values  

Based on the method presented in Section 2.2, the CDC values for Tre/Tsk/HR under 9 

experimental conditions and within 10 subjects were calculated. The values indeed reflected the 

variation degrees of human physiological indices responding to environmental stimuli and individual 

differences: the bigger the values were, the stronger physiological responses the body had, the 

higher risk for heat strain there would be. 

4.3.1 CDC differences caused by individual factors 

Given individual differences, the CDC values for 10 subjects are shown in Table 3. Considering 

the variations of rectal temperature and heart rates were more vital indices for human health and 

safety, the CDC values for Tre and HR were discussed. From Table 3, the CDC values for subject No. 6 

were the highest, 1.14% for Tre and 1.39% for HR respectively (bold in Table 3). In contrast, subject 

No. 5 had the smallest CDC value of 0.88% for Tre and 0.74% for HR respectively. Table 5 meantime 

presents the basic information of the 10 subjects. Compared to subject No.6, subject No. 5 was 

younger, and had the relatively bigger body surface area, which was beneficial for heat loss at skin 

surface. As a result, looking the 10 subjects as a whole, we could infer that subject No. 6 was with 

the higher risk and subject No. 5 was relatively safe when they were exposed to the same hot 

environments.  

 

Table 3 CDC analysis for the internal differences of the Tre/Tsk/HR among subjects  

Subjects Age 
/yr 

Height 
/m 

Weight 
/kg 

Adu 
/m2 

HR0 

 /bpm 
CDCTre 

 (100%) 
CDCTsk  

(100%) 
CDCHR  

(100%) 

No. 1 48 1.72 67.5 1.79 57 1.00 0.97 0.84 

No. 2 43 1.65 63.2 1.69 59 0. 97 0.76 1.12 

No. 3 35 1.63 58.9 1.63 65 0. 99 1.01 0.91 

No. 4 37 1.69 58.9 1.67 69 0. 92 0.96 1.13 

No. 5 37 1.75 69.2 1.83 71 0. 88 1.21 0.74 

No. 6 42 1.69 59.7 1.68 65 1.14 0. 91 1.39 

No. 7 41 1.63 59.4 1.63 68 1.10 1.00 0.93 

No. 8 45 1.71 57.7 1.67 69 1.11 1.22 1.04 

No. 9 38 1.61 56.9 1.59 76 0.95 1.11 0.94 

No. 10 39 1.7 59.7 1.69 73 1.11 0.97 1.14 

 

To make the comparisons much clearer, Figure 8 demonstrates the distributions of CDC values 

for Tre/Tsk/HR among the 10 subjects, using the data in Table 3 of the last three columns. As 

expected, subject No. 5 showed smaller CDC values for Tre and HR, indicating the lower heat strain 

in inner body, meanwhile the higher CDC value for Tsk indicated a stronger ability of heat loss from 

skin surface. From this point of view, subject No. 6 was vulnerable to hot exposure, who had higher 

CDC values for Tre and HR. This indicated that subject No. 6 had a higher risk for physiological strain 

and should be protected to reduce the potential heat-related accidents. 

 



 

 

 

Figure 8 Individual CDC volatility among the 10 subjects 

4.3.2 CDC differences caused by environmental factors 

In a similar vein, Table 4 shows the fluctuations of physiological indices caused by various 

temperature and RH. From Table 4, the CDC values of Tre, Tsk, and HR were higher under 60% at 

each temperature level, and reached the peak values of 2.69%, 2.37%, 2.38% respectively at 

40°C/60%. This indicated that the thermal environment of 40°C/60% would cause the strongest 

physiological strain on human body, meaning it was riskier at such condition, compared to other 

conditions.  

 

Table 4 The CDC analysis on the impact of environment on Tre, Tsk and HR  

Conditions T(°C)/RH(%) CDCTre (100%) CDCTsk (100%) CDCHR (100%) 

C1 35°C/25% 1.27 0. 95 0. 94 

C2 35°C/40% 1.25 1.09 0. 92 

C3 35°C/60% 1.34 1.39 1.18 

C4 38°C/25% 1.70 1.24 0. 77 

C5 38°C/40% 1.03 0. 96 1.60 

C6 38°C/60% 2.29 2.22 1.28 

C7 40°C/25% 1.02 1.32 1.63 

C8 40°C/40% 1.60 1.60 1.28 

C9 40°C/60% 2.69 2.37 2.38 

 

Figure 9 intuitively exhibits the CDC distributions of subjects’ Tre, Tsk and HR under 9 

conditions according to Table 4. The remarkably higher values of CDCTre, CDCTsk, CDCHR were found 

under 40°C/60%RH. This would benefit for managers to avoid such environments, or take 

measurements, like creating urban green-blue spaces to achieve cooling effects in practical working 

placeError! Reference source not found., to minimize the risks of over-heating for workers. 



 

 

 

 

Figure 9 CDC volatility under 9 conditions 

5. Discussions 

Yao et al.Error! Reference source not found. conducted a heat exposure experiment in chamber 

and found that the mean skin temperature and mean heart rate of subjects increased with 

increasing environmental temperature and relative humidity. In contrast, the calculated CDC values 

in Table 4 for Tre, Tsk and HR increased with increasing temperature; while such change trends were 

not found for increasing relative humidity. This was similar to one study by Du et al Error! Reference 

source not found.: though the temperature and relative humidity were increased during heat 

exposure, the number of subjects who were terminated at each condition was not linearly increased 

and the number of subjects who finished the heat exposure was conversely higher under hot-dry 

condition (40°C /25%) than that under slightly hot-humid condition (38°C/60%). This was attributed 

to the coupled effects of temperature and relative humidity in hot environment that the human 

thermal physiological responses caused by humidity stimuli were slight with a certain temperature 

range. Therefore, in Table 4, the values of CDCTre and CDCTsk were slightly smaller at 38°C/40% than 

that at 38°C/25%. Moreover, the individual differences existed that different subjects responded to 

different extent when they were exposed to the same thermal stimuli. This could be found in Table 3 

and Figure 6 that the regulations of Tre, Tsk and HR differed under different conditions. However, 

when the environmental temperature and relative humidity were the highest, the effect caused by 

environmental stimuli was higher that of individual differences. In that case, all the CDC values for 

Tre, Tsk, and HR were the highest under the condition of 40°C/60%. 



 

 

. This study measured local skin temperatures at four local body parts; considering the skin 

temperature was not the same in different parts of the bodyError! Reference source not found., and 

the current models like PHS modelError! Reference source not found., predicted the mean skin 

temperature from the whole, the area-weighted methodError! Reference source not found. was 

also adopted for calculating mean skin temperature.   

The PHS model is a widely used rational model, but it predicts human heat strain for average 

people rather than at individual levelError! Reference source not found.. In laboratory experiments, 

to minimize the individual differences, researchers would screen the subjects strictly, considering 

ages, gender, weight, height, BMI, etc Error! Reference source not found.Error! Reference source 

not found.. This study selected subjects through pre-tests and excluded subjects whose physiological 

indices responded outside the normal range. However, in real working place, due to the complexity, 

there are so many factors indirectly influencing the physiological response of human body and heat 

stress or specific strains must adequately account for an individual's personal attributes. These 

include the location (region and micro-climates)Error! Reference source not found., daily habits, 

health status, clothes and metabolic ratesError! Reference source not found.Error! Reference 

source not found., which are unable to be calculated in the CDC method in this study, or quantified 

algebraically using models. In particular, the thermal history and acclimatization from people would 

modify the settings of the physiological thermoregulation system themselves, leading to different 

responses to continuous exposure to heatError! Reference source not found.Error! Reference 

source not found.. As a result, the uncertainties of individual differences make it difficult for current 

models for proper application to heat stress predictionError! Reference source not found.Error! 

Reference source not found.. In this context, the CDC method in the current study provides a 

comprehensive index to evaluate the heat exposure risk, which enables to identify the high-risk 

environments and individuals in a quantitative way. 

However, the current study providing the CDC method to identify the risk bases on a relative 

comparison from the point of view of a group of people, or a series of thermal conditions. We 

assume that the high CDC values are relatively risky and should be paid attentions to. However, the 

current study is limited to answer which ranges of CDC values for physiological indices are safe and 

which ranges are in risk during heat exposure. Future work should be developed for the CDC method 

to determine the baselines: at which CDC limits workers should be protected, to which degree the 

interventions should be provided. This is expected to provide better grades/levels for risk 

assessment for heat stress within/without building environment. 

6. Conclusions 



 

 

This study induced a three-dimensional indices of Absolute Variation (AD), Coefficient of 

Variation (CV) and Skewness (SKEW) and evaluated the physiological response differences of rectal 

temperature (Tre), skin temperature (Tsk) and heart rate (HR) responding to environment and 

individual, based on a heat exposure experiment. The results showed the AD and CV of subjects’ Tre, 

Tsk and HR increased with temperature and humidity while the SKEW decreased. The inter-

individual variability was verified, revealing a different body controllability responding to heat stress.  

A Comprehensive Deviation Coefficient (CDC) method was developed through introducing 

Simulated Mass System and Moment of Inertia, and the values of CDCTre, CDCTsk and CDCHR 

responding to different temperature and humidity and among 10 subjects were calculated. The 

outcomes identified the thermal environment of 40°C/60% and the potential vulnerable subject with 

the most high-risk. 

The CDC method enables to quantify the response of physiological indices and compare the 

inter-individual differences. It can afford a timelier response to examine the high-risk environments 

and sensitive populations in practical working places. The outcomes are expected to guide hot 

environment management, identify high-risk populations, make interventions for workers, 

contributing to minimizing the risks of heat accident occurrences in advance and mitigating the 

impacts of extreme climates on people’s health and safety.  
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