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Friedrich Waismann’s Philosophy of Mathematics 
 
Severin Schroeder and Harry Tomany 
 
 

 

1. 

In February 1929 Moritz Schlick succeeded in arranging a first meeting with Ludwig 

Wittgenstein, whose Tractatus Logico-Philosophicus he greatly admired.  Wittgenstein agreed 

to further meetings to which Schlick brought his protégé and unofficial assistant 

Friedrich Waismann, who later, from 1929 to 1931 took shorthand notes of their 

meetings (now published as WVC).  In 1929 it was agreed that Waismann, because of his 

great ability for ‘lucid representation’ (Carnap), would produce a systematic exposition of 

Wittgenstein’s philosophy intended to be the first volume in the series of publications of 

the Vienna Circle Schriften zur wissenschaftlichen Weltauffassung.  The book, entitled Logik, 

Sprache, Philosophie, to which Wittgenstein himself had contributed dictations and 

typescripts, was finished by 1938 (published in 1976; English translation in 1965).  Of 

Wittgenstein’s key ideas in the philosophy of mathematics Waismann gave a brief survey 

at a conference in Köngisberg in 1930 and a more detailed account in his 1936 book 

Einführung in das mathematische Denken (Baker 1979 & 2003). 

 When Waismann first arrived in Cambridge in 1937 he was an eloquent 

proponent of Wittgenstein’s philosophy and, in particular, of his middle-period views on 

mathematics.  But meanwhile Wittgenstein’s thinking had developed further and when 

lecturing in Cambridge in 1938 he did not want his students to listen at the same time to 

his earlier ideas presented in Waismann’s lectures (Ayer 1977, 132; Baker 2003, xxi).  

Waismann was understandably embittered and soon left Cambridge, finding another 

employment in Oxford.  Material from his Oxford lectures on topics in the philosophy 

of mathematics was published posthumously in 1982 under the title Lectures on the 

Philosophy of Mathematics.   

 Personally Waismann had moved away from Wittgenstein in the last two decades 

of his life.  In conversation he described him as ‘the greatest disappointment of his life’ 

(Grassl 1982, 10).  And repeatedly in his 1950s lectures he expresses his disagreement 

with Wittgenstein.  How far then did his views in the philosophy of mathematics move 

away from his earlier Wittgensteinian position?  Did Waismann succeed in developing his 

own distinctive philosophical position in this area?  Considering his published lecture 



 2 

materials, and in particular the points where Waismann indicates his disagreement with 

Wittgenstein, we shall conclude that the answer to the latter question is no.  However 

much he came to dislike Wittgenstein personally, his views on mathematics remained 

fairly close to those of his former intellectual guide. 

 

 
 
2.  

Four major tenets in Waismann’s mature philosophy of mathematics can easily be traced 

back to Wittgenstein’s ideas, namely his views on (i) existence in mathematics, (ii) the 

meaning of mathematical concepts, (iii) equations and tautologies, and (iv) infinity.1  We 

shall first explain the parallels, and minor disagreements, in those four areas in turn, 

before turning (in section 3) to the two important points on which Waismann diverges 

from Wittgenstein’s thought.   

 

(i) Existence in mathematics.  

In ‘On the Notion of Existence in Mathematics’, Waismann argues that there are 

different meanings of ‘existence’ as this concept is applied in mathematics.  The different 

meanings of ‘existence’ are anticipated by Wittgenstein, who suggests that the concept of 

existence is directly related to what counts as an ‘existence proof’, arguing that 

Intuitionists wrongly try to circumscribe the latter concept with claims about what is to 

count as a legitimate proof and what isn’t.  This would only serve to give a new definition 

of ‘existence’, rather than capturing the multiple ways in which the concept is actually 

used (given how it relates to the various sign-structures that are called ‘existence proofs’) 

(MS 111, 155).  Although Wittgenstein does at times in the intermediate period, for at 

least a couple of reasons, suggest that various sign-structures that are called ‘proofs’ 

aren’t rightly so-called (PG 408-14), he ultimately comes to understand this concept as a 

family resemblance concept (and thus gives up attempting any regimentation of this 

concept) (PG, 299-300).  He spends some time clarifying the concept of proof generally 

(BT 614-659) as well as the role and use of specific types of proofs (BT 650-656).  

Indeed, reflections on inductive proof are likely to have importantly contributed to 

Wittgenstein’s development of the family resemblance concept (see PR 193-205; PG 395-

426).  Given this is the case, Waismann’s principal claims regarding ‘existence’ are 

derived from Wittgenstein’s work.  
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To illustrate the first meaning of ‘existence’, Waismann uses two examples: 

‘There exists a prime number between 31 and 41’ and ‘There exists a root to any given 

algebraic equation’.  That there exists such a number in the first case is determined by a 

method for determining whether a number is prime or not.  One need only use the 

appropriate method on each of the numbers of the interval to determine there is.  In the 

second case, a method determines, at least in principle, a specific value.  The ‘at least in 

principle’ is meant to allow for the possibility of real numbers: while these may not be 

calculable to a final place (because they are unending), they can be, using a rule that 

determines the infinite series of digits, determinable to an ever more precise number of 

places.  

The aforementioned Waismann lecture also suggests that the different meanings 

of ‘existence’ are given by their different proofs, respectively, and he outlines six 

possibilities (a summary can be found in LPM 40-41).  For example, he outright states 

the meaningfulness of infinite constructions (e.g. the possible never-ending construction 

which is given by rules that ‘point beyond themselves’), even though he does not 

mention infinite proof procedures specifically (e.g. induction).  Other examples he gives 

include non-constructive proofs such as indirect proof (his third example is reductio ad 

absurdum). 

Wittgenstein, too, rejects the idea that a proof must be ‘finite’, if this is taken to 

mean that it can’t prove something about an infinite set (although, of course, this must 

be understood with proper Wittgensteinian qualifications – it doesn’t give credence to 

the actual infinite and Wittgenstein argues for a particular interpretation of a ‘proof’ 

insofar as it relates to an infinite set or series).  Like Waismann, Wittgenstein is clearly 

aware of the legitimacy of infinite proof procedures and non-constructive methods of 

proof.  

 

(ii) The Meaning of Mathematical Concepts.  

In ‘Number’ and ‘The Structure of Concepts’, Waismann suggests that both formalist 

definitions (e.g. of the natural numbers) as well as formalist axioms (e.g. of geometrical 

concepts), respectively, are insufficient to fully determine the meaning of mathematical 

concepts.  Ultimately, Waismann suggests, it is the use of these concepts outside 

mathematics that makes them into fully meaningful concepts (LPM 56; 135-136).  

 In order to argue for this position, Waismann distinguishes between formal 

properties of a concept and material ones (also referred to as the concept’s ‘structure’ 
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and the meaning it derives from a specific ‘interpretation’, respectively).  The formal 

properties help determine a concept’s meaning, but fall short of specifying its full 

meaning.  Waismann uses geometrical concepts as an example of this.  For example, 

axioms constrain the meaning of various geometrical terms.  ‘Point’, ‘straight line’, etc. 

are constrained in different ways depending on the different systems of axioms 

corresponding to the different geometries to which they could possibly belong.  A given 

system of axioms constrains the possible meaning of its terms to a certain set of possible 

interpretations.  The possible interpretations that could satisfy a concept of a given 

axiomatic system is referred to as that concept’s ‘structure’.  It is only through specifying 

a specific interpretation through appeal to specific empirically determinable concepts 

(e.g. interpreting ‘straight line’ to mean ‘path of a light ray’) that a concept obtains its full 

meaning.  In this way, a formal characterization is supplemented by interpretations in the 

form of concepts that are themselves determined, although not necessarily in a straight-

forward manner, by experience (Waismann suggests this ultimately importantly relates to 

ostensive definitions) (LPM 135-136).  

 Waismann uses this distinction in addressing a couple of philosophical problems.  

First, he examines measuring time, and claims, similar to Wittgenstein (BB 26), that the 

problem involves confounding spatial ideas of measurement with temporal ones.  In 

giving a more detailed analysis, he uses the formal/material distinction to bring out what 

is shared and unique to the concept of ‘equal’ when applied to spatial and temporal 

domains (i.e., they have shared formal properties but different material ones; Waismann 

says an additional criterion is required to give them meaning) (LPM 138-139).  Secondly, 

on a related topic, Waismann discusses the problem of measuring lines in physical space 

in comparison to visual space.  This leads him to contrast the formal properties of ‘equal’ 

in the two domains.  Moreover, in the course of the examination he gives an example 

also given by Wittgenstein (it concerns a segment of a circle appearing straight when it is 

known to be curved) (LPM 141; MS 107, 164-165; RFM I, §§96-8) and ultimately even 

speaks of the ‘inexactitude’ or ‘blurredness’ that is an ‘element’ of the visual field (LPM 

142).  Wittgenstein similarly addresses problems that arise with not having recourse to a 

distinction between appearance and reality when describing the visual field (MS 107, 29), 

and argues for the ‘inexactness’ (Unbestimmtheit) that is part of the logic of the visual field 

(MS 107, 171).  It is in the context of examining the possibility of the phenomenological 

language that Wittgenstein examines these problems and comes to see them as 

insurmountable obstacles to the phenomenological project.  Ultimately, Wittgenstein 
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goes farther than Waismann and argues that the vagueness or inexactitude of the visual 

field, without the possibility of reference to an external standard (such as ordinary 

discourse has recourse to), is what makes the project of creating a phenomenological 

notation impossible (whereas Waismann suggests some formal language could still 

possibly capture the vagueness – LPM 141-142).2  While Waismann’s discussion of these 

topics does not take place in the context of developing a phenomenological language, 

Wittgenstein’s influence on Waismann when it comes to these topics is readily apparent.   

In the early intermediate period, culminating in The Big Typescript, Wittgenstein 

sees the meaning of symbols employed in mathematics as determined wholly by their 

employment in the rules of the respective calculus to which they belong.  This ‘calculus 

conception’ of mathematics importantly influences his philosophy of language: words 

and sentences are seen also to belong to a calculus and their meanings also determined in 

this way.  Beginning with his reflections in the intermediate period (BT 533; 566)3 and 

continuing on into his later work (RFM 257; LFM 33), Wittgenstein comes to think that 

in the case of mathematics an extra-systemic application is required to give mathematical 

symbols meaning.  Beginning in the intermediate period, reflections on primitive 

languages forced Wittgenstein to rethink the calculus conception in the philosophy of 

language (Engelmann 2013, 154-160; Schroeder 2013, 155-160), and reflections on rule-

following and mathematical rule-following in particular undermine the calculus 

conception in the philosophy of mathematics (Rodych 2000, 300-302).  A calculus is only 

fully-meaningful mathematics when its symbols (numbers, function symbols, etc.) are 

employed in empirical descriptions and calculations.  Without this empirical application, 

the calculus, while still consisting of rules, is akin to a game; what makes it essentially 

mathematical is lost.  This clearly anticipates Waismann’s position.   

  

(iii) Equations and Tautologies 

In his lecture ‘Equation and Tautology’, Waismann argues for the distinctness of 

equations and tautologies and argues that the former can’t be reduced to the latter.  

Indeed, the proof of a tautology serving as the translation of an equation is dependent on 

the equation itself and thus does not serve as proof of the truth of the equation (LPM 

64-65).  The different uses of equations and tautologies and a difference in their 

‘operational aspect’ clearly display the impossibility of translating or reducing one to the 

other (LPM 70-71).  The distinction between equations and tautologies was already being 

made by Wittgenstein in the Tractatus: equations were considered ‘pseudo-propositions’ 
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(TLP 6.2), whereas tautologies were considered limiting cases of a proposition (‘lacking 

sense’) (TLP 4.466; 4.461; for further details see Frascolla 1994, 27-28).  In the 

intermediate period, Wittgenstein becomes more concerned to emphasize their 

distinctness as well as the former’s irreducibility to the latter (e.g. PR 142).  In particular, 

he argues against the logicist attempt to express equations as tautologies (WVC 35, fn.1).  

Thus, in this respect, Waismann’s point originates with Wittgenstein.  Moreover, 

Wittgenstein also argues for equations being substitution rules, in the context of 

discussing the role of equations and rules more generally (WVC 156).  

 

(iv) Infinity.  

Since Waismann deals with the topic of infinity in considerable detail and with notable 

clarity in his lecture ‘Infinity and the Actual World’, it is worth devoting more space to 

discussion of this lecture.  In what follows we shall examine some of the important 

similarities and minor differences between Waismann’s and Wittgenstein’s approach and 

arguments as they relate to the topic of infinity.  At this point, as we shall see in more 

detail below, it is apt to note that Wittgenstein’s influence can be seen, sometimes in 

pretty subtle ways, throughout this lecture; for example, discussion of whether ‘infinite’ 

and ‘finite’ can be profitably defined (LPM 99-101), concern about understanding an 

infinite set as a totality (LPM 100-101), reflections on whether an unending rows of stars 

can be justifiably asserted to be infinite (LPM 113-115), and problems of ‘time and paper’ 

in relation to listing the members of an infinite set (LPM 118), are all, among other 

things, anticipated by Wittgenstein (PR 158; PR 146-147, 166; PR 169; PR 160-161, 

respectively).  Sometimes, as in the case of Waismann’s consideration of unending rows 

of stars, Waismann adds his own insights or distinct way of tackling the issue.   

Unlike Wittgenstein, Waismann, in his discussion of the topic, addresses some of 

the actual physical theories related to infinity and time and space, even dealing with some 

of the more technical mathematical components of the theories.  For example, in the 

context of discussing whether space and time are infinitely divisible, Waismann discusses 

numerous topics including, but not limited to: the (im)possibility of division of matter, 

electricity and energy, primary and secondary qualities and how this relates to the history 

of physics (up until Waismann’s time), and how the aforementioned topics can be 

understood by appealing to some of the technical elements of relativity theory.  In the 

course of the lecture, he also discusses matters of cosmology and empirical work dating 

everything from the age of rocks on earth, to the age of the earth itself, meteorites, the 
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solar system, elements, the galaxy, and the universe (LPM 74-78).  Wittgenstein rarely 

discusses empirical facts such as these.  Waismann also gives a brief presentation of some 

of the technical details of set theory and considers Zeno’s famous paradox involving the 

tortoise.  Unlike Wittgenstein, Waismann often does not take a clear stand on the 

theories or ideas he is presenting, but merely lays them out, often in an explanatory manner, 

as possible (often opposing) answers to questions related to the infinite and finite.   

When considering the possibility that the universe is infinite, Waismann points 

out that this would require that there are questions which are in principle undecidable.  

And this would call into question the Law of Excluded Middle.  Waismann does not go 

into what specific questions he has in mind, but seemingly any empirical claim about the 

infinite would do. And the reason for their undecidability would come from the fact that 

such statements cannot be empirically verified (even though this is not explicitly stated 

by Waismann).  Thus, according to Waismann, the infinite nature of the universe would 

clash with ‘ordinary logic’ (LPM 77-78).  

This shares similarities with, but is different from, Wittgenstein’s position.  

Wittgenstein’s position in the intermediate period is that ‘infinite’ does not refer to a 

quantity (WVC 228; PR 157, 162; PG 463).  It is categorially distinct from anything finite 

(WVC 228; PR 157-158) and remains the property of a law (PR 313-314).  By examining 

a variety of seemingly empirical statements involving the concept of the infinite, 

Wittgenstein concludes that, in all of the cases, there would be no experience that would 

verify them (PR 167-168; 306-307).  The meaning of a proposition being its method of 

verification (WVC 47; PR 200), this means that such a proposition is senseless (WVC 

227; PR 306).  Wittgenstein does allow the possibility of meaningful natural laws that 

involve the infinite (e.g. the Law of Inertia), but this is precisely because such statements 

have a different logical role from empirical ones; they are akin to rules.  Moreover, he 

does make reference to the Law of Excluded Middle, but not as itself a reason for 

rejecting a priori a claim about the infinite nature of the universe, but rather as 

supplementary to the verification principle and as a way of delimiting types of 

propositions.  The fact that a proposition can be falsified but not verified shows it is a 

proposition in a different sense of the word (PR 307).   

This brings us to the point concerning the inapplicability of the Dedekind 

definition of infinity to the physical world.  Waismann explains the Dedekind definition 

of the infinite as follows: ‘a set is infinite if it is reflexive, i.e. if it can be mapped onto a 

subset that is not identical with the whole set’ (LPM 112).4  According to Waismann, the 
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inapplicability is because of a fundamental difference between ‘a proof’ and ‘a 

verification’.  This distinction is of central importance to Wittgenstein, too, although it 

does not occupy a central place in Wittgenstein’s thought when discussing the Dedekind 

definition of infinity.  An essential part of Wittgenstein’s thought from his early through 

to his later work is the categorial distinction between mathematics and empirical 

disciplines.  Mathematics is invention whereas the empirical disciplines involve discovery.  

Insofar as mathematics is invention, to be able to give a ‘description’ of a proof is just to 

give the proof itself.  This is in contrast to a discipline that importantly involves 

discovery about the world, where a description of something does not mean that is 

indeed how the world is (or that any ‘description’ is indeed verified).5  

The inapplicability of the Dedekind definition to reality is indeed anticipated in 

Wittgenstein although the distinction between the a priori methods of mathematics and 

the a posteriori methods of the empirical scientific disciplines is at best only part of what 

Wittgenstein has in mind when he criticizes the Dedekind definition of the infinite or 

elements of Cantor’s set theory.  Rather, it would appear that it is the categorial divide 

between the infinite and the finite and, in turn, the impossibility of understanding one in 

terms of the other (WVC 70; 232; PR 158) or of being able to avoid circularity in one’s 

definition (what Waismann also discusses – LPM 99-102) (PR 151; PG 464) that limits 

the definition’s usefulness to either domain.  Connected with this, it is useless to try to 

use the definition as a decision procedure (PG 464).  Waismann is certainly right that the 

definition can’t adequately apply to reality, but he could have gone farther, as 

Wittgenstein did, and suggest that the definition takes one no further in understanding 

the notions of ‘finite’ and ‘infinite’ in either domain.  Indeed, the definition presupposes 

the very understanding of what it is meant to explain.  Insofar as the definition can even 

be understood in mathematics it is not because it importantly explains something opaque 

(i.e., it does not involve a discovery), but instead, in the context of these mathematical 

practices, it can be reinterpreted using mathematical techniques (e.g. functions, 1-to-1 

correlation, and the diagonal method).  In this way, any meaningful mathematical 

definition is making reference to new concepts and not thereby escaping the various 

problems connected with offering definitions of the concepts of the infinite and the 

finite that Wittgenstein explains.   

Waismann also calls into question the axiom of infinity.  After consideration of 

some technical matters related to the axiom and interpretations of the axiom, he rightly 

concludes that the axiom of infinity can’t be understood as an empirical claim; however, 
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motivated by an incorrect view about the natural number series (criticized in section 3.(i) 

below), he concludes that ‘what is behind the existence of infinity is the desire to…refer 

to the objective existence of a set, no matter whether we can or cannot construct it’ 

(LPM 121).  Wittgenstein, of course, would agree that the axiom is not dependent on the 

world.  But, regardless of the details of the mathematical use to which the axiom can be 

put (which Waismann considers – LPM 117-122), it is apparent that Wittgenstein would 

reject the idea that the axiom of infinity ‘refer[s] to the objective existence of a set’ (LPM 

121).  Wittgenstein eschews Platonism and thus, whether taken empirically or as an a 

priori claim, the ‘objective existence of a set’ giving meaning to, or being importantly 

related to, the axiom of infinity.  Instead, the axiom does simply relate to the possibility 

of a construction: there is an infinite set in so far as no matter how many sets are 

constructed further can still be constructed (in accordance with the rule, which defines 

the set).  And, as this can be seen as a translation of the set of natural numbers into set 

theory, like the set of natural numbers itself, it has no last member. ‘Last member of the 

set’ has no meaning.  This would obviously be in line with Wittgenstein’s general 

criticisms of mathematics as a descriptive activity, his criticism of the actual infinite, and 

his interpretation of the legitimate use of ‘infinite’ (as relating to the possibility of endless 

construction in accordance with a rule).  

Finally, Waismann, in the concluding section of the lecture, in order to examine 

the concept of time in relation to the infinite, imagines a machine that calculates  in 

reverse from an infinite time in the past.  That is, starting at an infinite time in the past, 

the machine finishes calculating  in reverse with the first digits of the series ending the 

calculation.  In the context of this general discussion, he makes several points that are 

clearly inspired by Wittgenstein.  For example, he distinguishes between physical and 

logical possibility (LPM 124), notes that infinity is not a number (LPM 123), and argues 

that an infinite sequence is constructed and must be constructed in a certain direction (is 

‘unidirectional’) (LPM 123-24).  He also uses this example seemingly to object to 

Wittgenstein.  Waismann’s objection is a clear reference to a passage of Wittgenstein: 

 
Let’s imagine a man whose life goes back for an infinite time and who says to us: 
‘I’m just writing down the last digit of π, and it’s a 2’. Every day of his life he has 
written down a digit, without ever having begun; he has just finished.  

This seems utter nonsense, and a reduction ad absurdum of the concept of 
an infinite totality. [PR 166] 
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Waismann objects to the idea that the machine having never started serves as a reductio ad 

absurdum of the actual infinite.6  However, neither Waismann’s argument against his own 

example nor his subsequent considerations of the infinite in relation to time serve as 

refutations of Wittgenstein.  

First, it should be noted that Waismann’s example is not identical to 

Wittgenstein’s.  In Waismann’s case, the machine ‘never started’ in the infinite past 

calculating  in reverse.  Wittgenstein’s example involves a man whose life goes back an 

infinite amount of time and who every day has written down a digit of π and finishes 

without ever having begun.  In his case, Wittgenstein is objecting, at least in part, to the 

absurdity of the idea that π should end (made comical with the idea that the last digit is a 

2).  This would obviously be a factor in Waismann’s example too (i.e., that ‘infinite’ 

doesn’t mean the reverse calculation began with the final digit of the series – there is no 

such thing), although, as Waismann himself points out, in his case, it is not even 

intelligible to imagine the machine calculating in reverse at all.  In Waismann’s example, 

the unidirectional nature of the algorithm creates the problem for the meaningfulness of 

the example.7  Aside from the specific example, Waismann’s subsequent consideration of 

the concept of the infinite in relation to time calls into question the successfulness of 

Wittgenstein’s argument (albeit, we think, unconvincingly).  

In addition to the absurdity of the idea of reaching the final digit of the series, 

Wittgenstein wishes to emphasize that in order to make the example intelligible it is 

necessary to imagine a person requiring an infinite amount of time to undertake the 

calculation.  This agrees with another of Wittgenstein’s claims that the infinite can only 

be understood in terms of itself (PR 158).  But if the person started an infinite time in the 

past, then he would never have begun.   Waismann, at the end of the lecture, in his 

characteristic fashion, wonders whether the idea of the infinite past is intelligible and 

suggests, even if it is, that it then must be something essentially different from the infinite 

future.  The infinite past, if intelligible, must be a ‘closed totality’.  We think it apparent 

that, regardless of whether the infinite past is unintelligible for Wittgenstein, Wittgenstein 

would have rejected the idea that it can be understood as a ‘closed totality’. And this 

certainly makes the idea of something having begun an infinite time in the past 

unintelligible which, in turn, insofar as it is necessary, makes the notion of an infinite 

series (conceived as a completed totality, with recourse to the infinite past), even one 

constructed in the right direction, unintelligible. Waismann presents no decisive 

argument against this.    
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 Waismann largely agrees with Wittgenstein regarding the concept of infinite.  As 

has been shown, Wittgenstein’s influence is felt in both the overall view of the infinite 

Waismann presents, as well as the details of his presentation (which include ideas or 

arguments he objects to in Wittgenstein’s thought).  Aside from some relatively small 

disagreements with Wittgenstein’s views, the distinctiveness of Waismann’s approach is 

seen in his exposition of at least some of the technical details of work in physics and 

mathematics, as well as his more tentative presentation style, especially when presenting 

conflicting views or theories.   

  

 

3. 

Waismann, in his later years, explicitly disagrees with Wittgenstein on two points.  He 

objects to the view that mathematics is conventional and he protests that the meaning of 

a mathematical proposition cannot be due to its proof since mathematical conjectures are 

patently not meaningless.  Let us consider the two issues in turn. 

 
(i) Conventionalism 

In his Introduction to Mathematical Thinking (ch.16) Waismann emphatically propounded 

Wittgenstein’s view that a mathematician is an inventor, not a discoverer (RFM I-168).  

In 1954 he is more inclined to hold the opposite view (LPM 29-34).  Considering the 

elementary example of natural numbers, he explicitly contradicts Wittgenstein’s 

conventionalist ideas and says, in a Platonist vein: 

 

We generate the numbers, yet we have not choice to proceed otherwise.  There is 
already something there that guides us.  [LPM 33] 

 

Again: 

 

The endlessness of the number series, far from being the result of adopting an 
arbitrary convention, is one of the first and most significant discoveries made 
right at the very beginning of mathematics. [LPM 32] 

 

At this point he applauds Brouwer’s idea of a fundamental intuition, but prefers to call it 

an insight: ‘the insight, namely, that there is an open, endless possibility of going on’ (LPM 

33).   
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 Moreover, Waismann reflects that mathematics is essentially incomplete, always 

pointing beyond itself towards further developments.  And he finds mathematicians’ 

Platonist feelings supported by the surprising interrelations cropping up between 

different parts of mathematics (LPM 30-31).   

 Waismann reverts to his criticism of Wittgenstein’s conventionalist views in 1959, 

with reference to a discussion of possible language games of numbering, with finite or 

infinite number systems, in the Brown Book (just come out in 1958).  Waismann writes 

that: 

 

the assumption of an endless number series is not merely a convention, an 
arbitrary rule, like a rule in a game of cards which we are free to accept or reject 
just as we please.  [LPM 121] 

 

Rather, a child learning to form the series 1, 1+1, 1+1+1, … makes the discovery of the 

potential infinity of the series (LPM 119), after which the opposite becomes 

unimaginable: 

 

If I try to visualise a situation in which the numbers come to an end, I feel dizzy: 
it is as if I try to think something that is unthinkable.  [LPM 121] 

 

 However, this attack on Wittgenstein’s conventionalist ideas is hardly convincing.  

For one thing, conventions need not be arbitrary rules, for it may be practically necessary 

to have some rules fulfilling a certain purpose.  Thus the Highway Code is undoubtedly a 

system of conventions, but far from being arbitrary its rules are largely determined or 

justified by their purpose to facilitate the safety and efficiency of road traffic.   For 

another thing, even with an arbitrary (aspect of a) convention (e.g., to drive on the left, 

rather than the right side of the road) individuals do not find themselves ‘free to accept 

or reject them just as they please’.  In a given social situation, conventions are often 

experienced as inexorable facts.   What Waismann describes is not the introduction of 

our system of natural numbers, but an individual being taught that system.  Given that 

one has learnt that system, one can of course be said to discover, or work out for oneself, 

its implications, most notably, its openness: that one can go on and on adding 1 without 

ever coming to an end.  Similarly, a young chess player may discover that one can mate 

with only a rook, but not with only a knight.  Yet that does not mean that the rules of 

chess have been discovered, rather than stipulated.  And the same applies to the 

meanings of our number words.  Again, given our infinite number system, it is of course 
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impossible to make sense of the idea of a last number, but that is not to say that a finite 

number system is inconceivable.  Indeed, some such finite systems are sketched by 

Wittgenstein in the Brown Book (BB 91ff.).   

 Is the construction of an endless number system the result of a ‘fundamental 

insight’?  That would presumably be the insight that an operation (such as +1) can be 

repeated again and again and again — as long as one likes; and added to that the 

consideration that — abstracting from human agency — the possibility of further steps 

will never be blocked.  Although every number is finite, numbers never run out.  

However, that kind of potential infinity is not a distinctive feature of counting:  it doesn’t 

require the natural numbers.  A knock can be repeated again and again; and abstracting 

from human agency, I can imagine that every knock could be followed by another knock.  

Thus, whereas a practical number system may well be finite (e.g. an abacus with 20 beads 

(BB 91)), Waismann’s ‘fundamental insight’ of potential infinity could even be had by 

someone who hasn’t learnt any number concepts yet.  The ‘insight’ (or ‘intuition’) about 

the potentially endless continuation of a series can also be illustrated by a row on non-

numerical marks, such as: ########... (cf. PI §214).   

 Waismann objects: 

 

Of course, I can write down as many 2’s, or as many crosses as I like, but there is 
nothing in the series which, when I stop somewhere, points beyond itself: and what 
assures me in this case that I can go on forever is not anything connected with 
the formation of the series, but something extraneous to it — for instance, the 
infinity of space. [LPM 119-20] 
 

Not so, both cases are on all fours.  Of course a sequence such as ‘1, 1+1, 1+1+1’ can be 

said to ‘point beyond itself’ in so far as we easily agree on the most natural continuation, 

but so we do in the case of an iterating series such as ‘2, 2, 2’, or even ‘###’.   In both 

kinds of cases, a simple formation rule can be perceived ‘in’ the series; extraneous factors 

don’t come into it. 

 As Wittgenstein discussed in great detail in his rule-following considerations, it 

does indeed feel as if there was something to guide us — ‘rails invisibly laid to infinity’ 

(PI §218) —, but Platonism is only a naïve metaphorical expression of our experience, 

not a plausible explanation (PI §219).  Nor does the unforeseen dovetailing of different 

parts of mathematics support Platonism.  Why should a mathematical technique and its 

results not occasionally be found to fit fruitfully with other mathematical techniques?  
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(ii) Mathematical conjectures 

It is not at all unreasonable for Waismann to balk at Wittgenstein’s stark 1929 assertion 

that only proof gives meaning to a mathematical proposition (MS 105, 59; PR 183, 192).  

Surely, the implication that mathematical conjectures are altogether meaningless is 

absurd.  Mathematicians that consider and have an opinion on Goldbach’s conjecture do 

not talk nonsense (LPM 37).  However, here Waismann’s disagreement with 

Wittgenstein only anticipates the latter’s own subsequent qualms and qualifications. 

 Considering Wittgenstein’s 1940s remarks on the issue, a much more plausible 

picture emerges.8  Wittgenstein holds on to the idea that proof is the principal source of 

mathematical meaning, but (in line with his move to the general view that meaning is use) 

he now regards legitimization by proof as an aspect of our use of mathematical 

propositions.  Consequently, his position has the flexibility to give a plausible account of 

conjectures as well.  The following points offer a persuasive response to Waismann’s 

concern. 

 (a) Proofs explain how a proposition is true.  Wittgenstein compares a mathematical 

proof to a jigsaw puzzle (MS 122, 49v).  Indeed, sometimes he regards actual jigsaw 

puzzles as mathematical problems (RFM 55-7, LFM 53-5).  In such a case, the conjecture 

to begin with would be something like: ‘These 200 pieces can be assembled to form a 

rectangular picture of a mountain’.  Here it is obvious that the proof — putting all the 

pieces together in the right way — would do more than establish the truth of the 

conjecture.  It would not only convince us that the pieces can be put together to form a 

picture of a mountain, it would show us how they fit together (cf. RFM 301; 308).  Thus 

the proof does not only verify a proposition, one can say that it gives us a much fuller 

understanding of it, showing us what exactly that proposition means.   

 (b)  Proofs account for mathematical necessity.  Mathematical propositions are 

characterised by a necessity that must be established by a demonstration.  If that is 

correct, then the proposition that there is no greatest prime should be rendered more 

appropriately as: ‘There can’t be a greatest prime’ —indicating the necessity we attribute 

to a proposition when we take it as a piece of mathematics.  Then, of course, the 

meaning of the modal verb in that sentence needs to be understood.  One is entitled to 

ask: ‘What do you mean by “can’t”?’  And the answer that gives meaning to the ‘can’t’ is 

that it follows from such-&-such considerations — the proof — that there is no greatest 

prime. 
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 In this way, the mathematical proposition, when taken as such: as a demonstrably 

necessary truth, refers us to its proof (cf. RFM 309). 

 (c) Only proof shows a conjecture to be consistent and hence, ultimately, meaningful.  Consider 

that, for all we know, a mathematical conjecture could be proven false (RFM 314d), that 

is, shown up to be inconsistent.  Yet if something is inconsistent, or contradictory, it 

doesn’t make sense: it cannot be understood: there is nothing to be understood.  But 

then, given that we cannot even know whether a mathematical conjecture is fully 

understandable (and not nonsense), then a fortiori we cannot claim to understand it.  A 

sentence that as far as we know may be inconsistent, i.e. nonsense, can hardly be said to 

have a clear sense for us.  This, again, vindicates Wittgenstein’s view that a proof gives 

meaning to a mathematical proposition. 

 (d) Proof affords normative legitimacy, which is a crucial part of the meaning of a mathematical 

proposition.  One of Wittgenstein’s key ideas is that mathematical propositions are akin to 

grammatical norms (RFM 162, 169, 199, 320).  For a proposition to have mathematical 

sense it must not only have the contents, but also the normative status that characterises 

mathematics (RFM 425): it must be acknowledged as a grammatical rule, which obviously 

an unproven conjecture is not.  Nothing unknown can fulfil a normative function (PR 

143; 176).  Therefore, even if we assume that it is possible to find a proof for Goldbach’s 

conjecture — that the potential for such a proof is already there —, until it has actually 

been produced Goldbach’s conjecture will not be accorded the status of a grammatical 

rule.  That is, until then it cannot be accorded the full status of a mathematical 

proposition. 

 (e) Mathematical conjectures (or problems) can have a fairly clear sense, but it’s not a genuinely 

mathematical sense.  In as much as we understand their content, we take them as empirical 

propositions, corresponding to, but crucially different from, the mathematical 

proposition we would like to establish by proof.  For example, in some sense we 

understand the idea of the construction of a heptagon with ruler and compass (which is 

impossible).  But that is only because we have a clear empirical idea of a heptagon, that 

is, we can easily think of a 7-sided figure whose sides and angles when measured come 

out as all the same.  So we are inclined to understand the problem as that of drawing 

such a figure.  But in fact that is not the mathematical problem.  The mathematical 

problem is that of finding a mathematical construction of a heptagon, analogous to the way 

one can give a mathematical construction of, say, a pentagon.  The result of such a 

construction would of course also fulfil the empirical criteria (that measurement shows 7 
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sides and angles, all roughly equal), but that is not enough.  As a solution to a geometrical 

problem, it is essential that the figure be arrived at, step by step, in a regular, repeatable 

and teachable way, using only ruler and compass.  We are looking not just for a shape, 

but for a very specific way of producing it.  Yet this specific way of producing such a 

shape is something we are unable to describe.  We have no idea of such a geometrical 

construction; and therefore, our talk of such a construction — the conjecture of such a 

construction — has no clear mathematical sense; even though it has a very 

straightforward empirical sense, derived from empirical measurements of drawn figures 

(cf. LSP 572). 

 As another example, consider Goldbach’s conjecture that every even number is 

the sum of two primes.  Don’t we understand that? — Again, Wittgenstein’s response is 

that without a proof we have of course some understanding of it, but only as an 

empirical generalisation; meaning that for any even numbers we will ever consider we will 

be able to find two primes adding up to that number.  That is an empirical hypothesis 

inductively supported by our evidence to date; but not a mathematical proposition (cf. 

RFM 280-1). 

 Infinity in mathematics is always the endless applicability of a law (cf. PR 313-14; 

RFM 290b).  Hence, where (as yet) we have no law, no mathematical rules that can be 

understood to have an endless applicability, we cannot meaningfully speak of 

mathematical infinity.  So we cannot as yet make sense of the infinite scope of Goldbach’s 

conjecture. 

 

 

4. 

In spite of his personal disenchantment with Wittgenstein, in mathematics Waismann 

remained very much a Wittgensteinian philosopher.  Most of the ideas he propounded in 

his 1950 lectures can be traced back to Wittgenstein’s philosophy of mathematics.  In 

some cases, Waismann used his considerable skills as a lucid writer and analytical thinker 

in order to present Wittgensteinian ideas in a more systematic manner (as he had already 

done in LSP), occasionally fleshing them out in more illuminating detail.  Only on two 

substantive issues Waismann argues expressly against Wittgenstein.  His later misgivings 

about Wittgenstein’s conventionalism, however, are not very well supported, whereas his 

rejection of Wittgenstein’s 1929 and early 1930s ‘meaning through proof’ doctrine is 
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perfectly sensible, but (as we argued) not in conflict with Wittgenstein’s more carefully 

qualified views from the 1940s. 

 

 

References 

 

A.J. AYER (1977), Part of My Life, Oxford: OUP. 

Gordon BAKER (1979), ‘Verehrung und Verkehrung: Waismann and Wittgenstein’, in: 

C.G. Luckhardt (ed.), Wittgenstein: Sources and Perspective, Hassocks, Sussex: Harvester 

Press; 243-85. 

Gordon BAKER (2003), ‘Preface’ to The Voices of Wittgenstein. The Vienna Circle. Ludwig 

Wittgenstein and Friedrich Waismann, ed.: G. Baker, London: Routledge. 

Mauro Luiz ENGELMANN (2013), Wittgenstein’s Philosophical Development: Phenomenology, 

Grammar, Method, and the Anthropological View, New York: Macmillan. 

Pasquale FRASCOLLA (1994), Wittgenstein’s Philosophy of Mathematics, London: Routledge.   

Wolfgang GRASSL (1982), ‘Friedrich Waismann on the Foundations of Mathematics’, in: 

LPM, 3-25. 

Victor RODYCH (2000), ‘Wittgenstein’s Critique of Set Theory’. The Southern Journal of 

Philosophy. XXXVIII, 281-319.  

Severin SCHROEDER (2012): ‘Conjecture, Proof, and Sense, in Wittgenstein’s  

Philosophy of Mathematics’, in: C. Jäger & W. Löffler (eds), Epistemology: Contexts, Values, 

Disagreement. Proceedings of the 34th International Ludwig Wittgenstein Symposium in Kirchberg, 

2011, Frankfurt: Ontos, 2012; 461-75. 

Severin SCHROEDER (2013): ‘Wittgenstein on Rules in Language and Mathematics’, in: N. 

Venturinha (ed.), The Textual Genesis of Wittgenstein’s Philosophical Investigations, London: 

Routldege, 2013; 155-67. 

 

Friedrich WAISMANN: 

EMD  Einführung in das mathematische Denken, Gerold: Wien, 1936; dtv: München, 

1970. [English: Introduction to Mathematical Thinking: The Formation of Concepts in Modern 

Mathematics, tr.: T.J. Benac, Dover Publ., New York,1951.] 

LPM  Lectures on the Philosophy of Mathematics, ed.: W. Grassl, Rodopi: Amsterdam, 

1982. 



 18 

LSP  Logik, Sprache, Philosophie, eds.: G.P. Baker & B. McGuinness, Stuttgart: 

Reclam, 1976. [English translation: The Principles of Linguistic Philosophy, ed.: R. Harré, 

Macmillan: London, 1965.] 

 

 

Ludwig WITTGENSTEIN: 

AL Wittgenstein’s Lectures, Cambridge, 1932-1935, ed.: A. Ambrose, Oxford: Blackwell, 

1979. 

BB     The Blue and Brown Books, Oxford, Blackwell, 1958.  

BT The Big Typescript: TS 213, ed. & tr.: C.G. Luckhardt & M.A.E. Aue, Oxford: 

Blackwell, 2005. 

LC Lectures and Conversations on Aesthetics, Psychology and Religious Belief, ed.: C. Barrett, 

Oxford: Blackwell, 1978. 

LFM Wittgenstein’s Lectures on the Foundations of Mathematics Cambridge, 1939, ed.: C. 

Diamond, Hassocks, Sussex: Harvester Press, 1976. 

LSP Logik, Sprache, Philosophie, by Friedrich Waismann [based on dictations by 

Wittgenstein], Stuttgart: Reclam, 1976. 

MS Manuscript in Wittgenstein’s Nachlass: The Bergen Electronic Edition, Oxford: OUP, 

2000. 

PG Philosophical Grammar, ed.: R. Rhees, tr.: A.J.P. Kenny, Oxford: Blackwell, 1974. 

PI Philosophical Investigations, eds: P. M. S. Hacker & J. Schulte, tr.: G.E.M. Anscombe; 

P.M.S. Hacker, J. Schulte, Oxford: Wiley-Blackwell, 2009. 

PR Philosophical Remarks, ed.: R. Rhees, tr.: R. Hargreaves & R. White, Oxford: 

Blackwell, 1975. 

RFM Remarks on the Foundations of Mathematics, eds: G.H. von Wright, R. Rhees, G.E.M. 

Anscombe; tr.: G.E.M. Anscombe, rev. ed., Oxford: Blackwell, 1978. 

WVC Ludwig Wittgenstein and the Vienna Circle. Conversations recorded by Friedrich 

Waismann, ed.: B. McGuinness, tr.: J. Schulte & B. McGuinness, Oxford: Blackwell 

1979.  

Z Zettel, eds: G.E.M. Anscombe & G.H. von Wright, tr.: G.E.M. Anscombe, 

Oxford: Blackwell, 1967. 

 

 

 



 19 

 

 

 

 

 
 

 
1 Cp. Grassl 1982, 21-23, for a slightly different list of the main tenets of Waismann’s philosophy of 
mathematics. 
2 For more details about this project and its ultimate failure, see Engelmann 2013, 28-43. 
3 The seeds of this idea can already be seen in the early intermediate period when Wittgenstein talks of a 
calculus being ‘serious business’ because of its possible application(s) to ‘everyday life’ (WVC 170).  This 
stands in contrast, however, to his more common discussion (at this time) of a mathematical calculus being 
an ‘application of itself’ (and seemingly fully meaningful) (PR 130-132). 
4 Wittgenstein similarly explains the Dedekind definition of an infinite class as ‘saying that it is a class 
which is similar to a proper subclass of itself’ (PG 464). 
5 It would seem that only Waismann employs the term ‘verification’ (as opposed to ‘method of 
verification’) in order to make this distinction.  Wittgenstein employs the verification principle to make 
logical distinctions between types of propositions and does not use the term ‘verification’ to only refer to 
empirical verification.  According to this understanding, mathematical propositions also have ‘verifications’ 
(i.e., different types of proofs).  What is true: the method of verification of an empirical statement relates 
importantly to the world, whereas the method of verification of mathematical propositions does not.  A 
large part of Wittgenstein’s work in the intermediate period and onwards is devoted to arguing for this 
point (often without any use of the term ‘verification’ at all – indeed the idea of ‘methods of verification’ at 
most complements the idea of categorially different methods employed by mathematics and the empirical 
disciplines).  Despite the different use of terminology, Wittgenstein’s work obviously anticipates 
Waismann’s thought on this point also.  
6 Aside from a remarkable affinity between the wording of the two arguments, it also should be noted that 
the arguments are presented as arguments against the actual infinite (even though Waismann rejects this 
conclusion).  Thus, it is virtually impossible that Waismann was not following Wittgenstein’s ideas in this 
context.  
7 Although Waismann would deny it, it is not clear to us that his argument cannot also serve as a refutation 
of the actual infinite.  For if one imagines his example as one involving an algorithm constructed in the 
right way, it would appear that in order to speak of a completed infinite series one must have recourse to 
the infinite past.  Yet this itself is unintelligible (it conflicts with other conceptual truths regarding 
calculation – e.g. our use of ‘begun’).  And, in addition, the idea of an infinite series as a completed whole 
is undermined by numerous other comments made by Wittgenstein (e.g. PR 164; 167).  
8 For a more detailed account, see Schroeder 2012. 


