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Application of Generalized Likelihood Uncertainty Estimation (GLUE) at different temporal 

scales to reduce the uncertainty level in modelled river flows  

 

Ragab, R.1*., Kaelin, A.1, Afzal, M.1,2, and Panagea3, I.  

 

Abstract  

In this study, the distributed catchment-scale model (DiCaSM) has been applied on six catchments 

across the UK, with the catchment areas varying from 150 km2 to over 300 km2. Given that river flows 

are of great importance in terms of water supply and for ecosystem services, the river flows were 

selected to study the uncertainty level in predicting the river flows. The hydrological model was 

calibrated over a short period of time, and validated over a longer period. For most of the studied 

catchments, the Nash-Sutcliffe efficiency (NSE) factor, used as indicator of goodness of fit during the 

model calibration period, was above 0.90, while for the validation test, all the studied catchments 

showed a NSE of above 0.80 over the entire study period (approx.1961-2012). The Generalized 

Likelihood Uncertainty Estimation (GLUE) methodology was applied. The uncertainty analysis 

supported the model efficiency results well. The observed river flows were within the predicted 

bounds/envelope of 5% and 95% percentiles. These predicted river flows bounds contained above 

70% of the observed river flows as expressed by the Containment Ratio (CR). In addition to CR ratio, 

other uncertainty indices, S, T, B, RB, D, RD and R-factor of uncertainty level in the predicted river 

flows were also quantified and indicated that the model parameters and predicted river flow have 

acceptable levels of uncertainty. The GLUE methodology showed lower uncertainty in predicted river 

flows when increasing the time scale from daily to monthly to seasonal river flows with the lowest 

uncertainty associated with annual flows. The findings of the study have broader implications for 

hydrologists, climatologists, and water authorities to study the future impacts of climate and land use 

changes on water resources availability.   
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1.  Introduction 

 

Hydrological models’ results are judged by their reliability, accuracy and level of uncertainty.  There 

are a number of factors that affect the model results. They include: the model structure, the accuracy 

in describing the hydrological processes, the parameter values and the inherited errors in input and 

observation data. These factors, if not closely representing the natural system, could lead to 

imprecision and uncertainty in model results (Loucks and Van Beek, 2017). One of the most applied 

methods for assessing the uncertainty is the Generalized Likelihood Uncertainty Estimation (GLUE), 

proposed by Beven and Binley (1992). This methodology has been used in a number of hydrological 

studies by Kan et al. (2019), Xie et al. (2019), Tegegne et al. (2019), Xue et al. (2018) and Aynom et 

al. (2018).  

The methodology assumes that there is an optimal model structure or parameter set that could represent 

a catchment hydrology. The GLUE methodology states that the performance of simulation is not 

decided by one specific parameter, but by the combination of parameters in a parameter set. The 

methodology recognises the possible equifinality and the multiple behavioural (Beven and Binley, 

1992) of the different parameter sets and  assesses the likelihood of a set being acceptable when 

compared with the observed datasets.  

Although several studies applied the GLUE methodology to assess the model performance, little work 

is carried to study the model performance over different time scales (daily, monthly, seasonal and 

annual), and over different catchments with different catchment sizes, land use characteristics, 

geographic location and soil physical characteristics.  

The main objective of this study is to assess the uncertainty level in simulated river flow by DiCaSM 

model (Ragab and Bromley, 2010) using the GLUE methodology on six different catchments and on 

four different time scales.  

https://www.nature.com/articles/s41598-017-18982-8#auth-1
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The findings of the study are expected to have broader applications which could potentially be used 

by hydrologists, climatologists, and meteorologists to study the future impacts of climate change on 

water resources.  

2. The DiCASM model, the data and the studied catchments  

2.1 The DiCaSM model 

This study applied the Distributed Catchment Scale Model, DiCaSM (Ragab and Bromley, 2010, 

Ragab et al., 2010). The model is a physically based and considers the commonly known hydrological 

processes such as rainfall interception, infiltration, evapotranspiration, surface runoff to streams, 

recharge to groundwater, water uptake by plants, soil moisture dynamics, and stream flow. The model 

has been developed to estimate the catchment water balance components and to account for the impact 

of the changes in climate and land use on the catchment water resources, including stream flow and 

recharge to the groundwater. The model adopts a distributed approach with a variable spatial scale 

(default in 1km grid square) and requires daily input data of rainfall, temperature, wind speed, vapour 

pressure, and radiation and runs on a daily time step, however, if hourly rainfall data is available, the 

model can run with hourly time step. The model also addresses the heterogeneity of input parameters 

of soil and land cover within the grid square using three different algorithms (Ragab and Bromley, 

2010). The model has been successfully applied on a catchment in Brazil (Montenegro and Ragab, 

2010 & 2012), in Italy (D’Agostino et al., 2010) and in Cyprus (Ragab et al., 2010).  

    2.2 The components of the DiCaSM model 

The key model components are rainfall interception, potential evapotranspiration, the catchment water 

balance, infiltration, surface runoff /overland flow and ground water recharge. The processes include 

rainfall interception by grass surface calculated  according to Aston (1979), by crops according to Von 

Hoyningen-Huene (1981), and  by trees according to Gash et al. (1995). Potential evapotranspiration 

of mixed vegetation was calculated according to  Raupach (1995) whereas the surface runoff 

calculation was based on either excess saturation or excess filtration. The infiltration was calculated 
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according to either Philip (1957) or Green and Ampt (Green, 1911) equations. The runoff is a routed 

between the low points of each grid square along the prevailing slope using the digital terrain model 

(DTM). The model calculates the soil water balance of the root zone based on the four layers model 

of Ragab et al. (1997) and calculates overland and channel flow according to Yu and Jeng (1997). 

Further details about the model are given in Ragab et al. (2010) and Ragab and Bromley (2010).  

2.3 Input data for DiCaSM model 

The DiCaSM model was applied on six selected catchments from different parts of the UK (Fig. 1) as 

part of a project to study the climate change impact on water resources. The data required to run the 

model are: climate data, elevation map data, land cover map data, soil cover map data, soil hydraulic 

properties and land cover properties.  The climate data required are temperature, wind speed, vapour 

pressure, and radiation, as well as the rainfall.  The climatic data were obtained from the Climate, 

Hydrology and Ecology research Support System (CHESS) (Robinson et al., 2015, Tanguy et al., 

2016). The catchment boundary and gauging station location data were collected from the Centre for 

Ecology and Hydrology (Morris et al., 1990b, Morris and Flavin, 1994) and the National River Flow 

Archive provided data for the daily river flow for the studied catchments (NRFA, 2014). The river 

flow data were collected from the Centre for Ecology and Hydrology, 'Digital Rivers 50km GB' Web 

Map Service (CEH, 2014). The UK Land Cover data were obtained from the Centre for Ecology and 

Hydrology (Land Cover Map 2007 (25m raster, GB) Web Map Service (Morton et al., 2011).  
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Figure 1: Case study catchments overview map  

2.4 Key model parameters and model calibration  

To calibrate the model against the observed streamflow several model parameters were used. The river 

flow in DiCaSM model depends on six parameters. They are the percentage of surface runoff  routed 

to stream, exponent function describing the peak flow, catchment storage/time lag coefficient, stream 

storage/time lag coefficient, base flow index and the streambed infiltration//leakage. In addition, there 

are other parameters that affect the calibration, such as the soil hydraulic parameters. For the model 

calibration, the model was run with a range of the above-mentioned model parameters using the best 

periods i.e. those available with the best quality data, were selected for the model calibration. The 

selected time period was run using a simple iteration algorithm for optimization in which each of the 

above-selected parameters were assigned a range described by a minimum and a maximum value. 

Each range was divided into several steps and the number of total iterations is the product of 

multiplication of the steps of the six key parameters. The number of iterations for each parameter was 
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assigned according to the parameter sensitivity, i.e. a higher number of iterations was assigned to 

parameters which showed more impact on the streamflow. The model calculates the Nash-Sutcliffe 

Efficiency factor, NSE, for each iteration. The model optimisation process helps in finding a good set 

of parameters that produces a good model efficiency factor.  In addition to the Nash-Sutcliffe 

Efficiency factor, other indices like ln NSE (using natural logarithmic values of stream flow) and R2 

were also used to compare the simulated and the observed data. 

Generally, the model calibration was carried out over a shorter period and the model validation period 

varied from several years to the entire available record.  

2.5 Assessing model efficiency/performance   

To determine the model efficiency/goodness of fit, the modelled and observed river flow data were 

compared using a number of indices, including the Nash-Sutcliffe Efficiency (NSE) factor, based on 

(Nash and Sutcliffe, 1970). The NSE is the most widely used factor to assess the performance of 

hydrological models (Gupta et al., 2009). An NSE factor of 100% indicates a perfect match.     

𝑁𝑆𝐸 = 100 − 
∑ ( 𝑂𝑖 − 𝑆𝑖

𝑛
𝑖=1 )2

∑ (𝑂𝑖 −  Ōn
i=1 )2

                                        (1) 

where Oi and Si refer to the observed and simulated flow data, respectively, and Ō is the mean of the 

observed data. The calibration procedure consisted of adjusting the model parameters to achieve the 

best model fit, with the latter assessed using the NSE values. Krause et al. (2005) indicated that extreme 

values in a time series can result in a low NSE coefficient because hydrological models tend to 

underestimate river flow during peak flows. For this reason, they suggested calculating the NSE 

coefficient with natural logarithmic values of the flow, as used in Afzal et al. (2015):   

ln 𝑁𝑆𝐸  = 100 −  
∑ (𝑙𝑛 𝑂𝑖 − 𝑙𝑛 𝑆𝑖

𝑛
𝑖=1 )2

∑ (𝑙𝑛 𝑂𝑖 − 𝑙𝑛 Ōn
i=1 )2

                (2) 
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In addition, the model performance was also evaluated using the statistical indicators, namely 

Coefficient of determination, R2 as:  

𝑅2 =  {
1

𝑁
 
∑[(𝑦0−𝑦0̅̅̅̅ ] (𝑦𝑠−𝑦0̅̅̅̅̅̅ ̅̅ ̅̅ ̅̅ ̅

𝜎𝑦0−𝜎𝑦𝑠
}                                      (3) 

where yo is the observed value, ys is the simulated value, N is the total number of observations, �̅�o is 

the average measured value, �̅�s is the average simulated value, 𝜎𝑦0 is the observed data standard 

deviation and 𝜎𝑦𝑠 is the simulated data standard deviation. The values of this index can range from 1 

to 0, with one indicating perfect fit.  

3. The Generalized Likelihood Uncertainty Estimation, GLUE methodology 

Although there are a number of ways to evaluate the uncertainty, the GLUE methodology has the 

advantage of using only a small number of assumptions and of being simple in its application.  It is 

based on the estimation of the weights, or probabilities, associated with different parameter sets. The 

set that produces the least errors (good fit) is usually associated with the highest likelihood function, 

and the highest probability. The GLUE methodology is somehow related to the Nash–Sutcliffe 

Efficiency, as the likelihood uncertainty level is calculated as: 

𝐿 (
𝜃𝑖

𝑌
) = (1 −

𝜎𝑖
2 

𝜎𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑
2 )                                         (4) 

The likelihood measure, L is the likelihood measure of the ith model simulation made with the 

parameters set θi related to the measured stream flow Y, and is a function of the ratio of errors variance, 

σ2
i for the ith model simulation (representing the variance of the error between the model prediction 

and the observed stream flow) and the variance of the observed stream flow, σ2
observed. A distribution 

function is obtained by rescaling of the likelihood measures such that the sum of all the likelihood 

values would equal 1. The cumulative distribution, together with prediction quantiles (95% and 5% 

confidence levels) are used to assess the uncertainty level.   
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The application and results of the GLUE approach vary, based on the threshold assigned for acceptable 

goodness of fit indicator and likelihood measure (i.e. minimum Nash-Sutcliffe Efficiency, NSE value) 

chosen to evaluate if the selected set of parameters is behavioural or not (Beven, 2006, Beven and 

Binley, 1992, Viola et al., 2009). Different likelihood measures could be used like the Nash-Sutcliffe 

Efficiency (NSE) or the sum of squared errors (Beven and Binley, 1992, Freer et al., 1996). The users 

could define the threshold of efficiency criteria according to their model preference and for each 

individual catchment. The GLUE methodology rejects the non-behavioural parameter sets when the 

likelihood measure selected takes lower values than the designated threshold.  The behavioural sets 

are retained together with the likelihood values, which are used for the weight calculation. The 

cumulative likelihood weighted distribution of predictions could be used to estimate the quantiles for 

the predictions at any time step.  

To apply the GLUE methodology, one needs to define the threshold value of the likelihood measure 

that differentiates between the behavioural and non-behavioural models.   

3.1 Uncertainty indicators    

In this study, the uncertainty analysis was carried out on the calibration and validation sub-periods. 

Different sets of model parameters were used to generate the modelled river flow time series and the 

Nash-Sutcliffe Efficiency (NSE) factor was chosen as a likelihood measure indicator. Based on 

previous studies (Jackson et al., 2016), the NSE threshold was set to 0.5 (50%), which implies that all 

parameter sets with NSE below 0.5 are considered non-behavioural and not included in the GLUE 

analysis. The uncertainty levels are evaluated with a number of  indicators: CR, B, RB, S, T, R-factor, 

D, and RD  as reported by Xiong et al. (2009). The CR parameter is the Containment Ratio which is 

the percentage of observed river flows that are enveloped by the prediction bounds of 5% and 95% 

confidence levels (Q5% - Q95%) likelihood-weighted quantiles. CR is probably the most basic 

requirement for the prediction bounds. A high CR for the estimated prediction bounds is always the 

aim.  
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The indices S and T are used for assessing the geometric structure/average asymmetry degree of the 

band formed by the lower and upper prediction bounds. An average asymmetry degree index value S 

< 0.5 indicates that, on average, the river hydrograph lies within the prediction bounds. In the 

completely symmetrical case, the value of S is zero. Desirable bounds should have values of 0 < S < 

0.5 and 0 < T < 1.  

The band-width of the prediction bounds, (Q5% - Q95%)  B, should be as narrow as possible, so as to 

capture the most important information about the modelling uncertainty. The average relative band-

width, RB is used to facilitate the comparison of results of the prediction bounds on different 

catchments, it is necessary to eliminate the impact of discharge magnitude on the band-width of the 

prediction bounds.  

The average deviation amplitude, D, quantifies the discrepancy between the trajectory consisting of 

the middle points of the prediction bounds and the observed discharge hydrograph. The average 

relative deviation amplitude, RD, eliminates the impact of discharge magnitude on the value of the 

index of average deviation amplitude.  

The uncertainty parameter R-factor is the average thickness of the band divided by the standard 

deviation of the observed data. A value of less than 1 is a desirable measure for the R factor (Singh et 

al., 2014). More details about the indicators are given in Annex 1.  

3.2 The GLUE methodology application    

 

The DiCaSM model provides for each parameter set combination a single value of simulated stream 

flow. Performance evaluation was carried out, including rejection of some parameter sets as non-

behavioural (NSE < 0.5). This was followed by calculation of the likelihoods of behavioural parameter 

sets and rescaling to produce a cumulative sum of 1. This was carried out by ranking in ascending 

order all the simulated stream flows (only of those behavioural parameter set) and the corresponding 

cumulated efficiencies (NSE).  Each cumulated efficiency value, divided by the maximum value, 
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resulted in a value ranging between 0 and 1. These values are referred to as the ‘probability weighted 

in efficiency’ (D’Agostino, et al. 2010, Viola et al., 2009). A cumulative distribution function (CDF) 

of the simulated stream flow has also been constructed, relating each value of the simulated flow to 

the corresponding value of the probability weighted in efficiency.  

The model uncertainty analysis was carried over daily, monthly, seasonal and annual time scale. This 

helps to assess the uncertainty level of different time scales.  

For calculating an uncertainty level for the simulated streamflow the following steps were followed: 

1. Simulate flow with several parameter sets 

2. Assess the likelihood of each parameter set (e.g. NSE threshold) 

3. Separate simulations into acceptable and non-acceptable 

4. Rescale the likelihoods so that the cumulative sum = 1 

5. Conduct statistical analysis of the acceptable simulations (5% and 95% quantile) 

There are several ways of presenting the results of the uncertainty analysis.  

➢ Statistical data about the behavioural and non-behavioural simulations: for example, the 

percentage of behavioural simulations. If the model was run for 1000 times and achieve 100 

behavioural simulations, then the percentage of behavioural simulations = 100/1000 =10% 

      Table 1 shows that this ratio varies from >50% to >90% for the studied catchments.  

➢ Different indicators are described in “3.1. Uncertainty indicators”. 

In the description of the results, a combination of the indicators can give valuable information 

about the uncertainty results. For example, a low average bandwidth combined with high CR 

denotes that the uncertainty bounds are low (low average bandwidth) and that a large part of the 

observed values are included in these bounds (high CR). This would show that the model and the 

parameter sets, are reliable and could be used for further analysis and decision making.  
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➢ Simulated time series of the observed, calibration and validation periods together with the 

envelopes of percentiles 5%-95% (Beven & Freer, 2001; Freer et al., 1996; Jackson et al., 2016).  

➢ Average volumes are plotted against their rescaled likelihoods, which results in a plot of variation 

interval of the average volume. By projecting the probability weighted in efficiency values of 0.05 

and 0.95 onto the curve of volumes, the upper and lower confidence bands can be identified. 

Plotting the mean value of the observed volume, as a vertical line should lie within the confidence 

region of the model. 

➢ In order to compare the behavioural time series with the observed volume, a cumulative 

distribution function (CDF) can be plotted for all behavioural time series.   

 

4. Results and Discussion 

4.1. Model river flow simulations for uncertainty analysis  

In order to reduce the number of simulations, the sensitivity of each parameter for each catchment was 

tested by running the model for a short time period, e.g. for two years. This provided more insight into 

the range of the parameters and number of iteration steps that could be considered in order to get the 

best results (e.g. to get iterations with an NSE between 50% and 100%). The benefit of the sensitivity 

analysis prior to application of the GLUE was to reduce the number of iterations which led to a 

reasonable number of parameter sets selected for the six catchments (Table 1).  

Table 1. Number of iterations and ranges of NSE for monthly percentiles 

 

Catchment 

Total number 

of iterations 

Number of iterations     

with  

monthly NSE >50% 

Range of  

monthly NSE % 

Range of  

monthly NSE > 50% 

Eden 60 60 50.4 – 84.9 50.4 – 84.9 

Frome 490 396 -24.6 – 92.9 50.4 – 92.9 

Ebbw 108 103 27.1 - 94.9 50.5 - 95.3 

Fowey 112 107 42.0– 96.4 51.5 – 96.4 

Pang 648 342 -92.3 – 90.7 50.2 - 90.7 

Don 336 225 -35.2 – 89.1 50.0 - 89.1 

For all the selected time periods, the threshold for GLUE was set at NSE = 50%. This means that 

behavioural simulations must have NSE equal or above 50%. All simulations with NSE below 50% 
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were discarded from the GLUE analysis. The range of the parameters and the number of iterations 

used in the study for all studied catchments are shown in Table 2. Some parameters were sampled over 

a very broad range, while others were sampled over narrow range (as the model proved the stream 

flows were less sensitive to those parameters).  

Table 2: Key model parameter ranges and number of iterations 
 

Catchment 

Model parameters 

Base percentage 

of flow routed to 

stream 

Exponent function 

of flow routed to 

stream 

Catchment 

storage/ time lag 

Stream storage/ 

time lag 

Base flow factor 

 Range/ Iterations Range/ Iterations Range/Iterations Range/Iterations Range/ Iterations 

Frome 9 – 90 10 0.02–0.04 7 45 1 15 1 0.2– 0.8 7 

Pang 0.2–1.8 9 0 to 0.004 3 0.1-1 8 0.015 1 1.75E-8– 3.3E-7 3 

Ebbw 10 - 90 9 0.02 - 0.4 2 2 1 20 1 2.2E-9 - 2.2E-7 6 

Eden 40-95 4 1.0E-5 1 315 1 15-55 3 0.14 - 0.75 5 

Fowey 4-95 7 0 - 0.3 2 50 1 23.5-120 2 8.5E-9 - 8.5E-7 4 

Don 10-90 8 0 - 0.3 6 143 1 18 1 0.02 - 0.95 7 

      4.2. Model river flow calibration and validation  

The six catchments were calibrated and validated using the observed naturalized river flows for 

different periods starting from 1961 until 2012. Detailed goodness of fit indices as model performance 

indicators during the calibration and validation periods for the six studied catchments are shown in 

Table 3. 

An example of calibration for the Ebbw catchment is shown Figure 2, which shows a good agreement 

between the observed the simulated flow. The NSE during this period was 91%. Overall the model 

performed well both during the rainy and dry events and responded according to soil hydrological 

status, i.e. during the soil moisture deficit period, a small rainfall event did not generate a significant 

increase in streamflow and during a heavy rainfall event, when the soil was wet especially during the 

winter months, the model generated stream flow. For all catchments, during the model calibration 

stages, the model efficiency factor, NSE, on average was around 89% and the maximum percentage 

error did not exceed 1% (Table 3). The model also performed very well during the well-known 1970s 

drought events. Generally, the overall model performance over the whole period, 1961-2012 for all 

catchments was extremely good, the NSE on average was around 85% with maximum error not 

exceeding 5% for the studied catchments.  
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Figure 2: Ebbw catchment model calibration for the period 2000-2003.  

Table 3: Model performance during the calibration and validation stages of the 6 catchments 

 

Catchment  

 

Periods NSE ln NSE R2 

Square 

root of 

R2 

Modelled 

flow, m3s-1 

Observed 

flow, m3s-1 % error 

Ebbw 2000-2003* 0.91 0.88 0.92 0.96 7.19 7.23 -0.55 

1971-1980a 0.87 0.82 0.88 0.94 6.70 6.53 2.56 

1961-2012 0.87 0.82 0.88 0.93 6.98 7.21 -3.17 

Eden 2000-2001* 0.90 0.95 0.89 0.94 5.03 5.04 -0.19 

1971-1980a 0.79 0.89 0.79 0.89 3.60 3.54 1.69 

1971-2012 0.79 0.90 0.80 0.89 4.11 4.13 -0.48 

Don 2001-2012* 0.91 0.84 0.91 0.95 5.41 5.35 -1.11 

1971- 1980a 0.87 0.82 0.88 0.94 6.70 6.53 2.56 

1961-2012 0.87 0.82 0.88 0.93 6.98 7.21 -3.17 

Fowey 1962-1971* 0.85 0.87 0.84 0.91 5.10 4.98 2.5 

1971-1980a 0.84 0.91 0.85 0.92 5.06 5.11 -0.85 

1962-2012 0.88 0.90 0.86 0.92 5.16 5.38 -2.96 

Frome 2000-2001* 0.84 0.65 0.84 0.92 2.23 2.19 -1.82 

1971-1980 a 0.72 0.61 0.73 0.85 1.55 1.62 -5.2 

1962-2012 0.74 0.63 0.76 0.87 1.75 1.74 0.43 

Pang 2001- 2003* 0.92 0.89 0.94 0.97 0.79 0.81 -2.14 

1971-1980a 0.78 0.79 0.78 0.88 0.62 0.61 1.76 

1971- 2012 0.81 0.80 0.83 0.91 0.66 0.64 3.47 

*calibration period and a periods with drought events  
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     4.3. Model uncertainty analysis  

 

Based on the simulated river flows of the six catchments, during the calibration and validation periods, 

the envelope of 5% and 95% likelihood-weighted quantiles (the envelope of all behavioural models, 

i.e. NSE >50%) were plotted against the observed time series. Tables 4, 5, 6 and 7 show the uncertainty 

indicator values for daily, monthly, seasonal and annual river flows. An example of monthly river 

flows of Ebbw catchment is shown in Figure 3. This figure shows the envelope of the 5% and 95% 

likelihood-weighted quantiles in blue for the calibration period 2000-2004, in brown for the validation 

period between 1961-2012 and the black line represents the observed river flow. For most of the time, 

the observed discharge is contained within the calculated uncertainty bounds, the predictions 

bracketed the observations, given that, for the Ebbw catchment, the calibration had a NSE value of 

91% and the validation had a NSE value of 87%, as shown in Table 3.  

Figure 3: Model output uncertainty boundaries, (the 5th and 95th percentile) performing the GLUE 

analysis during the model calibration (2000-2004) and validation (1961-2012) periods for the Ebbw 

catchment river flow (monthly values).  

The number of observations contained within the 5% and 95% GLUE uncertainty bounds expressed 

as Containment Ratio, CR, ranged from 72% to 84%. Such high values of CR mean that the model 

captured the observed flow quite well, as more observed values are included in the envelope and show 

that those sets of parameters used can be considered acceptable in order to be used for future 

projections, such as climate change scenarios. Similar results with good CR values were also obtained 

for monthly flows of the other catchments, as shown in Table 5.  

The uncertainty level could differ according to the time scale, Figure 4 shows the seasonal river flow 

for the Don catchment as an example. The results reveal that the model performed well over different 
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seasons, including over summer. The figure shows the envelope of 5% and 95% likelihood-weighted 

quantiles together with the observed river seasonal flows. The envelope of the 5% and 95% likelihood-

weighted quantiles represents the calibration and the validation periods. For most of the time, the 

observed discharge is contained within the calculated uncertainty bounds, the predictions bracketed 

the observations to great extent (CR = 76%) given that the calibration had a  NSE value of 91% and 

the validation had a NSE value of 87% for the Don catchment, as shown in Table 3.  Similar results 

of seasonal flows for other five catchments were obtained, and values are shown in Table 6.  

 

Figure 4: Model output uncertainty boundaries, (the 5th and 95th percentile) performing the GLUE 

analysis during the model calibration (2001-2012) and validation (1967-2012) periods for the Don 

catchment river flow (seasonal values).  

 

Figure 5 shows the simulated annual flows and the envelope of 5% and 95% likelihood-weighted 

quantiles compared against the observed annual time series for the Frome catchment as example. The 

figure shows the envelope of the 5% and 95% likelihood-weighted quantiles for the calibration (period 

2001-2012) and for the validation period (1971-2000), where the black line represents the observed 

flow. All the time the observed discharge is contained within the calculated uncertainty bounds, the 

predictions bracketed the observations, where CR ranged from 90% to 100%. In most of the studied 

catchments the annual CR was above 80, and the lowest was 73%. The higher values of Containment 

Ratio (CR) mean that the model captures the observed flow quite well as more observed values are 

included in the envelope.  
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Figure 5 Model output uncertainty boundaries, (the 5th and 95th percentile) performing the GLUE 

analysis during the model calibration (2001-2012) and validation (1971-2000) periods using the 

annual observed and simulated data for the Frome catchment. 

Based on the methodology given by D’Agostino et al. (2010), Beskow et al. (2011), Hoang et al. 

(2018), and Viola et al. (2009), the simulated stream flows of each behavioural parameter combination 

(NSE> 0.5) were ranked in ascending order and the corresponding efficiencies (Nash–Sutcliffe 

Efficiency, NSE) have been cumulated. Each cumulated efficiency value, divided by their maximum 

value, resulted in a value ranging between 0 and 1, Figure 6. These values are interpreted as the 

‘probability weighted in efficiency’. The solid red vertical line represents the average value of the 

measured river flow for the simulated period. It should be noted that this value falls within the 

confidence region of the model, as shown in Figure 6 for the Fowey and Ebbw catchments as 

examples. Other catchments showed similar results.    

In order to compare the behavioural time series with the observed volume, a cumulative distribution 

function (CDF) is plotted for all behavioural time series.  Figure 7 shows the cumulative distribution 

probability of the Don and Eden catchments as example for the period 1962-2012. It shows that the 

observed streamflow data fall within the range of the number of simulated values obtained from the 

iterations.  
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Fowey catchment 

 
 

Ebbw catchment  

 

Figure 6: Uncertainty band of the DiCaSM parameters for the period 1962-2012 for the Fowey and 

Ebbw catchments.  

Don catchment 

 
 

 

Eden catchment 

 

Figure 7: The cumulative probability plot of the flow for the Don and Ebbw catchments (1962-2012) 

 

     4.4. Statistic indices 

The uncertainty indicators were calculated for daily (Table 4), monthly (Table 5), seasonal (Table 6) 

and annual (Table 7) river flows for different periods. Table 4 shows the uncertainty indicators for 

daily river flows. The containment ratio CR ranged from 62% to 71%, for the Eden catchment, 76% 
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to 86% for the Ebbw catchment, 56% to 60% for the Don catchment, 79% to 86% for the Fowey 

catchment, 48% to 50% for the Frome catchment and 35% to 38% for the Pang catchment. The CR 

values differ from one period to another as the validation and calibration goodness of fit are also 

different for different periods. However, for the full-time record (1961-2012), the CR values were 

66%, 80%, 57%, 85%, 49% and 36% for the Eden, Ebbw, Don, Fowey, Frome, and Pang catchments, 

respectively.  

The asymmetry degree expressed by S and T show that the S value ranged from 0.39 to 0.50 for the 

Eden, 0.30 to 0.40 for the  Ebbw, 0.53 to 0.61 for the Don, 0.29 to o.35 for the Fowey, 0.75 to 0.93 

for the Frome and 0.99 to 1.02 for the Pang catchments. The S value for the total period was, 0.43, 

0.36, 0.6, 0.3, 0.85, and 1.01 for the Eden, Ebbw, Don, Fowey, Frome and Pang catchments, 

respectively. The S value was within the recommended range 0.0 < S < 0.5 for the Eden, Ebbw and 

Fowey catchments. The T value ranged from 0.86 to 0.98 for the Eden, 0.76 to 0.87 for the Ebbw, 1.02 

to 1.10 for the Don, 0.75 to o.83 for the Fowey, 1.26 to 1.48 for the Frome and 1.54 to 1.57 for the 

Pang catchment. The T value for the whole period was 0.90, 0.82, 1.10, 0.76, 1.38, and 1.56 for the 

Eden, Ebbw, Don, Fowey, Frome and Pang catchments, respectively. Similar to S, the T value was 

within the recommended range 0 < T <1 in the Eden, Ebbw and Fowey catchments. One should note 

here that larger values of S, or T mean more asymmetrical prediction bounds around the observed flow 

hydrograph.   

The R-factor value ranged from 0.72 to 0.90 for the Eden, 0.55 to 0.67 for the Ebbw, 0.64 to 0.70 for 

the Don, 0.72 to 0.85 for the Fowey, 0.46 to o.52 for the Frome and 0.51 to 0.6 for the Pang catchment.  

The R-factor values for the whole period were 0.86, 0.62, 0.68, 0.74, 0.49, and 0.53 for the Eden, 

Ebbw, Don, Fowey, Frome and Pang catchments, respectively. A value of R-factor less than 1.0 is 

desirable (Singh et al., 2014). The values obtained for the six catchments largely meet this requirement. 

The average band width B of the prediction bounds (Q0.95 - Q 0.05) and the relative average band width 

RB are also shown in Table 4. The relative band width values for the whole period (1961-2012) were 
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0.84, 0.81, 0.79, 0.87, 0.93, and 0.37 for the Eden, Ebbw, Don, Fowey, Frome and Pang catchments, 

respectively. 

Table 4 shows the average deviation amplitude of the middle points of the predicted bounds from the 

observed flow hydrograph, D and the relative average RD. The relative average deviation amplitude 

values for the whole record were 0.35, 0.24, 0.39, 0.25, 0.48, and 0.25 for the Eden, Ebbw, Don, 

Fowey, Frome and Pang catchments, respectively. 

Both RB and RD values are indicating a small relative band width and deviation amplitude relative to 

observed flow values, respectively. The S, T, B, RB, D and RD values are comparable with the results 

of Xiong et al. (2009). The authors found that higher CR values are associated with lower values of S 

and T and higher values of B, RB and D. They stated that it is very difficult to achieve a desirable 

level of the CR, T and B e.g. a high CR associated with a narrow band-width, B, and a low average 

asymmetry S and T with respect to the observed flows.   

The monthly, seasonal and annual flow uncertainty indicators, as presented in Tables 5, 6 and 7, 

respectively, showed much improved values of CR, S, T, RB, RD and R-factor.   Generally, the annual 

flows showed better results of low uncertainty than seasonal, seasonal was better than monthly and 

monthly was better than daily. This will be explained in the next section. 

 

 

 

 

 

 



20 
 

Table 4: Results of daily GLUE prediction bounds for all the studied catchments (Parameter 

description is provided in Annex 1) 

 
Type CR B  RB S T D RD R-factor Time period 

E
d

e
n

 

71.31 3.53 0.66 0.41 0.88 1.05 0.22 0.89 2012* 

61.70 2.29 0.74 0.50 0.98 0.88 0.31 0.72 1975-1976 

61.97 2.82 0.82 0.42 0.89 0.97 0.36 0.71 1976-1977 

62.61 2.51 0.87 0.46 0.94 0.96 0.38 0.88 1971-1980 

69.69 2.94 0.84 0.39 0.86 1.06 0.32 0.87 1981-1990 

67.78 2.91 0.87 0.40 0.87 1.05 0.35 0.90 1991-2000 

63.43 2.99 0.80 0.46 0.93 1.15 0.34 0.82 2001-2012 

65.76 2.85 0.84 0.43 0.90 1.06 0.35 0.86 1971-2012 

E
b

b
w

  

86.04 5.29 0.82 0.30 0.76 1.63 0.21 0.55 2000-2004* 

75.83 4.54 0.83 0.40 0.87 1.50 0.29 0.67 1971-1980 

81.22 5.25 0.77 0.35 0.82 1.74 0.21 0.61 1981-1990 

85.60 5.34 0.82 0.30 0.76 1.64 0.21 0.57 1991-2000 

83.87 4.96 0.83 0.33 0.79 1.57 0.23 0.59 2001-2010 

79.87 4.97 0.81 0.36 0.82 1.63 0.24 0.62 1961-2012 

D
o

n
  

57.35 3.88 0.74 0.61 1.10 1.67 0.36 0.68 1971-1980 

58.38 4.24 0.79 0.55 1.04 1.82 0.39 0.70 1981-1990 

59.51 4.16 0.78 0.53 1.02 1.72 0.38 0.64 1991-2000 

55.49 4.17 0.83 0.56 1.05 1.76 0.42 0.68 2000-2012* 

57.31 4.10 0.79 0.60 1.10 1.76 0.39 0.68 1967-2012 

F
o

w
ey

 79.37 3.51 0.81 0.35 0.83 1.10 0.28 0.85 1962-1971* 

86.36 3.75 0.88 0.29 0.75 1.11 0.25 0.72 1972-2012 

84.90 3.70 0.87 0.30 0.76 1.11 0.25 0.74 1962-2012 

F
r
o
m

e 

47.50 1.23 0.93 0.88 1.41 0.60 0.49 0.50 1971-1980 

48.60 1.37 0.96 0.86 1.40 0.63 0.49 0.52 1981-1990 

48.15 1.38 0.88 0.93 1.48 0.71 0.47 0.49 1991-2000 

49.46 1.36 0.97 0.75 1.26 0.61 0.48 0.46 2000-2012* 

48.48 1.34 0.93 0.85 1.38 0.64 0.48 0.49 1971-2012 

P
a

n
g
 38.18 0.22 0.37 0.99 1.54 0.15 0.24 0.60 1993-1999 

35.40 0.22 0.37 1.02 1.57 0.16 0.25 0.51 2000-2012 

36.37 0.22 0.37 1.01 1.56 0.15 0.25 0.53 1993-2012 

*the time period in grey was used for the model calibration. 
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Table 5: Results of monthly GLUE prediction bounds for all the studied catchments 
Type CR B  RB S T D RD R-factor Time period 

E
d

e
n

 

83.33 6.24 0.47 0.31 0.78 1.51 0.14 1.06 2012* 

70.83 4.72 0.58 0.38 0.85 1.37 0.20 0.75 1975-1976 

75.00 5.23 0.62 0.33 0.81 1.48 0.24 0.70 1976-1977 

70.00 5.09 0.68 0.38 0.85 1.62 0.28 0.93 1971-1980 

71.67 5.63 0.61 0.34 0.80 1.77 0.21 0.95 1981-1990 

68.33 5.40 0.63 0.38 0.85 1.89 0.25 0.87 1991-2000 

66.67 5.57 0.59 0.42 0.90 2.13 0.25 0.87 2001-2012 

69.05 5.43 0.63 0.38 0.85 1.87 0.25 0.89 1971-2012 

E
b

b
w

  

80.00 9.83 0.86 0.36 0.84 3.69 0.29 0.59 2000-2004* 

65.83 8.39 0.80 0.53 1.02 3.34 0.34 0.65 1971-1980 

75.83 10.11 0.84 0.41 0.88 3.86 0.24 0.64 1981-1990 

73.33 10.17 0.82 0.37 0.84 3.75 0.26 0.64 1991-2000 

84.17 9.32 0.84 0.34 0.81 3.11 0.28 0.66 2001-2010 

72.44 9.27 0.78 0.42 0.90 3.51 0.27 0.65 1961-2012 

D
o

n
  

72.50 7.28 0.62 0.38 0.85 2.54 0.23 0.84 1971-1980 

68.33 7.99 0.67 0.39 0.86 2.83 0.28 0.83 1981-1990 

75.00 7.91 0.68 0.35 0.82 2.62 0.26 0.73 1991-2000 

68.59 7.76 0.70 0.39 0.86 2.83 0.29 0.79 2000-2012 

70.47 7.70 0.66 0.38 0.85 2.76 0.27 0.82 1967-2012 

F
o

w
ey

 76.85 6.50 0.66 0.39 0.87 2.23 0.25 0.79 1962-1971 

77.64 7.05 0.80 0.37 0.85 2.62 0.28 0.68 1972-2012 

77.50 6.95 0.77 0.37 0.85 2.55 0.27 0.69 1962-2012 

F
r
o
m

e 

 

46.67 2.18 0.74 0.66 1.15 1.20 0.37 0.60 1971-1980 

50.83 2.36 0.76 0.57 1.07 1.21 0.34 0.60 1981-1990 

50.83 2.36 0.68 0.68 1.19 1.40 0.33 0.53 1991-2000 

55.77 2.53 0.72 0.48 0.96 1.12 0.28 0.59 2000-2012 

51.19 2.33 0.73 0.59 1.08 1.21 0.33 0.58 1971-2012 

P
a

n
g
 39.29 0.65 0.44 0.69 1.19 0.37 0.25 0.72 1993-1999 

45.51 0.67 0.43 0.69 1.19 0.38 0.25 0.61 2000-2012 

43.33 0.66 0.44 0.69 1.19 0.38 0.25 0.64 1993-2012 

 

Table 6: Results of seasonal GLUE prediction bounds for all the studied catchments.  
Type CR B  RB S T D RD R-factor Time period 

E
d

e
n

 

66.67 4.65 0.35 0.29 0.71 1.06 0.10 1.32 2012* 

87.50 3.64 0.41 0.29 0.73 0.67 0.10 0.61 1975-1976 

75.00 4.19 0.40 0.32 0.79 1.23 0.14 0.71 1976-1977 

70.00 3.77 0.49 0.37 0.84 1.25 0.19 0.84 1971-1980 

80.00 4.12 0.43 0.35 0.82 1.37 0.15 0.95 1981-1990 

60.00 3.95 0.45 0.44 0.92 1.68 0.19 0.82 1991-2000 

65.96 4.00 0.41 0.43 0.92 1.67 0.17 0.95 2001-2012 

68.86 3.96 0.44 0.40 0.88 1.50 0.18 0.88 1971-2012 

E
b

b
w

  

75.00 7.58 0.59 0.37 0.81 2.76 0.21 0.60 2000-2004* 

57.50 6.73 0.62 0.52 1.01 2.85 0.29 0.67 1971-1980 

52.50 7.50 0.59 0.53 1.00 3.32 0.19 0.63 1981-1990 

80.00 7.52 0.57 0.38 0.86 2.87 0.19 0.61 1991-2000 

71.79 7.27 0.58 0.32 0.77 2.29 0.19 0.70 2001-2010 

63.77 7.04 0.56 0.45 0.92 2.85 0.21 0.64 1961-2012 

D
o

n
  

82.50 6.24 0.52 0.36 0.82 2.16 0.18 0.89 1971-1980 

72.50 6.58 0.56 0.37 0.85 2.36 0.23 0.87 1981-1990 

77.50 6.56 0.56 0.35 0.83 2.32 0.21 0.80 1991-2000 

72.55 6.44 0.59 0.36 0.82 2.30 0.23 0.92 2000-2012* 

75.96 6.43 0.56 0.36 0.83 2.29 0.21 0.90 1967-2012 

F
o

w
ey

 65.00 5.23 0.50 0.39 0.87 2.00 0.20 0.76 1962-1971* 

69.94 5.55 0.59 0.39 0.86 2.14 0.21 0.68 1972-2012 

68.97 5.49 0.57 0.39 0.86 2.11 0.21 0.69 1962-2012 

F
r
o
m

e 

52.50 1.90 0.66 0.55 1.04 0.97 0.27 0.65 1971-1980 

57.50 2.10 0.63 0.47 0.93 0.94 0.24 0.71 1981-1990 

50.00 2.08 0.56 0.54 1.03 1.15 0.24 0.61 1991-2000 

63.83 2.09 0.59 0.38 0.85 0.75 0.20 0.73 2000-2012* 

56.29 2.05 0.61 0.48 0.96 0.95 0.23 0.67 1971-2012 

P
a

n
g
 48.15 0.66 0.46 0.60 1.10 0.35 0.23 0.78 1993-1999* 

52.94 0.67 0.44 0.55 1.04 0.33 0.22 0.64 2000-2012 

50.63 0.66 0.44 0.57 1.06 0.34 0.22 0.68 1993-2012 
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Table 7: Results of annual GLUE prediction bounds for all the studied catchments.  
Type CR B  RB S T D RD R-factor Time period 

E
d

e
n

 

100 25.14 0.19 0.54 0.97 9.34 0.09 2.1 2012* 

50.00 20.32 0.19 0.52 0.94 9.02 0.09 3.20 1975-1976 

100.00 23.46 0.19 0.09 0.49 2.12 0.02 1.28 1976-1977 

90.00 22.42 0.23 0.25 0.71 5.01 0.05 0.89 1971-1980 

100.00 24.11 0.20 0.23 0.68 5.65 0.04 1.14 1981-1990 

90.00 23.64 0.20 0.27 0.74 6.11 0.05 1.12 1991-2000 

91.67 24.13 0.19 0.24 0.69 5.48 0.04 0.89 2001-2012 

92.86 23.60 0.20 0.25 0.71 5.56 0.05 0.93 1971-2012 

E
b

b
w

 

60.00 45.72 0.21 0.36 0.82 15.38 0.06 0.61 2000-2004* 

60.00 34.62 0.19 0.45 0.92 17.05 0.11 0.71 1971-1980 

40.00 30.73 0.13 0.72 1.24 21.50 0.08 0.80 1981-1990 

70.00 32.29 0.13 0.33 0.78 10.38 0.04 0.71 1991-2000 

90.00 39.24 0.19 0.28 0.75 10.37 0.05 0.74 2001-2010 

65.38 36.10 0.17 0.44 0.91 15.15 0.07 0.73 1961-2012 

D
o

n
  

80.00 41.60 0.28 0.35 0.84 14.43 0.11 1.00 1971-1980 

100.00 44.18 0.28 0.19 0.65 8.04 0.05 1.35 1981-1990 

80.00 43.91 0.28 0.25 0.69 10.34 0.08 0.96 1991-2000 

76.92 44.27 0.30 0.25 0.70 10.26 0.08 0.75 2000-2012* 

84.78 43.20 0.28 0.26 0.72 10.76 0.08 1.02 1967-2012 

F
o

w
ey

 60.00 26.37 0.17 0.43 0.90 10.28 0.07 0.95 1962-1971* 

75.61 25.39 0.15 0.33 0.80 8.27 0.05 0.73 1972-2012 

72.55 26.55 0.17 0.35 0.82 8.94 0.06 0.78 1962-2012 

F
r
o
m

e 

 

100.00 13.99 0.29 0.21 0.67 2.97 0.06 1.09 1971-1980 

100.00 14.34 0.26 0.17 0.62 2.44 0.05 1.57 1981-1990 

90.00 14.42 0.25 0.25 0.71 3.74 0.06 0.92 1991-2000 

100.00 15.28 0.29 0.16 0.59 2.46 0.05 0.79 2000-2012* 

97.62 14.55 0.27 0.19 0.65 2.88 0.05 0.99 1971-2012 

P
a

n
g
 

100.00 8.74 0.43 0.27 0.76 2.37 0.12 1.38 1993-1999* 

76.92 7.22 0.37 0.32 0.80 2.28 0.12 0.81 2000-2012 

85.00 7.75 0.39 0.30 0.78 2.31 0.12 0.97 1993-2012 

 

      4.5 Temporal scale impact on the uncertainty levels 

      4.5.1. The Containment ratio, CR 

The CR values, as shown in Tables 4, 5, 6 and 7, were plotted to illustrate the difference in CR values 

when calculated for daily, monthly, seasonal and annual river flow/volume. Figure 8 shows an 

example of four catchments. From the four tables, in most of the catchments, the CR value was 

improving (getting larger} when the temporal scale increased from daily to monthly to seasonal to 

annual. In most cases, the highest CR was associated with annual flows and the lowest was associated 

with the daily flows. The CR annual value increased to almost 100% from lower values at daily, 

monthly or seasonal CR for the Eden, Don, Frome and Pang catchments.   

    4.5.2. Asymmetry degree, S and T  

Ideally the asymmetry indicators such as S and T should be in the range of 0<S<0.5 and 0<T<1 to 

have a good symmetrical condition, low uncertainty occurs within those ranges. Figure 9 shows the 
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asymmetry indicators S for four catchments and for four time scales. Generally, the S values were 

reasonable and showed a better symmetry when considering annual flows (0<S<0.5) then seasonal, 

then monthly, then daily flows. Clear examples are the cases of the Eden, Don, Frome, and Pang 

catchments. Similar results obtained for the T indicator for four catchments and four time scales, as 

shown in Figure 10. Reasonable results were obtained showing a better symmetry when considering 

annual flows (0<T<1) then seasonal then monthly then daily. Good examples are the cases of Eden, 

Don, Frome, and Pang catchments.  

4.5.3. Average relative band width, RB   

Relative band width RB if narrow, indicates lower uncertainty. Tables 4, 5, 6 and 7 show the band 

width, B and the relative band width, RB. Figure 11 shows the example of RB of four catchments. The 

RB values look reasonable and indicating a relatively narrower band width when using annual flows 

then monthly or seasonal or daily flows. The figure shows the significant difference between daily and 

annual RB values.  

 4.5.4. Average relative deviation amplitude, RD 

Relative deviation amplitude, RD if smaller, indicates lower uncertainty. Tables 4, 5, 6 and 7 show 

the deviation amplitude D and the relative deviation amplitude, RD. Figure 12 shows the example of 

RD of four catchments. The RD values look reasonable and indicates a relatively small deviation when 

using annual flows then monthly or seasonal or daily flows. The figure shows the significant difference 

between daily and annual RB values.  

4.5.5. The R – factor  

The R-factor gives the average thickness of the band (Q0.95 - Q 0.05) relative to the standard deviation 

of the observed data. A value of 1 is ideal. Tables 4, 5, 6 and 7 show reasonable values for R-factor. 

The example of R - factor for four catchments is shown in Figure 13. The figure shows less variations 

between daily, monthly or seasonal flow with the annual sometimes slightly better.    
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In contrary to the daily, monthly and seasonal uncertainty indicators such as CR, annual river flows 

had less uncertainty levels. For example, the annual CR for some periods was as high as 100% for 

some catchments. Moreover, in comparison to the monthly and seasonal flows, the uncertainty levels 

of annual river flows of both the Frome and the Pang catchments were reduced significantly with CR 

of the Pang ranging from 77% to 100% and for the Frome from 90% to 100%. Other uncertainty 

indicators such as S and T have also been improved for all the six catchments.  Generally, this indicates 

that the uncertainty level is reduced when considering annual rather than monthly or seasonal river 

flows.  
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Figure 8. Containment ratio CR at different time scale for the Frome, Eden, Don and Ebbw catchments. 
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Figure 9. Asymmetric degree S for the Frome, Eden, Don and Ebbw catchments. 

0

0.5

1

1 2 3 4 5

S-
va

lu
e

Simulated event 

Average asymmetry degree of band formed by the lower and 
upper prediction bounds-

Frome catchment

S annual S daily S monthly S seasonal

0

0.2

0.4

0.6

0.8

1 2 3 4 5

S-
va

lu
e

Simulated event 

Average asymmetry degree of band formed by the 
lower and upper prediction bounds- Don catchment

S annual S daily S monthly S seasonal

0

0.2

0.4

0.6

1 2 3 4 5 6 7 8

S-
va

lu
e

Simulated event 

Average asymmetry degree of band formed by the lower 
and upper prediction bounds- Eden catchment

S annual S daily S monthly S seasonal

0

0.2

0.4

0.6

0.8

1 2 3 4 5 6

S 
-

va
lu

e
Simulated event

Average asymmetry degree of band formed by 
the lower and upper prediction bounds- Ebbw 

catchment

S annual S daily S monthly S seasonal



27 
 

  

 
 

Figure 10 Asymmetric degree T value for the Frome, Eden, Don and Ebbw catchments. 
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Figure 11. Average relative band width, RB value for the Frome, Eden, Don and Ebbw catchments. 
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Figure 12. Average relative deviation, RD value for the Frome, Eden, Don and Ebbw catchments. 
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Figure 13 R- factor value for the Frome, Eden, Don and Ebbw catchments. 
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5. Conclusion 

The results of the study using the GLUE methodology were quite important to estimate the 

uncertainty in the river flow prediction. The analysis is of significant importance, to apply the model 

parameters for the future climate change scenarios.  The application of the GLUE methodology to the 

Distributed Catchment Scale Model, led to the following conclusions: 

➢ The DiCaSM model is not equally sensitivity to all the model parameters, this sensitivity 

varied between different catchments. For instance, in the Pang catchment, the river flow was 

more sensitive to base flow factor in comparison with other catchments.  

➢ The different uncertainty indicators, CR, S, T, B, RB, D, RD and R-factor all gave good 

values indicating a reasonable low uncertainty level in model prediction.    

➢ The GLUE methodology showed lower uncertainty in predicted river flows when increasing 

the time scale from daily to monthly to seasonal river flows with the lowest uncertainty 

associated with annual flows. 

In the current study, the reliability of the DiCaSM was assessed when applied to six catchments, the 

parameters that may cause uncertainty in model output were investigated using a generalized 

likelihood uncertainty estimation (GLUE) methodology. The results showed that DiCaSM provided a 

small level of uncertainty in the predicted river flows and subsequently, a higher confidence level in 

the results. Finally, the results presented in this paper suggest that DiCaSM river flow or groundwater 

recharge results could be used by stakeholders and decision makers as a support for planning.  
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Annex 1 
 

Containing ratio (CR) 

 

The containment ratio, is the percentage of the number of observed flows enveloped by its prediction 

bounds to the total number of the observed flows. This index is commonly used for measuring the 

goodness of the prediction bounds. The larger the value of CR, the greater is the proportion of the 

observed flow points that fall within the interval defined by the prediction bounds. A high CR for the 

estimated prediction bounds is always the aim.  

Average band width B 

The average band-width, B, of the prediction bounds for the whole simulated period is calculated as:  

𝑩 =  
𝟏

𝑵
 ∑ 𝒃𝒊

𝑵

𝒊=𝟏

 

with bi = 𝑸𝒊
𝒖 - 𝑸𝒊

𝒍 

where bi is the band-width of the prediction bounds for the flow at time i. For a given confidence 

level. 𝑸𝒊
𝒖 and 𝑸𝒊

𝒍  represent the upper and lower prediction bounds of flows, respectively and are 

associated with a particular confidence level (5% and 95% selected for this study). Narrow bandwidth 

is considered better than wide band width.  

Average relative band-width RB 

In order to compare the results of the prediction bounds of different catchments, it is necessary to 

eliminate the impact of flows magnitude on the band-width of the prediction bounds. This can be done 

by using a dimensionless index, the average relative band-width of the prediction calculated as: 

https://www.nature.com/articles/s41598-017-18982-8#auth-1
https://www.nature.com/articles/s41598-017-18982-8#auth-2
https://www.nature.com/articles/s41598-017-18982-8#auth-3
https://www.nature.com/articles/s41598-017-18982-8#auth-4
https://www.nature.com/articles/s41598-017-18982-8#auth-5
https://www.nature.com/articles/s41598-017-18982-8#auth-6
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𝑹𝑩 =  
𝟏

𝑵
 ∑ 𝒓𝒃𝒊

𝑵

𝒊=𝟏

 

rbi = bi / Qi 

where rbi is the ratio of the band-width of the prediction bounds at time i to the corresponding 

observed discharge Qi . 

Asymmetry degree indices, S and T  

There are two indices for assessing the average asymmetry degree of the prediction bounds with 

respect to the observed flows. These two indices are referred to as S and T.  The index S is calculated 

as: 

𝑺 =  
𝟏

𝑵
 ∑ 𝒔𝒊

𝑵

𝒊=𝟏

 

𝒔𝒊 =  |    𝒉𝒊 − 𝟎. 𝟓|       

𝒉𝒊 =  
𝑸𝒊

𝒖−𝑸𝒊

𝑸𝒊
𝒖−𝑸𝒊

𝒍   =     
𝑸𝒊

𝒖−𝑸𝒊

𝒃𝒊
       

where 𝒔𝒊 represents the asymmetry degree of the prediction bounds with respect to the corresponding 

observed discharge, Qi .  𝒔𝒊 is a function of 𝒉𝒊, which is the ratio of the difference between the upper 

limit, 𝑸𝒊
𝒖 and the observed discharge, Qi  to the actual band-width, bi. An average asymmetry value of 

S < 0.5 would mean that, on average, the river flows lie within the prediction bounds. In a 100% 

completely symmetrical case the value of S would be zero. The larger the value of S, the greater 

asymmetrical the prediction bounds are around the observed flows. 

The second index for assessing the average asymmetry degree of the prediction bounds with 

respect to the observed flows, is referred to as T, calculated is defined as: 

𝑻 =  
𝟏

𝑵
 ∑ 𝒕𝒊

𝑵

𝒊=𝟏

 

𝒕𝒊 =  (
(𝑸𝒊

𝒖 − 𝑸𝒊)
𝟑 + (𝑸𝒊

𝒍 − 𝑸𝒊)
𝟑

[𝑸𝒊
𝒖 − 𝑸𝒊

𝒍]𝟑
)

𝟏/𝟑
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The variations of the 𝒕𝒊 values depend on the location of the observed flows with respect to the 

prediction bounds. It is expected that 0 ≤ t < 1, with t = 0 when the value of 𝑸𝒊 is equal to the lower 

and upper prediction bounds. The larger the value of T, the more asymmetrical the prediction bounds 

are around the observed flows. 

Average deviation amplitude 

In some cases, where the estimated prediction bounds are asymmetric with respect to the observed 

flows, the middle point of the prediction bounds Qm deviates from the corresponding observed flow 

Q. To quantify the actual discrepancy between the trajectory consisting of the middle points the 

prediction bounds and the observed flows, another index, D, the average deviation amplitude of the 

prediction bounds from the observed flow is calculated as: 

𝑫 =  
𝟏

𝑵
 ∑ 𝒅𝒊

𝑵

𝒊=𝟏

 

𝒅𝒊 =  |𝑸𝒊
𝒎 − 𝑸𝒊|   = |

𝟏

𝟐
(𝑸𝒊

𝒖 − 𝑸𝒊
𝒍) − 𝑸𝒊| 

 

Average relative deviation amplitude 

To eliminate the impact of flow magnitude on the value of the D index, the dimensionless relative 

average deviation amplitude RD, would be a better option. It is calculated as: 

𝑹𝑫 =  
𝟏

𝑵
 ∑ 𝒓𝒅𝒊

𝑵

𝒊=𝟏

 

𝒓𝒅𝒊= 
|
𝟏

𝟐
(𝑸𝒊

𝒖−𝑸𝒊
𝒍)−𝑸𝒊|

𝑸𝒊
  =   |

𝑸𝒊
𝒎

𝑸𝒊
− 𝟏| 

where rdi is the relative deviation of the mid-point of the prediction bounds 𝑸𝒊
𝒎 from the 

corresponding observed flow, 𝑸𝒊  at time i.  

The R – factor  

Is calculated as: 

𝑹 − 𝒇𝒂𝒄𝒕𝒐𝒓 =  
𝒅𝒙

−

𝝈𝒙
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𝒅𝒙
− =  

𝟏

𝒏
∑ (𝒙𝒖

𝒏

𝒊=𝟏
−  𝒙𝒍) 

 

Where, 𝜎𝑥 is the standard deviation of the measured stream flow x and 𝑑𝑥
− is the average distance 

between upper and lower boundary (Q0.95  and Q0.05), n is the number of observations.  

 


