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Abstract

The dependence of tracer diffusivity (D∞ ∼ N−x∞), where probe chains move in

an environment of infinitely long matrix chains, and self-diffusion coefficient (Ds ∼

N−xs), where probe and matrix chains are identical, on the molecular weight of the

probe chain N are investigated using three different molecular simulation methods,

viz. molecular dynamics, the bond-fluctuation model (BFM) and the slip-spring (SS)

model. Experiments indicate xs ≈ 2.4± 0.2 over a wide intermediate molecular weight

range, and x∞ ≈ 2.0±0.1, although the lower molecular weight limit for observing pure

reptation in short probes is unclear. These results are partly inconsistent with some

tube theories, and older, somewhat underpowered, molecular simulations. Estimating

x∞ using brute-force BFM simulations is difficult because it involves large simulation

boxes and long trajectories. To overcome this obstacle, an efficient method to estimate

D∞ in which ends of matrix chains are immobilized, is presented and validated. BFM

simulations carried out on systems with different probe and matrix chain lengths reveal

that xs = 2.43 ± 0.07, and x∞ = 2.24 ± 0.03. Over a wider range of molecular

weights, probe diffusivities obtained from the more coarse-grained SS model, calibrated

with bead-spring molecular dynamics, reveal xs > x∞, and x∞ > 2 for weakly and

intermediately entangled chains. Tracer diffusivities obtained by artificially switching

off constraint release in the SS simulations essentially overlap with probe diffusivities,

strongly suggesting that constraint release is primarily responsible for the difference

between xs and x∞. Nevertheless, both BFM and SS simulations indicate that below a

certain chain length threshold, contributions of contour length fluctuations to Ds and

D∞ are important, and result in deviations from pure reptation scaling.
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1 Introduction

Imagine a single probe polymer with Np monomers, immersed in a sea of matrix poly-

mers with Nm monomers each. The probe and matrix polymers are both long enough

so that the average number of entanglement strands Zp = Np/Ne and Zm = Nm/Ne,

where Ne is the average number of monomers in an entanglement strand, exceed one.

At fixed density and temperature, the diffusivity of the probe D depends on both Zp

and Zm. Green and Kramer studied such systems using forward-recoil spectrometry,1

and fit experimental data on polystyrene melts to two prevailing theories for probe dif-

fusion.2,3 The first theory modeled probe diffusion as a competition between reptation

and constraint release (CR),2 for which they found,

DCR(Zp, Zm) = D∞(Zp)

(
1 + 10.95

Zp

Z3
m

)
. (1)

They were unable to discriminate between this theory and a competing theory by Klein,

based on correlation between CR events,3 to which they could fit,

DK(Zp, Zm) = D∞(Zp)

(
1 + 5.45

Zp

Z2.5
m

)
. (2)

In eqns. 1 and 2, the second term inside the parenthesis accounts for the acceleration in

the diffusivity of the probe due to the finite size of matrix chains. To a first approxima-

tion, it is derived as the Rouse diffusivity of the long chain where the drag experienced

by the beads is proportional to the reptation time of the short matrix chains. Regard-

less of the veracity of the underlying theories (both ignore contour length fluctuations

or CLF), eqns 1 and 2 provide a useful mathematical structure to qualitatively describe

probe diffusivity. Figure 1 depicts probe diffusivity for Zp = 10 using these two theo-

ries. D decreases as matrix chains get longer, asymptotically approaching a terminal

plateau. In this work, this Zm-independent quantity is called the tracer diffusivity,

D∞(Zp) = D(Zp, Zm → ∞). The label “tracer diffusivity” is exclusively reserved for

this scenario, where the probe chains move in a sluggish environment of infinitely long
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chains (marked by the subscript in D∞).

Another point of interest on figure 1 is indicated by the star at Zm = Zp, where the

melt is monodisperse. The diffusivity corresponding to this point is the self-diffusivity

Ds(Zp) = D(Zp, Zm = Zp). Both self-diffusivity and tracer diffusivity are special cases

of probe diffusivity. As a consequence, unlike D, both Ds and D∞ depend only on Zp,

and the subscript “p” on Zp (or Np) may be dropped, when there is no ambiguity.

From eqns 1 and 2, we can obtain relationships between Ds and D∞:

(
D∞
Ds

)CR

=
1

1 + 10.95Z−2p
,

(
D∞
Ds

)K

=
1

1 + 5.45Z−1.5p
. (3)

According to these expressions, D∞ is smaller than Ds; however, as Zp increases,

the difference between the two shrinks, and the ratio D∞/Ds approaches one. Thus,

Ds ≈ D∞ for probes that are sufficiently long, say Z & Z∗1 , where Z∗1 is the “first”

critical number of entanglements. Preliminary signs of this convergence can be observed

in figure 1 even for Zp = 10, where D∞/Ds ≈ 0.85− 0.90.

100 101 102

Zm

101

100

101

102

D
/D

∞

DCR

DK

Figure 1: Normalized probe diffusivity for Zp = 10 using equations 1 (solid blue) and 2
(dashed black). Self-diffusivity Ds is the probe diffusivity at Zm = Zp (red star), while
tracer diffusivity D∞ corresponds to the plateau at Zm →∞.
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1.1 Theory and Experiments

Experimental studies on polymers of different chemistries, using various techniques

are remarkably consistent with this framework.1,4–12 They find Ds ∼ Z−xs with xs ∼

2.4±0.2 over a wide molecular weight range (1 < Z < Z∗1 ) ,10–12 and D∞ ∼ Z−x∞ with

x∞ ≈ 2.0±0.1 seemingly consistent with pure reptation for all chain lengths studied, as

compiled in a meta-study by Wang.12 While experiments are more or less unanimous in

a qualitative sense, some disagreement on the exact value of xs persists. It is difficult

to resolve this issue conclusively due to the scatter in the data. This disagreement

affects estimates of Z∗1 , where the crossover to the Ds ≈ D∞ regime occurs. Taking

x∞ ≈ 2.0, a stronger Z-dependence of Ds (xs ∼ 2.4) suggests Z∗1 ≈ 20,12 while a

weaker dependence (xs = 2.28) implies Z∗1 ≈ 100.10,13

The compiled experimental data have been used to attribute the observed deviation

from pure reptation (xs > x∞ = 2) to multi-chain or CR effects, rather than to single-

chain or CLF effect.12,14 CLF are active in both Ds and D∞ measurements, while the

effects of CR are suppressed in D∞ because Zm � Zp. Therefore, it is argued, any

difference between xs and x∞ must originate from multi-chain CR effects.

Tube-based theories and simulations are somewhat at odds with experiments, and

contend that the role of CLF is not fully acknowledged in the argument above.15–17

The picture they paint is richer, and is represented schematically in figure 2. For

Z ≤ Z∗1 , all the three modes of relaxation (reptation, CLF, and CR) are active in

self-diffusion measurements, and CR is indeed responsible for xs > x∞. However,

unlike experiments, Ds does not immediately transition to a pure reptation scaling

(Ds ∼ Z−2) for Z > Z∗1 . Instead, there is a broad intermediate regime Z∗1 ≤ Z ≤ Z∗2 ,

marked by the “second” critical entanglement number Z∗2 , in which Ds ≈ D∞ ∼ Z−2.25

has not fully transitioned to the pure reptation limit.13 Frischknecht and Milner found

that their model indicates Z∗1 ≈ 20 and Z∗2 ≈ 200 − 1000. For Z > Z∗2 , the impact of

CLF is weakened, reptation becomes the dominant mode of relaxation, and Ds ∼ Z−2

scaling is recovered.

5



CR+CLF+R CLF+R R

Figure 2: Scaled tracer (solid black line) and self-diffusion coefficients (dashed black line)
with slopes of x∞ and xs for Zp < Z∗1 . As Zp increases beyond a second threshold (Zp > Z∗2),
pure reptation scaling D ∼ Z−2p is recovered.

In the intermediate regime (Z∗1 < Z < Z∗2 ), switching CR on or off has negligible

effect on the self-diffusivity in this model.13 A similar trend, xs ∼ 2.4± 0.1 and insen-

sitivity to CR, is also observed in the slip-link model simulations of Nair and Schieber

for Z > 15.17 However, CLF effects persist, and are mainly responsible for xs > 2,

which is consistent with experiments within reported uncertainty levels.

To summarize, there are two important points of difference between theory and

experiments, which stem from different interpretations of the role of CLF. First, ac-

cording to experiments Z∗1 ≈ Z∗2 , and there is no intermediate regime where CLF effects

endure. Second, for Z < Z∗1 the numerical value of x∞ = 2.25 from the theoretical

model13 differs from the pure reptation behavior of x∞ = 2 inferred from experimental

data.12

1.2 Molecular Simulations

Molecular simulations could help to unravel the differences between experiments and

theory. Unfortunately, at the time Frischknecht and Milner proposed their explana-

tion,13 molecular simulations were hardware-limited, and inconclusive. Indeed, studies

available at that time showed a weaker dependence xs ≈ 2.0−2.25 for self-diffusion,18–22

and a stronger dependence x∞ ≈ 2.3 − 2.5 for tracer diffusion.23–26 Thus, molecular
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simulations at that time were inconsistent with both theory and experiments.

Since then, gains in computer speed have clarified the picture somewhat. Most

previous results on Ds that suggested xs ∼ 2.0 suffered from system sizes that were

too small to avoid the influence of periodic images,27 insufficiently long simulations

to fully resolve the diffusive regime,20 slopes inferred from only a few different values

of Z,18 or neglect of corrections to pure reptation.21 The transition from the Rouse

regime to a stronger power law xs ≈ 2.4 is sometimes reported for barely entangled

chains (1 ≤ Z ≤ 3.2);28 however, other studies on chains of comparable length report a

weaker xs ≈ 2.1 dependence,29,30 suggesting a possible transition to xs ≈ 2.4 at higher

molecular weights. When these shortcomings are addressed, most subsequent molecular

simulations using identical or comparable methods unambiguously yield xs ∼ 2.4± 0.2

for moderately entangled polymers (Z ≈ 5− 15).31–36

Likewise, studies that claimed x∞ closer to 2.4 instead of 2.0, were based on rela-

tively crude models (Evans-Edwards or repton) of single chains in a (typically cubic)

obstacle network.23–26 Unlike experiments of tracer diffusion where the matrix is locally

mobile but globally immobile, these calculations assumed that the matrix was fixed.

Thus, the ability to draw strong inferences from these oversimplified molecular models

is inherently limited. Ideally, a single molecular simulation technique is simultaneously

used to study both Ds and D∞.

While numerous studies of Ds have been carried out, studying D∞ using simulations

of bidisperse blends is challenging. First, matrix chains have to be sufficiently large

to access the terminal plateau in figure 1 to estimate D∞. As Zm becomes large, the

size of the simulation box required to avoid artifacts of periodic boundary conditions

also increases.32 Furthermore, since a single or a small number of probe molecules

are included in a simulation, the signal to noise ratio is compromised, and extremely

long trajectories are required to resolve the diffusivity. Thus, simulations designed

to study D∞ require large system sizes and long trajectories, both of which add to

computational cost.
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Not surprisingly, most previous molecular simulations of bidisperse polymers involve

at least one species that is unentangled or barely entangled.37–39 Picu and Raskhit

considered a coarse-grained model of entangled bidisperse melts, where Zp ≥ 5.40 They

observed that in binary blends, the diffusivity of the short chains was retarded, while

that of the long chains was accelerated. They were able to observe the terminal plateau

seen in fig. 1, where the diffusivity of the probe chain becomes independent of Zm.

However, the weight fraction of the “probe” chains in their calculations was greater than

0.6, and the extreme level of coarse-graining (40 LJ beads lumped into a blob) resulted

in soft potentials for which chain uncrossability could not be guaranteed. Wang and

Larson also performed molecular dynamics simulations of bidisperse polymers using a

semi-flexible bead-spring chain model where both species were well-entangled (Zp ≈

15).41 Low concentration of the probe chains ensured that entanglements between

probe chains were nearly negligible. Their study did not investigate the Zm > Zp

regime, nor directly address x∞. Nevertheless, their results challenged the somewhat

oversimplified CR Rouse picture, which presumed that CR is dominated by a single

time scale corresponding to the relaxation time of the matrix chains. Instead, they

found evidence for a broad spectrum of CR timescales.

1.3 Motivation and Scope

Thus, for Zp < Z∗1 , there are still unresolved disagreements between certain theories

(xs > x∞ > 2),13 experiments (xs > x∞ ≈ 2),12 and molecular simulations (x∞ > xs,

in older work23,25,26). After accounting for more recent molecular simulations, there is

broad agreement that xs = 2.4± 0.2. Previous estimates of x∞ from molecular simu-

lations were based on unreliable over-simplified single chain models. Unlike xs, newer

work on bidisperse blends has not directly addressed x∞, in part because such probe

simulations are computationally expensive. This work attempts to fill that gap. Two

other questions which animate this work are: “is CR responsible for the experimentally

observed difference between xs and x∞?” and “can CLF lead to deviation of x∞ from

pure reptation behavior (i. e., x∞ > 2)?”
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We use three different molecular simulation techniques which are described briefly in

section 2. In increasing order of coarse-graining, these methods are molecular dynamics

(MD) based on a bead-spring chain model,18 the bond-fluctuation model (BFM), and

the single-chain slip-spring (SS) model. Obtaining D∞ from MD, while desirable, is

prohibitively expensive for large probes. Therefore, the primary tools for investigating

the central question of this work, estimating xs and x∞, are the BFM and SS models.

The SS model is calibrated using MD,42 and subsequently employed to extrapolate to

systems that are not accessible with MD. The largest probes studied in this paper use

the SS model, since it is the most coarse-grained. Furthermore, it is possible to switch

off CR in the SS model,33 which allows us to directly address the role of CR in tracer

diffusion.

The paper is organized as follows: Section 2 provides a description of the simulation

techniques used, including clamped matrix and no-CR simulations that are eventually

used to estimate x∞. In section 3, we discuss results starting with self-diffusivity.

Approximations introduced in the BFM to track tracer diffusivity are then validated,

followed by a comparison of self and tracer diffusivities. Finally, we analyze the relative

contributions of CR and CLF in the context of figure 1 in light of these new simulations.

2 Model and Methods

We briefly describe the molecular simulation techniques (MD, BFM, and the SS model)

used in this paper. Since all these methods have been used extensively to study poly-

mers in the past, only important features are summarized. We then describe the

different settings used with these models (fig. 3) to estimate xs and x∞. All three

simulation models use beads to represent monomers on a polymer chain. MD is the

most fine-grained of these simulations, followed by BFM, and then the SS model. One

bead in the BFM is approximately equivalent to 2 MD beads, while one bead in the

SS model is equivalent to 10 MD beads.

It is useful to clarify the two roles that MD plays in this work. First, MD data
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on the diffusivities of short probe chains (Np = 50-200) diluted in long matrix chains

(Nm = 1000) have not been reported before for the bead-spring chain model described

below. Previous MD studies of Wang and Larson on binary blends focused on long

probe chains in short chain matrices to investigate the enhancement of CR effects

by reducing the matrix chain length.41 Here, we are interested in the suppression of

CR effects by using matrix chains much longer than the probe chains. Second, MD

simulation results are used to calibrate and validate the slip-spring model simulations.

While this was previously done for monodipserse polymer melts,42,43 the validity of

such mapping for the binary blends is reported here.

2.1 Molecular Dynamics

Polymers are represented by the standard Kremer-Grest bead-spring model.18 All

monomers interact via purely repulsive Lennard-Jones (LJ) potential with the LJ pa-

rameter ε = 1.0kBT , where kB is Boltzmann’s constant and T is the absolute tem-

perature, and a cutoff radius of rc = 21/6σ where σ is the bead diameter. Monomers

on a chain are connected to their neighbors by a finitely extensible nonlinear elastic

(FENE) potential with the spring constant k = 30ε/σ2 and the maximum bond length

R0 = 1.5σ. Chains are flexible, and the bending potential is assumed to be zero, since

such chains are more suitable for mimicking real polymers studied in experiments.42

The corresponding statistical segment length is b = 1.31σ. The number density of the

bonds is set to a fixed value of ρ = 0.85σ−3 for all simulated systems. The length and

time scales in the systems are set by σ and τLJ , respectively.18,42,44,45 The number of

beads per entanglement strand in such model melt systems has been reported to range

from Ne = 35 to 85, depending on the observables and methods used for the analy-

sis.18,42,46–51 For example, a value of Ne ≈ 50 was found from the crossover behavior of

the middle-monomer mean-squared displacements of monodisperse linear chains with

N = 1000 from the Rouse to entanglement regimes.42 The initial configuration of a

melt is prepared using the equilibration method developed by Auhl et al. so as to

start the simulations in close proximity to the equilibrium states.44,52 Trajectories are
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obtained by integrating Langevin equations of motion for the monomers, using the

velocity Verlet algorithm with time step ∆t = 0.012τLJ . Simulations are performed

in the NVT ensemble with periodic boundary conditions applied along all three direc-

tions of the cubic simulation box. Unless specified, molecular dynamics (MD) results

are presented in reduced units of m = σ = ε = 1.

2.2 Bond-Fluctuation Model

We use Shaffer’s version of the bond-fluctuation model (BFM), which is a popular

lattice Monte Carlo method to study polymer melts.20 Polymers are represented by

monomers on a simple cubic lattice (L×L×L). The length of bonds between monomers

is restricted to the set {1,
√

2,
√

3}, resulting in a model that is more flexible (c∞ =

1.17) and coarse-grained than the original BFM.53–55 Probe chains are represented by

np polymers with Np monomers each. They are immersed in a matrix of nm chains

with Nm monomers each. At a total lattice occupancy φ = (npNp+nmNm)/L3 = 0.50,

the BFM is well-suited to model polymer melts.20

At each trial, a random local displacement of a randomly selected monomer is

attempted. It is rejected if the trial violates excluded volume (target site already

occupied), chain uncrossability (intersection of bond midpoints), or finite extensibility

(bond-lengths greater than
√

3).20 One Monte Carlo Step (MCS) involves npNp+nmNm

such trials, so that each monomer is selected for displacement on average once per MCS.

The units of length and time are lattice spacing and MCS. The BFM can be exploited

for rapid initial equilibration.56

In the past, we have successfully used the BFM to study entanglements,54,56,57

diffusion in ring-linear blends,58,59 and probe diffusion.60,61 From this body of work,

Ne ≈ 30 using primitive path analysis,54 the average primitive path step length is

approximately 8.6, and τe ≈ 5000 MCS.55 For monodipserse linear systems with N

monomers, the radius of gyration and self-diffusion coefficient are given by, R2
g ≈

0.41(N − 1) and Ds ≈ 1.8N−2.4, respectively.
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During the simulation, the location of the center-of-mass of the probe chains is

tracked. From these trajectories, the mean-squared displacement (MSD) of the probe

chains is computed. Weighted least squares with statistical bootstrap is used to infer

the self-diffusivity and the associated uncertainty.60,62

2.2.1 Clamped Matrix Chain Ends

Consider the following question: “for Np = 300, how large should Nm be so that

the measured probe diffusivity D(Np, Nm) is within, say, 1% of D∞?” Eqn. 2, for

example, suggests Nm ≈ 900, which would require box sizes greater than L ≈ 80− 90

to avoid artifacts of periodic boundary conditions. The computational cost per MCS

is proportional to the number of monomers, and increases as L3. Most of this effort is

expended on matrix chains that are not the subject of interest. If possible, it would

therefore be advantageous to estimate D∞ using smaller simulation boxes.

As Nm →∞, matrix chains are locally mobile, but globally immobile, on the order

of timescales corresponding to the diffusion of the probe chains. Such an effect can be

recreated by clamping or immobilizing the ends of finite matrix chains, allowing us to

estimate D∞ using smaller simulation boxes. We label these “short-cut” calculations

as clamped matrix (CM) simulations. In CM simulations, monomers at the two ends

of a matrix chain (monomers numbered 1 and Nm) are effectively clamped, rendering

the chains “globally immobile”. Nevertheless, internal portions of these chains are free

to move within these constraints. No such constraint is applied to the probe chains;

their ends remain mobile.

We also perform “regular” probe simulations (bidisperse blends) where the ends of

the matrix chains are not clamped. Diffusivities extracted from CM simulations are

decorated with a “hat” (D̂) to distinguish them from regular simulations of bidisperse

polymers (D). Later, we show that D̂(Np, Nm) is independent of Nm (for Nm &

75 − 100), and provides a reasonable estimate of D∞ = D(Np, Nm → ∞) without

resorting to large Nm or L.
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2.3 Slip-Spring Simulations

The single-chain slip-spring model was initially developed by Likhtman for studying

the entanglement dynamics of linear chains.33 The basic building block of this model is

a Rouse chain of N beads. Topological constraints due to entanglements are modeled

by a set of virtual springs, each represented using Ns beads. One end of each virtual

spring is connected to a Rouse monomer by a slip-link, while the other end (anchor

point) is fixed in space. On average, there is one slip-link per chain segment of NSS
e

monomers. Following the revised version of the SS model,42,63,64 slip-links move along

the chains discretely, by hopping from one Rouse bead to a neighboring bead with an

acceptance rate controlled by a Metropolis Monte Carlo scheme. Slip-links on a given

chain are not allowed to pass through one another, or cohabit the same monomer.

Furthermore, each slip-link is paired with another slip-link sitting on a different chain.

The creation or destruction of slip-links involves at least one chain end. If a slip-

link is deleted from the free end of one chain, its associated partner is simultaneously

deleted. A new pair of coupled slip-links is created immediately, one at one free end of a

randomly chosen chain and the other on an unoccupied monomer randomly selected on

any other chain. Thus, the total number of slip-links in the system remains constant.

Following previous work,42,43,48,63,64 SS model parameters are set to NSS
e = 4 and

Ns = 0.5. In previous simulations of monodisperse entangled linear chains, excellent

agreement was obtained between the SS and MD models for the mean-squared displace-

ment of the central monomers, when one Rouse bead in the SS model was mapped to

10 beads in the MD model.42 Simultaneously, the SS time had to be rescaled by a

factor of τMD
SS = 3370τLJ .

Due to this level of coarse graining, SS simulations can extrapolate MD predictions

for high molecular weight polymers over long time periods. However, the advantage is

not only computational, but also conceptual. For example, in the SS model CR can be

switched on or off, and its effects can be examined. Note that this is not possible with

BFM or MD, which makes the SS model uniquely useful for the current study.
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Figure 3: Schematic representation of different simulations. The thick red line denotes the
probe chain and the gray lines denote matrix chains. In studies of (a) self-diffusion, the
size of the probe and matrix chains is identical (Np = Nm), while in (b) probe and (c)
tracer diffusion Np 6= Nm, in general. In clamped matrix studies for tracer diffusion (c), the
ends of the matrix chains are immobilized. In the SS model, CR can be turned off, which
corresponds to diffusion in a fixed network (d).

2.4 Systems

We perform four different types of calculations in this work, schematically shown in fig.

3. All three methods (MD, BFM, and SS) are used to study self- and probe diffusion

shown in fig. 3(a) and 3(b). The BFM is used for CM simulations shown in fig. 3(c),

while CR can be switched off only in the SS model as shown in fig. 3(d). The last two

settings are proxies for tracer diffusion.

(a) Self-Diffusion: This is a special case of probe diffusion with Nm = Np = N

(see fig. 3a). The melt is therefore monodisperse. New systems modeled in this

work with MD, BFM, and SS are reported in Supporting Information (SI) Table

1. The longest chains modeled using SS correspond to Z ≈ 30, based on the

entanglement length Ne ≈ 50 as estimated in MD simulations from the crossover

behavior of chain middle-monomer MSD from Rouse to entanglement regimes.42

(b) Probe Diffusion: In these simulations, Np is not necessarily equal to Nm (see

fig. 3b). In BFM, the monomer number fraction of the probe chains is set to

fp = npNp/(npNp + nmNm) = 0.10 to minimize interaction between probes.

This corresponds to concentrations that are about four times smaller than the

overlap concentration (≈ 3.8/
√
Np), even for the longest probe chains (Np = 300)

considered. New simulations performed here are summarized in table 2 (SI).
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The binary blend systems studied using MD and SS model simulations are listed in

table 3 (SI). In these binary blends, the matrix chains are all of length Nm = 1000

or Zm ≈ 20. The probe chain lengths range from Np = 50 − 200 or Zp ≈ 1 − 3

for MD, and Zp ≈ 1− 10 for SS, respectively. The monomer number fraction of

the probe chains is fixed at 0.15 in order to get reasonably good statistics. This

fraction is slightly higher than that typically used in tracer diffusion experiments,

including the BFM simulations performed here. This does not appear to affect

the overall conclusions, which is demonstrated by comparing SS simulations with

and without CR.

(c) Clamped Matrix Simulations: These simulations are only performed with

the BFM to estimate D∞ by clamping the ends of matrix chains (see fig. 3c).

As in probe diffusion studies, fp = 0.10. These systems are identified in table

2 (SI) with an “x” in the last column. The diffusivities corresponding to these

simulations are decorated with a hat (D̂).

(d) No-CR Simulations: In the SS model, CR can be switched off to quantify

the extent of the constraint release effect. In these simulations, the slip-links

are not coupled with each other and so can only be deleted or added from the

chain ends. Probe chains effectively move about in an environment similar to

a permanent network by reptation and CLF. The diffusivities corresponding to

these simulations are denoted by D̃.

Normalizing chain lengths with Ne allows us to directly compare different simula-

tion methods and experiments on different polymers. Here, we use Ne ≈ 30 for the

BFM, and Ne ≈ 50 for the flexible chains in the MD, and correspondingly SS calcu-

lations. However, it is acknowledged that there is no unique way of determining the

entanglement molecular weight in either experiments or simulations. It, unfortunately,

depends on the properties of interest, and the method of analysis.49,51,57 For example,

Wang and Larson found considerable variation in the estimated Ne for semi-flexible

KG bead-spring chains using different dynamic observables and different regimes.41 A
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similar finding was reported by Harmandaris and Kremer on polystyrene melts where

the Ne values estimated from segmental dynamics (110± 30), primitive path analysis

(205 ± 20) and self-diffusion coefficients (240-300) showed significant variation.29 For

the flexible Kremer-Grest MD model used here different values of Ne between 35− 85

have previouly been justified.18,42,46–51 Luckily, xs and x∞ are not sensitive to the pre-

cise value of Ne, and the conclusions of the paper are not significantly compromised

by 15-20% variation in the value of Ne.

3 Results and Discussion

We first consider Ds using the three simulation methods. Next, we consider probe

and CM diffusion studies using the BFM and show how D∞ can be extracted from

D̂. Finally, we compare Ds and D∞ obtained using CM simulations with the BFM

and SS simulations without CR. The simulation results are then be used to assess

and understand the discrepancy between the theoretical predictions13 and compiled

experimental data12 on Ds and D∞.

3.1 Self-Diffusion

Figure 4 plots the self-diffusivity as a function of the average number of entanglement

strands per chain. For clarity, in all the SS model results reported henceforth, the

number of beads or entanglements and the self-diffusion coefficients are mapped and

reported in MD units. In the figure, diffusivities from MD and SS simulations are

shifted downwards by a multiplicative factor of 0.3, so that they can be directly com-

pared with BFM results. Numerical values of the diffusion coefficients are reported in

SI tables 4–7.

BFM results are shown in figure 4 by circles. It includes previous data from

Shanbhag’s group and others, and also new simulations performed in this study to

increase the reliability of the inferred power-law.20,35,65,66 Shaffer’s results are qualita-

tively consistent with the rest, although error-bars are not provided in his study. He

16



10-1 100 101 102

Z

10-8

10-7

10-6

10-5

10-4

10-3

10-2

D
s

BFM (Shaffer)
BFM (prior work)
BFM (this work)
MD
SS

Figure 4: Self-diffusion coefficient as a function of the number of entanglements for the
BFM (circles), MD (squares), and SS (triangles) simulations. Error bars are comparable
with the size of the symbols. For the BFM, results from Shaffer (green circles),20 previous
data points from Shanbhag’s group (blue circles), and new simulations performed for this
study (red circles) are shown. For Z > 3, the best-fit line Ds = 5.84× 10−4Z−2.43 is shown
in gray. Diffusivities from MD and SS simulations are shifted by a factor of 0.3 for easier
visualization. The best-fit regression through the SS data is 2.84×10−3Z−2.59, shown by the
dashed gray line.
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used these Ds (green circles) to infer Ds ∼ Z−2.09.20 However, his analysis suffered

from two significant shortcomings: (i) only three data-points with Z ≥ 2 (N = 80,

160, and 300) were used, and (ii) system sizes were relatively small – both in terms of

the number of chains in a box, and the length of a simulation run. The overestimation

of Ds visible in figure 4 at Z = 10 is a classic signature of these shortcomings. Con-

sequently, the single, potentially problematic, data point at Z = 10 skews the value

of xs extracted towards 2. In contrast, newer simulations reported in the figure use

system sizes that are an order of magnitude larger, and are hence more reliable. Us-

ing these results on modestly entangled systems 3 < Z < 11, we obtain the weighted

least-squares fit Ds = (5.84± 0.78)× 10−4Z−2.43±0.07.

A nearly identical situation was previously reported with the original BFM, in

which small system sizes, and too few data points were again used to incorrectly infer

xs = 2.0.27 When these shortcomings were fixed by the systematic replication studies

of Hagita and Takano,32 the same model showed xs = 2.44 for Z ≈ 3.5−7, in line with

experiments, and the version of the BFM employed here.

The self-diffusivity obtained from MD simulations is consistent with previous stud-

ies using a flexible chain Kremer-Grest model over a comparable range of chain lengths.18,30

The shifted MD and SS simulations largely follow the trend of Ds obtained from

BFM simulations. For Z > 3, SS simulations show a somewhat stronger dependence

Ds ∼ Z−2.59±0.05 with chain length up to Z ≈ 30. This is slightly larger than the

xs ≈ 2.4 reported by Likhtman using the original version of the SS model.33 This

quantitative difference may be related to the different effective frictions imposed by

the slip-springs on the Rouse chains67 when changing the slip-link motion between

adjacent beads from the original continuous mode33 to the updated discrete mode as

used in the current work. Another factor could be the different numbers and ranges

of data points used for the fitting as well as the magnitude of the error bars, consid-

ering that the updated version of the SS model and enhanced computational power

allow for longer simulation runs and better statistics. The multi-chain slip-spring and

multi-chain slip-link (primitive chain network) model simulations of Masubuchi and
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Uneyama36 observed similar values of xs before tentative signs of transition to pure

reptation-like diffusion (Ds ∼ Z−2) emerged around Z∗2 ≈ 35 − 50 (see SI figure 1).

The experimental data on Ds of certain types of polymers, such as h-polybutadiene

(PBD), polystyrene and 1,4-PBD, also demonstrate a decaying power of xs ≈ 2.5− 2.6

in the chain length range of Zp . 20− 30.12

It should be pointed out that some amount of variation in xs is unavoidable because

it is extracted from an intermediate molecular weight range (Z = 3− 30 for SS model,

and Z = 3 − 11 for BFM, in this work). The lower limit has to be sufficiently above

Z = 1 to ensure that chains are entangled, while the upper limit has to be below the

expected cross-over point to reptation-like scaling. For Z below the lower limit, the

melt is unentangled, where Ds ≈ Z−1. For Z above the upper limit, Ds ≈ Z−x∞ .

Thus, on both sides of this intermediate range, the dependence of Ds on Z is weaker

than Ds ∼ Z−xs . Smooth transitions between the three regimes suggests that minor

variation around xs ∼ 2.4 is not surprising, for different models and molecular weight

ranges.
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Figure 5: Center-of-mass mean-squared displacement of the Np = 150 probe, as the matrix
chain length is varied, using the BFM. Dashed lines depict CM simulations, while solid lines
of the same color depict probe simulations with identical Nm and mobile matrix chain ends.
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3.2 BFM: Probe and Clamped Matrix Diffusion

The center-of-mass MSD (g3) of the Np = 150 probe chain using the BFM (corre-

sponding to Zp ≈ 5), at three different matrix chain lengths, Nm = 75, 150, and 300

is reported in figure 5. Solid and dashed lines of a particular color show results from

regular probe diffusivity (unfixed matrix chain ends), and CM simulations (fixed ma-

trix chain ends), respectively. In regular simulations, probe chains are most mobile for

Nm = 75, and their mobility decreases as the length of the matrix chains increases to

Nm = 300. At large t, the slope of the MSD is proportional to 6D. In this example

(Np = 150), self-diffusivity Ds corresponds to Nm = 150 (solid green line). When

matrix chains are longer (Nm = 300), D < Ds, and vice versa. In contrast, the MSD

curves from the CM simulations essentially overlap, and it is difficult to tell them

apart. This implies that the diffusivities inferred from CM simulations, D̂, are tightly

clustered together. As Nm increases, the MSD curves from regular simulations begin

to approach the MSD curves from CM simulations.

These diffusivities for Np = 150 are plotted in figure 6 (green symbols), along with

those for probe chains with Np = 75 (blue symbols), and 300 (red symbols). The size

of the matrix chains is varied between Nm = 10 − 300. To avoid confusion due to

overlapping series, the diffusivities for Np = 150 and 300, have all been shifted by a

multiplicative factor of 1/5 and 1/25, respectively. The exact values of the diffusivities

are tabulated in Supporting Information. For each Np, probe diffusivity D decreases

as Nm increases, approaching a plateau at large Nm. This is qualitatively similar to

the trend shown in figure 1.

As Np increases, the Nm required to approach the terminal region also increases.

This can be seen in figure 6. At Nm = 300, Np = 75 appears to have comfortably

settled into a plateau, whereas Np = 150 appears to have barely touched D∞. No sign

of a plateau is visible for Np = 300.

The results of the CM simulations are shown by diamonds of the corresponding

color. For Np = 300, only a single simulation run with Nm = 300 was performed. For
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Figure 6: Diffusion coefficient of probes (circles) with Np = 75 (blue), 150 (green), and
Np = 300 (red) in matrices with Nm = 10 − 300. Simulations with clamped matrix chains

are depicted by diamonds; horizontal gray lines depict the mean values, 〈D̂(Np)〉. For clarity,
all the diffusion coefficients corresponding to Np = 150 and 300 are shifted downwards by a
factor of 5 and 25, respectively.

Np = 75 and 150, CM simulations were carried out at five and three different values

of Nm, respectively. At a particular choice of Np and Nm, the effect of fixing matrix

chain ends is reflected in the difference between the probe and CM diffusivities. Unlike

D, D̂ appears to be relatively independent of Nm.

3.2.1 Estimating Tracer Diffusivity from CM Simulations

Due to the immobilization constraint, we expect D̂ ≤ D for a given Np and Nm. The

difference between D̂ and D is large at small Nm. As Nm increases, D converges to

D̂ (fig. 6). Furthermore, D̂ for a particular Np is insensitive to Nm, for moderately

and well-entangled matrix chains (Nm & 75− 100). We assume that this insensitivity

can be extrapolated to longer matrix chains, Nm � Np. These two observations: the

convergence of D to D̂ from “above” as Nm increases, and the independence of D̂ and

Nm, necessarily imply that tracer diffusivity D∞ may be directly estimated from D̂.

To improve statistics, we average D̂(Np, Nm) over different values of Nm (when

available) to calculate the mean 〈D̂(Np)〉. In figure 6, 〈D̂(Np)〉 is shown by gray lines
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that pass through the CM diffusivities. From the argument above, we claim that this

quantity provides a good estimate of the tracer diffusivity, i.e. D∞(Np) ≈ 〈D̂(Np)〉

(see SI section 4).
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Figure 7: BFM Simulations: Blue circles depict Ds scaled by Z2
p , and best-fit line (gray)

has a slope Z−0.43p . Diamonds depict tracer diffusivity (scaled by Z2
p) obtained from CM

simulations with matrix chains of Nm = 300 (green) and Nm = Np (red). The downward
sloping gray line passing through these points corresponds to Z−0.24p . The horizontal dashed

line corresponds to the pure reptation limit for which D̂Z2
p is constant.

3.3 Self-Diffusivity and Tracer Diffusivity

Tracer diffusivity D∞ is estimated from the BFM simulations using the average 〈D̂〉.

Including probe chains longer than N ≥ 100, we obtain a best-fit D∞ = (2.30±0.11)×

10−4Z−2.24±0.03. This is in contrast with previously shown (fig. 4) results for self-

diffusivity Ds, for which the corresponding best-fit was Ds ≈ 5.84 × 10−4Z−2.43. Not

only is D∞ < Ds over the range of molecular weights investigated as expected, it also

has a weaker dependence on chain length. While xs = 2.43 ± 0.07 is consistent with

the empirical observation of xs = 2.4 ± 0.2, x∞ = 2.24 ± 0.03 obtained from BFM is

somewhat stronger than x∞ = 2.0± 0.1 reported in experiments.12

The difference in xs and x∞ can be emphasized by multiplying Ds and D∞ with
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Z2
p , so that deviations from a slope of Z−2p become salient. Figure 7 includes results

of CM simulations at two different values of Zm: Zm = Zp similar to the systems

used to extract Ds but with clamped matrix chain ends, and Zm = 10, which is the

longest matrix chain explored with BFM in this study. As anticipated, both these CM

calculations lead to similar estimates of D∞. The solid lines in the figure 7 have slopes

of -0.43 and -0.24, reflecting xs = 2.43 and x∞ = 2.24. The dashed horizontal line

depicts the pure reptation limit. The best-fit through the self-diffusion data, and the

dashed line intersect at Z∗1 ≈ 25 − 30. Instead, if we use best-fits shown by the two

solid gray lines, we obtain Z∗1 ≈ 100. This demonstrates the sensitivity of Z∗1 to xs and

x∞. In any case, modeling polymers of this size (Zp & Z∗1 ) by brute force simulations

is currently beyond the reach of the BFM.
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Nm = 1000 (MD)
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no CR (SS)

Figure 8: MD and SS Simulations: Purple squares (MD) and green triangles (SS) depict
Ds scaled by Z2

p . The best-fit line (gray) has a slope Z−0.59p . Red symbols correspond
to scaled probe diffusivities obtained from MD (square) and SS (triangles) simulations of
binary blends with Nm = 1000. Black inverted triangles correspond to scaled probe diffusion
coefficients obtained from SS simulations with CR switched off. The corresponding dashed
line has a slope Z−0.34p .

Figure 8 for SS and MD simulations is analogous to figure 7. It reproduces the scaled

self-diffusion coefficients previously shown in fig. 4 for MD (purple squares) and SS

(green triangles) simulations. The gray line passing through the points corresponds to
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the best fit with slope xs = 2.59. Red symbols depict probe diffusivity D (scaled by Z2
p)

in a matrix with Nm = 1000, using MD (squares) and SS simulations (triangles). As

expected, D < Ds at a given Zp, because the matrix chains are longer than the probes,

Nm ≥ Np. A qualitatively similar trend is observed for BFM simulations, and expected

from eqns 1 and 2. For Np ≤ 200, where MD is feasible, the agreement with probe

diffusivity estimated from SS simulations is good within error bars, which essentially

validates the mapping of the SS model parameters to those of MD. For Zp ≥ 3, the best-

fit through the probe diffusivities corresponds to D = (1.23± 0.11)× 10−3Z−2.32±0.04.

The decrease in the magnitude of the probe diffusivity relative to the self-diffusivity

(D/Ds) is less pronounced in SS simulations compared with BFM. For example, at

Zp ≈ 8 (N = 250 in BFM and N = 500 in MD units), D∞/Ds ≈ 0.57 in the BFM,

while D/Ds ≈ 0.70 in the SS model.

The diffusivity D̃ obtained from SS simulations with CR switched off is shown

by black triangles. In table 7 of SI, D̃ at a given Zp is shown to be slightly smaller

(by ≈ 20%) than its counterpart obtained from binary blends with the same Zp. For

Zp ≥ 4 (Np ≥ 200 in MD units), the best-fit through the tracer diffusivities is D∞ ≡

D̃ = (1.09±0.21)×10−3Z−2.33±0.08 for the range of Zp studied. For improved statistics,

we can combine the probe diffusivity results obtained in binary blends with D̃. This

yields x∞ = 2.34 ± 0.04 which is shown in figure 8 as the best-fit line (dashed gray

line).

At Z = 30, the measured values of Ds and D̃ actually coincide, as do extrapolations

of the best fits for the self and tracer diffusion coefficients. This implies Z∗1 ≈ 30 in

the SS simulations, although further simulations with larger Zp are needed to draw

a solid conclusion. This Z∗1 value is consistent with the theoretical prediction13 and

some analysis of experiments.12

Thus, we can answer the two questions we started out with. “Is CR responsible

for the experimentally observed difference between xs and x∞?” The answer from

both BFM and SS simulations is categorically affirmative. The ambiguity around the

relative magnitudes of the two exponents in some older simulations is resolved. We
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demonstrate that two independent methods (BFM and SS) used to infer both xs and

x∞ using the same or similar simulation protocol agree that xs > x∞. This brings

molecular simulations qualitatively in line with theory and experiments, and eliminate

a source of uncertainty in the literature for Z < Z∗1 . “Can CLF lead to deviation of

x∞ from pure reptation behavior (i. e., x∞ > 2)?” Again, the answer from both BFM

and SS simulations appears to be affirmative. This is discussed in greater detail in the

next section.

3.4 Contributions of Constraint Release and Contour Length

Fluctuations

The similarities and differences between the xs and x∞ obtained from experiments,

theory, and simulations warrant further discussion. The magnitudes of exponents (xs

and x∞), and the critical entanglement numbers (Z∗1 and Z∗2 ) are reported in table 1. In

this work, simulations are confined to Zp . Z∗1 due to computational cost. This means

that the transition to pure reptation scaling marked by Z∗2 is not directly addressed.

Similarly, as pointed out earlier, experiments suggest Z∗1 = Z∗2 .12

In table 1, xs is remarkably consistent across the different methods within the win-

dow of variation. It should be pointed out that for Z < Z∗1 , the theoretical model does

not exhibit a constant exponent;13 instead xs decreases monotonically with increasing

Z. The value reported in the table is the best-fit for 5 ≤ Z ≤ Z∗1 . For lightly entangled

polymers (Z < 5), the theoretical model may not be reliable and predicts a significantly

larger xs.

From table 1, values of x∞ ≈ 2.25− 2.35 obtained from theory, BFM, and SS sim-

ulations are also reasonably consistent with each other. However, they are somewhat

larger than the x∞ obtained from experiments. In particular, x∞ > 2, which suggests

the existence of an additional relaxation mechanism other than pure reptation in the

simulated chains. Since CR is ruled out in the tracer diffusivity measurements, the

only remaining effect is CLF.
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Table 1: Summary of the exponents for tracer and self-diffusivity using molecular simulations
(BFM and SS) compared to theory13 and experiments.12 a In theoretical predictions,13 the
value of xs decreases with Z monotonically; the best-fit of xs for the range of 5 ≤ Z ≤ Z∗1 is
reported here.

xs x∞ Z∗1 Z∗2
experiments 2.4 ± 0.2 2.0 ± 0.1 ∼ 20-100 Z∗1

theory 2.5 ± 0.1a 2.25 ∼ 20 200-1000
BFM 2.43 ± 0.07 2.24 ± 0.03 ∼ 25-100 -

SS 2.59 ± 0.05 2.34 ± 0.04 ∼ 30 -

Following the theoretical model of Frischknecht and Milner, CLF can lead to an

enhancement of the diffusion coefficient D∞ by a factor of (1− sd)−1 where 0 ≤ sd ≤ 1

is the so-called fractional arm retraction distance at the reptation time τd of the linear

chain.13 The dependence of sd on Zp can be calculated from the crossover of the arm

retraction time by treating the chain as a two-arm star. For probe chains diffusing in a

permanent entanglement network, the tracer diffusion coefficient is predicted to scale as

Z−2.25p , which is reasonably consistent with results of both sets of molecular simulations.

This agreement over the range of 1� Zp . Z∗1 supports the theoretical suggestion that

CLF alone can result in faster diffusion of probe chains than pure reptation behavior.

Indirectly, these simulations also support the idea of an intermediate molecular weight

regime Z∗1 < Z < Z∗2 where Ds ≈ D∞ and both CLF and reptation are active.

It remains unclear why the CLF effect on x∞ is not (sufficiently) reflected in the

experimental data,12 especially for weakly entangled probe chains with Zp ∼ O(1),

where CLF ought to dominate chain dynamics.68 On the other hand, the probe chain

lengths studied in the SS simulations are not long enough to examine the validity of

the theoretical hypothesis that CR effect is negligible in determining the self-diffusion

coefficient for probe chains with Zp > Z∗1 .13

Interestingly, the difference |xs− x∞| for experiments and simulations is consistent

within reported uncertainties: it is 0.40 ± 0.22 for experiments, 0.19 ± 0.08 for BFM,

and 0.25 ± 0.07 for SS simulations. The location of the first critical entanglement

number Z∗1 is sensitive to this difference, and varies inversely with it. From table 1, all

26



the methods suggest that Z∗1 lies within a somewhat broad range of ∼ 20− 100.

4 Summary and Conclusions

We used two different molecular simulation methods, BFM and SS model calibrated

with MD, to study the difference in the molecular weight dependence of tracer diffu-

sivity (D∞ ∼ Z−x∞), and self-diffusion coefficient (Ds ∼ Z−xs). SS simulations are

more coarse-grained, and allow us to explore a wider range of probe molecular weights

(up to the first critical entanglement number Z∗1 ≈ 30).

Estimating x∞ using brute-force MD or BFM simulations is ill-advised, because

it involves large simulation boxes and long trajectories. Therefore, we presented and

validated a new method to estimate D∞ with BFM simulations, in which the ends of

the matrix chains are immobilized (CM simulation). Constraint release can be turned

off in SS model, which allows us to compute x∞ directly.

One of the primary goals of this study was to resolve disagreement between exper-

iments and theory which claimed xs > x∞, over a wide intermediate molecular weight

range (1 � Z < Z∗1 ), and older simulations which sometimes claimed the opposite,

x∞ > xs. The calculations reported in this work unambiguously demonstrate that

xs > x∞ in molecular simulations, bringing them in line with expectations from theory

and experiments. Furthermore, the difference between xs and x∞ can be attributed

mainly to CR effects.

Despite qualitative agreement between the methods, important quantitative differ-

ences persist. For Zp . Z∗1 , theory predicts a much stronger dependence of Ds on

molecular weight than experiments or simulations. The situation is reversed for tracer

diffusion, where x∞ obtained from simulations and theory is larger than that obtained

from experiments. The higher value of x∞ strongly suggests that the influence of CLF

may be underrated in the analysis of experimental data. Perhaps, the experimental

data on D∞ requires re-examination, in particular for Zp ≤ 10, where the CLF effects

are expected to play important role.
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