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Abstract: Virtually every cellular process is affected by diet and this represents the foundation of
dietary management to a variety of small animal disorders. Special attention is currently being paid
to a family of naturally occurring lipid amides acting through the so-called autacoid local injury
antagonism, i.e., the ALIA mechanism. The parent molecule of ALIAmides, palmitoyl ethanolamide
(PEA), has being known since the 1950s as a nutritional factor with protective properties. Since then,
PEA has been isolated from a variety of plant and animal food sources and its proresolving function in
the mammalian body has been increasingly investigated. The discovery of the close interconnection
between ALIAmides and the endocannabinoid system has greatly stimulated research efforts in this
field. The multitarget and highly redundant mechanisms through which PEA exerts prohomeostatic
functions fully breaks with the classical pharmacology view of “one drug, one target, one disease”,
opening a new era in the management of animals’ health, i.e., an according-to-nature biomodulation
of body responses to different stimuli and injury. The present review focuses on the direct and indirect
endocannabinoid receptor agonism by PEA and its analogues and also targets the main findings from
experimental and clinical studies on ALIAmides in animal health and wellbeing.

Keywords: palmitoylethanolamide PEA; ALIAmides; autacoid local injury antagonism;
endocannabinoid; wellbeing

1. Nutrition-Oriented Health Promotion in Animals

Nutrition is generally regarded as the process of taking in food and using it for growth, metabolism,
and repair [1]. Virtually every cellular process is affected by diet and lifestyle. Food components interact
with cell metabolic functions accordingly. Similar to drugs, dietary compounds act as modifiers of
network function and stability [2,3]. This represents the foundation of dietary management, which is
currently and successfully applied to a variety of clinical conditions of dogs and cats [1]. The nutritional
approach to pet health feed is nowadays considered a very promising field, from a clinical and marketing
perspective. Based on recent estimates, the feed-related industry totals more than $250 billion per year,
and the feed-based approach to animal health and diseases is more popular than in humans [4].
Several naturally occurring compounds are regularly used as feed materials worldwide and they
are under Regulation (EC) No. 767/2009 in European countries. They are present in food sources
(although not all of them are normal constituents of the mammalian body) and have repeatedly
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been shown to exert anti-inflammatory and pain-relieving effects in several experimental studies
and clinical trials in veterinary patients affected with various disorders, especially of a chronic
nature [4]. Glucosamine, omega-3 and -6 essential fatty acids, and methylsulfonylmethane are just
few examples. There is substantial evidence that polyunsaturated fatty acids from vegetable and
fish oil (e.g., eicosapentaenoic, docosahexaenoic, and linoleic acid) exert important benefits in a
range of veterinary diseases, from atopic dermatitis [5–7] to renal insufficiency [8,9] and cognitive
dysfunction syndrome [10]. Moreover, omega-3 essential fatty acids have been widely and successfully
applied to osteoarthritis [11–15], similarly to glucosamine [16–19] and the organosulfur compound
methylsulfonylmethane [4]. Thus, the interaction between illness, health, and nutritional status is
multifactorial and complex. Several health benefits have been shown for nearly any feed material,
in line with the famous quote generally attributed to Hippocrates “Let food be thy medicine, and let
medicine be thy food”. For a large number of compounds used in the so-called nutraceutical approach
to health, data on safety and toxicity are still missing and pharmacokinetic, pharmacodynamic,
and toxicological studies are few, if any [4]. This is not the case for the naturally occurring compound
palmitoylethanolamide (PEA) and related amides, which are being increasingly investigated in recent
years, as regarding health-promoting features and safety issues. The present review will examine and
discuss the food sources, physiological role, and the most updated data on the bioavailability and
benefits of PEA and congeners, with special reference to the effect on animal health.

2. Natural Presence of PEA in Vegetable and Animal Food Sources

In 1950, it was discovered that less privileged children fed with an egg-rich diet were apparently
protected against rheumatic fever [20]. The protective factor was found to be a lipid fraction from
the egg yolk (which was also identified in peanut oil and soybean lecithin) and discovered to be a
particular lipid amide known as palmitoyl ethanolamide, PEA [21,22] The protective properties of
PEA led many researchers to investigate its presence in other natural sources. PEA was thus found in
the seeds of some varieties of legumes, such as peas and beans [23,24], as well as green/roasted coffee
and cocoa [25–27]. Moreover, many other food sources of PEA were progressively discovered, like,
for example, tomatoes, alfalfa (Medicago sativa), potatoes, carrots, walnuts, peanuts, wheat flour, barley,
tuna fish, and vegetable oils [23–26]. Moreover, high levels of PEA were also found in human, bovine,
and elk milk [25,28–30] (Table 1). Interestingly, a high and increasing amount of PEA has recently been
found in milk samples from mothers belonging to underserved populations, where milk represents a
food of primary importance to avoid infant malnutrition [31]. Accordingly, deregulated levels of PEA in
breast milk were repeatedly found to negatively affect the growth of offspring [32,33]. One might thus
speculate that PEA represents an early nutrient. The presence of PEA is not limited to natural foods;
indeed, physiological PEA levels were also detected in virtually any tissue and body fluid. In particular,
PEA is produced in the muscle and spleen but also the eyes, gastrointestinal tract, spinal cord, skin,
heart, blood, and subcutaneous adipose tissue [34–39]. Moreover, PEA levels are also abundant in
the brain from different species, such as pigs, sheep, cows, guinea pigs, mice, and rats [34,40–48].
In addition, PEA has also been quantified in reproductive fluids, such as seminal plasma, follicular,
oviductal, and amniotic fluid, as well as the umbilical vein and artery, the main nutritional sources
of the fetus [28,29,49]. Finally, human and canine synovial fluid also contains noticeable levels of
PEA [50,51]. This vast distribution of PEA is nowadays viewed as a crucial prerequisite for its main
function, namely endogenous protection in response to different types of damage.
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Table 1. Food sources in order of decreasing concentration of palmitoyl ethanolamide (PEA).

Food Source ng/g f.w. Reference

Soy lecithin 950,000 [23]
Soybean (Glycine max) 6700 [23,24]

Green coffee (depending on the variety) 2830–11,940 [27]
Raw peanuts ~7770 [26]

Roasted coffee 7200 [27]
Peanuts (Arachis hypogaea) 3730 [23,24]

Alfalfa (Medicago sativa) 1150 [24]
Refined wheat flour ~800 * [25]
Whole wheat flour ~400 * [25]
Raw pearl barley ~330 [26]

Walnuts ~250 * [25]
Toasted pearl barley ~220 [26]

Corn 200 [23]
Black-eyed peas (Vigna unguiculata) 138 [24]

Broccoli ~130 * [25]
Tuna fish ~120 * [25]
Chicken ~120 * [25]
Carrots ~110 * [25]

Eggs ~100 * [25]
Tomato 100 [23]

Garden pea (Pisum sativum) 100 [23,24]
Beans ~90 * [25]

Lettuce ~70 * [25]
Beef ~60 * [25]

Codfish ~60 * [25]
Common bean (Phaseolus vulgaris) 53.5 [24]

Cauliflowers ~50 * [25]
Chickpeas ~40 * [25]
Anchovies ~40 * [25]
Cow’s milk ~30 * [25]
Almonds ~10 * [25]
Grapes ~10 * [25]

Oranges ~10 * [25]
Apples ~8 * [25]
Lentils ~6 * [25]

Potatoes 5 * [25]
Elk milk 1.81 [30]

Bovine milk 0.25 [30]

f.w. = fresh-weight; * = the concentration is expressed as nanograms per gram on a dry-weight basis; ~ indicates the
value has been extrapolated from figures.

3. ALIAmides and the Highly Conserved N-acylethanolamine Family

The endogenous amides, acting through the autacoid local injury antagonism mechanism
(ALIA mechanism), are a class of naturally occurring molecules, i.e., ALIAmides, named for the
first time in 1993 by the late Nobel prize winner Rita Levi Montalcini [52]. The term “autacoids”
comes from the Greek “autos” (self) and “acos” (healing or remedy) and refers to cell-produced
factors that act locally, i.e., near their site of synthesis [53]. Originally considered as mediators of
inflammation (e.g., histamine), autacoids were soon discovered not only to induce but also to reduce
inflammation and, more generally, tissue injury [53]. Since then, the possible prohomeostatic role
of autacoids has aroused great scientific interest and has been increasingly interwoven with the
research field involved in the resolution of inflammation, or more simply resolution [54]. The autacoid
ALIAmides are endogenous bioactive N-acyl ethanolamines (NAEs), which regulate a variety of
physiological functions and are biosynthesized in response to cellular stress and tissue damage
with prohomeostatic purposes, i.e., to balance the internal environment in both plants [55] and
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animals [56]. NAEs are considered an evolutionarily conserved lipid signaling system. The machinery
for the biosynthesis and degradation of NAEs is functionally conserved in both animal [57,58]
and plant systems [59]. There are numerous endogenous NAEs, like oleoyl ethanolamide (OEA),
stearoyl ethanolamide (SEA), and other less studied molecules, such as eicosatrienoyl ethanolamide
(ETEA). The most researched and well-known among them are the endocannabinoid arachidonoyl
ethanolamide (AEA or anandamide) and the endocannabinoid-like PEA, the parent molecule of
ALIAmides (Figure 1). PEA is one of the most highly conserved NAEs during evolution and it is
found even in microscopic single-cell organisms, like the yeast Saccharomyces cerevisiae [60] as well as
invertebrates (e.g., mollusks) [61]. Evolutionary conservation underscores the functional importance of
NAEs, and particularly PEA. Recently, some studies have highlighted the benefits of newly developed
molecules acting through the so-called ALIA mechanism, like Adelmidrol, a derivative of azelaic acid,
and N-palmitoyl-D-glucosamine or Glupamid. Some relevant findings will be briefly presented in the
last part of this review.

Figure 1. Chemical structure of representative endocannabinoids and related N-acylethanolamines.

4. Endogenous PEA: Metabolic Pathways and Change in Tissue Levels

PEA, like other NAEs and related endocannabinoids, is synthesized and metabolized by
different animal cell types and also present in plants, as recently reviewed by Petrosino and
Di Marzo [62]. NAEs are biosynthesized from atypical phospholipids of cell membranes bearing
three acyl chains (i.e., N-acyl-phosphatidyl ethanolamines, NAPEs), with the synthesis involving two
enzymes, i.e., NAPE-generating Ca2+-dependent N-acyltransferase (Ca-NAT) and NAPE-hydrolyzing
phospholipase D (NAPE-PLD) [63]. Like the other NAEs, PEA is produced "on demand" by most cells
and its local levels are strictly regulated by balancing the activity of the biosynthetic and degradative
metabolic pathways. The primary degrading enzymes are fatty acid amide hydrolase (FAAH) and
N-acyl ethanolamine-hydrolyzing acid amidase (NAAA) [64,65] (Figure 2). Interestingly, PEA levels
have been shown to change during stressful conditions. The first observation in this regard came from
a study performed in dogs. It was found that the infarcted areas of canine myocardium contained
substantial amounts of NAEs (about 20-fold higher than normal heart muscle), the main one being
PEA. It was thus speculated that PEA was produced as a response to ischemic injury and might exert
beneficial effects in the infarcted area [35]. Since then, several studies have characterized the changes in
PEA levels during different pathophysiological conditions [66–68]. For example, it has been shown that
epidermal cells subjected to UV irradiation, which is known to induce cell damage, produce considerable
amounts of NAEs, with PEA showing the highest increase [69]. Furthermore, in the lesional skin of
privately owned dogs affected with atopic dermatitis, the levels of NAEs as well as those of the classic
endocannabinoid, 2-arachydonoylglycerol (2-AG), were shown to be significantly elevated compared
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to normal non-atopic skin, with PEA levels showing the highest increase (more than 30 fold) [36].
A great deal of evidence suggests that PEA metabolism (i.e., the overall set of endogenous biosynthetic
and degradative pathways) may be disturbed during certain disorders [70]. Accordingly, tissue levels
of PEA are increased in several disease conditions and a decrease in PEA levels contributes to the
disease development [71–73]. The most commonly accepted hypothesis is that the synthesis of PEA
increases when tissues face an actual or potential injury and serves as an early stop signal that contrasts
the progress of inflammation [74]. Accordingly, one might argue that pathological situations may arise
in which endogenous PEA levels are inadequate in dealing with the ensuing insult. In these cases,
exogenous administration to effectively ‘top up’ the body’s own supply may be a viable approach [56].

Figure 2. The main biosynthetic and degradative pathways of N-acyl ethanolamines (NAEs).
Modified from [56]. NAE: N-acyl ethanolamines; NAPE-PLD: N-acyl phosphatidylethanolamine
phospholipase D; NAPE: N-acyl phosphatidylethanolamine; FAAH: fatty acid amide hydrolase; NAAA:
N-Acylethanolamine acid amidase

5. PEA Mechanism of Action: A Multitarget Redundancy

In addition to the beneficial effects and metabolic pathways, several studies have focused on the
mechanisms of action of PEA. The key result is that PEA acts through multiple pathways, both at
the cellular and molecular level (recently reviewed in [62]). In regard to cellular targets, it was
originally observed that PEA downmodulates mast cell behavior after challenge, i.e., the ALIA
mechanism [53]. The finding was later confirmed in dogs and cats, with PEA being able to control
mast cell releasability in different settings, e.g., freshly isolated cells from canine skin biopsies [75],
canine skin organ cultures [76], hypersensitive dogs [77], and cats affected by eosinophilic granuloma
and eosinophilic plaque [78]. Besides mast cells, different cell populations were also shown to be
targets of PEA. Indeed, once activated, macrophages, keratinocytes, T cells, astrocytes, and microglia
are all negatively controlled by PEA [71,79–84]. From the molecular side, PEA appears to act through
multiple receptors, some behaving as direct while others as indirect targets. In particular, PEA can
directly activate PPAR-α (peroxisome proliferator-activated receptor α) [85] or, more controversially,
GPR55 (G-protein-coupled receptor 55) [86]. On the other hand, the activation of canonical cannabinoid
receptors (i.e., Cannabinoid receptor (CB) type 1 CB1 and CB2) depends on the PEA-induced increase
of endocannabinoids, like AEA or 2-AG [87–89]. The term “entourage effect” was coined to explain the
aforementioned indirect effect of PEA on cannabinoid receptors, through the increased availability of
endocannabinoid(s) [89–91]. Interestingly, the entourage effect was specifically shown in dogs, with oral
administration of PEA in its bioavailable form (i.e., ultra-micronized, see below) being paralleled by a
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significant and up to ~20-fold increase in the plasma levels of 2-AG [87] (Figure 3). The entourage effect
seems also to guide, at least in part, the interrelation between PEA and transient receptor potential
vanilloid 1 (TRPV1), whose activation and desensitization depends on the PEA-induced AEA or 2-AG
increase [87,89–91]. To make it even more complex, PEA’s action on PPAR-α is also responsible for
increasing CB2 expression and TRPV1 activation [92,93].

Figure 3. PEA (palmitoyl ethanolamide) entourage effect on 2-AG (2-arachydonoylglycerol). Following a
single dietary supplementation with PEA-um to hypersensitive Beagle dogs, 2-AG plasma levels are
significantly elevated, with a slight delay compared to PEA ones. * p < 0.05 and ** p < 0.001 versus time 0.
Modified from [87].

It is now clear that PEA is an endocannabinoid-related compound, sharing metabolic pathways
and targets with the endocannabinoid system, which is now considered to play an integral role in
maintaining body homeostasis [94]. Most notably, the heterogeneous family of canonical and putative
cannabinoid receptors, i.e., PEA targets, are being extensively studied in companion animals and
their distribution has been found in several body tissues [95–109]. Table 2 provides a summary of the
main results.
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Table 2. A glance over cannabinoid receptor distribution in dogs and cats [95–109].

SYSTEM/TISSUE AREA/CELL CB1 CB2 GPR55 PPARα TRPV1

CNS

Hippocampus l

Claustrum H#

Cerebral cortex H#

Cornu Ammonis H#

Midbrain H#

Cerebellum H#

Medulla oblongata H#

Spinal cord H#

Spinal glial cells H#

Astrocytes H# H#

Cerebral arterial smooth muscle cells G#

PNS
Dorsal root ganglia (neurons, satellite cells) H#

Schwann cells H#

SKIN

Dermal papillae G#

Hair follicles H# H# G#

Hair bulb cells G# G#

Sebaceous glands l l

Sweat glands H# l

Keratinocytes l l G# H#

Mast cells H# H#
Fibroblasts H# H#

GI TRACT

Salivary glands H#

Lamina propria cells H#

Enterocytes H# G#

Mast cells H#

Immunocytes H# H# G# l

Smooth muscle cells H# l l

Macrophages G# l

Submucosal plexus (neurons and glial cells) H#

Myenteric plexus glial cells H#

Myenteric plexus neurons G#

Intestinal enteroendocrine cells G# G# G#

Goblet cells G#

Enteric neurons G#

Enteroglial cells G#

CIRCULATORY SYSTEM

Lymph nodes l

B cells H#

Endothelial cells H# H#

Spleen H#

GENITAL TRACT
Ovary G#

Oviducts G#

G# Cat; H# Dog; l Cat and dog; CIRCULATORY SYSTEM = blood vascular and lymphatic system; CNS = central
nervous system; PNS = peripheral nervous system; GI TRACT = gastrointestinal tract; CB1 = Cannabinoid receptor
type 1; CB2 = Cannabinoid receptor type 2; GPR55 = G protein-coupled receptor 55; PPAR-α = Peroxisome
proliferator-activated receptor alpha; TRPV1 = Transient receptor potential vanilloid 1.

6. PEA as A “Proresolving” Lipid Mediator

Inflammation is a natural body response to harmful stimuli (e.g., pathogens, irritants) serving
protective purposes. It is generally believed that a controlled inflammatory response is beneficial, but it
can become detrimental if dysregulated, with uncontrolled inflammation being a key player in the
pathogenesis of several diseases [110,111]. Therefore, inflammation must be finely tuned and switched
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off when no longer needed [112]. Accordingly, proinflammatory mediators, such as arachidonic acid
derivatives, cytokines, and chemokines, should be finely counterbalanced by the so-called “proresolving”
mediators, in order to limit inflammation and terminate the response once the threat has passed [113–115].
It can be inferred that approaching such a complex process by targeting only one of the biochemical
pathways might be a nonoptimal strategy. It is widely recognized that a multitarget approach is more
effective, although difficult to achieve with medicinal products, given they usually act in a highly selective
way, target a single mechanism, and are generally coupled with side effects as well as drug interactions.
An alternative strategy that has been suggested is to commandeer nature’s own anti-inflammatory
mechanisms and induce a “dominant” program of resolution [116]. Within this framework, PEA represents
an interesting lipid signaling molecule. As outlined in detail in previous chapters, PEA is (i) produced
“on demand” in response to tissue damage and/or an inflammatory response; (ii) able to downmodulate
cell reactivity, especially at immune-inflammatory cells (i.e., ALIA effect); and (iii) active through a
multitarget mechanism involving the prohomeostatic endocannabinoid system [84,117]. In line with this
view, dietary supplementation of healthy animals with PEA resulted in a shift in the membrane lipid
composition towards a proresolving lipid environment [118]. Therefore, dietary supplementation of
PEA and congeners substantially overcomes the classical pharmacology view of “one drug, one target,
one disease”, opening a whole new era in the management of animals’ health, i.e., an according-to-nature
biomodulation of body responses to different stimuli and injury. A conceptual view of the prohomeostatic
function of PEA is shown in Figure 4.

Figure 4. The prohomeostatic function of PEA: A conceptual view. Just like a hot air balloon floating
in the sky, tissue homeostasis requires persistent monitoring and adjustments as conditions change.
If the flame from the burner is too high (+), the rising balloon might overcome the upper safety limits.
On the contrary, if the air inside the balloon is too cool, the opposite might happen. PEA helps to finely
tune the “burner knob” and counterbalances the excessive burst, and related tissue hyper-reactivity,
in response to high-intensity stimuli (−).

7. PEA Bioavailability: A Size Issue

The health-promoting effect of any dietetic compound can be limited because of lipophilicity
and intrinsic low dissolution rate(s). Both features will necessarily translate into scarce absorption,
and poor pharmacokinetics and bioavailability [119]. PEA is practically insoluble in water and scarcely
soluble in most aqueous solvents, with the logarithm of its partition coefficient (log P) being >5 [120].
Since the absorption of lipophilic substances is inversely proportional to the size of their particles [121],
one of the most suitable systems for optimizing the functions of PEA following oral administration is to
use a microgrinding process, called micronization. As will be discussed below, the oral administration
of micronized PEA, and more particularly that with a particle size between 0.6 and 6 µm (the so-called
PEA-um or ultra-micronized PEA, Figure 5), shows superior activity compared to other forms.
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Figure 5. Particle size distribution profile of different PEA formulations. More than 99% and about 60%
by weight of PEA-um has a particle size lower than 6 and 2 µm, respectively.

A major benefit of ultra-micronization is the enhancement of the dissolution rate [122], and better
oral absorption [121–123]. After oral administration of PEA-um, the plasma concentration of PEA
was found to reach a 5-fold higher level than non-micronized (naïve) PEA [120]. Moreover, the oral
administration of PEA-um to animals with experimental inflammation resulted in a much higher
increase of PEA plasma levels compared to non-inflamed animals, and this was not observed
after naïve PEA administration [120]. This suggests that PEA-um provides considerably higher
protective power than other forms of PEA under conditions of need. Specifically, in dogs, it was
also found that a single dose of PEA-um increased the plasma concentration of PEA by about
5 times, reaching the maximum peak between 1 and 2 h [77]. The higher oral bioavailability obtained
following ultra-micronization translated into superior effects, as shown, for example, in a rat model of
inflammatory pain [124]. In particular, the study compared micronized, ultra-micronized, and naïve
PEA. While no significant differences were observed among treatment groups following intraperitoneal
administration, oral supplementation with PEA-um reduced paw edema, local neutrophil infiltration,
the histological score of tissue damage, and thermal hyperalgesia to a significantly higher extent
compared to micronized and, even more so, naïve PEA [124]. In addition, a study on the
enteroprotective benefit of PEA revealed a similar order of magnitude following oral administration,
i.e., PEA-um > micronized PEA > naïve PEA [125]. Most notably, a few days after colitis induction,
untreated animals experienced diarrhea and a significant reduction in body weight, which was
modestly limited by naïve PEA, prevented by micronized PEA, and significantly counteracted by
PEA-um [125]. The main findings of the above studies are summarized in Figure 6.

1 
 

 
Figure 6. Superior activity of PEA-um compared to other PEA formulations. (A) Effect on inflammatory
edema. Only the most relevant time points are depicted. See text for further details. * p < 0.05 and
** p < 0.01 vs. untreated group. Modified from [124]. (B) Effect on colitis-induced change in body
weight. Modified from [125]. Naïve PEA: non-micronized PEA; PEA-m: micronized PEA; PEA-um:
ultramicronized PEA.
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8. Application of ALIAmides to Animal Health and Wellbeing

In the last two decades, PEA and related NAEs have been extensively investigated due to the
variety of their biological effects [62,67,73,126–130] and lack of toxicity. Micro-PEA of a defined
particle size (0.5–10 µm) is safe, the LD50 resulted > 2000 mg/kg body weight for acute oral
toxicity and NOEL (no treatment-related adverse effects) greater than 1000 mg/kg body weight
for subchronic toxicity [131]. PEA-um has a long track record of use in human and veterinary patients,
with good-to-excellent tolerability [62]. Moreover, long-term use of PEA is not associated with
the development of tolerance (i.e., a reduction in response after repeated administration) [132,133].
Nowadays, PEA-um is used in several veterinary compositions, like complementary feeds and
PARNUTS (feed for particular nutritional purposes) both in the European and North American market.
It is sometimes associated with different compounds to better address gastrointestinal, urinary, and skin
needs. Moreover, co-micronized mixtures of PEA with natural antioxidants, e.g., quercetin and
curcumin, have been developed and are currently used in complementary feeds for dogs and cats in
Europe. Finally, topical formulations containing the ALIAmide Adelmidrol, i.e., the diamide derivative
of azelaic acid (azeloyl diethanolamide), are also used in pets for skin and mucous membrane health
and wellbeing. The main findings obtained so far are presented below.

8.1. Gastrointestinal Tract

Extensive evidence shows that the endocannabinoid system plays a pivotal role in gastrointestinal
health [134–137]. In this respect, PEA has been referred to as an intestinal “gate keeper”, whose increased
levels contribute to locking of the gut barrier and to the reduction of intestinal inflammation [135].
Indeed, NAAA inhibition was shown to increase levels of PEA and to reduce inflammation in a
mouse model of inflammatory bowel disease (IBD), thereby supporting the “gate keeper” function
of PEA [134]. During gut disorders, PEA levels undergo important changes [138–140]. In particular,
they increase in the colon of dogs with diarrhea [141], while markedly decrease during acute intestinal
absorptive disorders and in the course of unbalanced diets [134,142,143]. The enteroprotective effect of
PEA passes through the direct or indirect activation of PPAR-α and CB2 receptors [138–140,144–147],
whose expression has also been confirmed in the canine and feline gastrointestinal tract [101,109].
It has also recently been found that PEA restores the intestinal barrier permeability via the
regulation of intercellular junctions [139,146,148–150], and reduces inflammatory cell recruitment,
i.e., macrophages and neutrophils, during experimental intestinal injury [138,144,147,151–154].
PEA administration also decreased viral-induced diarrhea [140] and normalized intestinal motility in
a post-inflammatory accelerated transit model [145]. Moreover, a preliminary study in dogs affected
with chronic diarrhea demonstrated that dietetic supplementation with PEA reduced the canine
IBD activity index (CIBDAI) [141], in line with the findings from Esposito and colleagues (2014),
who showed a significant improvement of the colitis activity index (body weight, presence of gross
blood in the feces, and stool consistency) in PEA-treated mice with experimentally induced colitis [138].
Finally, a clinical study concluded that dietary supplementation with PEA is able to minimize abdominal
pain in human patients affected with irritable bowel syndrome [155]. Almost all of the reported
studies have used PEA in the ultra-micronized form, which, as said earlier, is characterized by better
bioavailability and a superior enteroprotective effect [125]. A fledgling and very interesting aspect of
the endocannabinoid system in gastrointestinal homeostasis is that it interacts with the gut microbiota,
with the latter being recently shown to influence the tone of the endocannabinoid system [156]. In turn,
deletion in adipose tissue of the gene encoding one of the key enzymes in the NAEs biosynthetic
pathways (Napepld) profoundly shifts the composition of the gut microbiota, thus providing strong
support for the function of PEA and congeners in maintaining microbiota homeostasis [157]. Indeed,
PEA administration was found to counteract the specific changes in gut bacterial taxa induced by
vitamin D deficiency [158]. A trend towards normalization of the intestinal microbiota profile was
also observed by Cristiano and colleagues following PEA treatment in a murine model of autism
spectrum disorders [150]. Similarly, the modulation of gut microbiota composition was also observed
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following sub-chronic treatment with the PEA congener OEA [159]. Intriguingly, a recent paper
reported increased levels of NAEs in the stool of IBD patients and mice with experimentally induced
colitis [160]. Surprisingly, the authors also found a growth-promoting effect of NAEs on gut bacteria,
thus supporting the ability of microbiota, some taxa at least, to catabolize (and purportedly even synthesize)
NAEs [160]. Although some preliminary efforts have been made, the role of NAEs and endocannabinoids
in host–microbiota homeostasis is far from clear and further studies are needed to address this challenging
area and also gain new knowledge on potential synergies between PEA and probiotics.

8.2. Upper and Lower Urinary Tract

Great attention has recently been paid to the endocannabinoid system and related NAEs in the
regulation of urinary tract homeostasis [161–163]. In the kidney, PEA is physiologically present from
the embryonic stage [91,164] and is naturally produced in healthy and disease conditions [165,166].
Moreover, PEA levels change in response to kidney damage [167]. The involvement of PEA in
the maintenance of renal homeostasis depends on either direct interaction with PPAR-α and GPR55
receptors [168–170], or the local increase of the endocannabinoid 2-AG, endowed with nephroprotective
function [87,91,171]. Recent studies from our group suggest PEA to be part of a defensive strategy,
i.e., monitoring the behavior of renal mast cells, as to keep their mediator release (e.g., chymase)
within the physiological range and maintain renal homeostasis accordingly [168]. PEA administration
decreases both renal dysfunction and injury triggered by ischemia/reperfusion or contrast agent,
besides re-establishing the main markers of glomerular function, i.e., creatinine and urea [168,172].
Moreover, we also found that PEA protects renal blood vessels thanks to its ability to reduce the
expression of endothelial adhesion molecules and proinflammatory transcription factors (NF-kB) [168].
These studies highlighted the role of PEA in preserving the physiological features and function of
kidneys during adverse conditions [168,172]. Similar results were also reported by Mattace Raso
and colleagues (2013) [173], who also showed that PEA reduces blood pressure and kidney damage
secondary to hypertension and downregulates angiotensin receptor 1 and angiotensin converting
enzyme expression, with a reduction in angiotensin II-mediated effects [173]. Finally, we found
that lower doses of PEA are needed to exert a nephroprotective function if natural antioxidant
compounds, like silymarin, are concurrently administered [174]. As far as lower urinary tract
concerns, PEA levels have been quantified in the bladder and urine [29,175] and found to increase in
different settings [175,176]. Moreover, based on the results obtained in experimental models of cystitis,
supplementation with PEA is able to restore the normal micturition threshold (i.e., the intra-bladder
volume required to stimulate the urinary contraction) [177,178] and reduce visceral pain [177–180].
Interestingly, a dietetic supplement containing PEA-um was recently described to benefit a Syrian
hamster with urolithiasis and diminish recurrence after surgical treatment [181].

8.3. Nervous System

Nociception is a complex physiological process encoding and processing noxious stimuli. In particular,
noxious stimuli (i.e., unpleasant sensations of mechanical, chemical, and thermal origin) are transformed
into electrical signals (transduction), transmitted to the spinal cord (transmission), where they are
modulated (modulation) before reaching the brain to be processed (perception/integration) and finally
activate the complex and subjective experience of pain [182]. PEA administration was long shown
to control nociception [183–185]. Most notably, PEA may help set the threshold for nociception by
regulating the baseline transcriptional activity of the NF-κB complex [184]. Thanks to this function,
PEA was shown to reduce pain in different models of inflammatory and neuropathic pain [62,67,128]
as well as human patients (reviewed in [128,186]), the NNT value (numbers needed to treat) for low
back pain being 1.7, considerably better than first-line pain-relieving drugs [187]. Pain relief mainly
relies on the ability of PEA to downmodulate immune-inflammatory cells, i.e., microglia and mast
cells [80,81,188–191]. The microcomposite resulting from the joint micronization of PEA and the
antioxidant polyphenol quercetin (PEA-Q) was recently discovered to alleviate inflammatory pain
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after a single oral dose [192]. Mixed persistent pain (i.e., involving both inflammatory and neuropathic
pain-processing mechanisms) was also found to benefit from PEA-Q dietary supplementation, as shown
by a small, albeit interesting, open-field trial on privately owned dogs [193].

8.4. Musculoskeletal System

N-palmitoyl-D-glucosamine (PGA) is a recently identified component of the ALIAmide family,
developed to address orthopedic painful conditions, osteoarthritis in the first place. PGA is a PEA analogue,
ethanolamide being substituted with glucosamine, and incorporates both the chondroprotective effects
of the latter and the ALIAmide function of the whole molecule. The effect of PGA in a reliable animal
model of osteoarthritis pain (i.e., the intraarticular injection of monosodium iodoacetate, MIA) [194,195]
has been investigated. In the MIA-injected animals, a single oral administration of PGA resulted in
a significant relief of mechanical allodynia (one of the prominent symptoms of neuropathic pain),
the effect being enhanced by repeated administration (14 days) and not relying on the glucosamine
content [196]. Moreover, oral supplementation with PGA significantly improved the motor functional
profile, compared with non-treated animals [196]. In addition, we recently investigated the effect of
micronized PGA (PGA-m) on chondrodegeneration, inflammation, and pain in the MIA model of
osteoarthritis [197]. Micronized PGA resulted in a superior activity to PGA on MIA-induced mechanical
allodynia, locomotor disability, and histologic as well as radiographic damage. The MIA-induced
increase in joint mast cells and serum level of proinflammatory and nociceptive mediators was also
counteracted by PGA and to a significantly greater extent by m-PGA [197]. Finally, a novel composite
developed by co-micronizing PGA and curcumin was found to significantly reduce the severity of
cartilage and radiographic damage, as well as osteoarthritis pain in MIA-injected animals [198].

8.5. Mucocutaneous and Skin Sites

The diethanolamide of azelaic acid, i.e., Adelmidrol, is a component of the ALIAmide family,
possessing both hydrophobic and hydrophilic features, which make it suitable for topical applications.
Adelmidrol was found to exert proresolving effects in different models of both acute and chronic
inflammation [164,199,200]. When topically applied on canine experimental skin wounds, Adelmidrol
downmodulated mast cell degranulation [201], with the effect being paralleled by improved
healing [202]. Similar results have recently been obtained by our group in an animal model of
diabetic ulcers [203]. An Adelmidrol-containing emulsion was successfully used in pediatric patients
with mild atopic dermatitis [204] as well as human patients with giant vulvar syringomas and prominent
pruritus [205]. Beagle dogs affected with skin hypersensitivity also benefited from Adelmidrol topical
use (i.e., smaller allergic wheals), the compound being locally effective in downmodulating the
behavior of skin mast cells [206]. The mechanism is possibly responsible for the decreased severity
of pruritus and erythema observed in privately owned dogs with atopic dermatitis, topically treated
with Adelmidrol over a 30-day period [207]. A further interesting finding of the study was that
owner-evaluated body odor and quality of life also improved [207]. Besides dermatology, dentistry is
also one of the fields where Adelmidrol proved to be useful. In client-owned dogs, repeated application
of an Adelmidrol mucoadhesive gel, in combination with dental prophylaxis, resulted in less gingival
inflammation and a longer duration of dental scaling benefits [208]. Interestingly, it has recently been
shown that Adelmidrol increases PEA levels in canine keratinocytes [164]. One might hypothesize
that the protective effects presented above depend on the local increase of PEA at sites of Adelmidrol
application. PEA, for its part, has repeatedly shown proresolving effects in skin disorders, being able to
(i) reduce inflammation in experimental contact allergic dermatitis [79], (ii) downregulate the release of
inflammatory chemokine by challenged keratinocytes [79], (iii) decrease transepidermal water loss
(TEWL) in human patients [209], and (iv) diminish itching behavior in a mouse model of allergic
dermatitis [210]. Interesting data have also been gained in the veterinary side. Dietary supplementation
with PEA decreased allergic wheal development in hypersensitive Beagle dogs [77] and delayed the
development of clinical signs in dogs with experimental allergic dermatitis [211]. In a multicentric
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clinical study on 160 privately owned dogs with mild-to-moderate and non-seasonal atopic dermatitis
(i.e., the severity usually managed with non-pharmacologic measures, like essential fatty acids),
the oral administration of PEA-um over 56 days significantly decreased pruritus and skin lesions,
while improving quality of life [212]. Dietary supplementation with micronized PEA proved to
benefit cats too, improving skin signs and symptoms in cats with eosinophilic plaque and eosinophilic
granuloma [78]. Moreover, a double-blinded placebo-controlled study in allergic cats has recently shown
that PEA-um helped to maintain standard therapy-induced remission in cats with hypersensitivity
dermatitis, i.e., the so-called proactive approach [213]. Interestingly, during concomitant steroid
treatment, the severity of pruritus was significantly lower in the PEA-um-treated cats compared to the
placebo, suggesting a possible additional steroid-sparing effect [213].

9. Conclusions

PEA and related amides belong to a class of physiological compounds, i.e., ALIAmides,
commonly present in plants and animal food sources. Most ALIAmides are body-own components,
locally produced “on demand” for homeostatic purposes. A great deal of evidence supports the
proresolving function of endogenous PEA and related lipid amides. The multitarget actions of
these natural bioacting compounds, their mutual interactions, and the close relationship with the
endocannabinoid system are the key features for meeting the health needs of different body systems
(Figure 7). The health-promoting effects resulting from the use of ALIAmides, provided they are
administered in a bioavailable form, together with the safety and tolerability profile, led to the
development of complementary feeds, PARNUTS, and topical products for the maintenance of heath
in companion animals. The positive results obtained so far may encourage stronger efforts to further
investigate the potential benefits arising from ALIAmides as a response to different animals’ needs,
health, and wellbeing.

Figure 7. ALIAmides for animal health from a Galileian perspective. Schematic representation of
the multitarget function of ALIAmides. Directly and indirectly acting through multiple cannabinoid
receptors (yellow ring), PEA and related ALIAmides target different cell populations (pink ring),
supporting health maintenance in a variety of body systems (light blue ring). See text for further
details. A, astrocyte; CB1, cannabinoid receptor type 1; CB2, cannabinoid receptor type 2; GPR55,
G-protein-coupled receptor 55; K, keratinocyte; MC, mast cell; MΦ, macrophage; µG, microglia; PPARα,
peroxisome proliferator-activated receptor α; T, T cells; TRPV1, transient receptor potential vanilloid 1.
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