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Abstract
Climate prediction skill on the interannual timescale, which sits between that of seasonal and
decadal, is investigated using large ensembles from the Met Office and CESM initialised coupled
prediction systems. A key goal is to determine what can be skillfully predicted about the coming
year when combining these two ensembles together. Annual surface temperature predictions show
good skill at both global and regional scales, but skill diminishes when the trend associated with
global warming is removed. Skill for the extended boreal summer (months 7–11) and winter
(months 12–16) seasons are examined, focusing on circulation and rainfall predictions. Skill in
predicting rainfall in tropical monsoon regions is found to be significant for the majority of
regions examined. Skill increases for all regions when active ENSO seasons are forecast. There is
some regional skill for predicting extratropical circulation, but predictive signals appear to be
spuriously weak.

1. Introduction

The use of initialised numerical climate models
to make dynamical climate predictions is now an
established methodology in seasonal and, more
recently, decadal forecasting. However, the inter-
mediate timescale of ‘interannual’ prediction has
received significantly less attention but yet has the
potential to give users important advanced warning
of impending climate extremes. Here we explore what
climate variability is predictable beyond the seasonal
prediction timescale, with a particular focus on what
can be skilfully predicted for the coming year from
a forecast initialised in November. To study this we
take advantage of two large ensembles of initialised
decadal prediction systems over the long retrospect-
ive forecast (hindcast) period 1960–2018.

The prime driver for skilful seasonal forecasts is
the predictability of the coupled ocean-atmosphere

El Nino Southern Oscillation (ENSO) in the tropical
Pacific. ENSO is the dominant mode of intraseasonal
climate variability and major events (most recently
the El Nino of 2015/16) are associated with near-
global climate impacts, thus providing a strong
motivation for the development of global seasonal
prediction systems. A particular success of seasonal
prediction (from both statistical and dynamical mod-
els) has been the development of skilful forecasts of
monsoon rainfall which is often strongly modulated
by ENSO variability in most regions. For example,
dynamical seasonal monsoon rainfall predictions
have been shown to be skilful for the Indian mon-
soon (e.g. DelSole and Shukla 2012, Jain et al 2018),
the East Asian summer monsoon (e.g. Li et al 2016),
theWest AfricanMonsoon (e.g. Rodrigues et al 2014)
and South American monsoon (e.g. Jones et al 2012).
Skilful seasonal forecasts of monsoon rainfall in these
regions can provide planning information for users
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in many sectors, including: agriculture, hydropower,
flood/drought prevention and international aidwork.
If skilful forecasts of monsoon rainfall variability
couldmade at lead times beyond that of standard sea-
sonal forecasts then that would allow users more time
to prepare and take appropriate actions.

Most seasonal forecasting focuses on the coming
3-month season with a onemonth lead time (forecast
months 2–4), although typically these systems run
out to 7 months into the future. For example, theMet
Office seasonal forecast system GloSea5 (MacLachlan
et al 2015) has a 7 month forecast period with weekly
start dates, but a relatively short 23 year hindcast
period (1993–2015). The ECMWFSystem 5 (Johnson
et al 2019) has a longer hindcast period (1981–2015)
and for each hindcast year four (of the 12 monthly)
initial dates are extended out to a one year forecast
period, however only 15 hindcast ensemble mem-
bers are available. In contrast, the maturing field
of decadal climate prediction focuses on initialising
longer modes of ocean variability, such as the Atlantic
Multi-decadal Variability (AMV), and on the impact
of changes in external forcing fromnatural (e.g. solar)
or anthropogenic (e.g. greenhouse gas and aerosol
emissions) sources (Kushnir et al 2019). This requires
longer forecast periods and lead times, such as years
2–5 or 2–9 and a longer hindcast period (starting in
1960) in order to simulate different phases of multi-
decadal variability. Given the considerable computa-
tional cost, only a single annual start date is used (nor-
mally 1st November) and relatively small ensemble
sizes (typically 10) are used (Boer et al 2016).

The interannual prediction timescale falls
between seasonal and decadal prediction activities
and has received relatively little attention to date.
However, some skill is likely to come from exten-
ded range predictions of ENSO (Luo et al 2008)
and from the initialisation/persistence of ocean
heat content anomalies in, or just below, the upper
ocean mixed layer. External forcings, such as vol-
canic/anthropogenic aerosol emissions, greenhouse
gases and solar variability may also contribute. We
use the first 16 months of prediction data from two
decadal prediction systems: the UK Met Office third
decadal prediction system (DePreSys3, Dunstone et al
2016) and the US Community Earth System Model
Decadal Prediction Large Ensemble (DPLE, Yeager
et al 2018) to investigate the skill of interannual pre-
dictions. The two systems are based on different cli-
mate models and have significantly different model
resolutions and initialisation strategies (described
below). However, both systems have a large 40 mem-
ber ensemble and cover a long 59 year hindcast (ret-
rospective forecast) period of 1960–2018. Note that
the primary aim of this paper is to combine these
two systems to create a large 80 member ensemble
to best estimate the forecast skill and so assess what
is predictable in the year ahead (beyond the sea-
sonal prediction timescale), rather than provide a

critical comparison of the two prediction systems
themselves.

We briefly introduce the two prediction systems
in section 2 and then assess their skill for global and
regional annual temperature forecasts in section 3.We
investigate tropical prediction skill in section 4 with a
particular focus on regional monsoon rainfall predic-
tion for the extended boreal summer (MJJAS, forecast
months 7–11) and winter seasons (ONDJF, forecast
months 12–16). In section 5 we examine skill for sur-
face variables in the extratropics and conclusions are
given in section 6.

2. Two decadal prediction systems

The DePreSys3 system (Dunstone et al 2016) is
based on the HadGEM3-GC2 coupled climate model
(Williams et al 2015). The atmosphere has a hori-
zontal resolution of approximately 60 km (and 85
vertical levels) and an ocean resolution of 0.25◦ (75
vertical levels). A full-field data assimilating simula-
tion is performed where the model is nudged in the
ocean, atmosphere and sea-ice components towards
observations. In the ocean, temperature and salin-
ity are nudged towards a monthly analysis created
using global covariances (Smith and Murphy 2007)
with a 10 day relaxation timescale. In the atmosphere,
temperature and zonal and meridional winds are
nudged towards the ERA40/Interim (Dee et al 2011)
reanalysis with a six hourly relaxation timescale. Sea
ice concentration is nudged towards monthly values
from HadISST (Rayner et al 2003) with a one day
relaxation timescale. Hindcasts are then started from
the 1st November initial conditions of this assimila-
tion simulation.

The DPLE system (Yeager et al 2018) is based on
the CESM1.1 model using the same configuration as
that used in the uninitialised CESM-Large Ensemble
(CESM–LE, Kay et al 2015). The atmosphere has a
horizontal resolution of approximately 110 km (and
30 vertical levels) and an ocean resolution of 1◦ (60
vertical levels). The ocean and sea-ice components are
not initialised directly (using in-situ ocean and sea ice
observations), but are taken from a separate simula-
tion forced at the surface with historical atmospheric
state and flux fields. Such forced ocean-sea ice (FOSI)
simulations using CESM have been shown to capture
key aspects of observed ocean and sea ice variability
(Danabasoglu et al 2016). No atmospheric initialisa-
tion is performed and hence atmospheric initial con-
ditions are taken from the corresponding years in the
uninitialised CESM–LE simulations.

Both systems have time-evolving natural and
anthropogenic external forcings as specified in the
CMIP5 (Taylor et al 2012) protocol and this includes
prior knowledge of volcanic eruptions. Both sys-
tems have hindcasts initialised every 1st November
from 1959 to 2017 with a 40 member ensemble
size, so giving an 80 member ensemble size when
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combined. For this study of interannual predic-
tion we only consider the first 16 months of each
hindcast.

3. Global annual temperature forecasts

We first assess the systems by examining their skill in
predicting global annual temperature of the coming
year (forecast months 3–14). Annual global temper-
ature is a somewhat unusual index as it is unlikely that
any individual user (e.g. an industry or sector) would
be directly sensitive to its variability but yet it has sig-
nificant policy importance for tracking global warm-
ing. The Paris Agreement (UNFCCC 2015) aims to
limit global surface temperature rise to ‘well below
2 ◦C above preindustrial levels and to pursue efforts
to limit the temperature increase to 1.5 ◦C above
preindustrial levels’. The warmest year so far was 2016
at +1.16 ◦C above preindustrial and 18 of the 19
warmest years on record have occured since the year
2000. Each December the Met Office issues a global
annual temperature prediction for the coming cal-
endar year, for example 2019 was predicted to have
a central estimate of +1.10 ◦C (with a 5–95% con-
fidence interval of +0.98–1.22 ◦C) and this forecast
verified well with +1.12 ◦C being the observed cent-
ral estimate. These operational Met Office forecasts
are based on the average of the DePreSys3 dynam-
ical forecast and a statistical method (Folland et al
2013), however here we focus solely on the DePreSys3
forecast and that of the DPLE system. Observations
of global mean near surface temperature are taken
as the average of HadCRUT4 (Morice et al 2012),
NASA-GISS (Hansen et al 2010), and NCDC (Karl
et al 2015) interpolated on to a common 2.5× 2.5◦

grid as used in Smith et al (2019). To quantify skill
we use the centered anomaly correlation coefficient
(r) which can be regarded as a skill score relative to
climatology over the hindcast period. Significance is
assessed at the 95% level using a one-tailed Student’s
t-test.

We calculate the observed and forecast global
annual temperature anomalies relative to the 1981–
2010 climatological reference period and then trans-
late values to preindustrial conditions by adding the
observed difference of 0.61 ◦C between the periods
1981–2010 and 1850–1900 (as in Smith et al 2018).
The resulting anomalies are plotted in figure 1(a) for
the ensemble mean of the two systems (40 mem-
bers) and their combined mean (80 members). As
expected due to the strong temperature trend due to
increasing greenhouse gas forcing, both DePreSys3
and DPLE systems have very high skill (r > 0.95) at
predicting the rising global annual temperature over
the 1960–2018 hindcast period, with the combined
ensemble being nominally most skilful (r = 0.98).
The ensemble means from the systems follow each
other closely for most of the hindcast, although we
note that the largest divergence occurs in the 1980 s

where DePreSys3 appears to be biased cold and the
DPLE systemappears to have awarmbias. The corres-
pondingmap of global temperature skill (figure 1(b))
shows significant skill for almost all locations except
for parts of the Southern Ocean and Antarctica where
observations are relatively sparse and robust finger-
prints of global warming are more challenging to
detect. We note that whilst significant, skill is rel-
atively low for many continental land regions (e.g.
Asia).

We subtract a linear trend (calculated over
1960–2018) from both the observations and forecast
systems and then recalculate skill in predicting inter-
annual variability (figure 1(c, d)). Global annual tem-
perature (figure 1(c)) is still well predicted by both
systems (DePreSys3: r = 0.82, DPLE: r = 0.70) with
the combined ensemble again giving the nominally
highest skill (r = 0.84). Both systems have consider-
ably higher skill than that provided by a simple per-
sistance forecast (r = 0.32). Much of the interannual
variability in global annual temperature is driven by
the El Nino Southern Oscillation (ENSO) mode in
the tropical Pacific which we will show later is skil-
fully predicted out to the second year. Regional skill
(figure 1(d)) is also significant inmost locations apart
from Central Europe, Asia and parts of North Amer-
ica, South America, Australia and Antarctica. Skill
for ocean points is also high, except over regions of
strong variability (e.g. the North Atlantic Gulf Stream
extension region) and the South Atlantic/Southern
Ocean. The sub-polar and tropical North Atlantic
regions showparticularly high skill beyond thewarm-
ing trend due to strong decadal variability associated
with AMV.

4. Tropical prediction skill

Seasonal forecasting has long focussed on skill driven
by teleconnections to ENSO variability in the trop-
ical Pacific (e.g. Barnston 1994). Major El Nino and
La Nina events cause a significant reorganisation
of the climatological Walker circulation causing the
regions of atmospheric ascent and descent to shift
or change amplitude. Such changes can have a dir-
ect influence on regional rainfall within the tropics
(e.g. tropical Australia, South America, Africa, South
Asia) but also the associated anomalous convection
(and upper-level divergence) can act as a source
of Rossby Waves that then propagate polewards to
modify extratropical circulation (e.g. Hoskins and
Karoly 1981). Predictability of ENSO has long been
shown to be very high on seasonal timescales (e.g.
Barnston and Ropelewski 1992), but has also been
reported to extend to multi-seasonal to interannual
timescales (e.g. Luo et al 2008, Dunstone et al 2016).
We show the rolling (3-month) seasonal mean ENSO
skill from the two systems in figure 2(a). As expec-
ted, both systems have very high skill for the seasonal
forecast timescale, with DePreSys3 giving higher skill

3
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Figure 1. Annual temperature predictions. (a), annual global temperature predictions (January-December, forecast months 3–14),
individual ensemble members from DePreSys3 are shown by small blue ‘+’ and DPLE by small red ‘x’ symbols. (b) skill map for
the combined ensemble mean predicting observations, stippling shows where correlations are significant at the 95% confidence
level. (c, d) as panels a, b, but now all data have been linearly detrended in order to assess skill beyond the warming trend.

than DPLE which is likely linked to the fact that
DePreSys3 initialises the atmosphere. Both systems
show a sharp reduction of skill in the Spring time,
consistent with the well-known ‘Spring predictability
barrier’ (Webster and Yang 1992). However, signific-
ant skill (r≈ 0.4–0.5) remains for both systems out to
the longest one year forecast lead time.

The combined system (green line, figure 2(a))
gives the most skilful ENSO predictions (r > 0.5)
for all seasons from boreal summer (JJA) to the
second winter (DJF2). There are two possible explan-
ations for this finding, either: i) due to the com-
bined ensmeble having double the ensemble size (80
rather than 40 members), or ii) due to the partial
cancellation of individual system errors in the rep-
resentation of ENSO dynamics. We explore this by
examining how Nino3.4 skill changes with ensemble
size (figure 2(b)) using the boreal summer (MJJAS)
period as an example and a bootstrap resampling
methodology (without replacement). We find that
skill saturates quickly with ensemble size for this
Nino3.4 index, with little further gain in skill beyond
≈10 members and hence an 80 member ensemble
shows no significant improvement over a 40 mem-
ber ensemble (figure 2(b), green line). Furthermore,
we find that for any given ensemble size, higher skill

is achieved by the combined multi-system ensemble
than the individual systems (this is significant at the
95% level for all ensemble sizes). It is therefore the
partial cancellation of errors between the systems that
leads to the increased ENSO skill of the combined sys-
tem at these long lead times (in agreement with previ-
ous studies of multi-system ENSO seasonal forecasts,
e.g. Peng et al 2002).

Given the significant ENSO skill exhibited by
these systems beyond the seasonal timescale, we now
probe whether this translates into skilful predic-
tions of monsoon rainfall. We focus on examining
extended skill beyond the traditional seasonal fore-
casting timescale (the coming season or 6 months).
Hence we focus on an extended boreal summer (May-
September, MJJAS) period corresponding to forecast
months 7–11 and an extended early boreal winter
period (October-February, ONDJF) corresponding
to forecast months 12–16. We use previously defined
global monsoon domains (Wang et al 2011, Monerie
et al 2019), selected using observed GPCC (Schneider
et al 2013) grid points where the annual precipita-
tion range (difference between May-September and
November-March) exceeds 2.5mm/day.We then split
these points into seven monsoon domains: C.Am
(Central America), N.Af (North Africa), S.As (South
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Asia), and E.As (East Asia) in the Northern Hemi-
sphere (figure 2(c)) and S.Am (South America), S.Af
(southern Africa), and N.Aus (Northern Australia)
in the Southern Hemisphere (figure 2(d)). Model
rainfall is regridded onto the GPCC grid resolution
and then the same monsoon domains are used. We
note that biases in the climatological positions of the
monsoon regions in the model are not accounted for
in this global overview study and hence higher skill
would likely be achieved by a post-processing step
that accounts for spatial shifts in the modelled mon-
soon domain locations.

We compute the area-averaged precipitation of
each monsoon domain and calculate the skill of the
systems in predicting the observed monsoon variab-
ility (figure 2(d, e) - blue bars), restricting the ana-
lysis to the summer season in each hemisphere. We
note that this is a simplification of monsoon beha-
viour, in reality there is significantly more complex-
ity, for example some regions experience two mon-
soon seasons (e.g. a winter and summer monsoon).
In the boreal summer season (MJJAS, months 7–11)
there is significant skill for both the Central American
and East Asian monsoon domains which is present
for both systems. However, the South Asian mon-
soon region does not show significant skill for either
system. The North African monsoon (primarily the
Sahel region) has skill in the DePreSys3 system, but
not in the DPLE system and hence not in the com-
bined system. This is the only monsoon region with a
large disagreement in skill between the two systems
and is in contrast to the skilful prediction of Sahel
rainfall found in decadal predictions by the DPLE
system Yeager et al (2018). Sahel interannual rainfall
skill in DePreSys3 has already formed part of a pre-
vious publication (Sheen et al 2017), where ENSO
variability was found to be the prime driver of high-
frequency variability, whilst low-frequency changes
were found to be driven by the North Atlantic SSTs
andmeridional shifts in the intertropical convergence
zone (ITCZ). It is likely that the DPLE system may
not well represent the ENSO teleconnection and/or
that there are large biases in the simulated position of
the DPLE North African monsoon region (but this is
left for future work). Combining all four boreal sum-
mer monsoon regions, we calculate the skill in pre-
dicting the ‘hemispheric’ monsoon variability (right
most bar in figure 2(d)). Both systems are found to
skilfully predict this hemispheric metric that could
be of interest to those users (e.g. aid agencies) that
have global interests. In the austral summer season
(ONDJF, months 12–16) significant skill is shown
for the South American and Northern Australian
monsoon domains, but not for the South African
region. Similarly, the hemispheric average also shows
significant skill. The combined skill appears to be
approximately equal to the skill of the highest of the
two systems but generally does not exceed it. This

suggests that tropical rainfall skill is not strongly lim-
ited by ensemble size, in agreement both with other
studies (e.g. Scaife et al 2019b) and that already shown
for ENSO skill itself (figure 2(b)).

The skill scores calculated thus far are for all 59
years of the hindcast. However, it is possible that
higher levels of skill might be present in some years.
A prime candidate for such state dependent predict-
ability is ENSO activity (DiNezio et al 2017). Given
the significant ENSO skill (r ≈ 0.5) found on this
interannual timescale (figure 2(a)), we test whether
skill is higher when an active ENSO season is forecast.
Using a threshold of±0.5 K for the combined forecast
ensemble mean signal in the Nino3.4 region we find
23 ‘active’ years for both boreal and austral summer
seasons. The calculated rainfall skill over this 23 year
subset is shown by red bars in figure 2(d, e) (note that
the reduced sample size is accounted for in the signi-
ficance testing). All monsoon regions show a nominal
improvement in skill when an active ENSO season is
forecast, with most regions now approaching a skill
score of r ≈ 0.5. The South Asian and East regions
benefit particularly, with the former now showing sig-
nificant skill.

5. Extratropical prediction skill

Global skill maps for temperature, rainfall and mean
sea level pressure (MSLP) are shown in figure 3(a–
f). For temperature, we again focus on the forecast
systems ability to predict interannual variability and
so linearly detrend the observation and forecast data.
We verify rainfall against the GPCC dataset over land
points and the JRA55 reanalysis (Kobayashi et al
2015) rainfall over ocean points (noting that satel-
lite derived rainfall products are not available prior
to 1979). We find that JRA55 rainfall is generally in
good agreement with GPCC data over land points
for the hindcast period (with the notable exception
of some equatorial regions, see figure S1(available
at https://stacks.iop.org/ERL/15/094083/mmedia)),
giving some confidence in its reproduction of rain-
fall over ocean points. We also verify forecast MSLP
against JRA55 reanalysis data.

Over the oceans we find significant skill for tem-
perature (figure 3(a, b)) in most basins in boreal
summer with skill reducing by boreal winter. We
also find significant skill for rainfall over the tropical
Pacific and Atlantic and in particular within the inter-
tropical convergence zone (ITCZ) for both periods
(figure 3(c, d)). However, regions of significant skill
for extratropical temperature or rainfall over contin-
ental regions aremore difficult to identify. One excep-
tion is for South-East Asia in MJJAS (see also figure
S2), where a skill score of r= 0.64 (p < 0.001) is found
for detrended temperature over China as a whole.
This is consistent with previous results, for example
Monerie et al (2018) showed interannual rainfall skill

5
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Figure 2. ENSO and monsoon rainfall prediction. (a) rolling 3-month seasonal skill for predicting the ENSO Nino3.4 index, the
dashed horizontal line shows the 95% confidence level for significance. (b) ENSO Nino3.4 skill for boreal summer (MJJAS) as a
function of ensemble size. c, dmonsoon regions identified in GPCC. (e, f) rainfall skill for each monsoon region for all years
(blue) and during a subset of forecast ENSO active seasons (red). Solid bars in e, f, and the dashed horizontal line in a, b, indicate
statistical significance at the 95% level according to a 1-sided Student’s t-test.

for a smaller region of North East China, using an
early subset of DePreSys3 data (using only 26 of the
59 start dates used here). This study linked this skill to
predictable variability in western Pacific Ocean tem-
peratures which can trigger a Pacific-Japan pattern
that can strongly impact East Asia’s climate (Kosaka
et al 2011).

We find further evidence for extratropical skill in
the broad scale atmospheric circulation as shown by
the MSLP (figure 3(e, f)). In MJJAS we find skill over
eastern North America and southern South America,
whilst in ONDJFwe find skill over central Europe and
over the Southern Ocean (likely linked to the South-
ern Annular Mode and the significant rainfall skill
shown in this region in figure 3(d)). Whilst skill in
these regions appears relatively high, the ensemble
mean signal amplitude (ensemble mean standard
deviation) is very low, as we show by calculating the

ratio of predictable components (RPC, Eade et al
2014) at each gridpoint as follows:

RPC=
σo
sig/σ

o
tot

σ
f
sig/σ

f
tot

≈ r

σ
f
sig/σ

f
tot

where σsig and σtot are the expected standard
deviations of the predictable signal and the total vari-
ability, with superscripts ‘o’ and ‘f ’ for the obser-
vations and forecasts respectively. For the forecasts,
σsig and σtot are computed from the ensemble mean
and individual members respectively. As σo

sig/σ
o
tot

cannot be readily assessed, a lower bound can be
estimated from the anomaly correlation skill (r,
as shown in figure 2(e, f)). An RPC ≈ 1 indicates
that the model members have a similar signal-to-
noise ratio to the observations, but an RPC > 1
indicates a signal-to-noise ratio that is too small
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Figure 3. Extended seasonal prediction skill for boreal summer (left column: MJJAS, months 7–11) and boreal winter (right
column: ONDJF, months 12–16). (a, b) detrended temperature skill, (c, d) rainfall skill, (e, f) MSLP skill. (g, h) ratio of
predictable components (RPC) for MSLP.

in models. We find large RPC values (RPC > 2,
figure 2(g, h)) formost regions of extratropicalMSLP
skill discussed above. These results are consistent
with the high RPC found in previous analyses of
the North Atlantic Oscillaion (NAO) on seasonal
(Eade et al 2014, Athanasiadis et al 2017, Baker et al

2018) and decadal (Smith et al 2019) timescales and
also for seasonal forecasts of the Southern Annular
Mode (Seviour etal 2014). The fact that extratropical
regions exhibit spuriously weak circulation signals
suggests that the associated surface climate impacts
(e.g. for temperature and rainfall variability) that
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Figure 4. Improving surface climate predictions using skilful but spuriously weak model predicted circulation signals. (a), MSLP
skill over Europe. (b), standardised timeseries of western Europe MSLP. (c), rainfall skill from combined model ensemble output.
(d), MSLP RPC over Europe. (e), as (b) but plotted in absolute units with individual ensemble members also shown. (f), as (c)
but now skill is assessed using the predicted ensemble mean western Europe MSLP as the forecast at all gridpoints. Stippling
shows where correlations are significant at the 95% confidence level.

are driven (to first order) by the large-scale surface
winds (in geostrophic balance with the gradients of
the MSLP field) are likely also underestimated.

We further illustrate the weak signals and
impacts on surface skill by focusing on the boreal
autumn/winter (ONDJF) European signal in figure 4.
Plotting MSLP skill just over the North-East Atlantic
and European domain in figure 4(a), shows signific-
ant skill centred over Western Europe and less signi-
ficant skill to the north of Iceland (this region is only
significant at the 10% level). Both of these regions
are highlighted by the map of RPC (figure 4(d))
as regions where the model has a spuriously small
signal-to-noise ratio (RPC > 1). In order to assess
whether these regions are associated with a mode
of climate variability, we use Empirical Orthogonal
Function (EOF) analysis of JRA55 reanalysis MSLP
to calculate the first mode of variability over this
domain. We find a dipole with centres located over
Western Europe and north of Iceland (figure S3) and
hence approximately co-located with the regions of
MSLP skill and RPC (figure 4(a, d)). This is remin-
iscent of the winter (DJF) North Atlantic Oscillation
(NAO) but with centres shifted further north, reflect-
ing the northward shifted climatological position

of the North Atlantic eddy-driven jet when the
earlier months of October and November are also
included.

We focus on the southern node of this dipole
and plot a timeseries of MSLP variability over this
region (figure 4(b)) with model and observations in
standardised units. We find that the combined 80
member ensemble has highly significant skill (r =
0.45, p < 0.001) and both individual systems exhibit
lower but similar skill (r ≈ 0.35, p ≈ 0.005). This
suggests that large model ensembles are required in
order to predict the observed variations and that
skill has not saturated at 40 ensemble members. The
crux of this issue is illustrated in figure 4(e) which
shows a version of figure 4(b) plotted in absolute
units. Here the individual ensemble members are
plotted for both systems, showing similar total vari-
ability to the real-world (black line) but little prob-
abilistic skill due to the fact that each hindcast year
has approximately equal numbers of members with
positive and negative anomalies. If the model mem-
bers were interchangable with the real-world then this
would suggest low potential predictability. However,
the ensemble mean (the forced predictable signal) of
the 80 members correlates well with the observations
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but has a very small amplitude (green line, figure 4(e))
compared to that observed. This mismatch between
the observations and the model systems is quantified
by the large RPC (figure 4(b, d)). We note that the
RPC of the combined ensemble (RPC ≈ 7) could be
somewhat artificially inflated by combining two sys-
tems with slightly different modes of variability, but
the fact that each system individually has an RPC ≈
2.7 (figure 4(b)) shows that both models do indeed
suffer from a small signal-to-noise ratio in this region.
Another, perhaps more intuitive, way of illustrating
this signal-to-noise paradox is to calculate the skill of
the model predicting itself (a randomly chosen single
member) and compare this to the skill of the model
predicting the real world (Dunstone et al 2016). This
is illustrated in figure S4, wherewe find veryweak skill
for themodel predicting itself (r= 0.11) which is stat-
istically significantly smaller than the r= 0.46 skill in
predicting the observations. Furthermore, figure S4
shows how slowly the model skill for predicting real-
world increases with ensemble size and that even by
80 members it is still increasing (in sharp contrast to
the rapid saturation of ENSO skill with ensemble size
found in figure 2(b)).

Rainfall skill over the European region is also plot-
ted (figure 4(c)) using the raw model output for the
combined ensemble. Here we find a small region of
significant skill which is mainly confined to parts
of the Iberian peninsular, with little skill elsewhere.
However, given that we know we have a skilful, yet
spuriously weak, model circulation signal we now
attempt to use this to enhance the rainfall skill over
this region.We follow Scaife et al (2014) and correlate
the predicted ensemble mean circulation (predicted
MSLP timeseries, figure 4(b, e) green line) with the
observed GPCC rainfall timeseries at each gridpoint
to create the skillmap shown in figure 4(f). This shows
a considerable improvement over the rawmodel rain-
fall skill (figure 4(c)) andwenow find significant rain-
fall skill over a broader region ofWestern Europe. This
includes almost all of the Iberian peninsular, western
France, parts of southern England and even Norway
(due to the meridional NAO-like dipole with MSLP
north of Iceland).

6. Discussion and conclusions

We have investigated the skill of initialised climate
predictions on the hitherto less explored interannual
timescale. Using a large 80 member ensemble, along
with a long 59 year hindcast, we have investigated
the predictability in the coming year for surface cli-
mate variables. In general, we find an encouraging
level of agreement between the two prediction sys-
tems regarding the location and strength of inter-
annual prediction skill. This in itself is interesting
given how different the two systems are in their
model physics, spatial resolution and initialisation
strategies.

Annual global air temperature (months 3–14)
is well forecast, even beyond the warming trend.
However, on the regional scale, skilful predictions
over continental regions become more challenging
and even average annual temperature cannot be skil-
fully predicted for a significant fraction of the global
land regions when the warming trend is removed
(figure 1(d)). Skilful predictions (r > 0.5) of seasonal
ENSO variability are possible out to (and beyond) a
one year lead time, in agreement with previous stud-
ies (Luo et al 2008, Dunstone et al 2016, DiNezio
et al 2017). Beyond the first 6 months we find that
the combined ensemble is the most skilful and we
show that having a multi-system ensemble is likely
more important for ENSO skill than pure ensemble
size. Monsoon rainfall, key to regional agriculture
andwatermanagement, showsmodest but significant
interannual skill in the majority of the global mon-
soon regions examined. Skill increases further in all
regions when we consider a subset of forecast active
ENSO seasons. This is promising for improved future
predictions of monsoon rainfall on this potentially
important interannual planning timescale.

Extratropical skill for regional surface temperat-
ure or rainfall is particularly challenging on the inter-
annual timescale when assessed directly using model
ensemble mean raw output. However, some skilful
predictions are shown for atmospheric circulation in
regions located near to the mid-latitude jets, partic-
ularly in the North Atlantic and Southern Ocean.
Whilst the variability in many of these regions can be
skilfully predicted, the amplitude of the predictable
signals (the ensemble mean) are shown to be spuri-
ously small (figure 3(g, h) and figure 4(e)). This is
consistent with previous studies identifying this so-
called ‘signal-to-noise paradox’ for extratropical cir-
culation on seasonal to decadal timescales (Scaife and
Smith 2018). Until this issue can be resolved (per-
haps with considerably higher horizontal model res-
olution, Scaife et al 2019a), large ensembles will be
needed to skilfully predict extratropical circulation
(as illustrated in figure S4) and this should be con-
sidered when designing future prediction systems for
interannual prediction (in commonwith the seasonal
and decadal timescale). Related to boosting ensemble
size, the use of multi-system ensembles for interan-
nual prediction should be encouraged, as is done for
seasonal predictions (e.g. the North American Multi-
Model Ensemble (NMME), Kirtman et al 2014) and is
now beginning for decadal predictions (Kushnir et al
2019, Smith et al 2013), when examining regional skill
and producing climate services. Here we show, using
the example of autumn/winter European rainfall pre-
dicted one year ahead, that these spuriously weak cir-
culation signals can be employed to improve surface
climate predictions over land.

In summary, we find encouraging signs that skil-
ful surface climate predictions of global, tropical and
extratropical regions are possible on the interannual
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timescale. We note that this study was limited to a
single November start date and that multiple start
dates would likely be of interest for interannual pre-
diction (e.g. bi-annually or quarterly). With care-
ful consideration of the ensemble design (e.g. using
multi-model and large ensembles) useful climate ser-
vices could be developed that have the potential to
provide advanced warning of climate extremes.
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