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A B S T R A C T

Obesity represents an important public health concern because it substantially increases the risk of multiple
chronic diseases and thereby contributing to a decline in both quality of life and life expectancy. Besides un-
healthy diet, physical inactivity and genetic susceptibility, environmental pollutants also contribute to the rising
prevalence of obesity epidemic. An environmental obesogen is defined as a chemical that can alter lipid ho-
meostasis to promote adipogenesis and lipid accumulation whereas an endocrine disrupting chemical (EDC) is
defined as a synthetic chemical that can interfere with the endocrine function and cause adverse health effects.
Many obesogens are EDCs that interfere with normal endocrine regulation of metabolism, adipose tissue devel-
opment and maintenance, appetite, weight and energy balance. An expanding body of scientific evidence from
animal and epidemiological studies has begun to provide links between exposure to EDCs and obesity. Despite the
significance of environmental obesogens in the pathogenesis of metabolic diseases, the contribution of synthetic
chemical exposure to obesity epidemic remains largely unrecognised. Hence, the purpose of this review is to
provide a current update on the evidences from animal and human studies on the role of fourteen environmental
obesogens in obesity, a comprehensive view of the mechanisms of action of these obesogens and current green
and sustainable chemistry strategies to overcome chemical exposure to prevent obesity. Designing of safer version
of obesogens through green chemistry approaches requires a collaborative undertaking to evaluate the toxicity of
endocrine disruptors using appropriate experimental methods, which will help in developing a new generation of
inherently safer chemicals.
1. Introduction

Obesity is an important global health concern, as it is one of the main
predisposing factors for the emerging epidemic of non-communicable
diseases (NCDs) and recognised by the UN Sustainable Development
Goals [1]. Nearly 30% of the total population are obese (~2.1 billion)
and the worldwide obesity rate has tripled since 1975 [2]. While caloric
excess, sedentary lifestyle and genetic susceptibility are classically
identified as the main drivers of obesity [3,4], these factors alone do not
fully account for the genesis and pattern of the obesity epidemic. Since
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late 19th century, the environment to which humans are exposed has
changed due to the increased production of synthetic chemicals, which
are also a potential risk factor of obesity [5]. These chemicals can
interfere with the action of hormones, which are involved in regulating
metabolism and weight gain, and are referred to as “environmental
obesogens” that are thought to promote obesity by interfering with
metabolic homeostasis [6].

Although endocrine disruption has only recently received a great
attention, the concept has been known about for a long time. Early in-
dications of an endocrine-disrupting activity were reported in the 1920s
using studies in pigs [7]. In 1960s, after exposure to industrial chemicals,
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List of abbreviations

EDC Endocrine disrupting chemical
NCDs Non-communicable diseases
BMI Body mass index
PPAR Peroxisome proliferator-activated receptor
RXR Retinoid X receptor
HCB Hexachlorobenzene
HCH Hexachlorocyclohexane
PCBs Polychlorinated biphenyls
DDT Dichlorodiphenyltrichloroethane
DDE Dichlorodiphenyldichloroethylene

BPA Bisphenol A
GLP-1 Glucagon-like peptide 1
PVC Polyvinyl chloride
PET Polyethylene terephthalate
ATZ Atrazine
MSG Monosodium glutamate
ROS Reactive oxygen species
PBDE Polybrominated diphenyl ethers
PFOA Perfluorooctanoic acid
HFD High fat diet
CVD Cardiovascular disease
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endocrine disruption was reported widely in wildlife living on land, in
water and in air. Today, humans are ubiquitously exposed to chemicals in
daily life through their use in industrial and household products, pesti-
cides, herbicides, plastics, detergents, flame retardants and personal care
products. An expanding body of scientific evidence has begun to provide
links between exposure to such chemicals and metabolic diseases such as
obesity and diabetes [8,9]. Evidence from research studies has shown
that a variety of environmental chemicals can influence adipogenesis and
obesity. Today, there are more than 1000 chemicals reported to have
endocrine effects [10].

Despite the significance of environmental obesogens in the patho-
genesis of metabolic diseases, the contribution of synthetic chemical
exposure to obesity remains largely unrecognised. Hence, the purpose of
this review is to provide a current update on the evidences from animal
and human studies on the role of environmental obesogens in obesity, a
comprehensive view of the mechanisms of action of these obesogens and
green and sustainable chemical strategies to overcome chemical expo-
sure to prevent obesity [1].

2. Environmental obesogens hypothesis

In 2002, Baillie-Hamilton proposed a link between the increase in
new industrial chemicals over the past four decades and the beginning of
the obesity epidemic [11] suggesting that these so-called obesogens
could have damaged many of the body’s natural weight-control mecha-
nisms. This correlation along with experimental evidence led to the
environmental obesogens hypothesis by Grun and Blumberg in 2006
[12]. The hypothesis suggests that prenatal or early-life exposure to
synthetic chemicals may predispose exposed individuals to increased fat
mass and excess weight. Studies in animal models have shown that
certain environmental pollutants induce adipogenesis (i.e., formation of
adipocytes (fat cells) from stem cells) and weight gain that is suggestive
of the causative role of synthetic chemicals in the pathogenesis of obesity
[13].

3. Endocrine disrupting chemicals (EDCs)

Endocrine Disrupting Chemicals (EDCs) are exogenous chemicals that
interfere with the action of hormones. EDCs are used in everyday prod-
ucts from food packaging to fungicides and found abundant in our
environment. Exposure to EDCs during early years of development have
been shown to increase the risk of developing various chronic diseases
including obesity and diabetes [14]. EDCs cause weight gain by altering
lipid metabolism to promote adipogenesis and lipid accumulation [15].
This has been shown to occur through the following mechanisms [16,
17]: (i). increasing the number and size of adipocytes and storage of fat
per cell, (ii). altering endocrine pathways responsible for control of ad-
ipose tissue development, hormones that regulate appetite, satiety, and
food preferences, basal metabolic rate, energy balance to favour storage
of calories and insulin sensitivity and lipid metabolism in endocrine
2

tissues such as pancreas, adipose tissue, liver, gastrointestinal tract,
brain, and muscle.

The effect of EDCs on adipogenesis and obesity gained further
attention after the postulation of the environmental obesogens hypoth-
esis. These effects often begin during development, lead to obesity later
in life [15]. Many environmental obesogens are EDCs that interfere with
normal endocrine metabolic regulation, adipose tissue development and
maintenance, appetite, weight and energy balance [18].

Studies have indicated that EDCs/obesogens are likely to increase the
number and size of adipocytes by interfering with transcriptional regu-
lators that control lipid flux, adipocyte proliferation, and adipocyte dif-
ferentiation, particularly through the peroxisome proliferator-activated
receptors (namely, PPAR-γ). Activation of the retinoid X receptor (RXR)–
PPAR- γ heterodimer favours the differentiation of pre-adipocytes in
adipose tissue and regulates lipid biosynthesis and storage [16]. Besides
PPARs, steroid hormones have also shown to influence lipid storage and
fat deposition. Another mechanism of EDC action may be through dis-
rupting the energy balance between energy intake and energy expendi-
ture [19], which has been shown to occur by either altering appetite,
satiety, and food choices or through altering physical activity, resting
metabolic rate, adaptive thermogenesis, and growth rates.

It has been shown that, during early stages of development, only low
levels of EDCs are necessary to alter development as the protective
mechanisms that exist in an adult such as the ability to repair DNA, a
competent immune system, detoxifying enzymes, liver metabolism, the
blood–brain barrier, and a normal metabolic rate may not yet be devel-
oped [9,20]. However, longer exposure to EDCs is required for the
development of obesity in adulthood [20].

4. Epidemiological evidence of obesogens

The first publications that provided a proof of principle for the ability
of chemicals to induce obesity, which were in line with obesogens hy-
pothesis, showed that smoking during pregnancy can increase weight
gain in children. This was further confirmed in 2008, where a meta-
analysis of 14 epidemiological studies showed a strong association be-
tween maternal smoking during pregnancy and weight gain in the chil-
dren [21]. By 2013, this finding was replicated in 30 different
epidemiological studies [22]. Furthermore, these results were confirmed
in human studies where nicotine administration in pregnant mothers
resulted in increased body weight and fat disposition, adipocyte size and
expression of genes involved in adipogenesis [23]. These studies led to
the discovery of nicotine as an endocrine disruptor.

Similarly, the role of polychlorinated biphenyls (PCBs) as endocrine
disruptors/obesogens was first shown by an epidemiological study [24],
which showed that women exposed to PCBs during pregnancy gave birth
to girls who were heavier than other girls. Following this study, several
studies examined the role of PCBs in obesity. Several organochlorine
pesticides (OCPs) have also been demonstrated to play a role in obesity as
an endocrine disruptor. Prospective human studies have shown an
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association between elevated levels of dichlorodiphenyltrichloroethane
(DDT) or its main metabolite dichlorodiphenyldichloroethylene (DDE)
during pregnancy and development of obesity in offspring [25]. How-
ever, a few cohort studies that examined the effects of other OCPs such as
hexachlorobenzene (HCB) and hexachlorocyclohexane (HCH) failed to
provide an evidence of their obesogenic effect [26]. Even though animal
studies have provided a link between EDCs and obesity [26], some of the
epidemiological studies failed to confirm the link, which could be due to
the differences in the sample size, measurement error and other envi-
ronmental exposures.

5. Evidence of obesogens in animal models

Several chemicals have been shown to elicit biological effects that
alter adipogenesis leading to weight gain. For instance, exposure of
pregnant mice to tributyltin produced multipotent stromal cells that
differentiated preferentially into adipocytes suggesting that tributyltin
can act by altering adipocyte differentiation [27]. Studies have shown
that such alterations during development of adipose tissues in early life
can lead to the development of obesity in adulthood. Dietary soy phy-
toestrogens, such as genistein and daidzein, have been shown to modu-
late estrogen receptor signalling and reverse truncal fat accumulation in
postmenopausal women and in ovariectomized rodent models [19]. Male
offspring of rodents treated with phytoestrogens during pregnancy or
lactation developed obesity at puberty. Neonatal exposure to diethyl-
stilbestrol, a synthetic form of the female hormone estrogen, led to
long-termweight gain in adulthood in female mice [28], which suggested
that EDCs with estrogenic activity may act to mimic estrogen action on
adipogenesis.

Bisphenol A (BPA) belongs to the list of compounds that have the
obesogenic property, as rodent models have shown that exposure to BPA
is associated with weight gain [29]. One of the mechanisms by which
BPA increases body weight is through the activation of PI-3 kinase [30]
where BPA can push the fibroblastic cells into the adipocyte differenti-
ation pathway leading to increased accumulation of triglycerides and
lipoprotein lipase.

6. Environmental obesogens

There are several environmental chemicals, which have been shown
to act as EDCs. This sectionwill focus on some of the commonly identified
EDCs, their mechanisms of action as obesogens including epigenetic and
transgenerational effects, in addition to the data connecting exposures to
obesity in human populations (Table 1).

6.1. Bisphenol A

Bisphenol A (BPA; 2,2-bis(4-hydroxyphenyl)propane) is primarily
used in the production of polycarbonate plastics and epoxy resins. Pol-
ycarbonate plastics have numerous applications in consumer goods such
as in food and drink packaging, water and infant bottles, compact discs,
impact-resistant safety equipment, medical devices, sporting equipment
etc. Epoxy resins are used as varnish to coat metal products such as food
cans, bottle tops, and water supply pipes. BPA is also used as an additive
in plastics such as polyvinyl chloride (PVC) and polyethylene tere-
phthalate (PET) and is widely used in commercial products for many
decades, but studies have shown that high levels of BPA may cause harm
to both animals and humans [31,53,54].

Studies have shown BPA to be an active agonist of estrogen-sensitive
membrane receptor GPR30 and glucocorticoid receptors [31,32] and it
mimics the structure and function of the sex hormone estrogen and
controls gene expressions to influence bodily processes, such as growth,
cell repair and foetal development [53]. In addition, BPA may also
interact and disrupt the functioning of thyroid gland [53] and affects the
obesity-related biomarkers such as adiponectin, adipokine, leptin and
ghrelin [31]. BPA has shown to increase the number and size of
3

adipocytes by regulating the expression of genes such as fatty acid
binding protein 4, (FABP4), cluster of differentiation 36 (CD36), and
Proprotein convertase 1 (PCSK1) [55] and impair adipocyte metabolism
[56]. Studies have shown that BPA exposure lowers the release of adi-
ponectin which is a key player in lipid metabolism and fatty acid
oxidation and decreased secretion of adiponectin deactivates fat com-
bustion and hence leads to obesity-related metabolic syndrome [31]. BPA
has also shown to promote adipogenesis by stimulating glucocorticoid
receptors in combination with insulin in 3T3-L1 mouse fibroblasts cell
lines [57].

The effects of BPA exposure have been noticed in all age groups
including neonates, children, and adults (Table 2). It has been found that
prolonged or high exposure to BPA during the early life causes more
adverse effects related to obesity in adulthood [58]. Additionally, the
World Health Organisation reported that BPA levels in breastfed babies
were found to be nearly eight times lower than those fed on liquid for-
mula using BPA-containing bottles [59]. Studies have also demonstrated
a positive association between urinary BPA levels and obesity and dia-
betes in adults [60,61], children, and adolescents [62]; however, a few
studies have questioned the strength of the association [63]. Given the
amount of research that has been carried out in relation to BPA as an
obesogen, future prevention efforts should now be employed to avoid
BPA exposure, and more research is required to identify the duration,
dose, and impact of long-term exposure of BPA to clarify its risk
assessment.

6.2. Phthalates

Phthalates, for example, diesters of 1,2-benzenedicarboxylic acid, are
frequently used as plasticizers [64]. Phthalates have been considered as
EDCs with anti-androgenic and weakly estrogenic properties [65] and
studies have suggested that phthalates are likely to influence obesity
through mechanisms such as anti-thyroid hormone activities, and/or
activation of peroxisome proliferator-activated receptors, and epigenetic
modulation [34,66]. Epidemiological studies in adults and children
(Table 2) have shown that higher concentrations of urinary phthalates
were positively associated with obesity and cardiometabolic
disease-related markers [67,68]. However, inconsistent associations
have been shown between early-life exposure to phthalate metabolites
and childhood growth and obesity [69–71]. While a study in 520 French
boys found that prenatal phthalate exposure was significantly associated
with increased body mass index (BMI) at age 5 [72], a study in 1239 from
the US found that exposure to phthalates at ages 6–8 were associated
with a predicted decrease in BMI from the ages of 7–13 [71]. Further
large longitudinal studies in diverse study populations are required to
confirm the relationship between phthalate exposure and obesity.

6.3. Atrazine

Atrazine [ATZ, 2-chloro-4-ethylamino-6-isopropylamino-1,3,5-
triazine] is the second most extensively used herbicide in the Unites
States [73], and Australian agriculture [74]. Given its role as a photo-
synthesis inhibitor [75], it is used extensively to control pre- and
post-emergence broadleaf and grassy weeds in crops predominately in
corn and sugarcane. ATZ functions by binding irreversibly to the plas-
toquinone binding protein of photosystem complex-II on thylakoid
membranes in chloroplast and inhibiting the electron transfer and
photosynthesis [76]. ATZ is also capable of binding to complex-I and III
of the mitochondrial electron transport system and inhibiting the
oxidative phosphorylation of mitochondria [36]. As per the testing of
United States Department of Agriculture, 94% of US drinking water
contains atrazine as a contaminant and approximately 7 million people
were exposed to atrazine between 1998 and 2003 [77].

ATZ has been identified as a potent endocrine disruptor having
androgenic inhibiting and weak estrogenic effects [78]. Animal studies
have shown that long-term exposure to ATZ might contribute to the



Table 1
List of obesogens and their role in the environment and mechanism of action.

Obesogen Nature of the chemical Chemical structurea Role in the environment Mechanism of action

Bisphenol A 2,2-bis(4-hydroxyphenyl)
propane

Used in the production of polycarbonate
plastics and epoxy resins

An active agonist of estrogen-sensitive
membrane receptor GPR30 and
glucocorticoid receptors and it mimics the
structure and function of the sex hormone
estrogen [31,32]; Alters glucose metabolism,
impairs adipogenesis and causes adipocyte
dysfunction [33]

Phthalates Diesters of 1,2-benzenedicar-
boxylic acid

Used as plasticizers A chemical with anti-androgenic and weakly
estrogenic properties; influences obesity
through mechanisms such as anti-thyroid
hormone activities, and/or activation of
peroxisome proliferator-activated receptors
(PPAR), and epigenetic modulation [34];
maternal phthalate exposure is associated
with alterations in methylation of critical
placental genes [35]

Atrazine 2-chloro-4-ethylamino-6-
isopropylamino-1,3,5-
triazine

Used as herbicide A chemical with androgenic inhibiting and
weak estrogenic effects; binds to complex-I
and III of the mitochondrial electron
transport system and inhibits the oxidative
phosphorylation of mitochondria [36]; Acts
as an endocrine disrupter by Inhibiting
cAMP-specific Phosphodiesterase-4 [37]

Organotins Chemical compounds based
on tin with hydrocarbon
substituents

Used as polyvinyl chloride stabilizers,
biocides, or antifouling paints

These chemicals interact with transcriptional
regulators such as nuclear and steroid
receptors and affect nuclear receptor
signalling pathways (such as retinoid X
receptor/PPARγ signalling pathway) leading
to an alteration of glucose transporter,
proinflammatory cytokines and lipid and
carbohydrate metabolism [38]

Organophosphates A class of organophosphorus
compounds with the general
structure O––P(OR)3

Used as insecticides, ophthalmic agents,
herbicides and industrial chemicals

A chemical that disrupts the pathway
synthesizing cyclic adenosine
monophosphate controlled by adenylyl
cyclase; increases lipid peroxidation [39]

Monosodium
glutamate

Sodium salt of glutamic acid Used as a seasoning to make bland,
nutritious foods taste good; also found
naturally in algae, mushrooms,
tomatoes, grapes and processed frozen
foods, potato chips, salty snacks, sauces
and sausages

It impairs the secretion of the gut hormone,
glucagon-like peptide 1 (GLP-1), which is
involved in satiety responses and insulin
release [40]; induce neuronal necrosis in
several brain regions including the
hypothalamus [41]

Clozapine Dibenzo-diazepine derivative Used as a medicine in treating
schizophrenia-related symptoms

It alters the function of key metabolic
enzymes and affects electron transport chain
during oxidative phosphorylation in the
mitochondria; blocks muscarinic M1 and M2
receptors and inhibit GLP-1 secretion;
enhances the production of cytokines that
modulate immunological responses and
promotes inflammation [42]

Polychlorinated
biphenyls

Polyhalogenated aromatic
hydrocarbons

Used as plasticizers in paints, plastics
and rubber products, in pigments, dyes
and carbonless copy paper and in
electrical, heat transfer and hydraulic
equipments

These chemicals are hormonally active
substances, mimicking the action of the
thyroid hormone and estrogens [43]; disrupt
the release of neurotransmitters that regulate
neuroendocrine functions, cause alterations
in intracellular calcium signalling and affect
dopamine release [44]

Organobromines 1,2-dibromo-4-(1,2-
dibromoethyl)cyclohexane;
Polybrominated diphenyl
ethers

Used as a flame retardant A chemical that affects androgen, estrogen,
sex and thyroid hormone pathways
(interference with thyroid function and
testosterone metabolism); increases
glycolysis and reduces glucose oxidation
[45]

Perfluorooctanoic
acid

A perfluorinated carboxylic
acid

Used in non-stick cookware, waterproof
clothing and stain repellent on carpets,
mattresses and microwaveable food
items

Due to its structural resemblance to fatty
acids, it has been found to alter energy
metabolism and thyroid hormone
homeostasis through the activation of PPARγ
[46]

(continued on next page)
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Table 1 (continued )

Obesogen Nature of the chemical Chemical structurea Role in the environment Mechanism of action

Genistein A soy-derived isoflavone Used as an angiogenesis inhibitor and a
phytoestrogen

It alters the expression of metabolic and
adipogenic regulators, such as PPARγ [47];
disrupts the epigenetic regulation of Wnt10b,
a key adipogenic gene; alters expression of
lipid metabolism genes, disrupts lipolysis and
lipogenesis and alters ATP synthesis [48]

Heavy metals Arsenic Used in plastics, mobile phone, solar
panels, antiseptics, etc

The chemical has been shown to cause
diabetes through the impairment of glucose-
stimulated insulin secretion in pancreatic
beta-cells, stimulation of pancreatic
oxidative damage and insulin resistance in
skeletal muscle, increment of
gluconeogenesis in liver, and modulation of
other hepatic insulin signalling pathways
[49]

Dichloro-diphenyl-
trichloroethane

Organochlorine Used as insecticide A chemical that impairs the function of
visceral adipose tissue and decreases the
response to energy surplus [50]; causes
neuroendocrine disruption of the
reproductive axis [51]

Nicotine N-heterocyclic chemical
compound

Found in the tobacco plant; used as
medicine and stimulant

It modulates the actions of AMP-activated
protein kinase, which integrates hormonal
and nutritive signals in peripheral organs and
hypothalamus, thereby playing a major role
in regulation of energy balance; suppresses
appetite by activating melanocortin-4
receptors expressed on hypothalamic pro-
opiomelanocortin neurons [52]

a All the structures were drawn using ChemDraw.
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development of metabolic diseases outcomes such as insulin resistance
and obesity, especially when exposure is linked with a high-fat diet [79].
In addition, the Agricultural Health Study in 11,273 pregnant mothers
showed that women who reported agricultural exposure to herbicide,
ATZ, during pregnancy had a risk of developing gestational diabetes
[80]. Hence, environmental exposure to ATZ might be an important
contributing factor to the obesity epidemic, as it results in damaging the
mitochondrial function, affecting insulin signalling pathway, and
inducing insulin resistance and obesity.
6.4. Organotins

Organotin compounds are those chemicals in which a tin atom is
covalently bonded to the carbon atom of one or more organic sub-
stituents. They are represented by the general formula RSnX, where R is
an alkyl group (methyl, ethyl, butyl, octyl) or aryl group and X is a halide
(Cl, F) or other organic ligand (oxide, hydroxide, carboxylate or thiolate
etc.) [81,82]. These compounds can be classified into four different
classes: monoorganotins (RSnX3), diorganotins (R2SnX2), triorganotins
(R3SnX) and tetraorganotins (R4Sn).

Organotins are industrially significant compounds which are widely
used as polyvinyl chloride (PVC) stabilizers, biocides, or antifouling
paints and have given rise to ubiquitous environmental contamination
[83]. Organotin infamy is mainly due to trialkyltins (particularly tribu-
tyltin (TBT) and to lesser extent triphenyltin (TPT), which are active
ingredients in antifouling paint formulations, especially for external
marine applications. Thus, TBT is released into water and because of its
low water solubility it gets deposited in sediments, resulting in the
adverse and inexplicable effects on aquatic organisms [84]. Since,
organotins are used in plastics, silicone and foams, therefore it results in
their presence almost everywhere in clothes, wallpaper, medical devices,
household piping, food containers and toys. Hence, humans are largely
exposed to organotins not only through contaminated seafood but also
through direct contact with these products and by ingestion and inha-
lation of dust. Organotins have been detected in human tissue samples
5

and toxicity data has identified these compounds as carcinogens, endo-
crine disruptors, immunotoxicants and obesogens [12].

Organotins induce theirmetabolic- and endocrine-disrupting effects by
interacting with transcriptional regulators such as nuclear and steroid re-
ceptors and thereby affecting different nuclear receptor signalling path-
ways and resulting in various morphophysiological effects [85]. These
chemicals exert their obesogenic effect not only by stimulating adipo-
genesis by acting as agonist ligands for nuclear receptors PPARγ but also
potentially affecting RXR/PPARγ signalling [86]. TBT has shown to in-
crease theexpressionof adipocytemarkers, lipidaccumulationandglucose
uptake inpreadipocytes and induce thedifferentiationof pre-adipocytes to
adipocytes by activating RXR and PPARγ [86]. Besides studies investi-
gating the effects of TBT on the hypothalamic-pituitary-thyroid axis, there
is a frame of facts indicating that TBT can also be considered a thyroid
disruptor, thus ultimately contributing to the development of metabolic
disorder and obesity [87,88].
6.5. Organophosphates

Organophosphates (also known as phosphate esters) are a class of
organophosphorus compounds with the general structure O––P(OR)3.
They can be considered as esters of phosphoric acid. Examples of or-
ganophosphates include the following: insecticides (malathion, para-
thion, diazinon, fenthion, dichlorvos, chlorpyrifos and ethion), nerve
gases (soman, sarin and tabun), ophthalmic agents (echothiophate and
isoflurophate), antihelmintics (trichlorfon), herbicides (tribufos and
merphos), industrial chemicals (tricresyl phosphate) [89]. Organophos-
phate toxicity can result from household or occupational exposure, mil-
itary or terrorist action, or iatrogenic mishap. Exposure to
organophosphates is also possible via intentional or unintentional
contamination of food sources. The accidental inhalation or ingestion of
these compounds in fish, dairy products, and other fatty foods that are
contaminated, represent the most common way of human exposure [90].
Organophosphate pesticides can be absorbed by all routes, including
inhalation, ingestion, and dermal absorption.



Table 2
Impact of the endocrine disruptors on obesity in different age groups.

Obesogens Childhood obesity Adolescent obesity Adult onset obesity

Bisphenol A (BPA) Urinary BPA (>5.4 ng/mL) was associated with
childhood obesity (OR: 2.55 (95%CI: 1.65, 3.95) (p
< 0.01) [144]

Urinary BPA (1.24 ng/mL) was associated with
adolescent obesity OR: 1.10 (95% CI:
0.89–1.35) [145]

BPA (median concentration of 1.1 ng/mL) was
associated with general obesity, OR: 1⋅78 (95%
CI 1⋅10–2⋅89; p ¼ 0⋅04) and abdominal obesity
OR: 1⋅55 (1⋅04–2⋅32; p ¼ 0⋅02) [146]

Phthalates No clear trend was seen for the association between
BMI and urinary monoethyl phthalate quartiles in
boys and girls (p > 0.05) [68]

BMI (p-trend ¼ 0.03) and WC (p-trend ¼ 0.02)
increased with urinary monoethyl phthalate
quartile in adolescent girls [68]

BMI increased with urinary monoethyl
phthalate quartile in 20–59-year-old women
but the effect was less strong compared to
adolescent girls (p-trend ¼ 0.14) [68]

Atrazine Odds of early menarche for girls with Diamino-
chlorotriazine (atrazine analyte) exposures �
median was 1.86 (95% CI: 1.03, 3.38) [147]

NA Farmers who were exposed to pesticides had
higher urinary atrazine mercapturate compared
with controls (P< 0.05); but no association was
observed between atrazine mercapturate and
oxidative stress markers (p > 0.05) [148]

Organotins A trend towards higher weight gain was seen from
birth to 3 months of age with increasing placenta
tributyltin concentration (p ¼ 0.024) [149]

NA Mean measured levels of tributyltin in human
serum samples reached concentrations (~27
nm) sufficient to activate high-affinity receptors
such as RXR and PPARγ [150]

Organophosphates
(OPs)

NA NA A significantly higher risk of arrhythmia was
observed in the OPs poisoning cohort
[subhazard ratio (SHR) ¼ 1.25] compared with
the non-OPs poisoning cohort, particularly in
men (SHR ¼ 1.33) and those under 49 years of
age (SHR ¼ 3.16) [94]

Monosodium
glutamate (MSG)

NA NA For users in the highest tertile of MSG intake
compared to non-users, the multivariable-
adjusted odds ratios of overweight were 2.10
(95% CI, 1.13–3.90, P for trend ¼ 0.03) and
2.75 (95% CI, 1.28–5.95, p ¼ 0.04) [96]

Clozapine Clozapine (mean dose 304.9 � 121.9 mg/day)
increased weight from 124.7 � 25.6 lb to 134.2 �
27.4 lb (p< 0.0001) andmean BMI from 21.4 kg/m2

to 22.9 kg/m2 (p < 0.001) [151]

Absolute and percentage average weight gains
due to clozapine exposure (9.5 � 10.4 kg; 14.8
� 15.8%) [152]

Clozapine dose had no relation to weight
change between 3 and 12 months of clozapine
therapy in community-dwelling patient [153]

Polychlorinated
biphenyls (PCBs)

Prenatal exposure to di-ortho PCBs was significantly
associated with increased birth weight (β ¼ 137; p¼
0.02) [154]

NA NA

Organobromines A 10-fold increase in maternal serum 2,20,4,40,5,50-
Hexabromodiphenyl ether was associated with
lower BMI z-score (β ¼ �0.36, 95% CI, �0.60 to
�0.13) at 2–8 years, smaller waist circumference (β
¼ �1.81 cm; 95% CI, �3.13 to �0.50) at 4–8 years,
and lower percent body fat (β ¼ �2.37; 95% CI,
�4.21 to �0.53) at 8 years [155]

NA NA

Perfluorooctanoic acid
(PFOA)

Exposure to PFOA in early life increased the z-score
of childhood BMI (β¼ 0.10, 95% CI: 0.03, 0.17; I2¼
27.9%) [156]

NA ORs (and 95% CI) for overweight risk by
increasing PFOA exposure category for women
were 1.0 (ref), 1.0 (0.8, 1.3), 1.0 (0.8, 1.2), 1.0
(0.8, 1.2), 0.9 (0.7, 1.1), and 0.9 (0.7, 1.1) and
for men were 1.0 (ref), 0.9 (0.6, 1.1), 1.0 (0.7,
1.3), 1.0 (0.8, 1.4), 0.7 (0.5, 0.9), and 0.9 (0.7,
1.1). ORs for adult obesity risk were similar
[157]

Genistein NA NA Consumption of genistein for 2 months reduced
basal insulin levels by 24% (p value¼ 0.05) and
a reduced HOMA- IR index by 28% [158]

Heavy metals Higher prenatal Cd levels were associated with
higher obesity risk at 5 years of age where the effect
of Cd (β¼ 3.18, se¼ 1.30, p¼ 0.014) was robust and
corresponds to a ~25-fold increase in obesity for
every one ng/g increase in blood weight of Cd [159]

The HOMA-IR value was significantly and
positively related to the sum of the urinary
inorganic and methylated arsenic
concentrations and also the BMI Z score, with
the regression coefficients (β) being 0.058 (p <

0.001) and 0.001 (p ¼ 0.027), respectively
[160]

Arsenic-related cancer ORs >20 were seen in
those with elevated BMIs in both early
adulthood and in later life [161]

Dichloro-diphenyl-
trichloroethane
(DDT)

There was no significant positive relation between in
utero DDT exposure and obesity status of 7-year-old
children [138]

Prenatal DDT exposure was associated with
several adiposity measures in boys but not girls.
Among boys, 10-fold increases in prenatal DDT
were associated with increased BMI z-score
(adj-β ¼ 0.37, 95% CI: 0.08, 0.65) [162]

NA

Nicotine Overweight and obese children with passive smoke
exposure had greater overall and central adiposity
than nonexposed overweight and obese children (p
< 0.03) [163]

NA Among smokers, the risk of obesity increased
with the amount smoked and former heavy
smokers were more likely to be obese than
former light smokers (OR: 1.60, 95%
1.56–1.64, p < 0.001) [164]

NA: Not applicable (literature not available).
OR: Odds ratio; CI: Confidence Interval.
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Previously organophosphate insecticides had been associated with
neuropsychological conditions, but more recently and specifically, the
concepts of obesogens is being investigated and researchers began to look
at its effect on the endocrine system. A strict link has been reported be-
tween the early-life exposure to organophosphates (chlorpyrifos, diaz-
inon or parathion in doses devoid of any acute signs of toxicity) in
neonatal rats and the subsequent emergence of hyperinsulinemia and
hyperlipidemia, depicting an overall pattern essentially resembling pre-
diabetes, through the pathway synthesizing cyclic AMP controlled by
adenylyl cyclase, the common site for disruption by organophosphates
[91]. In addition, dietary chronic exposure to chlorpyrifos, has been
shown to increase food intake and promote weight gain in mice with
apolipoprotein E3 isoform unravelling relevant interactions between
toxic exposure to chlorpyrifos and genetic predisposition [92]. A recent
study in mice has shown that long-term exposure to chlorpyrifos alters
the gut microbiome leading to weight gain and reduced insulin sensi-
tivity [93]. Besides animal studies, a study in organophosphate-exposed
cohort (N ¼ 7561) and an age- and gender-matched control cohort (N ¼
30,244) showed that patients with acute poisoning from organophos-
phates had higher incidence rates of cardiovascular diseases compared
with that of the non-organophosphatepoisoning cohort [94]. Given that
obesity is a risk factor for Cardiovascular diseases (CVDs), the impact of
organophosphates on CVDs could possibly be mediated through obesity.

6.6. Monosodium glutamate (MSG)

MSG is the sodium salt of glutamic acid [C5H8NO4Na], which is one of
the most abundant naturally occurring non-essential amino acids. It is
found naturally in algae, mushrooms, tomatoes and grapes. Today, MSG
is artificially manufactured by the large-scale fermentation of starch for
use in processed frozen foods, potato chips, salty snacks, sauces and
sausages.

Lately, there has been a growing concern over MSGs being suspected
as dietary obesogens which may be attributed to the altered regulatory
mechanisms that hamper the fat metabolism [95]. A cross-sectional study
involving 752 healthy Chinese, aged 40–59 years, has shown that the
users in the highest tertile of MSG intake had 2.75 times increased risk of
being overweight compared to non-users [96]. A prospective cohort
study (China Health and Nutrition Survey) comprising 10,095 healthy
Chinese adults, aged 18–65 years, also showed that the hazard ratio of
overweight was 1.33 for participants in the highest quintile of MSG
intake compared with those in the lowest quintile [97]. Furthermore, a
study in 349 Thai individuals, aged 35–55 years, demonstrated that there
was 1.16 times increased risk of being overweight for every 1 g increase
in MSG intake [98].

Metabolic diseases such as obesity and diabetes may be influenced by
endocrine disrupting interactions between consumed MSG and the hor-
mones such as glucagon-like peptide 1 (GLP-1) which are involved in
satiety responses and insulin release. A cell line study has shown that 72 h
of exposure at dietary levels of MSG resulted in pre-lethal cytotoxicity
and a significant decline in GLP-1 secretion, which highlights the possible
role of MSG in inducing obesity by impairing GLP-1 secretion [40]. These
evidences provide a starting point for further investigations of the role of
MSG as an obesogen in disrupting the activities of other gut hormones.

6.7. Clozapine

Clozapine is a dibenzo-diazepine derivative, which shows strong
antagonism towards several neurotransmitter receptors and is more
effective in treating schizophrenia-related symptoms [99]. Prolonged use
of clozapine has found to cause drug-induced metabolic syndrome in
mammals that gave rise to adverse metabolic side effects such as obesity
[100]. It has been shown that clozapine alters the function of key
metabolic enzymes and affects electron transport chain during oxidative
phosphorylation in the mitochondria [100]. Furthermore, clozapine
treatment has been associated with increased production of reactive
7

oxygen species (ROS) and antioxidant proteins in cells and tissues [101,
102]. Studies have shown mitochondrial dysfunction, increased pro-
duction of ROS and inflammation as mechanisms which are related to the
development of obesity [103]. In addition, clozapine has been found to
induce a preference for high-fat/high-sugar foods in both rats [104] and
humans [105]. Animal studies have shown that clozapine blocks
muscarinic M1 and M2 receptors and inhibits GLP-1 secretion [104]
which influences the food preference and the secretion of high glucagon
that affects the glucose homeostasis leading to impaired glucose toler-
ance and increase body weight.

6.8. Polychlorinated biphenyls

Polychlorinated biphenyls (PCBs) are polyhalogenated aromatic hy-
drocarbons having up to 10 chlorine atoms attached to the biphenyl ring.
Due to their non-flammability, high boiling points, chemical stability and
insulating properties, PCBs are heavily used in various commercial ap-
plications such as plasticizers in paints, plastics and rubber products, in
pigments, dyes and carbonless copy paper and in electrical, heat transfer
and hydraulic equipment. Due to their high thermodynamic stability and
persistent nature, they can be leached into the environment and bio-
accumulate via entering the food chains. PCBs are mainly stored in the
human adipose tissue and liver with elimination half-lives of around
10–15 years [43]. Experimental results also support their endocrine
disrupting properties including disturbances in reproductive and meta-
bolic physiology [106]. A study in 448 British mother-daughter dyads
showed that prenatal exposure to PCBs was inversely associated with
daughters’ birth weight [24].

Animal studies have shown that PCB-153 (2,20,4,40,5,50-hexa-
chlorobiphenyl) [107], the most prevailed congener in human serum,
significantly increased body weight in mice that were fed with high fat
diet (HFD) suggesting that PCB-153 is a diet-dependent obesogen [108].
It was hypothesized that PCB-153 causes obesity by stimulating the
production of abnormal adipocytokines and altering hepatic lipid meta-
bolism, which might lead to the up-regulation of lipid biosynthesis gene
expression and down-regulating beta-oxidation genes [108]. However,
studies focussing on the precise mechanism by which PCB-153 cause
obesity are highly warranted.

6.9. Organobromines

1,2-Dibromo-4-(1,2-dibromoethyl)cyclohexane (DBE-DBCH) is an
exemplar organobromine compound, which is used as a flame retardant.
Reports have shown that isomers of DBE-DBCH has multimodal endo-
crine disrupting potential as it affects androgen, estrogen, sex and thyroid
hormone pathways [109]. Obesogenecity in birds could greatly affect
their survival as increase in body weight may hamper the ability of flight
and thereby their escape from predators. The mechanism by which
DBE-DBCHmay facilitate obesity is still not well understood but there are
reports showing that these obesogens may act by disrupting sex steroids,
which play a vital role in mobilizing stored lipids [110]. However,
further mechanistic studies are in progress that are taking other possible
pathways into consideration such as endocrine disruption of thyroid
hormone pathway.

Polybrominated diphenyl ethers (PBDEs) are another class of orga-
nobromines that are utilized as synthetic flame retardants in many
household and industrial products. Similar to PCBs, they also tend to
accumulate in adipose tissue because of their persistent nature and lip-
ophilicity [111]. PBDEs have been shown to disrupt endocrine homeo-
stasis by reducing the thyroxine levels (T4) in the plasma of mice and rats
and this has shown to disrupt lipidmetabolism [112,113]. Animal studies
have also shown that upon exposure to penta-BDE (Pentabromodiphenyl
ether - a technical mixture of different PBDE congeners), an increase in
lipolysis and reduction in glucose oxidation was observed; both of these
characteristics are associated with obesity [45]. The present under-
standing of the environmental behaviour of PBDEs as an obesogen is far
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from complete and hence further research is necessary to more fully
understand their role as an EDC.

6.10. Perfluorooctanoic acid

Perfluorooctanoic acid (PFOA) is a surfactant, which is used in non-
stick cookware, waterproof clothing and stain repellent on carpets,
mattresses and microwaveable food items [95]. PFOA has a tendency to
accumulate in liver and kidney and has a mean serum half-life of four
years. Due to its structural resemblance to fatty acids, it has been found to
activate peroxisome proliferator-activated receptor (PPAR-α), which is a
key transcription factor in lipid metabolism. Animal studies have shown
that mice exposed prenatally to PFOA were more likely to become obese
than controls when they reached adulthood [114]. Furthermore, PFOA
exposed HFD-fed mice showed significant increase in body weight and
peripheral adipose tissues. Exposure to PFOAs during development has
also shown to increase insulin, leptin and body weight during mid-life
[114]. However, it is still not clear whether PFOAs contribute to
obesity in humans; hence, epidemiological studies in humans are
required to establish a relationship between PFOAs and obesity.

6.11. Genistein

Genistein is the most active isoflavone (Table 1) found predominantly
in legumes and it has attracted much attention of the scientific commu-
nity as an angiogenesis inhibitor and a phytoestrogen [115]. Besides, it
has also proven to be promising in the treatment of metabolic disorders
owing to its antioxidant and anti-inflammatory activities [116]. Inter-
estingly, at low doses, genistein was shown to be responsible for changes
in the expression of metabolic and adipogenic regulators, such as PPAR-γ,
thus promoting fat accumulation in adipose tissue, especially in male
mice [47]. A study in rats has also shown that genistein can dysregulate
the body composition, in a dose-dependent and gender-specific manner,
thereby disrupting and reprogramming the signals dictating adipose
tissue expansion, likely throughout the early-life epigenetic regulation of
Wnt10b, one of the key adipogenic genes in adipose tissue [117]. Studies
in humans have shown that genistein intake is associated with decreased
BMI, weight, waist circumference, and total body fat mass in post-
menopausal women [118]. However, the mechanisms by which genistein
has its beneficial effect on obesity is still unclear.

6.12. Heavy metals

The term ‘heavy metals’ simply refers to metals having high densities,
atomic numbers or weights, and are toxic at relatively low concentra-
tions. Heavy metals belong to many aspects of modern human life
(plastics, mobile phone, solar panels, antiseptics, and many more) and
pose serious threat on human health [119,120] as they cannot be
destroyed or degraded, and tend to bioaccumulate. However, heavy
metals such as iron (Fe), cobalt (Co), and zinc (Zn) are considered as
essential nutrients to humans.

Animal and human studies have shown that consuming As-
contaminated water can significantly increase leptin levels in the
serum of the offspring of pregnant rodents and women, placental tissue,
and cord blood [121–123]. Epidemiological studies have shown that
individuals living in those areas with high exposure to As had an
increased risk of developing type 2 diabetes [49]. The mechanisms by
which As is likely to increase the risk of diabetes in humans could be
through the impairment of glucose-stimulated insulin secretion in
pancreatic beta-cells, stimulation of pancreatic oxidative damage and
insulin resistance in skeletal muscle, increment of gluconeogenesis in
liver, and modulation of other hepatic insulin signalling pathways
[124–128]. Furthermore, studies have shown that arsenobetaine
(Table 1), an organoarsenic compound that is the main source of arsenic
found in fish, can accumulate in human body or transform into toxic
inorganic arsenic in the gastrointestinal tract by microorganisms [129]. A
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study in 369 individuals from the Korean Korea National Health and
Nutrition Examination Survey demonstrated a significant association
between urine arsenobetaine and pancreatic β-cell function (HOMA-β),
which has been shown to be influenced by obesity [130].

Cd is a well-known human carcinogen ranked seventh on the list of
toxicants of potential concerns as declared by the Agency for Toxic
Substances and Disease Registry. Pb is another highly toxic and carci-
nogenic metals for humans with no safe blood levels as identified by the
Centers for Disease Control and Prevention (CDC) [131]. Exposure to
both Cd and Pb heavy metals, especially, during the prenatal period has
been shown to be associated with lower birth weight and gestational age
in humans [132–134]. Similar to those of human studies, animal studies
of perinatal Pb exposure has also been identified to increase body
weight, fat mass or food intake in adulthood [135,136]. Likewise, Cd
exposure during early life has also been shown to increase fat mass in
male mice. Studies have also shown that inflammation, oxidative stress,
and insulin resistance [137] may also play vital roles in Cd and
Pb-induced obesity.

6.13. Dichlorodiphenyltrichloroethane (DDT)

DDT is a colourless, odourless and first modern synthetic organo-
chlorine insecticide (Table 1) developed in 1940s. DDT and its metabolite
product, dichlorodiphenyldichloroethylene (DDE), have been shown to
be associated with adverse health problems which include diabetes and
obesity in children [138]. Animal studies have shown that ancestral
exposure to DDT can result in obesity transgenerationally suggesting that
the etiology of obesity may in part be due to environmentally induced
epigenetic transgenerational inheritance [139]. A study in rats have
shown that exposure to DDE impairs the function of visceral adipose
tissue and decreases the response to energy surplus, thereby contributing
significantly to metabolic dysfunction and inflammation [140]. Cell line
studies have shown that DDT can target PPARγ by increasing its
expression or binding to it directly to activate downstream cascades that
eventually leads to enhanced adipogenesis [50]. Besides affecting PPARγ,
DDT has also shown to directly increase the expression of genes such as
involved in lipid storage in adipocytes [50]. Given the role of DDT in
endocrine diseases, a more careful risk consideration of the use of DDT is
required.

6.14. Nicotine

Nicotine is found in the tobacco plant which is indigenous to the
Americans and has been used as medicine and stimulant for at least 2000
years. Epidemiological studies showed that maternal smoking in preg-
nancy is a major risk factor for obesity even when exposure is limited
only to early pregnancy stage [141,142]. Studies have shown that pre-
natal nicotinic overload prevents sympathetic responsiveness, which can
lead to peripheral as well as central underactivity of noradrenergic sys-
tems; this in turn may increase appetite and decrease mobilization of fat
from adipose tissue [143]. Additional studies are required to assess
whether nicotine exposure in early pregnancy increases long-term risk of
obesity and its related disease outcomes.

7. Role of obesogens on epigenetic modifications

Epigenetics is the study of heritable patterns of phenotype resulting
from changes in a chromosome without alterations in the DNA sequence.
In other words, epigenetic modifications refer to changes in the gene
expression that are not caused by changes in the DNA sequences but are
due to events such as DNAmethylations and histonemodifications [165].
Research in the field of EDCs has now focused on the effects of chemical
exposures on the development of obesity through modulation of the
epigenome during in utero and early postnatal stage. Exposure to a EDC
appears to modify the epigenome, and available evidence demonstrates
that chemical-induced epigenetic changes can be heritable [166]. Hence,
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exposure to EDCs may influence the metabolic status of an individual,
with the potential for these effects to be transmitted to subsequent
generations.

Even though there is no direct evidence to support an association of
epigenetic mechanism for the actions of these environmental obesogens,
studies in agouti mouse model offer a glimpse of this association [167].
Maternal dietary genistein supplementation in mice during gestation
shifted the coat color of heterozygous viable yellow agouti offspring to-
ward pseudoagouti. This phenotypic change was associated with
increased methylation and the genistein-induced hypermethylation per-
sisted into adulthood and protected the offspring from obesity [168].
Furthermore, exposure of pregnant rats to the fungicide, vinclozolin, led
to transgenerational epigenetic modifications into at least the F4 gener-
ation [169]. EDCs can cause obesity and other related diseases by dis-
rupting the epigenetic, structural, and functional mechanisms, which
control energy homeostasis, lipid metabolism, appetite regulation, and
adipogenesis.

8. Obesogens and COVID-19

At the time of writing this article, a novel human coronavirus, severe
acute respiratory syndrome coronavirus 2 (SARS-CoV-2) (formerly
called HCoV-19), had emerged in Wuhan, China, in late 2019 and was
identified as the causative agent for a cluster of pneumonia cases. SARS-
CoV-2, which causes the COVID-19, had spread throughout China and
globally causing unprecedented deaths. Interestingly, in 2003, a study
in Chinese population had demonstrated a positive association between
air pollution and severe acute respiratory syndrome (SARS) case fatality,
where SARS patients from regions with high air pollution index (API)
were twice as likely to die from SARS compared to those from regions
with low APIs [170]. A study from the US had shown that long-term
exposure to air pollution [each 10 μg/m3 elevation in particulate mat-
ters (PM10)] resulted in 6% increased risk of cardiopulmonary mortality
[171]. Furthermore, exposure to PM10 was also linked to asthma and
bronchitis. Given the data from these studies, it could be hypothesized
that exposure to air pollutants might have an impact on the prognosis of
SARS. Human studies have shown that nitrogen dioxide (NO2), which is
one of the components of air pollution, was associated with higher
fasting serum lipids among obese people suggesting obesity may exac-
erbate the effects of air pollution [172]. Animal studies have also shown
that early-life exposure to air pollution particulates can lead to
increased visceral obesity, insulin resistance, and inflammation sug-
gesting the role of NO2 as an endocrine disruptor [173]. Given that
COVID-19 is similar to SARS in causing respiratory illness, it is possible
that exposure to NO2 could increase the mortality rate among COVID-19
patients; however, future studies are required to confirm this
relationship.

9. Strategies for change and conclusions

To overcome the detrimental effects of obesogens on metabolic
health, implementation of strategies such as expanded research programs
and workshops, public health policies, and education efforts are highly
warranted. Endocrine disruptor screening programs have been devel-
oped by the Environmental Protection Agency to assess the chemicals for
their endocrine-disrupting effects [174] and this initiative should be
expanded to identify obesogens and the molecular mechanisms by which
they affect the metabolic health to specifically identify life-threatening
chemicals. In addition, risk analysis should be developed by identifying
groups who are exposed to high-risk obesogens and factors such as ge-
netic variations that are linked to detoxification and metabolic pathways.
Furthermore, instead of directly measuring the EDCs [175], development
of clinical biomarkers will be useful in identifying individuals who are
exposed to the obesogens and who can be prospectively monitored for
the development of metabolic diseases such as obesity. Strategies to limit
the production and the use of chemicals that affect the metabolic health
9

and to ban the chemicals that are likely to induce transgenerational ef-
fects should be implemented.

One of the important goals of green chemistry is to avoid the haz-
ardous exposure to these environmental obesogens/EDCs by designing a
safer version of these synthetic chemicals [176]. This can be achieved by
understanding the obesogen’s potential hazardous effect as early in the
design process, which will enable the chemists to design new chemicals
without these harardous effects. For instance, an endocrine disruption
testing protocol has been developed for new chemical design by a team of
23 scientists and this protocol aims at measuring potential hormone-like
or hormone-inhibiting effects of obesogens [177]. In addition, given the
rapid advances in science, new assays are being incorporated into the
protocol.

In conclusion, further experimental and epidemiological approaches
are necessary to fully establish a magnitude of potentially hazardous
effects of obesogens in humans, and its association to obesity and its
related diseases. Research focussing on understanding the role of envi-
ronmental obesogens in the epidemics of obesity is in an infant stage;
hence, besides chemists, researchers from the field of genetics, molec-
ular biology, epidemiology, physiology and clinical medicine are
required to improve the understanding of the role of environment in
obesity. For the design of safer version of obesogens through green
chemistry approaches, a collaborative undertaking among the chemist,
toxicologists and scientists is required; this will permit the evaluation of
toxicity using appropriate experimental methods and will help lead to a
new generation of inherently safer chemicals. These collaborative ap-
proaches will also educate the public and the lawmakers about the
threat of endocrine disruptors and will limit the use of such obesogens
through the implementation of public health policies. To overcome the
challenges involved in studying the risk of obesity in relation to envi-
ronmental obesogen exposures during early life, large sample size,
prospective study designs, well characterised assessment of exposure
and advanced statistical analysis are required to provide a strong evi-
dence base for recommendations and strategies to prevent obesity and
other related diseases.

Continued improvements in global legislation and adoption of prac-
tices such as, Registration, Evaluation, Authorisation and Restriction of
Chemicals (REACH), in concert with regulatory bodies and non-
governmental organisations will see a move to safer alternatives
enabling better green and sustainable chemistry.
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