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Abstract 7 

Astringency is a predominant sensory attribute that influences the overall quality of red wine. The application of 8 

whey proteins as functional and nutritional food additives is popular but their use is uncommon to enology. Here 9 

whey proteins as a suitable food component to improve the sensory quality of red wine were investigated. This 10 

work focused on the sensory perception of astringency in red wine treated with β-lactoglobulin and gelatin. 11 

Ovalbumin precipitation method was used to assess astringency pre- and post-treatment and compared to the 12 

perceived astringency. A sequential profiling sensory technique was used to evaluate astringency in relation to 13 

other attributes over repeated consumption of red wine. The intensity of astringency increased insignificantly 14 

over repeated sips at 60 sec intervals for the treated and untreated red wine. The difference in astringency 15 

perception (p < 0.05) between the wine samples was shown at 30 secs after swallowing. Wines treated with β-16 

lactoglobulin and gelatin significantly reduced astringency and the total polyphenol content. The reduction in 17 

astringency indicates that these proteins actively bind and precipitate polyphenols which are known to 18 

contribute to perception of astringency. Furthermore, the good agreement between the chemical and sensory 19 

methods supports this mechanism for reduction of astringency. 20 

Keywords: β-lactoglobulin, astringency, wine, gelatin, sequential profiling 21 

 22 

 23 
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1. Introduction 24 

Red wines, beer, tea, fruits and vegetables are rich in polyphenols, which contribute to their sensory properties. 25 

Tannins are a major polyphenol group divided into hydrolysable and condensed tannins. Red wine, a fermented 26 

grape derived drink is rich mainly in the condensed tannins. The biological activities of tannins include their 27 

ability to interact with, and precipitate, proteins. Tannins contribute to the perception of astringency, which is 28 

described as a mouth feel of dryness, roughness and a puckering sensation on the oral cavity before and after 29 

ingestion of drinks such as red wine (Bacon and Rhodes, 2000; de Freitas and Mateus, 2001) and influences the 30 

overall quality and consumer acceptance of the wine. Wine makers treat red wine with protein-fining agents for 31 

the removal of protein- reactive tannins thus modulating astringency to a level that produces good organoleptic 32 

properties. The common fining proteins derived from animals include gelatin, egg ovalbumin, and caseinates 33 

which are positively charged and interact with the negatively charged tannins in red wine by a mechanism 34 

similar to that which occurs during wine tasting. Proteins derived from corn, soy, lentils, pea, rice potatoes 35 

(Simonato,  Mainente, Selvatico,Violoni, & Pasini, 2013; Granato, Ferranti, Iametti , & Bonomi, 2018; Kang, 36 

Niimi, & Bastian, 2018; Gambuti, Rinaldi, Romano,  Manzo,  & Moio, 2016), grape seed extracts and pomace 37 

(Gazzola, Vincenzi, Marangon, Pasini, & Curioni, 2017; Jiménez-Martínez,  Gil-Muñoz, Gómez-Plaza, & 38 

Bautista-Ortín, 2018) and fibre (Gil, Del Barrio-Galán, Úbeda, & Peña-Neira, 2018) were reported to reduce 39 

astringency by the removal of proanthocyanidins in wines. The mechanism for astringency perception has been 40 

reported to result from interactions of tannins with salivary proline-rich proteins in the mouth. Astringency is a 41 

tactile sensation that has been associated with alteration of mouth lubrication (Rossetti, Yakubov, Stokes, 42 

Williamson, & Fuller, 2008 and Rossetti, Bongaerts, Wantling, Stokes,  & Williamson, 2009) and increasing 43 

mouth friction (Dinnella, Recchia, Vincenzi, Tuorila, & Monteleone, 2009). Nongustatory mucosal surfaces and 44 

tissue movement are involved in the mouth friction, supporting astringency as a tactile sensation (Soares, 45 

Brandão, Mateus, & De Freitas, 2015). Astringency builds-up upon repeated tasting and involves a mechanical 46 

process as a sensation rather than a chemosensory process (Dinnella et al., 2009) such as taste. Astringency 47 

development and the intensity of its perception depend on the tannin and protein structure (Vidal et al., 2003; 48 

Sun et al., 2013; Soares, Sousa, Mateus,  & De Freitas, 2012) and individual response, saliva characteristics 49 

(Dinnella et al., 2009 and Dinnella, Recchia, Vincenzi,  Tuorila, & Monteleone,  2010), salivary flow rate 50 

(Condelli, Dinnella, Cerone, Monteleone, & Bertuccioli, 2006) and medium constituents including pH, ethanol, 51 

and polysaccharides (Rinaldi, Gambuti, & Moio, 2012a; Carvalho et al., 2006). 52 
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Attempts have been made to use instrumental methods such as chromatography (Kennedy,  Ferrier, Harbertson, 53 

& Des Gachons,  2006), colourimetry (Cáceres-Mella et al., 2013; Aleixandre-Tudo, Buica, Nieuwoudt, 54 

Aleixandre, & du Toit, 2017), Nephelometric (Monteleone, Condelli, Dinnella, & Bertuccioli, 2004), methyl 55 

cellulose precipitation (Mercurio & Smith, 2008), physical measurements (Laguna, Álvarez, Simone, Moreno-56 

Arribas, & Bartolomé, 2019) and protein precipitation using proteins such as ovalbumin, Saliva, BSA, and 57 

Gelatin (Llaudy et al., 2004 ; Rinaldi, Gambuti, & Moio 2012b; Harbertson & Kennedy, 2002 and Glories, 58 

1984) to assess astringency development at a molecular level and to correlate the data with its sensory 59 

perception. The assessment of astringency in wine is best quantified through sensory evaluation. The 60 

heterogeneous nature of tannins limits the analytical methods used for their quantification and characterization. 61 

Various precipitants including proteins and polysaccharides have been employed for the quantification of 62 

tannins with varying values obtained (Mercurio & Smith, 2008; Llaudy et al., 2004). Ovalbumin precipitation 63 

method was shown to be simple, less time consuming and correlates with sensory evaluation (Llaudy et al., 64 

2004) 65 

Casein and gelatin has been used as a processing aid in the fining of white wine and red wine and this is well 66 

researched, unlike the use of whey proteins as fining agents. β-lactoglobulin, is a major whey protein which 67 

constitutes 50-58% of the bovine whey proteins. It is a globular protein consisting of beta-sheets and alpha 68 

helices, has an established secondary and tertiary structure. It has a molecular weight of 18,300 Da (18 kDa) and 69 

its isoelectric point is pH 5.2. One of the characteristics of this protein is that it binds hydrophobic molecules 70 

and it can interact with tea polyphenols (Kanakis et al., 2011) and complex with particular polyphenols (von 71 

Staszewski et al., 2012). However, there are no reports of its application to the reduction of red wine astringency 72 

by binding tannins. 73 

In our previous work (Jauregi, Olatujoye, Cabezudo, Frazier, & Gordon, 2016) we employed an analytical 74 

method to assess the effect of β-lactoglobulin in reducing astringency and found that β-lactoglobulin was as 75 

effective as gelatin in reducing astringency and had a similar selectivity for the polyphenols which are markers 76 

for astringency. β-lactoglobulin was even better as it preserves catechin more than gelatin. Milk proteins are 77 

known for allergy. Although allergenic reactions to milk proteins are rare in adults than in children (Asero et al., 78 

2009), in order to protect the sensitive consumers, the absence of β-lactoglobulin residue was ensured by 79 

applying a good manufacturing practice that includes the usage of low dose of fining agent and its removal by 80 

adequate filtration procedure in our present study. The absence of β-lactoglobulin residues after fining followed 81 
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by filtration and centrifugation was investigated and reported in our previous work (Jauregi et al., 2016). This 82 

implies potential for its application as a fining agent with no issue with allergenicity. Its greater solubility in 83 

wine compared to casein that requires a special dissolution preparation before mixing with wine was also an 84 

advantage. 85 

In the present work we aimed at investigating the effect of β-lactoglobulin, in comparison with gelatin, on the 86 

perception of in-mouth attributes, particularly astringency, in red wine. The second goal of this study was to 87 

ascertain if there is agreement between the chemical method applied in the assessment of astringency and the 88 

sensory evaluation of astringency.  89 

2. Materials and Methods 90 

2.1. Materials 91 

All reagents used for the analysis were of analytical grade. Bovine beta-lactoglobulin, bovine serum albumin 92 

(BSA), alpha-lactalbumin, bicinchoninic acid solution (BCA), copper sulfate solution, DEAE Sepharose®, 93 

ovalbumin, tannic acid, tartaric acid, FolinCiocalteu reagent, gelatin (Type B gelatin from bovine and 75 g 94 

bloom strength)were purchased from Sigma-Aldrich, (Dorset, UK). Flat sheet microfiltration membranes 95 

(0.45µm), and syringe driven PVDF Filters (0.45µm) were purchased from Millipore Corporation, (Bedford, 96 

UK).  Potassium monophosphate, potassium diphosphate, sodium hydroxide, sodium carbonate, sodium 97 

chloride (NaCl), hydrochloric acid (HCl), trifluoroacetic acid (TFA), methanol, ethanol were purchased from 98 

Fisher Scientific (UK limited), Protease N ‘Amano’ Enzyme from Bacillus subtilitis was purchased from 99 

Amano Enzyme Inc., (Nagoya, Japan), Ultrospec 1100 pro UV/Visible Spectrophotometer was from Biochem 100 

Ltd., (Cambridge).Eppendorf  CentrifugeMinispin plus G was from Fisher Scientific (UK Ltd).Amicon filtration 101 

cell was obtained from Amicon® a Grace company. Pasteurized skimmed milk and 100% Tempranillo Red 102 

wine, Valdubón (2012), from North Central of Spain (13% alcohol) were purchased from a local store. 103 

2.2. Pilot Plant Production of the β -lactoglobulin rich whey fraction 104 

4L of sweet whey was produced from pasteurized skimmed milk. Skimmed milk was heated to 35 °C in a water 105 

bath. Commercial rennet was added at a concentration of 0.3 ml per litre of milk with gentle stirring for 2 106 

minutes. Incubation took place for one hour at that temperature and then the casein coagulum was cut in small 107 

squares to allow the remaining lactoserum to drain out of it. Incubation was extended for 20 additional minutes 108 
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and then the coagulum was scooped and filtered to drain most of the serum with the aid of vacuum. The whey 109 

was centrifuged at 3200 rpm to remove the last of the left over casein curds. 110 

On a lab scale, the sweet whey was fractionated to obtain a β-lactoglobulin rich fraction following a method 111 

developed in our group based on a combination of adsorption and microfiltration (Welderufael, Gibson, & 112 

Jauregi 2012).  However, for this work, the microfiltration step was replaced by a centrifugation process. To 113 

begin the purification process, 4L of whey (pH 6.4) and 400 ml of resin were placed in a jacketed bioreactor and 114 

stirred for 10 min.  The mixture was transferred to the centrifuge unit where the non-adsorbed proteins in the 115 

supernatant were separated from the adsorbed proteins on the resin (DEAE Sepharose), an anion-exchanger. The 116 

resin was washed with 10 mM potassium phosphate buffer at pH 6.5 to further remove the non-adsorbed 117 

proteins. The adsorbed proteins include β-lactoglobulin and caseinomacropeptides (CMPs). For an enriched β-118 

lactoglobulin fraction without CMP, a hydrolysis step was introduced while proteins were adsorbed onto the 119 

resin. Hydrolysis started after re-solubilising the adsorbed proteins with a pH 7, 10 mM potassium phosphate 120 

buffer, at 45°C in a jacketed bioreactor. Then, protease ‘N’Amano enzyme was added to the mixture. After 2hrs, 121 

hydrolysed CMPs were centrifuged, removed as supernatant and finally, the non-hydrolysed protein remaining, 122 

β-lactoglobulin, was desorbed and eluted with a known volume of elution buffer,10 mM potassium phosphate 123 

buffer at pH 4.5 containing 0.5 M NaCl. Total protein content was analysed by the bicinchoninic acid assay 124 

(BCA) as described in section 2.3. 125 

2.3. Chemical characterization of the β-lactoglobulin whey fraction 126 

Total proteins were quantified according to the bicinchoninic acid assay (BCA). Briefly, 100 μl of standard or 127 

sample was mixed with 2 ml of the BCA working reagent (copper sulphate solution: BCA solution at a ratio of 128 

1:50). The mixture was allowed to stand at 37 OC for 30 min, and then allowed to cool to room temperature for 5 129 

min. Finally, absorbance was read for each sample/standard, at 562 nm within 8 minutes with water as a blank. 130 

Bovine serum albumin was used as a standard for protein quantification. 131 

β-lactoglobulin was quantified using RP-HPLC. The samples were filtered with 0.45μm PVDF filter and 132 

analysed in a Dionex HPLC fitted with P680 HPLC pump, ASI-100 automated sample injector, thermostated 133 

column compartment TCC100, PDA-100 photodiode Array Detector with C18 column (250 x 4.6 mm). A 134 

gradient of solvent A which was prepared with 0.1% trifluoroacetic acid in HPLC grade water and solvent B 135 

prepared with 0.08% trifluoroacetic acid in HPLC grade acetonitrile was utilised.  Solvent B was 0-45% over 60 136 
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minutes, 45-70% over 5 minutes, 70% over 10 minutes and solvent A was 100% over 15 minutes. Analysis was 137 

carried out using an injection volume of 50μl, flow rate of 0.8 ml/min, the peak areas were monitored at 214 nm 138 

and 280 nm while the temperature of the column was maintained at 25 OC. The standard calibration curve was 139 

obtained with β-lactoglobulin. 140 

2.4. Concentrating and desalting whey protein 141 

The β-lactoglobulin enriched fraction was concentrated and desalted by ultrafiltration. 10KDa MWCO 142 

Polyethersulfone (PES) membrane was placed into the 150 ml ultrafiltration magnetically stirred Amicon cell. 143 

To begin the process, 100 ml of β-lactoglobulin enriched fraction were added to the cell and stirred gently. The 144 

solution was filtered through the membrane, with the aid of positive pressure of air (2 bars).  The solution 145 

volume was reduced to 10 ml. The filtrates and concentrates were analysed for protein content using the BCA 146 

method as described. By comparing the protein content of the feed (β-lactoglobulin enriched fractions), the 147 

filtrate and the resulting concentrate; the efficiency and low protein binding capacity of the membrane were 148 

determined. Concentrating the β-lactoglobulin enriched fraction was necessary in order to avoid diluting the red 149 

wine for the treatment with protein. 150 

2.5. Protein-Wine treatment 151 

The concentrated β-lactoglobulin solution and gelatin were added to wine at a final concentration of 0.1 mg/ml 152 

and water was added to the untreated sample (control). The protein concentration was chosen based on a 153 

previous work in our lab (Jauregi et al., 2016) and it is within the range of level usually for fining. The mixtures 154 

were rigorously mixed and allowed to stand for 10 min for adequate contact. Mixtures were centrifuged at 155 

11700g for 10 min and supernatant was collected for astringency measurement and determination of 156 

polyphenolic content following the analytical methods described below and for sensory tests. All measurements 157 

were carried out in triplicate. 158 

2.6. Analytical method for determination of astringency 159 

Astringency of red wine was determined by the analytical method described by Llaudy et al. (2004) based on the 160 

precipitation of tannins by ovalbumin; they also established a correlation between the analytical method and the 161 

sensory perception of astringency. Tannic acid and ovalbumin solutions were prepared in a synthetic solution 162 

similar to wine. The synthetic solution was prepared with 4 mg/ml of tartaric acid, 95 mg/ml of ethanol and 163 
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adjusted to pH 3.5 with 5M sodium hydroxide. Solutions of tannic acid at concentration of 0.0-0.8 mg/ml were 164 

used as standards. Ovalbumin solutions at concentrations of 0.0, 0.4, 0.8, 1.6, 2.4, 3.2 and 4.0 mg/ml were used 165 

as protein to precipitate astringent tannins. Increasing concentrations of ovalbumin (0.5 ml) were added to tannic 166 

acid/red wine in the tubes. The tubes were thoroughly stirred for 10 secs, allowed to stand for 10 mins and then 167 

centrifuged at 11700g for 10 mins. Supernatants were diluted 50 times with distilled water and absorbance was 168 

read at 280 nm in a quartz cuvette with an optical path of 10 mm; experiments were carried out at room 169 

temperature and in triplicate. 170 

2.7. Folin-Ciocalteu method for total polyphenol content 171 

Folin-Ciocalteu’s micro method as adapted for wine analysis by Waterhouse (2009) using gallic acid as the 172 

standard was used to determine the phenolic content. For the analysis, 20 μl of each calibration solution, treated 173 

red wine, red wine or blank were placed in a cuvette, and 1.58 ml water and 100 μL of Folin-Ciocalteu reagent 174 

were added, thoroughly mixed and allowed to stand between 30 seconds and 8 minutes. Then, 300 μL of the 175 

20% w/v saturated sodium carbonate solution was added, mixed well and left at 20 ºC for 2 h, after which the 176 

absorbance of each solution was read at 765 nm using a spectrophotometer. Results were expressed as Gallic 177 

acid equivalents (mg GAE/L). 178 

2.8. Sensory sequential profiling method 179 

A sequential profiling technique was used by a trained expert sensory panel of 12 (n=12, 11 females; 1 male and 180 

age range 30-50)), each within a minimum trackable record of 6 months experience. A vocabulary session and 181 

three scorings were attended by the trained panel. Consideration was made for the recommended daily alcohol 182 

intake for each panelist, ensuring that no more than 0.52 units were consumed in any panel session. All scoring 183 

was carried out at room temperature (25 ± 2 OC) in isolated booths under artificial daylight.  184 

The trained panelists developed seven (7) in-mouth attributes of the red wine in the consensus vocabulary 185 

session. These attributes were assessed with a sequential profiling technique, modified from that described by 186 

Methven et al. (2010). Sequential profiling was done by repeatedly scoring the attributes over four consecutive 187 

aliquots (5 ml) of red wine sample. In the scoring sessions, the trained panels scored the seven attributes as 188 

follows (1) during the consumption of each aliquot (SIP) (2) after- taste (AT1) at 30 seconds and (3) aftertaste 189 

(AT2) at 60 seconds post consumption. This method enables the dynamic nature of attribute perception to be 190 
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captured where the repeated sips at 1 minute intervals is used to simulate a natural wine drinking scenario. 191 

However, only four aliquots could be tested in order to control the alcohol intake of the panel. 192 

The seven sensory attributes scored were sweetness, acidity, bitterness, astringency, dark fruity flavour, woody 193 

flavour and metallic taste (see Table 1). Although astringency is a quality attribute of wine that takes time to 194 

develop and build up upon repeated ingestion, other attributes may also change over repeated ingestion as 195 

reported by Meillon, Urbano, & Schlich (2009) with temporal dominance of sensation (TDS). Seven is the 196 

maximum number of attributes which can be scored within a sequential profiling method where repeated sipping 197 

is set at a minute intervals; if more attributes are used the time taken to score the attributes becomes too long. 198 

The attributes were agreed upon by the panel to represent the wine characteristics which appeared to be 199 

influenced by either the different samples (to which the panel were blinded) or by the repeated sipping. 200 

Sequential profiling which is also a multi-attribute method was chosen over TDS because of our interest in 201 

intensity over time rather than the dominance of the sensation. It was also better than time intensity (TI) that 202 

would have limited scoring to only one or two attributes hence consuming time. Three red wine samples; 203 

control, β-lactoglobulin and gelatin treated wine were sequentially profiled, two samples per day and duplicate 204 

scoring sessions were carried out on separate days. Samples were coded with three-digit numbers and all four 205 

aliquots of one sample were presented with the same code; panelists were not blinded to the sequential nature of 206 

the evaluation. Scoring for each sample set was performed without a resting or rinsing procedure between the 4 207 

aliquots of the same sample. A 2-minutedelay was enforced after each sample during which time the trained 208 

panelists were required to cleanse their palates with low salt crackers followed by a water rinse (noting that this 209 

would have been a minimum of 3 minutes since tasting the previous sample aliquot). 5 ml of wine samples at 210 

18oC were presented to the trained panelists in ISO approved wine glasses. The intensity of each attribute was 211 

rated using an unstructured line scale with the appropriate anchors (0-100) from not to very. Data was acquired 212 

using Compusense Cloud sensory software (Ontario, Canada). 213 

2.9. Data Analysis 214 

All Statistical analysis were conducted using SPSS 21.0.Sequential profiling data was subjected to a mixed 215 

model analysis, treating the panelists as random factor and samples as fixed factors and the sequential time 216 

points (i.e. the 4 consecutive aliquots) as repeated effects. Multiple pairwise comparisons were carried out using 217 

Bonferroni. One-way analysis of variance (ANOVA) was used to determine the impact of the treatments on the 218 

polyphenolic content and astringency by absorbance measurements followed by a multiple pairwise comparison 219 
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using Tukey post hoc test. All data are expressed as the arithmetic mean ± standard deviation of three replicates 220 

unless stated otherwise. 221 

3. Results and Discussion 222 

3.1. Whey protein production 223 

Sweet whey (4L) contained 38.24g total protein (9.56g/L) as determined by the total protein assay. The 4L of 224 

whey was processed as described in section 2.2 and the enriched β-lactoglobulin fraction analysed for total 225 

protein contained 5.68g/L.  Protein content of whey and β-lactoglobulin (Table S1) is similar to that reported 226 

when prepared on a laboratory scale in our previous paper (Jauregi et al. 2016). The chromatographic profile of 227 

the pilot scale protein was also similar to that of the laboratory scale (Fig 1). Concentrated β-lactoglobulin (after 228 

the desalting step) contained  30 mg/ml total protein. 229 

3.2. Total phenols 230 

The results of the determination of total phenolic content in treated and untreated red wines analysed by the 231 

Folin-Ciocalteu micro method are presented in Fig. 2.  There was a significant difference in the total phenolic 232 

content between the wine samples. Both β-lactoglobulin and gelatin were significantly different (P < 0.05) from 233 

control. This significant reduction of wine polyphenol indicates that β-lactoglobulin could be a good fining 234 

agent. Control had the highest average level of total polyphenols as expected. At the concentration (0.1 mg/ml) 235 

studied, β-lactoglobulin and gelatin had a similar impact on the total phenolic content after treatment and 236 

showed no significant difference in their effectiveness in reducing the total phenolic content. This similarity 237 

between gelatin and β- lactoglobulin treated wines is in agreement with our previous work (Jauregi et al. 2016).  238 

Phenol reduction by β-lactoglobulin and gelatin relies on a precipitation mechanism.  239 

3.3.  Whey protein and astringency 240 

Tannic acid used as standard was precipitated upon the addition of ovalbumin and decreased the absorbance at 241 

280nm. The slope of the logarithm curve obtained from the ovalbumin concentration against absorbance had a 242 

linear relationship (r2=0.9989) to the initial tannic acid concentrations. This calibration curve was used in the 243 

determination of tannic acid in the wines as a measure of astringency. Tempranillo wine was used for this work 244 

based on its high astringency after the screening of three different varieties of commercial red wine (data not 245 

shown). The astringency of control (0.220 mg/ml- Fig 3) was within the range of values 0.112-0.566 mg/ml 246 
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reported by Llaudy et al.(2004) and significantly more astringent than the Merlot wine used in our previous 247 

study (Jauregi et al., 2016). β-lactoglobulin and gelatin reduced astringency to 0.17 mg/ml and 0.16 mg/ml 248 

respectively (Fig 3). The addition of the proteins led to a significant decrease in astringency of the commercial 249 

red wine and this is in agreement with our previous work (Jauregi et al., 2016). Although gelatin tended to 250 

reduce the astringency more than β–lactoglobulin, the difference was not significant (p > 0.05).  β-lactoglobulin 251 

and gelatin reduced astringency by interacting with wine phenols which are major components contributing to 252 

astringency development. This form of interaction is mediated by hydrophobic and hydrogen bonding 253 

accompanied by aggregation and precipitation (Charlton et al.,2002). The primary structure of the protein 254 

influences polyphenol/protein interactions (Soares et al., 2015). Randomly coiled proteins have higher affinity 255 

for tannins than globular proteins (de Freitas & Mateus 2001). Other protein features such as molecular weight 256 

and number of proline residues and their sequence influence the interaction with tannins (Canon et al., 2013; 257 

Soares et al., 2015). The binding affinity of tannins to proteins increases with their molecular weight (Sarni-258 

Manchado, Cheynier, & Moutounet, 1999). Factors such as temperature, salt concentration and pH affect the 259 

binding affinity of tannins to proteins (Shpigelman, Israeli, & Livney, 2010; Wang, Ho, & Huang, 2007) 260 

3.4. Sequential profiling data 261 

Data from sequential profiling was collected to observe the change in intensity of attributes over repeated 262 

consumption of 20 ml of red wine samples. Astringency, bitter taste, sweetness, acid taste, dark fruity flavour, 263 

woody flavour and metallic taste were selected as attributes for sequential profiling. Significant differences (p < 264 

0.05) between red wine samples were found overall for astringency after swallowing and when scored as an 265 

aftertaste at 30 secs (AT1) (Table 2). Panelists perceived the astringency induced by β-lactoglobulin and gelatin 266 

treatments to be significantly lower at 30 sec post swallowing (AT1) compared to the control sample (Fig. 5). 267 

Overall mean astringency ratings for control were higher than for both β-lactoglobulin and gelatin treatments 268 

over repeated sips and aftertaste at 30 secs (AT1) and 60 secs (AT2) (Fig 4). This higher rating for control might 269 

be due to the presence of higher concentration of polyphenols available for interaction by the salivary proteins. 270 

The difference in astringency intensity between control and gelatin treatments was greater than the difference 271 

between control and β-lactoglobulin treatments. This shows that gelatin was more effective than β-lactoglobulin 272 

reducing astringency. However, there was no significant difference (p>0.05) between the gelatin and β-273 

lactoglobulin. 274 
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In contrast, bitter taste, sweetness, acidity, dark fruity flavour, woody flavour and metallic taste showed no 275 

significant differences (p > 0.05) between the samples neither during sips nor during aftertaste ratings (Table 2). 276 

The lack of significant difference in these 4 taste and 2 key flavor attributes suggests that the addition of β-277 

lactoglobulin caused no major modification to the red wine flavour; this is a desirable property of fining agents 278 

as they should not alter sensory properties of red wines except for astringency (Simonato et al., 2013). The 279 

lowest scoring attribute was metallic taste while the highest scoring attribute in the sequential profiling was 280 

astringency over repeated consumption (Table 2). Although the panelists were using an unstructured line scale 281 

and hence the values are relative rather than absolute; this does still imply that astringency was a predominant 282 

and important attribute in the perception and quality of red wine.  The aftertaste values (30 and 60 sec) are high 283 

for astringency compared to the other attributes demonstrating that these sensations are just as prominent once 284 

the samples have been swallowed.  The significant difference found for astringency between control, gelatin and 285 

β-lactoglobulin treatments could be caused by the decrease in tannin concentration as shown by the decrease in 286 

total polyphenol content (Fig. 2). Jiménez-Martínez et al (2018) reported a reduction in the phenolic content of 287 

red wine especially tannins by grape pomace, a by-product used as fining agent compared with casein. Fining 288 

red wines with potential fining agents are able to reduce astringency by decreasing the tannin content associated 289 

with astringency as seen in the treatment of wine with β -lactoglobulin (Jauregi et al., 2016).The intensity of 290 

astringency tended to build up over repeated exposure across the wine samples as expected, however the 291 

increase was not significant at the interval studied (60 secs) (Fig 4). At each sip astringency increased and 292 

reached a maximum and then the intensity decreased at 30 secs and further decreased at 60 secs until the next 293 

sip was taken where a slight increase was experienced. The non-significant increase may be due to the greater 294 

time interval between the sips. The time interval between sips affects intensification of astringency. Significant 295 

increases in maximum astringency intensity were reported when ingestions were taken with 20 and 25 secs 296 

intervals but not at 30 sec intervals on repeated ingestion of astringent stimuli (Guinard, Pangborn, & Lewis, 297 

1986; Lesschaeve & Noble 2005; Noble, 2002). Astringency is a tactile long-lasting sensation with carry over 298 

effect upon repeated consumption of astringent samples and is not associated with the type of adaptation that is 299 

experienced with sweetness and bitterness (Methven et al.,2010; Lyman &Green 1990; Lee & lawless 1991). 300 

The binding of oral proteins and rupturing of the lubricating film induced by repeated exposure, consequently 301 

results in an increase in the perception of astringency (Dinnella et al., 2010; de Wijk & Prinz 2006). The 302 

perception of wine astringency reduced over time due to the flushing of phenols and restoration of saliva which 303 

acts as a lubricant. 304 
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Kennedy et al (2006) and Llaudy et al (2004) suggested protein precipitation as the best chemical method that 305 

correlated well with astringency perception. Monteleone et al (2004) showed a positive relationship between 306 

concentration of polyphenolic compounds and the sensory attribute of astringency. In this work we 307 

demonstrated that both total phenolic content and instrumentally measured astringency by the ovalbumin 308 

precipitation method were consistent with the perceived astringency of the wine samples. The trend during sips, 309 

and after swallowing at 30 and 60 secs (AT1 and AT2) interval showed that the control had a higher intensity of 310 

astringency than the β-lactoglobulin and gelatin treated wines. There was a similar trend and relationship 311 

between measured and perceived astringency between samples especially when assessed by the after taste at 30 312 

sec intervals after the sips. Both sensory and chemical analysis showed that β-lactoglobulin had a similar ability 313 

as gelatin to react with tannins resulting in same effectiveness in reducing astringency in wine. 314 

3.5. Mechanism of astringency reduction by β-lactoglobulin 315 

The interaction between phenolic compounds and proteins in saliva form the basis of the mechanism that 316 

explains the perception of astringency (de Freitas and Mateus, 2001; Richardo da silva et al., 1991; Maury, 317 

Sarni-Manchado,  Lefebvre, Cheynier, & Moutounet, 2003). The interaction of salivary proline rich proteins 318 

(PRPs) with tannins results in a loss of lubrication and increased friction in the mouth. Tannin-induced 319 

precipitation of salivary PRPs in the oral cavity has been established as a mechanism for perception of 320 

astringency by numerous research studies (Kallithraka, Bakker, & Clifford, 1998; Baxter, Lilley, Haslam, & 321 

Williamson, 1997; Luck et al., 1994; Bennick, 2002). The perception of astringency and its mechanism are 322 

affected by factors that include, tannin and protein structure, individual variability and are dependent on salivary 323 

protein composition, viscosity and flow rate (Vidal et al., 2003; Sun et al., 2013; Soares et al.,2012; Dinnella et 324 

al., 2009; Condelli et al., 2006). 325 

Addition of β-lactoglobulin to the wine affected the concentration of polyphenols which is an important factor in 326 

the mechanism of astringency development. β-lactoglobulin bound the polyphenols in the red wine, thereby 327 

reducing the concentration available for salivary protein interactions and/or precipitation. This formed the basis 328 

of the chemical measurement of astringency which showed that β-lactoglobulin was as effective as gelatin in 329 

reducing astringency. Interestingly the same was concluded from the sensory study.  The good agreement 330 

between the chemical and the sensory methods suggest that β-lactoglobulin reduces astringency in wine 331 

following the above mechanism. 332 
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4. Conclusions 333 

This is the first sensory study of the impact of whey protein treatment on the perception of astringency in red 334 

wine using a sequential profiling technique. With this technique, seven attributes were evaluated over time for 335 

the wine samples. Astringency was the predominant attribute of the red wine during sips and in evaluation of 336 

aftertaste; samples prepared by different treatments were clearly differentiated by the panel. In this work we 337 

have demonstrated that both total phenolic content and instrumentally measured astringency by the ovalbumin 338 

precipitation method were consistent with the perceived astringency of the wine samples. The trend during sips, 339 

and after swallowing at 30 and 60 secs interval showed that the control had a higher intensity of astringency 340 

than the β-lactoglobulin and gelatin treated wines. There was a similar trend and relationship between measured 341 

and perceived astringency between samples especially when assessed by the after taste at 30 sec intervals after 342 

the sips.  Moreover addition of β-lactoglobulin to wine did not alter other sensory attributes. Both sensory and 343 

chemical analysis showed that β-lactoglobulin had a similar ability as gelatin to react with tannins resulting in 344 

same effectiveness in reducing astringency in wine. The good agreement between the chemical and the sensory 345 

methods suggest that reduction of astringency by β-lactoglobulin wine is based on the same principle of protein 346 

precipitation: β-lactoglobulin binds the polyphenols in the red wine, thereby reducing the concentration 347 

available for salivary protein interactions and/or precipitation with the subsequent reduction in astringency 348 

perception. Moreover, this study has brought about a new potential application of β-lactoglobulin and/or 349 

processed whey as a fining agent and therefore, could contribute to add commercial value to sweet whey. 350 

Acknowledgements 351 

The authors would like to acknowledge the Federal Government of Nigeria (Tertiary Education Trust Fund 352 

(TEFT)) for their financial support. 353 

Declaration of interest: None 354 

Figure captions 355 

Figure 1 HPLC Chromatogram of -lactoglobulin fraction from integrative process; A) Lab scale production 356 

and B) Pilot plant production. 357 

Figure 2 Total phenolic content of red wine treated with -lactoglobulin (beta-lg) and gelatin as mg GAE/ ml. 358 

Values are means ± 2SE of duplicate analyses. 359 
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Figure 3 Astringency in red wine determined by analytical method as tannic acid equivalent (mg/ml). Values 360 

are Means ± 3SE of triplicate analyses. beta-lg (-lactoglobulin) 361 

Figure 4 Sequential profile of red wines; control, beta-lg and gelatin treatments for astringency over repeated 362 

consumption. Values are means ± 2SE of duplicate analyses. (1.) S1-S4, consecutive aliquots consumed (2.) 363 

AT1 and AT2, after-effects at 30 secs and 60 secs post consumption of aliquots S1-S4. beta-lg- Beta-364 

lactoglobulin, S-Sips and AT- Aftertaste. 365 

Figure 5 Mean astringency intensities of each aliquot’s after-effects at 30 secs post consumption (S1AT1, 366 

S2AT1, S3AT1 and S4AT1) from sequential profiling of red wines; control, beta-lactoglobulin (beta-lg) and 367 

gelatin treatments. Values are means ± 2SE of duplicate analyses. Letters denote significant difference (p < 368 

0.05) between samples. 369 

 370 

Table captions 371 

Table 1:  Descriptions of attributes for sensory profiling 372 

Table 2: Mixed ANOVA model. Effect of -lactoglobulin and gelatin treatments on the in-mouth attributes of 373 

red wine. The p-value in each column represents the significance of the sample effect in each row. 374 

Supplementary material. 375 

Table S1: Protein content of sweet whey and β-lactoglobulin fractions from the integrative process (n=2±SE). 376 

 377 

 378 

 379 

 380 

 381 

 382 

 383 
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