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Abstract 

Vertical greening solutions such as direct greening are gaining popularity due to their relatively low 

cost and minimal ground footprint. However, concerns about increases in relative humidity (RH) can 

reduce implementation. 

The impact of several widely-used plant species (Hedera helix, Parthenocissus tricuspidata and 

Pileostegia viburnoides) on the internal/external temperature and RH on the south-facing wall of 

replicated experimental model ‘buildings’ was studied during summer and winter. All plant species 

reduced the air temperature internally/externally during the summer daytimes by at least 1 oC 

compared to bare ‘buildings’. Hedera produced the greatest cooling effect internally and externally, 

by 7.2 oC and 5.7 oC respectively. All plant species reduced daily variation in external RH and 

external/internal temperature during summer; Hedera reduced variation most and Pileostegia least. 

During night-time in both seasons, the temperature behind Hedera foliage typically remained higher, 

which could reduce the risk of freeze-thaw damage in winter.   

The RH was not significantly elevated by vegetation except during warm afternoons in summer and 

winter. During warm afternoons, the external RH was significantly higher only behind the Hedera 

foliage compared to the bare ‘buildings’, 11%  and 3.7% , summer and winter respectively.  However, 

inside all vegetated ‘buildings’ the RH was at least 11%  higher compared to the bare ‘buildings’ during 

summer. Yet, in winter the internal RH was 5.7% lower in the Hedera-covered compared to the bare 

‘buildings’. Current building standards would prevent the transfer of external RH in this range 

internally, as the walls include protective layers such as damp-proof membranes. 
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1. Introduction 

Anthropogenically induced global warming is occurring and causing a widespread environmental 

disruption (Bernstein et al., 2007). Approximately 25% of global greenhouse gases (GHG) emissions 

relate to heat and electricity production; reducing the need to heat and to cool buildings will thus 

reduce emissions (EPA, 2017). Within Britain, approximately 85% of housing stock is constructed with 

materials that have twice the thermal conductivity of current standards, hence the materials are less 

insulating (Hamilton et al., 2013), leading to increased energy use to maintain thermal comfort. 

External green walls (i.e. vegetative cover on building walls) may form part of an integrated solution 

to these problems. A wide variety of green walls are in use around modern buildings: from highly 

engineered structures (living walls systems) to the simpler direct greening, where climbers attach to 

the structure directly (Perini et al. 2011b). 

There are two ways in which green walls may reduce thermal fluctuations around buildings, notably 

by cooling (primarily via evapotranspiration and shading) and by providing insulation (Cameron et al., 

2014, 2015). Cooling from evapotranspiration and shading, however, are typically considered together 

as they cannot easily be separated.  Studies have shown that on hot days, built structures behind 

foliage are significantly cooler, within and outside of the building, than those left bare (Di and Wang, 

1999, Ip et al., 2004, Miller et al., 2007, Ip et al., 2010, Pérez et al., 2011a,b, Cameron et al., 2014, 

Feitosa and Wilkinson 2018; Vox et al. 2018, Zhang et al. 2019).  Additionally, the dominant cooling 

effect is dependent on the plant variety used in the greening scheme.  Parthenocissus grown across 

windows to provide shade also increased the humidity inside the building by between 5% and 14% 

between July and October (indicating evapotranspiration processes) compared to bare buildings 

(Miller et al., 2007).  The thermal effects detected are, however, affected by building aspect; shading 

effects are typically more pronounced on the south wall in the northern hemisphere, as there are 

more solar gains (Cameron et al., 2014). Furthermore, these effects have only occasionally been 

studied at night or during spring/autumn where the effects were more marginal (Di and Wang, 1999, 

Cameron et al., 2014). Extrapolation from some green roof studies in hot and humid scenarios also 

suggests that night-time ventilation (e.g. opening of windows) is required to achieve night time-

cooling benefit when vegetation is present (Ran and Tang, 2018). 

Insulation effects may become more prominent during cooler periods where cooling via 

evapotranspiration and shading is reduced. During full days in winter, dense Hedera grown round 

model ‘buildings’ increased external wall temperatures by between 1.6 and 3 oC, depending on the 

weather conditions, compared to bare ‘buildings’ (Cameron et al., 2015).  The Hedera-covered model 

‘buildings’ also consumed less energy for heating and emitted less thermal energy than bare model 



‘buildings’ (Cameron et al., 2015). This is in agreement with another study showing the thermal 

resistance and insulating effects of Hedera foliage (Ottelé and Perini, 2017), and the general notion 

that denser green wall canopy density (such as that of Hedera) is linked to better insulation properties 

(Widiastuti et al., 2018). Furthermore, the daily temperature variation of a wall surface behind Hedera 

foliage has also been found to be reduced compared to a bare wall surface (Sternberg et al., 

2011).  Therefore, Hedera may be capable of acting as a multipurpose solution to issues of thermal 

comfort. 

Historically there has been an on-going debate about the extent to which Hedera (ivy) cladding causes 

damp problems to buildings by preventing evaporation from the facade (Taddyforde et al., 1877, 

Muckley, 1886), which continues to this day (BRE et al., 1996, Douglas & Noy, 2011, Sternberg et al., 

2010, Ottelé, 2011). According to documents from the American Society of Heating, Refrigerating and 

Air-Conditioning Engineers ASHRAE Standard 62.1-2013 (ASHRAE, 2013), the internal atmosphere of 

buildings should be maintained at less than 65% relative humidity (RH) for ideal air quality and 

comfort.  The World Health Organisation also recommended that RH be limited to less than 75% in 

buildings to restrict mould growth, which can have a detrimental effect on human health (WHO, 2009). 

Additionally, if walls become damp, the thermal conductivity of the walls increases, thus increasing 

heat losses (Kumaraperumal, 2009). Our recent work (Thomsit-Ireland, 2019) shows however that 

plant species such as Hedera, along with Parthenocissus and Pileostegia, display relatively low rates of 

transpiration (i.e. water loss through leaf stomata). The use of such species may thus reduce dampness 

issues and concerns around the use of vegetation on and around walls.  

In situations where the greatest temperature disparity would occur between greened and bare walls 

the highest RH differences would also occur. This is due to the basic concepts of RH being a function 

of absolute humidity (the moisture content of the air) and temperature (Green and Perry, 2007). In 

winter in particular, as the British maritime climate is typified by moderate (rather than sub-zero) 

ambient temperatures, however, there may be grounds for concern over use of Hedera in this country, 

in terms of its possible impact of increasing RH in and around buildings. 

The primary natural source of moisture for any building envelope (i.e. not due to leaky guttering or a 

burst pipes) is driving rain (D’Ayala and Aktas, 2016).  The building facet primarily impacted by wind-

driven rain depends on the choice of materials (Kumaraperumal, 2009), location and prevailing winds, 

therefore varies from city to city (Karagiozis et al., 2003).   

Furthermore, Rath et al. (1989) found no difference in the moisture content of exterior plaster and 

brickwork between Hedera- and Parthenocissus-greened walls versus those left bare. Additionally, 



when walls were covered with Hedera, there was evidence that the temperature and humidity 

stabilisation provided by the Hedera covering would reduce the risk of frost and salt deterioration 

[including historic buildings and limestone buildings; Sternberg et al. (2011)].  

As a result of client concerns, landscape designers and architects tend to avoid the use of vegetation 

around buildings (R. Griffin and C. Trickey, personal comment). It is therefore necessary to determine 

whether Hedera and other species used in direct greening can cause damage to buildings through 

increased RH and under which circumstances.  

Many studies have investigated the cooling effects of Hedera on the building envelope during summer 

(Köhler, 1993, Di and Wang, 1999, Cameron et al., 2014, Hoelscher et al., 2016, Ottelé and Perini, 

2017) or looked at similar effects resulting from foliage cladding with other species such as 

Parthenocissus and Wisteria (Hoyano, 1988, Cantuaria, 2000, Ip et al., 2010, Pérez et al., 2011a, 

Susorova et al., 2013, Hoelscher et al., 2016).  There are common issues with a lack of replication, 

however (Eumorfopoulou and Kontoleon, 2009, Wong et al., 2010, Koyama et al., 2013, Zhang et al., 

2013, Feitosa and Wilkinson 2018, Vox et al. 2018), and in those studies with excellent replication; 

internal temperature and internal RH were not examined or reported (Sternberg et al., 2011, Cameron 

et al., 2015).  A few studies considered winter conditions in structures with Hedera-covering 

(Sternberg et al., 2011, Cameron et al., 2015, Ottelé and Perini, 2017) or living wall systems  - LWS 

(Kronvall and Rosenlund, 2014, Matheus et al., 2016, Djedjig et al., 2017, Ottelé and Perini, 

2017).  Very few studies considered alternatives to Hedera (for example, evergreen direct greening 

such as Pileostegia) in winter or autumn except Perini et al. (2011a) who included Pyracantha as part 

of mixed planting in an indirect greening option and evergreen plants in a LWS.  The original 

contribution from our study is its robust, replicated design conducted during both summer and winter 

seasons. We investigated the effects of three different plant species (applied as direct greening) on 

the internal and external relative humidity and temperatures of model brick ‘buildings’), in the context 

of a temperate climate. The replicated planting design should enable us to assess confidently genuine 

plant species differences in various environmental scenarios. Experimental set op uses upgraded and 

extended plots from the previous study on the same site (Cameron et al., 2014, Cameron et al., 2015), 

where buildings have been mortared and insulated and a range of plant species – with differing 

structural and functional characteristics – had been expanded.  

 

2. Methods 

2.1 Construction and layout of model buildings 



Twelve model ‘buildings’ were built in the grounds of the glasshouse complex, at the University of 

Reading, UK (Figure 1).  The experiments were conducted between 24th June and 20th July 2015 

(summer) and between 14th January and 4th February 2016 (winter).  The treatment for each building 

was applied using a partially randomised design, which allowed the previously established Hedera 

plants to remain in situ. The layout is shown in Error! Reference source not found.2.  

 
Figure 1: Location of the experimental site in Reading, UK (A) at the University of Reading (B), within 
the experimental and glasshouses grounds of the School of Agriculture, Policy and Development, 
view from Google Earth, elevation 68m (C) 
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Figure 2. Photographs of the general experimental plot layout with model ‘buildings’, in the 

summer (A, image taken from the south) and winter (B, image taken from the west). Three 

replicates of each of three plant species (Hedera, Parthenocissus and Piloestegia) and three bare 

buildings were used in this experiment (details on planting are provided in Section 2.2). Winter 

image is taken from the west side to highlight Parthenocissus (second from right), a deciduous 

plant which had dropped leaves, thus making it more similar to a bare building than a vegetated 

one. Pictures of plots were taken in August 2019 and February 2020 (4 years after experiments 

B

Pileoestegia 

Nu 
Nu – not used 

Nu 

Nu 
Nu 

Bare 

Parthenocissus 

Hedera 

1 . 75 m 

Glasshouses A 



finished) are intended as a visual guide of the plot design, rather than the exact experimental scene 

(which is described fully in the body of Material and Methods). 

 

The ‘buildings’ were each made with 64 bricks [standard red clay brick (classified BSEN 771, Class B, 

215 x 103 x 65 mm; thermal properties:  k = 1.1 Wm-1K -1, Blockley’s Brick Holdings plc., Telford, UK)], 

arranged in a stretcher bond, with grey concrete slabs forming the base. Dimensions of an individual 

building, with all components listed below, were 0.6 m (h) x 0.5 m (w) x 0.5 m (d). Distance between 

the buildings was 1.5 m (N-S) and 1.75 m (E-W) so the adjacent buildings did not cast a significant 

shade on one another during the selected experimental periods. 

Prior to construction, the concrete slabs and base layer of bricks were dried for two days at 70oC, to 

reduce their moisture content.  A layer of sand and cement mortar (ratio of 4 sand to 1 cement) was 

then applied to the weed resistant matting to provide a level surface and a 1200 gauge (0.3 mm) damp 

proof membrane (DPM) was laid upon the mortar. An insulated ‘roof’ was constructed from Metsä 

Wood oriented strand board (OSB; 600 x 600 x 11 mm) with 1.3 mm bitumen shed felt secured with 

clout roofing nails providing a 50 mm overhang on the north and south sides and a 100 mm overhang 

on the east and west sides (3 and Figure 4). Then a 3 mm thick multi-layer air bubble film insulation 

with aluminium bonded to both faces ‘silvered insulation’ was secured over 20 x 311 x 18 mm wood 

batons, which were fixed to the OSB that formed the roof on the model building, with a 20 mm overlap 

onto the brick and an 18 mm air gap between the OSB and the ‘silvered insulation’ (Figures 3 and 4). 

A suspended timber floor was constructed using a 401 x 311 x 18 mm section of marine ply as a base 

and an equivalent sized piece of ‘silvered insulation’, which was sandwiched between six batons (20 x 

311 x 18 mm) and nailed to the ‘floor’.  This created two 18 mm air gaps, one above and one below 

the ‘silvered insulation’. The ‘floor’ was laid above the DPM and was secured in place with 

weatherproof external silicone. 



 
Figure 3 Diagram of model ‘building’ construction (not to scale). Detailed dimensions are provided in 
the text. 
 

Figure 4 L-R: Bare model ‘building’ without roof (left) and with roof and screened RHT2nl sensors in 
situ (right)  

During the winter experiment the model ‘buildings’ were heated with a thermostatically controlled 75 

W aquarium heater Hidom HT-2075, permanently set to 30 oC, using a thermostat on the heater head 

and submerged - as an immersion heater - within a jumbo size cooking-oil container of 5 L volume 

(KTC Sunflower oil) (Figure 5). No distinction was made between thermal contributions of the heater 

and incoming solar radiation at times. However, as the experimental treatments were well replicated, 

it was assumed that the overall impact of both factors will be evenly spread between the treatments. 

 

2.2. Plant material and replication of planted treatments 
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Three plant species were used around the model ‘buildings’: Hedera helix (common ivy), 

Parthenocissus tricuspidata (Virginia creeper) and Pileostegia viburnoides (climbing hydrangea). Ivy-

clad buildings consisted of a 50% -50% mix of Hedera helix variety ‘Glacier’ (supplied by Johnsons of 

Whixley, Yorkshire, UK) and straight Hedera helix (propagated in house), planted in December 2011, 

and pruned to the roofline and to 200 mm depth by the walls in 2014. For the other two species three-

year-old Pileostegia viburnoides, and Parthenocissus tricuspidata ‘Veitchii’ (obtained from Chiltern 

Trees and Shrubs, Wallingford, UK and Provender Nurseries Ltd, Swanley, UK, respectively) in 2 L 

containers and planted at the end of April 2014 were used.  Eight plants were installed around each 

‘building’, two per side, spaced between 250 and 300 mm apart.  By the time experiments started all 

greened buildings were robustly covered by vegetation. 

During the experiment the depth of vegetation varied as plants became increasingly established.  In 

July 2015 a visual inspection estimated that the wall coverage was 89 ± 6% for Hedera, 99 ± 1% for 

Parthenocissus, and 84 ± 10% for Pileostegia (probably due to the nature of its crown 

development).  In January 2016 the plants had similar coverage to summer 2015, apart from the 

Parthenocissus which is deciduous, so its stems remained but there were no leaves. 

During both summer and winter there were four experimental ‘treatments’: Hedera-, Parthenocissus- 

and Pileostegia-covered buildings, along with bare ‘buildings’, with three replicates per treatment.  

2.3. Sensors and logging 

The relative humidity (RH) and air temperature were measured 50 mm from the internal and external 

south wall of the model ‘buildings’ to ensure readings were not directly influenced by the facade. 

Measurements were made continuously every 10 seconds and averaged every 10 minutes, using 

RHT2nl probes connected to a DL2e data logger (Delta-T Devices Ltd, Cambridge, UK).  The RHT2nl 

probes were screened with radiation screens and positioned 200 mm above the ground. The RH sensor 

was accurate to ± 2% and the temperature sensor was accurate to ± 0.1 oC.  Additional temperature 

measurements were made in summer with screened thermistors (type Fenwal UUA32J2, in-house 

construction), placed 15 mm from the internal and external walls of the model ‘buildings’ at 

approximately 200 mm from the ground. These were also connected to a DL2e data logger and 

accurate to 0.2 oC.  The sensors are shown in situ for each of the treatments in Figure 6, and the 

summer and winter sensor set ups are shown in appendix A. The local ambient weather conditions 

were monitored by the University of Reading meteorological observatory (UoR MO). During the 

experimental periods in the summer (June 2015) were 22.1 oC (T max), 12.1 oC (T min) and 2.3 mm 

(rainfall), and in winter (January 2016): 9.0 oC (T max), 1.8 oC (T min) and 1.9 mm (rainfall).  



 

Figure 6  Top left to bottom right: Bare model ‘building’ and ‘buildings’ covered with Pileostegia 
viburnoides, Parthenocissus tricuspidata and Hedera helix, with roof and sensors in situ: set up for 
summer 2015 

2.4. Selecting time periods for analysis 

The times chosen for analysis were based on the maximum and minimum ambient temperatures, as 

determined by the UoR MO, during the period of the most stable (‘flattest’) parts of the diurnal 

temperature variation.  In summer the coldest part of the day typically occurred between 03:00 and 

05:00 Greenwich mean time (GMT), while in the winter the coldest time occurred between 05:00 and 

07:00 GMT.  However, the warmest part of the day typically occurred between 14:00 and 17:00 GMT 

during both summer and winter. Data was extracted from the data loggers, and then configured for 

statistical analysis, using a bespoke programme written in C++.  

In summer 2015, the six warmest and five coolest days were analysed. The 29th, 30th June, and 1st, 3rd, 

4th, 16th July were selected as ‘warm’ days (where the mean ambient temperature between 14:00 and 

17:00 at the UoR MO was > 23 oC), and the ‘cold’ days selected were 28th June and 5th, 8th, 12th, 13th 

July 2015 (where the mean ambient temperature between 14:00 and 17:00 at the UoR MO was < 19 

oC.  Once days were selected according to the criteria above, both mornings and afternoons, from 

03:00-05:00 BST and 14:00-17:00 BST respectively, were analysed.   

In winter 2016 the days analysed were:  

• ‘Cold’ days without heaters installed inside the ‘buildings’: 15th to 17th January 2016 (where 

the mean ambient temperature from 05:00-07:00 GMT at UoR MO was < 3 oC).  These 

represented a baseline for comparison with later results. 



• ‘Cold’ days with heaters installed inside the ‘buildings’: 19th to 21st, 28th January, and 3rd 

February 2016 (where the mean ambient temperature from 05:00-07:00 GMT at UoR MO was 

≤ 3 oC).  

• ‘Warm’ days with heaters installed inside the ‘buildings’: 24th, 25th, 29th January, and 1st 

February 2016 (where the mean ambient temperature from 05:00-07:00 GMT at UoR MO was 

> 9oC).   

There were no days during the monitored period that correlated to the ‘warm’ day specifications when 

the heaters were not installed. 

Once days were selected for analysis according to the criteria above, both mornings and afternoons, 

from 05:00-07:00 GMT and 14:00-17:00 GMT respectively, were analysed. 

2.6. Statistical Analysis 

The mean was calculated with data from each time period (for example, 14:00-17:00), and all the 

chosen days in the same scenario (for example, the ‘cold’ days during summer) which removed any 

temporal pseudo-replication. Then a one-way analysis of variance (ANOVA) was conducted using 

GenStat (16th Edition), using a 95% confidence interval. Variances were checked for homogeneity and 

values were presented as means with the associated least significant differences of the means (LSD), 

as well as standard deviation (SD) of the un-averaged data set. One-way ANOVA generates a single p 

value which relates to the overall analysis, while the use of LSD enables comparisons of the individual 

means. We have also performed additional, post-hoc analysis, to enable multiple comparisons of the 

means using Tukey’s post-hoc test (in the SPSS statistical package); where it is statistically significant 

we have reported those Tukey’s p values in the text.  

3. Results 

3.1. External RH during summer 2015 

During ‘cold-’ and ‘warm day’ mornings the external RH measured behind the foliage of vegetated 

‘buildings’ was not significantly different from the RH measured next to bare ’buildings’ (p = 0.228, 

LSD = 7.4 and p=0.231, LSD = 7.2 Table 1). Nor was that measured on ‘cold day’ afternoons, at 9% 

higher (p = 0.06, LSD 7=.5). There was also, no significant increase in the RH measured behind the 

foliage of the Pileostegia- and Parthenocissus-covered ‘buildings’ compared to the bare ‘buildings’ in 

either temperature scenario (Tukey’s p = 0.364 and p = 270 for warm and p = 607 and p = 366 for cold). 

During ‘warm day’ afternoons, however, the external RH measured behind Hedera foliage was 11% 

higher (p = 0.033, LSD = 7.5, Tukey’s p = 0.014) than that measured next to bare ‘buildings’ (Table 1). 



All vegetated treatments significantly reduced the daily variation in the external RH in all temperature 

scenarios, compared to that measured next to bare ‘buildings’.  In both scenarios the Hedera foliage 

produced the greatest reduction in daily variation compared to bare ‘buildings’ (Tukey’s p = 0.024 for 

warm and p = 0.032 for cold) (Table 1). 

 

 

3.2. Internal RH during summer 2015 

There was no significant effect of plant treatment on the internal measurements of RH made in the 

mornings, regardless of whether ‘warm’ or ‘cold’ days were considered (p = 0.085 and p = 0.06 ‘cold-

’ and ‘warm day’ mornings respectively; Table 2). This was also true on ‘cold day’ afternoons (p = 

0.189; Table 2). During the ‘warm day’ afternoons, however, the RH measured inside Hedera-covered 

‘buildings’ was 17% higher than that measured inside bare ‘buildings’ (Tukey’s p < 0.001); lesser %-

wise, but still statistically significant effects were detected for Pileostegia- (9%) and Parthenocissus-

covered (12%) ‘buildings’ (Tukey’s p < 0.001, Table 2). 

During ‘cold’ days the daily variation in internal RH was reduced most in the Hedera-covered 

‘buildings’ compared to bare ‘buildings’ (Tukey’s p = 0.032) (Table 2). Conversely during ‘warm’ days, 

daily variation in internal RH was lowest for bare ‘buildings’ (5.1% less than Hedera or Parthenocissus 

treatments, 6.7% RH less than Pileostegia; p < .001; Table 2).  

Table 1 Mean ± SD ‘external’ relative humidity (%) in summer 2015 and the associated LSDs 
(where differences were statistically significant) with three replicates per treatment, d.f. = 8*.  

Scenario Cold Cold Cold Warm Warm Warm 

Time 
  03:00 - 

05:00 
  14.00 -

17.00 
Difference 

  03:00 - 
05:00 

  14.00 -
17.00 

Difference 

Ambient external RH (%) 91 ± 3 71 ± 11 20 ± 10 88 ± 10 45 ± 11 43 ± 13 

Bare 85 ± 9 62 ± 14 23 ± 11 85 ± 7 36 ± 10 48 ± 14 

Hedera 84 ± 8 71 ± 15 13 ± 9 84 ± 4 47 ± 11 37 ± 10 

Pileostegia 85 ± 8 67 ± 14 18 ± 9 84 ± 6 42 ± 10 42 ± 12 

Parthenocissus 79 ± 10 62 ± 15 17 ± 9 78 ± 7 37 ± 12 41 ± 11 

p value 0.228 0.06 < .001 0.231 0.033 0.008 

LSD 7.4 7.5 3.0 7.2 7.5 5.5 

*‘Cold’ days were when the mean ambient temperature between 14:00 and 17:00 at the UoR MO 
was < 19 oC. ‘Warm’ days were when the mean ambient temperature between 14:00 and 17:00 
at the UoR MO was > 23 oC. ‘Difference’ indicates the difference between the morning and 
afternoon RH. Numbers in bold indicate that those values are significantly different from others 
in the same column (ANOVA, p < 0.05). 



 

3.3. External temperature during summer 2015 

External temperatures measured during ‘cold day’ mornings, behind the foliage of both the Hedera- 

and Parthenocissus-covered ‘buildings’, were significantly (p = 0.014; Table 3, at least 1.2 oC) warmer 

than those measured next to bare ‘buildings’ (Tukey’s p = 0.002 and 0.003, respectively for Hedera 

and Parthenocissus). During the ‘warm day’ mornings, however, no significant temperature difference 

was observed between plant species and bare walls (p = 0.071; Table 3, Tukey’s p values 0.123, 0.981 

and 0.566 respectively for Hedera, Piloestegia and Parthenocissus compared to bare walls). 

During both ‘cold’ and ‘warm day’ afternoons, temperatures measured behind the foliage of the 

vegetated treatments were significantly cooler than those next to bare ‘buildings’ (p < .001).  While 

effects were more pronounced on ‘warm’ days, the greatest cooling effect occurred behind the 

Hedera foliage (2.2/5.7 oC cooler on ‘cold’/’warm’ days) followed by Pileostegia (1.4/4.6 oC cooler) 

then Parthenocissus (1.2/3.4 oC cooler) as compared to bare ‘buildings’ (p < .001; Tukey’s p 0.001, 

0.001 and 0.014 respectively for Hedera, Piloestegia and Parthenocissus compared to bare walls on 

warm summer afternoons, Table 3). 

During ‘cold’ and ‘warm’ days, all the vegetated treatments significantly reduced the daily variation in 

external temperature around ‘building’ envelopes, compared to the daily variation measured next to 

bare ‘buildings’ (p < .001; Table 3). In both cases, the greatest stabilisation was produced by Hedera 

(3.2 oC less variation on average on ‘cold’ days, 8.3 oC less on ‘warm’ days, Tukey’s p = 0.001 and < 

Table 2 Mean ± SD ‘internal’ relative humidity (%) in summer 2015 and the associated LSDs (where 
differences were statistically significant) with three replicates per treatment, except for 
Parthenocissus-covered buildings which had two replicates due to sensor malfunction d.f. = 7*.  
Scenario Cold Cold Cold Warm Warm Warm 

Time 03:00 - 
05:00 

14.00 -
17.00 

Difference 
03:00 - 
05:00 

14.00 -
17.00 

Difference 

Ambient external 
RH (%) 

91 ± 3 71 ± 11 20 ± 10 88 ± 10 45 ± 11 43 ± 13 

Bare 53 ± 5 63 ± 5 10 ± 3 54 ± 5 57 ± 9 2.4 ± 5.4 

Hedera 65 ± 5 71 ± 4 6 ± 2 67 ± 5 74 ± 4 7.5 ± 1.2 

Pileostegia 54 ± 7 63 ± 6 9 ± 3 57 ± 7 66 ± 6 9.1 ± 3.4 

Parthenocissus 59 ± 4 68 ± 2 9 ± 3 62 ± 3 69 ± 3 7.6 ± 1.9 

p value 0.085 0.189 0.04 0.06 0.011 < .001 

       

LSD 9.8 8.8 2.7 9.3 8.6 1.59 

*‘Cold’ days were when the mean ambient temperature between 14:00 and 17:00 at the UoR MO 
was < 19 oC. ‘Warm’ days were when the mean ambient temperature between 14:00 and 17:00 
at the UoR MO was > 23 oC. ‘Difference’ indicates the difference between the morning and 
afternoon RH.  Numbers in bold indicate that those values are significantly different from others 
in the same column (ANOVA, p < 0.05). 



0.001 for cold and warm respectively). The effects of other species on external temperature stability, 

whilst not as great as those produced by Hedera, varied based on the temperature scenario.  On ‘cold’ 

days, variation was lower behind Parthenocissus than Pileostegia (a reduction of 2.4 oC vs. 1.7 oC when 

compared to bare ‘buildings’, Tukey’s p = 0.023 and 0.193 for Parthenocissus and Pileostegia 

respectively), but on ‘warm’ days Parthenocissus and Pileostegia reduced variation in temperature to 

a similar extent (Tukey’s p = 0.002 and 0.003 for Parthenocissus and Pileostegia respectively). 

 

3.4. Internal temperatures during summer 2015 

During the ‘cold-’ and ‘warm day’ mornings, there were no significant differences between 

temperatures measured inside any ‘buildings’ regardless of whether they had been vegetated or 

remained bare (p = 0.438 and 0.617 respectively for cold and warm mornings). During both ‘warm’ 

and ‘cold day’ afternoon scenarios, however, Hedera-covered ‘buildings’ displayed a significant 

reduction in internal temperature compared to bare ‘buildings’.  During ‘cold day’ afternoons the 

temperature measured inside Hedera-covered buildings was 3.1 oC cooler than the temperature 

measured inside the bare ‘buildings’ (Tukey’s p < 0.001), and 7.2 oC cooler on ‘warm day’ afternoons 

(Tukey’s p < 0.001; Table 4).  

During both the ‘cold’ and ‘warm’ days the daily variation in internal temperature was significantly 

reduced in all vegetated treatments compared to the bare ‘buildings’ (p < .001; Table 4).  The greatest 

reduction in daily internal temperature variation occurred inside the Hedera covered buildings (3.4 oC 

Table 3 Mean ± SD ‘external’ temperature (oC) in summer 2015 and the associated LSDs (where 
differences were statistically significant) with three replicates per treatment, d.f. = 8*.  

Scenario Cold Cold Cold Warm Warm Warm 

Time 
  03:00 - 

05:00 
  14:00 - 

17:00 
Difference 

  03:00 - 
05:00 

  14:00 - 
17:00 

Difference 

Ambient external 
temperature (oC) 

14.0 ± 1.3 18.7 ± 0.1 4.7 ± 1.3 14.4 ± 3.4 26.1 ± 3.6 11.7 ± 4.1 

Bare 15.0 ± 0.8 22.2 ± 2.1 7.1 ± 2.8 14.7 ± 2.8 32.6 ± 3.6 17.9 ± 4.0 

Hedera 16.2 ± 0.9 20.0 ± 1.5 3.9 ± 2.0 17.3 ± 5.4 26.9 ± 2.8 9.6 ± 5.2 

Pileostegia 15.4 ± 0.8 20.8 ± 1.6 5.4 ± 2.1 15.2 ± 2.7 28.0 ± 3.4 12.8 ± 3.7 

Parthenocissus 16.3 ± 0.7 21.0 ± 1.7 4.7 ± 2.0 16.2 ± 2.4 29.2 ± 3.2 13.0 ± 3.2 

p value 0.014 < .001 < .001 0.071 < .001 < .001 

LSD 0.78 0.29 0.95 2.06 1.81 2.80 

       

*‘Cold’ days were when the mean ambient temperature between 14:00 and 17:00 at the UoR MO 
was < 19 oC. ‘Warm’ days were when the mean ambient temperature between 14:00 and 17:00 at 
the UoR MO was > 23 oC. ‘Difference’ indicates the difference between the afternoon and morning 
temperatures.  Numbers in bold indicate that those values are significantly different from others 
in the same column (ANOVA, p < 0.05). 



less variable on ‘cold’ days/7.4 oC on ‘warm’ days), followed by the Parthenocissus- (2.8 oC/5.6 oC) and 

Pileostegia-covered (2.5 oC/5.3 oC) ‘buildings’  (p < .001; Table 4). 

 

 

3.5. External RH during winter 2016 

As Parthenocissus is deciduous (i.e. drops leaves in winter) the RH measurements ‘behind’ its foliage 

were understandably very similar to the measurements next to the bare ‘buildings’. The only 

significant increase in RH occurred on ‘warm day’ afternoons during which heating had been 

Table 4 Mean ± SD ‘internal’ temperature (oC) in summer 2015 and the associated LSDs (where 
differences were statistically significant) with three replicates per treatment, d.f. = 8*.  

Scenario Cold Cold Cold Warm Warm Warm 

Time 
03:00 - 
05:00 

14:00 - 
17:00 

Difference 
03:00 - 
05:00 

14:00 - 
17:00 

Difference 

Ambient external 
temperature (oC) 

14.0 ± 1.3 18.7 ± 0.1 4.7 ± 1.3 14.4 ± 3.4 26.1 ± 3.6 11.7 ± 4.1 

Bare 18.5 ± 1.2 22.2 ± 1.9 4.1 ± 1.9 18.9 ± 2.6 31.0 ± 3.8 13.0 ± 3.2 

Hedera 18.6 ± 1.1 19.1 ± 0.8 0.7 ± 0.9 18.9 ± 2.1 23.8 ± 2.8 5.6 ± 2.1 

Pileostegia 18.5 ± 1.1 20.0 ± 1.1 1.6 ± 1.2 18.9 ± 2.4 26.1 ± 3.2 7.7 ± 2.4 

Parthenocissus 18.7 ± 1.1 20.0 ± 1.0 1.3 ± 1.0 19.1 ± 2.3 26.1 ± 3.3 7.4 ± 2.6 

p value 0.438 < .001 < .001 0.617 < .001 < .001 

LSD 0.15 0.57 0.64 0.37 1.57 1.70 

‘Cold’ days were when the mean ambient temperature between 14:00 and 17:00 at the UoR MO 
was < 19 oC. ‘Warm’ days were when the mean ambient temperature between 14:00 and 17:00 at 
the UoR MO was > 23 oC.  ‘Difference’ indicates the difference between the afternoon and morning 
temperatures. Numbers in bold indicate that those values are significantly different from others in 
the same column (ANOVA, p < 0.05). 

 



implemented. In this situation the RH measured behind the Hedera foliage was higher than all the 

treatments and 3.7% higher than that measured by the bare ‘buildings’ (p = 0.01; LSD = 2.23, Table 5).  

 

3.6. Internal RH during winter 2016 

  The RH measured inside the Parthenocissus and Pileostegia-covered buildings generally similar to 

that within bare buildings. The RH measured inside the Hedera-covered ‘buildings’ during the ‘warm’ 

days with heating was borderline significantly lower than that measured for any of the other 

treatments (p = 0.054, LSD = 4.28, Table ).  

Table 5 Mean ± SD ‘external’ relative humidity (%) during winter 2016 and the associated LSDs 
(where differences were statistically significant), with three replicates per treatment, d.f. = 8*.  

Scenario Cold (UH) Cold (UH) Cold (H) Cold (H) Warm (H) Warm (H) 

Time 
 05.00 - 
07.00 

 14.00 - 
17.00 

 05.00 - 
07.00 

 14.00 - 
17.00 

 05.00 - 
07.00 

 14.00 - 
17.00 

Ambient external RH (%) 92.3 ± 7.6 81.1 ± 10.9 91.9 ± 8.6 62.7 ± 9.9 86.5 ± 11.0 81.8 ± 10.6 

Bare 90.0 ± 6.0 80.0 ± 10.7 88.9 ± 5.9 65.5 ± 4.8 88.2 ± 9.5 81.8 ± 8.4 

Hedera 85.3 ± 4.8 79.7 ± 10.0 83.6 ± 5.4 67.6 ± 5.1 89.9 ± 8.2 85.5 ± 8.4 

Parthenocissus 90.2 ± 5.7 80.1 ± 11.2 89.1 ± 5.8 65.5 ± 4.8 88.7 ± 9.7 82.0 ± 8.8 

Pileostegia 88.2 ± 6.6 77.9 ± 11.0 84.9 ± 6.0 62.7 ± 4.8 87.3 ± 9.8 81.4 ± 9.0 

p value  0.147 0.364 0.102 0.075 0.291 0.01 

LSD 4.83 3.01 5.38 3.55 2.91 2.23 

‘Cold’ days were when the mean ambient temperature between 05:00 and 07:00 at the UoR MO 
was ≤ 3 oC. ‘Warm’ days were when the mean ambient temperature between 05:00 and 07:00 at 
the UoR MO was > 9 oC. Unheated (UH), heated (H). Unheated and heated days occurred on different 
days. Numbers in bold indicate that those values are significantly different from others in the same 
column (ANOVA, p < 0.05). 



 

3.7. External wall temperature during winter 2016 

While differences in external wall temperatures between bare buildings and those covered in 

vegetation were generally small and not statistically significant, there is an indication that during the 

‘cold day’ mornings, temperatures measured behind Hedera foliage were warmer than those 

measured for any other treatment; 0.4 oC (for unheated buildings) and 1 oC (for heated buildings 

compared to the bare ‘buildings’.   The temperatures measured behind the foliage of the 

Parthenocissus and Pileostegia-covered ‘buildings’ were not significantly different to the 

temperatures measured by the bare ‘buildings’ in any scenario. 

Table 6 Mean ± SD ‘internal’ relative humidity (%) during winter 2016 and the associated LSDs 
(where differences were statistically significant), with three replicates per treatment, d.f. = 8*. 

Scenario Cold (UH) Cold (UH) Cold (H) Cold (H) Warm (H) Warm (H) 

Time 
05.00 - 
07.00 

14.00 - 
17.00 

05.00 - 
07.00 

14.00 - 
17.00 

05.00 - 
07.00 

14.00 -
17.00 

Ambient 
external RH (%) 

92.3 ± 7.6 81.1 ± 10.9 91.9 ± 8.6 62.7 ± 9.9 86.5 ± 11.0 81.8 ± 10.6 

Bare 94.5 ± 3.3 96.7 ± 2.7 83.3 ± 6.3 89.0 ± 6.8 90.6 ± 7.1 92.8 ± 6.8 

Hedera 86.6 ± 2.9 88.6 ± 2.6 77.9 ± 4.9 80.7 ± 4.1 85.3 ± 5.0 87.1 ± 4.9 

Parthenocissus 92.1 ± 2.3 95.9 ± 2.8 81.4 ± 5.1 86.2 ± 8.5 91.0 ± 6.2 93.5 ± 5.7 

Pileostegia 90.0 ± 3.9 94.2 ± 4.5 79.2 ± 3.2 84.9 ± 4.9 89.6 ± 5.0 92.4 ± 5.0 

p value  0.115 0.083 0.159 0.091 0.054 0.041 

LSD  6.65 6.59 5.17 6.41 4.28 4.54 

*‘Cold’ days were when the mean ambient temperature between 05:00 and 07:00 at the UoR MO 
was ≤ 3 oC. ‘Warm’ days were when the mean ambient temperature between 05:00 and 07:00 at 
the UoR MO was > 9 oC. Unheated (UH), heated (H). Unheated and heated days occurred on 
different days. Numbers in bold indicate that those values are significantly different from others in 
the same column (ANOVA, p < 0.05). 



 

3.8. Internal temperature during winter 2016 

During ‘cold day’ mornings, temperatures measured inside the unheated Hedera- and Pileostegia-

covered ‘buildings’ were warmer (1.3 and 0.8 oC respectively) than those measured inside the bare 

‘buildings’ (p = <.001, Tukey’s p < 0.001 and 0.003 for Hedera and Piloestegia, respectively).  Once 

heaters were installed, temperatures measured inside Hedera- and Pileostegia-covered ‘buildings’ 

increased to 2.2 and 0.9 oC respectively, warmer than those measured inside bare ‘buildings’ (p < .001). 

There were no significant differences between the temperatures measured inside the bare ‘buildings’ 

and any other treatment during either afternoons or ‘warm day’ mornings with heating (Table 8). 

Table 7 Mean ± SD ‘external’ temperature (oC) during winter 2016 and the associated LSDs, with three 
replicates per treatment, d.f. = 8*.  

Scenario Cold (UH) Cold (UH) Cold (H) Cold (H) Warm (H) Warm (H) 

Time 
05.00 -
07.00 

14.00 -
17.00 

05.00 -
07.00 

14.00 - 
17.00 

05.00 - 
07.00 

14.00 -
17.00 

Ambient external 
temperature (oC) 

0.5 ± 1.0 3.5 ± 0.3 -0.8 ± 3.7 6.0 ± 2.6 10.8 ± 1.0 12.7 ± 0.8 

Bare 0.6 ± 0.6 3.6 ± 0.5 -0.4 ± 2.5 5.9 ± 2.7 10.3 ± 1.1 12.8 ± 0.7 

Hedera 1.0 ± 0.2 3.4 ± 0.5 0.6 ± 2.1 5.5 ± 2.5 9.9 ± 1.0 12.0 ± 0.6 

Parthenocissus 0.5 ± 0.6 3.5 ± 0.5 -0.5 ± 2.4 5.7 ± 2.9 10.2 ± 1.1 12.7 ± 0.7 

Pileostegia 0.7 ± 0.5 3.5 ± 0.5 -0.1 ± 2.3 5.9 ± 2.8 10.3 ± 1.0 12.7 ± 0.7 

p value  0.694 0.041 0.562 0.979 0.694 0.044 

LSD  0.18 0.15 0.41 0.26 0.12 0.14 

*‘Cold’ days were when the mean ambient temperature between 05:00 and 07:00 at the UoR MO 
was ≤ 3 oC. ‘Warm’ days were when the mean ambient temperature between 05:00 and 07:00 at the 
UoR MO was > 9 oC. Unheated (UH), heated (H). Unheated and heated days occurred on different 
days. Numbers in bold indicate that those values are significantly different from others in the same 
column (ANOVA, p < 0.05). 



 

4. Discussion 

In our experiment Hedera and the other tested species reduced peak internal and external building 

temperatures by at least 1 oC in summer, due to cooling by shading and evapotranspiration. This was 

a similar reduction in temperature to the findings of Cameron et al. (2014) and Perini et al. (2011a). 

Furthermore, all tested species displayed an ability to stabilise temperature, reducing the temperature 

range, internally and externally by at least 2 oC in summer, which was similar to the stabilisation effects 

found by Sternberg et al. (2011). 

The findings concerning RH and potential insulating properties of Hedera were variable. During the 

afternoons (in summer) the external RH mostly appeared to be higher behind Hedera foliage. In 

summer this effect appears to largely result from evapotranspiration. Impacts on RH were more 

pronounced for Hedera (an increase of at least 9% during the summer afternoons), than the other 

tested plant species (which produced smaller impacts on RH around the model ‘buildings’). The effect 

of vegetation on the internal RH depends largely on the climatic circumstances; in summer (during 

both mornings and afternoons), the RH increased inside the ‘buildings’ of most tested species (though 

Pileostegia produced the least increase).  The effect of the Hedera-covering on internal RH in winter 

was less pronounced, and is likely to be due to interactions between the heaters heating the air (and 

reducing the relative humidity, if not the absolute humidity).  In winter, when the wall coverage by 

leaves was 89 ± 6%, the RH inside the Hedera-covered buildings was lower than the RH measured 

inside the bare ‘buildings’ during both mornings and afternoons. This may be due to a combination of 

Table 8 Mean ± SD ‘internal’ (oC) temperature during winter 2016 and the associated LSDs (where 
differences were statistically significant), with three replicates per treatment, d.f. = 8*.  

Scenario Cold (UH) Cold (UH) Cold (H) Cold (H) Warm (H) Warm (H) 

Time 
05.00 - 
07.00 

14.00 - 
17.00 

05.00 - 
07.00 

14.00 - 
17.00 

05.00 - 
07.00 

14.00 - 
17.00 

Ambient external 
temperature (oC) 

0.5 ± 1.0 3.5 ± 0.3 -0.8 ± 3.7 6.0 ± 2.6 10.8 ± 1.0 12.7 ± 0.8 

Bare 1.0 ± 0.6 3.2 ± 1.0 3.9 ± 2.6 8.0 ± 3.0 11.4 ± 2.0 13.6 ± 2.5 

Hedera 2.3 ± 0.2 3.1 ± 0.7 6.1 ± 2.2 8.0 ± 2.2 11.5 ± 1.7 12.7 ± 2.1 

Parthenocissus 1.0 ± 0.5 3.0 ± 0.7 3.8 ± 2.1 8.0 ± 2.5 10.8 ± 1.3 12.9 ± 1.8 

Pileostegia 1.8 ± 0.2 3.1 ± 0.9 4.8 ± 2.1 7.6 ± 2.1 11.1 ± 1.3 12.6 ± 1.7 

p value  <.001 0.984 < .001 0.978 0.165 0.101 

LSD  0.33 1.03 0.48 2.29 0.69 0.83 

*‘Cold’ days were when the mean ambient temperature between 05:00 and 07:00 at the UoR MO 
was ≤ 3 oC. ‘Warm’ days were when the mean ambient temperature between 05:00 and 07:00 at 
the UoR MO was > 9 oC. Unheated (UH), heated (H). Unheated and heated days occurred on 
different days. Numbers in bold indicate that those values are significantly different from others in 
the same column (ANOVA, p < 0.05). 



slightly warmer temperatures inside the Hedera-covered buildings and slightly reduced external RH 

behind the Hedera foliage, though this requires further research to elucidate the causes.  

Interestingly, there was a mostly non-significant trend for the external RH measured behind the foliage 

of all species to be lower than that of the bare buildings during the nights/mornings throughout both 

seasons, which may indicate that the slight increase in air temperature due to the insulation effects 

of the foliage was sufficient to maintain the lower RH. No comparable studies have been found within 

the literature; similar effects are reported (Miller et al., 2007, Ottelé, 2011), but as they were not the 

focus of the studies, an explanation for the effect was not given.  

The increased RH measured behind Hedera foliage compared to the bare buildings during summer 

afternoons (i.e. 9-11% in our experiment) is not, however, expected to particularly represent an issue 

practically for the following reasons.  Firstly, Hedera’s protective effect from driving rain may 

counteract some of the impact on external RH derived from its tendency to trap water vapour. 

Moreover, it is believed that a well-constructed and maintained building (including cavity walls and 

modern cement work) would prove resistant to internal increases in RH, though this requires further 

research. Therefore, Hedera-based schemes, and direct greening in general, could prove very 

successful where installed with consideration of building integrity and the local climate. For example, 

it might prove beneficial to green walls particularly affected by driving rain, and leverage the benefits 

of precipitation interception by foliage.  

Furthermore, as identified by Perini et al. (2011a) and Bolton et al. (2014), the insulation effects of 

direct greening are minimal at intermediate temperatures, though they do improve as temperatures 

reach extremes. In winter, this may be a side effect of the shading provided by plants used in greening, 

which reduces temperatures (especially at the southern aspect) by inhibiting solar gains, as was also 

found by in a simulation of vertical greening (Carlos, 2015).  It may, therefore be advisable to prune 

evergreen species (such as Hedera) in autumn to avoid this problem, or use a deciduous species such 

as Parthenocissus (or other deciduous climbing species suitable to the site). Pruning may also improve 

insulation against wind and rain by increasing foliage density in the following year (McAllister and 

Marshall, 2017), through the removal of apical dominance and encouragement of lateral branching. 

In addition, the insulating effects found externally during the summer mornings (up to 2.6 oC warmer 

for the Hedera-covering) did not appear to translate to the internal environment. It is believed that 

this effect, in the case of Hedera, may be due to a lag in the heat transfer between the building 

envelope and the internal environment. Therefore, the temperature increase behind the foliage 

derived from night-time insulation does not translate to the internal environment until the daytime, 



when it is overwhelmed by the much larger increases from summer solar gains. It is beneficial that the 

presence of Hedera does not increase the internal building temperature at night during the summer, 

as this is a cause of thermal discomfort during hot summers and in cities suffering from the urban heat 

island effect. This is complemented by a positive effect during the warmest hours of the day, when 

the internal temperatures of Hedera-covered buildings can be 7 oC lower than bare buildings. 

In winter, however, the same insulation effects and resulting increase in external temperature did 

translate to an increase in internal temperatures [by up to 2 oC (in the mornings) for Hedera-covering, 

which was similar to that reported by Bolton et al. (2014)]. This may be because there is relatively little 

contribution from solar gains during this period and external ambient temperatures are lower, which 

would increase heat transfer to the environment.   

The findings have shown that wall greening cab be an effective tool (as part of a multi-approach 

solution) to some problems associated with building climate control. Anecdotally, space heating and 

air conditioning tend to be more expensive to operate than dehumidifiers, therefore, it may be 

sensible to utilise the benefits of plants for summer cooling and winter insulation, even if RH is slightly 

increased at times. As Hedera is an evergreen species resilient to pollution, drought, poor soil 

conditions (Steubing et al., 1989, Dunnett and Kingsbury, 2008, Sternberg et al., 2010, McAllister and 

Marshall, 2017), it is therefore proposed that it would, if properly maintained, be well suited to any 

greening scheme that requires year-round cover. By comparison, the deciduous Parthenocissus might 

be best suited for situations where cover is only required during summer months or would be 

unhelpful in winter. An example would be on a south facing wall on a building where solar gains during 

winter, uninhibited by leaves, would be beneficial, as would summer cooling from the shading 

provided by foliage. Pileostegia by comparison is a slower-growing alternative, of smaller stature, that 

provides some of the benefits of Hedera, but without the negative associations, and therefore may be 

considered an addition to the ‘toolkit’ for smaller greening schemes. Therefore, with appropriate 

precautions, the historical fears concerning the effect of Hedera on structure RH could be overcome, 

and other evergreens such as Pileostegia could be used as an alternative. 

The model buildings used may not incorporate the complex structural geometry of buildings, but this 

simplified approach enables initial insights into sensitivity analysis, bypassing waiting for several years 

to measure actual details of full-scale greening on houses.  

4.1 Limitations of the work 

In setting up our experiment, we have constructed model mini ‘buildings’ which were mortared, had 

ground and ‘roof’ insulation, but only represented one layer of skin. The use of model ‘buildings’ to 



simulate full-scale buildings and how they may be impacted by greening will have its limitations in 

replicating the full-scale systems. We believe, however, that the results presented in this research are 

valuable as an initial insight into possible impact of different plant species and can be further 

developed to enhance the understanding of other varying parameters. The model buildings are, in our 

mind, adequate for the sensitivity analysis of building designs. 

On the other hand, green façade plants were allowed to grow as if they were on a ‘real size’ building, 

without crown thinning or reduction. While this approach could have thus overestimated the impact 

of planting on a real-size building’s interior, this is particularly encouraging in thus suggesting that any 

negative impacts (e.g. higher RH in model building) would therefore be very small in the full scale 

building. The measurements on the external skin of the building however, directly behind foliage, 

should not be influenced by the building scale but instead the transmission parameters which are 

impacted on by the foliage thickness.  

We believe that the value of our approach comes from replicated measurements of a number of 

model buildings, three for each treatment. This provides us with a ‘sense of direction’ of how plant 

species differ when applied as a form of building greening, using structurally different plants – e.g. 

what’s the impact of plants shedding leaves during the winter, rather than solely absolute values in 

terms of number of degrees of cooling/warming or humidity impacts. 
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Appendix A 

Sensor layout for summer 2015 (Figure A.1) and winter 2016 (Figure A.2) experiments.  

 

Figure A.1 Sensor layout during summer 2015, not to scale  
 

 

Figure A.2 Sensor layout during winter 2016, not to scale  
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