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Abstract 

The online Product Recommendation Networks (PRNs), connecting similar products with 

hyperlinks, have been widely implemented in user-generated content websites and 

ecommerce systems. With the PRNs as the virtual shelves, this paper explores the impact of 

the distance between products on the formation of product electronic Word-of-Mouth 

(eWOM). Employing an empirical book recommendation network of Amazon, the study one 

explores the effect of a focal product’s neighborhood (nearby others) on its eWOM, and study 

two explores the eWOM similarity between product pairs that are at one, two and three clicks 

away from each other. The results reveal the significant role played by the product distance 

on the association of their eWOM. On one hand, a focal product’s eWOM is largely influenced 

by that of its neighborhood. On the other hand, the good connectivity between two products, 

which is defined as the number of paths connecting them, is closely associated with the 

eWOM similarity between them. The findings suggest that the products should be considered 

as interactive collectives rather than separated individuals particularly in the eWOM studies.  

Keywords: product recommendation network, eWOM similarity, electronic commerce, 

network distance 

1. Introduction  

In traditional brick-and-mortar grocery stores, the product position is physically represented 

by shelf display, which has been found significantly influencing product selection [1]. Products 

with more facings or placed on more prominent shelf positions will get more attentions first, 

which is normally referred to as shelf effect in the literature [2-3]. 

Nowadays, with the dramatic development of online commercial marketplaces, “virtual 

shelves” have been constructed by putting products at some specific online positions, to 

provide consumers a flexible and personalized experience [4]. Among these virtual shelves, 

the Product Recommendation Network (PRN) is one of the most popular forms, which is 

organized by connecting similar products with hyperlinks. An example is Amazon’s 

“Customers who bought this item also bought” list. Such PRN can navigate consumers to 

explore different yet relevant products [5]. Hence, a consumer browsing products in a PRN is 

largely similar to the scenario of walking down an aisle in an offline store. It has been found 
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that PRNs play an important role on consumers’ choices [6] and the shelf effect can also be 

found in the online stores.  

Since every product has a position in the PRN, any pair of products thus have a specific 

distance between them, such as one can reach another in two clicks. The literature has 

suggested the primacy effect that products encountered earlier during the online search 

process or products next to a focal item will receive more attentions [7]. Thus, the connected 

products in the PRN normally have similar attributions, leading to similar demands and sales 

[8]. As another focus of marketing studies, the electronic Word-of-Mouth’s (eWOM) impact 

on consumer purchase intention [9-10] or consumer engagement of posting [11] has been 

widely studied. With the increasing attentions on the PRNs in recent year, the link between 

PRN and eWOM has been explored, suggesting that two directly-connected products in a PRN 

would have similar eWOM rating with each other [12]. However, whether the indirect 

connections have the similar effect, and what is the influence of the number of paths 

connecting two products are still unknown.  

In addition, the anchoring bias theory suggests that individuals tend to make decisions based 

on earlier information (anchor) [13]. For example, in an auction, people would overestimate 

a painting’s value if the former one was bided by a high price. Such effect has also been found 

in online voting, that a user tends to give a high rating on a subsequent movie after watching 

a high-quality movie [14], or may consecutively give high/low ratings to movies s/he watched 

[15]. Considering the navigation function of PRNs, the structure of the PRNs may largely 

determine the sequence of browsing behavior of consumers. Hence, the anchoring bias could 

be applied to the eWOM correlation (such as ratings) of products that are near to each other 

in the PRN. 

Yet, such link between the PRN and eWOM is still not fully explored. Most product pairs in 

the PRNs, though are not directly connected with each other, have connections of paths with 

certain distances (larger than 1). Besides, the purpose of PRNs is to distribute web traffic to 

appropriate products, and users are normally surfing on such network, from one product to 

another following hyperlink paths. Therefore, whether a pair of products with a certain 

distance have similar eWOM is a key question that may help to further understand the 

consumer behavior and product performances in the PRNs. 

To explore such question, we employ an empirical book recommendation network collected 

from Amazon along with the eWOM information of every book. The analysis is carried out 

from two levels, namely the neighborhood-to-product level and dyadic product-to-product 

level. An 𝑛th-order neighborhood of a focal book is defined as the collective of books who 

have shortest distance of exactly 𝑛 to the focal book in the PRN, i.e. it takes at least 𝑛 clicks 

on the recommendation hyperlinks to reach the focal book. For the neighborhood-to-product 

level, we analyze the association between the average volume and rating [10-11] of the 

neighborhood and that of the focal books. For the dyadic product-to-product level, we focus 

on the connectivity of product pairs which is defined as the easiness for a consumer to visit 

from one to another by following the recommendations, measured as the number of paths 
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between the two books. Accordingly, we investigate the effect of such connectivity on the 

eWOM rating difference between the books. According to the results, the eWOM of focal 

books is largely related to the neighbors’ eWOM, and such impact can reach three clicks away. 

Products that are close to each other indeed have similar eWOM in the recommendation 

network, and the more paths connecting two products, the more similar their eWOM will be. 

The rest of the paper is organized as follows. Section 2 reviews the relevant literature on 

eWOM and PRN respectively, and develops the hypotheses based on the literature review 

and theoretical foundation. Section 3 introduces the data collection method of this paper and 

the model specification. The results are presented in section 4. Section 5 concludes and 

discusses the findings of the study. Section 6 summarizes the contributions including 

theoretical and practical implications. At last, the limitations and future work are presented 

in section 7.  

2. Related Work and Hypotheses Development 

2.1 Electronic Word-of-Mouth (eWOM) 

Given the rapid development of ecommerce platforms, eWOM has become an important 

component in the marketplace environment [16]. Particularly, being one of the most common 

forms of eWOM, online product reviews have become important sources of information for 

consumers to compose the intensions and impressions towards the products. Thus, eWOM 

research has attracted a lot of attentions. 

Some studies believed that the eWOM can significantly influence consumers’ purchase 

decisions [17-18] and the products’ subsequent sales [17, 19-21]. Volume, valance and 

variance of online reviews are the most important attributes that the related literature 

concerns. Chevalier and Mayzlin [19] reported that the volume and valance of consumer 

reviews have positive impact on the book’s subsequent sales in Amazon. Li and Hitt [21] found 

similar results for the website of Barnesand-Noble.com. Liu [22] and Duan [17] found that the 

review volume has significant positive impact on the box sales of movies. Dellarocas et al. [23] 

showed that the valance of online ratings posted during a movie’s opening weekend is the 

most important indicator for its revenue trajectory in the following weeks. Similarly, 

Chintagunta et al. [20] found that the rating valance of pre-release advertising is the main 

driver of box office performance. Clemons et al. [24] found that the beer sales grow faster for 

the brands with higher variance of consumer ratings. Godes and Mayzlin [25] reported that 

the variance of opinions on weekly TV shows across the Internet communities is positively 

related to the evolution of viewership.  

Another focus of eWOM research examines why consumers would like to engage in the 

eWOM activities, i.e. the motivations for eWOM. Hennig-Thurau et al. [26] concluded that 

social benefits, economic incentives, concern for others, and extraversion are the main 

motivations for consumer to participate in eWOM on the Internet. Berger and Iyengar [27] 

examined the psychological factors that are related to the immediate and ongoing eWOM, 
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thereby found that more interesting products could get more immediate eWOM but do not 

receive more ongoing eWOM over time. In addition, the motivations of positive and negative 

eWOM have also been found to be associated with different antecedents [28]. For example, 

consumers who have a favorable attitude towards the eWOM communications intend to post 

positive reviews, whereas negative eWOM is more driven by social pressure.  

Pan et al. [11] explored the impact of the social network on the posting behaviors. They 

distinguished the impact of the reviews from friend and crowd and showed that friend 

reviews are more determinant to drive a consumer’s engagement to eWOM behaviors. 

Recent study from Dixit et al. [29] suggest that perceived behavioral control, subjective norms, 

ego involvement, and taking vengeance are significant predictors for consumers to engage in 

posting reviews for restaurants.  

By far, the majority of eWOM studies regard product as isolated entities and explore the 

eWOM of each product as individual. As suggested by the anchoring bias theory [13-14], the 

browsing/purchasing sequence of consumers will have significant influence on their 

evaluation on different products. Hence, the eWOM of products have potential interactions 

with each other. However, such interaction among products in terms of their eWOM has not 

been fully explored.  

2.2 Product Recommendation Network (PRN) 

Many ecommerce websites evaluate the similarities among products, in terms of how often 

they are purchased together by the same consumers. Accordingly, recommendations can be 

made for each product by uncovering the products that have been most frequently “co-

purchased” with the target product. Examples can be found in various websites, such as the 

“Customers who bought this item also bought…” list of Amazon, the “People also viewed” list 

in Yelp and so on. Regarding the products as nodes, the recommendation hyperlinks thus 

connect the nodes as a massive network, which is normally referred to as the product 

recommendation network (PRN), or co-purchase network.  

The PRNs enable users to browse diverse products by clicking and following the hyperlinks, 

thereby influencing the consumption pattern [30]. Assuming the revenue of a product as the 

summation of its intrinsic value and incoming value, Oestreicher-Singer et al. [31] estimated 

the network value of products, which consists the value generated by itself, and the value it 

contributes to other products. Hou et al. [5] explored the users’ surfing behavior in Amazon 

and found that the recommendation network of Amazon tends to rapidly navigate users to 

very popular books, leading to the monopoly of web traffic by these blockbusters. Goldenberg 

et al. [32] integrated the social and product network as a dual-network and found it to be able 

to facilitate the process of content exploration. 

The PRN is also found with significant effect on the sales and demand of products in it. 

Oestreicher-Singer and Sundararajan [8] quantified the incremental correlation between 

book sales and the visibility in the book network. The PageRank centrality, which is a measure 

for a node’s position in a network, and some other quantities such as the in-degree, are 



 5 

closely associated with the books’ demand as measured by the sale rank in Amazon [33]. 

Leem and Chun [34] further examined the other centrality measures, including degree 

centrality, closeness centrality, betweenness centrality, and eigenvector centrality, and 

confirmed that a book’s demand is vastly influenced by its position in the PRNs. Lin et al. [35] 

explored the impact of network diversity and stability on product demand. Huang et al. [36] 

found the products with more connected links to have greater demands.  

In summary, most literature explores the relationship between a product’s demand or sales 

and its position in the PRN, such as the visibility, centrality measures etc. Actually, one of the 

most important functions of PRN is to navigate consumers to browse relevant products, 

through which, sequences of browsing may be resulted according to the local structure of the 

PRNs. Thus, the paths connecting two products would be of great importance. There are two 

recent studies made efforts towards such direction. Lin and Wang [12] studied the effect of 

direct paths, e.g. one product recommends another, on the rating similarity between the two 

products. However, most product pairs have indirect paths. For example, A recommends B 

while B recommends C, and then products A and C have an indirect path with length of two 

clicks. Whether such indirect paths have effects on the eWOM convergence is still unknown. 

On the other hand, Carmi et al. [37] reported that the boost in sale for one product may 

spread to its nearby neighbors up to four clicks away. It is a clear sign that the paths between 

products have significant effect on product performance. Despite the great significance, they 

ignored the fact that two products may have multiple paths connecting them, which can well 

describe the possibility for consumers to surf from one to another. How would the number 

of paths influence the product demand is still unknown. 

2.3 Theoretical Foundation and Hypotheses Development 

As discussed in section 2.1 the eWOM studies lack of investigations where the products are 

considered interactive. PRNs provide a very good scenario for such studies, where the 

products are connected as a network by recommendation hyperlinks. Meanwhile, section 2.2 

discussed the gap of in-depth exploration on the effect of paths on product performance. 

Hence, in this paper, we study the impact of product distance in the PRN, i.e. the length and 

number of paths, on their eWOM similarity.  

An apparent question thus raised that why would the product distance have an effect on their 

eWOM? The literature of shelf display and management provides good theoretical 

foundation to justify such relationship. It has been demonstrated in the marketing research 

that shelf allocation or product display in traditional brick-and-mortar stores, has a great 

influence on consumer purchasing behavior and substantial demand of products [7,26,38-39]. 

Previous literature suggested that product display such as categorizing the same set of 

products by keeping actual assortment size equal or organizing product based on the physical 

position, could influence consumer perceptions and inferences about the product popularity 

[40-41]. The product distance based on an effective layout is shown to stimulate the demands 

and sales of products by making them more visible. Chen et al. [38] identified and classified 

the effect of relationships between relative spatial distance of displayed products and the 



 6 

items’ sales in a retail store. As suggested by proximity effect [7], products located next to the 

focal item have a higher probability of selection than isolated ones. 

To examine whether and how such offline shelf effect translate to an online grocery context, 

Breugelmans et al. [7] found that products encountered earlier during the online search 

process will receive more attention and would be selected with a higher probability (primacy 

effect), and product located next to the focal item have a higher probability of being selected 

as well (proximity effect). The study of Ert and Fleischer [42] revealed the significant influence 

of the display position of hotels in a list of relevant hotels on the likelihood for them to be 

selected. In-store display of products in online context has a positive effect on the sales of the 

displayed products [4]. These studies suggest that the selection of a product in an online store 

is largely related to where it is displayed.  

PRN can be regarded as a “virtual shelf” that displays products. Thus, we believe that the 

products distance in a PRN will have an effect on their performance. According to the 

Stimulus-Organism-Response (SOR) paradigm, the online environmental stimuli influence 

consumers’ internal states, which in turn influence consumes’ overall responses such as 

consumer satisfaction or trust that can be reflected by eWOM [43].  

We aim to study the distance effect from two levels, namely the neighborhood-to-product 

level, and the product-to-product level. Firstly, we believe that the eWOM of a focal product 

is largely influenced by the “neighborhood” it belongs to, which is the collective of products 

that have very short distance to the focal product. By “short distance”, in this paper we mean 

the distance within three clicks away. For example, if a focal product gets recommended by a 

lot of highly-rated others (who have hyperlinks connecting it), it is more likely that the focal 

product would also get a high rating. The previous findings on the spreading of sale in PRN 

[33] also inspired such assumption. As such, we develop the following hypotheses: 

H1a: The review volume of a focal product is positively influenced by that of its 

neighborhood of products who have paths of length up to three clicks connecting to 

it. 

H1b: The average rating of a focal product is positively influenced by that of its 

neighborhood of products who have paths of length up to three clicks connecting to 

it. 

Secondly on the product-to-product level, we focus on product pairs. Since Lin and Wang [12] 

have reported the influence of direct recommendation relationships on the rating similarity, 

which is in accordance with the anchoring bias theory [13], here we re-test such observation 

to confirm whether it applies also to the Amazon book network context. Accordingly, we have 

the following hypothesis: 

H2a: The directly connected products have similar average rating with each other.  

As we discussed in section 2.2, there lacks the study on the indirect paths’ impact on product 

performances in the literature. Considering the fact that most product pairs actually are not 
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directly connected, we study the effect of indirect connections in a detailed manner by 

introducing the concept of connectivity. The connectivity measures the number of paths with 

a certain length connecting two products, thereby describing the easiness of surfing from one 

product to another. In other words, we not only examine the rating similarity between two 

products with certain distance, but also explores the effect of the strength of their connection. 

Thus, we hypothesize the following. 

H2b: The product pairs with strong indirect connectivity tend to have similar average 

rating with each other. 

3. Methodology and Model Development 

3.1 Data collection 

The data applied in this paper is a book recommendation network which we collected from 

Amazon via a self-developed Python-based web crawler. In the Amazon system, each book 

has a unique ID, and the webpage of the book is composed as 

“http://www.amazon.com/dp/ID”, where the “ID” should be replaced by a real ID. 

Consequently, to collect the book network is actually to collect the corresponding webpages 

and the recommendation hyperlinks connecting them.  

We firstly selected 5 books as the seeds of the crawling from the Amazon's bestseller list 

(www.amazon.com/gp/bestsellers/books). Note that, the list may change from time to time 

and in our collection, the seeds were collected on 1st January 2016. For each of the seed books, 

we collect books from its recommendation list known as “Customers who bought this item 

also bought” list. We follow such recommendation hyperlinks originated from each of the 

seeds to collect the recommended books based on a width-first search. While normally 100 

similar recommendations are offered in each book’s recommendation list, there are generally 

5 to 10 recommendations in the first page depending on the window size of the web browser. 

Assuming the recommendations displayed in the first page would get most attentions, we 

collect only the 10 books ranking at the top of the list as the current one’s recommendations. 

The search continued for 8 steps. And for the 8th-order books, we collect the first ten 

recommendations that have already been collected in previous steps out from the list as their 

recommended books, in purpose of avoiding new books. Accordingly, 157,856 books are 

collected. In addition, the reviews of each collected books are also downloaded. There are in 

total of 4,520,102 reviews for the collected books.  

The structure of the PRN largely depends on the recommendation algorithm applied by 

Amazon, which is not exactly known to us. While we collected the list of “customers who 

bought this item also bought”, there are also lists in Amazon pages such as “customers who 

viewed this item also viewed” etc. Hence, according to the title of the list, the collected 

Amazon book network is organized according to a certain collaborative filtering algorithm [44] 

(association rule) based on the co-purchase records. The viewing data, i.e. consumers’ view 

sequence, shall have been considered in a separate recommendation network which is not in 
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this paper’s concern. Given the constantly evolving purchase data, the structure of Amazon 

PRN may be updated from time to time. The PRN in this paper was collected in January 2016. 

Thus, we mainly focus on the review posted in December 2015, and assume that our collected 

network can well represent the structure of the recommendations in this month. The selected 

period covers 34,100 books that have at least one review and have been recommended at 

least once, and a total of 92,405 associated reviews.  

 

Figure 1. A Toy Network to Illustrate Amazon Book Recommendation Network  

Figure 1 shows a simple recommendation network that the books are connected with each 

other via directed hyperlinks. Between every pair of books, there would normally be a certain 

distance, which represents how many clicks at minimum it takes for a user to start from a 

book to visit another. For example, book 3 needs one click to reach book 1, while book 10 

needs at least three clicks to reach book 1. For a focal book, we define another book as one 

of its 𝑛th-order neighbors if this book has a distance of 𝑛 to reach the focal book. Accordingly, 

as shown in Figure 1, taking the book 1 as the focal book, books 2, 3, 4 are its first-order 

neighbors; books 5, 6, 7 are its second-order neighbors; and books 8, 9, 10 are its third-order 

neighbors. Note that, we only consider books from which a user can reach the focal book as 

the neighbors, while ignore these books that can only be reached by the focal book. 

Accordingly, book 11 and 12 will not be considered as the focal book’s neighbors. 

3.2 Variable Operationalization 

The analysis in this paper will be addressed from two levels to test the hypotheses: 

neighborhood-to-product level and dyadic product-to-product level. The research models, 

the variable operationalization and the results will be introduced respectively in the following.  

3.2.1 Neighborhood-to-product level 

The neighborhood level examines the correlation between a focal book’s eWOM and the 

average level of its neighbors. Thus, it mainly addresses the hypothesis H1, answering the 

question that to what extent a product’s eWOM is determined by its nearby neighbors.  

Dependent variables 
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The dependent variables in this part measures the eWOM of the focal books. We 

operationalize the eWOM with two most direct measurements known as the review volume 

and the average rating (valance). Accordingly, the dependent variables are the number of 

reviews at day 𝑡, 𝑅𝑉𝑖(𝑡) and the average rating at day 𝑡, 𝑅𝑖(𝑡), for each focal book 𝑖. 

Independent variables and control variables 

The independent and control variables are basically the eWOM information of the focal books’ 

neighbors. We only consider the neighbors that are within three clicks from the focal books, 

because a lager distance may include most of the population as the neighbors, which will be 

of less value and requires much more computational cost. Accordingly, there are three 

categories of independent variables namely the variables for the first-order neighbors, 

second-order neighbors and third-order neighbors, denoting with (1), (2) and (3) respectively.  

We consider the average value of daily review volume and daily average rating of focal books’ 

neighbors as the independent variables. For a neighbor book 𝑗, its review volume and average 

rating at the day 𝑡 are denoted with 𝑉𝑗(𝑡) and 𝑅𝑗(𝑡). Note that, not every neighbor book has 

reviews every day in the studied period. If a neighbor book 𝑗 does not have reviews at the day 

𝑡 , we regard its volume as 𝑉𝑗(𝑡) = 0 . But for the rating, a value of 0  would suggest an 

extremely low rating. Therefore, we regard the average rating of such books as the system 

average of all reviews 𝑅𝑗(𝑡) = 4.299 so that it represents a neutral rating. In this way, for a 

focal book 𝑖 , there are two independent variables for an order (𝑛), namely the average 

review volume of the 𝑛th order neighbors, 

𝐴𝑣𝑒_𝑅𝑉𝑖
(𝑛)(𝑡) =

1

𝐼𝑛𝑑𝑒𝑔
𝑖
(𝑛) ∑ 𝑉𝑗(𝑡)

𝑗∈𝚪𝑖
(𝑛) ,                    (1) 

and the average rating of its neighbors, 

𝐴𝑣𝑒_𝑅𝑎𝑡𝑖𝑛𝑔𝑖
(𝑛)(𝑡) =

1

𝐼𝑛𝑑𝑒𝑔
𝑖
(𝑛) ∑ 𝑅𝑗(𝑡)

𝑗∈𝚪𝑖
(𝑛) ,                        (2) 

respectively, where 𝚪𝑖
(𝑛)

 is the set of books which are the focal book 𝑖’s 𝑛th-order neighbors 

with a population of 𝐼𝑛𝑑𝑒𝑔𝑖
(𝑛)

. Accordingly, we have the independent variables 

𝐴𝑣𝑒_𝑅𝑉𝑖
(𝑛)(𝑡) and 𝐴𝑣𝑒_𝑅𝑎𝑡𝑖𝑛𝑔𝑖

(𝑛)(𝑡), with 𝑛 = 1, 2, 3. 

Considering the visibility of focal books largely varies from each other, we take the number 

of neighbors at each order as the control variables. Hence, 𝐼𝑛𝑑𝑒𝑔𝑖
(1)

, 𝐼𝑛𝑑𝑒𝑔𝑖
(2) and 𝐼𝑛𝑑𝑒𝑔𝑖

(3) 

represent the number of first-order neighbors, second-order neighbors and third-order 

neighbors of the focal book 𝑖  respectively. In addition, we control the analysis with the 

historical number of reviews of the focal book. To be specific, for a focal book 𝑖, the number 

of reviews that are posted before 1st December 2016, denoting with 𝑁𝑂𝑅𝑖 is also a control 

variable. The control variables do not change over time, as we have assumed that the 

structure of recommendations in the studied time period is fixed.  
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The operationalization and descriptive statistics of all variables are shown in Table 1, while 

the Table 2 reports the correlations among these variables. 

Table 1. Descript ive Statistics of Variables for the Neighborhood -to-
Product Level Study 

Variable 
Type 

Variable Name Descriptions Mean 
Std. 
Dev. 

Min Max 

Dependent 
Variables 

𝑅𝑉𝑖(𝑡) 
review volume of the focal book 𝑖 
at day 𝑡. 

1.205 0.996 1 107 

𝑅𝑖(𝑡) 
average rating of the focal book 𝑖 
at day 𝑡. 

4.449 1.043 1 5 

Independent 
Variables 

𝐴𝑣𝑒_𝑅𝑉𝑖
(1)

(𝑡) 
average review volume of first-
order neighbors of focal book. 

0.073 0.150 0 7.1 

𝐴𝑣𝑒_𝑅𝑉𝑖
(2)

(𝑡) 
average review volume of second-
order neighbors of focal book. 

0.065 0.076 0 3 

𝐴𝑣𝑒_𝑅𝑉𝑖
(3)

(𝑡) 
average review volume of third-
order neighbors of the focal book. 

0.028 0.035 0 2.22 

𝐴𝑣𝑒_𝑅𝑎𝑡𝑖𝑛𝑔𝑖
(1)

(𝑡) 
average review rating of first-
order neighbors of the focal book. 

4.428 0.083 1 5 

𝐴𝑣𝑒_𝑅𝑎𝑡𝑖𝑛𝑔𝑖
(2)

(𝑡) 
average review rating of second-
order neighbors of the focal book.  

4.423 0.061 2.71 5 

𝐴𝑣𝑒_𝑅𝑎𝑡𝑖𝑛𝑔𝑖
(3)

(𝑡) 
average review rating of third-
order neighbors of the focal book. 

4.422 0.016 3.74 4.81 

Control 
Variables 

𝑁𝑂𝑅𝑖
 number of historical reviews. 188.9 376.5 1 5263 

𝐼𝑛𝑑𝑒𝑔𝑖
(1) number of first-order neighbors. 29.60 51.0 1 911 

𝐼𝑛𝑑𝑒𝑔𝑖
(2) 

number of second-order 
neighbors  

198.1 478.5 1 10204 

𝐼𝑛𝑑𝑒𝑔𝑖
(3) number of third-order neighbors.  823.3 1842 1 26414 

Table 2. Correlations among Variables for Neighborhood -to-Product Level Study 

Variables 1 2 3 4 5 6 7 8 9 10 11 12 

1. 𝑅𝑉𝑖(𝑡) 1            

2. 𝑅𝑖(𝑡) 0.02 1           

3. 𝐴𝑣𝑒_𝑅𝑉𝑖
(1)

(𝑡) 0.17 0.04 1          

4. 𝐴𝑣𝑒_𝑅𝑉𝑖
(2)

(𝑡) 0.14 0.01 0.28 1         

5. 𝐴𝑣𝑒_𝑅𝑉𝑖
(3)

(𝑡) 0.05 0.00 0.20 0.33 1        

6. 𝐴𝑣𝑒_𝑅𝑎𝑡𝑖𝑛𝑔𝑖
(1)

(𝑡) 0.00 0.12 0.16 0.06 0.01 1       

7. 𝐴𝑣𝑒_𝑅𝑎𝑡𝑖𝑛𝑔𝑖
(2)

(𝑡) 0.00 0.50 0.06 0.08 -0.01 0.14 1      

8. 𝐴𝑣𝑒_𝑅𝑎𝑡𝑖𝑛𝑔𝑖
(3)

(𝑡) 0.00 0.05 0.02 0.04 0.08 0.03 0.04 1     

9. 𝑁𝑂𝑅𝑖 0.27 0.02 0.16 0.00 0.06 0.00 0.01 0.01 1    

10. 𝐼𝑛𝑑𝑒𝑔𝑖
(1)

 0.34 0.01 0.06 -0.13 -0.02 -0.02 -0.0 -0.0 0.47 1   

11. 𝐼𝑛𝑑𝑒𝑔𝑖
(2)

 0.31 0.00 0.11 -0.09 -0.02 -0.02 -0.01 -0.01 0.44 0.92 1  

12. 𝐼𝑛𝑑𝑒𝑔𝑖
(3)

 0.28 -0.01 0.12 -0.08 -0.01 -0.03 -0.01 -0.01 0.45 0.83 0.95 1 

3.2.2 Dyadic product-to-product level  

The dyadic level explores the correlation between the connectivity and eWOM similarity 

between two individual products. Addressing hypothesis H2, it explores the association 

between the paths connecting two products and their eWOM similarity. Theoretically, every 
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pair of books can be regarded as an observation. However, given the population of the data, 

such number of book pairs would be very large. Since we only explore the books with 

distances of within three clicks, here we consider the pairs of books, between which there is 

at least one path of either length of 1, 2, or 3 connecting them.   

Dependent variable  

In this study, we use the difference of eWOM rating during the studied time month for each 

product pair consisting of book 𝑖  and book 𝑗  as the dependent variable, denoting with 

𝑊𝑂𝑀_𝑑𝑖𝑓𝑓𝑖𝑗 = |𝑅𝑖 − 𝑅𝑗|. Accordingly, a smaller (larger) value of 𝑊𝑂𝑀_𝑑𝑖𝑓𝑓𝑖𝑗 indicates that 

the books 𝑖 and 𝑗 have more similar (different) eWOM. 

Independent variables and control variables 

Since the two products being connected or not can only partially represents their connectivity, 

here in this study, we use the number of paths between the measured two products as the 

independent variables. For two books 𝑖  and 𝑗, we count how many paths of length 𝑛 are 

connecting them, denoted with 𝑁𝑂𝑃𝑖𝑗
(𝑛)

. Therefore, such value can well describe the traffic 

flow between the two products, i.e. how easily can consumers surf from one to the other. A 

larger value of 𝑁𝑂𝑃𝑖𝑗
(𝑛)

 represents better connectivity between the two products. In respect 

to the neighborhood level analysis, here we also consider distances up to three, i.e. the 

number of paths 𝑁𝑂𝑃𝑖𝑗
(1)

, 𝑁𝑂𝑃𝑖𝑗
(2)

, 𝑁𝑂𝑃𝑖𝑗
(3)

. While 𝑁𝑂𝑃𝑖𝑗
(1)

 can only take values of 1 or 0, 

𝑁𝑂𝑃𝑖𝑗
(2)

 and 𝑁𝑂𝑃𝑖𝑗
(3)

 could be any integer values. Actually, Lin and Wang (2018) have already 

proved that the direct connection (𝑁𝑂𝑃𝑖𝑗
(1)

= 1 ) between two products can lead to the 

convergence of their eWOM rating. In this work, we consider in addition the indirect 

connections, namely 𝑁𝑂𝑃𝑖𝑗
(2)

and 𝑁𝑂𝑃𝑖𝑗
(3)

, to explore the effect of distance between two 

products in the network on their eWOM similarity. In addition, we define the connectivity 

between two products by combining 𝑁𝑂𝑃𝑖𝑗
(1)

, 𝑁𝑂𝑃𝑖𝑗
(2)

, 𝑁𝑂𝑃𝑖𝑗
(3)

 to measure the likelihood for 

consumers to surf from the homepage of product 𝑖 to 𝑗 within three clicks,  

𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦𝑖𝑗 =
𝑁𝑂𝑃𝑖𝑗

(1)

𝐿
+

𝑁𝑂𝑃𝑖𝑗
(2)

𝐿2
+

𝑁𝑂𝑃𝑖𝑗
(3)

𝐿3
,              (3) 

where 𝐿  is the number of recommendations per product, i.e. out-going degree of each 

product. In our collected data, 𝐿 = 10. 

We use the differences between the basic information of two products as the control 

variables including the difference of in-degree of two books, 𝐼𝑛𝑑𝑒𝑔_𝑑𝑖𝑓𝑓𝑖𝑗 = |𝐼𝑛𝑑𝑒𝑔𝑖 −

𝐼𝑛𝑑𝑒𝑔𝑗| ; and the difference of review volume at the studied time period, 𝑅𝑉_𝑑𝑖𝑓𝑓𝑖𝑗 =

|𝑅𝑉𝑖 − 𝑅𝑉𝑗|. 

The operationalization and descriptive statistics of all variables for the dyadic level are shown 

in Table 3, while the Table 4 reports the correlations among these variables.  

Table 3. Descriptive Statistics of Variables for the Dyadic Level Study  
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Variable Type 
Variable 
Name 

Descriptions Mean 
Std. 
Dev. 

Min Max 

Dependent 
Variables 

𝑊𝑂𝑀_𝑑𝑖𝑓𝑓𝑖𝑗  
Difference of eWOM rating 
between product 𝑖 and 𝑗. 

0.80 0.94 0 4 

Independent 
Variables 

𝑁𝑂𝑃𝑖𝑗
(1)

 
Number of paths from product 
𝑖 to 𝑗 by one click. 

0.05 0.21 0 1 

𝑁𝑂𝑃𝑖𝑗
(2)

 
Number of paths from product 
𝑖 to 𝑗 by two clicks. 

0.44 1.10 0 10 

𝑁𝑂𝑃𝑖𝑗
(3)

 
Number of paths from product 
𝑖 to 𝑗 by three clicks. 

4.60 8.91 0 91 

𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦𝑖𝑗
 The easiness of getting to product 
𝑗 from 𝑖 in within three clicks. 

0.013 0.036 0.001 0.281 

Control 
Variables 

𝐼𝑛𝑑𝑒𝑔_𝑑𝑖𝑓𝑓𝑖𝑗
 Difference of in-degree between 

product 𝑖 and 𝑗. 
44.58 85.4 0 910 

𝑅𝑉_𝑑𝑖𝑓𝑓𝑖𝑗
 Difference of review volume 

between product 𝑖 and 𝑗. 
9.91 28.6 0 411 

Table 4. Correlations among Variables for the Dyadic Level Study  

Variables 1 2 3 4 5 6 7 

1. 𝑊𝑂𝑀_𝑑𝑖𝑓𝑓𝑖𝑗 1       

2. 𝐼𝑛𝑑𝑒𝑔_𝑑𝑖𝑓𝑓𝑖𝑗 -0.018 1      

3. 𝑅𝑉_𝑑𝑖𝑓𝑓𝑖𝑗 -0.027 0.551 1     

4. 𝑁𝑂𝑃𝑖𝑗
(1)

 -0.015 -0.011 -0.007 1    

5. 𝑁𝑂𝑃𝑖𝑗
(2)

 -0.020 0.029 0.028 0.574 1   

6. 𝑁𝑂𝑃𝑖𝑗
(3)

 -0.024 0.066 0.065 0.667 0.901 1  

7. 𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦𝑖𝑗  -0.020 0.019 0.021 0.910 0.852 0.890 1 

3.3 Model Specification 

For the analysis on the neighborhood level, we develop two regression models to explore 

how the neighbors’ eWOM that are up to three clicks away, influence the eWOM of the focal 

books, in terms of the review volume and average rating respectively. The detailed models 

can be described as, 

𝑹𝑽𝒊(𝒕) = 𝛽0 + 𝛽1𝑁𝑂𝑅𝑖 + 𝛽2𝐼𝑛𝑑𝑒𝑔𝑖
(1)

+ 𝛽3𝐼𝑛𝑑𝑒𝑔𝑖
(2)

+ 𝛽4𝐼𝑛𝑑𝑒𝑔𝑖
(3)

+ 

 𝛽5𝐴𝑣𝑒_𝑅𝑉𝑖
(1)(𝑡) + 𝛽6𝐴𝑣𝑒_𝑅𝑎𝑡𝑖𝑛𝑔𝑖

(1)(𝑡) + 𝛽7𝐴𝑣𝑒_𝑅𝑉𝑖
(2)(𝑡) +       

  𝛽8𝐴𝑣𝑒_𝑅𝑎𝑡𝑖𝑛𝑔𝑖
(2)(𝑡) + 𝛽9𝐴𝑣𝑒_𝑅𝑉𝑖

(3)(𝑡) + 𝛽10𝐴𝑣𝑒𝑅𝑎𝑡𝑖𝑛𝑔𝑖

(3)(𝑡) + 𝜀𝑖,                          (4)     

𝑹𝒊(𝒕) = 𝛽0 + 𝛽1𝑁𝑂𝑅𝑖 + 𝛽2𝐼𝑛𝑑𝑒𝑔𝑖
(1)

+ 𝛽3𝐼𝑛𝑑𝑒𝑔𝑖
(2)

+ 𝛽4𝐼𝑛𝑑𝑒𝑔𝑖
(3)

+ 

𝛽5𝐴𝑣𝑒_𝑅𝑉𝑖
(1)(𝑡) + 𝛽6𝐴𝑣𝑒_𝑅𝑎𝑡𝑖𝑛𝑔𝑖

(1)(𝑡) + 𝛽7𝐴𝑣𝑒_𝑅𝑉𝑖
(2)(𝑡) +          

 𝛽8𝐴𝑣𝑒_𝑅𝑎𝑡𝑖𝑛𝑔𝑖
(2)(𝑡) + 𝛽9𝐴𝑣𝑒_𝑅𝑉𝑖

(3)(𝑡) + 𝛽10𝐴𝑣𝑒_𝑅𝑎𝑡𝑖𝑛𝑔𝑖
(3)

(𝑡) + 𝜀𝑖.                 (5)               

We use the logarithms of each control variable in the model. 

For the analysis on the dyadic product-pair level, given the high correlation (see Table 4) 

among the variables of number of paths and the connectivity, we explore their effect in turns 

with the following model: 
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𝑾𝑶𝑴_𝒅𝒊𝒇𝒇𝒊𝒋 = 𝛽0 + 𝛽1𝑅𝑉_𝑑𝑖𝑓𝑓𝑖𝑗 + 𝛽2𝐼𝑛𝑑𝑒𝑔_𝑑𝑖𝑓𝑓𝑖𝑗 + 𝛽3𝑅𝑎𝑡𝑖𝑛𝑔_𝑑𝑖𝑓𝑓𝑖𝑗 + 𝛽4𝑋 + 𝜀𝑖,  (6) 

where 𝑋  will operationalized as 𝑁𝑂𝑃𝑖𝑗
(1)

, 𝑁𝑂𝑃𝑖𝑗
(2)

, 𝑁𝑂𝑃𝑖𝑗
(3)

 and 𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦𝑖𝑗  in turns to 

analyze the impact of different product distance separately on the eWOM similarity.   

4. Results 

4.1 Study one: neighborhood-to-product level 

4.1.1 Review volume 

Table 5. Regression Results of Focal Books’ Review Volume  

DV: 𝑅𝑉𝑖(𝑡) 

 Model 1 Model 2 Model 3 Model 4 

Variables 
Coef. 
(Std. err.) 

Coef. 
(Std. err.) 

Coef. 
(Std. err.) 

Coef. 
(Std. err.) 

𝑁𝑂𝑅𝑖 
0.050*** 

(0.003) 
0.039*** 

(0.003) 
0.027*** 

(0.003) 
0.029*** 

(0.003) 

𝐼𝑛𝑑𝑒𝑔𝑖
(1)

 
0.051*** 

(0.007) 
0.092*** 

(0.007) 
0.067*** 

(0.007) 
0.068*** 

(0.007) 

𝐼𝑛𝑑𝑒𝑔𝑖
(2)

 
0.227*** 

(0.012) 
0.189*** 

(0.012) 
0.338*** 

(0.012) 
0.339*** 

(0.012) 

𝐼𝑛𝑑𝑒𝑔𝑖
(3)

 
-0.100*** 
(0.009) 

-0.100*** 
(0.009) 

-0.159*** 
(0.009) 

-0.159*** 
(0.008) 

𝐴𝑣𝑒_𝑅𝑉𝑖
(1)

(𝑡)  
1.008*** 

(0.024) 
0.530*** 

(0.025) 
0.555*** 

(0.025) 

𝐴𝑣𝑒_𝑅𝑎𝑡𝑖𝑛𝑔𝑖
(1)

(𝑡)  
-0.195*** 
(0.043) 

-0.174*** 
(0.043) 

-0.180*** 
(0.041) 

𝐴𝑣𝑒_𝑅𝑉𝑖
(2)

(𝑡)   
3.007*** 

(0.052) 
3.156*** 

(0.053) 

𝐴𝑣𝑒_𝑅𝑎𝑡𝑖𝑛𝑔𝑖
(2)

(𝑡)   
-0.205*** 
(0.057) 

-0.233*** 
(0.055) 

𝐴𝑣𝑒_𝑅𝑉𝑖
(3)

(𝑡)    
-1.027*** 
(0.104) 

𝐴𝑣𝑒_𝑅𝑎𝑡𝑖𝑛𝑔𝑖
(3)

(𝑡)    
0.150 

(0.213) 

Constant 
0.450*** 

(0.017) 
1.331*** 

(0.192) 
1.792*** 

(0.294) 
1.280 

(0.993) 

Observations 75800 75800 75800 75800 
R2  0.068 0.090 0.128 0.129 
F-statistic 
Prob (F-statistic) 

1387 
0.00 

1245 
0.00 

1396 
0.00 

1128 
0.00 

AIC 2.098e+05 2.080e+05 2.047e+05 2.047e+05 
BIC 2.098e+05 2.081e+05 2.048e+05 2.048e+05 
Observations 75800 75800 75800 75800 

          *** p<0.01, ** p<0.05, * p<0.1 

Table 5 shows the results for the review volume of focal books. Four models are analyzed. 

Model 1 considers only the control variables, while the rest three models include the eWOM 

information of first-order, second-order and third-order neighbors progressively. The results 

of F test in these four models suggest the significant impact of the selected variables. When 
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the variables are progressively included, the value of R-Squared becomes bigger and AIC and 

BIC become smaller. The inclusion of first-order and second-order neighbors significantly 

improve the explanatory power of the modes (The increments of R-Squared are 0.090, 0.128 

for Model 2 and Model 3 respectively). However, the impact of the third-order neighbors is 

not as strong as the first- and second-order neighbors, as shown from the value of R-Squared, 

where BIC and AIC do not change much. It means the impact of eWOM of neighbors on the 

focal books’ review volume become slim when the distance between books reaches three 

clicks.  

The impact of control variables, as shown in model 1, suggest that 𝑁𝑂𝑅𝑖 , 𝐼𝑛𝑑𝑒𝑔𝑖
(1)

 and 

𝐼𝑛𝑑𝑒𝑔𝑖
(2)

 positively and significantly impact the review volume of focal books. However, the 

number of books at three clicks away, 𝐼𝑛𝑑𝑒𝑔𝑖
(3) has a negative influence. This indicates that 

it is more likely for books to get more reviews if they have more reviews in the past, or more 

connected first-order and second-order neighbors in the recommendation network. When 

we include the eWOM information of the first-order neighbors into the model, as shown in 

Model 2, the average review volume of neighboring books, 𝐴𝑣𝑒_𝑅𝑉𝑖
(1)

(𝑡)  has a positive 

impact on the volume of focal books (𝛽 = 1.008; 𝑝 < 0.01). However, the average rating of 

neighbor books, 𝐴𝑣𝑒_𝑅𝑎𝑡𝑖𝑛𝑔𝑖
(1)(𝑡), lowers the review volume of focal books (𝛽 = −0.195; 

𝑝 < 0.001). The similar impact also exists in the second order neighbors as shown in Model 

3. 𝐴𝑣𝑒_𝑅𝑉𝑖
(2)(𝑡)  is positively and 𝐴𝑣𝑒_𝑅𝑎𝑡𝑖𝑛𝑔𝑖

(2)(𝑡)  is negatively influencing the review 

volume of focal books. These results suggest that, if there are a lot of eWOM discussion 

(volume) on a focal books’ neighbors, it is more likely that the focal books also get more 

attentions; however, if the neighbors are highly-evaluated, there might be some potential 

competition relations among them which leads to less attention on the focal books. Such 

impact becomes weaker for these neighboring books at three clicks away, as shown in Model 

4. It suggests that the impact of the average volume of the third-order neighbors, 

𝐴𝑣𝑒_𝑅𝑉𝑖
(3)(𝑡)  is negative while the average rating, 𝐴𝑣𝑒_𝑅𝑎𝑡𝑖𝑛𝑔𝑖

(3)
(𝑡) has no significant 

impact.  

In summary, the review volume of focal books is positively related to the average volume of 

neighbors and negatively related to the neighbors’ average rating. Such impact could come 

from the books that are two clicks away in the recommendation network. 

4.1.2 Review rating  

Table 6. Regression Results of Focal Books’ Average Rating  

DV: 𝑅𝑖(𝑡) 

 Model 5 Model 6 Model 7 Model 8 

Variables 
Coef. 
(Std. err.) 

Coef. 
(Std. err.) 

Coef. 
(Std. err.) 

Coef. 
(Std. err.) 

𝑁𝑂𝑅𝑖 
0.021*** 

(0.003) 
0.018*** 

(0.003) 
0.013*** 

(0.002) 
0.013*** 

 (0.002) 

𝐼𝑛𝑑𝑒𝑔𝑖
(1)

 
0.016* 

(0.008) 
0.020* 

(0.008) 
0.009 

(0.007) 
0.009 

(0.007) 
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𝐼𝑛𝑑𝑒𝑔𝑖
(2)

 
-0.010 
(0.013) 

-0.008 
(0.013) 

-0.013 
(0.011) 

-0.014 
(0.011) 

𝐼𝑛𝑑𝑒𝑔𝑖
(3)

 
-0.004 
(0.009) 

-0.006 
(0.009) 

0.009** 
(0.008) 

-0.009 
(0.008) 

𝐴𝑣𝑒_𝑅𝑉𝑖
(1)

(𝑡)  
0.112*** 

(0.026) 
0.044*** 

(0.024) 
0.040*** 

(0.024) 

𝐴𝑣𝑒_𝑅𝑎𝑡𝑖𝑛𝑔𝑖
(1)

(𝑡)  
1.474*** 

(0.047) 
0.635*** 

(0.041) 
0.627*** 

(0.041) 

𝐴𝑣𝑒_𝑅𝑉𝑖
(2)

(𝑡)   
-0.458*** 
(0.050) 

-0.489*** 
(0.052) 

𝐴𝑣𝑒_𝑅𝑎𝑡𝑖𝑛𝑔𝑖
(2)

(𝑡)   
8.555*** 

(0.055) 
8.543*** 

(0.055) 

𝐴𝑣𝑒_𝑅𝑉𝑖
(3)

(𝑡)    
0.141 

(0.102) 

𝐴𝑣𝑒_𝑅𝑎𝑡𝑖𝑛𝑔𝑖
(3)

(𝑡)    
1.993*** 

(0.209) 

Constant 
4.391*** 

(0.018) 
-2.143*** 
(0.208) 

-36.25*** 
(0.283) 

-44.97*** 
(0.955) 

Observations 75800 75800 75800 75800 
R2 0.001 0.015 0.256 0.257 
F-statistic 
Prob(F-statistic) 

19.85 
0.00 

195 
0.00 

3260 
0.00 

2621 
0.00 

AIC 2.211e+05 2.201e+05 1.988e+05 1.987e+05 
BIC 2.212e+05 2.201e+05 1.988e+05 1.988e+05 
Observations 75800 75800 75800 75800 

*** p<0.01, ** p<0.05, * p<0.1 

Table 6 shows the results of modelling the average ratings of focal books. Four models are 

studied with similar manner to the analysis of the review volume of focal books. The measures 

of model fit are basically same to the results in the last section. The results of F test in the 

four models suggest the significant impact of the selected variables on the focal books’ rating. 

The R-Squared becomes bigger when the first- and second-order neighbors are considered 

but remains unchanged with the addition of third-order neighbors. The impact of the 

neighbors on focal books’ review rating become slim when the distance reaches three clicks. 

According to AIC and BIC, the inclusion of eWOM information of neighbors can help to fit the 

model, leading to lower BIC and AIC. But the improvement becomes slim when the third-

order neighbor is added in model 8, where the AIC and BIC has not changed from previous 

model.  

When analyzing the control variables in Model 5, only 𝐼𝑛𝑑𝑒𝑔𝑖
(1)

 and 𝑁𝑂𝑅𝑖 have significant 

and positive impact on the rating of focal books. The number of books that can reach it in two 

or three clicks, i.e. 𝐼𝑛𝑑𝑒𝑔𝑖
(2)

 and 𝐼𝑛𝑑𝑒𝑔𝑖
(3)

, do not have significant impact on the rating of the 

focal books.  

When considering the eWOM information of the first-order neighbors in Model 6, both 

𝐴𝑣𝑒_𝑅𝑉𝑖
(1)

(𝑡)  and 𝐴𝑣𝑒_𝑅𝑎𝑡𝑖𝑛𝑔𝑖
(1)

(𝑡)  have positive impact on focal book’s rating. This 

indicates that the feedback of books is strongly associated with the discussions of neighbors. 

If a focal book’s direct neighbors are popular and highly-rated, it is more likely for the focal 
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book to be also highly-rated. For the second-order neighbors, as shown in Model 7, their 

rating has a positive impact on the focal books’ rating (𝛽 = 8.555; 𝑝 < 0.001) which is same 

as the first-order neighbors. However, the review volume shows a negative effect ( 𝛽 =

−0.458; 𝑝 < 0.001) which is opposite to that of the first-order neighbors. When it comes to 

the third-order neighbors, their ratings show significance, which is positive (𝛽 = 1.993; 𝑝 <

0.001); while the review volume do not have significant impact on the focal books’ rating, 

due to the long distance in between.  

The findings suggest that a focal book’s rating is associated with the ratings of its 

neighborhood which could be up to three clicks away. Such influence is positive, which means 

if one book has a high value of average rating, it is very likely for its recommended books, 

including direct recommendations, to have also positive feedback. The possible reason may 

lie in the anchoring bias effect [13], that when consumers evaluate the book being browsed, 

their judgement will be positively influenced by the quality of previously browsed books. But 

to confirm such reason may require further examination on the consumers’ profiles. Secondly, 

the review volumes from neighborhood show mixed impact on the focal books’ ratings, where 

that of the first-order neighbors is positive and that of the second-order neighbors is negative, 

while the third-order neighbors have no impact.  

To summarize the results of the neighborhood-to-product analysis, the review volume and 

review rating of a focal book, is indeed closely correlated to that of its neighborhood, which 

well supports the hypothesis H1a and H1b. On the other hand, at the distance of three (third-

order neighborhood), the correlation becomes minor, and sometimes not significant, which 

means the neighbors that are far away have less, or no, influence over the focal book’ eWOM.   

4.2 Study two: dyadic product-to-product level 

Table 7. Regression Results on the eWOM Rating Similarity at Dyadic Level  

 Model 9 Model 10 Model 11 Model 12 

Variables 
Coef.  
(Std. err.) 

Coef.  
(Std. err.) 

Coef. (Std.err.) 
Coef.  
(Std. err.) 

𝑅𝑉_𝑑𝑖𝑓𝑓𝑖𝑗 
0.420*** 
(0.001) 

0.419*** 
(0.001) 

0.419*** 
(0.001) 

0.419*** 
(0.001) 

𝐼𝑛𝑑𝑒𝑔_𝑑𝑖𝑓𝑓𝑖𝑗 
-1.46e-05** 
(6.58e-06) 

-1.06e-05 
(6.58e-06) 

-5.92e-06 
(6.59e-06) 

-1.19e-05* 
(6.58e-06) 

𝑁𝑂𝑃𝑖𝑗
(1)

 
-0.046*** 
(0.002) 

   

𝑁𝑂𝑃𝑖𝑗
(2)

  
-0.011*** 
(0.000) 

  

𝑁𝑂𝑃𝑖𝑗
(3)

   
-0.002*** 
(5.29e-05) 

 

𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦𝑖𝑗     
-0.359*** 
(0.013) 

Constant 
0.651*** 
(0.000) 

0.654*** 
(0.000) 

0.656*** 
(0.000) 

0.653*** 
(0.000) 

Observations 3,887,462 3,887,462 3,887,462 3,887,462 
R-Squared 0.029 0.029 0.029 0.029 
F-statistic 2.926e+04 2.935e+04 2.935e+04 2.935e+04 
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Prob(F-statistic) 0.00 0.00 0.00 0.00 
AIC 1.043e+07 1.043e+07 1.043e+07 1.043e+07 
BIC 1.043e+07 1.043e+07 1.043e+07 1.043e+07 

*** p<0.01, ** p<0.05, * p<0.1 

Considering the high correlation among the variables 𝑁𝑂𝑃𝑖𝑗
(1)

, 𝑁𝑂𝑃𝑖𝑗
(2)

,   𝑁𝑂𝑃𝑖𝑗
(3) , and 

𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦𝑖𝑗, these variables are examined by turns, rather than progressively added, in 

model 9 to 12. According to the results of F-statistic in these models, the studied variables 

are (number of path and connectivity) significantly related to the eWOM difference of two 

books. The estimated value of R-Squared, AIC and BIC are unchanged, suggesting that the 

studied connectivity variables may have similar influence over the eWOM difference between 

two products. 

The control variables show significant impact on the eWOM similarity between two books. 

The difference of review volume 𝑅𝑉_𝑑𝑖𝑓𝑓𝑖𝑗 , has a positive effect (𝛽 = 0.420; 𝑝 < 0.001), 

which suggest that book pairs with similar popularity over a period of time (in this study, the 

December of 2015), would have similar eWOM rating. The difference between the books’ in-

degrees, i.e. how many times they get recommended, show significance in model 9 and 12, 

while no significant impact in model 10 and 11.  

We investigate the impact of independent variables ( 𝑁𝑂𝑃𝑖𝑗
(1)

,  𝑁𝑂𝑃𝑖𝑗
(2)

, 𝑁𝑂𝑃𝑖𝑗
(3)

 and 

𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦𝑖𝑗) in turns as shown by Model 9 to 12. Generally, all variables have significant 

negative effect on the difference of eWOM rating, indicating that both direct and indirect 

connections between two products can enhance the similarity of the eWOM rating between 

a pair of products, and the more paths connecting the two products, regardless of the length 

(1, 2, 3 or combined) the closer ratings (smaller 𝑊𝑂𝑀_𝑑𝑖𝑓𝑓𝑖𝑗) the two products will have. 

While Lin and Wang [12] suggest that the directly connected products (𝑁𝑂𝑃𝑖𝑗
(1)

= 1) tend to 

have similar eWOM, the results in this section generalize such finding to indirect connections 

and further explore the strength of the number of such connections. Any paths which can 

connect two products within three steps will contribute to the similarity of their eWOM.  

5. Conclusions 

In this paper, we apply an empirical book recommendation network from Amazon to 

investigate the effect of distances between products in the recommendation network on their 

eWOM on two levels: neighborhood-to-product level and dyadic product-to-product level.  

On the neighborhood-to-product level, the objective is to study the influence of the neighbors’ 

eWOM on the focal books’ eWOM in terms of daily review volume and average rating. Firstly, 

the review volume of a focal book is closely associated with that of its first- and second-order 

neighbors which show strong positive effect. The review volume of the third-order neighbors 

shows negative effect, but the increment of the r-squared indicates a weak marginal 

explanatory power. Secondly, the average rating of the first-, second-, and third-order 

neighbors positively influence the rating of the focal book. The marginal explanatory power 
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of the third-order neighbors is also not as strong as the first- and second-order neighbors. In 

conclusion, a focal book’s review volume and rating is strongly influenced by its neighborhood 

within two clicks, while is also, to a smaller degree, influenced by its neighbors at three clicks 

away. Hence, the hypothesizes H1a and H1b are well supported. 

On the dyadic product-to-product level, Lin and Wang [12] have previously found that the 

eWOM rating of two products would be similar to each other if one recommends another, 

revealing the important role of recommendation hyperlinks. We confirm such finding in our 

study, thereby supporting the hypothesis H2a. In addition, we extend the recommendation 

links to networks, and develop a measure of connectivity to describe the easiness for users 

to visit from one product to another following recommendation hyperlinks. Thus, the direct 

recommendation hyperlink (1-click distance) is a kind of strongest connectivity, while the 2-

click and 3-click distances are weaker connectivity. The results indicate that the number of 

paths between two products significantly influences their eWOM similarity. Thus, we can 

conclude that not only the direct connections, but also the indirect connections, have strong 

positive correlations with the eWOM similarities between two products. Hence the 

hypothesis H2b is also supported. An integrated measure of connectivity, which is the 

likelihood for a user at a product to randomly surf to another following hyperlinks, indicates 

that the larger the traffic flow from one product to another, the more similar their ratings are.  

6. Theoretical Contributions and Practical Implications 

The work contributes to the literature from several aspects. Firstly, the research extends the 

study of PRN by providing new insights from the view of eWOM. While most previous studies 

focused on the economic impact of the PRN [12,31], we examine the pattern of eWOM in it. 

The findings suggest that the network connections between products, including both direct 

and indirect connections, play significant roles on the formation of products’ eWOM. In other 

words, the PRN is able to redistribute the eWOM among products. While previous studies 

show that the demand and sales of products are largely associated with their positions in the 

network [33, 35], this paper provides a possible explanation that the eWOM of products are 

correlated when they are near (short distance) to each other and thereby the demands and 

sales of products are enhanced accordingly.  

Secondly, the work enriches the theory of eWOM and help to understand consumer eWOM 

behaviors. Most prior studies examined the eWOM as either a driver [17, 19-20] to influence 

consumer purchase decisions and product sales, or an outcome that what motivations could 

lead to the eWOM activities [11,27]. Our work shows that the eWOM of different products 

may interact with each other, where one product’s rating and review volume are associated 

with its neighbors in the network. This also indicates the possible patterns of the underlying 

user behavior, that users may be influenced by what s/he just browsed when composing 

eWOM for a particular product, as suggested by the anchoring bias effect.  

Thirdly, the work fills the gap of literature addressing the link between the studies of eWOM 

and PRN. Though the literature studied the impact of network connection on eWOM 
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convergence [12], they focused only on pairs of products with direct connections at dyadic 

level. Here we extend their work by examining the impact of not only first-order neighbors, 

but also the neighbors that are two or three clicks away, and the number of paths with two 

or three clicks on the dyadic level. New insights are thus provided. On one hand, not only the 

direct connections, but also the indirect connections, have the converging effect on the two 

products’ eWOM. On the other hand, a product’s eWOM is largely determined by the group 

of neighboring products as a whole collective, rather than solely by some individual products, 

as indicated by the neighborhood-to-product level analysis.  

The paper offers several practical implications. Firstly, the results show that the feedback of 

a product is strongly related to the discussions of its neighbors in the PRN. Actually, the 

consumers’ surfing behavior may not always follow the recommendations, but also 

sometimes other hyperlinks displayed on the page of a product, such as the “sponsored items” 

in Amazon, or other forms of promotions in other e-commerce website. Therefore, retailers 

may consider putting promotion hyperlinks on the webpages of products whose eWOM 

performances are desirable to further facilitate their sales. Secondly, the work provides 

insights for online marketplace managers regarding the construction of their PRNs. Our 

findings show that the eWOM of products has impact on their recommended others, even 

the indirectly recommended ones. Thus, the PRN designer shall carefully consider about the 

application of specific recommendation algorithms, thereby optimize the structure of the PRN 

to aid the users to make their purchasing decisions.  

7. Limitations and Future Work 

While we showed promising findings and contributions, our work also has limitations that 

could be tackled in future studies. Firstly, we only examined book recommendation network 

based on the co-purchase in Amazon. As a typical experience good [45], the findings based 

on the book network shall be applicable to other experience goods, such as movies, 

restaurants, hotels, clothes etc. However, future work should investigate more types of 

products, such as the searching goods to further generalize the findings. Whether the findings 

of this paper can be applied to other platforms needs also further efforts to be confirmed. 

Secondly, in this study, the eWOM of neighbors as independent variables are averaged over 

all the neighbors of the same category. While it showed significance explaining the eWOM of 

focal books, it is worthy to look at other operationalizations for the variables such as 

aggregated value over the neighbors. In addition, there are other possible measures for the 

eWOM besides the volume and rating applied in this paper, such as the negative/positive 

reviews and text mining-based measures. Due to the sparsity problem of the data, these 

measures have not been considered in this paper. Future studies shall further explore such 

measures to deepen our understanding on the network effect of the eWOM. At last, while 

the structure of the PRN is determined by some recommendation algorithms a website 

applied, whether there is any interactions between the algorithm, such as collaborative 

filtering or content-based approach, and the eWOM formation pattern, is also an important 
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question which may help the system designers to better construct the PRNs and serve 

consumers with better experiences. Similarly, whether the recommendation algorithms have 

considered the eWOM similarity among products, is unknown. As a consequence, the analysis 

in this paper cannot fully confirm the casual relation between the PRN distance and eWOM 

similarity. The full exploration on such matter may require further analysis and perhaps 

experiments with the recommendation algorithms controlled. 
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