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Abstract Sea ice formation processes occur on subgrid scales, and the detailed physics describing the
processes are therefore not generally represented in climate models. One likely consequence of this is

the premature closing of areas of open water in model simulations, which may result in a
misrepresentation of heat and gas exchange between the ocean and atmosphere. This work demonstrates the
implementation of a more realistic model of sea ice formation, introducing grease ice as a wind and oceanic
stress-dependent intermediary state between water and new sea ice. We use the fully coupled
land-atmosphere-ocean-sea ice model, HadGEM3-GC3.1 and perform a three-member ensemble with the
new grease ice scheme from 1964 to 2013. Comparing our sea ice results with the existing ensemble without
grease ice formation shows an increase in sea ice thickness and volume in the Arctic. In the Antarctic,
including grease ice processes results in large local changes to both simulated sea ice concentration and
thickness, but no change to the total area or volume.

Plain Language Summary The way that new sea ice forms in most climate models may result in
new sea ice forming more quickly than it does in reality, prematurely closing areas of open water that are
important to heat and gas exchange between the ocean and atmosphere, and impacting the albedo, and
therefore the radiation budget, of the planet. In this work, we implement a more realistic representation of
how new sea ice forms in a fully coupled climate model, and demonstrate the effect using an ensemble of
historical climate simulations.

1. Introduction

Large-scale climate models struggle to accurately calculate Arctic sea ice volume (Shu et al., 2015) and
thickness (Langehaug et al., 2013; Stroeve et al., 2014) and to capture trends in Antarctic sea ice extent
(Turner et al., 2013). Various processes represented in the models have been investigated to explain this,
including natural variability (Zunz et al., 2013), winds (Holland & Kwok, 2012), and melting ice shelves
(Pauling et al., 2017). The latest generation of climate models include a more detailed representation of
sea ice processes (Ridley et al., 2018), and here we build on those advances by implementing a more sophis-
ticated representation of subgrid-scale sea ice formation processes in a fully coupled climate model that
includes feedbacks between changes to the atmosphere, ocean, and sea ice. We calculate historical climate
simulations using our modified model and compare the representation of the simulated sea ice to that simu-
lated from the same model without our modifications.

An important mode of sea ice formation results from ocean supercooling. Where the temperature of ocean
water is lower than its salinity-dependent freezing temperature, supercooling occurs and frazil crystals may
form. These small buoyant ice crystals rise to the surface and freeze to the underside of existing sea ice, thick-
ening it. This mechanism for sea ice thickening depends on the supercooling of water at the ocean-sea ice
interface and is different to congelation growth, which is the downward growth of ice crystals into the under-
lying water (Maksym, 2012). While most climate models broadly agree on the total sea ice mass budget, the
partitioning of growth between these two processes varies between models and is likely to change as the cli-
mate warms, particularly in the Arctic where the increased open water area will make frazil growth increas-
ingly important (Keen et al., 2020). It is important that both processes are represented appropriately in
models so that the simulated sea ice continues to be realistic as the partitioning evolves. In completely calm
conditions, frazil crystals can form a continuous, thin, flexible layer of sea ice over the open water surface,
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known as nilas and observed, for example, by Smedsrud and Skogseth (2006) and Winsor and Bjork (2000). If
there is wind- or ocean-driven turbulence, the frazil crystals mix with surface waters to form a slushy mix
referred to as grease ice.

Supercooling may arise in response to river drainage or the mixing of ocean masses with different salinities
(Foldvik & Kvinge, 1974; Martin & Kauffman, 1981). More commonly, it follows from a buoyant freshwater
flux at depth, for example, beneath Antarctic ice shelves (Lewis & Perkin, 1986, 1983), or in response to
extreme atmospheric surface cooling, for example, in leads and polynyas, where frazil created at the surface
is mixed downward by wind-generated turbulence (Morales Maqueda et al., 2004). Polynyas are holes in the
sea ice (or areas where ice does not form), created primarily by either strong offshore winds or by the crea-
tion of “hot spots” driven by warm waters upwelling or, in the Arctic, by solar heating (Morales Maqueda
et al., 2004), while leads are fractures in sea ice caused by internal stresses. It is also possible for snow to
be blown from the sea ice surface into areas of open water, creating a slush that is distinguishable from a
frazil-formed layer of grease ice only through isotope analysis in a laboratory (Smedsrud & Skogseth,
2006; Weeks, 2010).

At present, most climate models remove supercooling from the surface of the ocean by transforming the
energy deficit to a volume of new sea ice using the latent heat of freezing for ice (e.g., The Los Alamos
National Laboraory sea ice model, CICE, Hunke et al., 2015, which constitutes the sea ice component of sev-
eral climate models). This means that no grease ice is created and new sea ice forms instantly in response to
surface supercooling, regardless of whether conditions are calm or turbulent. In reality, if grease ice forms,
then it may persist for several days before atmospheric cooling causes the water fraction to solidify to create
sea ice (Smedsrud & Skogseth, 2006). Exposure to a warm atmosphere may cause the solid fraction to melt
and the grease ice may reduce or disappear altogether without ever forming new sea ice. This could mean
that sea ice in climate models forms too fast, and areas of open water may close more quickly in the models
than is realistic. Where grease ice forms close to sea ice in the real world, the grease ice may be “herded”
against the sea ice edge by atmospheric and oceanic stress, leading to an uneven grease ice thickness distri-
bution, and sometimes leaving part of the water area free from grease ice (Martin & Kauffman, 1981;
Skogseth et al., 2009; Smedsrud & Skogseth, 2006; Smedsrud, 2011). This herding effect cannot be repre-
sented without grease ice being represented in the model, and omitting it could contribute further to the pre-
mature freezing over of leads and polynyas, and result in new sea ice created in the model being too thin,
with impacts for sea ice and for atmospheric and oceanic processes that are coupled to it. These processes
include heat and gas exchange between the polar ocean and atmosphere, which generally cools the upper
ocean and warms the lower atmosphere (Morales Maqueda et al., 2004), and is inhibited by sea ice cover
(Stephens & Keeling, 2000). Polynyas and leads therefore directly affect ocean and atmosphere heat and car-
bon dioxide cycles, as well as impacting the planetary radiation budget by reducing the surface albedo as
dark holes in the relatively reflective ice (Brandt et al., 2005). In the Antarctic, coastal polynyas are a major
source of sea ice production as extreme atmospheric cooling and strong offshore winds drive supercooling
and the formation of grease ice, which is driven away from the coast by the strong winds, solidifying into
new sea ice (which is also transported by the wind), and exposing the polynya surface water to further cool-
ing (Morales Maqueda et al., 2004). Appropriate representation of polynyas in coupled climate models is
therefore important for a realistic representation of sea ice formation and for realistic realizations of the
atmospheric and oceanic processes that are coupled to it.

The importance of representing biological processes in climate simulations is increasingly recognized
(Duarte et al., 2017; A. A. Sellar et al., 2019), and moden climate models, known as Earth System Models
(ESMs), include these, for example, A. A. Sellar et al. (2019). Open water areas within sea ice are important
for plankton (Arrigo et al., 1999) and macrofauna (Stirling, 1997), making the appropriate representation of
leads and polynyas increasingly important. Sea ice one of the largest known biomes on Earth (Dieckmann &
Hellmer, 2010), and high-latitude biological processes impact on global marine ecosystems and on global cli-
mate through interactions between biota incorporated in the sea ice and the atmosphere and ocean
(Melnikov et al., 2002; Vancoppenolle et al., 2013). Realistic representation of these processes in ESMs
requires grease ice to be represented because, to be incorporated into sea ice, biota are scavenged from the
ambient ocean water and first incorporated into grease ice (Gradinger & Ikdvalko, 1998), which then freezes
to become sea ice.
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A coupled climate model includes wider atmospheric and oceanic processes that are likely to largely deter-
mine the volume of sea ice produced in the model, and biases in these are likely to dominate over any biases
in the detailed sea ice formation calculations. For example, overestimation of the Arctic sea ice mass budget
has been attributed to mainly atmospheric processes (Keen et al., 2020). However, a more physically realistic
representation of sea ice formation makes the location and rate of sea ice growth more realistic. At present,
no model that accounts for feedbacks between sea ice and atmosphere and ocean includes grease ice. Few
field observations are available for grease ice because of the logistical difficulties of reaching and working
in areas where it forms. This paucity of data is partly why grease ice processes are generally not represented
in large-scale global climate models. Another reason is the computational expense of including subgrid-scale
processes in a relatively coarse global model. Despite these challenges, a parameterization has been pro-
posed to represent grease ice processes within leads in large-scale models (Smedsrud, 2011). The method
has been demonstrated for partially ice-covered cells only in a sea ice model (Wilchinsky et al., 2015), and
in a coupled sea ice-ocean model (Smedsrud & Martin, 2015). These previous works suggest that including
grease ice processes in climate simulations results in thicker sea ice and an altered spatial distribution.
However, because the models were not fully coupled, the atmospheric forcings experienced by the grease
ice were unaffected by any changes to the sea ice. Therefore, the atmospheric forcings may not have been
consistent with the simulated sea ice, and feedbacks between different components of the climate system
were not considered. Here we extend those works to include a representation of grease ice processes in
the coupled land-atmosphere-ocean-sea ice model, HadGEM3-GC3.1. In contrast to previous works, atmo-
spheric and oceanic feedbacks that result from changes to the sea ice, driven by the inclusion of grease ice
processes, are accounted for. Further differences from previous studies are that grease ice is considered for
grid cells that are both ice-free and partially ice-covered, and either grease ice or nilas may form depending
on whether conditions are calm or turbulent. In addition to making sea ice formation more realistic in the
model calculations, the changes implemented here facilitate future ESM development, outside the scope
of this work, to account for biological processes in sea ice environments. We assess the effect of implement-
ing the grease ice scheme on modeled sea ice concentration and thickness, using an ensemble of historical
simulations from 1964 to 2013, and use data derived from observations for the latter part of the same period
as reference where possible. We note that the inclusion of new physical processes in a climate model gener-
ally necessitates retuning of the model, since previous tuning is likely to have accounted somewhat for the
missing physics (Hourdin et al., 2017; Flato et al., 2013; Notz, 2015). Therefore, despite making model calcu-
lations more physically realistic, including a new process rarely results in closer agreement between obser-
vations and the simulated climate without further development effort to address the tuning. Nonetheless, it
is preferable for climate models to include a physically accurate representation of processes where possible
because tuning is unlikely to allow for the full range of physically possible responses to changes in other
parts of the coupled climate system.

2. Model Description

The new scheme isimplemented in the coupled atmosphere-land-ocean-sea ice model, HadGEM3-GC3.1, the
physical core of the UK and New Zealand Earth System Models (Kuhlbrodt et al., 2018; Williams et al., 2017).
For the ocean component, GO6, based on NEMO3.6 (Madec & NEMO team, 2016), see Storkey et al. (2018),
and for the sea ice component, GSIS8.1, based on CICES5.1 (Hunke et al., 2015), see Ridley et al. (2018). The
atmosphere component is provided by the Unified Model, using the GA7.1 configuration, and the land com-
ponent is the JULES model, configured as GL7.1 (Walters et al., 2019). The ORCA1 grid (nominally 1° resolu-
tion) was used for the sea ice and ocean, with 75 vertical ocean layers, and the atmosphere model was run at
1.875° by 1.25° resolution, with 85 vertical levels. Simulations were implemented on the global domain.

In the model, sea ice is assigned to one of five thickness categories, and may move to a different category as it
thins or thickens. Sea ice belonging to different categories can coexist in the same grid cell, and the sum of the
concentration for the different categories gives the total ice concentration for the cell (ice concentration is the
fraction of the grid cell covered by sea ice). In the standard scheme, if the ocean surface temperature is below
its salinity-dependent freezing temperature, new sea ice forms. The amount of supercooling is transformed to
an equivalent ice volume using the latent heat of freezing for ice. If there is no open water in the cell, then the
new ice volume freezes to the existing sea ice, proportioned between the different ice categories according to
their relative concentrations in the cell. If there is open water in the cell, then the new ice volume forms a
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layer of new sea ice of uniform thickness over the open water portion of the cell, with a minimum thickness of
5cm (“collection depth”), and a maximum thickness of 60 cm (the minimum thickness requirement means
that it may only partially fill the open water part of the cell). If the volume of new ice is greater than can be
accommodated in the open water part of the cell, then the water fraction is covered with 60 cm thick new sea
ice, and the remaining new ice is distributed between the categories of existing sea ice.

An appropriate collection depth is important for appropriate partitioning of sea ice growth between frazil
and congelation processes, which is likely to become more important as the climate warms and the partition-
ing changes (Keen et al., 2020). Congelation growth is generally stronger for thinner ice, and so the collection
depth, which determines new sea ice thickness, largely determines the transition from frazil to congelation
growth. In general, a thicker collection depth results in a greater proportion of frazil growth (Keen et al.,
2020). An earlier study using a forced model found a similar increase in frazil-driven sea ice growth when
the collection depth was raised from 5 to 30cm and when a grease ice scheme was implemented
(Wilchinsky et al., 2015), but it is not clear that the same behavior would occur in a coupled model. That
study also showed that grease ice thickness, when coupled to wind and ocean properties and to sea ice thick-
ness, is more variable than a fixed collection depth, making the resulting sea ice thickness distribution more
realistic than that calculated using a fixed collection depth (Wilchinsky et al., 2015). Including grease ice
with a thickness coupled to ocean, wind and sea ice thickness makes the parameterization more physically
complete and future proofs the representation of sea ice formation in the model, ensuring it responds appro-
priately to changes elsewhere in the climate system. Representing grease ice in the model has the additional
advantage of facilitating future ESM development to include biological processes, as described in section 1.

3. Grease Ice Scheme

The new scheme is outlined in Figure 1. The surface ocean freeze-melt potential is converted to an ice
volume as in the standard model. If the cell is ice covered, then the new ice volume freezes to, and thickens,
the existing sea ice as in the standard scheme. If there is any open water in the cell, then the magnitude of the
combined wind and ocean stress is calculated. If the net stress is zero, then no grease ice forms, and the new
ice volume constitutes new sea ice, which forms as nilas. If the stress magnitude is greater than zero, and
there is open water present, then we implement the grease ice scheme. Under the scheme, the new ice
volume is not immediately considered to be new sea ice. Instead, some of it constitutes a volume of frazil
ice, which makes up the solid fraction of a layer of grease ice in the open water part of the cell, comprising
25% frazil and 75% sea water. This follows the convention set by previous model studies (Heorton et al., 2017;
Smedsrud & Martin, 2015; Wilchinsky et al., 2015). If there is grease ice in the cell persisting from the pre-
vious time step, then this is added to the new grease ice volume. Note that, for the purposes of this work,
“grease ice” is distinct from “sea ice” and does not contribute to the values for sea ice concentration or
volume (unless/until it freezes to become new sea ice, at which point it is no longer considered to be grease
ice). We continue to refer to the open water fraction of a grid cell as open water, regardless of whether the
water contains grease ice or not, that is, the sea ice concentration and water concentration sum to unity.
Note also that although the volume of grease ice is preserved between time steps, the concentration and
thickness of the grease are recalculated each time step.

In most cases, supercooling giving rise to frazil formation is driven by atmospheric cooling, and so it may be
reasonable to assume that frazil produced in a partially ice-covered cell is concentrated in the open water
fraction of the cell. However, it is also possible for supercooling to result from mixing of waters with different
salinities, for example, where ocean masses meet, or where rivers or ice shelf melt provide freshwater fluxes
(Martin & Kauffman, 1981). In these cases, it is unrealistic for all the frazil created in a cell to be concen-
trated in the open water, and in some cases this assumption could lead to problems. For example, if sea
ice concentration is high, then forcing all frazil to be concentrated in a relatively small area of open water
could lead to the formation of an unrealistically thick grease ice layer. Therefore, in partially ice-covered
cells, not all of the frazil produced from surface supercooling is used to create grease ice. Instead, grease
ice is created from only a proportion of the total frazil that is equal to the cell open water concentration.
The remainder of the frazil thickens the existing sea ice (for ice-free cells, all frazil produced in the cell
becomes part of the grease ice). Ideally, the origin of the supercooling (and hence of the frazil) would be
determined from other model parameters and used to determine whether the frazil should be
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Figure 1. Outline of the new grease ice scheme, see text for detailed description. Steps that are unchanged from the

standard scheme are outlined in red.

concentrated in the open water or not. For example, a full mixed layer model could be used to create frazil
crystals in the water column, as demonstrated in Wilchinsky et al. (2015); however, that mixed layer model
was not compatible with a coupled ocean model. The scheme presented here represents an improvement
over the standard configuration (where no grease ice forms at all) but may underestimate the volume of

grease ice in many cases.

3.1. Grease Concentration and Thickness

For ice-free cells, the grease ice volume, Ves is distributed evenly over the cell, giving grease ice concentration
Cy =1, and grease thickness H, = V,/C, (grease ice concentration is the fraction of the grid cell area covered
by grease ice). Since the surface area covered by a grid cell varies at high latitudes in the ORCA grid, calcula-
tions in the sea ice model are carried out with respect to concentration (which is unitless) rather than area.
Volume is calculated in the model as the product of concentration and depth, and therefore has units of

adjust heat flux to
ocean

meters (grid cell area is generally used in postprocessing and analysis to convert this to cubic meters).
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Figure 2. (a) Cross-sectional lead-sea ice element used for implementation of the grease ice scheme in cells with partial sea ice cover; (b) The lead-sea ice element,

viewed from above.

For partially ice-covered cells, all open water is assumed to represent leads in the sea ice. A lead-sea ice ele-
ment is conceptualized as extending the full width of the cell, with length Y, made of sea ice length L; and
lead length L;, see Figure 2a, where H; and H, are the sea ice and grease ice thicknesses, respectively. The
grease ice has span L,, which may not equal L; if conditions are conducive to herding as described below.
Sea ice in each thickness category that is present in the cell makes up the lead walls for a fraction of the lead
length proportional to that category's relative concentration, see Figure 2b. We set the length of the lead-sea
ice element, Y = 5 km, sea ice length, L; = YC; and lead length, L, = Y — L;, following Wilchinsky et al. (2015)
(C; is ice concentration). This means that for a cell with C; = 0.9, L; = 500 m.

3.1.1. No Herding

If there is insufficient open water to create leads of at least 10 m length, that is, L; < 10, then herding does not
occur (Heorton et al., 2017; Smedsrud & Skogseth, 2006) and the grease ice is spread in a layer of uniform
thickness over the lead surface (Figure 2a). If the grease layer is thicker than the sea ice for any part of
the lead, then the grease ice thickness is reduced to match the sea ice for that lead section, Hy = H;. The solid
fraction of the grease ice that is thereby removed from the lead thickens the sea ice in this category, and the
water fraction drains to the ocean.

Where C; is low, some grease ice may form at large distances from ice floes and is unlikely to all be herded
against ice edges, or to all overflow onto ice floes (note that there is no distinction in the model between
underflowing and overflowing). For cells with C; < 0.05, any grease ice therefore forms a uniformly thick
layer in the open water part of the cell. The grease ice thickness is compared to the sea ice thickness for
the different categories of existing ice, and if H, > H;, then some grease ice overflows onto the sea ice of that
category. For each existing ice category, the volume of overflowed grease ice is Vy=Ci(Hg — H;), and the
volume of grease ice in the water is updated: V=V, — V. This treatment means that grease ice remaining

in the open water may be thicker than the existing sea ice, but it is considered more realistic than piling
grease ice formed over a large open water area onto small ice floes, potentially thickening them by an unrea-
listically high amount.

3.1.2. Herding

For cells with C; > 0.05 and L; > 10, grease ice may be subject to herding, that is, may be piled up against (and
overflow onto) the sea ice by atmospheric and oceanic stress, forming a wedge shape (Figure 2a) rather than
being distributed in a layer of even thickness (Heorton et al., 2017; Smedsrud & Martin, 2015; Smedsrud,
2011; Wilchinsky et al., 2015). We follow Wilchinsky et al. (2015) and project the stress onto the leads, some-
what arbitrarily assuming all leads to be orientated at 30° to the stress direction (HadGEM3-GC3.1 contains
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Figure 3. Cross section of the wedge shape occupied by herded grease ice in a lead with the maximum possible grease ice
span, L;"‘”‘: (a) when the maximum span can be accommodated in the lead; (b) when the wedge shape is truncated so that
the maximum grease ice span can be contained within the lead.

no information on subgrid-scale lead orientation). Using the projected stress to implement the model
proposed by Smedsrud (2011), we calculate the concentration and thickness of the herded grease ice in
the lead, and the volume of any grease ice that overflows onto the sea ice, Vg for each lead part, that is,

for each part of the lead that has walls corresponding to a specific ice thickness category (Figure 2b).

Assuming the thick end of the grease ice wedge has thickness H;, Equation 1 determines the maximum pos-
sible span of grease ice that the lead can accommodate, Lg“”‘, from the stress, 7, and the granular resistance of
the grease ice, k, (Figure 3). Note that this is the maximum span available for the grease ice to occupy, and
the actual span (calculated later) may be smaller if there is insuffcient grease ice to fill this span. The gran-
ular resistance, k,, can be thought of as the resistance of the grease ice to a solid wall moving through it, with
units Nm™—>. If the wall exerts force (per unit length of wall), F, over a grease ice depth, Hy, then the wall will
move with constant speed, that is, the resistive force from the grease ice will match F, if F :erg (Smedsrud,
2011). If the lead is not wide enough to accommodate L;"ax (i.e., Lg"‘”‘ > L;), then the wedge is truncated
(Figure 3b). In this case, we set L;"“":Ll, and calculate the thickness of the thin end of the wedge, H ;"i", from

Equation 2. If the wedge is not truncated (Figure 3a), then Hg"i”ZO.

2
L;"‘”‘:max{krfi, Ll} @)
Hmin_ H? — <L l) (2)
g —\/ %

Having defined the wedge shape corresponding to the largest grease ice span allowed by 7, H;, k. and L;, we
follow Wilchinsky et al. (2015) and use Equation 3 to calculate the corresponding grease ice volume, V™.
This is the maximum grease ice volume that can be accommodated in the lead without overflowing.

3
2kr T 22\ 2 in3
v (e ) - ®

If V"™ is greater than the actual volume of grease ice, Vg, then all the grease ice can be accommodated in the

lead and there is no overflowing. Continuing to follow Wilchinsky et al. (2015), the actual span of the grease
ice, L, is then given by Equation 4.
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If V;"‘”‘ is less than V, then the excess grease ice volume overflows onto the sea ice, VZ:Vg - V;"“x, and the

volume of grease ice remaining in the lead is updated: V=V**. The solid part of the overflowed grease ice
thickens the existing ice, and the water part drains to the ocean. Equations 1-4 are carried out separately for
each lead part (lead parts are defined by different values of H, e.g., for the parts of the lead associated with
different ice thickness categories in Figure 2b). The grease ice concentration, Cl, and thickness, H;, are now
determined for each lead part, n, from Equations 5 and 6, where Vj, is now the updated grease ice volume.
The total grease ice concentration is Cy= D ncg, where C' is the concentration of sea ice in the thickness cate-
gory corresponding to lead part n, so C;=), ,C'.

L,C?
Cn: g 5
sy, (5)

\%
H'=—% 6
L (©)

3.2. New Sea Ice

Once grease ice concentration and thickness have been calculated, the atmosphere to ocean heat flux, Q, _, o,
determines whether any, or all, of the grease ice melts back into the ocean, freezes to become new sea ice
(depending on the sign of Q, _, ,), or persists as grease ice to the next model time step.

The latent heat of freezing is used to calculate the volume of water that can be frozen by Q, _, , (or the
volume of ice that can be melted). This is converted to the equivalent grease ice volume, accounting for
the fact that only the water fraction of the grease ice can freeze, and only the solid fraction can melt.

The concentration and thickness of any new sea ice is then determined from the concentration and thickness
of grease ice, and by the magnitude of Q,_,, following Wilchinsky et al. (2015). The latent heat associated
with this freeze (or melt) is added to (or subtracted from) the ice to ocean heat flux that is returned from
the sea ice model to the ocean model. For cells with low ice concentration (C; < 0.05), any freezing or melting
occurs from the surface downward, that is, the surface of the grease ice layer freezes (or melts) first, and the
volume of grease ice to be frozen (or melted) determines the depth to which freezing (or melting) occurs. The
concentration of the new sea ice is then the grease ice concentration, C,, and the thickness of the new sea ice
is the depth to which the grease ice froze. Conversely, for cells with C; > 0.05, we assume that the grease ice
occupies leads in the sea ice, and freezing and melting occur laterally at the lead walls, that is, the full depth
of the grease ice layer freezes (or melts), and the volume of grease ice to be frozen (or melted) determines the
concentration of grease ice that freezes (or melts). In this case, the thickness of the new sea ice is the thick-
ness of the grease ice, and the concentration is the concentration of the grease ice that froze. The grease ice
volume is reduced by the volume of grease ice that has melted or frozen into new sea ice. If not all of the
grease ice has frozen or melted, then the remainder persists to the next model time step where the solid frac-
tion is added to any new ice volume created from the surface ocean freeze-melt potential (Figure 1).

3.3. Transport

When sea ice in a cell is transported in the dynamics part of the sea ice model, any grease ice that remains in
the cell after the freeze-melt steps above is transported with it as a passive tracer (grease ice only exists in the
sea ice component of the model, not the ocean component). To avoid grease ice in ice-free cells remaining
static, cells containing grease ice are required to have C;> 0.00005 in at least one sea ice category (in both
the standard HadGEM3-GC3.1 model, and in our modified version that includes grease ice, sea ice is melted
from categories with concentration lower than this prior to the dynamics calculations to avoid numerical
instabilities). For cells where the sea ice concentration in every thickness category is too low, any sea ice
volume in the thinnest sea ice category (which may be up to 60 cm thick), is “spread out” over the cell in
an attempt to achieve C; > 0.00005. If this does not result in a layer of sea ice that is at least 20 cm thick, then
the solid fraction of some of the grease ice is considered to be new sea ice and removed from the persisting
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grease ice volume (note that in standard HadGEM3-GC3.1 model simulations, the solid fraction of the whole
grease ice volume would be considered new sea ice).

3.4. Caveats to the Grease Ice Scheme

This first attempt to represent grease ice in a fully coupled climate model makes the model more physically
representative. More comprehensive observations of grease ice properties would allow some necessary sim-
plifications to be addressed. For example, grease ice in our model does not alter the surface roughness or
radiative properties of the ocean surface, despite these being different for water- and grease ice-covered
surfaces.

We assume a fixed solid fraction of 25% for grease ice, which is within the range of reported values observed
in situ and in laboratory experiments (Martin & Kauffman, 1981; Maus & De La Rosa, 2012; Smedsrud &
Skogseth, 2006; Winsor & Bjork, 2000). In reality, however, the solid fraction is likely to increase as grease
ice solidifies into sea ice, as observed in Smedsrud and Skogseth (2006) and described by Maus and De La
Rosa (2012); however, more observations are needed to define or parameterize a globally realistic rate for
the increase. In our implementation of the grease ice scheme, brine rejection is only associated with the for-
mation of new sea ice, and there is no change to ocean salinity when grease ice forms or melts. In reality, the
gradual release of brine as grease ice solidifies into sea ice can result in a more gradual salinification of ocean
surface waters (Skogseth et al., 2009), which may have implications for local hydrography in some places
(Smedsrud & Skogseth, 2006). It is also likely that the water content of grease ice is more saline than the
ambient ocean water (Heorton et al., 2017; Smedsrud & Skogseth, 2006), and should therefore be associated
with a lower freezing temperature. A range of salinities have been observed for grease ice, for example,
Smedsrud and Skogseth (2006), making it difficult to define an appropriate deviation from the ambient sali-
nity. We therefore neglect this and assume the salinity-dependent freezing temperature of water in grease ice
to be that for the ambient ocean water. This means that the freezing of water within the grease ice may be
associated with a slightly smaller energy change than is realistic. This first implementation of grease ice pro-
cesses in a coupled model could constitute a framework for a more sophisticated representation of grease ice
that allows the solid fraction to evolve, gradually releasing brine and adjusting the ambient ocean salinity.
Further field and/or laboratory studies would be needed to constrain these processes and the development
is beyond the scope of this work, but is facilitated by it.

Where grease ice forms in partially ice-covered cells and is subject to herding, a value for its granular resis-
tance is required, k, in Equation 1. This is a function of the internal friction angle (Lambe & Whitman, 1979),
and the grease ice bulk porosity (Dai et al., 2004), which are not well known. We set k, = 866 Nm™>, follow-
ing Wilchinsky et al. (2015). Sensitivity tests in that study showed that higher values of k, result in less herd-
ing, which may mean that leads freeze over faster and newly formed sea ice is thinner. A similar sensitivity
was shown for the assumed lead orientation: smaller angles relative to the stress direction result in less herd-
ing since the drag stress perpendicular to the lead is reduced (Wilchinsky et al., 2015). However, the value for
this orientation angle is necessarily arbitrary since the model contains no information on the orientation of
subgrid-scale leads. The width of the lead-sea ice element, Y, in Figure 2 is set at 5 km, following Wilchinsky
et al. (2015); however, Heorton et al. (2017) show that the degree to which grease ice is herded against the
lead walls is sensitive to this, and Smedsrud and Martin (2015) suggest that the square root of the grid cell
area may be more appropriate. At high latitudes, this would mean a different value for different cells, with
particularly large differences at the latitudes where sea ice advances and retreats each year. Setting this value
too low, or assuming an inappropriately low angle for the lead orientation has an effect equivalent to that
which results from setting k, too high (Wilchinsky et al., 2015), that is, less herding may result than is rea-
listic. It is hoped that future observation-based studies will allow k, to be assumed with greater confidence
and provide evidence for a statistical distribution of lead orientations.

4. Data to Assess the Impact of the Grease Ice Scheme

Changes were made to the ocean and sea ice components of HadGEM3-GC3.1 to implement the new scheme
for global coupled land-ocean-sea ice-atmosphere simulations using historical forcings from January 1964 to
December 2013 inclusive. There was no discernible impact on computation time. Sea ice area and thickness
have a high degree of natural variability that is represented by high internal variability in a fully coupled
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Figure 4. Mean seasonal cycle for total sea ice area 1979 to 2013 (the period of overlap between model simulations and
observation-derived data). Bold red and black lines are ensemble means for GREASE and STANDARD, dashed lines
in the same colors are individual ensemble members. (a) Arctic; (b) Antarctic.

climate model (Notz, 2015). We therefore use a three-member ensemble of simulations with grease ice
included (GREASE), for comparison against an equivalent ensemble using the standard sea ice formation
scheme (STANDARD). The simulations in STANDARD formed part of the UK submission to CMIP6
(Eyring et al., 2016), and the GREASE simulations were branched from the STANDARD simulations in
1964. STANDARD simulations were branched from the preindustrial control simulation (Menary et al.,
2018) at points in that simulation when the climate was in a different state (A. Sellar et al., 2018), and
STANDARD and GREASE use the same historical external forcings, described in Eyring et al. (2016).
Fully coupled models have high internal variability and three ensemble members is considered the
minimum required for an acceptable representation of likely climate in the CMIP6 experiments (Eyring
et al., 2016). The spread of climate realizations simulated by the ensemble is likely to be greater than the
impact of the grease ice scheme. The ensembles for GREASE and STANDARD are therefore likely to
overlap but impacts from the grease ice scheme should be evident in any persistent difference between
the ensemble means, as discussed in Eyring et al. (2016) and Flato et al. (2013).

Using historical forcings allows impacts from the scheme to be assessed in the context of data derived from
observations. We present the difference between the sea ice area in STANDARD and GREASE alongside the
total sea ice area derived from satellite-borne observations using two different algorithms: bootstrapping
(Comiso, 2017) and the NASA Team algorithm (Cavalieri et al., 1996), referred to as BOOTSTRAP and
NASATEAM, respectively. To assess any impact of the grease ice scheme on sea ice thickness and volume,
we present data from the Pan-Arctic Ice Ocean Modeling and Assimilation System (PIOMAS) for the Arctic,
which combines satellite-derived sea ice concentration and sea surface temperatures with modeling
(Schweiger et al., 2011), and for the Antarctic, we use data from the Global Ice-Ocean Modeling and
Assimilation System (GIOMAS), which combines satellite-derived sea ice concentration with modeling
(Zhang & Rothrock, 2003). PIOMAS data agree well with some sea ice thickness observations in the
Arctic (Stroeve et al., 2014), but a comparison study of different thickness data sets derived from remote
observations, including PIOMAS, found all derived sea ice thickness data to be associated with reasonably
high uncertainty (Wang et al., 2016). In particular, PIOMAS may underestimate the thickness of thick ice
and underestimate the thickness of thin ice (Wang et al., 2016). A paucity of observations means that
GIOMAS data have not been validated in the Antarctic to our knowledge, although they have been shown
to agree reasonably well with observations in the Arctic (Zhang & Rothrock, 2003). Nonetheless, in the
absence of spatially comprehensive Antarctic observations, GIOMAS provides a useful data set, derived par-
tially from observations, for comparison with model results and has been used as such in other studies, for
example, Shu et al. (2015).

Implementing the grease ice scheme does not affect the timing or magnitude of the seasonal cycle in total sea
ice area (Figures 4 and 5). In the Arctic, the maximum and minimum occur in March and August, respec-
tively, in agreement with the observation-derived data. In the Antarctic, the maximum and minimum occur
in September and February, respectively, making the maximum a month later in GREASE and STANDARD
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Figure 5. Total sea ice area. Ensemble means for GREASE and STANDARD are in bold, dashed lines are individual ensemble members. (a) Arctic summer; (b)
Arctic winter; (c) Antarctic summer; (d) Antarctic winter. Note the different scales.

than in the observation-derived data. For the purposes of this work, “winter” hereafter refers to March and
September in the Northern and Southern Hemispheres, respectively, and “summer” refers to August and
February in the Northern and Southern Hemispheres, respectively. The geographical areas marked in
Figure 6 are referred to in the discussion of the spatial distribution of effects from the grease ice scheme
in sections 5 and 6.

5. Impacts in the Arctic

In the Arctic, GREASE and STANDARD capture the sea ice minimum area well according to BOOTSTRAP,
but overestimate the magnitude of the winter maximum area according to both BOOTSTRAP and
NASATEAM (Figure 4a). In this work we restrict ourselves to a discussion of the impact of the grease ice
scheme, using the observation-derived data sets for context, rather than discussing differences between
the model and observation-derived data more widely.

The range of Arctic ice thicknesses simulated in GREASE is broader than in STANDARD and includes
thicker ice in both summer and winter (Figures 7a and 7b). Herding of grease ice against the sea ice edge,
and the lateral growth of new sea ice forming in leads, means that new sea ice in GREASE may be thicker
than new sea ice forming in STANDARD. In GREASE, new sea ice forming in a partially ice-covered cell
may be as thick as the existing sea ice, whereas in STANDARD, new sea ice has a uniform thickness of
up to 60 cm, which is exceeded only once the grid cell has become completely ice covered. The PIOMAS
thickness distributions do not have the bimodal shape of the STANDARD and GREASE distributions
(Figures 7a and 7b). The two modes represent single-year and multiyear ice. The latter is broadened when
the grease ice scheme is implemented because grease ice herded in leads against the edge of thick multiyear
sea ice persists and consolidates into new sea ice with a thickness that may match the multiyear sea ice thick-
ness. The single mode in PIOMAS may reflect an underestimation of thick ice thicknesses in PIOMAS in
summer and winter, combined with an overestimation of thin ice thicknesses in winter, as suggested in
Wang et al. (2016). There is a cold bias in the standard HadGEM3-GC3.1 historical simulations that leads
to an overestimation of Arctic sea ice thickness (Kuhlbrodt et al., 2018), which is likely to mean that there
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Figure 6. The maps show areas referred to in the discussion of local effects of the grease ice scheme. (a) Arctic (the red dashed line indicates the approximate
location of the Greenland-Scotland Ridge); (b) Antarctic (the red star indicates the approximate location of the Weddell Sea Polynya).

is too much thick Arctic sea ice in STANDARD, and this bias increases in GREASE when the grease ice
scheme is implemented.

The total Arctic sea ice volume is greater in GREASE than in STANDARD for most of the simulated per-
iod (Figures 8a and 8b). In conditions of nonnegligible oceanic and/or wind stress, the grease ice scheme
introduces a delay to the formation of new sea ice, as grease ice is first created, and new sea ice may not
form until time step(s) after the surface becomes supercooled (in contrast to STANDARD, where surface
supercooling is transformed instantly to new sea ice). Also, new sea ice formed from frozen grease ice is
thicker than the nilas that is formed in STANDARD, as discussed above, and is less likely to cover the
open water fraction of a grid cell. Areas of open water therefore take longer to freeze over in GREASE
than in STANDARD, leaving the ocean subject to increased atmospheric cooling and driving the produc-
tion of an increased volume of sea ice in GREASE, relative to STANDARD. The total Arctic sea ice
volume simulated in GREASE and STANDARD becomes more similar toward the end of the time series,
reflecting the warming of the ocean and atmosphere in recent decades (a warmer ocean requires a greater
degree of cooling in order to freeze, and the cooling provided by the atmosphere is reduced as the atmo-
sphere warms).

There are some small local differences in sea ice concentration between GREASE and STANDARD
(Figure 9), with the grease ice scheme giving a slight decrease in some areas in winter and a slight increase
in summer. The winter decrease occurs at locations where the STANDARD concentration is higher than the
NASATEAM climatology, and so brings the model slightly closer to the observation-derived data (Figure 9d).
The summer concentration increases in GREASE, however, occur mainly at the edge of the summer ice
pack, where concentration in STANDARD is already higher than in the climatology (Figure 9c).
Implementing the grease ice scheme therefore pushes the summer concentration in the model further from
the climatology; however, Figure 4 shows that the NASATEAM algorithm, from which the climatology is
derived, underestimates ice area relative to the bootstrap algorithm, as also shown in Comiso et al. (1997),
and the climatology may therefore show too small an ice-covered area.

The effect on Arctic sea ice thickness is much greater than the effect on concentration, and ice simulated in
GREASE is thicker than in STANDARD for most of the Arctic Ocean in both winter and summer (Figure 10),
similar to results presented in Smedsrud and Martin (2015). An exception to this is the northern Barents Sea,
where the winter ice is slightly thinner in GREASE than in STANDARD (Figure 10d). The thickening in
GREASE enhances what is already a positive thickness bias in STANDARD, relative to PIOMAS. This
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could be attributable to the assumptions made in the grease ice scheme that determine the degree to which
the grease ice is herded against lead edges, or may be attributable to partially compensating biases elsewhere
in the model. Alternatively, Arctic sea ice thickness may be underestimated in the PIOMAS data, as suggested
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Figure 9. Arctic sea ice concentration. Ensemble mean, 1979 to 2013 (the period of overlap between model simulations
and observation-derived data). Left: summer; Right: winter. (a) STANDARD, summer; (b) STANDARD, winter;

(c) GREASE-STANDARD, summer; (d) GREASE-STANDARD, winter; (¢) NASATEAM climatology, summer 1979 to
2013; (f) NASATEAM climatology, winter 1979 to 2013. Hatching marks areas not significant at the 95% confidence level
following a Student's ¢ test. Note the gray circular polar hole in the satellite-derived climatology, indicating no data.

by the single mode in the thickness distribution, which does not differentiate between single- and multiyear
ice (Figures 7a and 7b).

In both GREASE and STANDARD, new sea ice forms thermodynamically in the Arctic Ocean and along
coastlines in the Arctic (Figure 11). It is transported to the edges of the Arctic Ocean to where it melts,
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Figure 10. Arctic sea ice thickness. Ensemble mean, 1979 to 2013 (the period of overlap between model simulations and
observation-derived data). Left: summer; Right: winter. (a) STANDARD, August; (b) STANDARD, winter; (c) GREASE-
STANDARD, summer; (d) GREASE-STANDARD, winter; (¢€) PIOMAS, summer; (f) PIOMAS, winter.

this can be seen in Figure 12a, where positive areas show ice moving into a grid cell, increasing the
concentration in the cell, while negative values indicate either ice divergence (i.e., ice leaving a grid
cell) or ridging within a grid cell (reducing the total concentration but leaving the ice volume
unchanged). The effect of the grease ice scheme on these processes in the Arctic is very small and is
mostly confined to the edges of the sea ice pack. This is not surprising since Figures 11 and 12 reflect
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Figure 11. Change in sea ice concentration attributable to thermodynamic processes. Ensemble mean, 1964 to 2013, for
midgrowth in the seasonal cycle (November in the Arctic and June in the Antarctic, Figure 4). (a) STANDARD,
Arctic, (b) STANDARD, Antarctic; (c¢) GREASE - STANDARD, Arctic; (d) GREASE-STANDARD, Antarctic. Hatching
marks areas not significant at the 95% confidence level following a Student's ¢ test. Note that only sea ice is included here,
not grease ice, and the ring-like features are numerical artifacts from the model advection scheme.

changes in sea ice concentration, which Figure 9 shows to be only slightly affected by the grease ice
scheme in the Arctic.

The widespread thickness changes in response to the grease ice scheme are greater than may be expected
from the increased cooling that follows the increased open water area (Figure 9d shows only a slight increase
in open water area). It is possible that leads remain open for longer in GREASE, leading to production of an
increased ice volume as discussed above, but that when they freeze over the ice that fills them is thicker,
meaning that the internal stresses are less likely to result in new leads (HadGEM3-GC3.1 uses the elastic-vis-
cous-plastic ice rheology from Hunke (2001) to parameterize internal stresses resulting from sea ice defor-
mation rather than explicitly representing ice fracture). The sea ice concentration may therefore remain
largely unchanged, but leads in GREASE may persist for longer and occur less frequently. A smaller number
of longer-lived leads may result in more ocean cooling than a greater number of short-lived leads if the
longer opening time allows convection to develop in the exposed near-surface waters. As cooled (denser) sur-
face water sinks, it drives an upwelling of warmer water, allowing the ocean to lose more heat to the atmo-
sphere, resulting in greater ocean cooling than occurs if just the exposed surface water cools and freezes. The
increased cooling drives increased frazil production, and therefore increased sea ice production. This effect
can occur even for relatively shallow convection depths. Figure 13c shows some deepening of the winter
mixed layer under the pack ice in the central Arctic Ocean in GREASE, relative to STANDARD, which
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Figure 12. Change in sea ice concentration attributable to dynamic processes. Ensemble mean, 1964 to 2013, for
midgrowth in the seasonal cycle (November in the Arctic and June in the Antarctic, Figure 4). (a) STANDARD,
Arctic, (b) STANDARD, Antarctic; (¢) GREASE-STANDARD, Arctic; (d) GREASE-STANDARD, Antarctic. Hatching
marks areas not significant at the 95% confidence level following a Student's ¢ test. Note that only sea ice is included here,
not grease ice, and the ring-like features are numerical artifacts from the model advection scheme.

suggests increased convection and so supports this explanation (note that the strong deepening of the mixed
layer in the Barents Sea is not statistically significant). There is a shallowing of the winter mixed layer south
of Iceland in GREASE, indicating increased stratification driven by the higher volumes of meltwater
exported out of the Arctic through the Denmark Strait, following the greater volume of sea ice, relative to
STANDARD. There is also a deepening of the winter mixed layer on the northeastern side of the
Greenland-Scotland ridge and a shallowing on the southwestern side in GREASE, relative to STANDARD
(Figure 13c). Atmospheric cooling creates dense water that sinks on the northeastern side of the ridge,
and then flows south, rising to cross the ridge before sinking below lighter, warmer water carried northward
by the North Atlantic Current. Increases in convection on the north side of the ridge, and in stratification on
the south side, may indicate increased atmospheric surface cooling on the north side of the ridge, but the
mixed layer is already reasonably deep here in STANDARD, making the anomaly relatively small. It is dif-
ficult to attribute this effect to changes in model sea ice formation processes and further investigation is
beyond the scope of this study, but may be worthwhile for future works.

6. Impacts in the Antarctic

Both GREASE and STANDARD underestimate the maximum Antarctic sea ice area, relative to
BOOTSTRAP, but agree well with NASATEAM, although as noted earlier the simulated maximum
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Figure 13. Ocean mixed layer depth. Ensemble mean, 1964 to 2013, for midgrowth in the seasonal cycle (November in
the Arctic and June in the Antarctic, Figure 4). (a) STANDARD, Arctic, (b) STANDARD, Antarctic; (c) GREASE-
STANDARD, Arctic; (d) GREASE-STANDARD, Antarctic. Note the different scales for the Arctic and Antarctic.
Hatching marks areas not significant at the 95% confidence level following a Student's ¢ test.

occurs around a month later in GREASE and STANDARD (Figure 4b). The trend in simulated maximum
Antarctic sea ice area is largely unaffected by the implementation of the grease ice scheme, and both
GREASE and STANDARD overestimate the rate of decline relative to BOOTSTRAP and NASATEAM
(Figures 5c and 5d). The distributions of sea ice thicknesses in GREASE and STANDARD are similar
for both summer and winter, but include thicker ice than GIOMAS in summer (Figures 7c and 7d).
The decreasing trend in summer and winter sea ice volume is also unaffected by the implementation
of the grease ice scheme, and disagrees with the slightly increasing trend in both of these fields in
GIOMAS (Figures 8c and 8d).

It may be anticipated that the impact of the grease ice scheme would be greater in the Antarctic (Smedsrud &
Martin, 2015), where frazil ice accounts for a greater proportion of sea ice production than in the Arctic
(Maksym, 2012). However, the grease ice scheme has little impact on the total Antarctic sea ice area, volume
or the overall distribution of sea ice thicknesses (Figures 4b, 5c, 5d, 7c, 7d, 8c, and 8d), but it does create large
local differences in Antarctic sea ice concentration and thickness between GREASE and STANDARD, par-
ticularly in winter (Figures 14 and 15).

In summer, differences in sea ice concentration between GREASE and STANDARD are small (Figure 14c),

but sea ice around the Antarctic coast is generally thicker in GREASE (Figure 15c¢), as open water at the coast
remains open for longer, exposed to increased atmospheric cooling which drives increased sea ice

MACKIE ET AL.

18 of 24



Ay

N\\JI Journal of Advances in Modeling Earth Systems 10.1029/2020MS002103
1.0 1.0
0.8 0.8
s s
0.6 % 0.6 %
0.4 8 04 8
@ @
0.2 0.2
0.0 0.0
(a) STANDARD, summer (b) STANDARD, winter
55 0.5 05
i .
XX o o
0.0 § 0.0 §
8 8
7] 7
-0.5 -0.5
(c) Anomaly, summer (d) Anomaly, winter
1.0 1.0
0.8 0.8
s S
0.6 ‘é‘ 0.6 ‘é‘
04 8§ 04 §
7] 7
0.2 0.2
0.0 0.0
(e) NASATEAM, summer (f) NASATEAM, winter

Figure 14. Antarctic sea ice concentration. Ensemble mean, 1979 to 2013 (the period of overlap between model
simulations and observation-derived data). Left: summer; Right: winter. (a) STANDARD, summer; (b) STANDARD,
winter; () GREASE-STANDARD, summer; (d) GREASE-STANDARD, winter; (e) NASATEAM climatology, summer
1979 to 2013; (f) NASATEAM climatology, winter 1979 to 2013. Hatching marks areas not significant at the 95%
confidence level following a Student's ¢ test.

production. In winter, sea ice concentration in the Amundsen Sea is much lower in GREASE than in
STANDARD and is similarly decreased (although more weakly) everywhere around the northern sea ice
edge, except in the Western Pacific, where the sea ice concentration is much higher in GREASE than in
STANDARD (Figure 14d). There are also changes to winter sea ice thickness, with a large increase in the
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Figure 15. Antarctic sea ice thickness. Ensemble mean, 1979 to 2013 (the period of overlap between model simulations
and observation-derived data). Left: summer; Right: winter. (a) STANDARD, summer; (b) STANDARD, winter;

(c) GREASE-STANDARD, summer; (d) GREASE- TANDARD, winter; (¢) GIOMAS, summer; (f) GIOMAS, winter.
Hatching marks areas not significant at the 95% confidence level following a Student's ¢ test.

Western Pacific and around the Antarctic Peninsula, a decrease in the Amundsen Sea, and some smaller
areas of decrease, for example, at the location associated with the Weddell Sea polynya (Figure 15d).
Differences in thickness are generally weaker than in the Arctic because Antarctic sea ice is thinner, and
so the maximum thickness for new sea ice in GREASE is also thinner, making it closer to the maximum
thickness allowed in STANDARD (note that the scale in Figure 10 is different from that in Figure 15).
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Sea ice concentration increases thermodynamically in Antarctic coastal polynyas in both GREASE and
STANDARD (Figure 11b), and the ice is then transported offshore by sea ice divergence (Figure 12b).
Coastal polynyas are areas of low concentration and thickness in Figures 14a, 14b and 15a, 15b. In
GREASE, grease ice production has replaced at least some of the sea ice that forms instantly in the polynyas
in STANDARD, meaning that these areas of open water are likely to remain exposed to atmospheric cooling
for longer, increasing sea ice production. Grease ice is transported by the same wind and ocean stresses that
drive sea ice divergence in Figure 12b, so there may be a decrease in sea ice formation at the coast, and an
increase slightly north of the coast, where the transported grease ice freezes. This happens in the Western
Pacific, where coastal sea ice formation is reduced in GREASE, relative to STANDARD, creating a negative
anomaly in Figure 11d. Sea ice divergence at the Western Pacific coast then also reduces, since grease ice is
transported instead of sea ice, creating a positive anomaly in Figure 12d. North of these coastal anomalies,
thermodynamic sea ice production increases in GREASE where the transported grease ice freezes
(Figure 11d). The increase in sea ice concentration and thickness in the Western Pacific in GREASE, relative
to STANDARD (Figures 14d and 15d) therefore follows from the enhanced surface cooling at the coastal
polynyas, despite the increase being displaced from the coast. The increased volume of sea ice forming in this
area leads to an increase in the sea ice divergence that transports ice to the northern sea ice edge in the
Western Pacific (Figure 12d), resulting in increased melt, which drives a shallowing the surface mixed layer
in the Western Pacific in Figure 13d in GREASE (note that Figure 11 shows changes in ice concentration, so
the melting of equal areas of thick and thin ice appears the same).

Similar processes explain the reduction in sea ice concentration and thickness in the Amundsen Sea in
GREASE, relative to STANDARD (Figures 14d and 15d). There is a decrease in thermodynamic sea ice pro-
duction toward the northern ice edge here in GREASE, relative to STANDARD, where the surface mixed
layer depth is high in both STANDARD and GREASE (Figures 13b and 13d), indicating convection. In areas
of convection, warmer water rises to the surface where it cools and sinks, driving an overturning and often
maintaining a polynya within the sea ice cover. In STANDARD, the supercooled surface water is trans-
formed to sea ice, but in GREASE, grease ice is produced instead. The negative anomaly just south of the
Amundsen Sea northern ice edge in Figure 11d shows that at least of some of the grease ice does not freeze
at the production location. In STANDARD, divergence transports sea ice from the convective region to the
northern ice edge where it melts. In GREASE, some grease ice is transported to the ice edge where it melts,
without ever having frozen to form sea ice. This production, transport and melt of grease ice, rather than sea
ice, creates the negative-positive anomaly pairs close to the northern ice edge in the Amundsen Sea in
Figures 11d and 12d. The former shows a decrease in the production and melt of sea ice in GREASE, since
grease ice is produced and melts instead, and the latter shows a reduction in sea ice divergence to the north-
ern ice edge in GREASE, since grease ice is transported instead.

The production of grease ice in place of at least some of the sea ice that forms in STANDARD means that
open water areas freeze over less readily in GREASE, enhancing atmospheric surface cooling and driving
increased convection. This results in a deepening of the mixed layer in the Amundsen Sea in GREASE, rela-
tive to STANDARD (Figure 13d). Ordinarily, increased surface supercooling is associated with increased sea
ice production. However, the proximity of this area to the northern ice edge means that if grease ice is pro-
duced instead of sea ice, then at least some of it is transported to the northern ice edge where it melts without
ever having formed sea ice. This reduces the sea ice concentration and thickness in the outer Amundsen Sea
in GREASE, relative to STANDARD (Figures 14 and 15). This reduction is roughly equal in magnitude to the
increase in the Western Pacific following the implementation of the grease ice scheme, and we therefore do
not see the same increase in total sea ice volume in the Antarctic that we see in the Arctic.

7. Summary and Concluding Remarks

We have demonstrated a framework whereby grease ice formation and grease ice herding processes can be
represented in sea ice formation calculations in a fully coupled global climate model. Whereas in the stan-
dard sea ice formation scheme, sea ice forms instantly in response to ocean surface supercooling, it may take
several model time steps (depending on the ocean to atmosphere heat flux, this could be several days) for
new sea ice to form when the grease ice scheme is implemented. This, and the nonuniform thickness distri-
bution of grease ice (following herding by the wind against sea ice edges), which may freeze to form a
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nonuniform distribution of sea ice, means that areas of open water persist for longer when the grease ice
scheme is implemented, prolonging the ocean's exposure to atmospheric cooling and driving increased frazil
ice production. For the three-member ensemble used here, this increased frazil production drives an
increase in Arctic sea ice volume. In the standard sea ice formation scheme, frazil ice is considered to be
sea ice, whereas in the new scheme presented here, it forms grease ice, which may be transported from
the supercooling location before freezing to form new sea ice.

In both hemispheres, implementing the grease ice scheme results in some local redistribution of sea ice. In
general, new sea ice in areas of partial ice cover is thicker when the grease ice scheme is implemented, fol-
lowing herding of the grease ice against the sea ice edge, and the lateral growth of new sea ice, which closes
leads laterally (rather than forming a cap across the upper surface of the lead). This means that new sea ice
may be as thick as any existing sea ice in partially ice-covered grid cells. This thickening effect is greater in
the Arctic, where sea ice is generally thicker, than in the Antarctic, although the grease ice scheme does
drive a thickening of summer sea ice in Antarctic coastal areas.

In the Antarctic, changes in winter concentration, and to a lesser extent thickness, are associated with the
production of grease ice, rather than sea ice, in polynya regions. The increased surface cooling when the
grease ice scheme is implemented drives an increase in both sea ice concentration and thickness in the
Western Pacific, as grease ice is transported away from the areas of supercooling at the coast and freezes into
the ice pack, leaving the polynya surfaces exposed to further cooling and further frazil production. In the
Amundsen Sea, grease ice forms in an area of convection relatively close to the northern ice edge, and is
transported northward to where it melts without ever having frozen to form new sea ice. Sea ice concentra-
tion and thickness therefore decrease in the Amundsen Sea when the grease ice scheme is implemented.
These two regions dominate the sea ice response to the grease ice scheme in the Antarctic and are of roughly
equal magnitude, leaving little net change to total Antarctic sea ice volume.

We have shown that the implementation of a more detailed sea ice formation scheme results in some
changes to the spatial distribution of sea ice, particularly in the Antarctic winter, but minimal change to
the total area in either summer or winter in either hemisphere. Including grease ice drives an increase in
volume and thickness for simulated Arctic sea ice, and causes local changes (thinning and thickening) to
simulated Antarctic sea ice. Sea ice volume represents latent heat and so is important to ocean energy bal-
ance, but is difficult to estimate from observations because it requires reliable and spatially comprehensive
sea ice thickness measurements. It is important that model calculations of sea ice thickness take into account
all physical processes that impact on it, so that the sea ice volume response to current and future changes in
the ocean and atmosphere can be reliably estimated, despite a lack of observations. Our results concur with
earlier works (Smedsrud & Martin, 2015; Wilchinsky et al., 2015) in finding model sea ice thickness and
volume to be sensitive to the representation of sea ice formation, emphasizing the need for grease ice pro-
cesses to be included in models.

The grease ice scheme presented here makes the representation of sea ice formation more physically plau-
sible. This implementation contains some necessary assumptions which previous works have shown are
likely to impact the results, and which could be better constrained if more observations of grease ice proper-
ties were available from field and laboratory studies. More observations of sea ice thickness are also needed,
particularly in the Antarctic, to constrain model development work and to assess model biases in simulated
sea ice volume.

While our knowledge of the precise magnitude of the increase in Arctic sea ice thickness is limited by the
small ensemble size, its scale demonstrates that grease ice formation is a relevant and important process
for climate simulations. Although in this work the thickening effect does not lead to an improved (more rea-
listic) thickness because HadGEM3-GC3.1 overestimates historical Arctic sea ice, this is connected to the
cold bias in the historical simulations and should not be interpreted to mean that the processes leading to
increased ice growth are unrealistic. The state of sea ice in a climate model depends on the interaction of
all model components and therefore the implementation of a new process, such as grease ice formation, gen-
erally requires further tuning steps for the other model components. The changes seen here to result from
the inclusion of grease ice processes in the model, including increased thermodynamic growth in areas
where there is high ice divergence and/or thick partial ice cover, local effects such as those seen in the
Amundsen Sea, and greater differences between seasonal and multiyear ice thicknesses, provide a more
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realistic description of sea ice in those areas, and this can be used to inform appropriate tuning for other pro-
cesses in the model.

Data Availability Statement
Model data produced and analyzed in this work are publicly available under Creative Commons
Attribution-NonCommercial 4.0 International license at this site (Mackie et al., 2020).
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