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A 2,000‑year Bayesian NAO 
reconstruction from the Iberian 
Peninsula
Armand Hernández 1,8*, Guiomar Sánchez‑López1,8, Sergi Pla‑Rabes 2, Laia Comas‑Bru 3,  
Andrew Parnell4, Niamh Cahill5, Adelina Geyer1, Ricardo M. Trigo6,7 & Santiago Giralt1

The North Atlantic Oscillation (NAO) is the major atmospheric mode that controls winter European 
climate variability because its strength and phase determine regional temperature, precipitation 
and storm tracks. The NAO spatial structure and associated climatic impacts over Europe are not 
stationary making it crucial to understanding its past evolution in order to improve the predictability 
of future scenarios. In this regard, there has been a dramatic increase in the number of studies 
aimed at reconstructing past NAO variability, but the information related to decadal‑scale NAO 
evolution beyond the last millennium is scarce and inconclusive. We present a new 2,000‑year multi‑
annual, proxy‑based reconstruction of local NAO impact, with associated uncertainties, obtained 
by a Bayesian approach. This new local NAO reconstruction is obtained from a mountain lacustrine 
sedimentary archive of the Iberian Peninsula. This geographical area is not included in previous NAO 
reconstructions despite being a widely used region for instrumental‑based NAO measurements. We 
assess the main external forcings (i.e., volcanic eruptions and solar activity) on NAO variability which, 
on a decadal scale, show that a low number of sunspots correlate to low NAO values. By comparison 
with other previously published NAO reconstructions in our analyses we can test the stationarity 
of the solar influence on the NAO signal across a latitudinal gradient based on the position of the 
employed archives for each NAO reconstruction. Inconclusive results on the volcanic forcing on NAO 
variability over decadal time‑scales indicates the need for further studies. Moreover, we highlight the 
potential role of other North Atlantic modes of variability (i.e., East Atlantic pattern) on the non‑
stationary behaviour of the NAO throughout the Common Era, likely via solar forcing.

The North Atlantic Oscillation (NAO) is characterised by a dipole of sea-level pressure (SLP) anomalies between 
the Azores and  Iceland1 and references therein. Under positive NAO conditions, when the dipole is enhanced, storm 
tracks shift towards N Europe bringing more precipitation and warm anomalies into this region. Conversely, 
negative NAO conditions induce average temperature and more precipitation in S Europe. The NAO drives 
regional climates on different spatio-temporal scales, and controls important socio-economic activities. Climate 
change imposes new societal challenges and adaption strategies, so understanding NAO variability is key to wind-
energy production, food security and important ecosystem services like global terrestrial  CO2 uptake and water 
 availability2–4. However, the NAO impact is non-stationary on decadal  timescales5 making its reconstruction a 
challenge for proxy-based records beyond the instrumental period. Recent dynamical method developments 
offer promise to improve seasonal NAO  forecasting6 but assessing its predictability on decadal timescales requires 
documentation of past low-frequency NAO variability.

This importance of the NAO for explaining European climate variability (Fig. 1) has encouraged a num-
ber of initiatives to produce NAO reconstructions across different  timescales7–14. However, these are still chal-
lenged within the paleoclimate community, partly because there is a widespread use of ambiguous terminology. 
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Encouraging the use of more accurate definitions (i.e., local impacts vs regional reconstructions) would help to 
understand the discrepancies amongst NAO reconstructions. For instance, while a reconstruction that assembles 
a large dataset of multi-archive sub-decadal proxy records from different locations over the region of influence 
of the NAO (e.g., Greenland, Mediterranean, Scandinavia) could provide stronger  constraints13,15,16 on NAO 
variability (Fig. 1), each archive (e.g., ice cores, tree-rings, speleothems) may be recording a different aspect of 
the NAO according to their seasonal sensitivity, for example. Additionally, the extent to which the NAO impacts 
the climate may differ across locations, further reducing the ability to obtain a robust NAO reconstruction from 
a geographically spread multi-archive dataset. In fact, many studies use just one or two  records11,12,17,18 (Fig. 1) 
to obtain a more accurate (avoiding over-smoothing) yet spatially limited reconstruction of the local NAO 
impact. Thus, the use of more accurate definitions according to the employed methodology would facilitate the 
determination of some of the current discrepancies between NAO reconstructions.

In general, most of the available proxy-based NAO reconstructions (Table 1) agree with each other on cen-
tennial timescales, and demonstrate broad agreement with instrumental NAO indices until as early as c. 1850 
CE (Common Era). However, NAO variability only accounts for c. 40% of the climate variance that is ulti-
mately captured by those regional palaeorecords sensitive to the NAO  impact1. Thus, on this basis a perfect 
NAO reconstruction is a challenge beyond the instrumental period. In fact, considerable discrepancies amongst 
reconstructions are evident further back in time on decadal timescales. A clear example is the persistent posi-
tive NAO phases during the Medieval Climate Anomaly (MCA; 900–1300 CE) suggested by some  authors11,12,17 
and questioned by  others13,16. Besides factors such as chronological uncertainties, the use of diverse calibration 
periods and differences in the sensitivity of the archives to climate, amongst others; the inconsistencies between 

a

b

Figure 1.  (a) Spatial display of the first eigenvector for the gridded winter (December–February) monthly SLP 
anomalies (in mb) for the North Atlantic domain—calculated using the Twentieth Century Reanalysis data set 
(20CRv2c)77. Location of the proxy-based records (ice cores, lake sediments, speleothems, tree rings, and marine 
sediments) employed in this study, using symbols and colours to represent the different types of archives and 
the reconstructed climate variables. (b) Correlation distribution maps between the winter precipitation and 
temperature (wPre and wTmp) datasets and the NAO, for the boreal winters (December–February) between 
1901 and 2016, calculated using the CRU-TS4.1 global climate  dataset69 and the NAO and EA indices from 
Comas-Bru and Hernández57. Positive Spearman rank correlations are shown in red and negative correlations 
are shown in blue. Location of record used for  NAOIP is indicated. Figure created with MATLAB 2019b. Scripts 
at https ://doi.org/10.5281/zenod o.38983 82.

https://doi.org/10.5281/zenodo.3898382
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NAO reconstructions appear to be related to the large percentage of NAO internal variability that has been com-
monly associated with its non-stationary  behaviour19,20. More recently, the amplitude of this internal variability 
has been attributed to the influence of other North Atlantic modes of climate variability [i.e., the East Atlantic 
(EA) and Scandinavian (SCA) patterns], which would thereby modulate the strength and location of the NAO 
dipole from annual to multidecadal  scales21–23. The EA pattern is structurally similar to the NAO, being defined 
as a north–south dipole with SLP anomaly centres, spanning the entire North Atlantic  Ocean3,24, or a well-defined 
SLP monopole south of Iceland and west of  Ireland4,22,23,25. Compared with the nodal lines of the NAO pattern, 
the anomaly centres of the EA pattern are displaced to the  southeast26. The SCA pattern is associated with strong 
positive SLP anomalies over Scandinavia and weaker centres of the opposite sign over Western Europe and 
eastern Russia–western  Mongolia27.

From a methodological point of view, most previously published NAO reconstructions have been based on the 
use of some variant of regression models, often coupled with Principal Components Analysis (PCA)14 and references 

therein. By contrast, richer models using Bayesian inference have been extensively used during the last decade for 
age-depth chronological  building28–30 as well as for climate and environmental reconstructions using biological 
 proxies31–34. Nevertheless, neither Bayesian inference nor non-biological proxies have yet been used to reconstruct 
modes of variability (i.e., the NAO). The Bayesian approach holds a major advantage over traditional methods, as 
it is conceptually simpler to build a complex model which quantifies the relationship between multiple proxy and 
climate variables simultaneously—rather than relying on individual coefficients to describe the  relationship35,36. 
Furthermore, it is possible to model observations under all conditions (i.e., modern  analogues37). The handicap 
for ’’no modern analogue’’ situations means considerably larger uncertainties which can be, however, accounted 
for in the resulting reconstructions.

Recently, much attention has been cast toward disentangling the relative controls on the NAO from external 
forcings (e.g., solar, volcanic activity and/or greenhouse gases) and internal variability (e.g., ocean, atmosphere, 
sea ice) to develop reliable projections of its future  evolution6,38–42. Although the relative impacts of external 
forcing mechanisms on the NAO are still a matter of  debate43, it has been traditionally assigned to volcanic 
 eruptions44, as highlighted by a predominance of positive NAO phases after these periods of increased volcanic 
 activity13,15. The role of solar activity however is even more controversial, with contradictory evidence sourced 
from multiple proxy-based  reconstructions13,15,18,45.  Modelling42,46 and  observational40,47 studies also yield contra-
dictory conclusions between the 11-year solar cycle and the NAO  relationship48. The studies arguing for a solar 
impact on the NAO invoke a top-down mechanism related to the ultraviolet irradiance  pattern49. An increase in 
UV radiation during periods of high solar activity results in an increased temperature in the middle atmosphere. 
The middle atmosphere refers to the region extending from the tropopause (∼ 10–16 km) to the homopause 
(∼ 110 km) where the atmosphere remains relatively well  mixed50. This increase in UV radiation due to high 
solar activity would lead to an altered stratospheric circulation that propagates pole- and down-wards affecting 
tropospheric jet streams and thus atmospheric  circulation40,51. However, the response of the NAO to the solar 
cycle would not occur immediately but rather after a lag of c. 3 years. This is because the impact of solar heating 
accumulates for several years in the ocean causing a positive feedback between the ocean and  atmosphere49,52. 
Low sunspot activity results in a climate pattern very similar to the negative phase of the  NAO53 with longer 
lasting and more intense blocking episodes than during high solar blocking  events54. A recent proxy-based 
 study18 further supports a linkage between the Grand minima of solar activity and the negative NAO phases that 
accompany cooling events (e.g., Little Ice Age—LIA) at decadal-to-centennial timescales.

Table 1.  Previous NAO index reconstructions used in this work.

References Reconstruction Period Time Resolution Predictors Statistical Method

Luterbacher et al.9  (NAOLUT) 1659–1995 CE
1500–1658 CE

Monthly
Seasonal

Instrumental and proxy data predictors from 
Eurasia Principal Component Regression (PCR)

Trouet et al.11  (NAOTRO) c. 1050–2000 CE Seasonal
Reconstructed winter precipitation for Scotland 
and February-to-June Palmer Drought Severity 
Index (PDSI) for Morocco

Normalised difference of the Scotland and 
Morocco records

Olsen et al.12  (NAOOLS) c. 3250 BCE–1650 CE Decadal Paleo-redox proxy-based record of lake sedi-
ments from southwestern Greenland

3rd component of a Principal Component Analy-
sis (PCA) tuned by Monte-Carlo-Markov-Chain 
model (calibration based on Trouet et al. 2009)

Ortega et al.13  (NAOORT) c. 1050–2000 CE Annual
Proxy data predictors (ice cores, lake sediment, 
speleothem and tree ring) from around the North 
Atlantic (Greenland, Europe, North America and 
North Africa)

Ensemble reconstruction of Principal Component 
Regressions (PCR)

Baker et al.17  (NAOBAK) 1000 BCE–2000 CE Annual Speleothem Principal Component Analysis (PCA)

Faust et al.18  (NAOFAU) c. 800 BCE–1900 CE Multiannual
Paleoproductivity (CaCO3 and Ca/Si) proxy-
based record of fjord sediments from Central 
Norway

Kernel smoother

Sjolte et al.15  (NAOSJO) c. 1250–2000 CE Seasonal
Reconstruction of atmospheric winter circulation 
for the North Atlantic region based on Greenland 
ice core records and a 1,200-year-long simulation 
with an isotope-enabled climate model

Principal Component Analysis (PCA) supported 
by a Chi-square goodness-of-fit test

Cook et al.16  (NAOCOOK) 910–2018 CE Seasonal Tree rings Principal components regression
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Here we present a quantitative NAO reconstruction for the central Iberian Peninsula (IP) over the last two 
millennia, along with its uncertainties, by applying a Bayesian approach. We also assess the coherence between 
our new local NAO reconstruction and previously published reconstructions from other locations, as well as 
potential external forcing mechanisms that would lead to disagreements between them as a result of the non-
stationary spatial behaviour of the NAO.

A new local NAO reconstruction: Central Iberian Peninsula
The NAO has a significant effect on winter climate on the Iberian  Peninsula55–57 (IP; Fig. 1). In particular, high-
mountain lakes from the IP are highly influenced by the NAO; cold and wet conditions during negative NAO 
phases control annual ice-cover dynamics (i.e., freezing and thawing) via interactions between air temperature 
and  precipitation58. While the NAO is particularly relevant during the boreal winter, its impact on ecosystem 
and ice-cover dynamics is not restricted to this  season59. In fact, the NAO signal that is captured in lake records 
from the region spans from January to  May58.

A previous  study60 using geochemical (i.e., X-ray fluorescence and bulk organic matter nitrogen (TN), carbon 
(TC) and analyses of their stable isotopes analyses), as well as mineralogical (i.e., x-ray diffraction) data from 
the Cimera Lake sedimentary record (40° 15′ N–5° 18′ W, 2,140 m a.s.l.) established a qualitative climatic and 
environmental reconstruction of the Iberian Central Range throughout the CE. Authors applied PCA to the 
normalized geochemical datasets to determine the main environmental processes controlling sediment input, 
distribution and deposition in the lake. The first (PC1cim) and second (PC2cim) eigenvectors explained c. 
55% of the total variance. PC1cim was associated with most of the chemical elements and with Ti in particular. 
Therefore, it was interpreted as due to changes in the inputs of siliciclastic material from the catchment. Authors 
argued that runoff intensity was related to the occurrence of a well-defined melt season in terms of temperature 
and rainfall variations. Hence, rain-on-snow events were suggested as the main process governing the inputs 
of coarse siliciclastic material to Cimera Lake. PC2cim was related to TC, TN and Rb content and was associ-
ated with variations in the lake’s organic productivity which was in turn modulated by ice-cover duration. Cold 
(warm) and wet (dry) conditions lead to longer (shorter) ice-cover durations, which are partly the result of the 
enhanced (reduced) insulating effect of the snow deposited on the ice  cover58. Here we use their  dataset60 to 
quantitatively reconstruct the NAO impact on climate in the central IP  (NAOIP) for the last two millennia using 
a Bayesian modelling approach (see Methods).

The reconstructed local NAO impact ranges between − 3 and 3 and represents the quantitative reconstruction 
of the NAO for the central IP  (NAOIP; Fig. 2). Only 2.9% of the observations fall outside the 95% confidence inter-
val (Fig. 3). These results indicate satisfactory performance of the model and validate the  NAOIP (see Methods). 
The  NAOIP has not been reconstructed for the period c. 1200–1270 CE due to the lack of proxy  data60. Though the 
model permits such interpolation, the uncertainties would be too wide to enable any reasonable interpretation.

The  NAOIP shows decadal alternations between positive (> 0.5) and neutral (− 0.5 to 0.5) phases of the NAO 
during the Roman Period (RP: ~ 200 BCE–500 CE) (Fig. 2). Neutral to positive  NAOIP values characterize the 
first half of the RP period while there is a predominance of neutral values during its second half. During the Early 
Middle Ages (EMA: 500–900 CE) the  NAOIP shows two cycles of positive-to-neutral and positive-to-negative 
(< − 0.5) values. During the Medieval Climate Anomaly (MCA: 900–1300 CE), the  NAOIP displays a trend from 
predominantly negative values (− 1.4 to 0.5) to the most positive ones (~ 2.5) of the entire reconstruction. Nega-
tive  NAOIP values (− 1.6 to 0.5) clearly dominate the Little Ice Age (LIA: 1300–1850 CE) recording the most 
negative  NAOIP values at ~ 1500 CE. In contrast, the Industrial Era (IE: 1850–2012 CE) shows a clear trend from 
neutral to positive values (− 0.2 to 0.6) punctuated by large decadal oscillations (~ 2.5) during the second half.

Comparison with previous NAO proxy‑based reconstructions
The comparison between different proxy-based NAO reconstructions published in the last two decades (Table 1) 
points out a number of periods with consistent signals as well as some with notable differences (Fig. 4). All NAO 
reconstructions show a similar centennial timescale evolution with positive NAO values during the MCA and 
lower positive or negative NAO values during the LIA (Fig. 4). This coherence across regions suggests an hemi-
spheric imprint of this climate mode at low frequencies compared to the local impacts that might be recorded 
by each reconstruction over annual to decadal timescales.

To establish the extent to which the decadal variability between positive and negative excursions in  NAOIP 
during the last 2 ka compares to previously published reconstructions, we calculated Spearman’s Rank Correla-
tion Coefficients for decadal timescales (Table 2; Fig. 4). The  NAOIP displays the highest correlations with the 
W Europe mid-latitude records such as the NAO reconstruction by Trouet et al.11  (NAOTRO; ρ = 0.51; p < 0.01; 
DF = 171) and the NAO reconstruction by Baker et al.17  (NAOBAK; ρ = 0.40; p < 0.01; DF = 206). However, if we 
analyse the results separately for climate periods, the  NAOIP shows higher correlations with high-latitude and 
eastern records such as NAO reconstruction by Ortega et al.13 and NAO reconstruction by Faust et al.18 during 
the MCA (ρ = 0.84; p < 0.01; DF = 25) and the IE (ρ = 0.94; p < 0.01; DF = 15), respectively.

Unlike instrumental-based NAO reconstructions arising from large-scale gridded SLP datasets proxy-based 
NAO reconstructions are usually based on a limited number of climate proxy records from restricted regions 
or locations (e.g.,  NAOTRO,  NAOBAK, NAO by Sjolte et al.15  (NAOSJO)) or on single paleorecords (e.g., NAO 
reconstruction by Olsen et al.12,  NAOFAU and our  NAOIP). This constrained geographical area implies that the 
reconstructed NAO signal probably results from the local climatic response to this mode of variability rather than 
reflecting a regional signal. By contrast, other NAO reconstructions, such as those by Cook et al.16  (NAOCOOK), 
Luterbacher et al.9  (NAOLUT) and  NAOORT are based on a larger number of geographically distributed records 
that could be understood to represent a regional assemblage of local NAO impacts. Nevertheless, here we provide 
evidence supporting the fact that our local  NAOIP, which is based on a single palaeorecord, is representative of 
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Figure 2.  The NAO reconstruction for the Central Iberian Peninsula  (NAOIP) obtained in this study 
(black line) and the 95% (light grey band) and 50% (dark grey band) uncertainty intervals. Sunspot number 
 reconstruction62 and volcanic  eruption61 for the studied period are also represented.
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lines) and to the 50% uncertainty interval (wide lines), respectively.
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a wide regional signal (Fig. 5). Thus, we conclude that in some cases, reconstructions based on single archives 
may be more regionally representative than what can be achieved with multi-archive proxy-based NAO recon-
structions. The rationale behind this could be that different archives capture different climate signals at different 
seasons and merging them into a single series without taking into account these mixed signals results in a low 
variance reconstruction that does not capture all the NAO variability.
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Figure 4.  (a) Comparison of the NAO reconstructions for decadal timescales. Details of each reconstruction 
are in Table 1. (b) Magnified plot for the last six centuries.

Table 2.  Spearman’s rank correlation coefficients between decadal (10 years)  NAOIP and other NAO 
proxy-based reconstructions employed to build up NAO indices. Correlations with p val < 0.01 are in bold. 
a,b,c,d Correlations with p val < 0.01, 0.01 < p val < 0.05, 0.05 < p val < 0 .1 and p val > 0.1, respectively.

NAOLUT NAOTRO NAOOLS NAOORT NAOBAK NAOFAU NAOSJO NAOCOOK

NAOIP

CE (200 BCE—Present) 0.18d 0.51a 0.20b 0.22b 0.40a 0.08d 0.13d 0.07d

RP (200 BCE–500 CE) – – 0.24d – 0.30b 0.19d – –

EMA (500–900 CE) – – − 0.31c – 0.18d − 0.19d – –

MCA (900–1300 CE) – 0.28d 0.30d 0.84a 0.57a − 0.05d 0.50d − 0.26d

LIA (1300–1850 CE) − 0.22d 0.29b 0.27d 0.06d 0.35a − 0.33b 0.13d 0.10d

IE (1850 CE—Present) 0.36d 0.11d – 0.17d 0.27d 0.94a 0.01d 0.28d
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Equally importantly, the NAO is not the sole driver of the large-scale atmospheric variability in the European 
North-Atlantic region; other modes of variability also play an important role—namely the EA and  SCA56. Comas-
Bru and  McDermott23 previously showed that it is possible to explain a larger fraction of the European winter 
climate variability when different NAO/EA and NAO/SCA modulate the migrations of the North Atlantic SLP 
dipole and in turn, the climate signal recorded in the region. Across the IP, this is expressed by a more homogene-
ous spatial pattern in temperature and precipitation for periods with a predominance of in-phase NAO and EA 
indices (i.e., MCA and LIA) compared to periods when these modes have the opposite sign (i.e., RP and EMA)60. 
Moreover, the geographical displacement of the southern pole of the North Atlantic SLP field (i.e., location of 
the highest correlated grid cells between combinations of the NAO and EA and North Atlantic SLP) is relatively 
smaller when the NAO/EA have the same sign compared to years of opposite sign (Fig. 6). Contour lines of 
teleconectivity maps show higher gradients and are northerly located for years with the same sign, whereas years 
with opposite sign show a lower gradient with a south-westerly migration of the dipole. As a result, differences 
in precipitation between years of the NAO and the EA with the same and opposite signs (Fig. 7) are generally 
small for mid-latitudes (e.g., IP and the Mediterranean Basin) and are larger for high-latitudes (e.g., Greenland, 
Ireland, and the UK). On the contrary, differences in temperature are larger for mid-latitudes and smaller for 
high-latitudes. These differences are almost non-existent in the western Atlantic sector (US and Canada) where 
the NAO impact is also significantly weaker. Hence, regional NAO reconstructions which use different archives 
(e.g., tree-rings, speleothems, ice-cores) that record different climate variables (e.g., precipitation, temperature) 
from different locations (high- vs mid-latitudes) could experience biases due to the above mentioned migrations 
of the SLP dipole due to NAO/EA interactions. This could potentially explain the latitudinal variability observed 
for NAO reconstructions over the last millennia (Fig. 4).

The largest discrepancies between  NAOIP and other published reconstructions are found for the RP and 
the EMA, while better agreements occur during the MCA, the LIA, and the IE (Table 2, Fig. 4). During the RP 
and the EMA, the weakest agreement occurs for NAO reconstructions that are based on high latitude records 
 (NAOOLS and  NAOFAU) whereas a similar long-term evolution is observed between  NAOIP and  NAOBAK, which 
are based on mid-latitude records (Figs. 1, 4). While we acknowledge the difficulty to fully assess the reasons for 
these discrepancies, our results indicate that they may be partly related to the location of the employed archives 
(higher latitudes for  NAOOLS and  NAOFAU than for  NAOIP and  NAOBAK); potentially it is also due to the different 
latitudinal impact of the EA pattern, as well as external forcings. Nonetheless, the type of archives employed for 
the different reconstructions (i.e., lake and marine sediments, speleothems), their variable sensitivity to climate, 
and the range of statistical approaches used to obtain the final reconstructions (i.e., Bayesian modelling, Principal 
Component Analysis), should not be discarded as being at least part of the cause of the disagreements observed 
across reconstructions.

Volcanic eruption impact
Previously published proxy-based NAO reconstructions show a robust positive NAO response in the 4–5 years 
following the major eruptions of the last millennial  period13,15. In contrast, a recent review of the impact of 
explosive volcanic eruptions on the main climate variability modes determined that no firm conclusions can be 
drawn regarding volcanic forcing impacts on this mode of  variability43.

We compared the  NAOIP with volcanic  eruptions61 responsible for the largest stratospheric sulphur injection 
(> 6 Tg S) during the last 2 ka for each decade (n = 41; Table 3). We find positive reconstructed NAO values for 
approximately 50% of the decades when these large eruptions occurred. This result reinforces previous  studies13,15 
that did not reach compelling conclusions on the relationship between the NAO and volcanic activity. Neverthe-
less, if we relax the minimum injection threshold for volcanic eruptions in order to take into account stratospheric 
sulphur injections larger than 0.5 Tg S and only consider Northern Hemisphere latitudes eruptions (n = 86), we 
find that about 80% of the NAO reconstructed values of the decades encompassing these eruptions are predomi-
nantly positive (c. 80%). A further comparison including all the analysed NAO reconstructions (Table 1) shows 
a wide range of percentages (20 to 91% and 32 to 91% for all and for extratropical NH eruptions, respectively) 
for decades with positive NAO values when large volcanic eruptions occurred (Table 3). Hence, there is no 
apparent influence from volcanic eruptions on the preferred signal of the NAO pattern over decadal timescales.

Solar forcing modulation
We also compared the  NAOIP with a decadal sunspot number  reconstruction62 through the CE. To avoid volcanic 
eruption interferences in the analysis, we identified the decades corresponding to the fifteen largest volcanic 
eruptions (Fig. 2 and Table S1), considered to be outliers, and were removed from the solar forcing analysis.

The linear correlation (ρ) between the decadal  NAOIP index and the sunspot number is significant but rela-
tively low, (ρ = 0.32; p < 0.01; DF = 177). However, a breakpoint analysis displayed an inflection point with the 
occurrence of 42 sunspots (Fig. 8). If we only consider sunspot numbers under 42, the linear correlation with 
 NAOIP is also significant and much higher (ρ = 0.57; p < 0.01; DF = 112). This correlation is higher in the last mil-
lennium (1000–2012 CE; ρ = 0.59; p < 0.01; DF = 48), where the  NAOIP shows negative values between (1020–1070 
CE; 1450–1550 CE; 1640–1720 CE and 1810–1850 CE) corresponding to Oort, Spörer, Maunder, and Dalton 
Grand solar minima, respectively, than in the previous millennium (0–1000 CE; ρ = 0.28; p > 0.1; DF = 60) with 
almost no Grand solar minima (Fig. 2).

To evaluate this relationship, we reproduced the same analysis for all the NAO reconstructions (Table 4 and 
Fig. S1). The results are similar to those obtained for the  NAOIP with low or non-significant correlation values 
when using all sunspot numbers (Table 4). However, those proxy-based NAO reconstructions where mid-latitude 
records have a prevailing role (e.g.,  NAOBAK and  NAOTRO) also displayed a tipping point at a sunspot number of 
42 (Fig. S1). In these cases, there is also a significant correlation between the decadal NAO values and this sunspot 
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number (ρ > 0.22; p < 0.01; DF > 50). To test whether the NAO behaviour is indeed significantly influenced by 
solar activity for sunspot numbers below 42 for reconstructions based on lower latitude records, we have also 
compared the southernmost record of the  NAOTRO—Palmer Drought Severity Index (PDSI) based on tree ring 
data from  Morocco63—with the sunspot number. This comparison confirms a significant correlation (ρ = 0.34; 
p < 0.01; DF = 51) between solar activity and the NAO for mid-latitudes. These latitudinal differences in solar 
activity impact can be attributed, among other criteria previously mentioned (e.g., type of proxy and methodol-
ogy), to the fact that the solar variability signal is not uniformly  distributed64. Annual and decadal variations 
in solar activity have the largest impacts in the mid-latitudes65. Previous analyses of surface air  temperatures66 
have demonstrated a tendency toward preferential warming in regions at 30°–60° latitude for both hemispheres.

Discussion and conclusions
There is an evident historical disagreement between all the available proxy-based reconstructions over decadal 
timescales for the Common Era. While there is a clear consensus for prevailing negative NAO phase conditions 
during the Little Ice Age and positive conditions for the Medieval Climate Anomaly over centennial timescales; 
discrepancies emerge when NAO variability is analysed at annual-to-decadal timescales. Moreover, the scarcity 
of NAO reconstructions at decadal resolutions makes it difficult to identify common patterns before the last 
millennium. Our results suggest mainly positive and neutral phases of the NAO during the Roman Period (~ 200 
BCE–500 CE), and two cycles: i) positive-to-neutral; and ii) positive-to-negative values during the Early Middle 
Ages (500–900 CE).

New applied statistical approaches (i.e., Bayesian) will help to improve the reliability of these results. We also 
suggest a more adaptable concept of proxy-based NAO reconstruction using appropriate distinctions, since it is 
impossible to understand the NAO as a single pattern. Rather, it should be regarded as a complex system that is 
controlled by multiple factors, some of which are stochastic and are therefore difficult to constrain. For this, the 
interpretation of available NAO reconstructions requires a careful re-examination. The sensitivity of different 
climate archives to the NAO may vary over different spatio-temporal scales. This highlights the need to select 

a

b

Figure 5.  Correlation between winter (a) precipitation and (b) temperature at the site of  NAOIP (grey square) 
and each of the other grid cells to see how representative is the site for regional winter climate between 1901 and 
2016, calculated using the CRU-TS4.1 global climate  dataset69. Positive Spearman rank correlations are shown 
in red and negative correlations are shown in blue. Figure created with MATLAB 2019b. Scripts at https ://doi.
org/10.5281/zenod o.38983 82.

https://doi.org/10.5281/zenodo.3898382
https://doi.org/10.5281/zenodo.3898382
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archives which are more sensitive to winter climate parameters (larger NAO impact season) and localities where 
the NAO impact on local climate variables is more stable (stationary).

Beyond these methodological issues, we have also analysed the distinct impact of potential external forcings 
(i.e., volcanic eruptions and solar activity) to puzzle out the reasons underpinning the observed disagreements 
between the NAO reconstructions throughout time.

Our results demonstrate that solar activity influences NAO variability over decadal timescales. The NAO 
reconstructions based on proxy records from mid-latitudes display significant positive correlations with the sun-
spot number, but this relationship is only found up to a certain solar activity threshold (number of sunspots < 42), 
after which the NAO index appears to be less influenced by solar activity. On the contrary, the impact of volcanic 

a

b

c

Figure 6.  Teleconnectivity maps of the winter (DJF) monthly SLP field in the North Atlantic region for the 
period 1872–2009 and different linear combinations of the NAO-EA: (a) winters with the NAO and the EA of 
the same sign; (b) all winters; (c) winters with the NAO and the EA of the opposite sign. Shaded areas represent 
Spearman correlations as per the colour bar. Black crosses indicate the location of the highest correlated grid 
cells. The NAO and the EA indices are the 1st and 2nd empirical orthogonal functions calculated from monthly 
SLPanomalies over a confined N. Atlantic sector using the Twentieth Century Reanalysis data set (20CRv2c)77. 
Figure created with MATLAB 2019b. Scripts at https ://doi.org/10.5281/zenod o.38983 82.

https://doi.org/10.5281/zenodo.3898382
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eruptions on the NAO is less clear, with disparate percentages showing some dominant positive NAO values 
after large volcanic eruptions.

Besides the influence of these two external forcing mechanisms we also assessed the role of an internal mecha-
nism—namely the interaction of the NAO with the second most important large-scale pattern of atmospheric 
circulation in the North-Atlantic European sector, i.e., the Eastern Atlantic (EA) pattern. Combinations of NAO 
and EA phases can change the geographical position of the NAO centres of action and affect the strength and 
latitudinal location of the dominant westerlies entering Europe from the  Atlantic21. Thus, the sensitivity of the 
archive to record the NAO impact (i.e., seasonality, climate variable, resolution) and its location are crucial to 
more accurately reconstruct NAO variability. Although a wide regional distribution of records could probably 
yield better results, the contrary impact of combined NAO and EA modes on some climate variables for the 
mid- and high-latitude records could be masking or, even, cancelling out the actual NAO pattern.

Further studies are required to better understand the NAO’s behaviour and the disagreements between the 
continuously increasing number of available NAO reconstructions. Regional NAO reconstructions like the ones 
derived by integrating a grid of instrumental or proxy-based regional data can be considered more robust—and 
can aid the understanding of general climate dynamics—only if the records employed are sensitive to the same 
forcing and therefore can capture the same signal. In contrast, local NAO reconstructions would be more useful 

Figure 7.  Correlation distribution maps of winter NAO and (a, b) temperature and (c, d) precipitation. (a, c) 
are correlations for the subset of winters where NAO and EA are of opposite sign, whereas (b, d) are correlations 
for the subset of winters where NAO and EA are of the same sign. NAO and EA indices from Comas-Bru and 
 Hernandez57 and climate data from the CRU-TS4.01  dataset69. Location of  NAOIP is shown in Figs. 1 and 5. 
Figure created with MATLAB 2019b. Scripts at https ://doi.org/10.5281/zenod o.38983 82.

Table 3.  Percentage of positive NAO decades after the largest global (volcanic stratospheric sulphur 
injection > 6 TgS) and NH (volcanic stratospheric sulphur injection > 0.5 TgS) volcanic eruptions following 
Toohey and  Sigl61. NAOIP is in bold.

Global (150 BCE–2012 CE) NH (150 BCE –2012 CE)

NAOIP 18/36 (50%) 48/60 (80%)

NAOLUT 2/10 (20%) 7/22 (32%)

NAOTRO 15/202 (75%) 21/34 (64%)

NAOOLS 20/22 (91%) 51/56 (91%)

NAOORT 10/20 (50%) 14/34 (41%)

NAOBAK 23/40 (58%) 46/87 (53%)

NAOFAU 13/40(33%) 37/87 (43%)

NAOSJO 8/16 (50%) 15/26 (58%)

NAOCOOK 20/24 (83%) 36/43 (84%)

https://doi.org/10.5281/zenodo.3898382
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for determining its impacts on local meteorological variables, being more relevant for local ecosystems and the 
socio-economic system. Therefore, local NAO reconstructions can help to develop better mitigation policies 
against problems derived from NAO climatic effects such as agricultural yield or water scarcity.

Data and methods
Proxy data. We used the chemical composition of a lacustrine sediment core (CIM12-04A, 124.8 cm long) 
retrieved from an alpine lake located in the Central Iberian Range (Cimera Lake, 40° 15′ N–5° 18′ W, 2,140 m 
a.s.l.)60. The chemical composition of the sediments was obtained by continuous X-ray fluorescence (XRF) anal-
ysis using the XRF Avaatech core scanner located at the University of Barcelona (Spain). The XRF settings (work-
ing conditions) were: 2 mm of spatial resolution, 2 mA, 15 s count times and 10 kV for lighter elements, with 
55 s and 30 kV for heavier elements. Thirty chemical elements were measured, but only ten light (Al, Si, K, Ca, 
Ti, V, Cr, Mn, Fe, and Zn) and three heavy (Rb, Sr and Zr) elements had enough counts to be considered robust.

The chronology of the sediment deposition of the CIM12-04A core was previously determined by Sánchez-
López et al.60. It was derived using the activity-depth profile of 210Pb in the uppermost 9 cm of the core together 
with six AMS 14C dating. The resulting model shows that sedimentary infill of the Cimera Lake core spans from 
172 ± 65 BCE to 2012 CE. See details in Supplementary Material.

Climate datasets. We used the NAO extended winter index (Jan–May) spanning the period 1824–2012 
CE to produce the NAO influence reconstruction. The data were obtained from the Climatic Research Unit 
(CRU) at the University of East Anglia (UK) (https ://cruda ta.uea.ac.uk/cru/data/pci.htm). This NAO index was 
defined by Jones et al.67 and modified by Vinther et al.68 to be the difference between the normalized monthly 

42
N

AO
IP

Figure 8.  NAOIP values versus sunspot number reconstruction. Red dots represent samples with sunspot 
number values below 42, whereas blue dots indicate samples with sunspot number values above 42. Grey dots 
correspond to samples during decades with high volcanic eruptions and they have not been considered in the 
correlation analysis. Red line indicates linear correlation between  NAOIP and Sunspot number (< 42) and blue 
line for all data. Dotted line delimits samples with sunspot number values below and above 42.

Table 4.  Spearman’s rank correlation coefficients from the preformed linear regression models between proxy-
based NAO reconstructions and Sunspot Number reconstruction. Decades with large volcanic eruptions have 
been removed from the analysis. In bold, significant correlation values at 0.01 significance. Note that  NAOTRO 
from Morocco (in italics) is included to highlight the solar activity impact in lower latitudes.

SSN (150 BCE–2012 CE) SSN < 42 (150 BCE–2012 CE)

NAOIP 0.32 0.57

NAOLUT 0.03 0.10

NAOTRO 0.14 0.29

NAOTRO (Morocco) 0.11 0.33

NAOOLS 0.10 0.01

NAOORT 0.15 0.03

NAOBAK 0.09 0.22

NAOFAU 0.19 0.23

NAOSJO 0.22 0.07

NAOCOOK 0.08 0.04

https://crudata.uea.ac.uk/cru/data/pci.htm
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SLP anomalies recorded at Reykjavik (Iceland) and those observed at Iberia (Gibraltar/Cádiz). Precipitation and 
temperature datasets used in the figures were obtained from CRU-TS4.0169, whereas NAO and EA data were 
acquired from Comas-Bru and Hernández57.

Bayesian model. We follow a Bayesian modelling  approach31,70 to produce a reconstruction of the NAO’s 
impact on the central IP. The relationship between proxy and climate is derived from a training data set for the 
instrumental/proxy calibration period and is expressed through a likelihood function. This function is combined 
with a prior probability density function containing parameter information in order to obtain a posterior prob-
ability distribution of the reconstructed NAO values using Bayes’  theorem71. Whilst Parnell et al.31 based their 
framework on reconstructing multivariate temperature and moisture measurements from raw pollen data, the 
method is easily adaptable to other proxies and climate variables. Indeed, Cahill et al.34 used a similar approach 
to reconstruct sea level from foraminifera. In all cases the measurements/counts of the proxy are required for a 
set of sediment layers (depths) in a core.

We summarize the mathematical details of the model in this section. Full technical details for the model fit-
ting process are described in Parnell et al.31. We provide all the code used to create the reconstructions at www.
githu b.com/andre wcpar nell/NAO.

The notation we use is as follows:

• NAO(t) is the North Atlantic Oscillation value at time t. The goal of our model is to estimate NAO(t), and its 
uncertainty, for a set of chosen times.

• XRFij (expressed as counts per second) represents the chemical element j measured at a given depth i of the 
CIM12-04A core. We have i = 1,…, 647 depths and j = 1,…, 13 elements.

• We superscript both the quantities above with m and f so that XRFm refers to the modern XRF data set, with 
associated known NAOm, and XRFf refers to the fossil data set, for which we wish to estimate NAOf.

• ti refers to the age of the core at depth i. The ages in our core are all given in years BC/AD.
• θ refers to the set of parameters governing the relationship between the NAO and the XRF measurements, as 

well as the dynamics of how the NAO changes over time.

Our model proceeds by creating a Bayesian joint posterior distribution:

The term on the left-hand side of the equation is the posterior distribution and represents the probability dis-
tribution of fossil NAO impacts given the observed data. The terms on the right-hand side represent respectively, 
the likelihood (the probability distribution of XRFf given NAOf), the distribution of XRFm given NAOm, and the 
prior distribution of the parameters governing the relationship between XRF and NAO.

For the distribution of XRF given the NAO, we standardise all the XRF values (by chemical element) and fit 
a multivariate normal polynomial regression model (MVN). This means, for the values k = 1,…, 13 chemical 
elements, we use:

where Mi = [μi,1,…,μi,13] with μik = β0k + β1k NAO(ti) + β2k NAO(ti)2, and ∑ is a covariance matrix which captures the 
extra dependence between elements not explained by differences in the NAO.

We set the prior distribution on NAOf as a continuous-time random walk, which should reasonably match 
climate behaviour over the reconstructed time period (as in Haslett et al.32). Other choices are available, such as 
long-memory or long-tailed stochastic  processes31 use a Normal inverse Gaussian process. Our prior distribu-
tion is:

where σ2 is a parameter representing the variance of the NAOf increments for a unit of time.
Finally, we set uninformative prior distributions for the remaining parameters:

where N and U represent Normal and Uniform distributions and I is the identity matrix.
The above model is computationally expensive to fit using the default tools for Bayesian model fitting due to 

the large number of parameters and the high data dimension. Instead, as stated above, we follow the approach 
of Parnell et al.31, which uses a computational approximation to fit the model in three steps. The first step fits the 
model to the modern data only. The second step estimates NAOf for the fossil layers, and the third step constrains 
the estimated fossil NAOf values according to a random walk model.

In the first step of the model, the total overlapping period between modern data, XRF proxy and observed 
NAO index (i.e., NAOm and XRFm, respectively), extends from 1825 until 2012 AD. However, the XRF data from 
1825 until 1930 CE has a lower resolution (i.e., decadal) than the 1930–2012 CE period, owing to the usual slight 
decrease in the age-depth model accuracy. Thus we restricted the overlapping fitting period employed in the 
analysis to 1930–2012 CE. XRFm data were resampled with a yearly resolution for the overlapping period using 
the R function "approxTime" from the package “simecol”72.

p
(

NAOf
, θ |NAOm

,XRFm,XRFf
)

∝ p
(

XRFf |NAOf
)

· p
(

XRFm|NAOm
, θ
)

· p
(

NAOf |θ
)

· p(θ)

[

XRFi,1, . . . ,XRFi,13
]

|NAO(ti) ∼ MVN(Mi ,�)

NAO(ti) ∼ N
(

NAO(ti−1), σ
2(ti − ti−1)

)

β0k ,β1k ,β2k ∼ N(0, 10), σ ∼ U(0, 10),�−1 ∼ Wishart(I13, 14)

http://www.github.com/andrewcparnell/NAO
http://www.github.com/andrewcparnell/NAO
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We fit the model in  R73 using the JAGS  software74 (Just Another Gibbs Sampler). The performance of the fit-
ting algorithm can be determined by looking at the Brooks-Gelman Rubin (R̂)  statistic75,76 as well as trace plots 
of the parameter samples for each iteration of the algorithm. We run the algorithm until all R̂ values are less than 
1.05, which indicates satisfactory convergence of the algorithm to the posterior distribution.

We evaluate the performance of the model by testing the predictive performance of the modern relationship 
between NAOm and XRFm (Step 1 as outlined above). As validation procedure, we compared NAO predicted 
values from the model using the modern NAO data (i.e., NAO instrumental data; Fig. 3). If the model estimates 
the NAO correctly there should be only 5% of the observations outside the 95% interval, and 50% outside the 
50% interval. Finally, the complete impact reconstruction is created using a 10-year time grid, and includes both 
95% and 50% uncertainty intervals.

Statistical analyses. All NAO reconstructions have been converted to decadal time-scales to facilitate 
comparison. For each reconstruction, all NAO values within the same decade have been averaged and we use 
that average value for its particular decade. The magnitude of the relationships between NAOs were obtained 
according to Spearman’s rank correlation coefficients (ρ) and associated p values. Unless otherwise stated, sig-
nificance (p value) is always considered at values of p < 0.01.

We have analysed the NAO values for each decade with significant volcanic eruptions for the last 2 k years 
according to two different  thresholds61: (1) eruptions around the globe with more than 6 Tg S injected to the 
troposphere, and (2) eruptions from the Northern Hemisphere with accumulations larger than 0.5 Tg S injected 
to the troposphere. We have established a percentage of positive NAO values that occurred over the decades 
selected for each threshold.

Relationships between solar forcing and the NAO were established with linear regression models and verified 
with a number of diagnostic techniques (see supplementary material). We also applied two thresholds: (1) all 
the sunspot number reconstruction values and, (2) values lower than 42. The latter was selected after we applied 
a breakpoint analysis which delivered the sunspot number of 42 as a potential breakpoint in the regression line 
(see supplementary material).

The statistical treatment of the data was performed with R  software73.
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