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With the development of deep learning technologies, attribute recognition and person re-identification (re-ID) have attracted extensive

attention and achieved continuous improvement via executing computing-intensive deep neural networks in cloud datacenters.

However, the datacenter deployment cannot meet the real-time requirement of attribute recognition and person re-ID, due to the

prohibitive delay of backhaul networks and large data transmissions from cameras to datacenters. A feasible solution thus is to employ

mobile edge clouds (MEC) within the proximity of cameras and enable distributed inference.

In this paper, we design novel models for pedestrian attribute recognition with re-ID in an MEC-enabled camera monitoring system.

We also investigate the problem of distributed inference in the MEC-enabled camera network. To this end, we first propose a novel

inference framework with a set of distributed modules, by jointly considering the attribute recognition and person re-ID. We then

devise a learning-based algorithm for the distributions of the modules of the proposed distributed inference framework, considering

the dynamic MEC-enabled camera network with uncertainties. We finally evaluate the performance of the proposed algorithm by

both simulations with real datasets and system implementation in a real testbed. Evaluation results show that the performance of

the proposed algorithm with distributed inference framework is promising, by reaching the accuracies of attribute recognition and

person identification up to 92.9% and 96.6% respectively, and significantly reducing the inference delay by at least 40.6% compared

with existing methods.
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1 INTRODUCTION

Person re-identification (re-ID) and attribute recognition both are employed in critical applications of surveillance.

Person re-ID is to identify pedestrians according to views from different video surveillance or spans a different time

using a single camera [1], the main concern is whether the two pedestrian images taken by different cameras are the

same person. While attribute recognition is to distinguish the presence of a set of attributes from an image, such as

hairstyle, wearing, carrying, gender, age, etc. Person re-ID and attribute recognition have a common target to learn

pedestrian features, and both rely on deep learning techniques. So combining the two techniques together makes sense

for establishing an intelligent multi-camera monitoring system. Accuracy and response time are crucial factors in

intelligent multi-camera monitoring systems.

Deep learning models are complex and resource-consuming, the resource-limited devices on the side of users are

hard to compute their inference results. These deep learning services thus are mostly deployed in cloud datacenters

with abundant GPU resources. However, all cameras continuously transmit their surveillance data to datacenters for

processing. Such centralized architecture based on remote datacenters cannot satisfy the delay requirements of real-time

analytics based on deep learning models, due to the congested links and severe transmission latency in cloud backhaul

networks. With the development of 5G technique, mobile edge computing (MEC) consisting of multiple computing

nodes emerges as an attractive and promising paradigm to host computation tasks as close as possible to the data sources

and end users. In an MEC-enabled camera network, the inference tasks of person re-ID and attribute recognition can

thus be offloaded to their nearby computing nodes, e.g., cloudlets or base stations with artificial intelligence accelerators,

thereby reducing transmission delay significantly.

Several works have been proposed to study the problem of person re-ID and attribute recognition [10, 11, 13–

16, 20, 22, 27–29, 37–40]. However, these existing algorithms cannot be simply combined to build a real-time system

and cannot be directly employed in MEC-enabled camera networks. The reasons are as follows. First, conventional

re-ID algorithm is used for offline image retrieval, so it needs to be redesigned for real-time identification. Existing

attribute recognition algorithms typically ignore the identity-association of geographically distributed cameras. So the

re-ID and attribute recognition need to be jointly performed in a distributed manner to realize cross-camera attribute

recognition. Second, the distributed inference framework consisting of multiple modules has to be effectively deployed

into the MEC-enabled camera network; otherwise, it may incur prohibitive inter-module communication delays or

processing delays. Therefore, a finer grained integration of distributed inference framework and task assignment policy

in MECs are urgently needed to accelerate the smart surveillance system.

Realizing real-time attribute recognition and person re-ID in an MEC-enabled camera network presents major

challenges. First, existing methods did not elaborate cross-camera attribute recognition, so how to identify the new

coming pedestrians and fuse the recognized attributes in the level of identity are challenging. Second, conventional

methods usually process person re-ID and attribute recognition tasks separately. However, the two tasks have a

common target of feature learning and benefit each other. Designing a Convolutional Neural Network (CNN) model

that can accomplish the two tasks with high accuracy is challenge. Third, inference tasks for person re-ID and attribute

recognition are computationally intensive, incurring large computation workload to implement. It will lead to prohibitive
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computation latency if executing the inference only on surveillance cameras, due to the constrained computing capability

of the cameras. Also, surveillance videos contain redundant data, which causes bandwidth waste and tremendous

transmission latency if sending all videos to edge servers to process. Therefore, how to design an inference framework

that can fully make use of the edge servers to minimize processing and transmission latencies is challenging. Fourth,

the MEC-enabled camera network has many network uncertainties, such as the processing and transmission latencies

of cloudlets and base stations of the network. How to distribute the dynamic inference framework to computing nodes

while incorporating network uncertainties is another challenge.

In this paper, we focus on designing the distributed inference framework for joint person re-ID and attribute

recognition, and explore a non-trivial interplay between the inference framework and network uncertainties of an

MEC-enabled camera network, with an aim to maximize the accuracy of the cross-camera attribute recognition and

enable real-time inference.

To the best of our knowledge, we are the first to consider cross-camera attribute recognition and person re-ID in an

MEC-enabled camera network. The major contributions of this paper include

• We formulate a problem of joint attribute recognition and person re-ID in an MEC-enabled camera network.

• We design a distributed inference framework with a set of carefully designed modules that enables module

distribution in a network.

• We propose a CNN-based model that trains attribute recognition and re-ID simultaneously. The accuracy is

greatly improved while the size of the model is reduced by 55.2%.

• We investigate the problem of efficiently and effectively distributing its modules to computing nodes in the

MEC-enabled camera network, by considering various uncertainties of the network.

• We evaluate the performance of the proposed framework using real datasets in a real test-bed. Results demonstrate

that the accuracies of attribute recognition and re-ID are up to 92.9% and 96.6% respectively, while the latency of

distributed inference is reduced by at least 40.6%.

2 RELATEDWORK

Upon the success of deep learning on automatic feature extraction, CNN-based methods are dominating the pedestrian

attribute recognition [10, 11, 13–15, 20, 39, 40] and re-ID [16, 22, 27–29, 37, 38]. Person re-ID and attribute recognition

tasks can share the same target of feature learning. Several deep learning approaches are thus proposed, which can

execute both tasks in a single model [12, 21, 24]. For example, Lin et al. [12] manually annotated attribute labels for

two large-scale re-ID datasets: Market-1501 and DukeMTMC-reID, to learn the feature representation and attribute

classifiers at the same time. Almost none of the listed references focused on the design of distributed inference in MEC

environments.

Some studies focused on proposing distributed CNN models. For example, Kang et al. [8] developed a regression

model to predict the processing latency and energy consumption for each layer with the configuration information.

Study in [7] proposed a heuristic that divided a DNN into several partitions and distributed them to the edge servers

incrementally. Teerapittayanon et al. [25] mapped partitions of a DNN onto distributed end devices, edge servers

and the cloud, by jointly training to consider the trade-off of transmission latency and model accuracy. However, the

distribution of partitioned parts into different servers and the network uncertainties are not considered [8], or the design

and training of DNN model are neglected [7], or only general DNN models are adopted [25]. Edge computing emerges

as a new deployment paradigm of low-latency services for IoT or mobile applications. In the bottom layer, many general

3



algorithms were proposed to optimize the Qos from the perspective of NFV [18, 30, 31, 34, 35] or caching [32, 33, 36].

In the application layer, some researchers focused on video processing on edges [2–4, 6, 26], which are more similar to

our scenario. However, none of the listed video processing references consider the design of a novel NN architecture or

ignored the latency uncertainties.

3 PRELIMINARY

In this section, we first introduce the system model, notations and notions. We then define the problems precisely.

3.1 An MEC-enabled surveillance system

We consider a surveillance environment withmultiple cameras interconnected by anMEC-enabled network, as illustrated

in Figure 1. LetG = (C ∪V ;E) be the MEC-enabled camera network, with a setC of surveillance cameras, a setV of edge

servers that can implement the inference of deep learning model, and a set E of links (wired or wireless) connecting

cameras and edge servers. Denote by ci ∈ C a camera. Transferring video stream data out of each camera ci through

links in E consumes network bandwidth resources and incurs communication latencies. The latencies of network links

depend on many factors, such as the congestion level of the link. Such latencies thus usually are uncertain and cannot

be obtained in advance. The computing resource in each edge server v ∈ V is used to perform real-time person re-ID

and attribute recognition, thereby incurring processing delay.

Fig. 1. An example of the MEC-enabled camera network for joint attribute recognition and person re-ID.

3.2 Uncertainties of latencies and inference requests

Processing video streams in an MEC-enabled network incurs latency, which includes the transmission delay by

transferring videos or features from cameras to edge servers and the processing delay in edge servers. Such latencies in

different edge servers and communication links in the MEC vary significantly from time to time. Notice that we did

not consider the transmission delay by transferring analysis results from edge servers to end devices, since the size of

analysis results is typical small.

Let r j be an inference request for processing in the MEC-enabled network. Each r j carries an amount of video data

for processing. The delay experienced by r j for processing its data stream in an edge server depends on both its data

rate and the workload of the server during time slot t . It thus varies in different time slots and is usually not known in

advance. Since the inference request is scheduled per time slot, we assume that the delay of experienced by each request

does not change during time slot t , and can be obtained at the very beginning of time slot t . Similarly, the latency of

transmitting the video stream of inference request r j in each link e ∈ E varies time by time and is uncertain when r j

arrives into the system.
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Fig. 2. The distributed inference framework for joint attributes recognition and person re-ID.

3.3 Problem definition

Given an MEC-enabled camera network G = (C ∪V ;E), a set of online inference requests R (t ) at a beginning of each

time slot t , the distributed inference problem for real-time attribute recognition and person re-ID is to partition an inference

request into different modules and distributing the modules to edge servers, such that the accuracies of person re-ID

and attribute recognition are maximized while the latency of inference is minimized, subject to the resource constraints

of edge servers.

4 A DISTRIBUTED INFERENCE FRAMEWORK

4.1 The framework design

We observe that there is a lot of redundant information in the original video streams collected by cameras in each

request r j . To avoid the long delay incurred of transmitting such information, we use a pedestrian detector in each

camera to extract effective images of pedestrians from the video stream. In addition, to recognize the attributes and id

of a pedestrian, conventional methods train two separate models for attribute recognition and re-ID, respectively. This

however may not be efficient in an MEC-enabled network, because two CNN models need to be executed and stored in

each edge server, thereby introducing additional processing delays and occupying more storage resource. Motivated by

this, we design a single CNN model for both person re-ID and attribute recognition.

Our basic idea is to partition the inference framework to different modules, with a minimum amount of inter-module

communications. These modules can be distributed to different edge servers, realizing distributed inference. Besides,

multiple modules can be run in a server. Since the modules need to be stored in the edge servers, the size of the trained

model of the modules is also minimized.

In pedestrian re-ID, calculating feature similarity or distance between the query image and all the pedestrian images

in gallery is time consuming, where the gallery is a set of photos held by the system. With the continuous running of the

system, the gallery can be very large, such that the edge server with the gallery becomes the bottleneck of the system.

To accelerate this process, we consider the distributed gallery for parallel computing of pedestrian re-ID. Specifically,

we split a single centralized gallery into multiple distributed galleries. We store labeled features of pedestrian images in

the gallery, instead of storing images in the conventional method. After obtaining the attributes of a person, we need to

look-up the whole distributed gallery group to identify the person. The final analysis result is shown in Figure 1. The

system records an instance for each detected person, which contains the id, the attributes and the frame information.

The frame information describes when and where the person was detected.

As shown in Figure 2, the proposed distributed inference framework consists of the following key modules:
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Module A: This module is called pedestrian detector that runs in each camera ci . The pedestrian detector detects

pedestrian images from real-time video stream, and transmits the obtained images as the query persons to the successor

modules of the proposed inference framework. Note that the frame information is always attached to the inter-module

transmission, although we will not explicitly indicate it due to its negligible size.

Module B: This module receives the pedestrian images from the pedestrian detector of each camera ci . It then

recognizes the attributes of the person by employing CNN model. Eventually, the output of attribute prediction

is concatenated with the extracted feature. The subsequent two layers are the full connection layer and the batch

normalization layer. Finally, the output feature will be sent to each instance of Module C for re-ID.

Module C: There are multiple instances of Module C in the framework. Each instance is distributed to different edge

servers and holds a unique distributed gallery. The дalleryi stores the features of pedestrians from ci . After receiving

the query feature from Module B, all instances of Module C calculates the similarity between the query and all the

features stored in parallel. The similarity will be sorted in descending order. Afterwards, the maximum similarity with

its corresponding ID label will be sent to Module D.

Module D: This module receives the local maximum labeled similarity from every instance of Module C, and sorts

them in descending order. It then obtains the global maximum similarity. We define a threshold ε , which is discussed

statistically in Section. 6.3. If the global maximum similarity is greater than ε , it shows that the person has been detected

by the system, and the ID of the query person is the one with the global maximum similarity. Then, the new attributes

need to be fused with the old attributes in the instance by the method based on exponentially weighted average.

Otherwise, the query person has not been detected by any camera. In this case, a new instance for the person needs to

created, by assigning the person with a unique ID and storing its attributes. In either case, the frame information will

be added and the id result needs to be sent back for gallery update.

4.2 Model training

Existing joint training models of attribute recognition and re-ID usually consider the recognition of each attribute as a

single task, by using separate classifier for each attribute [12]. This however contains many redundant information and

leads to large training models that cannot be effectively distributed in the MEC-enabled camera network. Instead, we

consider all the attributes at the same time and the relationship among attributes are learnt simultaneously. Partially

similar to [12], we adopt a multi-task network in the model training, which can learn an identity classifier and an

attribute classifier at the same time. Regarded as auxiliary cues, the output of attribute prediction is concatenated with

the feature extracted by the CNN. The concatenated feature is the input of the identity classifier, as shown in Figure 3.

For re-ID, the loss function Lossr eid is a categorial cross entropy over identity label, i.e.,

Lossr eid = −
1

N

∑N

i=1

∑K

k=0
yik log(p̂ik ), (1)

where p̂ik is the predicted probability that samplei is the person k . yik is the ground truth label indicates whether

the samplei is the person k or not. N is the number of training samples. K represents the number of identities in the

training set.

To minimize the size and improve the accuracy of the trained model, we reduce the redundant and inefficiency in

attribute recognition, by considering all the attributes at the same time and learning the relationship among attributes

simultaneously [10]. The loss function Lossattr is a sigmoid cross entropy loss function which learns all the attributes
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Fig. 3. Training model

jointly:

Lossattr = −
1

N

∑N

i=1

∑M

j=0
w j (yi j log(p̂i j ) + (1 − yi j ) log(1 − p̂i j )),

with a loss weight for attribute j to deal with the unbalancedness of attribute distributions, i.e.,

w j = exp (−ρ j/σ
2), (2)

where p̂i j is the predicted probability for the attribute j of samplei . yi j is the ground truth label indicating whether

the samplei has the attribute j or not. ρ j is the ratio of attribute j in the training set. σ is a hyper-parameter.M is the

number of attributes. We define the overall loss function:

Loss = λLossr eid + ((1 − λ)/M )Lossattr , (3)

where λ is a hyper parameter to balance the two sub losses, which is set to 0.5 in our experiments.

5 MODULE DISTRIBUTION BASED ON CONTEXTUAL MULTI-ARMED BANDITS

The basic idea of the proposed module distribution algorithm is to adopt an online-learning framework based on the

Contextual Multi-Armed Bandit model, as shown in Figure 4. In the proposed inference framework, the locations of

Modules B and C play a vital role in the latency of online inference requests. We observe that the network latencies,

size of gallery and their popularity depend on a context of the current camera network and the environment it monitors,

such as the busyness of a camera, the time (rush hours or holiday hours), and etc. Thus, the proposed online-learning

algorithm does not run all the time but re-learns when the context space changes dramatically. Normally, such contexts

can be observed by the agents before making decisions. For simplicity, we consider the transmission and processing

delays as the contexts of the network.

We consider that there is an agent representing each to-be-distributed modules. For an edge server v and a link e

that connects to v , the agent of each module decides whether to assign its module to v and transmit its input data

via link e . An edge server v with a link e that connects to v is considered as an arm, also known as an action. Each

of such agents needs to choose an arm based on the current context of the camera network. For clarity, we define a

policy as a mapping from contexts to arms. Denote by Π the set of policies from which an agent chooses its policy. We

divide the processing and transmission delays into L levels, with each level l (1 ≤ l ≤ L) denoting a fixed range of delay.

Let dmax
v and dmin

v be the maximum and minimum values of the delay experienced by request r j in server v in time

slot t of a monitoring period T , and denote by dmax
e and dmin

e the maximum and minimum values for of links. The

context thus consists of different levels of processing and transmission delays of the camera network. Contexts arrive

as independent elements from some fixed contexts set. The arm of each agent thus can be represented as a set of {0,1},

where 1 denotes the selection of v and e while 0 denotes they are not selected.
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Fig. 4. The online-learning framework.

We use the normalized end-to-end delay as the feedback, denoted by cost . The delay of a certain task is approximately

fixed when the computation and transmission conditions are the same. So we assume that the cost with certain arm

and context is chosen by a deterministic oblivious adversary before each round. The cost of round t is denoted by ct (a),

where the observed context of round t is xt and a is the chosen arm. The cost of policy π after T rounds is:

cost (π ) =
∑T

t=1
ct (π (xt )). (4)

In [23], an existing benchmark of contextual bandits is the best-response policy:

π∗ (xt ) = mina∈A ct (a), (5)

where A is the set of arms. The corresponding regret is:

R∗ (T ) = costOL − cost∗, (6)

where the costOL
is the total regret accumulated in the T rounds and cost∗ = cost (π∗). The regret is based on the

assumption: π∗ ∈ Π for each round t. However, the Π in Algorithm 2 Online Learning is updated every I rounds.

The best-response policy π∗ may not initially be in Π, but be added through an update. So we now define a more general

regret:

R (T ) = costOL − cost ♯ , (7)

where cost ♯ =
∑T
t=1minπ ∈Π ct (π (xt )). Note that R

∗ (T ) is a special case of R (T ) when π∗ is initially in Π.

The detailed steps of the proposed ModDistMAB algorithm are illustrated in Algorithm 1. It contains two sub

algorithms Online Learning and Policy Generator, which are referred to as Algorithm 2 and Algorithm 3.

5.1 Regret analysis

We now analyze the bounds of the regret of algorithms ModDistMAB and Online Learning in the following theorems.

Theorem 5.1. The regret of algorithm Online Learning with parameter γ ∈ [0, 1√
T
) is bounded byO (

√
T |A| ln |Π |).

Proof. We first introduce three facts:
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Algorithm 1 ModDistMAB

Input: L: The number of delay levels; A: The set of all arms;M : The memory that holds the statistical information of the delays of the camera network;

N : Data collection duration; P : The number of policies;

1: Initialize a memory M that holds the statistical information of the delays of the camera network. Initialize an empty policy set Π;
2: for each time slot t ← 1, · · · , N do
3: Observe the processing delay dt (v ) for each edge server v and the transmission delay dt (e ) for each link e ;
4: Pick an arm at from A uniformly;

5: Observe the cost ct (at ) of the chosen arm;

6: Add the data point (dt ( ·), at , ct (at )) to the memory M ;

7: end for
8: Get the maximum and minimum delays dmax

v , dmin
v , dmax

e and dmin
e from the memory M ;

9: Generate the context set X of the camera network with the delay ranges being divided into L levels;

10: Convert all of the data points (dt ( ·), at , ct (at )) to (xt , at , ct (at )), xt ∈ X;
11: Call Algorithm 3 Policy Generator with different σ and S to get P new policies;

12: Add the P new policies to the policy set Π;
13: Online Learning: call Algorithm 2.

Algorithm 2 Online Learning

Input: X: The set of all contexts; Π: The set of all policies; A: The set of all arms;M : The memory that holds the statistical information of the delays

of the camera network; I : The update cycle of policy; ϵ : The parameter for weight update. ϵ ∈ (0, 1

2
); γ : The probability of picking an arm uniformly

at random;

1: Initialize the weight asw1 (a) = 1 for each arm a;

2: for each time slot t ← 1, · · · ,T do
3: Observe the context of the camera network xt ;
4: Randomly generate a float number n;
5: if n < γ then
6: Pick an arm at uniformly at random;

7: Observe the cost ct (at ) of the chosen arm;

8: Add data point (xt , at , ct (at )) to the memory M ;

9: For each policy π ,wt+1 (π ) = wt ;
10: else
11: For each policy π , let pt (π ) = wt (π )/(

∑
π ′∈Π wt (π ′));

12: For each arm a, let qt (a) =
∑
π ∈Π:π (xt )=a pt (π )

13: Sample a policy πt from distribution pt ( ·);
14: Use the policy πt to pick an arm at = πt (xt );
15: Observe the cost ct (at ) of the chosen arm;

16: Add data point (xt , at , ct (at )) to the memory M ;

17: Get the maximum cost cmax
and the minimum cost cmin

from M ;

18: Normalize the current cost: ct (at ) = (ct (at ) − cmin )/(cmax − cmin )

19: For each arm a, define fake costs: ĉt (a) =



ct (at )
qt (at )

a = at
0 otherwise

;

20: For each policy π , define fake costs: ĉt (π ) = ĉt (π (xt ));
21: For each policy π , update its weightwt+1 (π ) = wt (π ) · (1 − ϵ )ĉt (π )

;

22: end if
23: if t ≡ 0 (mod I ) then
24: Call Algorithm 3 with different σ and S to get ( |Π | − 1) new policies;

25: Keep the policy π ∈ Π with the largestwt+1 (π ). Replace the other ( |Π | − 1) old policies with the new generated policies, inheriting thew
value.

26: end if
27: end for

For all x > 0, there exist α ,β ≥ 0, possibly dependent on ϵ :

f act : (1 − ϵ )x < 1 − αx + βx2. (8)

For ϵ ∈ (0,1/2):

f act : ϵ < ln(1/(1 − ϵ )) < 3ϵ . (9)

For any x ∈ (0,1):

f act : ln(1 − x ) < −x . (10)
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Algorithm 3 Policy Generator

Input: A: The set of all arms; M : The memory that holds the statistical information of the delays of the camera network; σ : The parameter in arm

weight; S : The dictionary of training strategy, such as learning rate, epoch; O: The interface of machine learning models for classification task. We

used NN in our experiments;

Output: A new policy π : the trained classification model;

1: Get all data points (xt , at , ct (at )) from the memory M ;

2: Let X ′ be the set of xt in data points;

3: For each context x ∈ X ′, find the arm a with the smallest cost ct (at ) in data points, named as ax
4: For each arm a ∈ A:

let ρa =
∑
x∈X ′:ax =a

1

|X ′ | ,wa = exp (
−ρa
σ 2

)

5: We model the policy as a multi-class classification problem in machine learning. The contexts are the samples and the arms are the predicted classes.

The set (x, ax ), x ∈ X ′ is the training data. Each context x is the input feature and ax is the label. w weights the loss function to balance the

distribution of arms;

6: Train the model O with the strategy S .

We now show the upper bound of ĉt (π ) and ĉt (a). Let a = π (xt ) be the arm chosen by policy π . After the

normalization, ct (a) ∈ [0,1] for each arm a. We obtain:

ĉt (π ) = ĉt (a) ≤ ct (a)/qt (a) ≤ 1/qt (a). (11)

In order to demonstrate that the fake cost ĉt (a) is the unbiased estimate of the true cost ct (a). For each arm a, we

have:

E[ĉt (a)] = Pr [a = at ] · ct (a)/qt (a) + Pr [a , at ] · 0 = ct (a). (12)

We start with the case ofγ = 0, which means that the algorithm always picks an arm by policy. LetWt =
∑
π ∈Πwt (π ),

we have:

WT+1 > wT+1 (π
∗) = (1 − ϵ )cost

∗

≥ (1 − ϵ )cost
♯
. (13)

Let α = ln( 1

1−ϵ ),β = α2 and use the fact in Eq. (8), we can get

Wt+1/Wt =
∑

π ∈Π
(1 − ϵ )ĉt (π ) · (wt (π ))/Wt

≤
∑

π ∈Π
(1 − αĉt (π ) + βĉt (π )

2) · pt (π )

=
∑

π ∈Π
pt (π ) − α

∑
π ∈Π

pt (π )ĉt (π ) + β
∑

π ∈Π
pt (π )ĉt (π )

2)

= 1 − αE[ĉt (π )] + βE[ĉt (π )
2
].

To get the upper bound of E[ĉt (π )
2
], we have:

E[ĉt (π )
2
] =
∑
π ∈Π

pt (π ) · ĉt (π )
2 =
∑
a∈A

∑
π ∈Π:π (xt )=a

pt (π )ĉt (π )ĉt (π )

≤
∑
a∈A

∑
π ∈Π:π (xt )=a

pt (π )

qt (a)
ĉt (a) =

∑
a∈A

ĉt (a)

qt (a)

∑
π ∈Π:π (xt )=a

pt (π )

=
∑

a∈A
ĉt (a).

(14)

The mathematical expectation of E[ĉt (π )
2
] thus is:

E(
∑

π ∈Π
pt (π ) · ĉt (π )

2) ≤ E(
∑

a∈A
ĉt (a))

=
∑

a∈A
E(ĉt (a)) =

∑
a∈A

E(ct (a)) ≤ |A|.
(15)
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According to the fact in Eq. (10) and αE[ĉt (π )] − βE[ĉt (π )
2
] ∈ (0,1), we can derive

ln(Wt+1/Wt ) < ln(1 − αE[ĉt (π )] + βE[ĉt (π )
2
])

< −αE[ĉt (π )] + βE[ĉt (π )
2
].

(16)

To calculate the expected regret, we need to connect costOL
and cost ♯ . By transposing and summing over t on both

sides, we have: ∑
t ∈[T ]

(αE[ĉt (π )] − βE[ĉt (π )
2
]) = αE[costOL

] − β
∑
t ∈[T ]

E[ĉt (π )
2
]

< −
∑
t ∈[T ]

ln(Wt+1/Wt ) = − ln
∏
t ∈[T ]

Wt+1/Wt = − ln(WT+1/W1)

= lnW1 − lnWT+1 < ln |Π | − cost ♯ ln(1 − ϵ )

= ln |Π | + αE[cost ♯].

(17)

We now calculate the expected regret:

E[costOL − cost ♯] < (ln |Π |)/α + α
∑

t ∈[T ]
E[ĉt (π )

2
]

≤ (ln |Π |)/α + αT |A| ≤ (ln |Π |)/ϵ + 3ϵT |A|,
(18)

where the upper bound of E[ĉt (π )
2
] is obtained in Eq. (15) and the last step is based on the fact in in Eq. (9). Let

ϵ =
√
(ln |Π |)/(3T |A|), and we have

E[R (T )] = E[costOL − cost ♯] < 2

√
3

√
T |A| ln |Π |, (19)

due to Eq. (7).

For the extended case of γ ∈ [0, 1√
T
), each round has the probability γ to pick an arm randomly, contributing at

most 1 to the expected regret. So we have:

E[R (T )] < 2

√
3

√
T (1 − γ ) |A| ln |Π | + γT

≤ 2

√
3

√
T |A| ln |Π | +

√
T ≤ O (

√
T |A| ln |Π |).

□

Theorem 5.2. The regret of algorithm ModDistMAB is bounded by O (
√
T |E | |V |).

Proof. To obtain the bound of expected regret, we show the size of arm space and policy space. First, we know

that there are |V | servers in the MEC-enabled camera network and |E | links. Denote by K the number of arms in

the arm space. Clearly, we have K = O ( |V | |E |). Second, for the policy space, according to algorithm ModDistMAB, the

processing and transmission delays are divided into L levels. There are at most O (L |E | |V | ) contexts for all edge servers

and links. By enumeration, there are O (KL |E | |V | ) possible policies in Π. As shown in Theorem 5.1, we know that the

regret bound of Algorithm 2 is O (
√
T |A| ln |Π |), where |A| is the size of arm set. Plugging in this Π, we obtain the

regret isO (
√
T |E | |V |L |E | |V | ln( |E | |V |)). Due to the exponential dependence on |E | |V |, the regret increases dramatically

with the scaling up of the system. In addition, the running time per round of Algorithm 2 isO (KL |E | |V | ), which reflects

the algorithm is extremely slow in practice. To solve this problem, the key is to reduce the size of policy set Π. Instead

of getting all possible policies by enumeration, we use Algorithm 3 to generate several suboptimal policies. Obtaining

the suboptimal policy set, Algorithm 2 finds the optimal one by online learning. Denote by P the number of generated
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policies. We obtain the regret bound of Algorithm 2 is O (
√
T |E | |V | ln P ). Both regret bound and running time are

significantly reduced.

In ModDistMAB, the algorithm picks the arm uniformly to collect data for the first N rounds. Each round in this

duration contributes at most 1 to regret. The Algorithm 2 runs in the subsequent (T − N ) rounds. So we can get the

regret bound

O (
√
(T − N ) |E | |V | log P + N ) = O (

√
T |E | |V |),

assuming that N and P are the given constants. □

6 EXPERIMENTS

6.1 Training and test-bed settings

For the training process, we adopt ResNet-50 [5] as the backbone, which is pre-trained on ImageNet [19]. For pedestrian

re-ID, we append a 512-dim fully connected layer, a batch normalization layer and a dropout layer after the pool5

layer [12], without applying the ReLU activation function. For the attribute recognition, we use a similar structure as

re-id part. The difference is that we append a ReLU layer after batch normalization layer. For the training strategy, the

number of epochs is 80. The batch size is 32. The learning rate is 0.02 and warm up in 10 epochs. The input image will

be resized to 384×128 and random erasing is applied.

In our test-bed, we use two Raspberry Pi 4B boards (4GB RAM) with cameras, as shown in Figure 5 (a). We adopt the

OpenVINO toolkit and use a pre-trained pedestrian detector in it. Then we use Intel Neural Compute Stick 2 plugged in

USB ports to accelerate the inference of CNN. Raspberry Pi will send the detected pedestrian images to the edge nodes

for further inference. The test-bed also consists of four edge servers with GPU (2080 Ti) that are interconnected by five

hardware switches, as shown in Figure 5(b).

Fig. 5. A test-bed for the MEC-enabled camera network.

6.2 Datasets and baseline algorithm

The accuracy is evaluated on two pedestrian re-ID datasets with attribute annotation: Market-1501 [41] and DukeMTMC-

reID [43]. We use video sequences from MOTChallenge [17] [9] and evaluate our distributed algorithm for acceleration

on them, which are filmed with static and elevated cameras in unconstrained environments. For the sake of fairness, we

should compare our method with the similar one that considering the joint training of attribute recognition and person

re-ID. So we choose an existing study by [12], which is referred to as Baseline.

Methods Rank-1 Rank-5 Rank-10 mAP

Baseline 87.04 95.10 96.42 66.89

Ours 93.05 97.57 98.34 81.60

Oursf rame junk 96.44 98.72 99.23 84.30
Table 1. CMC and mAP on Market-1501
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Methods Rank-1 Rank-5 Rank-10 mAP

Baseline 73.92 - - 55.56

Ours 85.37 92.55 94.84 70.75

Oursf rame junk 96.59 98.79 99.10 79.83
Table 2. CMC and mAP on DukeMTMC-reID

6.3 Model accuracy results

The Cumulative Matching Characteristic (CMC) curve and the mean average precision (mAP) are adopted for pedestrian

re-ID evaluation. In the previous CMC calculation, if the gallery image is under the same camera as the query image, it is

considered as junk image. However, in our application, images from the same camera are used as effective information

to identify the current query image. So we only consider the gallery images which are from the same frame as the query

image as junk images. Our proposed CNN model based on this new evaluation metric is referred to as Oursf rame junk ,

while the proposed model based on conventional CMC is denoted by Ours. The results on Market-1501 and DukeMTMC-

reID are shown in Tables 1 and 2, respectively. It can be seen from the tables that Ours has the improvement of 6.0% in

Rank-1 and 14.7% in mAP compared with the Baseline approach. The reason is that higher attribute accuracy promotes

the accuracy of re-ID. Also, we adopt a novel training strategy that is suitable for person re-ID. Oursf rame junk has an

accuracy of up to 96.44% for Rank-1, indicating the identification accuracy of our system is up to 96.44%. The accuracy

improvement ofOursf rame junk compared withOurs confirms that the images from the same camera are the conducive

information for identification.

For the attribute recognition, we test the classification accuracy for each attribute. For geographically distributed

cameras fusion, we fuse the prediction output of the same person in different images, which is referred to asOursf used .

The results on Market-1501 are shown in the table 3. Ours is much better than Baseline. The reason is that we adopt a

single classifier for all the attributes, which is better than a classifier for each attribute. This allows the relationship

among attributes to be learnt simultaneously. In addition, the accuracy improvement of Oursf used compared with

Ours means that cross-camera can improve the performance of attribute recognition.

Fig. 6. The maximum similarity between query images and the gallery

To distinguish whether the current query person exists in the gallery, we make a statistic on the dataset, inspired

by [42]. For each identity in the gallery, we select one image as a positive query sample. For each identity not in the

gallery, we select one image as a negative query sample. The similarity results are shown in Figure 6. From the results,

we can see that when the threshold as 0.9 the negative and positive samples can be separated sufficiently. We thus set

the threshold ε to 0.9 in Module D.

6.4 Testbed experiments

To evaluate the effectiveness, we compare the proposed ModDistMAB algorithm with the other four, as shown in the

Figure 7. In order for the algorithms to converge, we ensure that no other tasks except for our modules are being

processed in each edge server and no other data is being transferred in each link. It means that the network environment
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gender age hair L.slv L.low S.clth

Baseline 88.9 88.6 84.4 93.6 93.7 92.8

Ours 93.1 93.8 89.3 93.5 94.1 92.6

Oursf used 94.5 95.2 90.3 94.0 95.5 93.5
B.pack H.bag bag hat C.up C.low Avg

Baseline 84.9 90.4 76.4 97.1 74.0 73.8 86.6

Ours 87.7 89.8 78.5 97.7 95.4 94.5 91.7

Oursf used 91.3 89.9 81.7 97.3 96.0 95.0 92.9
Table 3. Attribute recognition accuracy on Market1501-attribute

is static and our modules are the only variables. The Fixed algorithm permanently assigns all the modules to the same

edge server with the strongest computing power. We can see that this method performs worst. The reason is that the

chosen edge server is overloaded, causing prohibitive huge processing overhead. The Greedy algorithm always selects

the edge server that can achieve the minimum processing latency, based on the observations of the current network

context and the historical information. However, the Greedy algorithm do not consider the transmission delay, so it

converges to a bad delay. ModDistMAB without policy updating always uses the initially generated policy set Π. It

can be seen from the Figure 7, its delay is hardly reduced and converges to a large value. We found that the context

space is small because of the static network. During the data collection phase, every possible context is recorded. It

means that the policy training set completely covers the feature space, so the classification in Algorithm 3 does not

predict, but records the optimal action before. Although different training strategies are adopted, the initial P policies

still have the same mapping relationship. Therefore, the online learning algorithm does not work, and the delay does

not decrease with running. Besides, due to insufficient data collection, there are many wrong labels in Algorithm 3.

The delay is large because the policies make many mistakes. ModDistMAB without online learning only trains one

policy based on the constantly updated data and uses it. Because online learning does not work in the static network,

its performance is similar to ModDistMAB, converging to a small delay.

However, in practice, the network is dynamic and must have other tasks. The context space is large in the dynamic

network. So the policies generated by machine learning will vary greatly, which means the online learning algorithm

works. We randomly add other computation and transmission tasks to the Testbed to simulate the dynamic network.

As shown in Figure 8, we can see that ModDistMAB is always better than ModDistMAB without online learning

after going through 1900 rounds. The reason is that ModDistMAB without online learning only uses a suboptimal

policy generated by Algorithm 3, while ModDistMAB algorithm will further find out the optimal policy from the set

of suboptimal policies through online learning. It shows that the ModDistMAB algorithm is the most efficient one in

practice.

Fig. 7. The performance of algorithms in the static network with a data collection duration of 30.

7 CONCLUSIONS

In this paper, we studied the problem of real-time pedestrian attribute recognition and re-ID in an MEC-enabled camera

network. We first proposed a novel distributed inference framework with a set of distributed modules jointly considering
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Fig. 8. The performance of algorithms ModDistMAB and ModDistMAB without online learning in the dynamic network. In practice,
1900 rounds may take only 6 minutes and the policy may be trained in earlier rounds.

the attribute recognition and person re-ID. We also devised an algorithm for the module distributions by proposing a

novel Contextual Multi-Armed Bandit model, to address the network uncertainties of an MEC-enabled camera network.

We then evaluated the performance of the proposed distributed inference framework and algorithm by both simulations

with real datasets and system implementation. Results show that the accuracy of the distributed inference framework is

up to 96.6% for identification and 92.9% for attribute recognition, and the inference delay is at least 40.6% lower than

algorithm Fixed.
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