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ABSTRACT

Global numerical weather prediction (NWP) models have begun to resolve

the mesoscale k−
5
3 range of the energy spectrum, which is known to impose an

inherently finite range of deterministic predictability per se as errors develop

more rapidly on these scales than on the larger scales. However, the dynam-

ics of these errors under the influence of the synoptic-scale k−3 range is little

studied. Within a perfect-model context, the present work examines the error

growth behavior under such a hybrid spectrum in Lorenz’s original model of

1969, and in a series of identical-twin perturbation experiments using an ide-

alized two-dimensional barotropic turbulence model at a range of resolutions.

With the typical resolution of today’s global NWP ensembles, error growth

remains largely uniform across scales. The theoretically expected fast error

growth characteristic of a k−
5
3 spectrum is seen to be largely suppressed in the

first decade of the mesoscale range by the synoptic-scale k−3 range. However,

it emerges once models become fully able to resolve features on something

like a 20-kilometer scale, which corresponds to a grid resolution on the order

of a few kilometers.
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1. Introduction31

The idea that the Earth’s atmosphere possesses an inherently finite limit to deterministic pre-32

dictability has been a universally accepted fact in dynamical meteorology since Lorenz (1969)33

demonstrated it using a simple turbulence model. He argued that the predictability of a flow34

depends on the slope of the energy spectrum E(k) (the spectral slope), where k is the scalar35

wavenumber: flows with spectra shallower than k−3 have limited predictability as the scale of36

the initial error decreases, whereas those with spectra steeper than k−3 are indefinitely predictable37

(assuming a perfect model) as long as the initial error is small enough in scale. Arguing that the38

atmospheric spectrum behaves as k−
5
3 , he concluded that atmospheric predictability is inherently39

limited.40

It was subsequently realized that the large-scale atmospheric flow follows a k−3 energy spectrum41

(Boer and Shepherd 1983), consistent with the expectations of two-dimensional (2D) turbulence42

forced at the large scales. With the aid of aircraft observations, Nastrom and Gage (1985) showed43

that the k−3 range transitions into a k−
5
3 range in the mesoscale, at a wavelength of about 40044

kilometers. This does not change Lorenz’s conclusion of limited predictability, as the latter de-45

pends on the spectral slope in the high-wavenumber limit. Recent studies with realistic numerical46

weather prediction (NWP) models continue to find that deterministic predictability is limited to47

about 2 to 3 weeks, as Lorenz suggested (Buizza and Leutbecher 2015; Judt 2018).48

In recent years, thanks to ever-increasing computational power, atmospheric models have started49

to resolve the k−
5
3 range, where the flow becomes increasing three-dimensional. Moist processes50

such as convection and clouds that are thought to impose an intrinsic barrier to predictability (Sun51

and Zhang 2016) are now partially or explicitly resolved. However, the interplay between the52

synoptic-scale k−3 and mesoscale k−
5
3 ranges has been little studied. In particular, it was not53
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so clear whether the error growth would resemble characteristics of the k−3 or k−
5
3 paradigm,54

until Judt (2018) reported, using a full global NWP model, that error growth was fairly uniform55

across scales – a feature of k−3 turbulence. Judt’s study suggests that error growth and hence56

predictability properties under the hybrid spectrum are not as straightforward as might be thought.57

It also provokes questions on the sensitivity of such properties to the resolution of the model.58

Therefore, it is essential to assess the impact of the synoptic-scale k−3 range on error growth in the59

mesoscale k−
5
3 range and to understand its sensitivity to the extent to which the mesoscale range60

is resolved.61

Such a study must be done at the expense of the complexity of model dynamics, as limited62

computational resources make it infeasible to be done with a full NWP model. The much simpler63

2D barotropic vorticity model has been used in a number of previous turbulence and predictability64

studies (Maltrud and Vallis 1991; Rotunno and Snyder 2008; Durran and Gingrich 2014), among65

which Rotunno and Snyder (2008) demonstrated that the model dynamics per se has limited impact66

on the predictability properties of a turbulent flow; instead, the error growth and predictability67

properties are largely determined by the shape of the energy spectrum. In light of this, it is justified68

to perform predictability experiments under the hybrid k−3 and k−
5
3 spectrum with the barotropic69

model and Lorenz’s original error growth model of 1969 (also based on the barotropic model),70

which can be run at higher resolutions and thereby resolve a substantially more extensive part of71

the mesoscale k−
5
3 range. The choice of these simple models is in no way intended to downplay72

the role of the three-dimensional mesoscale processes in limiting predictability; these effects are,73

rather, collectively included in the k−
5
3 range. The use of these models is simply motivated by74

their ability to facilitate predictability experiments at unprecedentedly high resolutions so as to75

gain insights into the error growth and predictability properties associated to these fine scales.76
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This article investigates the behavior of error growth under the canonical hybrid k−3−k−
5
3 spec-77

trum, and demonstrates that the synoptic-scale k−3 range exerts an influence on the first decade of78

the mesoscale range by largely suppressing the fast upscale cascade of error energy characteristic79

of a k−
5
3 spectrum. It is structured as follows. Section 2 presents a systematic set of identical-twin80

perturbation experiments with the 2D barotropic vorticity model at a range of resolutions. Section81

3 introduces a scale-dependent parametric error growth model, one of whose parameters provides82

information on the error growth rate, so that its dependence on the physical length scale can be83

analyzed. Section 4 demonstrates that the error growth behavior in the 2D barotropic vorticity84

model can be captured by the even simpler model of Lorenz (1969), which is then used to assess85

how the results would change in the infinite-resolution limit. Section 5 examines the sensitivity of86

the results to the initial error profile. Finally, Section 6 summarizes and concludes the paper.87

2. Identical-twin perturbation experiments with a 2D barotropic vorticity model88

a. The model and experimental design89

Two sets of perturbation experiments are performed on a forced-dissipative version of the di-90

mensionless 2D barotropic vorticity model91

∂θ

∂ t
+ J(ψ,θ) = f +d, θ = ∆ψ (1)

in a doubly periodic domain, where ψ is the velocity streamfunction [related to the velocity u by92

u=−∇× (ψk̂)], ∆ = ∇ ·∇,∇ =
(

∂

∂x ,
∂

∂y

)
and J(A,B) = ∂A

∂x
∂B
∂y −

∂A
∂y

∂B
∂x . The prognostic variable93

of the model is the vorticity θ . The model is run pseudo-spectrally at various resolutions kt ∈94

{256,512,1024,2048} (where kt is the truncation wavenumber), and the forcing f and dissipation95

d are prescribed in spectral space.96
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Before the perturbations are applied, the turbulence is spun up to a statistically stationary state97

so that the energy spectra have the desired shapes which do not significantly change in time. To98

generate a k−3 spectrum transitioning into k−
5
3 at a smaller scale, forcing is applied at both large99

and small scales. This allows both a direct enstrophy cascade and an inverse energy cascade.100

Following Maltrud and Vallis (1991), the simulations are forced at wavevectors whose modulus101

k falls within the ranges [10,14] and [5
8kt ,

165
256kt ]. The former represents synoptic-scale baroclinic102

forcing, and the latter mesoscale forcing, which is applied at a small undamped scale and hence103

depends on kt . Independently for each 2D wavevector in these wavebands, f is controlled by the104

complex-valued stochastic process105

d f =− 1
t f

f dt + Â

√
2
t f

dW̃ , (2)

which is an Ornstein-Uhlenbeck process except that the noise W̃ is a uniform random number on106

the unit circle in the complex plane. The e-folding de-correlation time t f is fixed at 0.5 across107

experiments of different resolutions, whereas the standard deviation of the forcing amplitude Â108

depends on the forced waveband and the resolution (more on this later).109

Dissipation is introduced to remove the energy and enstrophy cascaded into the largest and110

smallest scales respectively. At the largest scales k ∈ [1,3], the dissipation comes in the form of111

a linear drag d =−0.0029θ . At the smallest scales k ≥ 25
32kt , d =−0.083∆8θ , which is a hyper-112

viscosity. It is worth emphasizing that for most wavenumbers both the forcing and dissipation are113

absent. This enables clean energy and enstrophy cascades along the inertial ranges.114

To mimic real-world models which do not compromise the quality of large-scale predictions as115

the model resolution progressively increases, the fully resolved part of the energy spectra must116

agree among runs of different kt . This is achieved by controlling the forcing amplitude Â. Unfor-117

tunately, this has to be done ad experimentum, since, to our knowledge, no known formulae relate118
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the forcing amplitude with the shape of the spectrum. The following choices of Â are found to119

be appropriate following a series of fine-tuning tests: Â = 0.004 for the large-scale forcing for all120

kt ; and Â = 0.005, 0.006, 0.007, 0.008 for the small-scale forcing for kt = 256, 512, 1024, 2048121

respectively. As shown in Figure 1, these particular choices also make the transition between the122

k−3 and k−
5
3 ranges happen on the order of k = 100, in agreement with the atmospheric energy123

spectrum observed by Nastrom and Gage (1985) where the spectral break sits at a length scale of124

about 400 kilometers. The spectra in Figure 1 are scaled by k
5
3 so that a perfect k−

5
3 range would125

appear as a horizontal line in the figure. It is apparent that the transition to a k−
5
3 spectrum is126

gradual, and is not even achieved in the highest-resolution run (kt = 2048), although it is getting127

very close.128

The two sets of perturbation experiments come in the form of identical twins – pairs of runs that129

differ only in the initial condition. The initial perturbations are introduced at a single wavenumber130

kp at a relative magnitude of 1%, following the procedure of Leung et al. (2019). The first set131

explores the dependence of error growth properties on the scale kp of the initial error. There the132

model resolution is fixed to be the highest possible, i.e. kt = 2048, and perturbations are introduced133

at kp = 128,256,512 and 1024. The second set explores the sensitivity of error growth to the134

model resolution by making kt variable. Model resolutions of kt = 256,512,1024 and 2048 are135

considered. kp is fixed relative to kt at kp
kt
= 0.5 so that the initial error is confined to a small scale136

yet unaffected by the forcing and dissipation. As such, the combination (kt ,kp) = (2048,1024)137

is included in both sets. For each combination of (kt ,kp), all results reported in this and the next138

section are averages over 5 independent realizations.139
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b. Results140

1) ERROR GROWTH AND ITS DEPENDENCE ON PERTURBATION SCALE141

Figure 2 shows the evolution of the error spectra for the different perturbation scales kp in the142

highest-resolution (kt = 2048) model, where a substantial part of the unperturbed energy spectrum143

follows the k−
5
3 power-law reasonably well (Figure 1). The error spectra grow up-magnitude144

more or less uniformly across scales. As the mesoscale saturates, the error growth slows down,145

as indicated by the more closely packed spectra at later times. These observations are broadly146

consistent with the findings of Boffetta and Musacchio (2001), who simulated error growth in the147

inverse-cascade regime of 2D turbulence (i.e. a k−
5
3 control spectrum). They also agree with Judt148

(2018)’s study using a global convection-permitting NWP model.149

Figure 2 also suggests that the dependence of error growth behavior on the perturbation scale150

kp is minimal, as manifested by the largely similar shape of the error spectra across the panels.151

This is in good agreement with Durran and Gingrich (2014). Decreasing the perturbation scale152

(increasing kp) introduces a time-lag in saturating a given synoptic scale, but this lag decreases153

with the wavenumber and becomes negligible at the largest scales (not shown).154

2) DEPENDENCE ON MODEL RESOLUTION155

The results for the second set of experiments, in which the model resolution kt is variable, are156

shown in Figure 3. There is a qualitative difference between the error spectra of the low-resolution157

runs, where the k−
5
3 range is barely resolved (Figure 3(a,b)), and those of the high-resolution runs158

where the k−
5
3 range is resolved well (Figure 3(c,d)). Without a resolved mesoscale range, the error159

spectra peak at the synoptic scale (about k = 10) throughout the growth process, following a short160

initial adjustment. This is consistent with previous studies (Rotunno and Snyder 2008; Durran and161

Gingrich 2014). In the presence of a mesoscale range, however, the error initially peaks at nearly162
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the smallest resolved scale, i.e. towards the end of the k−
5
3 range, again echoing earlier studies163

(Lorenz 1969; Rotunno and Snyder 2008; Durran and Gingrich 2014). After the mesoscale error164

saturates, a separate peak in the synoptic scale begins to emerge in the error spectra, resembling165

the error growth paradigm under a k−3 range. The same has been reported by Judt (2018) in the166

context of a high-resolution global NWP model.167

Error spectra under a hybrid k−3 and k−
5
3 spectrum thus show a stage-dependent peak and an168

up-magnitude growth at almost all stages. The analysis of the error growth behavior may be done169

more quantitatively by fitting the error growth to a parametric model and extracting information170

from the fitted parameters.171

3. Assessing the error growth rate using the parametric model of Žagar et al. (2017)172

a. Description of the Žagar model173

The parametric model of Žagar et al. (2017) (‘the Žagar model’) approximates the evolution of174

some measure of the error energy by a scaled and translated hyperbolic tangent function175

E(t) = A tanh(at +b)+B, (3)

where t is the time since the initial perturbation, and A > 0, B ∈R, a > 0 and b ∈R are parameters176

to be fitted. The measure of the error energy can be that at a particular wavenumber or a range of177

wavenumbers (which can be the total error energy), whether normalized by the saturation energy178

level or not. In this section, we apply the Žagar model on the normalized energy at individual179

wavenumbers, thus making equation (3) and its parameters functions of k as well.180

The E given in equation (3) satisfies the autonomous differential equation181

dE
dt

=
a
A
(Emax−E)(E−Emin) (4)
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where Emax := A+B and Emin := A−B are respectively the supremum and infimum attainable182

values of E over all t ∈ R. Equation (4) can be considered as an evolution equation for the error,183

with an initial condition of E(t = 0) = A tanh(b)+B. From this equation, one can see that the184

Žagar model is equivalent to the parametric error growth model of Dalcher and Kalnay (1987)185

dE
dt

= (α1E +α2)

(
1− E

Emax

)
(5)

by noting that α1 = a
AEmax and α2 = − a

AEmaxEmin (Žagar et al. 2017). We focus on Žagar and186

her collaborators’ formulation of the model here, as it provides an explicit expression for the187

parameterized error E (equation (3)). If the evolution equation (4) or (5) were used instead, the188

parameters would then have to be fitted to the instantaneous growth rate dE
dt , whose computation189

requires discretization and thus introduces inaccuracies.190

b. The fitting191

The fitting to equation (3) is carried out on Python’s scipy.optimize package. Starting with an192

appropriate initial guess of the parameters A, B, a and b, a least-squares minimization is performed193

by the Levenberg-Marquardt algorithm to compute the set of parameters that best approximates194

the evolution of the error.195

As an illustration of the appropriateness of the hyperbolic tangent function in describing error196

growth, Figure 4 shows the evolution of the normalized error energy at a specific wavenumber and197

its best fit according to equation (3). The fit typically smoothens the error’s fluctuations around198

the saturation level. Away from the saturation level, the fitting function matches the error almost199

perfectly.200
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The contour plot in Figure 5(a) is obtained by repeating the fitting procedure independently for201

all wavenumbers. The corresponding plot for the raw, unfitted error is shown in Figure 5(b). It is202

evident that the fitting removes the noise and provides a cleaner signal to the error growth pattern.203

c. Inferring predictability from the parameters204

Parameter a of equation (3) carries a mathematical interpretation. It controls the width of the205

hyperbolic tangent curve. By studying its dependence on k, kt and kp, the predictability of the206

system can be inferred. To see this, let E1 and E2 be two arbitrary error energy levels with E1 < E2,207

and t1 and t2 be the times when these energy levels are attained. If we write Fi =
Ei−B

A , i = 1,2,208

then equation (3) implies ati +b = tanh−1(Fi), so that209

t2− t1 =
1
a

(
tanh−1(F2)− tanh−1(F1)

)
. (6)

Since the hyperbolic tangent function is monotonically increasing, tanh−1(F2)− tanh−1(F1) is210

always positive, meaning that a smaller a always gives a larger (longer) t2− t1. As a becomes211

larger, the curve narrows and thus suggests a more rapid error growth.212

For the first set of experiments in which kt = 2048 and kp is variable, Figure 6 shows that a213

increases with k until the effects of the small-scale forcing become important. Hence, by the214

above argument, the error grows faster as the spatial scale decreases. This is particularly apparent215

in the k−
5
3 mesoscale range, where the slope da

d(logk) increases. This is a hallmark of inherently216

finite predictability, and reinforces the agreement with Judt (2018)’s earlier study using a more217

sophisticated NWP model.218

It is interesting to see that a increases more rapidly in the mesoscale when kp is smaller. In other219

words, error growth in the mesoscale is faster when the perturbation is applied at a larger scale.220
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This may be attributable to the fast transfer of larger-scale errors into the smaller scales (Durran221

and Gingrich 2014).222

Figure 7 shows a(k) for the second set of experiments, in which kp
kt

is fixed at 0.5. It is quite223

remarkable that the values of a for the different resolutions are broadly consistent (as long as they224

lie outside the forcing ranges), meaning that the error growth at a given scale is not substantially225

altered by pushing the model to a higher resolution. Having said that, the distinctively changing226

slope da
d(logk) for the highest-resolution run kt = 2048 (the same magenta curve as in Figure 6) is227

not seen when kt is smaller.228

The heuristic dimensional argument for homogeneous and isotropic turbulence (Lilly 1990) im-229

plies that the parameter a should scale as [k3E(k)]
1
2 , since it carries the physical dimension of230

inverse time. Accordingly, a should be constant in k if the energy spectrum is k−3, and should231

scale as k
2
3 if E(k) ∼ k−

5
3 . However, Figure 7 suggests that a scales with k logarithmically in the232

large scales. Into the small scales of the highest-resolution runs, a polynomial scaling seems to233

emerge, but in any case it falls well short of k
2
3 which demands a more-than-fourfold increase in a234

for every decade of wavenumbers. Hence, the observed behavior of a remains in an intermediate,235

non-asymptotic regime, as might be expected under a hybrid k−3 and k−
5
3 energy spectrum.236

4. Exploring the asymptotic behavior using Lorenz’s model237

It is of interest to investigate the characteristics of error growth under the hybrid spectrum in the238

infinite-resolution limit. To achieve this, a much higher-resolution model is needed to reasonably239

serve as a proxy for the infinite-resolution case. The primitive model of Lorenz (1969) is a good240

candidate for this purpose, as its computational inexpensiveness enables running of ultra-high-241

resolution simulations.242
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Lorenz’s model is based on the dimensionless 2D barotropic vorticity equation (1) but without243

forcing and dissipation ( f = d = 0). This is equivalent to the vorticity form of the incompressible244

2D Euler equations. Forcing and dissipation are instead implicit in the nature of the assumed245

background energy spectrum. Expanding its linearized error equation in a Fourier basis, making246

certain simplifying assumptions (e.g. turbulence closure) and discretizing it, the model reduces to247

a system of linear ordinary differential equations248

d2

dt2 Z =CZ (7)

where Z is a vector of error energies at different scales (each scale K collectively represents249

wavenumbers k = 2K−1 to k = 2K), and C is a matrix of constant coefficients. Given the reso-250

lution Kmax of the model, the entries of C only depend on the energy spectrum of the unperturbed251

flow, which is specified a priori by the user. Further details on the derivation of the model, in-252

cluding the computation of C, are available in Lorenz (1969), Rotunno and Snyder (2008), and253

Leung et al. (2019). For a given initial condition of Z and its first time-derivative, the model is254

solved analytically following the procedure of Leung et al. (2019). When the error at a particular255

scale saturates, the error energy at that scale ceases to be a prognostic variable of equation (7), but256

its effects on the remaining scales via the matrix C are retained in the form of an inhomogeneous257

forcing while the time-integration continues.258

a. Reproducing the DNS results259

We first demonstrate that Lorenz’s model is able to capture the essential aspects of error growth260

observed in the direct numerical simulations (DNS) of Sections 2 and 3. Specifically, we show261

this for the set of experiments in which kp
kt

is fixed (cf. Figure 3). To compute the matrix C and262

hence run the model, the background energy spectra at the final time (t = 150) of the identical-263
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twin simulations in Section 2 are recycled. For each (kt ,kp) pair, a single background spectrum is264

formed by averaging the 5 independent realizations. Next, the spikes induced by the forcing are265

removed, with the energy spectral densities at the forced wavenumbers replaced by interpolation of266

the densities at the neighbouring wavenumbers outside the forced range (the interpolation is linear267

in log-log space in order to respect the power-law nature of the spectrum). The resulting spectrum268

is then discretized into the scales K, with minimum Kmin = 1 and maximum Kmax = log2 kt = 8, 9,269

10 and 11 respectively.270

The model (7), with C computed from the discretized spectrum, is solved for one-half of the271

initial error drawn from the respective DNS. (The factor of one-half is due to the definition of the272

error in Lorenz’s model based on turbulence closure concepts, which makes the re-defined error273

saturate at the control energy spectrum rather than twice its level.) The initial condition for dZ
dt is274

set to be zero for all K, as it will be for the remainder of the article.275

Figure 8 shows the parameter a of the Žagar model as a function of K. Compared to the growth276

rates for the DNS (Figure 7), the single most distinctive feature – that a generally increases as277

k or K increases, albeit much slower than the heuristic scaling would suggest – is captured in278

Lorenz’s model. In other words, Lorenz’s model is able to reproduce the moderate quickening279

of error growth in the mesoscale, though not to the same extent as in the DNS themselves (the280

values of a in the mesoscale range in Figure 8 are generally smaller than in Figure 7 by a factor of281

two). Lorenz’s model also captures the suppression of error growth at intermediate scales in the282

higher-resolution simulations, as seen in Figure 7.283

It should be noted that Lorenz’s model is, in some cases, known to produce unrealistically os-284

cillatory error behavior at small times (Lorenz 1969). This includes the emergence of transient285

negative error energy values, which is in no way excluded by the mathematical formulation of the286

model. Indeed, it is a known shortcoming of the quasi-normal turbulence closure which Lorenz287
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used in deriving his model (Orszag 1970). Nevertheless, qualitatively speaking, the erratic behav-288

ior amounts to nothing more than a time-delay in error growth. Therefore, it does not affect our289

concerned parameter a of the Žagar model, since the time-delay is represented in the parameter b.290

b. Error growth in the infinite-resolution limit291

Having demonstrated the ability of Lorenz’s model to reproduce the basic features of error292

growth, we turn our focus to the ultra-high-resolution case, Kmax = 21. Physically, it corresponds293

to a minimum wavelength of about 19 metres on Earth, well beyond the resolution of today’s NWP294

models.295

The discretized background spectrum used for the Kmax = 11 simulation above is extended to296

Kmax = 21, assuming a pure k−
5
3 range at these smaller scales. In other words, for all integers297

K ∈ [11,21),298

X(K +1)
X(K)

= 2−
2
3 . (8)

The scaling 2−
2
3 K = k−

2
3 = k−

5
3+1 is the energy integrated over a unit logarithm of wavenumbers299

when the energy spectral density scales as k−
5
3 .300

Figure 9(a) illustrates the growth of a small-scale error under this hybrid background spectrum301

extended to Kmax = 21. The error spectrum exhibits a fairly sharp peak at all lead times, in contrast302

with the lower-resolution case (e.g. Figure 3(d)) where the peak is much broader. Figure 9(b)303

shows the same but for a single k−
5
3 range, defined by304

X(K) = 2−
2
3 K−2−K, (9)

yet normalized to such a level that the magnitude of the mesoscale part of the spectrum agrees305

with that in Figure 9(a). The second term of equation (9) represents a correction to k−
5
3 whose306

effect is most significant in the large scales, where the shape of the spectrum departs from the307
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power-law. The formulation of this spectrum is therefore identical to Lorenz (1969), save the308

normalization, and enables a direct comparison with Figure 9(a) for examining the effects of an309

additional k−3 range in the synoptic scale (it should be noted that in this way the hybrid spectrum310

is more energetic in absolute terms). There is a very close agreement between the nature of the311

mesoscale error growth in Figure 9(a) and in Figure 9(b). It seems plausible, then, to suggest312

that the error under the hybrid spectrum asymptotically behaves as the error under a single k−
5
3313

range, and that the presence of the k−3 range does not affect the fast error growth at the smallest314

scales. This comparison also suggests that Kmax = 21 is sufficient to be considered a proxy for the315

infinite-resolution limit.316

This can be expressed in more quantitative terms by considering the parameter a of the Žagar317

model (Figure 10(a)). For Kmax = 21 (black solid curve), a grows exponentially beyond K = 11.318

This growth is very similar in simulations at intermediate resolutions, confirming that our results319

have converged in this respect. Indeed, the growth is even faster than the theoretically expected320

scaling of k
2
3 = 2

2
3 K for a k−

5
3 spectrum. The implication here is that it is necessary to fully resolve321

K = 11 (19.5 to 39.1 kilometers on Earth) for the model to pick up the fast error growth pertaining322

to the k−
5
3 range, despite it being more than a decade of wavenumbers beyond the spectral break323

between the k−3 and k−
5
3 ranges. Moreover, the results suggest that the synoptic-scale k−3 acts324

to slow down error growth in the first decade of the mesoscale. This is also supported by a(K)’s325

approximate proportionality to 2
2
3 K for all K in the single-range k−

5
3 spectrum (not shown).326

We can update Lorenz (1969)’s estimate of the predictability horizon using this hybrid spec-327

trum. Table 1 lists the error saturation time for each K, dimensionalized using his estimate of328

the root-mean-square wind speed in the upper troposphere (17.1824 meters per second). Gener-329

ally speaking, a change in the magnitude of the initial error at the smallest scale would shift the330

predictability horizons across the whole table by a near-constant amount (not shown), so that the331
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ranges of predictability at the large scales are relatively more robust than at the small scales. The332

predictability limit for the planetary scale is estimated to be about 15 to 20 days, in line with recent333

estimates using more sophisticated models (Buizza and Leutbecher 2015; Judt 2018; Zhang et al.334

2019).335

5. Other initial error profiles336

In Section 4, we focused on cases where the initial error is concentrated at the smallest avail-337

able scale, thereby approximating an infinitesimally small-scale error. This is analogous to Lorenz338

(1969)’s well-known Experiment A. Initial error spectra in realistic weather forecasts are, however,339

very different. To explore the sensitivity of the error growth behavior to the initial error spectrum,340

Lorenz performed the lesser-known Experiments B and C. In his Experiment B, the initial error341

was confined to the largest-available scale, whereas Experiment C was initialized with a fixed frac-342

tion of the control energy spectrum across all scales. He concluded that the predictability horizon343

at the planetary scale is barely dependent on the initial error spectrum. Durran and Gingrich (2014)344

expanded on Lorenz’s results to show that, despite the insensitivity of the predictability horizon,345

the error spectra in Experiments B and C grow somewhat differently from Experiment A (their346

Figures 2(a) and 3). They also demonstrated that additional small-scale ‘butterflies’ are practi-347

cally irrelevant to the error growth pattern when the initial error spectrum has a non-negligible348

contribution from the large scales.349

Here, Durran and Gingrich (2014)’s experiments are repeated for the hybrid background spec-350

trum with Kmax = 21. The growth of the error spectrum is shown in Figure 11. In Figure 11(a), the351

initial error is confined to the largest scale, whereas in Figure 11(b) the initial error is distributed352

across all scales in a uniform manner relative to the control spectrum. The error spectra have353
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similar shapes beyond the initial time, and both figures conform nicely to Durran and Gingrich354

(2014)’s result.355

The Žagar error-growth parameter a(K) for both alternative initial conditions is seen to follow356

the same general pattern as the case in which the initial error is at the smallest scale (Figure 10(b)).357

In particular, the exponential growth of a from K = 11 and the sluggish variation at smaller K still358

hold. Indeed, differences in a(K) across the three cases are practically invisible for all K ≤ 14.359

Beyond K = 14, the curves for the large-scale and proportional initial errors remain nearly identical360

to each other but are distinct from the curve for the small-scale initial error by a small margin.361

The overall excellent agreement across the three initial error profiles therefore extends Durran362

and Gingrich (2014)’s conclusion – that “the loss of predictability generated by initial errors of363

small but fixed absolute magnitude is essentially independent of their spatial scale” – to the hybrid364

spectrum. Yet the comparison also shows that the inferences obtained from our version of Lorenz’s365

Experiment A are robust to different initial error distributions.366

6. Summary and conclusions367

Building on Judt (2018)’s study which shows that model-world errors in a convection-permitting368

global NWP model demonstrate mixed characteristics of error growth under a hybrid k−3 and369

k−
5
3 spectrum, we examined in this paper the sensitivity of error growth properties to the model370

resolution or, in other words, to the extent to which the k−
5
3 mesoscale range is explicitly resolved.371

This was done in a 2D barotropic vorticity model. The use of simple models for casting light on372

error growth and predictability properties in the real world is justified as long as the Nastrom-Gage373

hybrid k−3-k−
5
3 energy spectrum is well-modelled, since these properties are largely determined374

by the shape of the spectrum (Rotunno and Snyder 2008).375
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Results from identical-twin perturbation experiments with the 2D barotropic vorticity model at376

a range of resolutions (Section 2) show that a stage-dependent peak in the error energy spectrum377

begins to emerge as the model resolution increases from kt = 256 (where there is essentially no378

room for the k−
5
3 range) to kt = 2048 (where the mesoscale range is substantially resolved). Under379

the hybrid spectrum, the error spectrum initially peaks at the small scales until the k−
5
3 range380

becomes saturated, then a synoptic-scale peak characteristic of error growth under a k−3 spectrum381

starts to appear. These observations echo Judt (2018)’s findings, and confirm that the 2D barotropic382

vorticity equation can mimic the essential aspects of this process.383

The dependence of the error growth rate on spatial scale is used to quantitatively characterize384

the predictability of the system. A measure of this rate is the parameter a of the parametric error385

growth model of Žagar et al. (2017) (Section 3). By fitting the error energy data obtained from the386

perturbation experiments to this parametric model, it is shown that the error indeed grows faster as387

the spatial scale decreases, thereby providing a hint of limited predictability. This is particularly388

evident in the k−
5
3 range. However, the increase in the growth rate as the spatial scale decreases389

falls well short of the theoretical estimate, thus indicating that the error behavior has not reached390

the asymptotic regime pertaining to this mesoscale range.391

The model of Lorenz (1969), which is also based on the 2D barotropic vorticity equation, is392

used to investigate the asymptotic behavior (Section 4). At a modest computational cost, Lorenz’s393

model successfully captures the important characteristics of error growth, thus enabling ultra-394

high-resolution simulations for estimating growth patterns in the continuum. It is found that under395

the hybrid spectrum, the fast upscale cascade of error energy characteristic of limited predictabil-396

ity becomes unambiguously visible only beyond k = 2048 = 211 (19.5 kilometers), more than397

a decade of wavenumbers beyond the spectral break between the synoptic-scale and mesoscale398

ranges. Until then, the synoptic-scale range suppresses mesoscale error growth.399
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Applying these results to NWP would mean that models have to fully resolve the dynamics at400

the scale of the typical grid resolution of today’s global ensembles (∼ 20 kilometers) in order for401

the fast mesoscale uncertainty growth to be accurately captured within the model. Based on Ska-402

marock (2004), this would suggest a grid resolution 7 times finer than typical of today, i.e. on the403

order of a few kilometers, after accounting for the need for a dissipation range. Pushing NWP404

models to such a resolution can be anticipated to provide a more realistic description of small-405

scale error growth and thus of the uncertainty in the forecast, even when the initial errors are not406

confined to the smallest scales (Section 5). Yet, we recognize that developing stochastic parame-407

terizations for processes on the O(1)-kilometer scale (e.g. cloud processes) may also achieve the408

same purpose. It should also be noted that realistic initial error profiles have typically far greater409

amplitudes than those considered in the present study, whose focus is on predictability properties410

in the limiting case.411

Judt (2020) suggests that the canonical hybrid k−3-k−
5
3 spectrum, which has been assumed here412

throughout, is restricted to the mid-latitude upper troposphere only. The applicability of these413

results to other parts of the atmosphere, or indeed to the atmosphere as a whole, remains a topic414

of further research.415
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TABLE 1. Dimensionalized error saturation times (i.e. predictability horizons) for various length scales K,

computed using Lorenz (1969)’s model for 21 scales, and the same control energy spectrum and initial error as

Figure 9(a).

476

477

478

K Length scale Predictability horizon

1 20000−40000 km 20.1 days

2 10000−20000 km 15.8 days

3 5000−10000 km 12.6 days

4 2500−5000 km 10.3 days

5 1250−2500 km 8.74 days

6 625−1250 km 6.46 days

7 313−625 km 5.31 days

8 156−313 km 4.30 days

9 78.1−156 km 3.53 days

10 39.1−78.1 km 2.52 days

11 19.5−39.1 km 1.24 days

12 9.77−19.5 km 20.4 hours

13 4.88−9.77 km 10.8 hours

14 2.44−4.88 km 7.19 hours

15 1.22−2.44 km 4.89 hours

16 610 m−1.22 km 2.62 hours

17 305−610 m 1.88 hours

18 153−305 m 1.35 hours

19 76.2−153 m 58.0 minutes

20 38.1−76.2 m 47.0 minutes

21 19.1−38.1 m 41.1 minutes
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FIG. 1. Background energy spectra, scaled by a factor of k
5
3 , for model resolutions kt =256 (magenta), 512

(green), 1024 (blue) and 2048 (red). The black curve shows a logarithmically corrected k−3 reference spectrum

E(k)∼ k−3
[
log
( k

15

)]− 1
3 , again scaled by a factor of k

5
3 . The spectra are averaged over 5 independent realizations

that differ in the random seed. The prominent peaks are associated with the mesoscale forcing, while the steep

drop-off at the smallest scales is associated with the hyper-viscosity.
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FIG. 2. Evolution of error energy spectra (blue, from bottom to top within each panel) for identical-twin

experiments with kt = 2048 and kp = (a) 128, (b) 256, (c) 512 and (d) 1024. The error spectra are plotted at

equal time intervals. The blue dots indicate the scale (kp) and magnitude of the initial perturbations, and the red

curves indicate the energy spectra of the unperturbed runs (scaled by a factor of two). All results presented here

are averages over 5 independent realizations.
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FIG. 3. As in Figure 2, but for kt = (a) 256, (b) 512, (c) 1024 and (d) 2048, and kp =
1
2 kt . Note that (d) is

identical to Figure 2(d).
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Žagar model according to equation (3). The data are averaged over 5 independent realizations before the fitting
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FIG. 5. The growth of the (a) fitted and (b) raw errors as functions of the wavenumber, for the same simulations

as in Figure 4. The colors and contours indicate the normalized error energy level.
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FIG. 9. (a) Evolution of the error energy spectrum (blue and magenta, from bottom to top) in the Lorenz

(1969) model under the control energy spectrum (red) recovered from the (kt ,kp) = (2048,1024) simulations in

Section 2 (with modifications, details of which are given in the text) and extended to Kmax = 21 via equation

(8), and an initial condition of Z(Kmax) = 5× 10−7×∑
Kmax
L=1 X(L) and Z(K) = 0 for all other K. (b) As in (a),

but for a single-range k−
5
3 control energy spectrum according to equation (9) yet normalized to such a level that

the magnitude of the mesoscale part of the spectrum coincides with (a). The error spectra are plotted in blue at

equal time-intervals of ∆t = 3 up to t = 60, and in magenta at intervals of ∆t = 30 thereafter. The vertical axes

show the equivalent energy spectral density 2−KZ(K), a function that smoothly distributes Z(K) which would

have been a density in k had K been a continuous variable.
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FIG. 10. (a) As in Figure 8, but for Kmax = 11 (cyan), 13 (red), 15 (green), 17 (blue), 19 (magenta) and 21

(black), and an initial condition of Z(Kmax) = 5×10−7×∑
Kmax
L=1 X(L) and Z(K) = 0 for all other K. (b) shows the

same black curve for the Kmax = 21 simulation as (a), and additionally for cases where the initial condition of

the same magnitude is moved to K = 1 (red) or redistributed as a uniform fraction of the background spectrum

(blue, which is essentially indistinguishable from the red). The vertical axes are logarithmic and the dashed lines

indicate an appropriately normalized 2
2
3 K scaling.
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FIG. 11. As in Figure 9(a), but for the following initial conditions for Z: (a) Z(1) = 5× 10−7×∑
Kmax
L=1 X(L)

and Z(K) = 0 for all other K; (b) Z(K) = 5×10−7×X(K) for all K.
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