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ORIGINAL ARTICLE

Effect of vitamin E on low density lipoprotein oxidation at lysosomal pH

Hadeel K. M. Alboaklaha,b and David S. Leakea

aSchool of Biological Sciences and Institute of Cardiovascular and Metabolic Research, Hopkins Building, University of Reading,
Reading, UK; bPharmacy College, University of Karbala, Karbala, Iraq

ABSTRACT
Many cholesterol-laden foam cells in atherosclerotic lesions are macrophages and much of their
cholesterol is present in their lysosomes and derived from low density lipoprotein (LDL). LDL oxida-
tion has been proposed to be involved in the pathogenesis of atherosclerosis. We have shown pre-
viously that LDL can be oxidised in the lysosomes of macrophages. a-Tocopherol has been shown
to inhibit LDL oxidation in vitro, but did not protect against cardiovascular disease in large clinical
trials. We have therefore investigated the effect of a-tocopherol on LDL oxidation at lysosomal pH
(about pH 4.5). LDL was enriched with a-tocopherol by incubating human plasma with a-tocoph-
erol followed by LDL isolation by ultracentrifugation. The a-tocopherol content of LDL was
increased from 14.4±0.2 to 24.3±0.3nmol/mg protein. LDL oxidation was assessed by measuring
the formation of conjugated dienes at 234nm and oxidised lipids (cholesteryl linoleate hydroperox-
ide and 7-ketocholesterol) by HPLC. As expected, LDL enriched with a-tocopherol was oxidised
more slowly than control LDL by Cu2þ at pH 7.4, but was not protected against oxidation by Cu2þ

or Fe3þ or a low concentration of Fe2þ at pH 4.5 (it was sometimes oxidised faster by a-tocopherol
with Cu2þ or Fe3þ at pH 4.5). a-Tocopherol-enriched LDL reduced Cu2þ and Fe3þ into the more
pro-oxidant Cuþ and Fe2þ faster than did control LDL at pH 4.5. These findings might help to
explain why the large clinical trials of a-tocopherol did not protect against cardiovascular disease.
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Introduction

Atherosclerosis is a chronic inflammatory disease of the
large and medium-sized arteries and the underlying
cause of coronary heart disease and thrombotic strokes,
which are major causes of morbidity and mortality
worldwide [1]. Much of the cholesterol that accumulates
in atherosclerotic lesions is contained within foam cells,
many of which are derived from macrophages and
within macrophages much of the cholesterol is con-
tained within lysosomes [2,3]. There has been much
interest in the oxidation of low density lipoprotein (LDL)
as one of the key mechanisms of atherogenesis [4,5].
Vitamin E (mainly a-tocopherol) is the major lipid-soluble
antioxidant in the body and a-tocopherol is the major
antioxidant in LDL with an average of 6 molecules per
LDL particle [6]. Epidemiological studies have suggested
that dietary antioxidants, including vitamin E, might
diminish the risk of coronary heart disease [7] and many
experimental studies, almost all of which have been con-
ducted at pH 7.4, have shown that a-tocopherol inhibits
LDL oxidation in vitro [8,9]. a-Tocopherol might also

affect atherosclerosis by non-antioxidant mechanisms
[10]. The large clinical trials, however, failed to show that
vitamin E decreases cardiovascular disease [11–20].

We have shown previously that LDL can be oxidised
by iron in the lysosomes of macrophages [21] and that
this causes the secretion of inflammatory cytokines [22].
The antioxidant cysteamine, which accumulates in lyso-
somes, inhibits the lysosomal oxidation of LDL [22–25]
and decreases atherosclerosis in LDL receptor-deficient
mice [25]. The oxidation of LDL by ferrous ion at lyso-
somal pH (pH 4.5) was not effectively inhibited by
a-tocopherol [26]. We have now investigated in more
detail the effect of a-tocopherol on LDL oxidation by
iron or copper at lysosomal pH.

Material and methods

LDL Isolation and enrichment with a-tocopherol

LDL (d¼ 1.019–1.063 g/mL) was isolated by sequential
ultracentrifugation of pooled plasma from three or two
healthy adult volunteers [27]. LDL was enriched with
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a-tocopherol by incubating plasma at 37 �C for 3 h with
a-tocopherol (1mM) dissolved in dimethyl sulfoxide
(1% v/v of the plasma volume) or with dimethyl sulfox-
ide alone (1% of the plasma volume) as a control [28].
LDL was then isolated by sequential ultracentrifugation,
followed by dialysis against 140mM NaCl/8.1mM
Na2HPO4/1.9mM NaH2PO4/100mM EDTA, pH 7.4 [27]
during which the dimethyl sulfoxide would have been
removed. The a-tocopherol content of the LDL was
assessed by extraction with methanol and hexane [29]
and reverse phase HPLC [26].

Measurement of conjugated dienes

The oxidation of polyunsaturated lipids in the LDL par-
ticles causes the formation of lipid conjugated dienes,
which contain two conjugated double bonds.
Conjugated dienes can be measured directly using a
spectrophotometer as they absorb UV strongly at
234 nm [30]. Control LDL and a-tocopherol-enriched
LDL (50 mg LDL protein/mL) was oxidised by freshly dis-
olved FeSO4, FeCl3 or CuSO4 at 37 �C in Chelex-100-
treated 150mM NaCl/10mM sodium acetate buffer, pH
4.5 or with CuSO4 in Chelex-100-treated 150mM NaCl/
10mM 3-(N-morpholino)propanesulfonic acid (MOPS)
buffer, pH7.4, in quartz cuvettes. Extra equimolar FeSO4,
FeCl3 or CuSO4 was added to allow for the EDTA carried
over from the stored LDL preparation, which contained
100 mM EDTA to minimise its oxidation during storage.
The increase in attenuance at 234 nm was measured
every minute at 37

�
C against reference cuvettes con-

taining all the components except LDL in a double
beam Lambda Bio 40 or Lambda Bio 35 8-cell spectro-
photometer with UV WinLab software (PerkinElmer).
The data were transferred to Excel and attenuance at
time zero subtracted from all the time points. The term
attenuance was used when LDL oxidation was meas-
ured at acidic pH as this refers to both absorbance and
scattering of UV, as LDL undergoes aggregation at
acidic pH and scatters UV.

It was important to wash the cuvettes well between
experiments to avoid contaminating transition ions
being present. The cuvettes were rinsed with water sev-
eral times and washed in warm dilute washing-up
liquid using cotton buds. They were then rinsed with
purified water, soaked in absolute ethanol for 15min,
rinse with purified water and filled with 100 mM diethy-
lenetriaminepentaacetic acid and left for 1 h. The cuv-
ettes were rinsed with purified water, rinsed with
absolute ethanol and left to dry upside down.

HPLC analysis of LDL

The oxidised lipids and a-tocopherol of the LDL were
quantified by reverse-phase HPLC as described previ-
ously [26] using a HPLC PerkinElmer Series 200 or an
Agilent 1100 instrument.

Monitoring of cuprous copper levels

Cuprous ion quantification was achieved by the chela-
tor bathocuproinedisulfonic acid [31]. LDL (50mg pro-
tein/mL) was oxidised with freshly dissolved CuSO4

(5 mM in 150mM NaCl/10mM sodium acetate buffer, pH
4.5) in 15mL polypropylene tubes in a water bath at
37 �C. Samples of 1mL were taken at various times to
new tubes, bathocuproinedisulfonic acid (3 mL of
100mM) was added and absorbance was measured
immediately at 480 nm with a spectrophotometer

Monitoring of ferrous iron levels

The ferrous iron chelator bathophenanthrolinedisulfonic
acid was used to measure ferrous iron (Fe2þ) levels [32].
LDL (50 mg protein/mL) was oxidised with freshly dis-
solved FeCl3 (5 mM in 150mM NaCl/10mM sodium acet-
ate buffer, pH 4.5) in 15mL polypropylene tubes in a
water bath at 37 �C. Samples of 1mL were taken at sev-
eral time points to new tubes, bathophenanthrolinedi-
sulfonic acid (3 mL of 100mM) was added and
absorbance was measured immediately at 535 nm with
a spectrophotometer.

Results

Effect of a-tocopherol on LDL oxidation induced
by cupric ions at pH 7.4

We enriched LDL with a-tocopherol by incubating
plasma with a-tocopherol disolved in dimethyl sulfox-
ide and then isolating LDL [28]. (Adding a-tocopherol
to LDL in a simple buffer does not lead to its incorpor-
ation into the LDL particles [28].) The a-tocopherol
content of LDL was increased from 14.4 ± 0.2 to
24.3 ± 0.3 nmol/mg protein (mean± SEM of 5 independ-
ent experiments). This corresponds to an average of 7.4
to 12.5 molecules of a-tocopherol per LDL particle,
respectively. The fold increase of a-tocopherol of 1.69
corresponds to the fold increase of plasma a-tocoph-
erol obtained in the clinical trials of a-tocopherol and
cardiovascular disease (1.60–2.42) [11,14–16,18].

Numerous studies have used copper ions at pH 7.4
to oxidise LDL. We used different concentrations of
copper, as a-tocopherol has a greater pro-oxidant effect
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at lower metal concentrations [33]. At both copper con-
centrations (2 and 5 mM), a-tocopherol enrichment of
LDL delayed the oxidation of LDL, in terms of the for-
mation of conjugated dienes, as expected (Figure
1(A,B)). We measured the levels of cholesteryl linoleate
hydroperoxide (Figure 1(C)) and 7-ketocholesterol
(Figure 1(D)) in the LDL by HPLC. The cholesteryl linole-
ate hydroperoxide increased faster than the 7-ketocho-
lesterol, as it is oxidised in its polyunsaturated fatty acid
moiety, whereas the cholesterol molecule has only one
double bond. The levels of cholesteryl linoleate hydro-
peroxide peaked and then declined because it is con-
verted to more highly oxidised molecules. The levels of

cholesteryl linoleate hydroperoxide and 7-ketocholes-
terol were decreased significantly by a-tocopherol
enrichment of LDL.

Effect of a-tocopherol on LDL oxidation induced
by cupric ions at pH 4.5

We investigated the effect of a-tocopherol supplemen-
tation of LDL on its oxidation by copper at lysosomal
pH (pH 4.5) (Figure 2). LDL oxidation by copper at pH
4.5 and 7.4 are very different. The oxidation is much
slower at pH 4.5 than at pH 7.4 (in contrast to ferrous
ion where it is much faster at pH 4.5 than pH 7.4

Figure 1. Oxidation of control LDL and LDL enriched with a-tocopherol by copper at pH 7.4. LDL (50 mg LDL protein/mL) was
incubated with (A) 2 or (B) 5 mM CuSO4 at pH 7.4 and 37 �C. Oxidation was monitored by measuring the change in absorbance
at 234 nm. The term absorbance is used here as LDL does not aggregate and scatter UV during oxidation under these conditions
at pH 7.4. The graphs shown are representative examples of 4 independent experiments. The absorbance (mean ± SEM of 4 inde-
pendent experiments) at 20min was measured because it corresponds to substantial LDL oxidation but is before the decompos-
ition phase. The levels of (C) cholesteryl linoleate hydroperoxide (CLOOH) and (D) 7-ketocholesterol in the presence of 5lM
CuSO4 were measured in 3 independent experiments. The absorbance values in (A, B) were compared by a t-test of 4 independ-
ent experiments. The CLOOH and 7-ketocholesterol levels were compared by a two-way ANOVA followed by a Bonferroni post-
hoc test. �p< 0.05, ��p< 0.01, ���p< 0.001.
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[21,26]). At pH 4.5, it had a short lag phase, a rapid oxi-
dation phase, a slow oxidation phase, an aggregation
phase (as seen by an increase in attenuance due to UV
scattering by the aggregated LDL particles) and a

sedimentation phase as the aggregates fell below the
beam of UV in the spectrophotometer resulting in an
apparent fall in attenuance. Increasing the concentra-
tion of Cu2þ did not greatly affect the rate of oxidation

Figure 2. Oxidation of control LDL and LDL enriched with a-tocopherol by copper at pH 4.5. LDL (50 mg LDL protein/mL) was
incubated with (A) 2, (B) 5 or (C) 20 mM CuSO4 at pH 4.5 and 37 �C. Oxidation was monitored by measuring the change in
attenuance at 234 nm. The graphs shown are representative examples of 4 independent experiments. The attenuance at 200min
(mean ± SEM of 4 independent experiments) was measured because substantial oxidation had occurred by this time, but it had
not yet entered the aggregation phase. The levels of cholesteryl linoleate hydroperoxide and 7-ketocholesterol in the presence of
5 mM CuSO4 were measured by HPLC (mean± SEM of 3 independent experiments). �p< 0.05, ��p< 0.01, ���p< 0.001 compared
to the control LDL by two-way ANOVA followed by a Bonferroni post-hoc test.
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of LDL. (Increasing the concentration of the higher
valency state of iron, ferric iron (Fe3þ), in contrast to fer-
rous iron (Fe2þ), also does not increase the rate of oxi-
dation of LDL at pH 4.5 [26].) a-Tocopherol
supplementation of LDL did not inhibit the oxidation of
LDL by any concentration of copper at pH 4.5 (Figure
2), in marked contrast to the antioxidant effect seen at
pH 7.4. a-Tocopherol supplementation of LDL signifi-
cantly increased the rate of formation of cholesteryl
linoleate hydroperoxide (Figure 2(D)) and 7-ketocholes-
terol (Figure 2(E)) by 5 mM CuSO4 at pH 4.5.

Effect of a-tocopherol on LDL oxidation by ferric
ion at pH 4.5

Lysosomes might contain both ferric (Fe3þ) and ferrous
(Fe2þ) iron [34] and we therefore measured the effect
of a-tocopherol on the oxidation of LDL by both ferric
and ferrous iron. a-Tocopherol did not affect the oxida-
tion of LDL by 2 mM, 5 mM or 20mM Fe3þ at pH 4.5
(Figure 3(A–C)). There was a modest, but statistically
significant, pro-oxidant effect of a-tocopherol at 20 mM
Fe3þ. Supplementation of LDL with a-tocopherol mod-
estly increased the formation of CLOOH (Figure 3(D))
and 7-ketocholesterol (Figure 3(E)) by 5 mM Fe3þ at
pH 4.5.

We could not compare the effects of a-tocopherol
supplementation of LDL on its oxidation by iron at pH
4.5 and 7.4, as we did for copper, because iron does
not oxidise LDL at pH 7.4 in a simple buffer [21,26].

Effect of a-tocopherol on LDL oxidation by ferrous
ion at pH 4.5

a-Tocopherol supplementation of LDL inhibited LDL
oxidation significantly by 5 or 20mM Fe2þ, but not sig-
nificantly by 2 mM Fe2þ at pH 4.5 (Figure 4(A–C)).
a-Tocopherol supplementation of LDL decreased the
rate of formation of cholesteryl linoleate hydroperoxide
(Figure 4(D)) and 7-ketocholesterol (Figure 4(E)) during
oxidation by 5 mM Fe2þ. The consumption of a-tocoph-
erol in LDL in the presence of 5 mM FeSO4 at pH 4.5 was
measured (Figure 5). The levels of a-tocopherol were
increased by supplementation. The levels of a-tocoph-
erol in the control LDL and a-tocopherol-enriched LDL
decreased steadily during incubation with Fe2þ until
very little was present at 24 h.

Measurement of Cu1 and Fe21

To explore the mechanisms of the antioxidant/pro-oxi-
dant effects of a-tocopherol, we measured the rate of

reduction of Cu2þ to Cuþ and Fe3þ to Fe2þ at lysosomal
pH (Figure 6). The reduction was almost complete by
2 h, which corresponds with the rapid oxidation phase
of LDL (Figure 2(B) & 4(B)). a-Tocopherol supplementa-
tion of LDL increased the rate of reduction of both
metals.

Discussion

Clinical trials of antioxidants, mainly a-tocopherol, for
treatment of cardiovascular disease were conducted
because a-tocopherol inhibits LDL oxidation in vitro,
but the large trials did not show any protection
[11,12,14–19]. This has led some to question the
importance of oxidised LDL in atherosclerosis. It has
been argued that multiple antioxidants might be
required for a disease in which multiple oxidants might
be involved or that the trials were conducted with older
patients in whom oxidative stress had become progres-
sively less important with age [35,36]. The studies of
a-tocopherol and LDL oxidation in vitro were carried
out at pH 7.4, however, whereas it is possible that LDL
oxidation in atherosclerotic lesions occurs in the lyso-
somes of macrophages at a pH of about 4.5 catalysed
by iron [21,25]. We show here that in marked contrast
to the expected inhibition by a-tocopherol of LDL oxi-
dation by Cu2þ at pH 7.4, a-tocopherol does not inhibit
LDL oxidation by Cu2þ or Fe3þ at pH 4.5, although it
inhibits LDL oxidation by higher concentrations of Fe2þ

at pH 4.5. We oxidised LDL with copper, as well as with
iron. Iron does not oxidise LDL at pH 7.4 in a simple
buffer [21], probably because hydroperoxyl radicals are
not formed at this pH [23], and we therefore could not
investigate the effect of a-tocopherol on LDL oxidation
by iron at pH 7.4. Copper oxidises LDL at both pH 7.4
and 4.5, however, and this enabled us to compare the
effects of pH on the antioxidant and pro-oxidant effects
of a-tocopherol.

LDL oxidation by copper at pH 7.4 (Figure 1) was
much faster than at pH 4.5 (Figure 2), whereas it is
much faster by iron at pH 4.5 than at 7.4 [21]. The
mechanism of LDL oxidation by copper at pH 7.4 is con-
troversial, but probably proceeds by a different mech-
anism to that at pH 4.5. It might involve the interaction
of copper with certain amino acids in the protein moi-
ety of LDL, apolipoprotein B-100, such as tryptophan
residues [23,37], which we hypothesise might occur less
at acidic pH.

Copper was added in the cupric form (Cu2þ), but
cycles between the cupric and cuprous (Cuþ) forms
during its catalysis of LDL oxidation. Cuþ would react
with oxygen to form the superoxide radical (O2�–),
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Figure 3. Oxidation of control LDL and LDL enriched with a-tocopherol by ferric iron at pH 4.5. LDL (50 mg LDL protein/mL) was
incubated with (A) 2, (B) 5 or (C) 20 mM FeCl3 at pH 4.5 and 37 �C. Oxidation was monitored by measuring the change in attenu-
ance at 234 nm. The graphs shown are representative examples of three independent experiments. The attenuance (mean ± SEM
of three independent experiments) at 200min was measured because substantial oxidation had occurred by this time, but it had
not yet entered the aggregation phase. The levels of (D) cholesteryl linoleate hydroperoxide (CLOOH) and (E) 7-ketocholesterol in
the presence of 5lM FeCl3 were measured by HPLC (mean± SEM of 3 independent experiments). �p< 0.05, ��p< 0.01 com-
pared to the control LDL by two-way ANOVA followed by a Bonferroni post-hoc test.
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which would protonate at acidic pH to form the hydro-
peroxyl radical (HO2�), which has a pKa of 4.8. Very little
protonation would occur at pH 7.4. As discussed before
[23,38], the hydroperoxyl radical is much more reactive
than the superoxide radical and, unlike the superoxide
radical, is not charged and therefore has access to the
oxidisable bisallylic methylene groups of polyunsatur-
ated lipids (LH) of LDL.

Cuþ þ O2 ! Cu2þ þ O2��
O2�� þ Hþ $ HO2 � pKa4:8ð Þ
HO2 � þLH ! H2O2 þ L�

L � þO2 ! LOO�
LDL oxidised by copper at pH 4.5 aggregated,

whereas it did not aggregate at pH 7.4. This might be
explained at least in part because at pH 7.4 the LDL

Figure 4. Oxidation of control LDL and LDL enriched with a-tocopherol by ferrous iron at pH 4.5. LDL (50 mg LDL protein/mL)
was incubated with (A) 2, (B) 5 or (C) 20 mM FeSO4 at pH 4.5 and 37 �C. Oxidation was monitored by measuring the change in
attenuance at 234 nm. The graphs shown are representative examples of four independent experiments. The attenuance
(mean ± SEM of four independent experiments) at 200min was measured because substantial oxidation had occurred by this
time, but it had not yet entered the aggregation phase. The levels of (D) cholesteryl linoleate hydroperoxide (CLOOH) and (E) 7-
ketocholesterol in the presence of 5lM FeSO4 were measured by HPLC (mean ± SEM of 3 independent experiments). �p< 0.05,��p< 0.01, ���p< 0.001 compared to the control LDL by two-way ANOVA followed by a Bonferroni post-hoc test.
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particles have a strong net negative charge, which
would repel the LDL particles from each other, whereas
at pH 4.5 they would have a weaker net positive
charge [26].

a-Tocopherol usually inhibits LDL oxidation at pH
7.4, as shown by numerous studies [8,9]. This is prob-
ably due mainly to a-tocopherol (a-tocOH) scavenging
lipid peroxyl radicals [33].

a�tocOHþ LOO� ! a�tocO � þLOOH

a-Tocopherol can have a pro-oxidant effect, how-
ever, especially if the oxidative stress is low, as shown
by Stocker’s group [33,39], a process termed tocoph-
erol-mediated peroxidation. a-Tocopherol can react
with cupric (Cu2þ) [40] or ferric (Fe3þ) ions to produce
two pro-oxidants: (1) the a-tocopheroxyl radical and (2)
the cuprous (Cuþ) or ferrous (Fe2þ) ion.

a�tocOH þ Cu2þ ! a�tocO � þ Hþ þ Cuþ

a�tocOH þ Fe3þ ! a�tocO � þ Hþ þ Fe2þ

The a-tocopheroxyl radical would eventually abstract
a hydrogen atom from a polyunsaturated fatty acyl
moiety causing lipid peroxidation [33,39].

a�tocO � þLH ! a�tocOHþ L�
L � þO2 ! LOO�

LOO � þL0H� ! LOOHþ L0�
The cuprous ion or ferrous ion would react with lipid

hydroperoxides (LOOH) much faster than would cupric
ion or ferric ion (Fe3þ) [6].

LOOHþ Cuþ ! LO � þ OH� þ Cu2þ

LOOHþ Fe2þ ! LO � þ OH� þ Fe3þ

In support of this, we showed that a-tocopherol sup-
plementation of LDL increased the rate of conversion of

Cu2þ to Cuþ and of Fe3þ to Fe2þ (Figure 6). (It should
be noted that the Cuþ and Fe2þ indicators, bathocu-
proinedisulfonic acid and bathophenanthrolinedisul-
fonic acid, respectively, were not present during the
incubation of the LDL with Cu2þ and Fe3þ and there-
fore would not have artefactually pulled the reaction
over in the direction of Cuþ and Fe2þ.)

a-Tocopherol supplementation of LDL (by incubating
plasma with a-tocopherol and isolating the LDL by
ultracentrifugation) strongly decreased the rate of LDL
oxidation by copper ions at pH 7.4, as expected (Figure
1). Remarkably, a-tocopherol had no antioxidant effect
and might even have had a pro-oxidant effect with cop-
per ions at pH 4.5 (Figure 2). These different effects
might be explained by the net balance of the antioxi-
dant and pro-oxidant reactions of a-tocopherol being
altered by a change in pH.

We postulate that a-tocopherol was less effective at
inhibiting LDL oxidation at acidic pH because the
hydroperoxyl radicals present at acidic pH might
abstract the phenolic hydrogen atom from a-tocoph-
erol forming the a-tocopheroxyl radical.

a�toc�OHþ HO2� ! a�tocO � þH2O2

The a-tocopheroxyl radical is not entirely stable and
would eventually abstract a hydrogen atom from a
polyunsaturated fatty acyl moiety causing lipid peroxi-
dation [33,39], as described above. The estimated rate
constant for the reaction of a-tocopherol and hydroper-
oxyl radicals is 1.5� 105 M�1 s�1 [41], which we expect
would be greater than that for the reaction of hydro-
peroxyl radicals with the bisallylic methylene group of
polyunsaturated lipids.

LHþ HO2� ! L � þH2O2

The a-tocopherol might in effect “trap” the lipid oxi-
dising power of hydroperoxyl radicals inside the LDL
particles (as a-tocopheroxyl radicals) causing more oxi-
dation of the lipids in LDL.

Another possible reason to explain why a-tocopherol
inhibited LDL oxidation at pH 7.4 but not at pH 4.5, is
as follows. At high oxidative stress there might be an
a-tocopheroxyl radical and another free radical present
in a single LDL particle at the same time which might
react with each other to from a nonradical product,
decreasing the pro-oxidant effect of a-tocopherol [33].

a�toc O � þX� ! nonradical product

The oxidation of LDL by copper ions was much faster
at pH 7.4 than 4.5, which might have decreased the
pro-oxidant effect of a-tocopherol by increasing the
probability of there being two free radicals in a single
LDL particle at one time. This might have contributed

Figure 5. a-Tocopherol consumption during LDL oxidation by
ferrous iron at pH 4.5. Control LDL and LDL enriched with
a-tocopherol (50mg LDL protein/mL) was incubated with
5 mM FeSO4 at pH 4.5 and 37 �C and the levels of a-tocoph-
erol were measured by HPLC (mean ± SEM of 3 independent
experiments). ��p< 0.01, ���p< 0.001 compared to the con-
trol LDL by two-way ANOVA followed by a Bonferroni post-
hoc test.
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to a net antioxidant effect of a-tocopherol prevailing
with copper at pH 7.4.

a-Tocopherol enrichment of LDL did not inhibit LDL
oxidation by the higher valence state of iron, ferric ion
(Fe3þ) at pH 4.5 (Figure 3), similarly to the lack of anti-
oxidant effect with the higher valence state of copper,
cupric ion (Cu2þ) at pH 4.5. There was a statistically sig-
nificant, but modest, pro-oxidant effect with 20mM
Fe3þ and sometimes with 5 lM Fe3þ.

Supplementation with a-tocopherol delayed the oxi-
dation of LDL by 5 or 20 mM ferrous ions (Fe2þ) (Figure
4), in contrast to the lack of antioxidant effect observed
with ferric ion. Ferrous ion, in contrast to ferric ion,
would not have directly converted a-tocopherol into
the potentially pro-oxidant a-tocopheroxyl radical. Also,
the greater antioxidant effect of a-tocopherol with fer-
rous ions than ferric ions might possibly be due in part
to the faster rate of oxidation of LDL by ferrous (Figure
4) than ferric ions (Figure 3), as there would have been
a greater possibility of having two radicals in a LDL

particle at the same time with a faster rate of oxidation,
lessening the pro-oxidant effect of a-tocopherol, as dis-
cussed above. In support of this, a-tocopherol had an
antioxidant effect with ferrous ion at higher oxidative
stress (5 or 20mM Fe2þ), but not at lower oxidative
stress (2 mM Fe2þ) (Figure 4).

In a previous study [26], we showed that supplemen-
tation of LDL with a-tocopherol caused an immediate
pro-oxidant effect with 5 mM ferrous ion at pH 4.5 fol-
lowed by an antioxidant effect. The reason for the dif-
ference in these results from our present results is not
clear, but might possibly be due to the level of enrich-
ment obtained with a-tocopherol.

The enrichment in a-tocopherol we obtained in LDL
(1.69 fold) was comparable to that achieved in the clin-
ical trials of a-tocopherol and cardiovascular disease
(1.60� 2.42) [11,14–16,18]. The lack of inhibition of LDL
oxidation due to a-tocopherol enrichment by Cu2þ or
Fe3þ (or sometimes a pro-oxidant effect) or a low con-
centration of Fe2þ at pH 4.5 might help to explain why

Figure 6. Kinetics of cupric and ferric ion reduction by LDL at pH 4.5. Control and LDL enriched with a-tocopherol (50lg pro-
tein/mL) were incubated with (A) 5 lM CuSO4 or (B) 5 lM FeCl3 at pH 4.5 and 37 �C. At several time points, samples were taken
and Cuþ or Fe2þ ion detected immediately using the cuprous copper chelator bathocuproinedisulfonic acid or bathophenanthroli-
nedisulfonic acid, respectively. The mean± SEM of 4 independent experiments is shown. �p< 0.05, ���p< 0.001 by two-way
ANOVA followed by a Bonferroni post-hoc test.
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the large clinical trials of a-tocopherol were ineffective.
It would be desirable to conduct clinical trials of antioxi-
dants that accumulate in lysosomes and inhibit the oxi-
dation of LDL at acidic pH, such as cysteamine [22–25].
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