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SMALL- AND WAITING-TIME BEHAVIOR OF THE THIN-FILM
EQUATION∗

JAMES F. BLOWEY† , JOHN R. KING‡ , AND STEPHEN LANGDON§

Abstract. We consider the small-time behavior of interfaces of zero contact angle solutions to
the thin-film equation. For a certain class of initial data, through asymptotic analyses, we deduce
a wide variety of behavior for the free boundary point. These are supported by extensive numerical
simulations.
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1. Introduction. This paper is concerned with the small-time behavior of inter-
faces of zero contact angle solutions to the “thin-film” equation

∂h

∂t
= − ∂

∂x

(
hn ∂

3h

∂x3

)
,(1.1a)

with h = h0(x) at t = 0 and(1.1b)

h =
∂h

∂x
= hn ∂

3h

∂x3
= 0 at x = s(t),(1.1c)

where h ≥ 0 represents the thickness of a fluid film and x = s(t) denotes the right-hand
interface (with h ≡ 0 for x > s(t)); since we are concerned with the local behavior at
such an interface we need not specify conditions at any left-hand moving boundary.
The first boundary condition of (1.1c) defines the moving boundary (as the point at
which the film thickness reaches zero), the second ensures a zero contact angle, and
the third represents conservation of mass.

In the last few years the range 0 < n ≤ 3 has been considered in the literature from
a modeling point of view. With n = 3, (1.1a–c) models the lubrication approximation
of a surface tension-driven thin viscous film spreading on a solid horizontal surface,
with a no-slip condition at the solid/liquid/air interface [5, 6, 10, 11, 12, 14, 34].
However, the no-slip condition implies an infinite force at the interface [19, 27]. To
avoid this, more realistic models allowing slip have been proposed (see, e.g., [4, 22, 26])
for which it has been shown that the qualitative behavior of solutions in the vicinity
of the interface corresponds to that of the solution of (1.1a–c) with n ∈ (0, 3); this
applies to questions of spreading or nonspreading as well as to questions of locally
preserved positivity and local film rupture [17]. We also note that an application of

∗Received by the editors August 18, 2006; accepted for publication (in revised form) June 6, 2007;
published electronically October 5, 2007.

http://www.siam.org/journals/siap/67-6/66768.html
†Department of Mathematical Sciences, University of Durham, Durham DH1 3LE, UK (j.f.

blowey@durham.ac.uk). The work of this author was partially supported by the EPSRC, UK through
grant GR/M30951.

‡School of Mathematical Sciences, University of Nottingham University Park, Nottingham NG7
2RD, UK (John.King@nottingham.ac.uk).

§Department of Mathematics, University of Reading, Whiteknights, P.O. Box 220, Berkshire
RG6 6AX, UK (s.langdon@reading.ac.uk). The work of this author was partially supported by the
EPSRC, UK through grant GR/M30951 and by a Leverhulme Trust Early Career Fellowship.

1776



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

SMALL- AND WAITING-TIME BEHAVIOR 1777

(1.1a) with 2 < n < 3 to power-law shear-thickening fluids is derived in [30]. With
n ∈ (0, 3) it is also well known (see, e.g., [7, 8]) that (1.1a–c) admits solutions with a
finite speed of propagation property; i.e., s(t) represents a moving boundary, which
moves at finite speed.

In this paper we thus consider only values of n in the moving front regime 0 < n <
3, and we assume further that the film is thick enough that Van der Waals forces play
no part. When considering solutions to (1.1a–c), the primary physical question is often
to do with the movement of the free boundary. Where h = 0 there is no diffusion
in (1.1a), and this can lead to waiting-time behavior, where the interface remains
stationary for a period before moving; alternatively the interface may either advance
or retreat immediately. A determination of the regimes in which such behavior can
occur has considerable implications regarding the possibility of film rupture in the
presence of a very thin prewetting layer; see, e.g., [31].

There has been much recent effort in the literature to answer outstanding ques-
tions about the initial movement of the interface. Theoretical results in [4, 5] have
shown that the interface cannot retreat if n ≥ 3/2, but that film rupture may occur
for n < 1/2 (see also [13, 14]). Moreover, numerical evidence [4, 10, 12] suggests that
for small values of n solutions which are initially strictly positive may vanish at some
point x0 after a finite time t0, with the solution becoming zero on a set of positive
measure shortly after the finite time singularity, a phenomenon called “dead core” in
other fields. The existence of a critical exponent (a value of n∗ > 0 for which solutions
stay positive for n > n∗ and where finite-time singularities are possible for n ≤ n∗)
has been conjectured in [11], where it is remarked that numerical simulations suggest
1 < n∗ < 3.5. Our results below support and clarify these conjectures; in particular,
here we provide the first concrete solutions to (1.1a–c) displaying retreat.

As explained in [31], subsequent to any waiting time the local behavior of solutions
to (1.1a–c) takes the form

h ∼
(

n3ṡ

3(3 − n)(2n− 3)
(s− x)3

) 1
n

as x → s− for
3

2
< n < 3,(1.2)

h ∼
(

3

4
ṡ(s− x)3 ln

[
1

(s− x)

]) 2
3

as x → s− for n =
3

2
,(1.3)

h ∼ B(t)(s− x)2 as x → s− for n <
3

2
.(1.4)

With 0 < n < 3, in (1.2) we require that ṡ > 0, whereas in (1.4) the interface velocity
ṡ may take either sign, with B(t) determined as part of the solution. One of the key
motivations for the current analysis is to provide criteria under which ṡ < 0 holds
for sufficiently small time; since ṡ > 0 typically holds for large times, for example for
the Cauchy problem with initial data of finite mass, a large-time analysis provides no
insight into such matters.

For definiteness, we shall consider the case

(1.5) h0(x) ∼ A0(x0 − x)α + C0(x0 − x)β as x → x−
0 ,

where A0, α, and β are positive constants with β > α; C0 is a constant; and x0 = s(0).
Extensive studies of the small-time behavior have already been done for the cor-

responding second-order problem, the porous-medium equation:

(1.6)
∂h

∂t
=

∂

∂x

(
hn ∂h

∂x

)
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Fig. 1.1. A summary of the possible small-time behaviors with respect to n and α. By “shock”
we mean that a steep front suddenly overruns the interface. In the region max(2, 3/n) < α < 4/n
a diverse range of waiting-time scenarios are seen: specifically (see sections 4.4.1 and 4.6.1) the
interface waits, but the local profile changes instantaneously from that of the initial data and can
exhibit monotonic (if α5 < α < 4/n) or oscillatory (if α2 < α < α5) decay to the local solution, or
limit-cycle behavior (if max(2, 3/n) < α < α2).

with n > 0. We present our results in this context. The variety of possible small-
time behaviors for (1.1a–c) is summarized in Figure 1.1, and can be characterized as
follows:

(i) For α greater than some critical value, the interface “waits” for some finite
time tw, whereby

s(t) = x0 for 0 ≤ t ≤ tw,

after which time it moves. (See also [18, 21, 23] for rigorous studies of such
waiting-time phenomena for (1.1a).) For α = 4/n an upper bound on tw
can be deduced from the local behavior of the solution (cf. [33] for the corre-
sponding case (1.6)); more generally, information about tw can be obtained
from the full (global) solution (cf. [32] for (1.6)).

(ii) For α below the critical value, the interface will move at once, with (in view
of (1.2)–(1.3))

s(t) > x0 for t > 0

for 3/2 ≤ n < 3 (cf. [25] for (1.6)). For n < 3/2, however, ṡ < 0 is also
possible, so a further classification is required according to whether ṡ > 0 or
ṡ < 0 for small t > 0. This does not arise in the corresponding analysis of
(1.6), since ṡ ≥ 0 necessarily holds.

In addition, the higher order of (1.1a) leads, as we shall see, to a much more diverse
range of waiting-time scenarios than that which occurs for (1.6), as shown in Figure 1.1.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

SMALL- AND WAITING-TIME BEHAVIOR 1779

The definitions of α2 and α5 are rather complicated; for details we refer to section
4.4.1, section 4.6.1, and Appendix A.

In seeking a physical explanation for these results, we remark that larger n implies
weaker slip, and large α a shallow initial “contact angle.” Broadly speaking, the larger
the value of n/α, the stronger is the tendency of solutions to stay positive. The cur-
rent phenomena are associated with perfectly wetting (zero-contact-angle) boundary
conditions and should not be confused with those associated with finite static contact
angles. In the latter (i.e., partially wetting) case, for viscous fluids with an initial
condition characterized by a contact angle sufficiently greater (respectively, less) than
equilibrium, the droplet tends to spread (contract) with no waiting. For intermedi-
ate contact angles, waiting-time behavior associated with contact-angle hysteresis can
occur. Although such behavior has some similarities with that described below (in
particular, retreating contact lines are associated with initial data that are “smaller”
than advancing ones), there are also important differences, notably that waiting-time
behavior is in general associated with the “smallest” initial data.

We are not aware of any experimental evidence to support our conjectures, but in
light of our results such experiments might be timely. For a discussion of the physical
length scales pertinent to the slip-dominated (n = 2) model, see, for example, [20],
and also references therein regarding such strong slip conditions. (We note that this
paper also includes an additional term, not present in the thin-film equation, that
is relevant for slip lengths even longer than those for which (1.1a–c) applies with
n = 2.) Instead, we support our asymptotic conjectures with numerical results.
Without loss of generality we assume that s(0) > 0 and, for numerical purposes, we
first approximate (1.1a–c) by replacing (1.1c) by

(1.7c)
∂h

∂x
= hn ∂

3h

∂x3
= 0 for x = 0, l,

where l � s(0), and restrict (1.1a) to hold on (0, l). Existence of solution concepts
for (1.1a,b), (1.7c) may be found in [5, 9, 14] and the references cited therein.

As described in [2], we discretize (1.1a,b), (1.7c) using finite elements in space and
finite differences in time, using uniform spatial and temporal discretization parameters
δx and δt, respectively; see section 2 for details. We expect that this method will be
able to compute the zero contact angle solution for the following reasons:

1. In [5], the existence of solutions to (1.1a,b), (1.7c) is proved for 0 < n < 3,
where h(·, t) may be C1([0, l]) for almost every t > 0 (the zero contact angle
solution), or alternatively h(·, t) may have nonexpansive support.

2. In [2] it was proved that the numerical solution converges, as δx, δt → 0,
to a weak solution of (1.1a,b), (1.7c) (in the sense of [5, 9, 14]). The only
remaining question is whether this is the zero contact angle solution or a
solution with nonexpansive support.

3. In a sequence of experiments, taking δt = O(δx
1
2 ), the numerical method

computes a solution with nonexpansive support.
4. In a sequence of experiments, taking δt = O(δx2), the numerical method can

compute solutions where |ṡ(0)| = ∞ (zero contact angle solutions).
5. In [2] a self-similar source type solution was successfully computed with

δt = O(δx2). Moreover, taking a nonsmooth stationary solution as ini-
tial data, i.e., h0(x) = αmax{γ2 − x2, 0} and 0 < γ < l, the numerical
method computed a smooth solution for 0 < n < 3, and it was concluded
that h(x, t) ≡ h0(x) for n > 3.
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Hence in our experiments, in order to be sure that we are approximating the zero
contact angle solution we always choose δt = O(δx2). We report that the numerical
solution always appears to be smooth.

An outline of the paper is as follows. We begin in section 2 by describing
our numerical scheme in more detail. We then proceed in sections 3 and 4 with a
formal asymptotic analysis, supported by numerical experiments, for the two cases
α ≥ 4/n and α < 4/n, respectively. Videos demonstrating more graphically how
some of the numerical solutions of these sections evolve over time can be found
online at http://www.personal.rdg.ac.uk/∼sms03sl/4thorder/4thorder.html. Finally,
in section 5 we present some conclusions.

2. Numerical approximation. Following the approach of [2], and as described
in section 1, we restrict (1.1a) to a finite space interval (0, l), introduce a potential w,
and rewrite it as the system of equations

∂h

∂t
=

∂

∂x

(
hn ∂w

∂x

)
in (0, l) × (0, T ),(2.1a)

− ∂2h

∂x2
= w in (0, l) × (0, T ).(2.1b)

A nonnegativity constraint is imposed on (2.1b) via a variational inequality in the
weak form, and then we discretize (2.1a,b) using the finite element method. Now,
given positive integers N and M , denote by δt := T/M and δx := l/N the tempo-
ral and spatial discretization parameters, tk := kδt, k = 1, . . . ,M , and xj = jδx,
j = 0, . . . , N ; then the discretization may be written in the following way.

For k = 1, . . . ,M and j = 1, . . . , N − 1 find {Hk+1
j ,W k+1

j } such that

Hk+1
j −Hk

j

δt
+

1

δx2

[∫ xj

xj−1

(
(x− xj−1)

δx
Hk

j +
(xj − x)

δx
Hk

j−1

)n

dx

](
W k+1

j −W k+1
j−1

δx

)

+
1

δx2

[∫ xj+1

xj

(
(x− xj)

δx
Hk

j+1 +
(xj+1 − x)

δx
Hk

j

)n

dx

](
W k+1

j −W k+1
j+1

δx

)
= 0,(2.2a)

[
−Hk+1

j+1 + 2Hk+1
j −Hk+1

j−1

δx2
−W k+1

j

]
Hk+1

j = 0,(2.2b)

−Hk+1
j+1 + 2Hk+1

j −Hk+1
j−1

δx2
−W k+1

j ≥ 0,(2.2c)

Hk+1
j ≥ 0,(2.2d)

where Hk
j ≈ h(xj , tk), W

k
j ≈ w(xj , tk), H

0
j = h0(xj); similar equations/inequalities

appropriate for boundary data (1.7c) hold for j = 0, N when k = 1, . . . ,M . This non-
linear system is solved using a Gauss–Seidel algorithm in multigrid mode; for details
we refer to [3]. We found this approach to have several advantages over some other
algorithms previously proposed in the literature, such as the Uzawa-type algorithm
[2, (3.7a–c)], [24]. Specifically, we find the following:

1. If Hk
j−1 = Hk

j = Hk
j+1 = 0, then it follows from (2.2a) that Hk+1

j = Hk
j = 0,

so that the free boundary advances at most one mesh point from time level k
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to time level k + 1. The advantage of using the nonsymmetric Gauss–Seidel
smoother is that this constraint is easier to impose on the numerical method
than with a symmetric smoother.

2. Working within a multigrid framework significantly increases the rate of con-
vergence. This allows us to reduce the tolerance for the stopping criterion of
the iterative scheme (the maximum absolute difference in successive iterates
is smaller than tol) to tol = 10−12, as compared with tol = 10−8 in [2], and
therefore to solve the nonlinear system more accurately, thereby helping to
avoid spurious behavior.

3. Nonnegativity of the computed numerical solution is guaranteed, and so defin-
ing the position xk

c of the numerical free boundary at time tk to be

xk
c := {xj > 0 : Hk

m ≤ ε for all m ≥ j, Hk
j−1 > ε},

we take ε = 0, which tracks the free boundary more accurately than with
ε > 0; this compares with ε = 10−6 in [2]. We remark that because the
numerical free boundary is defined on a discrete set of points, its movement
appears to “stutter” in the figures below. Although the interface always
advances or retreats with a stepping motion, oscillations are seen only in
certain cases. Moreover, it is sometimes the case that the oscillations in Hk

j

begin and grow before the contact line moves; hence they do not appear to
be caused by this “stuttering.”

In the numerical experiments of sections 3 and 4 we solve (1.1a,b), (1.7c) with
l = 1 and

(2.3) h0(x) = 5 max
{(

9
16 − x2

)α
, 0
}

;

the key properties are that the maximum value of h0 is O(1) and the thin film is
symmetrically distributed about 0 with x0 = 3/4. These experiments were performed
for a sequence of space steps δx, where δt = Cα,nδx

2 and convergence of (2.2a)–(2.2d)
to a weak solution of (1.1a,b), (1.7c), (2.3) was assured (see [2]). For reasons of space
we refer to [15] for further figures and numerical results, including results from many
more experiments with values of n and α closer to the edges of the parameter regimes.

3. Formal asymptotic analysis and numerical results for α ≥ 4/n. For
α ≥ 4/n, the formal asymptotic analysis of this section suggests that we might expect
waiting-time behavior. In particular, for α > 4/n (section 3.1) we anticipate “global”
waiting-time behavior, by which we mean that the asymptotic expansion tells us
to expect a waiting time but gives no clue as to the local behavior; in this case
the interface starts to move due to shock formation, with the gradient becoming
unbounded near the free boundary. For α = 4/n (section 3.2) this global breakdown
can occur for the full range 0 < n < 3, but for 2 < n < 3 “local” waiting-time
behavior is also possible; by this we mean that the dominant term in the asymptotic
expansion switches at the end of the waiting time.

3.1. α > 4/n: Global waiting-time behavior. Provided that h0(x) is ana-
lytic away from the interfaces, then the small-time expansion

(3.1) h ∼ h0 −
d

dx

(
h3

0

d3h0

dx3

)
t as t → 0+
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Fig. 3.1. Waiting-time behavior, various n, α.

holds, at least away from the interface. From (1.5) we have

d

dx

(
hn

0

d3h0

dx3

)
∼ α(α− 1)(α− 2)((n + 1)α− 3)An+1

0 (x0 − x)(n+1)α−4

+ (nα(α− 1)(α− 2) + β(β − 1)(β − 2)) (nα + β − 3)An
0C0(x0 − x)nα+β−4

as x → x−
0 ;(3.2)

for α > 4/n we have (n + 1)α− 4 > α, and we may expect the local behavior

(3.3) h ∼ A0(x0 − x)α as x → x−
0

to hold up to some finite time t = tw > 0, implying a waiting-time scenario in which
the local behavior at the interface does not change for some nonzero waiting time.

To test this conjecture, we ran numerical experiments for a large range of n and
α > 4/n, considering in particular n = 0.75, 1.0, 1.75, and 2.5, so as to cover all of
the different regimes important in the case α < 4/n (see section 4).

In the upper left panel of Figure 3.1 we plot xk
c against tk for n = 1.75 and

α = 3.0 > 4/n = 2.29. The numerical free boundary remains stationary for a period
before advancing. We also plot profiles of Hk

j in the vicinity of the interface at times

just before and just after xk
c begins to move (lower left panel). Shock-type behavior

at the end of the waiting time can be observed (cf. [32] for the second-order case).
Similar waiting-time behavior, with shock type behavior at the end of the waiting

time, was observed for all n, α combinations tested in this range. Approximate waiting
times are plotted against α in the right half of Figure 3.1, for n = 0.75, 1.0, 1.75, 2.5
and for various α > 4/n. For fixed n, the waiting time increases as α increases.

3.2. α = 4/n: Local waiting-time behavior for 2 < n < 3. In the critical
case, the leading term in (1.5) suggests the separable local behavior

(3.4) h ∼ Λ(t)(x0 − x)4/n as x → x−
0 ,

with (1.1a–c) implying

Λ̇ = − 4
n

(
4
n − 1

) (
4
n − 2

) (
4
n + 1

)
Λn+1.
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Hence if n �= 2 (recalling that we consider in this paper only 0 < n < 3), then

(3.5) Λ = A0

(
1 +

8(4 − n)(2 − n)(n + 4)An
0 t

n3

)− 1
n

.

This local solution also represents waiting-time behavior; (3.5) blows up in finite time
if 2 < n < 3, so the waiting time tw then satisfies

tw ≤ tc ≡
n3

8(4 − n)(n− 2)(n + 4)An
0

;

Λ(t) decreases with time for 0 < n < 2, but we nevertheless expect (3.4) to remain
valid only up to some finite tw, after which the front begins to move due to shock,
as described in section 3.1. Thus for 2 < n < 3 local waiting-time behavior (tw =
tc) is possible, analogous to that for the porous-medium equation [33], while global
breakdown (tw < tc for 2 < n < 3) can occur for the full range 0 < n < 3 (cf. [32]).

4. Formal asymptotic analysis and numerical results for α < 4/n. We
begin in section 4.1 by deriving some local similarity solutions. Based on these and
the local behavior indicated in (1.2)–(1.4), we conjecture in sections 4.2–4.6 some
parameter regimes for the small-time behavior when α < 4/n, in which case (3.3)
fails for any t > 0. This does not mean that for α < 4/n there is no waiting-time
behavior; on the contrary, unlike for the corresponding second-order problem (1.6),
a diverse range of waiting-time scenarios can occur in this case. In addition to these
waiting-time scenarios, the front may also advance or retreat instantaneously. Many
of our conjectures are supported by extensive numerical verifications, detailed below;
we leave open their rigorous confirmation.

4.1. Local similarity solutions. In view of (1.5), a natural conjecture for the
small-time behavior for α < 4/n (balancing the terms in the expansion so that they
are of the same size) is the self-similar form

(4.1) h ∼ t
α

4−nα f
(
(x− x0)/t

1
4−nα

)
, s(t) ∼ x0 + η0t

1
4−nα ,

where with η := (x− x0)/t
1/(4−nα), f(η) satisfies the boundary-value problem

(4.2)
1

4 − nα

(
αf − η

df

dη

)
= − d

dη

(
fn d3f

dη3

)
,

as η → −∞, f ∼ A0(−η)α − α(α− 1)(α− 2)((n + 1)α− 3)An+1
0 (−η)(n+1)α−4,(4.3a)

at η = η0, f =
df

dη
= fn d3f

dη3
= 0.(4.3b)

Here s(t) is the position of the interface at time t, and η0 is a free constant determined
by the boundary-value problem.

The behavior as η → −∞ in (4.3a) thereby matches via (3.1) with the leading
terms in (1.5) and (3.2). The constant A0 can be removed via the change of variables

f = A
4

4−nα

0 f̂ , η = A
n

4−nα

0 η̂,

suggesting in particular the delicacy of the limit α → (4/n)−, and the transformation

f = |η| 4
n g(ξ), ξ = ln |η|
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enables (4.2) to be reduced to a fourth-order autonomous problem. Nevertheless, the
complexities of the resulting four-dimensional phase space mean that a global analysis
of (4.2) (akin to that in [33] for the second-order problem) is not practicable here.
Instead we base our conjectures in large part on a number of closed-form solutions
to (4.2), which we now note. We assume (4.2)–(4.3a,b) to have a unique nonnegative
solution.

(I) Separable solution

(4.4) f(η) =

(
n3

8(4 − n)(2 − n)(n + 4)
(−η)4

) 1
n

is an explicit solution to (4.2) for 0 < n < 2, providing a possible local
behavior as η → 0− for solutions with η0 = 0; the circumstances under which
(4.4) may be applicable are clarified in Appendix A.

(II) Steady-state solution

(4.5) f(η) = A0(−η)2, η0 = 0,

gives the solution to (4.2)–(4.3a,b) when α = 2.
(III) Traveling wave solution

(4.6) f(η) = A0(η0 − η)
3
n , η0 =

3(3 − n)(2n− 3)An
0

n3
,

is the solution to (4.2)–(4.3a,b) when α = 3/n, n �= 3/2; here η0 > 0 if
3/2 < n < 3, and η0 < 0 if 0 < n < 3/2.

To complete our catalogue of pertinent closed-form solutions we note that for n = 1
the polynomial solution (cf. [28])

h =
A3

0

4(1 + 30C2
0 t/A0)C2

0

(
(1 + C0(x0 − x)/A0)

2 − (1 + 30C2
0 t/A0)

2
5

)2

,

s = x0 −A0

(
(1 + 30C2

0 t/A0)
1
5 − 1

)
/C0,(4.7)

corresponds to

(4.8) h0 = A0(x0 − x)2 + C0(x0 − x)3 + C2
0 (x0 − x)4/(4A0),

so that α = 2, β = 3 in (1.5); hence s initially decreases if C0 > 0 but increases if
C0 < 0, with

(4.9) s(t) ∼ x0 − 15C0t as t → 0+,

this dependence on the sign of C0 being perhaps counter intuitive, which is far from
unusual in such high-order diffusion problems.

4.2. Small-time behavior for 2 < n < 3. In this regime, the solution (4.4)
is not available to describe the local behavior of f(η) at the interface; (4.6) has the
expected local behavior (1.2), while (4.5) corresponds to α > 4/n and therefore lies
in the waiting-time regime discussed in section 3.1. We thus anticipate that for any
α < 4/n the support of h expands immediately according to (4.1) with η0 > 0 and,
in (4.2)–(4.3a,b),

(4.10) f(η) ∼
(

n3η0

3(3 − n)(2n− 3)(4 − nα)
(η0 − η)3

) 1
n

as η → η−0 ,
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Fig. 4.1. Numerical results for n = 2.5, α = 0.5, T = 10−8 (left), and for n = 2.5, α = 1.4,
T = 10−3 (right). In the top panels the advancing free boundary is shown. In the bottom panels
log tk is plotted against log(xk

c − x0
c) as a discrete set of points, with the solid line following from a

least squares fitting, the straight dotted line from asymptotic theory, and the dashed line in the lower
right section from a least squares fitting with the early data removed.

which follows from (1.2). The interface advances with unbounded initial velocity for
α < 3/n, with finite positive initial velocity if α = 3/n (with f(η) given by (4.6)),
and with velocity tending to zero as t → 0+ for α > 3/n. The behavior in this regime
is very much analogous to that exhibited by the porous-medium equation (cf. [25]).

To test this conjecture we ran numerical experiments for n = 2.5, for which
3/n = 1.2 and 4/n = 1.6, and for α ∈ [0.5, 1.5]. Our results support the conjecture.
In each case xk

c advances, with the speed of the advance decreasing as α increases from
0.5 to 1.5. We plot xk

c against tk for n = 2.5 and for α = 0.5 < 3/n and α = 1.4 > 3/n
in the upper half of Figure 4.1. Note the different time scales on the two plots.

In the lower half of Figure 4.1 we test the hypothesis that for small times

(4.11) xk
c = x0

c + Atγk ,

for some constants A > 0 and γ, by plotting log(xk
c − x0

c) against log tk (as a discrete
set of points—these appear to “stutter” since the numerical free boundary advances
by one discrete mesh point at a time). If the hypothesis is correct, we expect a
straight line with slope γ. To estimate the value of γ we take a least squares fit. For
presentational purposes we plot the best fitting least squares line as a solid line, and
for comparison we also plot a dotted line with slope (4 − nα)−1, the expected value
of γ (recall (4.1)).

For α = 0.5 the log-log plot is fairly straight, and the estimated value of γ = 0.31
is close to the expected value of 0.36. For α = 1.4 the best fitting least squares line
gives an estimate of γ = 1.27, which is not close to the expected value of 2.00 and is a
poor fit to the data. In this case the immediate yet slow advance of the free boundary
means that, for tk small, xk

c overestimates the exact position of the free boundary.
This is demonstrated by the fact that the lowest horizontal line of dots on the log-log
plot, corresponding to the first step in the advance of xk

c , matches very poorly with
the rest of the data. In the lower right plot of Figure 4.1 we thus also show as a
dashed line the best fitting least squares approximation to the data with the first step
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Table 4.1

Estimated and expected values of γ for n = 2.5, various α.

α 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5

1
4−nα

0.36 0.40 0.44 0.50 0.57 0.67 0.80 1.00 1.33 2.00 4.00

γ 0.31 0.35 0.39 0.46 0.53 0.61 0.76 0.91 1.12 1.69 3.43

in the advance of xk
c excluded (equivalently, taking tk � 5 × 10−5 rather than tk > 0

on the log-log plot). This dashed line, with a slope of 1.69, matches the slope of the
data and the expected value of γ much more closely than our original estimate.

The expected and estimated values of γ for each value of α tested are shown in
Table 4.1. For α ≤ 1.3 we estimate γ using all of the data, but for α = 1.4 and
α = 1.5 we exclude the first step in the advance of xk

c , as discussed above. The
numerical results give a value of γ slightly lower than the expected value, but the
difference is small, and the trend of γ increasing with α is clear. Our estimate for γ
is more accurate for values of α away from the edges of the parameter regime.

4.3. Small-time behavior for n = 2. The behavior for α < 2 is as described
in section 4.2. However, for α = 2 the solution (4.1) is not applicable and, partly
because α = 2 will also play an important role in what follows, additional comments
regarding the resulting waiting-time scenario are instructive. The small-time solution
(4.5) suggests that there is initially no change in local behavior, while (3.2) becomes

(4.12)
d

dx

(
hn

0

d3h0

dx3

)
∼ (β + 1)β(β − 1)(β − 2)A2

0C0(x0 − x)βt;

both suggest seeking a local solution of the form

(4.13) h ∼ A0(x0 − x)2 + H(x, t) as x → x−
0 ;

we note that H need not be positive on x < x0 because it represents a correction term
to the (quadratic) leading order behavior. Linearizing in H yields

∂H

∂t
= −A2

0

∂

∂x

(
(x0 − x)4

∂3H

∂x3

)
,

and so, given (1.5) in which β > 2 is required, the correction term takes the separable
form

H = C0(x0 − x)β exp
(
−(β + 1)β(β − 1)(β − 2)A2

0t
)
,

consistent with (3.1), (4.12). The perturbation to the quadratic term thus decays
exponentially, and we expect (4.13) to persist up to some finite waiting time, after
which the interface will start to move due to shock formation (as in other global
waiting-time cases described here; see [32] for the second-order analogue).

4.4. Small-time behavior for 3/2 < n < 2. In this case (4.6) again has
the expected interface behavior (1.2), while (4.5) is nongeneric in the sense that it
is smoother than (1.2) at the interface; the solution of (4.2)–(4.3a,b) for α = 2 is
therefore an exceptional connection in phase space and can be expected to play a role
in separating distinct regimes, as we now suggest. The other noteworthy change to
occur as n drops below two is that the local behavior (4.4) can come into play.
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Fig. 4.2. Numerical results for n = 1.75, α = 2.24: waiting-time behavior (upper left plot);
profiles of Hk

j near the interface while the free boundary is stationary (upper right plot), and as

the free boundary advances (lower left plot); logHk
j against log(0.75− xj) in the vicinity of the free

boundary, with a dotted line from asymptotic theory (lower right plot—same legend as upper right).

4.4.1. 2 < α < 4/n. The solution to (4.2)–(4.3a,b) has the local behavior
which decays as (−η)4/n as η → 0− and exhibits a finite waiting time; for α2 < α <
4/n, where αi, i = 1, 2, 5 are defined in Appendix A, f(η) has local behavior (4.4), so
the solution decreases such that

(4.14) h ∼
(

n3(x0 − x)4

8(4 − n)(2 − n)(n + 4)t

)1/n

as x → x−
0 , 0 < t < tw,

for the duration of the period of waiting. Moreover, for α5 < α < 4/n we expect
nonoscillatory decay, whereas for α2 < α < α5 we expect damped oscillations to
occur. See Appendix A for details. For 2 < α < α2 the behavior is slightly more
subtle, with a limit cycle (see (A.5) of Appendix A) arising in the local description
for 0 < t < tw; the limiting behavior as α → 2 is addressed in Appendix B, providing
additional support for conjectures about the (rather subtle) asymptotic behavior.

We present numerical results for n = 1.75 (giving 3/n = 1.7143, α2(n) = 2.0768,
α5(n) = 2.2, 4/n = 2.2857), and for α = 2.24, 2.10 and 2.04, thus covering each of the
three parameter regimes described above. In the upper left plots of Figures 4.2, 4.3,
and 4.4, we plot xk

c against tk for n = 1.75 and α = 2.24, 2.10, and 2.04, respectively.
In each case xk

c remains stationary for a period before advancing, with the length of
the waiting period appearing to decrease as α decreases. We also plot in each figure
profiles of Hk

j near the interface at various times while the free boundary is stationary
(upper right plot) and just as the free boundary is beginning to advance (lower left
plot). In each case as x → x−

0 the profile of Hk
j appears to remain unchanged for

a short waiting period. In the lower right plot of each figure we plot logHk
j against

log(0.75 − xj) in the vicinity of the free boundary at the same times and using the
same legend as in the upper right plot of each figure, plotting also a dotted line with
slope 4/n for comparison.

For α = 2.24 (Figure 4.2) the (nearly) straight lines with slopes 2.26 for tk =
2.5 × 10−4 and 2.29 for tk = 5.0 × 10−4 (estimated as before) compare well with the
value of 4/n = 2.29 proposed in the conjecture. For tk = 7.5 × 10−4 the log-log plot
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Fig. 4.3. Numerical results for n = 1.75, α = 2.10: waiting-time behavior (upper left plot);
profiles of Hk

j near the interface while the free boundary is stationary (upper right plot), and as the

free boundary advances (lower left plot); logHk
j against log(0.75 − xj) in the vicinity of the free

boundary, with a dotted line from asymptotic theory (lower right plot—same legend as upper right).
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Fig. 4.4. Numerical results for n = 1.75, α = 2.04: waiting-time behavior (upper left plot);
profiles of Hk

j near the interface while the free boundary is stationary (upper right plot), and as the

free boundary advances (lower left plot); logHk
j against log(0.75 − xj) in the vicinity of the free

boundary, with a dotted line from asymptotic theory (lower right plot—same legend as upper right).

is no longer straight, and the best fitting least squares line has a slope of 2.47; by this
time the profile of Hk

j has begun to change.

For α = 2.10 (Figure 4.3), the (nearly) straight lines have slopes 2.17 for tk =
2.5 × 10−4 and 2.18 for tk = 5.0 × 10−4. These values are slightly lower than for
α = 2.24, but still compare fairly well with the value of 4/n = 2.29 proposed in the
conjecture. For tk = 7.5 × 10−4 again the log-log plot is no longer straight, and the
best fitting least squares line has a slope of 1.27; by this time the profile of Hk

j has
again begun to change.

For α = 2.04 (Figure 4.4) each log-log plot is again (nearly) a straight line;



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

SMALL- AND WAITING-TIME BEHAVIOR 1789

however, the slopes of 2.09 for tk = 2.0 × 10−4 and 2.08 for tk = 3.0 × 10−4 are
somewhat smaller than the value of 4/n = 2.29. As tk increases from zero, the slope
of the log-log plot increases from 2.04 up to a maximum of 2.09 before decreasing.
For tk = 4.0 × 10−4 the line has a slope of 1.91; by this time the profile of Hk

j has
begun to change noticeably.

4.4.2. α = 2. This is the most delicate case, with the small-time behavior
depending on the correction term in (1.5), with β > 2. In (3.2) we have

(4.15)
d

dx

(
hn

0

d3h0

dx3

)
∼ β(β − 1)(β − 2)(2n + β − 3)An

0C0(x0 − x)2n+β−4,

and (4.13) yields

(4.16)
∂H

∂t
= −An

0

∂

∂x

(
(x0 − x)2n

∂3H

∂x3

)
,

implying, in view of (4.15), the small-time behavior

H = A
nβ

4−2n

0 C0t
β

4−2n Φ (ξ) , ξ = (x− x0)/
(
A

n
4−2n

0 t
1

4−2n

)
,

being a similarity reduction of (4.16) in which Φ(ξ;n, β) is required to satisfy the
matching conditions

as ξ → −∞, Φ ∼ (−ξ)β − β(β − 1)(β − 2)(2n + β − 3)(−ξ)2n+β−4,

at ξ = 0−, Φ = (−ξ)2n
d3Φ

dξ3
= 0,

from which it follows that

(4.17) Φ ∼ κ(β, n)(−ξ) as ξ → 0−

for some constant κ (which could in principle take either sign, reliable intuition about
the signs of such quantities being hard to come by in high-order diffusion problems).
In fact, for β = 1 + 2(2 − n)N for integer N (such that β > 2), Φ(ξ) takes the form

Φ = (−ξ)
N∑

m=0

am(−ξ)2(2−n)m

with aN = 1 and where a0 alternates in sign with increasing N . More significantly,
for β = 2(1 + (2 − n)N), we have

Φ = (−ξ)2
N∑

m=0

am(−ξ)2(2−n)m,

so that

(4.18) κ(2(1 + (2 − n)N), n) = 0

gives explicitly the values of β,

(4.19) βN = 2(1 + (2 − n)N), N = 1, 2, 3, . . . ,
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at which κ changes sign. Thus κ changes sign infinitely often as β → ∞.
In view of (4.13) and (4.17) there is a further, narrower, inner region with

(4.20) x = x0 + t
β−1
4−2n ζ, h ∼ t

β−1
2−n Ψ(ζ),

the dominant balance as t → 0+ being given by

d

dζ

(
Ψn d3Ψ

dζ3

)
= 0,

implying

(4.21)
d3Ψ

dζ3
= 0.

For C0κ > 0 we thus have instantaneous advance of the interface (with velocity zero
at t = 0+) with

(4.22) Ψ = A0(ζ0 − ζ)2, ζ0 = A
n(β+1)−4

4−2n

0 C0κ, s ∼ x0 + ζ0t
β−1
4−2n ,

in order to match with (4.17). A yet narrower inner region, with

ζ = ζ0 + O(t(β−2)/(2n−3)),

is then present near the interface, with scalings

(4.23) x = s(t) + t
β−5+2n

2(2−n)(2n−3) z, h ∼ t
β−5+2n

(2−n)(2n−3)φ(z),

whereby, matching with (4.22),

β − 1

4 − 2n
ζ0 = φn−1 d3φ

dz3
,(4.24a)

as z → −∞, φ ∼ A0(−z)2,(4.24b)

at z = 0−, φ =
dφ

dz
= 0.(4.24c)

This completes the description of the case C0κ > 0.
The problem (4.24a–c) has no solution for ζ0 < 0, corresponding to the fact that

interfaces cannot recede when n ≥ 3/2; a different scenario is therefore needed when
C0κ < 0 in which ζ = ζ0 in (4.22) no longer coincides with the interface; in other
words, a quantity σ(t), with

(4.25) σ ∼ x0 + ζ0t
β−1
4−2n as t → 0+,

replaces s(t) in (4.23) (with s(t) = x0 now holding for t ≤ tw), and (4.24a–c) becomes

β − 1

4 − 2n
ζ0(φ− φ∞) = φn d3φ

dz3
,(4.26a)

as z → −∞, φ ∼ A0(−z)2,(4.26b)

as z → ∞, φ ∼ φ∞,(4.26c)

a boundary condition count indicating that, since ζ0 < 0, (4.26a–c) suffices to deter-
mine φ(z), up to translates in z, and φ∞. The scaling properties of (4.26a–c) imply
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that φ and φ∞ are proportional to (ζ2
0/A

3
0)

1/(2n−3), with z scaling as (|ζ0|/An
0 )1/(2n−3).

In σ < x < x0, whereby

x0 − x = O
(
t

β−1
4−2n

)
, h = O

(
t

β−5+2n
(2−n)(2n−3)

)
,

we have to leading order that ∂h/∂t = 0 with, in view of (4.25)–(4.26a–c), the match-
ing condition

h ∼ ((x0 − x)/|ζ0|)α̂(β)
on t = σ−1(x),

where

α̂(β) :=
2(β − 5 + 2n)

(β − 1)(2n− 3)
,

implying that

(4.27) h ∼ ((x0 − x)/|ζ0|)α̂(β)
for σ < x < x0.

The exponent α̂(β) in (4.27) is monotonic increasing in β (given that β > 2) and
satisfies

α̂(2) = 2, α̂

(
1 +

2n

3

)
=

4

n
, α̂(∞) =

2

2n− 3
.

It follows for β > 1 + 2n/3 that α̂ lies in the regime of section 3.1, so that (4.27)
describes the behavior near the interface up to the waiting time; for 2 < β < 1+2n/3,
however, α̂ lies in the regime of section 4.4.1, so that (4.27) in turn breaks down suffi-
ciently close to the interface and (4.14) is attained locally via a small-time similarity
solution of the form (4.1)–(4.3a,b), with α replaced by α̂. Such behavior represents
a novel waiting-time phenomenon for degenerate parabolic equations (there being no
corresponding scenario for the porous-medium equation), but there are similarities
with, for example, Hele–Shaw flows with suction, whereby the free surface profile can
instantly change to a new configuration (cf. (4.27)), which then persists (see [29]).

Analysis of cases with κ = 0 requires specification of an additional term in the
local (1.5), and remarkably fine structure arises in consequence. Thus (cf. (4.18)) for

(4.28) h0(x) ∼ A0(x0 − x)2 + C0(x0 − x)2(1+(2−n)N) + D0(x0 − x)γ ,

where γ > 2(1 + (2 − n)N), we expect for each N a sequence of critical values of γ
which represent further refined dividing lines between solutions that expand at once
and those that wait; for those borderline values of γ, a further term in the expansion
of (4.28) must be incorporated and so on. The first set of these dividing lines can be
identified concisely via the one-degree-of-freedom (i.e., overspecified) family of local
solutions (obtained by constructing an algebraic expansion for h about the leading-
order term in (4.29))
(4.29)

h ∼ a(t)(x0 − x)2 − ȧ(t)

12(2 − n)(5 − 2n)(3 − n)an(t)
(x0 − x)6−2n + O((x0 − x)10−4n),

corresponding to (4.28) with N = 1 and

a(0) = A0, ȧ(0) = −12(2 − n)(5 − 2n)(3 − n)An
0C0,
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Fig. 4.5. Numerical results for n = 1.75, α < 2. On the left we show the numerical free
boundary advancing for α = 0.5, 0.6, 0.7, 0.8, T = 10−9 (upper left plot) and for α = 1.6, 1.7, 1.8, 1.9,
T = 10−3 (lower left plot); on the right we present results for α = 1.0, T = 10−6, with the numerical
free boundary plotted against time in the upper right plot, and with log tk plotted against log(xk

c −x0
c)

as a discrete set of points in the lower right plot, with the solid line following from a least squares
fitting and the straight dotted line from asymptotic theory.

and identifying the first critical value of γ for N = 1 to be 7− 4n; higher values of N
correspond to ȧ(0) = 0 in this local expansion. Because it is overspecified, the local
expansion of (4.29) pertains only when the local form of the initial data is consistent
with the powers of x0 − x therein and, as already implied, it represents a borderline
between solutions of the form (1.2) and (4.14).

4.4.3. α < 2. Here the interface advances immediately, with f(η) having local
behavior (4.10) and with unbounded initial velocity for α < 3/n, finite for α = 3/n,
and tending to zero for 3/n < α < 2. The last of these ranges disappears as n drops
below 3/2, providing one indication of the need to address this regime separately.

To test this we ran numerical experiments for n = 1.75 (giving 3/n = 1.7143,
4/n = 2.2857), with α ∈ [0.5, 1.9]. Our results again support the conjecture. In each
case xk

c advances, with the speed of the advance decreasing as α increases. This is
shown in Figure 4.5, in which xk

c is plotted against tk for n = 1.75 with α = 0.5, 0.6,
0.7, and 0.8 (upper left plot) and α = 1.6, 1.7, 1.8, and 1.9 (lower left plot). Note the
different time scales on the two axes.

In the upper right plot of Figure 4.5 we show the numerical free boundary
advancing for n = 1.75 and α = 1.0 < 3/n. As before, we test the hypothesis (4.11) by
plotting log tk against log(xk

c −x0
c) (in the lower right plot), and we estimate γ = 0.43.

For comparative purposes we plot a dotted line with slope (4 − nα)−1 = 0.44 on the
same graph. The expected and estimated values of γ are shown in Table 4.2. For
α = 1.9 we exclude the first step in the advance of xk

c , as discussed in section 4.2.
The estimates for γ are very close to the expected values, with this being especially
true for values of α away from the edges of the parameter regime.

4.5. Small-time behavior for n = 3/2. For α < 2, the support of h expands
immediately with unbounded velocity; in view of (1.3), the local behavior of f(η) then
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Table 4.2

Estimated and expected values of γ for various α, n = 1.75.

α 0.5 0.7 0.9 1.1 1.3 1.5 1.7 1.9

(4 − nα)−1 0.32 0.36 0.41 0.48 0.58 0.73 0.98 1.48

γ 0.30 0.34 0.40 0.47 0.58 0.73 0.98 1.53

takes the form

f(η) ∼
(

3η0

2(8 − 3α)
(η0 − η)3 ln

(
1

(η0 − η)

)) 2
3

as η → η−0 .

For 2 < α < 8/3 the behavior is again as described in section 4.4.1. The case α = 2
is particularly delicate, with the initial exponents α = 2 and α = 3/n coinciding for
n = 3/2. Much of the analysis in section 4.4.2 nevertheless still pertains—in particular
(4.17)–(4.19) hold—so that βN = 2 +N , as does (4.20)–(4.22). However, the scalings
(4.23) are evidently inapplicable for n = 3/2, and the appropriate scalings are instead
(for C0κ > 0)

(4.30) h = (s− x)2Φ(ξ, t), ξ = tβ−2 ln(1/(s− x)), s ∼ x0 + ζ0t
β−1,

so that the spatial scaling is exponentially small in t, which yield as the dominant
balance

(β − 1)ζ0 = 2Φ
1/2
0

dΦ0

dξ
,

and hence

(4.31) Φ0 =

(
A

3/2
0 +

3

4
(β − 1)ζ0ξ

)2/3

,

where we have matched with (4.22). For C0κ > 0, this has the required local behavior
(1.3) and completes the small-time analysis. For C0κ < 0, we again introduce

σ ∼ x0 + ζ0t
β−1,

which specifies the interior layer location, and replace the scalings in (4.30) by

h = (σ − x)2Φ(ξ, t), ξ = tβ−2 ln(1/(σ − x)),

to recover (4.31) with ζ0 (given by (4.22)) negative. Hence φ0 becomes zero at ξ = ξc,
where

ξc =
4A

3/2
0

3(β − 1)|ζ0|
.

There is now a further asymptotic region in which

(4.32) x = σ(t) + ρ(t)e−ξc/t
β−2

z, h ∼ |σ̇|2/3ρ2e2ξc/t
β−2

φ,

where the scaling on h is chosen to obtain the appropriate leading order balance,
namely (cf. (4.26a–c))

− (φ− φ∞) = φ3/2 d3φ

dz3
,

as z → −∞, φ ∼
(

3

4
(−z)3 ln(−z)

)2/3

,

as z → ∞, φ ∼ φ∞,
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where φ∞ is again to be determined as part of the solution and we have matched with
(4.31). The preexponential factor ρ(t) is expected to be algebraic in t; its calculation
would require correction terms in the various expansions to be evaluated and we shall
not pursue such matters further. Applying arguments similar to those in section 4.4.2,
we obtain from (4.32) that

(4.33) lnh ∼ −2ξc|ζ0|
β−2
β−1 /(x0 − x)

β−2
β−1 for σ < x < x0,

so the height of the film left behind by the retreating interior layer at x = σ is
exponentially small (and thus in particular implies waiting-time behavior at x = x0).
This reflects the status of n = 3/2 as a critical case; as we shall shortly see, for n < 3/2
the interface x = s itself retreats in the corresponding regime (in other words, the film
thickness left behind x = σ drops from being algebraically small for 3/2 < n < 2, as
in (4.27), through exponentially small for n = 3/2 (see (4.33)) to zero for n < 3/2).

4.6. Small-time behavior for n < 3/2. We have already alluded to the
qualitatively new feature, implicit in the local behavior (1.4), which can occur in
this regime, namely that the interface can retreat. Such behavior is most simply
demonstrated by the case α = 3/n in which the small-time similarity solution is given
by (4.6), with the interface retreating at a finite rate; in this regime (4.6) is nongeneric,
being smoother than the expected local behavior (1.4). For α > 3/n, we anticipate
waiting-time behavior, as in section 4.4.1; see also Appendix A. (In addition, an
analysis similar to that of Appendix B can be performed in the limit α → (3/n)+.)
The result for α = 3/n and α = 2 suggests that for α < 2 the interface expands at an
unbounded rate, with

(4.34) f(η) ∼ β(η0 − η)2 as η → η−0

for some constant η0, while for 2 < α < 3/n contraction occurs at an unbounded
rate, with η0 < 0 in (4.34). The critical case α = 2 is again of particular interest,
in particular since waiting-time behavior can in principle occur in this case also (but
only for extremely special initial data; cf. (4.29)). The analysis for α = 2 is more
straightforward than that above, since (4.22)–(4.24a–c) now apply right up to the
interface for C0κ < 0 (retreat) as well as for C0κ > 0 (advance). Such behavior
can be illustrated by the explicit solution (4.7)–(4.9) for n = 1, wherein β = 3 and
κ = −15.

For α = 2 we have that

s(t) ∼ x0 + ζ0t
β−1
4−2n as t → 0+,

which exhibits the same interface time-dependence as (4.1) with α = (4(β − 2) +
2n)/((β − 1)n); since β > 2, it follows that this α lies in the range 2 < α < 4/n,
and it implies that the same s(t) can result from quite different initial data (in this
case for 2 < α < 3/n, for which the interface retreats). This reflects the high order
of (1.1a), whereby the local behavior at the interface contains a further degree of
freedom in addition to s(t) and contrasts with the situation for the second-order case
(1.6) (cf. [1]).

4.6.1. 3/n < α < 4/n. In this regime we anticipate waiting-time behavior, as
described in section 4.4.1. For α5 < α < 4/n we expect monotonic decay onto the
4/n solution, for α2 < α < α5 we expect oscillatory decay, and for 3/n < α < α2

we expect a limit cycle to arise in the local description for 0 < t < tw (see (A.5)).
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Fig. 4.6. Numerical results for n = 0.75, α = 5.1: waiting-time behavior (upper left plot);
profile of Hk

j near the interface at various times (lower left plot); logHk
j against log(xk

c −xj) in the

vicinity of the free boundary (upper right plot), and over the whole range xj ∈ [0, xk
c ) (lower right

plot), with a dotted line of gradient 4/n (from asymptotic theory) in each case.
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Fig. 4.7. Numerical results for n = 0.75, α = 5.1; profile of Hk
j near the interface at various

times (same legend for each plot).

By monotonic decay we mean decay like η−γ , where γ is real, and by oscillatory
decay we mean that the solution decays like η−γ−iμ, where γ, μ are real. We present
numerical results below for n = 0.75 (giving 3/n = 4, α2(n) = 4.2061, α5(n) = 4.9,
4/n = 5.3333), with α = 5.1 (Figures 4.6 and 4.7), α = 4.5 (Figures 4.8 and 4.9) and
α = 4.1 (Figures 4.10 and 4.11), thus covering each of the three parameter regimes
described above (see also Appendix A). We also present results for n = 1.0 (for which
α2(n) = 3.2195) with α = 3.1 (Figures 4.12 and 4.13), with this second example in
the range 3/n < α < α2 reflecting the extremely delicate nature of the results in this
regime.

In the upper left plots of Figures 4.6, 4.8, 4.10, and 4.12 we plot xk
c against tk

for each example. In Figures 4.6 and 4.8, xk
c remains stationary for a period before
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Fig. 4.8. Numerical results for n = 0.75, α = 4.5: waiting-time behavior (upper left plot);
profile of Hk

j near the interface at various times (lower left plot); logHk
j against log(xk

c −xj) in the

vicinity of the free boundary (upper right plot), and over the whole range xj ∈ [0, xk
c ) (lower right

plot), with a dotted line of gradient 4/n (from asymptotic theory) in each case.

0.735 0.74 0.745 0.75
0

0.5

1

1.5

2
x 10

−9

0.747 0.748 0.749 0.75 0.751
0

1

2

3

4

5

x 10
−13

0.62 0.64 0.66 0.68 0.7 0.72 0.74 0.76
0

1

2

3

4

5

6
x 10

−6

t
k
=0

t
k
=4.0×10−4

t
k
=5.0×10−4

t
k
=6.0×10−4

xj

H
k j

xj

H
k j

xj

H
k j

Fig. 4.9. Numerical results for n = 0.75, α = 4.5; profile of Hk
j near the interface at various

times (same legend for each plot).

advancing, with a shorter waiting period in Figure 4.8. In Figures 4.10 and 4.12, xk
c

appears to immediately retreat, wait, and then advance. However, this retreat is over
a very short distance, and over a longer time scale the boundary appears to wait; note
the different scales on the two plots in the upper left corner of Figure 4.12.

In the lower left corner of Figures 4.6, 4.8, 4.10, and 4.12 we show profiles of
Hk

j in the vicinity of the free boundary at various times before the free boundary

has begun to advance. In each case the value of Hk
j drops faster further behind the

free boundary, leading to the formation of humps near the boundary. In order to
demonstrate the existence of more than one such hump, we show profiles of Hk

j on
smaller and smaller scales nearer and nearer to the free boundary in Figures 4.7, 4.9,
4.11, and 4.13. Note the different scales on the horizontal and vertical axes of each
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Fig. 4.10. Numerical results for n = 0.75, α = 4.1: motion of the numerical free boundary
(upper left plot); profile of Hk

j near the interface at various times (lower left plot); logHk
j against

log(xk
c − xj) in the vicinity of the free boundary (upper right plot), and over the whole range xj ∈

[0, xk
c ) (lower right plot), with a dotted line of gradient 4/n (from asymptotic theory) in each case.
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Fig. 4.11. Numerical results for n = 0.75, α = 4.1; profile of Hk
j near the interface at various

times (same legend for each plot).

plot in Figures 4.7, 4.9, 4.11, and 4.13. Due to the limitations of the numerical method
and the scale of the plots it is possible that some of these results may be spurious,
but the repetition of the evidence found on the larger scales does provide a degree of
support for the conjectures.

The issue of whether these types of profiles lead to film break up (i.e., satellite
droplets separated by dead cores in which h is identically zero) is an interesting one
warranting further study. In the current context we note first that there remain open
questions regarding the range of n for which such rupture can occur, which it would not
be appropriate to explore here; second that the small-time similarity solutions cannot
exhibit such break up (each satellite drop must conserve mass, which is inconsistent
with their self-similar form); and finally, for n < 1/2 they could contain touch down
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Fig. 4.12. Numerical results for n = 1.0, α = 3.1: motion of the numerical free boundary
(upper left plots: note the different scales on each figure); profile of Hk

j near the interface at various

times (lower left plot); logHk
j against log(xk

c − xj) in the vicinity of the free boundary (upper right

plot), and over the whole range xj ∈ [0, xk
c ) (lower right plot), with a dotted line of gradient 4/n

(from asymptotic theory) in each case.
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Fig. 4.13. Numerical results for n = 1.0, α = 3.1; profile of Hk
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points (at which h = 0), as analyzed in [31].

In the upper right corner of Figures 4.6, 4.8, 4.10 and 4.12 we plot logHk
j against

log(xk
c − xj) in the vicinity of the free boundary at various times before the free

boundary has begun to advance. For comparison we also plot a dotted line with slope
4/n in each figure. In Figure 4.6, the best fitting least squares line for tk = 0 has a
slope of 5.10, rising to 5.26 for tk = 2.5 × 10−5 and 5.45 for tk = 5.0 × 10−5. For
tk = 7.5×10−5 the log-log plot is no longer very straight. We remark that in this case,
with n = 0.75 and α = 5.1, Hk

j is very close to zero quite far behind the free boundary,
hence the numerical results are extremely delicate. In Figure 4.8, the log-log plot is
not straight immediately in the vicinity of the free boundary for any tk > 0, although
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it is fairly straight further away from the free boundary. In Figures 4.10 and 4.12, the
log-log plots are not very straight, and the best fitting least squares lines have slopes
significantly lower than 4/n.

In the lower right corners of Figures 4.6, 4.8, 4.10 and 4.12 we plot logHk
j against

log(xk
c−xj) over the whole range xj ∈ [0, xk

c ) at various times before the free boundary
has begun to advance, plotting again a dotted line with slope 4/n for comparison. In
Figure 4.6, as tk increases, the log-log plot becomes less and less straight, and for
tk = 3.0× 10−3 the periodic behavior of the solution near the interface can clearly be
seen. The log-log plots for tk = 4.0×10−3 and tk = 5.0×10−3 are very similar to that
for tk = 3.0 × 10−3 but are not shown here. In Figure 4.8, the formation of humps
further and further from the free boundary becomes apparent. For tk = 1.0 × 10−4,
the slope of the log-log plot away from the free boundary is close to 4/n. For each of
Figures 4.10 and 4.12, as tk increases, the formation of extra humps in the vicinity of
the free boundary becomes apparent.

4.6.2. 2 < α < 3/n. To test the conjecture that the free boundary retreats
instantaneously with unbounded velocity, we ran experiments with n = 1.0 and α ∈
[2.1, 2.9]. We plot xk

c against tk in the left panel of Figure 4.14 for α = 2.2, 2.4, 2.6,
and 2.8. The results support the conjecture. In each case the free boundary retreats,
waits, and then advances, although the subsequent advance can only be seen in the
figure for α = 2.2. The initial velocity of xk

c appears to decrease as α increases,
although as α increases, the length of the period for which the free boundary retreats
also increases, so that the maximum distance retreated occurs for α = 2.9.

As before we test the hypothesis xk
c = x0

c − Atγk for some constants A > 0 and γ
by plotting log(x0

c−xk
c ) against log tk. Again, if the hypothesis is correct, we expect a

straight line with slope γ, and to estimate γ we take a least squares fit over the range
for which the log-log plot is approximately straight. In the right half of Figure 4.14
we plot xk

c against tk (upper section) and this log-log plot (lower section) for n = 1.0
and α = 2.5. The log-log plot is approximately straight, and the best fitting least
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Fig. 4.14. Numerical results for n = 1.0, 2 < α < 3/n. In the left panel we plot the retreating
free boundary for various α. In the right panels we show results for n = 1.0, α = 0.5: in the upper
right section we show the retreating free boundary; in the lower right section we plot log tk against
log(x0

c − xk
c ) as a discrete set of points, with the solid line following from a least squares fitting and

the straight dotted line from asymptotic theory.
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Table 4.3

Estimated and expected values of γ for n = 1.0, various α.

α 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9

(4 − nα)−1 0.53 0.56 0.59 0.63 0.67 0.71 0.77 0.83 0.91

γ 0.44 0.53 0.58 0.63 0.67 0.72 0.77 0.81 0.85

squares line is plotted as a solid line on the same figure. For comparison we also plot
a dotted line with slope (4− nα)−1 = 0.67. The estimated value of γ = 0.67 matches
this exactly to two decimal places. The expected and estimated values of γ for each
value of α tested are shown in Table 4.3. The trend of γ increasing with α is clear,
and away from the edges of the parameter regime the estimated value of γ is very
close to the expected value.

4.6.3. α < 2. To test the conjecture that the free boundary advances in-
stantaneously, with an unbounded velocity, we ran experiments with n = 1.0 and
α ∈ [0.5, 1.9]. We plot xk

c against tk for α = 0.6, 0.7, 0.8, and 0.9 (upper left plot),
and for α = 1.5, 1.6, 1.7, and 1.8 (lower left plot) in Figure 4.15. Note the differ-
ent time scales on the two plots. The results support the conjecture, and the initial
velocity of xk

c decreases as α increases.

We again test the hypothesis (4.11), plotting xk
c against tk (upper right section

of Figure 4.15) and log(xk
c − x0

c) against log tk (lower right section of Figure 4.15)
for n = 1.0 and α = 1.2. The log-log plot is approximately straight, and the best
fitting least squares line, plotted as a solid line on the same figure, has a slope of 0.34.
For comparison we also plot a dotted line with slope (4 − nα)−1 = 0.36 on the same
figure. The expected and estimated values of γ are shown in Table 4.4. The trend of
γ increasing with α is clear, and for values of α away from the borderline value α = 2
the estimated value of γ is very close to the expected value.
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Fig. 4.15. n = 1.0, α < 2. In the left half of the figure we plot the advancing free boundary for
various α (note the different time scales on the two plots). In the right half of the figure we show
results for n = 1.0, α = 1.2: in the upper right section we show the advancing free boundary; in the
lower right section we plot log tk against log(xk

c − x0
c) as a discrete set of points, with the solid line

following from a least squares fitting and the straight dotted line from asymptotic theory.
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Table 4.4

Estimated and expected values of γ for n = 1.0, various α < 2.

α 0.5 0.7 0.9 1.1 1.3 1.5 1.7 1.9

(4 − nα)−1 0.29 0.30 0.32 0.34 0.37 0.40 0.43 0.48

γ 0.28 0.29 0.31 0.33 0.36 0.40 0.43 0.53

5. Conclusions. As we have seen, the thin-film equation (1.1a) exhibits a much
broader range of small-time phenomena than its second-order analogue, (1.6). Thus,
while the behavior of the former with 2 < n < 3 corresponds very closely to that
of the latter with any n > 0, for n < 2 equation (1.1a) exhibits a range of α in
which the interface waits but the local profile changes instantaneously from that of
the initial data (this combination does not occur for (1.6)) and can exhibit monotonic
or oscillatory decay to the local solution (4.14) or limit-cycle behavior of the form
(A.5). Moreover, for n < 3/2 fronts can either advance or retreat, and our small-time
classification gives rather precise criteria on the initial data in this regard. The very
delicate interlacing of initial profiles leading to immediate expansion or to a finite
waiting time, as outlined in section 4.4.2, for example, also deserves highlighting.

In Table 5.1 we demonstrate how these results apply to the cases n = 1 (which de-
scribes thin films in a Hele–Shaw cell [16] and the strong-slip limit of the Greenspan [22]
slip regularization) and n = 2 (which corresponds to the strong-slip limit of the usual
(Navier) slip-regularization; see [26], for example). See also [34] for further relevant
background. It is noteworthy that the case n = 2 is a critical one in a number of
respects (some of which are implicit in Figure 1.1).

The high-order problem (1.1) is a demanding one from the numerical point of
view; this wealth of distinct behaviors occurring over short length and time scales
necessitates particularly refined, careful, and detailed computational studies if the
relevant phenomena are to be captured adequately, and we have sought to implement
the required program of extensive numerical investigations. Taking into account the
delicacy of some of the asymptotic results and the limitations of the numerical scheme,
numerical results are shown only for those parameter regimes wide enough that suit-
able “intermediate” values of n and α can be used.

A number of generalizations immediately suggest themselves. In higher dimen-
sions, the small-time behavior of an initially smooth interface will be locally one-
dimensional, so most of the conclusions carry over. For n ≥ 3, the smoothest solutions
have fixed interfaces, and here waiting-time phenomena relate (for 3 ≤ n < 4) to a
delay in the contact angle becoming finite; we shall not elaborate on such matters

Table 5.1

Small- and waiting-time behavior for n = 1 and n = 2.

n Range of α Behavior
1 4/n = 4 < α Global waiting-time, ended by shock.

α5 ≈ 3.7 < α < 4 Interface waits but local profile changes
instantaneously from that of initial data and can

exhibit monotonic decay to local solution.
α2 ≈ 3.2 < α < 3.7 As above, but with oscillatory decay.
3/n = 3 < α < 3.2 As above, but with limit cycle behavior.

2 < α < 3 Interface retreats instantaneously.
α > 2 Interface advances instantaneously.

2 4/n = 2 ≤ α Global waiting time, ended by shock.
α < 2 Free boundary advances instantaneously.
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here, noting only that the approaches we have described above apply equally well
in such contexts. As a final instance, we note that for n < 3 a finite contact angle
condition can be imposed in place of the second of (1.1c) and a similar investigation
performed; again, we shall not report the results of such a study here.

Appendix A. Applicability of the local solution (4.4). In this appendix
we use boundary condition counting arguments to assess the applicability of (4.4) as
a local solution to (4.2) for 0 < n < 2. Writing

(A.1) f ∼
(

n3

8(4 − n)(2 − n)(n + 4)
(−η)4

) 1
n

+ F

and linearizing yields

1

4 − nα
(αF − ηFη) = − n3

8(4 − n)(2 − n)(n + 4)

d

dη

(
η4 d3F

dη3

)
− n

n + 4

d

dη
(ηF ) ,

with solutions

(A.2) F = K(−η)p,

where the possible p are the roots of the quartic

(A.3)
n3p(p− 1)(p− 2)(p + 1)

8(4 − n)(2 − n)(n + 4)
+

n(p + 1)

n + 4
+

α− p

4 − nα
= 0.

The expansion of (A.1) with F given by (A.2) is self-consistent if Re(p) > 4/n, so the
relations between α and n such that two roots of (A.3) have Re(p) = 4/n are crucial;
these relations can be shown to be

α1(n) =
α−b + αΔ

αd
, α2(n) =

α−b − αΔ

αd
,

where

αd = 2
(
n2 − n− 8

) (
7n3 − 84n2 + 400n− 640

)
n,

α−b = 47n5 − 674n4 + 3384n3 − 3520n2 − 17408n + 36864,

αΔ = (n + 4)(2 − n)(8 − n)
√

9216 − 5632n + 896n2 + 112n3 − 31n4,

so that

α1 ∼ 2 +
11

10
(2 − n) + O((2 − n)2) as n → 2−, α1 ∼ 3

n
+

5

24
+ O (n) as n → 0+,

α2 ∼ 2 +
31

22
(2 − n)

2
+ O((2 − n)3) as n → 2−, α2 ∼ 21

5n
− 1

120
+ O (n) as n → 0+.

It is also instructive to note the curves in (α, n) space on which roots of (A.3) become
complex, namely the repeated roots case in which (A.3) and

(A.4)
d

dp

[
n3p(p− 1)(p− 2)(p + 1)

8(4 − n)(2 − n)(n + 4)
+

n(p + 1)

n + 4
+

α− p

4 − nα

]
= 0

are satisfied simultaneously. These curves are shown in Figure A.1.
We define α5 = α5(n) to be the repeated root case (vb) shown in Figure A.1. The

various curves in (α, n) space relevant to our discussion are all shown in Figure A.2.
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Fig. A.1. The solutions to (A.3) and (A.4). To the right of (va) and of the rightmost of (vd)
and (ve) there are four real roots: between (va) and (vb), between (vd) and (ve), and to the left of
(vc) there are two real and two complex roots; between (vc), (vb), and the leftmost of (vd) and (ve)
there are four complex roots.
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Fig. A.2. (α, n) space, showing α = α1, α = 4/n, α = α2, α = 3/n, and the solutions to (A.3)
and (A.4). Three of the roots become unbounded as α = 4/n is approached, with the fourth having
p ∼ 4/n. Above α = α1 and below α = α2, none of the roots have Re(p) > 4/n; between α = α2 and
(vb), two of the four complex roots have Re(p) > 4/n and the other two Re(p) < 4/n; between (vb)
and α = 4/n both real roots satisfy p > 4/n and both complex ones Re(p) < 4/n; between α = 4/n
and α = α1 the real roots have p < 4/n and the complex ones Re(p) > 4/n.
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In α2 < α < 4
n , two roots of (A.3) have Re(p) > 4

n , and the local expansion (A.1)
is correctly specified (the two degrees of freedom being the K’s in (A.2) corresponding
to those two roots). As α drops below α2 we anticipate that a Hopf bifurcation occurs
in (4.2)–(4.3a,b) with the local behavior as η → 0− taking for α > max(2, 3/n) the
limit-cycle form

(A.5) f ∼ (−η)
4
n Ω(− ln(−η)),

where Ω(ξ) is periodic of period P , say, in ξ. Since on α = α2

Im(p) = ± 1√
2n

√
96 − 24n− n2 −

√
9216 − 5632n + 896n2 + 112n3 − 31n4,

we anticipate that

P ∼ 2
√

2πn√
96 − 24n− n2 −

√
9216 − 5632n + 896n2 + 112n3 − 31n4

as α → α−
2 .

Note that P will depend on α and n but, in view of the scaling properties of (4.2)–
(4.3a,b), not on A0. For α5 < α < 4

n , the decay to (4.4) is nonoscillatory, while for
α2 < α < α5 damped oscillations occur.

Appendix B. 3/2 < n < 2, α → 2. We are concerned here with the behavior
of (4.2)–(4.3a,b) for α close to two. Writing α = 2 + ε, 0 < |ε|  1, we have for
η = O(1) that

(B.1) f ∼ A0(−η)2 + εf1(η)

with

1

2(2 − n)

(
2f1 − η

df1

dη
+ A0(−η)2

)
= −An

0

d

dη

(
(−η)2n

d3f1

dη3

)
,(B.2a)

as η → −∞, f1 ∼ A0(−η)2 ln(−η) − 2(2n− 1)An+1
0 (−η)2(n−1),(B.2b)

as η → 0−, f1 = (−η)2n
d3f1

dη3
= 0.(B.2c)

It follows from (B.2a–c) that

(B.3) f1 ∼ −μ(n)A
4−n

2(2−n)

0 (−η) as η → 0+;

we believe the constant μ, which is determined as part of the solution to (B.2a–c), to

be positive; the dependence on A0 in (B.3) follows from rescaling f1 by A
2/(2−n)
0 and

η by A
n/(2(2−n))
0 in (B.2a–c).

The expansion (B.1) breaks down for small η with inner scalings η = |ε|ξ, f =

|ε|2g(ξ), and d
dξ (gn0

d3g0

dξ3 ) = 0. For ε < 0 we thus have

(B.4) g0 = A0(ξ0 − ξ)2, ξ0 =
1

2
μA

n
2(2−n)

0 ,

with η0 ∼ |ε|ξ0 and with inner-inner scalings η = η0+ |ε|1/(2n−3)ζ, f = |ε|2/(2n−3)h(ζ),
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whereby

1

2(2 − n)
ξ0 = hn−1

0

d3h0

dζ3
,

as ζ → −∞, h0 ∼ A0(−ζ)2,

as ζ → 0−, h0 ∼
(

n3ξ0
6(3 − n)(2n− 3)(2 − n)

(−ζ)3
) 1

n

,

producing the desired local behavior (1.2). However, for ε > 0 the expression (B.4) is
replaced by

(B.5) g0 = A0(−ξ0 − ξ)2, ξ0 =
1

2
μA

n
2(2−n)

0 ,

and (recalling that the interface cannot contract for n > 3/2) the inner-inner scalings
read ξ = −ξc(ε) + ε2(2−n)/(2n−3)ζ, g = ε4(2−n)/(2n−3)h(ζ), where ξc(0) = ξ0 and

− 1

2(2 − n)
ξ0(h0 −H∞) = hn

0

d3h0

dζ3
,(B.6a)

as ζ → −∞, h0 ∼ A0(−ζ)2,(B.6b)

as ζ → ∞, h0 → H∞,(B.6c)

which determines both h0 (up to translations in ζ) and H∞, the decay of h0 to H∞
being nonoscillatory. In −ξ0 < ξ < 0 we then have

(B.7) h ∼ H∞
(−ξ)2

ξ2
0

,

the left-hand side of (4.2) dominating. The scaling properties of (B.6a–c) show that

h0 and H∞ scale with A
2/(2−n)
0 and ζ with A

n/(2(2−n))
0 , so we may rewrite (B.7) as

(B.8) h ∼ ν(n)A0(−ξ)2.

Now setting

(B.9) f = ν
2

2−n ε
8

2n−3 f̂ , η = ν
n

2(2−n) ε
2n

2n−3 η̂,

we have that

f̂ ∼ A0(−η̂)2 + εf1(η̂),

where f1 satisfies (B.2a–c) with η replaced by η̂, implying that the above structure
repeats itself on a sequence of finer and finer scales, consistent with the limit cycle
behavior referred to in Appendix A. Thus if we denote the variables in the mth
member of the sequence by f (m), η(m) with f (0) = f and η(0) = η, we have from (B.9)
that

f (m) ∼ ν
2

2−n ε
8

2n−3 f (m−1), η(m) ∼ ν
n

2(2−n) ε
2n

2n−3 η(m−1),

implying that

f (m)(η) ∼ ν
2m
2−n ε

8m
2n−3 f

(
η

ν
mn

2(2−n) ε
2mn
2n−3

)
,
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where leading-order expressions for f on the right-hand side are given through a single
cycle of the oscillation by (B.1), (B.5), (B.6a–c), (B.8). This is consistent with (A.5)
with

P ∼ 2n

2n− 3
ln

(
1

ε

)
− n

2(2 − n)
ln ν

being large; note that the region described by (B.6a–c) is particularly significant
because it leads to the (−η)4/n-type decay in (A.5), despite the solution behaving
quadratically in other regions.
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