

The impact of increased flooding occurrence on the mobility of potentially toxic elements in floodplain soil – a review

Article

Accepted Version

Creative Commons: Attribution-Noncommercial-No Derivative Works 4.0

Ponting, J., Kelly, T. J., Verhoef, A. ORCID: https://orcid.org/0000-0002-9498-6696, Watts, M. J. and Sizmur, T. ORCID: https://orcid.org/0000-0001-9835-7195 (2021) The impact of increased flooding occurrence on the mobility of potentially toxic elements in floodplain soil — a review. Science of the Total Environment, 754. 142040. ISSN 0048-9697 doi: 10.1016/j.scitotenv.2020.142040 Available at https://centaur.reading.ac.uk/92613/

It is advisable to refer to the publisher's version if you intend to cite from the work. See Guidance on citing.

To link to this article DOI: http://dx.doi.org/10.1016/j.scitotenv.2020.142040

Publisher: Elsevier

All outputs in CentAUR are protected by Intellectual Property Rights law, including copyright law. Copyright and IPR is retained by the creators or other copyright holders. Terms and conditions for use of this material are defined in the End User Agreement.

www.reading.ac.uk/centaur

CentAUR

Central Archive at the University of Reading Reading's research outputs online

The impact of increased flooding occurrence on the 2 mobility of potentially toxic elements in floodplain soil 3 A review 4 5 Jessica Ponting a,b, Thomas J. Kelly a,c, Anne Verhoef a, Michael J. Watts b and 6 Tom Sizmur a* 7 8 ^a Department of Geography and Environmental Science, University of Reading, Reading, RG6 9 6DW, UK 10 ^b Inorganic Geochemistry, Centre for Environmental Geochemistry, British Geological 11 Survey, Keyworth, Nottingham, NG12 5GG, UK 12 13 ^c Department of Geography, Queen Mary University of London, Mile End Road, London, E1 14 4NS, UK 15 * Corresponding author 16 Department of Geography and Environmental Science 17 Russell Building 18 University of Reading 19 Reading 20 21 RG6 6DW, UK t.sizmur@reading.ac.uk 22 +44(0)118 3788913 23 24 25 26

1

27

A<u>bstract</u>

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

The frequency and duration of flooding events are increasing due to land-use changes increasing runoff of precipitation, and climate change causing more intense rainfall events. Floodplain soils situated downstream of urban or industrial catchments, which were traditionally considered a sink of potentially toxic elements (PTEs) arriving from the river reach, may now become a source of legacy pollution to the surrounding environment if PTEs are mobilised by unprecedented flooding events. When a soil floods, the mobility of PTEs can increase or decrease due to the net effect of five key processes; (i) the soil redox potential decreases which can directly alter the speciation, and hence mobility, of redox sensitive PTEs (e.g. Cr, As), (ii) pH increases which usually decreases the mobility of metal cations (e.g. Cd²⁺, Cu²⁺, Ni²⁺, Pb²⁺, Zn²⁺), (iii) dissolved organic matter (DOM) increases, which chelates and mobilises PTEs, (iv) Fe and Mn hydroxides undergo reductive dissolution, releasing adsorbed and co-precipitated PTEs, and (v) sulphate is reduced and PTEs are immobilised due to precipitation of metal sulphides. These factors may be independent mechanisms, but they interact with one another to affect the mobility of PTEs, meaning the effect of flooding on PTE mobility is not easy to predict. Many of the processes involved in mobilising PTEs are microbially mediated, temperature dependent and the kinetics are poorly understood. Soil mineralogy and texture are properties that change spatially and will affect how the mobility of PTEs in a specific soil may be impacted by flooding. As a result, knowledge based on one river catchment may not be particularly useful for predicting the impacts of flooding at another site. This review provides a critical discussion of the mechanisms controlling the mobility of PTEs in floodplain soils. It summarises current understanding, identifies limitations to existing knowledge, and highlights

50

51

- Key words; floodplain soil, flooding, climate change, potentially toxic elements, contamination,
- 52 mobility

requirements for further research.

53 54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

1. Introduction

Flooding is a major event that currently affects an estimated 20 to 300 million people per year, and accounts for around 40% of natural disasters occurring worldwide, threatening both social security and sustainable development (Euripidou and Murray, 2004; Hirabayashi and Kanae, 2009). Alterations to land use and land cover are having widespread implications for catchment characteristics; with soil sealing and impermeable surfaces increasing surface run-off, as well as a reduction of natural buffering environments such as forests and wetlands, meaning there is less capacity to accommodate flood waters in the same river reach (Dadson et al., 2017; Kundzewicz et al., 2014). There is growing evidence, from climate models, that short-term extreme weather events (e.g. high-frequency rainstorms, heat waves and wind storms) are likely to become increasingly frequent in many parts of the world, threatening the long-term functioning of the terrestrial system (Harvey et al., 2019; Kharin et al., 2007; Madsen et al., 2014; Pendergrass, 2018; Stagl et al., 2014). It is likely that populations will experience warmer and drier summers, and an increase in the intensity of heavy rainfall, contributing to more frequent pluvial, fluvial, groundwater or coastal flooding, and resulting in the occasional inundation of land that has rarely been flooded in the past (Barber et al., 2017; Kundzewicz et al., 2014; Schaller et al., 2016). The likelihood of flooding is also determined by antecedent soil moisture conditions. The proportion of soil pore space that is filled with water at any given time is largely dependent on local hydrological processes and stores including; infiltration, surface and sub-surface runoff (when rainfall intensity exceeds infiltration capacity), redistribution and drainage to/from groundwater, evaporation, and transpiration (Stagl et al., 2014).

Soil contamination is among the most serious threats to soil resources globally (Nriagu et al., 2007; Srivastava et al., 2017; Tóth et al., 2016b). Since many commercial, industrial, residential and agricultural developments have historically been situated adjacent to rivers; they contribute to the contamination of river sediments, and these sediments are often deposited onto the floodplain soils downstream by overbanking river water during a flooding event (Arnell et al., 2015; Nshimiyimana et

al., 2014; Zhao et al., 1999). Here we use the term PTEs, also referred to in the literature as 'trace elements' or 'heavy metals', to encompass all metals, metalloids, non-metals and other inorganic elements in the soil–plant–animal system, of which their mobility and potential toxicity to that system and/or humans is largely dependent upon their concentration, bioavailability and chemical form (Hooda, 2010; Rodgers et al., 2015). The term "mobility" is a concept that has been frequently used to estimate the risk of contamination from the soil to the surrounding environment by PTEs (Domergue and Vedy, 1992). Here we define mobile PTEs as those elements that are dissolved in soil porewater or associated with colloids and thus capable of leaching from the soil profile, or being taken up into plants or soil organisms. The mobility and subsequent fate of PTEs in periodically (occasionally) flooded soils (such as floodplain soils) are imperfectly understood. The legacy of historic contamination and continuing increases in emissions from urban activities pose a serious environmental threat globally (de Souza Machado et al., 2016; Srivastava et al., 2017). Human actions to mitigate and adapt to the impacts of climate change may influence the fate of contaminants, with climate change itself also potentially affecting the toxicity of the contaminants within the environment (Stahl et al., 2013).

The aim of this literature review is to provide an understanding of the factors involved in the mobility of PTEs in soil by pulling together interdisciplinary knowledge in this area. The review will first consider in more detail the expected changes to global rainfall patterns, the implications of these changes for flooding, and the role that floodplains play during inundation, as well as the changes they undergo. The review will then showcase how PTEs have entered the floodplain soil and how flooding influences soil biogeochemical processes which, in turn, influence PTEs mobility, using examples from the literature. Finally, this knowledge is used to identify gaps that will help to make recommendations for future research into the effects of flooding on the mobility and fate of PTEs.

1.1. Expected changes to global rainfall patterns and implications for flooding

Anthropogenic (human) activities including intensified land use; urbanisation, forestry, cultivation, and fossil energy use have increased atmospheric greenhouse gas concentrations which are driving changes in climate and leading to increases in rainfall intensity and surface run-off that are associated with increased flood risk (Bronstert, 2003; Chang and Franczyk, 2008; Kharin et al., 2007; Kundzewicz et al., 2014; Wheater and Evans, 2009). Mean global temperatures have risen by 1.1 °C since the end of the 19th century; the "Paris Climate Agreement" seeks to contain global mean temperatures well below 2°C and, ambitiously, below 1.5°C (Alfieri et al., 2017; Bronstert, 2003; Huddart et al., 2020; Mullan et al., 2019). The Intergovernmental Panel on Climate Change (IPCC) has predicted that under the A1B (medium) emissions scenario, temperatures will increase between 1.1 and 6.4 °C by the year 2100, leading to an increase in atmospheric water holding capacity and therefore variations to seasonal rainfall (Arnell et al., 2015; Bell et al., 2012; Chan et al., 2014; Clemente et al., 2008; González-Alcaraz and van Gestel, 2015; Jenkins et al., 2009). It has been argued that we will experience an intensification of short-duration heavy rainfall events rather than a uniform increase in the daily average rainfall (Chan et al., 2014; Hirabayashi et al., 2008; Kharin et al., 2007; Kundzewicz et al., 2014).

An IPCC Special Report (SREX) on climate extremes (IPCC, 2012) assessed it is *likely* there have been statistically significant increases in the number of heavy precipitation events in more regions than significant decreases, with strong regional and sub-regional variation. The observed changes to precipitation extremes have been found to be far less spatially coherent or statistically significant compared with changes found in temperature extremes (Kundzewicz et al., 2014). Projected scenarios with 4°C warming showed more than 70% of the global population will face increased flood risk (Alfieri et al., 2017). Increases in flood frequency are expected in; Europe, America, Southeast Asia, eastern Africa, and Peninsular India. Populations in regions such as Bangladesh, Mumbai and Thailand are potentially at higher risk from flooding due to predicted increases in rainfall, coupled with changes in land use (e.g. irrigation schemes and construction of dams), and increasing population size requiring

rapid expansion of urban areas (Hirabayashi et al., 2013; Kundzewicz et al., 2014; Tockner et al., 2010). However, climate projections tend to have relatively low levels of model confidence, particularly for the prediction of fluvial floods because there is still relatively limited evidence and the causes of regional changes to flood occurrence are complex (Hirabayashi et al., 2013).

Flooding tends to be heterogeneous as it is affected not only by variability of the climatological and hydrological systems but also by land-use and the effect is has on the storage capacity of the receiving catchment (storage and drainage basin conditions). Changes to the characteristics of precipitation (the frequency, intensity and timing of rainfall) will have decisive implications for flood risk (Bronstert, 2003; Hirabayashi and Kanae, 2009; Kundzewicz et al., 2014). However, pre-existing high river levels and groundwater levels, as well as saturated soils are equally important to establish the capacity of the receiving catchment to cope with further rainfall (Maggioni and Massari, 2018; Wilby et al., 2008). The extent of flooding in a particular catchment will depend largely on the topography (variation in elevation), along with vegetation type, proportion of land used for cultivation and the extent of urbanised areas positioned upstream (Arnell et al., 2015; Bell et al., 2012; Bronstert, 2003; Chang and Franczyk, 2008; Kundzewicz et al., 2014; Qiao et al., 2019). Urbanisation is a global issue; with more than half the world's population now living in cities, the process of urbanisation is leading to greater human occupation of floodplains, often with inadequate drainage planning (Kundzewicz et al., 2014; Pathirana et al., 2014).

The probability of flooding occurring in a particular region is often related to regional processes like El Niño Southern Oscillation (ENSO) cycle and the North Atlantic Oscillation (NAO) that, in turn, cause global impacts. The intensity (frequency and amplitude) of both ENSO and NAO are influenced by other modes of variability, for example; Pacific Decadal Oscillation (PDO) and Interdecadal Pacific Oscillation (IPO) which cause opposite atmospheric and sea surface temperatures and can therefore determine the magnitude of floods (Grimm and Tedeschi, 2009; Johnson et al., 2020). ENSO is a rapid warming of the sea surface temperature (by 1–5 °C) of the equatorial Pacific over the duration of a

few weeks, resulting in extreme rainfall and increased cyclone activity in some regions, and risk of drought and forest fires in others (Berz et al., 2001; Grimm and Tedeschi, 2009; Karl and Trenberth, 2003; Kundzewicz et al., 2014; Tedeschi and Collins, 2016). Periods of extreme rainfall and subsequent flooding have been found to correlate with ENSO events in North and South America as well as in Africa (Berz et al., 2001; Brönnimann, 2007; Kundzewicz et al., 2014). NAO is an atmospheric pattern that affects the severity of winter temperatures and precipitation over Europe and eastern North America (Karl and Trenberth, 2003). Intense rainfall is a common cause of river basin flooding; however, in high latitude regions it is changes in temperatures altering the timing of seasonal snowmelt and causing glacier retreat that commonly causes flooding, for example in north-eastern Europe, Central and South America, and in polar regions such as the Russian Arctic (Blöschl et al., 2017; Hirabayashi et al., 2008; Kharin et al., 2007; Kundzewicz et al., 2014; Stagl et al., 2014). Rising global sea-level (11-16cm in the 20th century and a further 0.5m predicted this century) will certainly increase risk of flooding caused by tidal processes, with current estimates that 630 million people live on land below projected annual flood levels for 2100 (Kulp and Strauss, 2019). While there is uncertainty regarding the effect that future climate change will have on river levels (Prudhomme and Davies, 2009), changes made to land-use, and land cover, for example by urbanisation, will drive changes in the local climate (at the kilometre scale) influencing the hydrometeorological regime and resulting in more flooding (Foley et al., 2005; Hirabayashi and Kanae, 2009). Pathirana et al. (2014), using a 3D atmospheric model coupled with a land surface model (WRF-ARW) in southern India, found that in three out of four simulated cases there was a significant increase in local extreme rainfall when urbanisation in the area increased. This work was conducted in southern India, however the model could be applied and validated to other regions to establish whether this correlation is found globally.

176

177

178

179

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

1.2. The role of floodplains during floods

Floodplains are by definition dynamic environments subjected to fluctuations between flooding and drying (Vijver et al., 2007). They are distinctive landscape features, often on low-lying ground, and

characterised by a high spatio-temporal heterogeneity (Schulz-Zunkel et al., 2015; Stuart and Lapworth, 2011; Tockner et al., 2010; Tockner and Stanford, 2002). Periodic overbank inundation from the adjacent watercourse, overland flow, subsurface flow, and changes to the groundwater levels result in a constantly changing water balance and degree of floodplain saturation (Stuart and Lapworth, 2011; Tockner and Stanford, 2002). Floodplain topography and variations in elevation are usually slight but have an important effect on the degree of soil saturation across the floodplain, depending on the overall water balance from surface and sub-surface run-off (Arnell et al., 2015; Kundzewicz et al., 2014; Qiao et al., 2019).

There are various sources and pathways of water that can lead to the inundation of a floodplain, including lateral overflow of rivers or lakes, rising groundwater, upland sources, and direct precipitation. Several different factors and water sources normally contribute to a flooding event, thus making flooding a complex phenomenon to study (Junk et al., 1989; Tockner and Stanford, 2002). Fluvial flooding tends to occur when excessive rain falls over an extended period of time, leading to a river exceeding its capacity, or because of heavy snow that subsequently melts and, via surface runoff, rapidly fills the river channels when infiltration is low because of frozen soils below the snow layer (Blöschl et al., 2017).

River flow regimes are affected by the increased rainfall and this also has the potential to affect erosion and generate additional sediment loads and particulate organic matter (POM) for deposition within river channels, lakes and estuaries (Arnell et al., 2015; Le Gall et al., 2018; Rinklebe and Du Laing, 2011). Intense rainfall over a short timescale (usually less than six hours i.e. "flash floods") can also cause rivers to overbank leading to an intense, high velocity torrent of water that moves through river beds, disturbing river sediments and potentially bringing more PTEs contamination with the flood water, greatly influencing the contaminated status of the floodplain (Blöschl et al., 2017; Maggioni and Massari, 2018). The water inundating the floodplain contains dissolved matter (i.e. free ions, inorganic and organic complexes and uncharged molecules) as well as particulate matter (i.e.

large organic and inorganic polymers, oxides, clay minerals and organic matter) (Kirk, 2004). The sediment loads travel at different rates due to their particle size, which reflects the texture of the river bed and bank (Malmon et al., 2004). Approximately 90% of PTEs load has been associated with sediment particles, with dissolved PTEs playing a comparatively minor role in pollutant transfer to floodplains (Ciszewski and Grygar, 2016). There have been many fluvial geomorphology studies showing how erosion and sedimentation have been influenced by climatic variability in the past (e.g. Lewin and Macklin, 2010; Macklin and Rumsby, 2007; Mullan et al., 2019), indicating that rivers are sensitive to climatic change (Arnell et al., 2015). Fluvial flooding is receiving increased scientific and political interest because of the potential impact that climate change may have on this type of flooding, with climate model projections showing an increased flood risk at a global scale (Pappenberger et al., 2012; Wilby et al., 2008).

In floodplains that are underlain by permeable deposits, increased rainfall causes groundwater to rise (leading to groundwater flooding), which can result from direct rainfall recharge, when the soil water storage potential is exceeded, as well as flow into the floodplain sediments from rivers with high water levels, and from areas inundated with fluvial flooding. However, good hydraulic connection between river and aquifer means that the aquifer can drain quickly as fluvial flood waters recess. Groundwater flooding in these settings is relatively short-lived compared with other groundwater flood settings, for example in chalk catchments (MacDonald et al., 2012).

With increased frequency of rainfall events predicted, it has become widely recognised that the storage of floodwater on floodplains can help to reduce the magnitude of a flood downstream. Thus, floodplains are useful for flood risk management (Acreman et al., 2003; Vink and Meeussen, 2007). As a result, floodplains may be deliberately managed to allow flooding to occur through engineered soakaways in order to protect an urban residential area (Lane, 2017; Wheater and Evans, 2009). It is important to understand the potential implications of these types of management practices

on mobilisation of PTEs that may be associated with the sediments deposited on the floodplain during past flooding events.

1.3. Changes that floodplain soils undergo during and after inundation

Extreme rainfall events leading to flooding have generally been found to alter soil physical and chemical properties and influence biological processes (Harvey et al., 2019). The fluctuations between inundation and subsequent drying, associated with periodically flooded soils, are major drivers of spatial and temporal differences in soil properties that affect the biogeochemical processes taking place in floodplain soils (Schulz-Zunkel et al., 2015; Tockner et al., 2010). These changes include; a decrease in redox potential (EH), which leads to, for example, reduction of iron (Fe) and manganese (Mn), which in turn can influence the soil pH (Rinklebe and Shaheen, 2017). Other processes affected include sulphur-cycling, changes to the presence of chelating agents such as dissolved organic carbon, mineralisation of POM and suppression of microbial activity (Poot et al., 2007; Puchalski, 2003; Schulz-Zunkel et al., 2015; Schulz-Zunkel and Krueger, 2009). Ibragimow, Walna, and Siepak (2013) showed, through analyses of fluvial samples before and after a flood, that the physicochemical properties (grain size, EH, pH, POM, and calcium carbonate contents) as well as the total and available concentration of PTEs had changed. Harvey et al. (2019) found that after UK floods receded in the winter of 2013-14 there was a decrease in the soil bulk density, pH and available P. The flood was found to have had a negative effect on the overlying vegetation and caused a shift in the microbial community structure.

Inundation during a flooding event can carry PTEs dissolved in rising groundwater and potentially contaminated suspended sediment from upstream overbanking water, depositing this onto the floodplain during a flood (Acreman et al., 2003; Bednářová et al., 2015; Du Laing et al., 2009; Gröngröft et al., 2005; Junk et al., 1989; Rudiš et al., 2009; Tockner and Stanford, 2002; Weber et al., 2009). Subsequently, this deposition of suspended riverine sediments/POM by flood water results in the floodplain topsoil becoming a sink for PTEs (Du Laing et al., 2009; Frohne et al., 2011; Nshimiyimana et al., 2014; Overesch et al., 2007; Rinklebe et al., 2007; Visser et al., 2012; Zhao and

Marriott, 2013). As a result, floodplain topsoil (uppermost 15cm) can often initially contain elevated concentrations of PTEs such as the metalloid; arsenic (As), and metals; chromium (Cr), copper (Cu), lead (Pb), and zinc (Zn), but later due to post-depositional reactions with organic matter/other organic components the PTEs concentrations will vary (Adekanmbi et al., 2020; Ciszewski and Grygar, 2016; Hurley et al., 2017; Izquierdo et al., 2013; Jiao et al., 2014; Kelly et al., 2020). When laboratory experiments are undertaken on samples gathered from floodplain site, soils are collected as single or composite samples, air or oven dried and then homogenised, resulting in a loss of soil stratigraphy and therefore the potential differences in PTEs concentration with depth may be unaccounted for (Ciszewski and Grygar, 2016). Zhao and Marriott, (2013) looked at PTEs concentrations along a vertical profile and found that there were peak values at varying depths; affected by translocation and duration of inundation. The process of breaking up of soil samples for laboratory experiments will make interpretation of PTEs levels difficult. Kelly et al. (2020) took intact soil cores to overcome this and more closely reflect natural samples, they too found the duration of inundation influenced the fate of PTEs.

The biological health of floodplain soils is important as they act as an interface between terrestrial and aquatic environments, therefore playing an important role in maintaining the environmental quality of surface waters (Izquierdo et al., 2013; Stuart and Lapworth, 2011). Artificial or constructed wetlands have been used for flood and pollution control; storing and filtering excess water to protect rivers from various kinds of runoff e.g. high nutrient loads from farm land (Blackwell and Pilgrim, 2011; Ellis et al., 2003; Rizzo et al., 2018). An example of this technology is demonstrated at the Rothamsted Research North Wyke experimental farm (Pulley and Collins, 2019). Even if river and groundwater water quality improves due to the implementation of more stringent environmental policy, contaminated floodplains remain as a legacy of historic upstream pollution (Bradley and Cox, 1990; Förstner, 2004; Kowalik et al., 2004). With increased frequency and duration of flooding, there is the possibility that changes to soil properties and biogeochemical processes will ultimately lead to the mobilisation of PTEs from floodplain soils (Ciszewski and Grygar, 2016; González-Alcaraz and van

Gestel, 2015). Therefore, historically contaminated floodplains may become a source of legacy pollution to the surrounding environment (Kelly et al., 2020; Pulchalski, 2003; Schulz-Zunkel and Krueger, 2009), as shown in Figure 1.

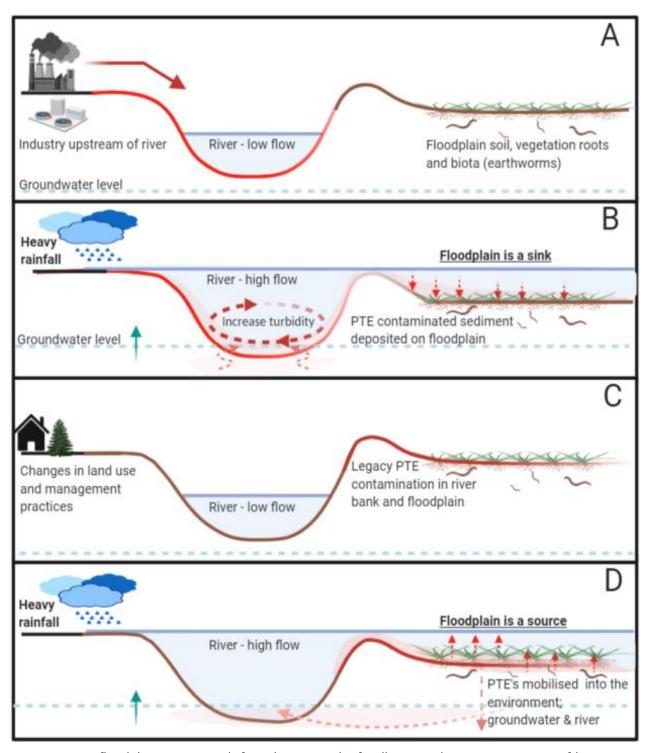


Figure 1: How floodplains may switch from being a sink of pollution to becoming a source of legacy pollution: A) PTEs contaminated river sediment (red) due to industry in the catchment upstream, B) heavy rainfall influences the receiving catchment (increased river flow and groundwater level), resulting in flooding and the deposition of contaminated sediment onto the adjacent floodplain; dissolved contaminants may also reach the floodplain surface via rising groundwater, C) Later, the river is uncontaminated (brown) due to rising environmental quality standards, with legacy of PTEs contamination (red) in the river bank and floodplain soil, D) heavy rainfall results in flooding of the contaminated floodplain, mobilisation of the legacy PTEs by desorption and resuspended particulate matter into the surrounding environment and thus making them potentially available for uptake by

vegetation and soil organisms, as well as pollutant transfer leaching into the overlying flood water, the groundwater, and ultimately the river. Created with BioRender.com.

293294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

292

2.Impact of flooding on the mobility of potentially toxic elements in floodplain soil

2.1 PTEs in floodplain soil

Several PTEs are also essential nutrients that are required in low concentrations for healthy functioning and reproduction of microorganisms, plants, and animals, although may become toxic in high concentrations, these include; Cu, Cobalt (Co), Nickel (Ni), Vanadium (V), Zn, chlorine (Cl), Mn, Fe, boron (B), and molybdenum (Mo) (Adamo et al., 2014; Hooda, 2010; Wyszkowska et al., 2013). Other PTEs are non-essential and can cause toxicity even when they are found at low concentrations, these include; As, Pb,) and mercury (Hg); (Adamo et al., 2014; Nriagu et al., 2007; Wuana et al., 2011; Wyszkowska et al., 2013). Cadmium (Cd) is generally considered a non-essential element to soil organisms, but it has been found to be beneficial to some microalgae (Xu et al., 2008) Chromium can be considered a micronutrient but its toxicity depends on its valence state (i.e. Cr (VI) is the more mobile and toxic form compared with Cr (III)). Redox potential therefore not only affects the mobility of PTEs, but also their toxicity (Lee et al., 2005; Shahid et al., 2017). The consequences of PTEs contamination of soils are rarely observed with immediate effect, rather they tend to cause delayed adverse ecological changes, due to the fact that PTEs are persistent in the environment for long periods, non-biodegradable and can only be bio-transformed through complex physico-chemical and biological processes (Chrzan, 2016; Czech et al., 2014; Hooda, 2010). PTEs cause adverse ecological effects on plants and organisms such as impacting their activity, growth rate/yield, metabolism and reproduction, causing symptoms of physiological stress and potentially death. The extent of the adverse effect depends on the exposure route (ingestion, dermal absorption or uptake of pore water) and time, resistance (related to residence time of the PTEs in the environment) and detoxification mechanisms of the plant or animal (Alloway, 2013; Eggleton and Thomas, 2004; Ehlers and Loibner, 2006; Hooda, 2010; Pan et al., 2018; Shahid et al., 2017; Winger et al., 1998). Leaching of PTEs from

the floodplain soil into the groundwater or river will also cause adverse effects to aquatic organism in these environments (Zia et al., 2018).

PTEs are either present naturally in the floodplain soil from the underlying or upstream geology and subsequent geogenic processes (e.g. weathering of parent material, emissions from volcanoes, forest fires) or introduced by anthropogenic sources, including solid and dissolved inputs from; aerial deposition, transport emissions, industrial, municipal and diffuse runoff from agricultural practices landfills and sewage treatment facilities (Alloway, 1995; Álvarez-Ayuso et al., 2012). PTEs can be adsorbed to colloidal suspended particulate material, transported in the river water and accumulate in the floodplain soil during inundation (Du Laing et al., 2009; Frohne et al., 2011; Peijnenburg et al., 2007; Rinklebe et al., 2007). PTEs have been found to be primarily associated with fine-grained clay or silt minerals and can reside in the floodplain for longer when compared with river sediments, as they are less likely to be susceptible to erosion (Lučić et al., 2019; Malmon et al., 2002). Contamination of the floodplain soil may result from a point source such as a sewage treatment facility, or from diffuse sources that have no specific point of discharge (e.g., agricultural applications). Impacts of diffuse pollution are difficult to predict as they can be affected by weather systems, meaning soils far from the source may be affected (Gregory et al., 2015; Neal et al., 1996). The anticipated changes to intense rainfall may result in increased delivery of diffuse pollution to rivers and groundwater (Arnell et al., 2015; Foulds et al., 2014), particularly as contaminated floodplain soils may become a diffuse source of pollution themselves during a flooding event (Schulz-Zunkel and Krueger, 2009).

2. 2. Influence of flooding on PTEs mobility

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

During a flooding event, biogeochemical processes occur in the floodplain soil at the oxicanoxic interface and in the anoxic layers. The kinetics of these processes are of great importance because the location of the oxic-anoxic interface is subject to change due to fluctuating water table levels (Du Laing et al., 2009; Puchalski, 2003). In their review of trace metal behaviour in floodplain

sediments, Du Laing et al. (2009) state that the spatial occurrence of processes affecting metal mobility and availability is largely determined by the topography of the floodplain. Remobilisation of PTEs from sediments into the overlying water column during a flooding event depends on the flood regime; the frequency of these intense floods which flush or remobilise contaminated material as well as the duration or alternation of flood with dry spells (Arnell et al., 2015; Foulds et al., 2014; González-Alcaraz and van Gestel, 2015). Whilst research has suggested that the longer the flood duration, the greater the metal mobility (Shaheen et al., 2014a, 2014b), Stafford et al. (2018) suggest that even short periods of soil saturation can have an influence the solubility of PTEs.

There are conflicting results in the literature regarding the effect of flooding on the mobility of PTEs, expressed by changes in PTEs concentration (increase or decrease), in floodplain soils (Table S1). This may largely be the result of different site-specific conditions (e.g. soil pH, texture, mineralogy) or different laboratory set-ups (e.g. submerging soils in deionised water, or the use of inert gas to simulate the anoxic conditions of a flood), illustrating the complexity of the processes involved in mediating PTEs mobility in floodplain soils (Abgottspon et al., 2015; Du Laing et al., 2007; Frohne et al., 2011; Schulz-Zunkel et al., 2015). Many of the considerations in the literature are founded on research of soils or sediments in microcosm experiments, which often involves homogenising the soil samples, resulting in loss of natural soil structure, loss of roots and biota, short-exposure time to flood conditions, and the control of variable factors such as temperature and soil water conditions (Frohne et al., 2011; Rinklebe et al., 2010). Redox conditions are often simulated and controlled through additions of O₂, to increase E_H, and N₂, to lower E_H (Frohne et al., 2014, 2011; Schulz-Zunkel et al., 2015; Shaheen et al., 2016; Shaheen and Rinklebe, 2017). These differences make extrapolation of these laboratory-based findings to field situations difficult (Hooda, 2010).

A key factor in determining the fate and transport of PTEs is their chemical form which, in combination with environmental factors, can influence their mobility in the soil. The chemical form of an element is often referred to as its "speciation", "oxidation state", or "valence" (Rodgers et al., 2015;

Wuana et al., 2011). There are important redox sensitive PTEs for which the oxidation state has a large influence on solubility and mobility. For example, Cr(VI) is more mobile than Cr(III), but As(V) is less mobile than As(III) (Frohne et al., 2015; Rinklebe et al., 2016; Schulz-Zunkel et al., 2015; Shaheen et al., 2014b; Yang et al., 2015). Speciation of PTEs within the environment has a distinct influence upon their behaviour; specifically, reactivity, toxicity, mobility and bioavailability within the floodplain (Du Laing et al., 2009; Gambrell, 1994; Hooda, 2010; Rodgers et al., 2015). This understanding is important for predicting the environmental impact of contaminated soils, although we are only beginning to converge on consensus on how bioavailability or speciation soil tests can help with risk-assessments, while this is slowly introduced into legislation (Cipullo et al., 2018; Naidu et al., 2015, 2008; Ng et al., 2015).

2. 3. Changes to soil physical and chemical properties that influences PTEs mobility

Potentially toxic elements present in soils are often adsorbed to or protected within aggregates that are stabilised by organic matter. During a flooding event, these particles may be leached through the soil profile, or suspended in flood waters where they may be redistributed across floodplain soils, or be carried downstream by the river, potentially contributing to river pollution of the contamination of downstream floodplains. The solubility and therefore mobility of PTEs from the soils to the surrounding environment depends largely on the intrinsic soil physical and chemical properties (texture, availability of soil particulate surfaces and dissolved organic matter, salinity and the presence of Fe/Mn oxides, carbonates, phosphates and sulphides) and a range of variables that are directly affected by periodic inundation of the floodplain, including; soil pH, redox potential (E_H), dissolved organic carbon (DOC) and the valance of individual PTEs (Adewuyi and Osobamiro, 2016; Dawson et al., 2010; Du Laing et al., 2009; Frohne et al., 2015; González-Alcaraz and van Gestel, 2015; Lee et al., 2005; Puchalski, 2003; Rinklebe and Du Laing, 2011; Schulz-Zunkel and Krueger, 2009; Shaheen et al., 2016; Shaheen and Rinklebe, 2014; Steinnes, 2013). A conceptual model (Figure 2) has been produced based on our literature review (Table S1) as a way of visualising the various factors and processes influencing the solubility of PTEs in a floodplain soil.

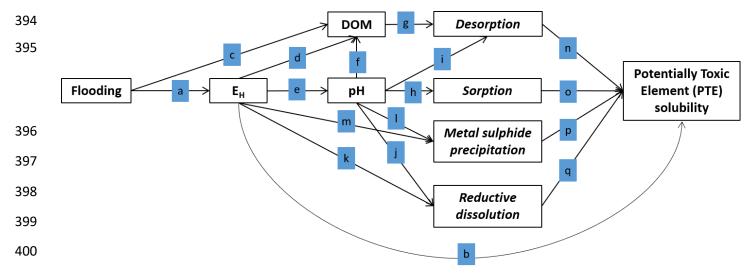


Figure 2: Conceptual model depicting the key processes influencing the solubility of Potentially Toxic Elements (PTEs) after a soil becomes flooded.

a) Oxygen is rapidly consumed by microbial and root respiration, decreasing the redox potential (E_H). b) Decreasing E_H can lead to redox sensitive elements (e.g. As and Cr) changing valence state, directly affecting solubility. c) Greater soil moisture brings dissolved organic matter (DOM) into solution. d) Reducing conditions (lower E_H) leads to the release of more DOM. e) Lower E_H results in the reduction of Fe and Mn, consuming protons (H^+) and increasing pH. f) an increase in pH often results in the release of more DOM. g) DOM acts as a chelating agent, forming soluble organo-metal complexes with PTEs desorbed from soil surfaces. h) as pH increases metal cations (e.g. Cu, Pb, Zn) are adsorbed on pHdependent adsorption sites of particulate matter. i) as pH increases, anions and oxy-anions (e.g. As) are desorbed from pH-dependent adsorption sites. j) Dissolution of reducible Fe and Mn oxides is facilitated by increasing pH. k) Microbial reduction of Mn and Fe oxides increases their solubility and can cause reductive dissolution of co-precipitated PTEs. I) An increase in pH facilitates the precipitation of insoluble metal sulphides. m) Microbial reduction of sulphate results in the precipitation of metal sulphides. n) Release of adsorbed PTEs from soil surfaces increases PTEs solubility. o) Immobilisation of PTEs through adsorption processes reduces PTEs solubility. p) Reductive dissolution of PTEs associated with Fe and Mn oxides increases PTE solubility. q) Precipitation of PTEs as metal sulphides decreases PTEs solubility.

419

420

421

422

423

424

425

426

401 402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

Soil physical, chemical and biological processes determine the mobility and redistribution of PTEs (Hooda, 2010). These processes include; sorption, desorption, dissolution and precipitation (Puchalski, 2003; Wijngaard et al., 2017). Subsequently, PTEs are redistributed into different geochemical fractions, associated with other soluble species, released from the soil matrix into the soil solution or porewater, and transferred through the ecosystem and food web to other terrestrial or riparian areas downstream from the floodplain; thus potentially becoming a risk to human and environmental health (Adamo et al., 2014; Adewuyi and Osobamiro, 2016; Baran and Tarnawski, 2015;

Dang et al., 2002; Du Laing et al., 2009; Rinklebe et al., 2016; Schulz-Zunkel et al., 2015; Shaheen et al., 2014a, 2014b; Sizmur et al., 2011). Sorption processes that control PTEs mobility and bioavailability in soil are affected by the soil pH, redox and their interactions with other ions and substances present in soil solution (Antoniadis et al., 2018; Frohne et al., 2011; Ostergren et al., 2000; Violante, 2013).

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

Sorption processes are influenced by the changing conditions that flooding brings, particularly with regards to soil moisture content, temperature and redox potential. The mobility of PTEs in flooded soils is closely related to changes in redox potential which, in turn, is altered by flooding. This can have direct impacts on the mobility of redox sensitive PTEs (e.g. As and Cr). Inundation of soils with floodwater may indirectly affect PTEs mobility and speciation because it also influences, the population, community composition, and behaviour of invertebrates inhabiting the floodplain which, in turn, influence the mobility of PTEs through their burrowing and bioturbation behaviour. For example, earthworms are known to increase the mobility of PTEs due to passage through the earthworm gut (Sizmur et al., 2011; Sizmur and Richardson, 2020) and their populations are supressed by flooding events (Plum and Filser, 2008; Kiss et al., in review). Bioturbation/bioirrigation behaviour by chironomid larvae has been found to increase oxygen uptake at the soil/sediment-water interface, promoting POM decomposition that results in the release of dissolved organic matter and subsequent release of PTEs (He et al., 2019). Furthermore, the reduction of Mn and Fe can cause reductive dissolution of co-precipitated PTEs, and an increase in pH facilitates the precipitation of PTEs as insoluble sulphides. The mobility of PTEs can therefore increase or decrease due to the net effect of these processes (Figure 2). Which process dominates will depend primarily on the mineralogy of the soil.

The following sub-sections will explain how key soil physical and chemical properties are affected by flooding and how this influences PTEs mobility, followed by a discussion on the role of soil organisms and plants in mediating PTEs mobility in floodplain soils. Attention will be given to how each of these factors influence each other to distinguish direct and indirect impacts on PTEs mobility.

2.3.1 Soil texture and related properties

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

Soil texture is a stable property that refers to the physical composition of mineral fragments; sand, silt and clay and varies due to differences in underlying or upstream geology. The texture and related clay mineralogy reflect the particle/pore size distribution and overall soil surface area (Amacher et al., 1986) which, in turn, affects the soils' water holding capacity (WHC); the maximum quantity of water a soil can potentially contain, also known as the field capacity (Stürck et al., 2014). Therefore, soil physical properties play a role in flood duration because they determine the soils' ability to receive (via infiltration) and drain water during a rainfall event (Rinklebe et al., 2007). Clayey soils are likely to be saturated for longer than freely draining sandy soils (Sherene, 2010). Soil hydraulic (water retention and hydraulic conductivity curve) as well as thermal properties (thermal conductivity and heat capacity) affect the hydrothermal regime of the soil. Together these properties determine the ease in which water, and dissolved PTEs, moves through the soil pore continuum, how much water can be stored in the pore volume, and how soil temperature varies with depth. These properties are strongly dependent on soil texture, pore size distribution and mineralogy (Hillel, 1998; Tack et al., 2006; Thomas et al., 2016). Soil temperature affects the flow of water through the soil due to changes in viscosity and hence affects infiltration calculations (Gao and Shao, 2015; Prunty and Bell, 2005), so this is often corrected for when reporting hydraulic conductivity data (Thomas et al., 2016).

PTEs must be in the soluble phase or associated with colloids to be transported through the soil. The soil properties will play a part in the movement of PTEs into and out of the soil solution. Clay minerals and organic matter compounds have a large number of binding sites, so act as adsorption surfaces for PTEs in soils. The type of clay mineral present (kaolinite, illite, montmorrilonite etc.) will also affect the specific surface area (Meegoda and Martin, 2019; Tack et al., 2006). As a result, soils with high clay and silt (fine fractions) tend to retain higher amounts of PTEs, compared to course textured sandy soils (Sherene, 2010; Zhao et al., 1999).

2.3.2 Organic matter

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

Soil POM, along with the surfaces of clay particles and Fe and Al oxides, acts as a binding phase for PTEs due to the attraction of positively charged cations to negatively charged surfaces (Evans, 1989). Thus, dissolved organic matter raises the cation exchange capacity (CEC) of a soil, and is thus considered to be an important factor controlling PTEs distribution and mobility in floodplain soils and sediments (Baran and Tarnawski, 2015; Bufflap and Allen, 1995; Du Laing et al., 2009; Ehlers and Loibner, 2006). The mechanisms that bind the PTEs with particulate and dissolved organic matter include adsorption, complexation and chelation (Alvim Ferraz and Lourenço, 2000; He et al., 2019; Selinus et al., 2005). Floodplains are subject to changing water table levels and occasional inundation that brings about associated changes in redox conditions. This can result microbially mediated soil POM degradation, either during prolonged periods of flooding or in the subsequent oxidising conditions when the flood recedes, which releases organically bound PTEs, such as As, Cu, Co, Cr, Ni, Pb, and Zn from the soil into the soil solution (Adewuyi and Osobamiro, 2016; Alvim Ferraz and Lourenço, 2000; Dang et al., 2002; Kalbitz and Wennrich, 1998; Koretsky et al., 2007; Rinklebe and Du Laing, 2011). Therefore, the extent to which flooding of soils results in the mobilisation of PTEs into solution is mediated by the proportion of the PTEs that are associated with soil POM, and the susceptibility of this organic matter to degradation (as a result of microbial activity (Fe(III) and Mn(IV)reducing micro-organisms) under reducing conditions. The free ions that are then in solution are highly reactive with the solid phase and are thought to be a major determinant of bioavailability and causing the most significant biological effects (Bufflap and Allen, 1995; Dang et al., 2002; Dawson et al., 2010; Degryse et al., 2009; Lloyd, 2003).

2.3.3 Salinity

Salinity is proportional to the conductivity of a sample solution; which is a measure of its ability to conduct or carry electric current and depends on the presence of charged ion species (anions and cations) (Ander et al., 2016; de Souza Machado et al., 2018; De Vivo et al., 2008)). Increasing salinity in flood water is associated with an increase in major cations that compete with PTEs for sorption

sites. This competition promotes PTEs desorption from the floodplain soil in the absence of sulphides and hence increases total PTEs concentrations in the soil porewater (Rinklebe and Du Laing, 2011). The presence of Ca-salts releases more PTEs into the soil solution compared with Na-salts that are less competitive for sorption (Du Laing et al., 2009; Hahne and Kroontje, 1973).

Changes in salinity may affect the soil physical properties and result in a destabilisation of the soil structure (Gregory et al., 2015). The salinity of the water causes a neutralisation of negatively charged clay particles, followed by flocculation (particles attaching together) which increases the deposition of sediments (along with the PTEs adsorbed to them) onto the floodplain. This process results in the floodplain becoming a sink for PTEs (Rinklebe and Du Laing, 2011). An extended flood duration, particularly when accompanied by low flow-rates (including stagnant water), results in sedimentation of fine grain sediment and organic matter that may have PTEs bound (Ciszewski and Grygar, 2016; Du Laing et al., 2009; Shaheen and Rinklebe, 2014).

2.3.4 Redox potential (E_H)

Waterlogging of soils generally results in a reduction in oxygen availability due to rapid consumption of oxygen by soil microbial activity and root respiration (Du Laing et al., 2007; Rinklebe and Du Laing, 2011) and because the dissolution of oxygen through water is many times slower than through air (Alloway, 1995; Du Laing et al., 2009; Frohne et al., 2015; Schulz-Zunkel et al., 2015). The soil microbial community (e.g. bacterial species such as *Thiobacillus ferroxidans*, *Thiobacillus thiooxidans* and *Leptospirillum ferrooxidans*) then uses alternative electron acceptors (such as nitrate, sulphate and Fe/Mn oxides), in anaerobic respiration, which results in a decrease in redox potential (E_H) (Maluckov, 2017) as the floodplain soils change from oxic ([O2]>30 µmol L⁻¹) to anoxic ([O2]<14µmol L⁻¹) conditions (Bellanger et al., 2004). Associated alkalinity generation drives increases in soil pH, a change which can be observed after a few days (Du Laing et al., 2007; Johnston et al., 2014; Karimian et al., 2017). Soil temperature has been found to dictate the rate and type of redox reactions; with soils at low temperatures (1 - 4 °C) requiring greater durations of saturation (20 days)

before the onset of reducing conditions were seen, whereas soils at higher temperatures (above 9 °C) only required 2 days of saturation (Vaughan et al., 2009).

Redox potential has important effects on the speciation of As, Cu and Cr, as well as N, S, Fe, Mn, because these elements can exist in soils in more than one oxidation state (Selinus et al., 2005) and solubility depends on oxidation state. Copper solubility decreases after reduction from Cu (II) to Cu (I) under anaerobic conditions and the presence of electron donors (Fe (II)) and bacteria. However, other PTEs such as Cd and Zn change valence state as a consequence of redox dependent pH changes, complexation with organic matter or precipitation with Fe and Mn (hydr)oxides or sulphides (Du Laing et al., 2009; Frohne et al., 2011).) Shaheen et al. (2014a) demonstrated that sufficient time is needed for transformations between valence states to take place. For example, the oxidation of Cr from Cr (III) to the highly mobile Cr (IV) form was found to be a slow process. This means that with shorter flooding duration and quicker cycling between oxic and anoxic conditions, Cr mobility may be difficult to predict.

The presence of variable charge minerals, such as Fe and Mn oxides, phosphates, carbonates and sulphides provide a reaction surface for sorption processes, allowing PTEs to bind and become immobilised (Antoniadis et al., 2018; De Jonge et al., 2012; Sipos et al., 2014; Violante, 2013). Reducing conditions change the oxidation state of Fe and Mn, increase their solubility and may have indirect effects (known as reductive dissolution) on the mobility of associated metal cations (e.g. As, Cd, Cu, Ni, Pb, and Zn), releasing them from the solid phase to pore waters, depending on flood duration (Abgottspon et al., 2015; Ciszewski and Grygar, 2016; Du Laing et al., 2009; Frohne et al., 2011; Karimian et al., 2017; Rinklebe and Du Laing, 2011; Schulz-Zunkel et al., 2015; Shaheen et al., 2016, 2014b; Vaughan et al., 2009). Redox processes are a key factor for the reductive dissolution of Mn and Fe (hydr)oxides, these processes are often catalysed by microorganisms and result in the release of PTEs from the sediment (Du Laing et al., 2009; Frohne et al., 2011; Stafford et al., 2018; Yang et al., 2015). Relatively insoluble Fe(III) and Mn(IV) prevail under aerobic soil conditions providing sorption

surfaces for many metals, whereas under anaerobic conditions Mn(IV) and Fe(III) are reduced to more soluble forms (Mn(II) and Fe(II)) with consequential dissolution of Mn and Fe hydrous oxides, cosorbed PTEs ions (e.g. As, Cd, Cr, Ni and Pb), are released into soil solution (Simmler et al., 2017; Stafford et al., 2018; Yang et al., 2015). After inundation, Fe and Mn may re-precipitate as oxides and can bind (by desorption or co-precipitation) the trace metals back into the solid state (Ciszewski and Grygar, 2016; Davranche et al., 2011; Du Laing et al., 2009).

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

Decreasing of E_H can initiate microbial sulphate reduction and this can reduce the mobility of some PTEs (e.g. As, Cd, Cu, Cr, Ni and Pb) through coprecipitation of metal cations with sulphides (Abgottspon et al., 2015; Borch et al., 2010; Weber et al., 2009), although many of these minerals are metastable and so prone to change (Karimian et al., 2018). Yang et al., (2015) put mixed sediment samples into a laboratory culture tanks and found that microbially induced release of sulphur with subsequent As precipitation was more important for controlling As adsorption/desorption than reductive dissolution of Fe/Mn oxides. As the flood recedes, the floodplain soils undergo drying and aeration that change the conditions from anoxic back to oxic. The now oxic environment causes sulphides to be oxidised, which then releases PTEs back into the pore waters (Abgottspon et al., 2015; Du Laing et al., 2007; Frohne et al., 2011). In addition to this, when exposed to oxygen and water, sulphides are oxidised to sulphates which leads to the formation of sulphuric acid thereby causing a decrease in pH and release of the PTEs (Emerson et al., 2017; Forstner and Wattman, 1981). Frohne et al. (2011) suggested that the mobility of Cd, Cu, Mn, Ni and Zn under oxidising conditions could be attributed to dissolution of sulphides and the resulting release of those metals. The extent to which the mineralogy of a floodplain soil is dominated by Fe/Mn oxides or sulphates may dictate whether PTEs are mobilised or immobilised during inundation, and the extent to which this phenomenon is reversed after floodwater recedes.

2.3.5 Soil pH

pH is a measure of the hydrogen ion concentration and can also be referred to as the degree of acidity or alkalinity. The soil pH is affected by flooding because of a well-established correlation between soil pH and changing redox conditions; as a soil becomes flooded, this creates reducing conditions where (H⁺ ions) are consumed (for example due to reduction of Fe and Mn oxides) and the pH increases (Rinklebe and Shaheen, 2017; Weber et al., 2009). When the flood recedes, oxidation processes produce protons and decrease the pH (Adewuyi and Osobamiro, 2016; Frohne et al., 2015, 2011; Rinklebe and Shaheen, 2017; Shaheen and Rinklebe, 2017). Furthermore, on exposure to the atmosphere, when flooding recedes, dissolved organic carbon (DOC) is converted to CO₂, which dissolves into porewater as carbonic acid, subsequently further reducing the soil pH (Peacock et al., 2015). However, this negative correlation between E_H and pH hasn't always been observed (Du Laing et al., 2009; Frohne et al., 2015). This is because the degradation of POM such as plant residues, by soil microbes, may increase the soil pH due to ammonification of the residue N (Xu et al., 2006).

As the pH changes, processes such as precipitation, co-precipitation and sorption/desorption of PTEs from organic matter or clay minerals occur, altering the chemical composition as well as reaction rates (Frohne et al., 2011). The soil pH plays an important role in mediating the mobility of PTEs and their availability for plant uptake, as the protons compete with metal cations for exchange sites on the surface of soils. Some of these exchange sites, particularly those associated with soil organic matter, are pH-dependent and thus only become deprotonated at high pH. A decrease in pH is generally accompanied by an increase in the mobility of most PTEs that are metal cations (e.g. Cd²+, Cu²+, Co²+, Ni²+, Pb²+ and Zn²+) (Gröngröft et al., 2005; Sherene, 2010). Thus, as pH increases there is a subsequent decrease in the mobility of these PTEs (Giacalone et al., 2005). The extent to which PTEs mobility decreases in soils during flooding, due to a redox-induced increase in pH, is likely to depend on the proportion of PTEs in the soil that are associated with pH-dependent exchange sites) which are typically associated with soil organic matter) and the pH of the soil prior to the flooding event.

2.3.6 Dissolved organic matter (DOM)

The increase in pH of soil solutions with lower redox potential (reducing conditions) is often accompanied by a release of dissolved organic matter (DOM) and the subsequent formation of soluble organo-metal complexes (Abgottspon et al., 2015; Alvim Ferraz and Lourenço, 2000; Frohne et al., 2011). The presence of DOM in floodplain soils acts as a chelating agent which has a strong binding ability and increases the mobility of PTEs into pore waters and subsequently into river water or groundwater (Dawson et al., 2010; Du Laing et al., 2009; Shaheen et al., 2014b). The greater the concentration of DOM in porewater, the more PTEs that are held in solution, and (to maintain an equilibrium) the more PTEs that desorb from the surfaces of the soil to replenish the free ion concentrations in the porewater, thus increasing PTEs mobility. Greater concentrations of DOM have been observed with decreasing E_H, which may be due to supressed microbial carbon consumption under anoxic conditions (Frohne et al., 2015). Shaheen et al. (2014a) highlighted that increases in DOM associated with lower E_H may help to catalyse changes in the valence state of PTEs; for example, of Chromium (III) to (VI).

2.3.7 Temperature

As temperatures are predicted to increase as a result of climate change, they may become a factor that contributes to greater release of PTEs from the soil during a flood (Visser et al., 2012). Soils are affected by variations in air temperature which, in turn, affects the rate of biogeochemical processes during a flooding event, including decreasing redox potential and, ultimately, influences the rate and extent to which PTEs are released/ desorbed from POM into surface water and groundwater (Arnell et al., 2015; González-Alcaraz and van Gestel, 2015; Sánchez-Rodríguez et al., 2019; Shaheen et al., 2016; Stahl et al., 2013). Increases in temperature raise the ion activity in soil solution, and also make plants more active, which may lead to greater plant root uptake of soil water and dissolved/labile PTEs within this water (Sherene, 2010). Arsenic release from flooded soils was found to have temperature dependence, with As solubilisation increasing as temperature increased (Simmler et al., 2017; Visser et al., 2012). Temperature increases are attributed to a decrease in the

water viscosity resulting in dissociation of molecules and a subsequent increase in the number of ions in the solution. For every degree Celsius increase in temperature there is an observed increase in electrical conductivity of 1.9% (Ander et al., 2016; Ma et al., 2011).

Many of the processes (e.g. redox reactions) described in the previous sections are microbially mediated and temperature dependent, and so the extent to which they affect the mobility of PTEs depends on their kinetics and the duration that floodplain soils are inundated. Changes in soil pH and DOM have been shown to exert a greater influence than EH on the mobility of PTEs when considering shorter flood-dry cycles (Shaheen et al., 2014b, 2014a). However, Dang, Liu, and Haigh (2002) found that with increasing flood duration, more trace elements were transformed from inert phase to exchangeable fractions, increasing mobilisation. Soil redox processes are important for protecting environmental health; however, the kinetics and mechanisms remain poorly characterised and understood (Abgottspon et al., 2015; Borch et al., 2010; Pulchalski, 2003). Many of the studies reviewed in this manuscript undertook experiments in the laboratory at temperatures that are higher than the soil temperatures typically found *in-situ* at the location where the soil samples were collected, and so the rates at which reactions occur and the subsequent mobilisation of PTEs may be overestimated in these experiments. It is not possible to verify the extent of the overestimation, so more *in-situ* experiments are needed to investigate and provide quantification of the differences between laboratory and *in-situ* experiments.

Groundwater and river temperatures may have a strong effect on floodplain soil temperatures (Andersen, 2018). In warmer seasons they will generally be cooler than soil temperatures, but the opposite occurs in cooler seasons. Also, changes in soil moisture content, as a result of flood events, will affect the soil thermal properties such as thermal conductivity and heat capacity (Lu et al., 2007), thereby also affecting the spatial and temporal variation in the soils' temperature regime. A laboratory microcosm experiment with mining-contaminated topsoil and subsoil samples saturated for up to 41 days at temperatures ranging between 10-25°C, found that soil temperature increased the

solubilisation of As, particularly in the topsoil when saturated for 1-2 weeks (Simmler et al., 2017). This means, for some PTEs, flooding during warmer seasons may result in greater mobilisation than flooding during cooler seasons. More seasonal field observations are required to understand the subtle interactions and feedbacks between soil moisture, floodwater temperature, and mobility of PTEs.

2. 4. Soil biological processes that influence PTEs mobility

2.4.1 Soil organisms

Floodplain soils contain a great diversity of organisms that are known to contribute to the physical structure of the soil/sediment through bioturbation which influences the biogeochemical cycling of PTEs through oxygen diffusion, redox gradient and decomposition of dissolved organic matter (Classen et al., 2015; He et al., 2019; Hooda, 2010; Selinus et al., 2005). As the soil pore spaces are filled with water, oxygen diffusion is low so microbial respiration relies on alternative electron acceptors (e.g. NO₃⁻, Mn, Fe and S), resulting in reducing conditions (decreasing E_H) that simultaneously increase pH (Matern and Mansfeldt, 2016), and the changes to PTEs mobility (Figure 3) that are described in previous sections. Changes in the chemical speciation of PTEs can also occur due to microbial processes in reducing conditions, for example, sulphate reducing bacteria can methylate Hg in anoxic conditions (Ma et al., 2019).

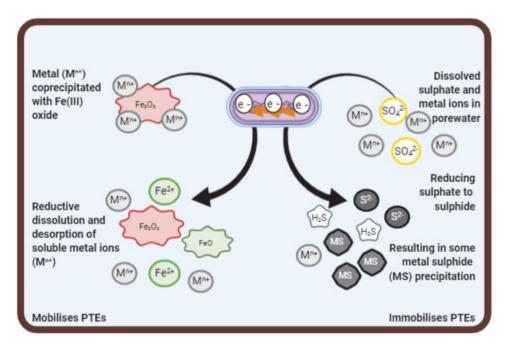


Figure 3: Soil microbial processes during inundation of floodplain soil influences mobility of PTEs; (left-hand side) generic metals with valence state (denoted by M^{n+}) are coprecipitated to Fe oxides and are released due to reductive dissolution and (right-hand side) sulphate reduction (sulphate to sulphide) results in some metal (denoted by MS) precipitation, some of the metal (M^{n+}) remains in the pore water. Created with BioRender.com.

PTEs that are present in floodplain soils are often protected within the soils' aggregates, which are stabilised by POM. However, inundation can stimulate the soil microbial community, which is sensitive to disturbance, accelerating the refractory organic matter mineralisation and destabilisation of aggregates, exposing and increasing the mobility of PTEs in the soil (Du Laing et al., 2009; Gall et al., 2015; González-Macé et al., 2016; He et al., 2019; Rawlins et al., 2013). Tack et al. (2006) found that the drying of sandy soils caused an increase in soil solution metal concentrations, compared with the same soils maintained at field capacity. This observation was attributed to microbial effects, increasing the solubility of dissolved organic matter.

Flooding has been found to shift the soil biological community structure and function. These changes include a reduction of Gram-positive bacteria, mycorrhizal fungi and earthworms found under flooded conditions (Gregory et al., 2015; Harvey et al., 2019; Unger et al., 2009). Harvey et al., (2019) found that flooding induced short-term alterations to soil microbial biomass but these changes did

not persist in the long term; they concluded that temperate systems may be resilient to winter flood stress. The seasonal timing of floods influences the effect that flooding has on the soil microbial community, and so may result in different effects on, and recovery of, the soil microbial community. Sánchez-Rodríguez et al., (2019) subjected a UK agricultural grassland soil in an intact laboratory microcosm to flooding and found that summertime flooding (25°C), resulted in a loss of actinomycetes and arbuscular mycorrhizal fungi, and that these changes persisted post-flood. They expected microbial biomass to increase with flooding at higher temperatures, due to degradation of vegetation releasing labile carbon. However, they found that maintaining live roots and an active rhizosphere were more important for preserving the microbial community in grassland soils. Earthworms also play a role in increasing the mobility and availability of PTEs in floodplain soil through their activity causing changes to the soil microbial populations, pH, DOC or metal speciation (Sizmur et al., 2011; Sizmur and Hodson, 2009) which in turn influences PTEs mobility as discussed in the above sections.

As the PTEs are released into the aqueous phase and mobilised in the environment, they present a potential risk to soil organisms (Ehlers and Loibner, 2006; González-Alcaraz and van Gestel, 2015). Soil organisms uptake PTEs via ingestion of polluted soil, food or pore water and/or via dermal uptake or absorption of soil water, with the soil water being the more important of the two pathways (Chrzan, 2016; Hobbelen et al., 2006; Sivakumar and Subbhuraam, 2005). Vijver et al. (2007) found that the frequency of flooding did not result in consistent changes in the internal PTEs concentrations of earthworms. Earthworms accumulate PTEs in their chloragogenous tissue and have a mechanism that allows them to regulate their internal PTEs concentrations, so when they are introduced to contaminated soils the earthworms reach an equilibrium and when they are returned to uncontaminated/"clean" soils they are able to detoxify and eliminate essential metals through excretion (e.g. Cu and Zn), but not non-essential metals (e.g. Cd and Pb) as detoxification processes involve sequestration within an inorganic matrix or organic ligand (Sizmur and Hodson, 2009; Spurgeon and Hopkin, 1999). While microbes can tolerate larger quantities of essential PTEs, in excess both essential and non-essential PTEs (e.g., Al, As, Cd, Hg, Pb, Zn) can adversely affect microbial

communities by altering community structure and taxonomic richness; reducing the microbial biomass and lowering their enzyme activity which results in a decrease of soil diversity (Gadd, 2010; Gall et al., 2015; Wuana et al., 2011).

2.4.2 Plants

In many cases, PTEs are concentrated in the upper part of the soil profile where roots reside, meaning that increased mobility is likely to affect plants growing in floodplain soils. Wetland plants growing on inundated floodplain soils can also affect the mobility of PTEs because they are specially adapted to have air-filled tissues, or aerenchyma, which create patches of oxygenated soil around their roots, resulting in an increase in the volume of the oxic/anoxic interface and remobilising PTEs thus increasing their availability (Du Laing et al., 2009; Wright et al., 2017). However, in arable and pasture fields that are generally drier, flooding can cause crops to become stressed, as they are not adapted to wet soils. As oxygen levels decrease there is a build-up of carbon dioxide, methane and nitrogen gases that leads to the roots suffocating and dying (Hippolyte et al., 2012).

It is well established that symbiotic fungi, associated with plant roots, regulate the supply of micronutrients and reduce the uptake of non-essential PTEs by plants (Classen et al., 2015; Gadd, 2010; Tack, 2010). Plants, such as *Artemisia* and *Phalaris* species, on the floodplain excrete exudates during inundation which stimulates the activity of microbial symbionts in the rhizosphere, allowing PTEs to be taken up into the vegetation (Gall et al., 2015; Sullivan and Gadd, 2019; Violante et al., 2010; Xu et al., 2020). PTEs are often accumulated in plant root tissues and can sometimes be translocated into the plant shoots. However this is regulated in plants by the Casparian strip and therefore limited (Hooda, 2010; Nouri et al., 2009; Shahid et al., 2017). The uptake and accumulation of PTEs is element and plant-specific (Niu et al., 2007; Rinklebe et al., 2016; Tack, 2010; Violante et al., 2010; Xu et al., 2020). The mobilisation and uptake of PTEs by plants may pose a potential environmental risk (Shaheen and Rinklebe, 2014). European floodplains are most commonly used as grassland for grazing cattle or hay production, whereas in other regions e.g. India, they are used for

crops like rice, which raises concerns for possible pollutant transfer from the floodplain soil into the surrounding water bodies, then uptake and potential biomagnification of PTEs into the food chain (Martin et al., 2014; Overesch et al., 2007; Tóth et al., 2016a). However, the hyperaccumulation of PTEs by some plants (e.g. sunflower, mustard (Brassicaceae), alfalfa and Ricinus) has resulted in them being considered for phytoremediation of contaminated floodplain soils (Gall et al., 2015; Niu et al., 2007; Nouri et al., 2009; Shaheen et al., 2016; Violante et al., 2010).

Factors influencing plant uptake of PTEs include soil pH, electrical conductivity and the total concentrations of PTEs in the soil (Nouri et al., 2009). PTEs uptake also depends on the concentrations in the soil solution, governed by plant exudates and root-induced changes to pH and DOM (Gall et al., 2015). Quantifying the total content of PTEs transferred into the food chain via plants growing on contaminated soil is difficult (Gröngröft et al., 2005). The concentrations of PTEs found in floodplain plants are not always directly reflected in the PTEs content found in the soil, due to both physiological and biochemical differences between different plant species; for example differences in the age of the plant biomass (seasonal trends in growth and therefore uptake of nutrients). Moreover, the rooting depth influences metal mobilisation/immobilisation and element specific uptake into the roots which also affects the transfer into the shoots(Chrzan, 2016; Overesch et al., 2007). Thapa et al. (2016) also demonstrated a change in semi-arid Australian floodplain vegetation productivity in response to flooding and drying cycles; flooding brings nutrients which increases net primary productivity. These changes in vegetation productivity could also initiate structural changes in floodplain vegetation communities in natural and semi-natural ecosystems (Overesch et al., 2007).

3. Summary and further research needs

3.1. Summary of current understanding

Floodplain soils downstream of urban catchments contain elevated concentrations of PTEs as a legacy of human activity and these PTEs could potentially be remobilised by future flooding events.

A number of processes occur within the soil, ultimately determining PTEs fate. These processes

include: sorption, desorption, complexation, precipitation and dissolution, transport of water and heat, and biological activity. The processes are influenced by the changing conditions that flooding brings particularly with regards to soil moisture content, temperature and redox potential. The mobility of PTEs in flooded soils is closely related to changes in redox potential which, in turn, is altered by flooding. These changes can have direct impacts on the mobility of redox sensitive PTEs (e.g. As and Cr). Furthermore, the reduction of Mn and Fe can cause reductive dissolution of co-precipitated PTEs, but the reduction of sulphate can result in the precipitation of PTEs as insoluble metal sulphides. Which of these processes dominates will depend on the mineralogy of the soil. PTEs precipitated as metal sulphides may oxidise after floodwaters recede and mobilise, accelerated by the pH reduction caused by production of sulfuric acid. There are important interactions between redox potential and other soil properties, such as soil pH, moisture content, POM, DOM, temperature, and salinity which also have a strong impact on PTEs mobility (Vaughan et al., 2009). Many of these reactions are microbially mediated, temperature dependent and the kinetics in real-world scenarios are poorly understood. However, it seems that changes associated with alterations to pH and dissolved organic carbon are relatively fast, while changes to EH are slower and only become apparent after extended periods of flooding. In many cases, PTEs deposited due to legacy pollution events are concentrated in the upper part of the soil profile, meaning that increased mobility is likely to affect plants growing in floodplain soils and potentially lead to contamination of the surrounding environment, including overlying surface waters.

783

784

785

786

787

788

789

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

3.2 Knowledge gaps and recommendations for future research

Floods are dynamic events that expose floodplain soils to water with rapidly changing flows, chemical composition, and sediment load. They can be difficult to predict, due to their different types (e.g. overbanking or groundwater flooding), and the high variation in their magnitude, duration, and frequency of recurrence. Therefore, chemical, physical and biological data from floodplain soils immediately before and immediately after a flooding event are often lacking. However these data

would provide the necessary insights into the factors and processes involved in altering the mobility of PTEs during and after a real flooding event (Barber et al., 2017). The effect of flooding on PTEs mobility can be difficult to predict due to there being several factors (e.g. speciation, release through biological degradation and competitive action of other ions) or interactions between factors (e.g. changes in E_H caused degradation of POM) influencing PTEs mobility (Tack and Verloo, 1995).

Contamination of soil with PTEs receives most attention in highly contaminated urban, industrial, mining and waste disposal sites (Adamo et al., 2014; Resongles et al., 2015; Simmler et al., 2017; Wuana et al., 2011) with relatively little attention given to more 'typical' floodplains downstream of catchments with a history of urban and industrial development. Much of the work conducted to date (see Table S1) has been undertaken in Europe, America, Canada, China, Indonesia, Australia and New Zealand. Just over half of the studies cited in Table S1 were undertaken in Germany and Belgium (52%), with a particular research effort around the River Elbe and Wupper River in Germany (Du Laing et al., 2009; Förstner, 2004; Frohne et al., 2011; Overesch et al., 2007; Rennert et al., 2017; Rinklebe et al., 2013; Shaheen et al., 2017). However, research examining the relationship between PTEs mobility and flooding in other parts of the world that are expected to see an increase in the frequency and magnitude of flooding events, for example in Asia, Africa and India, is limited.

A number of factors were identified that contribute to whether the mobility of PTEs will increase or decrease during inundation of a floodplain, which may be interconnected or work in combination to affect PTEs mobility. As a result, different soils with differing mineralogy and thus different biogeochemical and physical properties, will likely respond differently to flooding. Individual studies tend to focus on one floodplain site. However, knowledge based on one river catchment may not be particularly useful for predicting the impacts of flooding at another site with different mineralogy and physical and chemical characteristics. A more fundamental mechanistic understanding is required to inform the development of predictive models. Therefore, more coordinated work encompassing multiple contrasting sites is required to understand the relative importance of key soil

properties (e.g. mineralogy, POM, soil pH, texture; and how these affect derived soil properties such as hydraulic and thermal soil properties) on influencing the impact of flooding on the mobility of PTEs.

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

Many of the findings in the literature are based on research of soils or sediments in laboratorybased artificial flooding environments (Figure 4), which often involve; homogenisation of samples and removal of plant roots, short-exposure time for soil microorganisms and incubation under controlled conditions, such as temperature (often higher than in-situ temperatures) and soil water conditions (often wetting the samples with deionised water which is slightly acidic) (Frohne et al., 2011; Izquierdo et al., 2017; Rinklebe et al., 2010; Weber et al., 2009). This makes extrapolation of laboratory-based findings to field situations difficult (Hooda, 2010). Attempts to model the concentration of PTEs in floodplain pore waters have demonstrated the complexity of predicting how different variables such as soil moisture content and temperature interact and alter mobility (Rennert et al., 2017), with site or catchment-specific information being of great importance to establish and capture spatial differences sufficiently (Schulz-Zunkel et al., 2015). While much research undertaken in controlled conditions in laboratory microcosms is undoubtedly useful because independent replicates can be assigned to treatments without confounding variables (Figure 4), there is a clear research need for onsite experiments on the effect of flooding on PTEs mobility using real-time field-based observations that capture the kinetics of processes before, during, and after a flooding event under ambient temperatures and in geochemically contrasting soils.

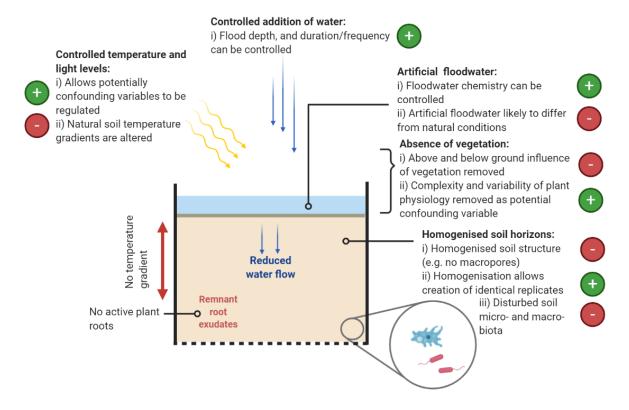


Figure 4: Strengths (+) and weaknesses (-) of laboratory-based studies for researching the impact of flooding on mobility of PTEs. Created with BioRender.com.

Acknowledgements

833

834 835

836

837

838

839

840

841

842

843

844

846847

Jessica Ponting is supported by a NERC SCENARIO PhD studentship, with CASE support from the British

Geological Survey Universities Funding Initiative.

Supplementary Material

One supplementary table (Table S1) is provided

References

Abgottspon, F., Bigalke, M., Wilcke, W., 2015. Fast colloidal and dissolved release of trace elements

in a carbonatic soil after experimental flooding. Geoderma 259–260, 156–163.

https://doi.org/10.1016/J.GEODERMA.2015.06.005

848	Acreman, M.C., Riddington, R., Booker, D.J., 2003. Hydrological impacts of floodplain restoration: a
849	case study of the River Cherwell, UK, European Geosciences Union.
850	Adamo, P., Iavazzo, P., Albanese, S., Agrelli, D., De Vivo, B., Lima, A., 2014. Bioavailability and soil-to-
851	plant transfer factors as indicators of potentially toxic element contamination in agricultural
852	soils. Sci. Total Environ. 500–501, 11–22. https://doi.org/10.1016/J.SCITOTENV.2014.08.085
853	Adekanmbi, A.A., Shaw, L.J., Sizmur, T., 2020. Effect of Sieving on Ex Situ Soil Respiration of Soils
854	from Three Land Use Types. J. Soil Sci. Plant Nutr. 1–5. https://doi.org/10.1007/s42729-020-
855	00177-2
856	Adewuyi, G.O., Osobamiro, M.T., 2016. Chemical speciation and potential mobility of some toxic
857	metals in tropical agricultural soil. Res. J. Environ. Toxicol. 10, 159–165.
858	https://doi.org/10.3923/rjet.2016.159.165
859	Alfieri, L., Bisselink, B., Dottori, F., Naumann, G., de Roo, A., Salamon, P., Wyser, K., Feyen, L., 2017.
860	Global projections of river flood risk in a warmer world. Earth's Futur. 5, 171–182.
861	https://doi.org/10.1002/2016EF000485
862	Alloway, B.J., 2013. Heavy Metals in Soils, Heavy Metals in Soils. https://doi.org/10.1007/978-94-
863	007-4470-7_10
864	Alloway, B.J., 1995. Heavy Metals in Soils: Trace Metals and Metalloids in Soils and their
865	Bioavailability, 3rd ed. Springer, Heidelberg. https://doi.org/10.1007/978-94-011-1344-1
866	Álvarez-Ayuso, E., Otones, V., Murciego, A., García-Sánchez, A., Regina, I.S., 2012. Antimony, arsenic
867	and lead distribution in soils and plants of an agricultural area impacted by former mining
868	activities. Sci. Total Environ. 439, 35–43. https://doi.org/10.1016/J.SCITOTENV.2012.09.023
869	Alvim Ferraz, M.C.M., Lourenço, J.C.N., 2000. Influence of organic matter content of contaminated
870	soils on the leaching rate of heavy metals. Environ. Prog. 19, 53–58.
871	https://doi.org/10.1002/ep.670190118
872	Amacher, M.C., Kotuby-Amacher, J., Selim, H.M., Iskandar, I.K., 1986. Retention and release of
873	metals by soils — Evaluation of several models. Geoderma 38, 131–154.
874	https://doi.org/10.1016/0016-7061(86)90011-X
875	Ander, E.L., Watts, M.J., Smedley, P.L., Hamilton, E.M., Close, R., Crabbe, H., Fletcher, T., Rimell, A.,
876	Studden, M., Leonardi, G., 2016. Variability in the chemistry of private drinking water supplies

877	and the impact of domestic treatment systems on water quality. Environ. Geochem. Health 38,
878	1313–1332. https://doi.org/10.1007/s10653-016-9798-0
879	Andersen, D.C., 2018. Flood effects on soil thermal regimes in contrasting cold-desert river
880	floodplains (Yampa and Green rivers, Colorado). Ecohydrology 11, e1939.
881	https://doi.org/10.1002/eco.1939
882	Antoniadis, V., Shaheen, S.M., Tsadilas, C.D., Selim, M.H., 2018. Zinc sorption by different soils as
883	affected by selective removal of carbonates and hydrous oxides. Appl. Geochemistry 88, 49-58.
884	https://doi.org/10.1016/J.APGEOCHEM.2017.04.007
885	Arnell, N.W., Halliday, S.J., Battarbee, R.W., Skeffington, R.A., Wade, A.J., 2015. The implications of
886	climate change for the water environment in England. Prog. Phys. Geogr. Earth Environ. 39, 93-
887	120. https://doi.org/10.1177/0309133314560369
888	Baran, A., Tarnawski, M., 2015. Assessment of heavy metals mobility and toxicity in contaminated
889	sediments by sequential extraction and a battery of bioassays. Ecotoxicology 24, 1279–1293.
890	https://doi.org/10.1007/s10646-015-1499-4
891	Barber, L.B., Paschke, S.S., Battaglin, W.A., Douville, C., Fitzgerald, K.C., Keefe, S.H., Roth, D.A., Vajda,
892	A.M., 2017. Effects of an Extreme Flood on Trace Elements in River Water - From Urban Stream
893	to Major River Basin. Environ. Sci. Technol. 51, 10344–10356.
894	https://doi.org/10.1021/acs.est.7b01767
895	Bednářová, Z., Komprdová, K., Kalábová, T., Sáňka, M., 2015. Impact of floods and their frequency on
896	content and distribution of risk elements in alluvial soils. Water. Air. Soil Pollut. 226.
897	https://doi.org/10.1007/s11270-014-2253-x
898	Bell, V.A., Kay, A.L., Cole, S.J., Jones, R.G., Moore, R.J., Reynard, N.S., 2012. How might climate
899	change affect river flows across the Thames Basin? An area-wide analysis using the UKCP09
900	Regional Climate Model ensemble. J. Hydrol. 442–443, 89–104.
901	https://doi.org/10.1016/J.JHYDROL.2012.04.001
902	Bellanger, B., Huon, S., Steinmann, P., Velasquez, F., Vall Es E, V., Arn, K., Clauer, N., Mariotti, A.E.,
903	2004. Oxic-anoxic conditions in the water column of a tropical freshwater reservoir (Pe $^{\sim}$ na-
904	Larga dam, NW Venezuela), Published in Applied Geochemistry.
905	https://doi.org/10.1016/j.apgeochem.2003.11.007

906	Berz, G., Kron, W., Loster, T., Rauch, E., Schimetschek, J., Schmieder, J., Siebert, A., Smolka, A., Wirtz
907	A., 2001. World Map of Natural Hazards-A Global View of the Distribution and Intensity of
908	Significant Exposures, Natural Hazards.
909	Blackwell, M.S.A., Pilgrim, E.S., 2011. Ecosystem services delivered by small-scale wetlands. Hydrol.
910	Sci. J. 56, 1467–1484. https://doi.org/10.1080/02626667.2011.630317
911	Blöschl, G., Hall, J., Parajka, J., Perdigão, R.A.P., Merz, B., Arheimer, B., Aronica, G.T., Bilibashi, A.,
912	Bonacci, O., Borga, M., Čanjevac, I., Castellarin, A., Chirico, G.B., Claps, P., Fiala, K., Frolova, N.,
913	Gorbachova, L., Gül, A., Hannaford, J., Harrigan, S., Kireeva, M., Kiss, A., Kjeldsen, T.R.,
914	Kohnová, S., Koskela, J.J., Ledvinka, O., Macdonald, N., Mavrova-Guirguinova, M., Mediero, L.,
915	Merz, R., Molnar, P., Montanari, A., Murphy, C., Osuch, M., Ovcharuk, V., Radevski, I., Rogger,
916	M., Salinas, J.L., Sauquet, E., Šraj, M., Szolgay, J., Viglione, A., Volpi, E., Wilson, D., Zaimi, K.,
917	Živković, N., 2017. Changing climate shifts timing of European floods. Science (80). 357, 588–
918	590. https://doi.org/10.1126/science.aan2506
919	Borch, T., Kretzschmar, R., Skappler, A., Van Cappellen, P., Ginder-Vogel, M., Voegelin, A., Campbell,
920	K., 2010. Biogeochemical redox processes and their impact on contaminant dynamics. Environ.
921	Sci. Technol. https://doi.org/10.1021/es9026248
922	Bradley, S.B., Cox, J.J., 1990. The significance of the floodplain to the cycling of metals in the river
923	Derwent Catchment, U.K. Sci. Total Environ. 97–98, 441–454. https://doi.org/10.1016/0048-
924	9697(90)90255-S
925	Brönnimann, S., 2007. Impact of El Niño-Southern Oscillation on European climate. Rev. Geophys.
926	45, n/a-n/a. https://doi.org/10.1029/2006RG000199
927	Bronstert, A., 2003. Floods and Climate Change: Interactions and Impacts, Risk Analysis.
928	Bufflap, S.E., Allen, H.E., 1995. Sediment pore water collection methods for trace metal analysis: A
929	review. Water Res. 29, 165–177. https://doi.org/10.1016/0043-1354(94)E0105-F
930	Chan, S.C., Kendon, E.J., Fowler, H.J., Blenkinsop, S., Roberts, N.M., 2014. Projected increase in
931	summer and winter UK sub-daily precipitation extremes from high-resolution regional climate
932	models [WWW Document]. Environ. Res. Lett. URL
933	https://www.researchgate.net/publication/265090772_Projected_increase_in_summer_and_
934	$winter_UK_sub-daily_precipitation_extremes_from_high-resolution_regional_climate_models$
935	(accessed 3.2.20).

936	Chang, H., Franczyk, J., 2008. Climate Change, Land-Use Change, and Floods: Toward an Integrated
937	Assessment. Geogr. Compass 2, 1549–1579. https://doi.org/10.1111/j.1749-8198.2008.00136.x
938	Chrzan, A., 2016. Monitoring bioconcentration of potentially toxic trace elements in soils trophic
939	chains. Environ. Earth Sci. 75, 1–8. https://doi.org/10.1007/s12665-016-5595-4
940	Cipullo, S., Prpich, G., Campo, P., Coulon, F., 2018. Assessing bioavailability of complex chemical
941	mixtures in contaminated soils: Progress made and research needs. Sci. Total Environ. 615,
942	708–723. https://doi.org/10.1016/j.scitotenv.2017.09.321
943	Ciszewski, D., Grygar, T.M., 2016. A Review of Flood-Related Storage and Remobilization of Heavy
944	Metal Pollutants in River Systems. Water. Air. Soil Pollut. 227, 1–19.
945	https://doi.org/10.1007/s11270-016-2934-8
946	Classen, A.T., Sundqvist, M.K., Henning, J.A., Newman, G.S., Moore, J.A.M., Cregger, M.A.,
947	Moorhead, L.C., Patterson, C.M., 2015. Direct and indirect effects of climate change on soil
948	microbial and soil microbial-plant interactions: What lies ahead? Ecosphere 6, art130.
949	https://doi.org/10.1890/ES15-00217.1
950	Clemente, R., Dickinson, N.M., Lepp, N.W., 2008. Mobility of metals and metalloids in a multi-
951	element contaminated soil 20 years after cessation of the pollution source activity. Environ.
952	Pollut. 155, 254–261. https://doi.org/10.1016/j.envpol.2007.11.024
953	Czech, T., Baran, A., Wieczorek, J., 2014. Zawartość Metali Ciężkich W Glebach I Roślinach Z Terenu
954	Gminy Borzęcin (Województwo Małopolskie) Content of Heavy Metals in Soil and Plants From
955	an Area Borzęcin Municipality (Malopolska Province) 89–98.
956	https://doi.org/10.12912/2081139X.20
957	Dadson, S.J., Hall, J.W., Murgatroyd, A., Acreman, M., Bates, P., Beven, K., Heathwaite, L., Holden, J.,
958	Holman, I.P., Lane, S.N., O'connell, E., Penning-Rowsell, E., Reynard, N., Sear, D., Thorne, C.,
959	Wilby, R., 2017. A restatement of the natural science evidence concerning catchment-based
960	"natural" flood management in the UK. Proc. R. Soc. A 473.
961	https://doi.org/10.1098/rspa.2016.0706
962	Dang, Z., Liu, C., Haigh, M.J., 2002. Mobility of heavy metals associated with the natural weathering
963	of coal mine spoils. Environ. Pollut. 118, 419–426. https://doi.org/10.1016/S0269-
964	7491(01)00285-8

965	Davranche, M., Grybos, M., Gruau, G., Pédrot, M., Dia, A., Marsac, R., 2011. Rare earth element
966	patterns: A tool for identifying trace metal sources during wetland soil reduction. Chem. Geol.
967	284, 127–137. https://doi.org/10.1016/j.chemgeo.2011.02.014
968	Dawson, J.J.C., Tetzlaff, D., Carey, A.M., Raab, A., Soulsby, C., Killham, K., Meharg, A.A., 2010.
969	Characterizing Pb mobilization from upland soils to streams using 206Pb/207Pb isotopic ratios.
970	Environ. Sci. Technol. 44, 243–249. https://doi.org/10.1021/es902664d
971	De Jonge, M., Teuchies, J., Meire, P., Blust, R., Bervoets, L., 2012. The impact of increased oxygen
972	conditions on metal-contaminated sediments part I: Effects on redox status, sediment
973	geochemistry and metal bioavailability. Water Res. 46, 2205–2214.
974	https://doi.org/10.1016/J.WATRES.2012.01.052
975	de Souza Machado, A.A., Spencer, K., Kloas, W., Toffolon, M., Zarfl, C., 2016. Metal fate and effects
976	in estuaries: A review and conceptual model for better understanding of toxicity. Sci. Total
977	Environ. 541, 268–281. https://doi.org/10.1016/J.SCITOTENV.2015.09.045
978	de Souza Machado, A.A., Spencer, K.L., Zarfl, C., O'Shea, F.T., 2018. Unravelling metal mobility under
979	complex contaminant signatures. Sci. Total Environ. 622–623, 373–384.
980	https://doi.org/10.1016/J.SCITOTENV.2017.11.239
981	De Vivo, B., Belkin, H.E., Lima, A., 2008. Environmental Geochemistry: Site Characterization, Data
982	Analysis And Case Histories, Environmental Geochemistry: Site Characterization, Data Analysis
983	and Case Histories. Elsevier. https://doi.org/10.1016/B978-0-444-53159-9.X0001-0
984	Degryse, F., Smolders, E., Parker, D.R., 2009. Partitioning of metals (Cd, Co, Cu, Ni, Pb, Zn) in soils:
985	concepts, methodologies, prediction and applications - a review. Eur. J. Soil Sci. 60, 590–612.
986	https://doi.org/10.1111/j.1365-2389.2009.01142.x
987	Domergue, F.L., Vedy, J.C., 1992. Mobility of heavy metals in soil profiles. Int. J. Environ. Anal. Chem.
988	46, 13–23. https://doi.org/10.1080/03067319208026993
989	Du Laing, G., Rinklebe, J., Vandecasteele, B., Meers, E., Tack, F.M.G., 2009. Trace metal behaviour in
990	estuarine and riverine floodplain soils and sediments: A review. Sci. Total Environ. 407, 3972-
991	3985. https://doi.org/10.1016/J.SCITOTENV.2008.07.025
992	Du Laing, G., Vanthuyne, D.R.J., Vandecasteele, B., Tack, F.M.G., Verloo, M.G., 2007. Influence of
993	hydrological regime on pore water metal concentrations in a contaminated sediment-derived

994	soil. Environ. Pollut. 147, 615–625. https://doi.org/10.1016/J.ENVPOL.2006.10.004
995	Eggleton, J., Thomas, K. V, 2004. A review of factors affecting the release and bioavailability of
996	contaminants during sediment disturbance events. Environ. Int. 30, 973–980.
997	https://doi.org/10.1016/J.ENVINT.2004.03.001
998	Ehlers, G.A.C., Loibner, A.P., 2006. Linking organic pollutant (bio)availability with geosorbent
999	properties and biomimetic methodology: A review of geosorbent characterisation and
1000	(bio)availability prediction. Environ. Pollut. 141, 494–512.
1001	https://doi.org/10.1016/J.ENVPOL.2005.08.063
1002	Ellis, J.B., Shutes, R.B.E., Revitt, M.D., 2003. Constructed Wetlands and Links with Sustainable
1003	Drainage Systems.
1004	Emerson, Kodak U, Scholastica Bejor, E., Ekeng, E.E., Ogarekpe, Nkpa M, Emerson, K U, Bejor, E.S.,
1005	Ogarekpe, N M, Onuruka, A.U., 2017. TRANSPORT AND FATE OF SELECTED HEAVY METALS IN
1006	CIRCUMNEUTRAL RIVER ENVIRONMENT: A CASE STUDY OF THE RIVER NENT CUMBRIA,
1007	ENGLAND. Int. J. Res. 5, 159–169. https://doi.org/10.5281/zenodo.818628
1008	Euripidou, E., Murray, V., 2004. Public health impacts of floods and chemical contamination. J. Public
1009	Health (Bangkok). 26, 376–383. https://doi.org/10.1093/pubmed/fdh163
1010	Evans, L.J., 1989. Chemistry of Metal Retention by Soils Chemistry of metal retention by soils Several
1011	processes are explained. Artic. Environ. Sci. Technol. https://doi.org/10.1021/es00067a001
1012	Foley, J.A., DeFries, R., Asner, G.P., Barford, C., Bonan, G., Carpenter, S.R., Chapin, F.S., Coe, M.T.,
1013	Daily, G.C., Gibbs, H.K., Helkowski, J.H., Holloway, T., Howard, E.A., Kucharik, C.J., Monfreda, C.,
1014	Patz, J.A., Prentice, I.C., Ramankutty, N., Snyder, P.K., 2005. Global consequences of land use.
1015	Science (80). https://doi.org/10.1126/science.1111772
1016	Förstner, U., 2004. Traceability of sediment analysis. TrAC Trends Anal. Chem. 23, 217–236.
1017	https://doi.org/10.1016/S0165-9936(04)00312-7
1018	Forstner, U., Wattman, G., 1981. Metal Pollution in the Aquatic Environment., 2nd ed. Springer-
1019	Verlag, Berlin.
1020	Foulds, S.A., Griffiths, H.M., Macklin, M.G., Brewer, P.A., 2014. Geomorphological records of extreme
1021	floods and their relationship to decadal-scale climate change. Geomorphology 216, 193–207.
1022	https://doi.org/10.1016/J.GEOMORPH.2014.04.003

1023	Fronne, T., Diaz-Bone, R.A., Du Laing, G., Rinkiebe, J., 2015. Impact of systematic change of redox
1024	potential on the leaching of Ba, Cr, Sr, and V from a riverine soil into water. J. Soils Sediments
1025	15, 623–633. https://doi.org/10.1007/s11368-014-1036-8
1026	Frohne, T., Rinklebe, J., Diaz-Bone, R.A., 2014. Contamination of Floodplain Soils along the Wupper
1027	River, Germany, with As, Co, Cu, Ni, Sb, and Zn and the Impact of Pre-definite Redox Variations
1028	on the Mobility of These Elements. Soil Sediment Contam. 23, 779–799.
1029	https://doi.org/10.1080/15320383.2014.872597
1030	Frohne, T., Rinklebe, J., Diaz-Bone, R.A., Du Laing, G., 2011. Controlled variation of redox conditions
1031	in a floodplain soil: Impact on metal mobilization and biomethylation of arsenic and antimony.
1032	Geoderma 160, 414–424. https://doi.org/10.1016/J.GEODERMA.2010.10.012
1033	Gadd, G.M., 2010. Metals, minerals and microbes: Geomicrobiology and bioremediation.
1034	Microbiology. https://doi.org/10.1099/mic.0.037143-0
1035	Gall, Jillian E, Boyd, Robert S, Rajakaruna, Nishanta, Gall, J E, Rajakaruna, N, Boyd, R S, 2015. Transfer
1036	of heavy metals through terrestrial food webs: a review, Monitoring and Assessment.
1037	Gambrell, R.P., 1994. Trace and Toxic Metals in Wetlands-A Review. J. Environ. Qual. 23, 883–891.
1038	Gao, H., Shao, M., 2015. Effects of temperature changes on soil hydraulic properties. Soil Tillage Res.
1039	153, 145–154. https://doi.org/10.1016/j.still.2015.05.003
1040	Giacalone, A., Gianguzza, A., Orecchio, S., Piazzese, D., Dongarrà, G., Sciarrino, S., Varrica, D., 2005.
1041	Metals distribution in the organic and inorganic fractions of soil: A case study on soils from
1042	Sicily. Chem. Speciat. Bioavailab. 17, 83–93. https://doi.org/10.3184/095422905782774892
1043	González-Alcaraz, M.N., van Gestel, C.A.M., 2015. Climate change effects on enchytraeid
1044	performance in metal-polluted soils explained from changes in metal bioavailability and
1045	bioaccumulation. Environ. Res. 142, 177–184. https://doi.org/10.1016/j.envres.2015.06.027
1046	González-Macé, O., Steinauer, K., Jousset, A., Eisenhauer, N., Scheu, S., 2016. Flood-induced changes
1047	in soil microbial functions as modified by plant diversity. PLoS One 11.
1048	https://doi.org/10.1371/journal.pone.0166349
1049	Gregory, A.S., Ritz, K., McGrath, S.P., Quinton, J.N., Goulding, K.W.T., Jones, R.J.A., Harris, J.A., Bol,
1050	R., Wallace, P., Pilgrim, E.S., Whitmore, A.P., 2015. A review of the impacts of degradation
1051	threats on soil properties in the LIK Soil Use Manag 31 1-15

1052	https://doi.org/10.1111/sum.12212
1053	Grimm, A.M., Tedeschi, R.G., 2009. ENSO and extreme rainfall events in South America. J. Clim. 22,
1054	1589–1609. https://doi.org/10.1175/2008JCLI2429.1
1055	Gröngröft, A., Krüger, F., Grunewald, K., Meißner, R., Miehlich, G., 2005. Plant and soil
1056	contamination with trace metals in the Elbe floodplains: A case study after the flood in August
1057	2002. Acta Hydrochim. Hydrobiol. 33, 466–474. https://doi.org/10.1002/aheh.200400596
1058	Hahne, H.C.H., Kroontje, W., 1973. Significance of pH and Chloride Concentration on Behavior of
1059	Heavy Metal Pollutants: Mercury(II), Cadmium(II), Zinc(II), and Lead(II). J. Environ. Qual. 2, 444-
1060	450. https://doi.org/10.2134/jeq1973.00472425000200040007x
1061	Harvey, R.J., Chadwick, D.R., Sánchez-Rodríguez, A.R., Jones, D.L., 2019. Agroecosystem resilience in
1062	response to extreme winter flooding. Agric. Ecosyst. Environ. 279, 1–13.
1063	https://doi.org/10.1016/J.AGEE.2019.04.001
1064	He, Y., Men, B., Yang, X., Li, Y., Xu, H., Wang, D., 2019. Relationship between heavy metals and
1065	dissolved organic matter released from sediment by bioturbation/bioirrigation. J. Environ. Sci.
1066	(China) 75, 216–223. https://doi.org/10.1016/j.jes.2018.03.031
1067	Hillel, D., 1998. Introduction to Environmental Soil Physics, 1st ed. Academic Press.
1068	Hippolyte, I., Jenny, C., Gardes L., Bakry F., Rivallan R., Pomies V., Cubry P., Tomekpe K., Risterucci A.
1069	M., Roux N., Rouard M., Arnaud E., Kolesnikova-Allen M., Perrier X., 2012. Foundation
1070	characteristics of edible Musa triploids revealed from allelic distribution of SSR markers. Ann.
1071	Bot. 109, 937–951. https://doi.org/10.1093/aob
1072	Hirabayashi, Y., Kanae, S., 2009. First estimate of the future global population at risk of flooding.
1073	Hydrol. Res. Lett. 3, 6–9. https://doi.org/10.3178/hrl.3.6
1074	Hirabayashi, Y., Kanae, S., Emori, S., Oki, T., Kimoto, M., 2008. Global projections of changing risks of
1075	floods and droughts in a changing climate. Hydrol. Sci. J. 53, 754–772.
1076	https://doi.org/10.1623/hysj.53.4.754
1077	Hirabayashi, Y., Mahendran, R., Koirala, S., Konoshima, L., Yamazaki, D., Watanabe, S., Kim, H.,
1078	Kanae, S., 2013. Global flood risk under climate change. Nat. Clim. Chang. 3, 816–821.
1079	https://doi.org/10.1038/nclimate1911

1080	Hobbelen, P.H.F., Koolhaas, J.E., van Gestel, C.A.M., 2006. Bioaccumulation of heavy metals in the
1081	earthworms Lumbricus rubellus and Aporrectodea caliginosa in relation to total and available
1082	metal concentrations in field soils. Environ. Pollut. 144, 639–646.
1083	https://doi.org/10.1016/J.ENVPOL.2006.01.019
1084	Hooda, P.S., 2010. Trace Elements in Soils, Trace Elements in Soils. John Wiley and Sons.
1085	https://doi.org/10.1002/9781444319477
1086	Huddart, D., Stott, T., Huddart, D., Stott, T., 2020. Climate Change and Adventure Tourism, in:
1087	Adventure Tourism. Springer International Publishing, pp. 437–469.
1088	https://doi.org/10.1007/978-3-030-18623-4_13
1089	Hurley, R.R., Rothwell, J.J., Woodward, J.C., 2017. Metal contamination of bed sediments in the
1090	Irwell and Upper Mersey catchments, northwest England: exploring the legacy of industry and
1091	urban growth. J. Soils Sediments 17, 2648–2665. https://doi.org/10.1007/s11368-017-1668-6
1092	Ibragimow, A., Walna, B., Siepak, M., 2013. Effects of Flooding on the Contamination of Floodplain
1093	Sediments with Available Fractions of Trace Metals (Western Poland), J. Environ. Stud.
1094	IPCC, 2012. Managing the Risks of Extreme Events and Disasters to Advance Climate Change
1095	Adaptation. A Special Report of Working Groups I and II of the Intergovernmental Panel on
1096	Climate Change. [Field, C.B., V. Barros, T.F. Stocker, D. Qin, D.J. Dokken, K.L. Ebi, M.
1097	Izquierdo, M., Tye, A.M., Chenery, S.R., 2017. Using isotope dilution assays to understand speciation
1098	changes in Cd, Zn, Pb and Fe in a soil model system under simulated flooding conditions.
1099	Geoderma 295, 41–52. https://doi.org/10.1016/J.GEODERMA.2017.02.006
1100	Izquierdo, M., Tye, A.M., Chenery, S.R., 2013. Lability, solubility and speciation of Cd, Pb and Zn in
1101	alluvial soils of the River Trent catchment UK. Environ. Sci. Process. Impacts 15, 1844–1858.
1102	https://doi.org/10.1039/c3em00370a
1103	Jenkins, G.J., Murphy, J.M., Sexton, D.M.H., Lowe, J.A., Jones, P., Kilsby, C.G., 2009. UK Climate
1104	Projection Briefing Report [WWW Document]. Met Off. Hadley Cent. URL
1105	https://www.researchgate.net/publication/257343385_UK_Climate_Projection_Briefing_Repo
1106	rt (accessed 3.2.20).
1107	Jiao, W., Ouyang, W., Hao, F., Huang, H., Shan, Y., Geng, X., 2014. Combine the soil water assessment
1108	tool (SWAT) with sediment geochemistry to evaluate diffuse heavy metal loadings at watershed

1109	scale. J. Hazard. Mater. 280, 252–259. https://doi.org/10.1016/J.JHAZMA1.2014.07.081
1110	Johnson, Z.F., Chikamoto, Y., Wang, S.Y.S., McPhaden, M.J., Mochizuki, T., 2020. Pacific decadal
1111	oscillation remotely forced by the equatorial Pacific and the Atlantic Oceans. Clim. Dyn. 55,
1112	789–811. https://doi.org/10.1007/s00382-020-05295-2
1113	Johnston, S.G., Burton, E.D., Aaso, T., Tuckerman, G., 2014. Sulfur, iron and carbon cycling following
1114	hydrological restoration of acidic freshwater wetlands. Chem. Geol. 371, 9–26.
1115	https://doi.org/10.1016/j.chemgeo.2014.02.001
1116	Junk, W.J., Bayley, P.B., Sparks, R.E., 1989. The Flood Pulse Concept in River-Floodplain Systems. Can
1117	Spec. Publ. Fish. Aquat. Sci. 106, 110–127. https://doi.org/10.1007/978-3-662-03416-3_4
1118	Kalbitz, K., Wennrich, R., 1998. Mobilization of heavy metals and arsenic in polluted wetland soils
1119	and its dependence on dissolved organic matter. Sci. Total Environ. 209, 27–39.
1120	https://doi.org/10.1016/S0048-9697(97)00302-1
1121	Karimian, N., Johnston, S.G., Burton, E.D., 2018. Iron and sulfur cycling in acid sulfate soil wetlands
1122	under dynamic redox conditions: A review. Chemosphere 197, 803–816.
1123	https://doi.org/10.1016/j.chemosphere.2018.01.096
1124	Karimian, N., Johnston, S.G., Burton, E.D., 2017. Effect of cyclic redox oscillations on water quality in
1125	freshwater acid sulfate soil wetlands. Sci. Total Environ.
1126	https://doi.org/10.1016/j.scitotenv.2016.12.131
1127	Karl, T.R., Trenberth, K.E., 2003. Modern Global Climate Change. Science (80). 302, 1719–1723.
1128	https://doi.org/10.1126/science.1090228
1129	Kelly, T.J., Hamilton, E., Watts, M.J., Ponting, J., Sizmur, T., 2020. The effect of flooding and drainage
1130	duration on the release of trace elements from floodplain soils. Environ. Toxicol. Chem.
1131	etc.4830. https://doi.org/10.1002/etc.4830
1132	Kharin, V. V., Zwiers, F.W., Zhang, X., Hegerl, G.C., 2007. Changes in temperature and precipitation
1133	extremes in the IPCC ensemble of global coupled model simulations. J. Clim. 20, 1419–1444.
1134	https://doi.org/10.1175/JCLI4066.1
1135	Kirk, G., 2004. The Biogeochemistry of Submerged Soils, The Biogeochemistry of Submerged Soils.
1136	Wiley & Sons, Ltd: Chichester. https://doi.org/10.1002/047086303x

1137	Kiss, T.B.W., Chen, X., Ponting, J., Sizmur, T., Hodson, M.E., (In Review) Dual stresses of flooding and
1138	agricultural land use reduce earthworm populations more than the individual stressors. Sci.
1139	Total Environ. STOTEN-D-20-17138
1140	Koretsky, C.M., Haveman, M., Beuving, L., Cuellar, A., Shattuck, T., Wagner, M., 2007. Spatial
1141	variation of redox and trace metal geochemistry in a minerotrophic fen. Biogeochemistry 86,
1142	33–62. https://doi.org/10.1007/s10533-007-9143-x
1143	Kowalik, C., Kraft, J., Einax, J.W., 2004. The situation of the German Elbe tributaries - Development of
1144	the loads in the last 10 years. Acta Hydrochim. Hydrobiol. 31, 334–345.
1145	https://doi.org/10.1002/aheh.200300507
1146	Kulp, S.A., Strauss, B.H., 2019. New elevation data triple estimates of global vulnerability to sea-level
1147	rise and coastal flooding. Nat. Commun. 10, 1–12. https://doi.org/10.1038/s41467-019-12808-
1148	Z
1149	Kundzewicz, Z.W., Kanae, S., Seneviratne, S.I., Handmer, J., Nicholls, N., Peduzzi, P., Mechler, R.,
1150	Bouwer, L.M., Arnell, N., Mach, K., Muir-Wood, R., Brakenridge, G.R., Kron, W., Benito, G.,
1151	Honda, Y., Takahashi, K., Sherstyukov, B., 2014. Flood risk and climate change: global and
1152	regional perspectives. Hydrol. Sci. J. 59, 1–28. https://doi.org/10.1080/02626667.2013.857411
1153	Lane, S.N., 2017. Natural flood management. Wiley Interdiscip. Rev. Water 4, e1211.
1154	https://doi.org/10.1002/wat2.1211
1155	Le Gall, M., Ayrault, S., Evrard, O., Laceby, J.P., Gateuille, D., Lefèvre, I., Mouchel, JM., Meybeck, M.,
1156	2018. Investigating the metal contamination of sediment transported by the 2016 Seine River
1157	flood (Paris, France). Environ. Pollut. 240, 125–139.
1158	https://doi.org/10.1016/J.ENVPOL.2018.04.082
1159	Lee, D.Y., Huang, J.C., Juang, K.W., Tsui, L., 2005. Assessment of phytotoxicity of chromium in
1160	flooded soils using embedded selective ion exchange resin method. Plant Soil 277, 97–105.
1161	https://doi.org/10.1007/s11104-005-5997-7
1162	Lewin, J., Macklin, M.G., 2010. Floodplain catastrophes in the UK Holocene: Messages for managing
1163	climate change. Hydrol. Process. 24, 2900–2911. https://doi.org/10.1002/hyp.7704
1164	Lloyd, J.R., 2003. Microbial reduction of metals and radionuclides. FEMS Microbiol. Rev. 27, 411–
1165	425 https://doi.org/10.1016/50168-6445(03)00044-5

1166	Lu, S., Ren, T., Gong, Y., Horton, R., 2007. An Improved Model for Predicting Soil Thermal
1167	Conductivity from Water Content at Room Temperature. Soil Sci. Soc. Am. J. 71, 8–14.
1168	https://doi.org/10.2136/sssaj2006.0041
1169	Lučić, M., Jurina, I., Ščančar, J., Mikac, N., Vdović, N., 2019. Sedimentological and geochemical
1170	characterization of river suspended particulate matter (SPM) sampled by time-integrated mass
1171	flux sampler (TIMS) in the Sava River (Croatia). J. Soils Sediments 19, 989–1004.
1172	https://doi.org/10.1007/s11368-018-2104-2
1173	Ma, M., Du, H., Wang, D., 2019. Mercury methylation by anaerobic microorganisms: A review. Crit.
1174	Rev. Environ. Sci. Technol. 49, 1893–1936. https://doi.org/10.1080/10643389.2019.1594517
1175	Ma, R., McBratney, A., Whelan, B., Minasny, B., Short, M., 2011. Comparing temperature correction
1176	models for soil electrical conductivity measurement. Precis. Agric.
1177	https://doi.org/10.1007/s11119-009-9156-7
1178	MacDonald, D., Dixon, A., Newell, A., Hallaways, A., 2012. Groundwater flooding within an urbanised
1179	flood plain. J. Flood Risk Manag. 5, 68–80. https://doi.org/10.1111/j.1753-318X.2011.01127.x
1180	Macklin, M.G., Rumsby, B.T., 2007. Changing Climate and Extreme Floods in the British Uplands, New
1181	Series.
1182	Madsen, H., Lawrence, D., Lang, M., Martinkova, M., Kjeldsen, T.R., 2014. Review of trend analysis
1183	and climate change projections of extreme precipitation and floods in Europe. J. Hydrol. 519,
1184	3634–3650. https://doi.org/10.1016/J.JHYDROL.2014.11.003
1185	Maggioni, V., Massari, C., 2018. On the performance of satellite precipitation products in riverine
1186	flood modeling: A review. J. Hydrol. 558, 214–224.
1187	https://doi.org/10.1016/J.JHYDROL.2018.01.039
1188	Malmon, D. V., Dunne, T., Reneau, S.L., 2002. Predicting the Fate of Sediment and Pollutants in River
1189	Floodplains. Environ. Sci. Technol 36, 2026–2032. https://doi.org/10.1021/ES010509+
1190	Malmon, D. V., Reneau, S.L., Dunne, T., 2004. Sediment sorting and transport by flash floods. J.
1191	Geophys. Res. Earth Surf. 109, n/a-n/a. https://doi.org/10.1029/2003jf000067
1192	Maluckov, B.S., 2017. The Catalytic Role of Acidithiobacillus ferrooxidans for Metals Extraction from
1193	Mining - Metallurgical Resource. Biodivers. Int. J. 1.
1194	https://doi.org/10.15406/bij.2017.01.00017

1195	Martin, M., Bonifacio, E., Hossain, K.M.J., Huq, S.M.I., Barberis, E., 2014. Arsenic fixation and
1196	mobilization in the soils of the Ganges and Meghna floodplains. Impact of pedoenvironmental
1197	properties. Geoderma 228–229, 132–141. https://doi.org/10.1016/j.geoderma.2013.09.020
1198	Meegoda, J.N., Martin, L., 2019. In-Situ Determination of Specific Surface Area of Clays. Geotech
1199	Geol Eng 37, 465–474. https://doi.org/https://doi.org/10.1007/s10706-018-0623-7
1200	Mullan, D., Matthews, T., Vandaele, K., Barr, I.D., Swindles, G.T., Meneely, J., Boardman, J., Murphy,
1201	C., 2019. Climate impacts on soil erosion and muddy flooding at 1.5 versus 2°C warming. L.
1202	Degrad. Dev. 30, 94–108. https://doi.org/10.1002/ldr.3214
1203	Naidu, R., Channey, R., McConnell, S., Johnston, N., Semple, K.T., McGrath, S., Dries, V., Nathanail, P.
1204	Harmsen, J., Pruszinski, A., MacMillan, J., Palanisami, T., 2015. Towards bioavailability-based
1205	soil criteria: past, present and future perspectives. Environ. Sci. Pollut. Res. 22, 8779–8785.
1206	https://doi.org/10.1007/s11356-013-1617-x
1207	Naidu, R., Semple, K.T., Megharaj, M., Juhasz, A.L., Bolan, N.S., Gupta, S.K., Clothier, B.E., Schulin, R.,
1208	2008. Bioavailability: Definition, assessment and implications for risk assessment. Dev. Soil Sci.
1209	32, 39–51. https://doi.org/10.1016/S0166-2481(07)32003-5
1210	Neal, C., Smith, C.J., Jeffery, H.A., Jarvie, H.P., Robson, A.J., 1996. Trace element concentrations in
1211	the major rivers entering the Humber estuary, NE England. J. Hydrol. 182, 37–64.
1212	https://doi.org/10.1016/0022-1694(95)02940-0
1213	Ng, J.C., Juhasz, A., Smith, E., Naidu, R., 2015. Assessing the bioavailability and bioaccessibility of
1214	metals and metalloids. Environ. Sci. Pollut. Res. 22, 8802–8825.
1215	https://doi.org/10.1007/s11356-013-1820-9
1216	Niu, Z., Sun, L., Sun, T., Li, Y., Wang, H., 2007. Evaluation of phytoextracting cadmium and lead by
1217	sunflower, ricinus, alfalfa and mustard in hydroponic culture. J. Environ. Sci. 19, 961–967.
1218	https://doi.org/10.1016/S1001-0742(07)60158-2
1219	Nouri, J., Khorasani, N., Lorestani, B., Karami, M., Hassani, A.H., Yousefi, N., 2009. Accumulation of
1220	heavy metals in soil and uptake by plant species with phytoremediation potential. Environ.
1221	Earth Sci. 59, 315–323. https://doi.org/10.1007/s12665-009-0028-2
1222	Nriagu, J.O., Bhattacharya, P., Mukherjee, A.B., Bundschuh, J., Zevenhoven, R., Loeppert, R.H., 2007.
1223	Arsenic in soil and groundwater: an overview. Trace Met. other Contam. Environ. 9, 3–60.

1224	https://doi.org/10.1016/S1875-1121(06)09001-8
1225	Nshimiyimana, F.X., Faciu, ME., Abidi, A. El, Blidi, S. El, Fekhaoui, M., Ifrim, I.L., Soulaymani, A.,
1226	Lazar, G., 2014. ANALYSIS OF SEASONAL VARIATION ON DEGREE OF CONTAMINATION WITH
1227	HEAVY METALS IN AARJATE VILLAGE, MOROCCO. AN INDEX APPROACH. Sci. Study Res. Chem.
1228	Chem. Eng. Biotechnol. Food Ind. 15, 337–344.
1229	Ostergren, J.D., Brown, G.E., Parks, G.A., Persson, P., 2000. Inorganic ligand effects on Pb(II) sorption
1230	to goethite (α-FeOOH). II. Sulfate. J. Colloid Interface Sci. 225, 483–493.
1231	https://doi.org/10.1006/jcis.1999.6702
1232	Overesch, M., Rinklebe, J., Broll, G., Neue, H.U., 2007. Metals and arsenic in soils and corresponding
1233	vegetation at Central Elbe river floodplains (Germany). Environ. Pollut. 145, 800–812.
1234	https://doi.org/10.1016/j.envpol.2006.05.016
1235	Pan, L., Fang, G., Wang, Y., Wang, L., Su, B., Li, D., Xiang, B., 2018. Potentially toxic element pollution
1236	levels and risk assessment of soils and sediments in the upstream river, miyun reservoir, china.
1237	Int. J. Environ. Res. Public Health 15. https://doi.org/10.3390/ijerph15112364
1238	Pappenberger, F., Dutra, E., Wetterhall, F., Cloke, H.L., 2012. Deriving global flood hazard maps of
1239	fluvial floods through a physical model cascade. Hydrol. Earth Syst. Sci. 16, 4143–4156.
1240	https://doi.org/10.5194/hess-16-4143-2012
1241	Pathirana, A., Denekew, H.B., Veerbeek, W., Zevenbergen, C., Banda, A.T., 2014. Impact of urban
1242	growth-driven landuse change on microclimate and extreme precipitation - A sensitivity study.
1243	Atmos. Res. 138, 59–72. https://doi.org/10.1016/j.atmosres.2013.10.005
1244	Peacock, M., Freeman, C., Gauci, V., Lebron, I., Evans, C.D., 2015. Investigations of freezing and cold
1245	storage for the analysis of peatland dissolved organic carbon (DOC) and absorbance properties.
1246	Environ. Sci. Process. Impacts 17, 1290–1301. https://doi.org/10.1039/c5em00126a
1247	Peijnenburg, W.J.G.M., Zablotskaja, M., Vijver, M.G., 2007. Monitoring metals in terrestrial
1248	environments within a bioavailability framework and a focus on soil extraction. Ecotoxicol.
1249	Environ. Saf. 67, 163–179. https://doi.org/10.1016/J.ECOENV.2007.02.008
1250	Pendergrass, A.G., 2018. What precipitation is extreme? Science (80). 360, 1072–1073.
1251	https://doi.org/10.1126/science.aat1871
1252	Plum, N.M., Filser, J., 2008. Worms and wetland water: the role of lumbricids and enchytraeids in

1253	nutrient mobilization from flooded soils, undefined.
1254	Poot, A., Gillissen, F., Koelmans, A.A., 2007. Effects of flow regime and flooding on heavy metal
1255	availability in sediment and soil of a dynamic river system. Environ. Pollut. 148, 779–787.
1256	https://doi.org/10.1016/j.envpol.2007.01.045
1257	Prudhomme, C., Davies, H., 2009. Assessing uncertainties in climate change impact analyses on the
1258	river flow regimes in the UK. Part 2: Future climate. Clim. Change 93, 197–222.
1259	https://doi.org/10.1007/s10584-008-9461-6
1260	Prunty, L., Bell, J., 2005. Soil Temperature Change over Time during Infiltration. Soil Sci. Soc. Am. J.
1261	69, 766–775. https://doi.org/10.2136/sssaj2004.0219
1262	Puchalski, W., 2003. THE IMPORTANCE OF ACCUMULATED ORGANIC MATTERIN NUTRIENT
1263	TRANSPORT AND STORAGE IN FLOODPLAINS, in: International Conference "EcoFlood: Towards
1264	Natural Flood Reduction Strategies", Warsaw, EU Framework 5.
1265	Pulchalski, W., 2003. The Importance of Accumulated Organic Matter in Nutrient Transport and
1266	Storage in Floodplains [WWW Document]. URL
1267	https://www.researchgate.net/publication/237333548_THE_IMPORTANCE_OF_ACCUMULATE
1268	D_ORGANIC_MATTERIN_NUTRIENT_TRANSPORT_AND_STORAGE_IN_FLOODPLAINS (accessed
1269	2.24.20).
1270	Pulley, S., Collins, A.L., 2019. Field-based determination of controls on runoff and fine sediment
1271	generation from lowland grazing livestock fields. J. Environ. Manage. 249, 109365.
1272	https://doi.org/10.1016/j.jenvman.2019.109365
1273	Qiao, P., Lei, M., Yang, S., Yang, J., Zhou, X., Dong, N., Guo, G., 2019. Development of a model to
1274	simulate soil heavy metals lateral migration quantity based on SWAT in Huanjiang watershed,
1275	China. J. Environ. Sci. 77, 115–129. https://doi.org/10.1016/J.JES.2018.06.020
1276	Rawlins, B.G., Wragg, J., Lark, R.M., 2013. Application of a novel method for soil aggregate stability
1277	measurement by laser granulometry with sonication. Eur. J. Soil Sci. 64, 92–103.
1278	https://doi.org/10.1111/ejss.12017
1279	Rennert, T., Rabus, W., Rinklebe, J., 2017. Modelling the concentrations of dissolved contaminants
1280	(Cd, Cu, Ni, Pb, Zn) in floodplain soils. Environ. Geochem. Health 39, 331–344.
1281	https://doi.org/10.1007/s10653-016-9859-4

L282	Resongles, E., Casiot, C., Freydier, R., Le Gall, M., Elbaz-Poulichet, F., 2015. Variation of dissolved and
L283	particulate metal(loid) (As, Cd, Pb, Sb, Tl, Zn) concentrations under varying discharge during a
L284	Mediterranean flood in a former mining watershed, the Gardon River (France). J. Geochemical
1285	Explor. 158, 132–142. https://doi.org/10.1016/J.GEXPLO.2015.07.010
1286	Rinklebe, J., Du Laing, G., 2011. Factors Controlling the Dynamics of Trace Metals in Frequently
L287	Flooded Soils, in: Dynamics and Bioavailability of Heavy Metals in the Rootzone. CRC Press, pp.
L288	245–270. https://doi.org/10.1201/b10796-10
1289	Rinklebe, J., During, A., Overesch, M., Du Laing, G., Wennrich, R., Stärk, H.J.H.J., Mothes, S., 2010.
L290	Dynamics of mercury fluxes and their controlling factors in large Hg-polluted floodplain areas.
L291	Environ. Pollut. 158, 308–318. https://doi.org/10.1016/j.envpol.2009.07.001
L292	Rinklebe, J., Franke, C., Neue, HU., 2007. Aggregation of floodplain soils based on classification
L293	principles to predict concentrations of nutrients and pollutants. Geoderma 141, 210–223.
L294	https://doi.org/10.1016/J.GEODERMA.2007.06.001
1295	Rinklebe, J., Knox, A.S., Paller, M., Knox, A.S., Paller, M., 2016. Potential Mobility, Bioavailability, and
1296	Plant Uptake of Toxic Elements in Temporary Flooded Soils In book: Trace elements in
L297	waterlogged soils and sediments, 1st ed. CRC Press, Taylor & Francis Group, New York.
1298	https://doi.org/10.1201/9781315372952-23
L299	Rinklebe, J., Shaheen, S.M., 2017. Redox chemistry of nickel in soils and sediments: A review.
1300	Chemosphere 179, 265–278. https://doi.org/10.1016/J.CHEMOSPHERE.2017.02.153
L301	Rinklebe, J., Wennrich, R., Du Laing, G., Stark, H.J., Mothes, S., 2013. Mercury emissions from
L302	flooded soils and sediments in Germany are an underestimated problem: challenges for
1303	reliable risk assessments and management strategies. E3S Web Conf. 1.
L304	Rizzo, A., Bresciani, R., Masi, F., Boano, F., Revelli, R., Ridolfi, L., 2018. Flood reduction as an
L305	ecosystem service of constructed wetlands for combined sewer overflow. J. Hydrol. 560, 150–
L306	159. https://doi.org/10.1016/j.jhydrol.2018.03.020
L307	Rodgers, K., Hursthouse, A., Cuthbert, S., 2015. The Potential of Sequential Extraction in the
L308	Characterisation and Management of Wastes from Steel Processing: A Prospective Review. Int.
1309	J. Environ. Res. Public Health 12, 11724–11755. https://doi.org/10.3390/ijerph120911724
1310	Rudiš M. Valenta P. Valentová I. Nol. O. 2009 Assessment of the denosition of polluted

1311	sediments transferred by a catastrophic flood and related changes in groundwater quality. J.
1312	Hydrol. 369, 326–335. https://doi.org/10.1016/J.JHYDROL.2009.02.023
1313	Sánchez-Rodríguez, A.R., Nie, C., Hill, P.W., Chadwick, D.R., Jones, D.L., 2019. Extreme flood events at
1314	higher temperatures exacerbate the loss of soil functionality and trace gas emissions in
1315	grassland. Soil Biol. Biochem. 130, 227–236. https://doi.org/10.1016/J.SOILBIO.2018.12.021
1316	Schaller, N., Kay, A.L., Lamb, R., Massey, N.R., Van Oldenborgh, G.J., Otto, F.E.L., Sparrow, S.N.,
1317	Vautard, R., Yiou, P., Ashpole, I., Bowery, A., Crooks, S.M., Haustein, K., Huntingford, C., Ingram,
1318	W.J., Jones, R.G., Legg, T., Miller, J., Skeggs, J., Wallom, D., Weisheimer, A., Wilson, S., Stott,
1319	P.A., Allen, M.R., 2016. Human influence on climate in the 2014 southern England winter floods
1320	and their impacts. Nat. Clim. Chang. 6, 627–634. https://doi.org/10.1038/nclimate2927
1321	Schulz-Zunkel, C., Krueger, F., 2009. Trace Metal Dynamics in Floodplain Soils of the River Elbe: A
1322	Review. J. Environ. Qual. 38, 1349–1362. https://doi.org/10.2134/jeq2008.0299
1323	Schulz-Zunkel, C., Rinklebe, J., Bork, HR., 2015. Trace element release patterns from three
1324	floodplain soils under simulated oxidized-reduced cycles. Ecol. Eng. 83, 485-495.
1325	https://doi.org/10.1016/J.ECOLENG.2015.05.028
1326	Selinus, O., Alloway, B., Centeno, J.A., Robert B. Finkelman, Fuge, R., Lindh, U., Smedley, P., 2005.
1327	Essentials of Medical Geology: Impacts of the Natural Environment on Public Health. Elsevier
1328	Academic Press.
1329	Shaheen, S.M., Frohne, T., White, J.R., DeLaune, R.D., 2017. Redox-induced mobilization of copper,
1330	selenium, and zinc in deltaic soils originating from Mississippi (U.S.A.) and Nile (Egypt) River
1331	Deltas: A better understanding of biogeochemical processes for safe environmental
1332	management. J. Environ. Manage. 186, 131–140.
1333	https://doi.org/10.1016/J.JENVMAN.2016.05.032
1334	Shaheen, S.M., Rinklebe, J., 2017. Sugar beet factory lime affects the mobilization of Cd, Co, Cr, Cu,
1335	Mo, Ni, Pb, and Zn under dynamic redox conditions in a contaminated floodplain soil. J.
1336	Environ. Manage. 186, 253–260. https://doi.org/10.1016/j.jenvman.2016.07.060
1337	Shaheen, S.M., Rinklebe, J., 2014. Geochemical fractions of chromium, copper, and zinc and their
1338	vertical distribution in floodplain soil profiles along the Central Elbe River, Germany. Geoderma
1339	228-229, 142-159. https://doi.org/10.1016/J.GEODERMA.2013.10.012

1340	Shaheeri, S.M., Kilikiebe, J., Fronne, T., White, J.K., Delaurie, K.D., 2010. Redox effects of felease
L341	kinetics of arsenic, cadmium, cobalt, and vanadium in Wax Lake Deltaic freshwater marsh soils
1342	Chemosphere 150, 740–748. https://doi.org/10.1016/J.CHEMOSPHERE.2015.12.043
1343	Shaheen, S.M., Rinklebe, J., Rupp, H., Meissner, R., 2014a. Temporal dynamics of pore water
L344	concentrations of Cd, Co, Cu, Ni, and Zn and their controlling factors in a contaminated
L345	floodplain soil assessed by undisturbed groundwater lysimeters. Environ. Pollut. 191, 223–231
L346	https://doi.org/10.1016/J.ENVPOL.2014.04.035
L347	Shaheen, S.M., Rinklebe, J., Rupp, H., Meissner, R., 2014b. Lysimeter trials to assess the impact of
L348	different flood-dry-cycles on the dynamics of pore water concentrations of As, Cr, Mo and V in
L349	a contaminated floodplain soil. Geoderma 228–229, 5–13.
L350	https://doi.org/10.1016/J.GEODERMA.2013.12.030
l351	Shahid, M., Shamshad, S., Rafiq, M., Khalid, S., Bibi, I., Niazi, N.K., Dumat, C., Rashid, M.I., 2017.
L352	Chromium speciation, bioavailability, uptake, toxicity and detoxification in soil-plant system: A
L353	review. Chemosphere 178, 513–533. https://doi.org/10.1016/J.CHEMOSPHERE.2017.03.074
L354	Sherene, T., 2010. Mobility and Transport of Heavy Metals in Polluted Soil Environment. Biol.
1355	Forum—An Int. J. 2, 112–121.
L356	Simmler, M., Bommer, J., Frischknecht, S., Christl, I., Kotsev, T., Kretzschmar, R., 2017. Reductive
L357	solubilization of arsenic in a mining-impacted river floodplain: Influence of soil properties and
L358	temperature. Environ. Pollut. 231, 722–731. https://doi.org/10.1016/J.ENVPOL.2017.08.054
L359	Sipos, P., Choi, C., Németh, T., Szalai, Z., Póka, T., 2014. Relationship between iron and trace metal
L360	fractionation in soils. Chem. Speciat. Bioavailab. 26, 21–30.
1361	https://doi.org/10.3184/095422914X13887685052506
1362	Sivakumar, S., Subbhuraam, C.V., 2005. Toxicity of chromium(III) and chromium(VI) to the
L363	earthworm Eisenia fetida. Ecotoxicol. Environ. Saf. 62, 93–98.
L364	https://doi.org/10.1016/J.ECOENV.2004.08.006
1365	Sizmur, T., Hodson, M.E., 2009. Do earthworms impact metal mobility and availability in soil? – A
L366	review. Environ. Pollut. 157, 1981–1989. https://doi.org/10.1016/J.ENVPOL.2009.02.029
L367	Sizmur, T., Palumbo-Roe, B., Watts, M.J., Hodson, M.E., 2011. Impact of the earthworm Lumbricus
1368	terrestris (III) on As Cui Ph and 7n mobility and speciation in contaminated soils. Environ

1369	Pollut. 159, 742–748. https://doi.org/10.1016/J.ENVPOL.2010.11.033
1370	Sizmur, T., Richardson, J., 2020. Earthworms accelerate the biogeochemical cycling of potentially
1371	toxic elements: Results of a meta-analysis. Soil Biol. Biochem. 148, 107865.
1372	https://doi.org/10.1016/j.soilbio.2020.107865
1373	Spurgeon, D.J., Hopkin, S.P., 1999. Comparisons of metal accumulation and excretion kinetics in
1374	earthworms (Eisenia fetida) exposed to contaminated ®eld and laboratory soils. Appl. Soil Ecol.
1375	11, 227–243.
1376	Srivastava, V., Sarkar, A., Singh, S.K., Singh, P.K., De Araujo, A.S.F., Singh, R.P., 2017. Agroecological
1377	Responses of Heavy Metal Pollution with Special Emphasis on Soil Health and Plant
1378	Performances. Front. Environ. Sci 5, 64. https://doi.org/10.3389/fenvs.2017.00064
1379	Stafford, A., Jeyakumar, P., Hedley, M., Anderson, C., 2018. Influence of Soil Moisture Status on Soil
1380	Cadmium Phytoavailability and Accumulation in Plantain (Plantago lanceolata). Soil Syst. 2, 9.
1381	https://doi.org/10.3390/soils2010009
1382	Stagl, J., Mayr, E., Koch, H., Hattermann, F.F., Huang, S., 2014. Effects of Climate Change on the
1383	Hydrological Cycle in Central and Eastern Europe, in: Advances in Global Change Research.
1384	Springer International Publishing, pp. 31–43. https://doi.org/10.1007/978-94-007-7960-0_3
1385	Stahl, R.G., Hooper, M.J., Balbus, J.M., Clements, W., Fritz, A., Gouin, T., Helm, R., Hickey, C., Landis,
1386	W., Moe, S.J., 2013. The influence of global climate change on the scientific foundations and
1387	applications of Environmental Toxicology and Chemistry: Introduction to a SETAC international
1388	workshop. Environ. Toxicol. Chem. 32, 13–19. https://doi.org/10.1002/etc.2037
1389	Steinnes, E., 2013. Heavy metal contamination of the terrestrial environment from long-range
1390	atmospheric transport: Evidence from 35 years of research in Norway. E3S Web Conf. 1, 35001
1391	https://doi.org/10.1051/E3SCONF/20130135001
1392	Stuart, M, Lapworth, D, 2011. A review of processes important in the floodplain setting. Br. Geol.
1393	Surv. 32 (OR/11/030).
1394	Stürck, J., Poortinga, A., Verburg, P.H., 2014. Mapping ecosystem services: The supply and demand
1395	of flood regulation services in Europe. Ecol. Indic. 38, 198–211.
1396	https://doi.org/10.1016/j.ecolind.2013.11.010
1397	Sullivan, T.S., Gadd, G.M., 2019. Metal bioavailability and the soil microbiome, in: Advances in

L398	Agronomy. Academic Press Inc., pp. 79–120. https://doi.org/10.1016/bs.agron.2019.01.004
1399	Tack, F.M., Verloo, M.G., 1995. Chemical Speciation and Fractionation in Soil and Sediment Heavy
L400	Metal Analysis: A Review, Chemical. International Journal of Environmental Analytical
L401	Chemistry.
L402	Tack, F.M.G., 2010. Trace elements: General soil chemistry, principles and processes, in: Trace
L403	Elements in Soils. John Wiley and Sons, pp. 9–37. https://doi.org/10.1002/9781444319477.ch2
L404	Tack, F.M.G., Van Ranst, E., Lievens, C., Vandenberghe, R.E., 2006. Soil solution Cd, Cu and Zn
L405	concentrations as affected by short-time drying or wetting: The role of hydrous oxides of Fe
L406	and Mn. Geoderma 137, 83–89. https://doi.org/10.1016/j.geoderma.2006.07.003
L407	Tedeschi, R.G., Collins, M., 2016. The influence of ENSO on South American precipitation during
L408	austral summer and autumn in observations and models. Int. J. Climatol. 36, 618-635.
1409	https://doi.org/10.1002/joc.4371
L410	Thapa, R., Thoms, M.C., Parsons, M., Reid, M., 2016. Adaptive cycles of floodplain vegetation
L411	response to flooding and drying. Earth Surf. Dyn. 4, 175–191. https://doi.org/10.5194/esurf-4-
L412	175-2016
L413	Thomas, S.K., Severson, E.D., Galbraith, J.M., 2016. Measuring Saturated Hydraulic Conductivity in
L414	Soil. Virginia Coop. Extension, Blacksburg, VA. 1–13.
L415	Tockner, K., Lorang, M.S., Stanford, J.A., 2010. River flood plains are model ecosystems to test
L416	general hydrogeomorphic and ecological concepts. River Res. Appl. 26, 76-86.
L417	https://doi.org/10.1002/rra.1328
L418	Tockner, K., Stanford, J.A., 2002. Riverine flood plains: Present state and future trends. Environ.
L419	Conserv. 29, 308–330. https://doi.org/10.1017/S037689290200022X
L420	Tóth, G., Hermann, T., Da Silva, M.R., Montanarella, L., 2016a. Heavy metals in agricultural soils of
L421	the European Union with implications for food safety. Environ. Int. 88, 299–309.
L422	https://doi.org/10.1016/J.ENVINT.2015.12.017
L423	Tóth, G., Hermann, T., Szatmári, G., Pásztor, L., 2016b. Maps of heavy metals in the soils of the
L424	European Union and proposed priority areas for detailed assessment. Sci. Total Environ. 565,
L425	1054–1062. https://doi.org/10.1016/J.SCITOTENV.2016.05.115

1426	Unger, I.M., Kennedy, A.C., Muzika, RM., 2009. Flooding effects on soil microbial communities.
1427	Appl. Soil Ecol. 42, 1–8. https://doi.org/10.1016/J.APSOIL.2009.01.007
1428	Vaughan, K.L., Rabenhorst, M.C., Needelman, B.A., 2009. Saturation and Temperature Effects on the
1429	Development of Reducing Conditions in Soils. Soil Sci. Soc. Am. J. 73, 663–667.
1430	https://doi.org/10.2136/sssaj2007.0346
1431	Vijver, M.G., Vink, J.P.M., Miermans, C.J.H., van Gestel, C.A.M., 2007. Metal accumulation in
1432	earthworms inhabiting floodplain soils. Environ. Pollut. 148, 132–140.
1433	https://doi.org/10.1016/j.envpol.2006.10.046
1434	Vink, J.P.M., Meeussen, J.C.L., 2007. BIOCHEM–ORCHESTRA: A tool for evaluating chemical
1435	speciation and ecotoxicological impacts of heavy metals on river flood plain systems. Environ.
1436	Pollut. 148, 833–841. https://doi.org/10.1016/J.ENVPOL.2007.01.041
1437	Violante, A., 2013. Elucidating Mechanisms of Competitive Sorption at the Mineral/Water Interface.
1438	Adv. Agron. 118, 111–176. https://doi.org/10.1016/B978-0-12-405942-9.00003-7
1439	Violante, A., Cozzolino, V., Perelomov, L., Caporale, A.G., Pigna, M., 2010. Mobility and bioavailability
1440	of heavy metals and metalloids in soil environments. J. Soil Sci. Plant Nutr. 10, 268–292.
1441	https://doi.org/10.4067/S0718-95162010000100005
1442	Visser, A., Kroes, J., Van Vliet, M.T.H., Blenkinsop, S., Fowler, H.J., Broers, H.P., 2012. Climate change
1443	impacts on the leaching of a heavy metal contamination in a small lowland catchment, in:
1444	Journal of Contaminant Hydrology. Elsevier, pp. 47–64.
1445	https://doi.org/10.1016/j.jconhyd.2011.04.007
1446	Weber, FA., Voegelin, A., Kretzschmar, R., 2009. Multi-metal contaminant dynamics in temporarily
1447	flooded soil under sulfate limitation. Geochim. Cosmochim. Acta 73, 5513–5527.
1448	https://doi.org/10.1016/J.GCA.2009.06.011
1449	Wheater, H., Evans, E., 2009. Land use, water management and future flood risk. Land use policy 26,
1450	S251–S264. https://doi.org/10.1016/J.LANDUSEPOL.2009.08.019
1451	Wijngaard, R.R., van der Perk, M., van der Grift, B., de Nijs, T.C.M., Bierkens, M.F.P., 2017. The
1452	Impact of Climate Change on Metal Transport in a Lowland Catchment. Water. Air. Soil Pollut.
1453	228, 107. https://doi.org/10.1007/s11270-017-3261-4
1454	Wilby, R.L., Beven, K.J., Reynard, N.S., 2008. Climate change and fluvial flood risk in the UK: more of

1455	the same? Hydrol. Process. 22, 2511–2523. https://doi.org/10.1002/hyp.6847
1456	Winger, P.V. V, Lasier, P.J.J., Jackson, B.P.P., 1998. The Influence of Extraction Procedure on Ion
1457	Concentrations in Sediment Pore Water. Arch. Environ. Contam. Toxicol. 35, 8–13.
1458	https://doi.org/10.1007/s002449900341
1459	Wright, A.J., de Kroon, H., Visser, E.J.W., Buchmann, T., Ebeling, A., Eisenhauer, N., Fischer, C.,
1460	Hildebrandt, A., Ravenek, J., Roscher, C., Weigelt, A., Weisser, W., Voesenek, L.A.C.J., Mommer,
1461	L., 2017. Plants are less negatively affected by flooding when growing in species-rich plant
1462	communities. New Phytol. 213, 645–656. https://doi.org/10.1111/nph.14185
1463	Wuana, R.A., Okieimen, F.E., Montuelle, B., Steinman, A.D., 2011. Heavy Metals in Contaminated
1464	Soils: A Review of Sources, Chemistry, Risks and Best Available Strategies for Remediation. Int.
1465	Sch. Res. Netw. ISRN Ecol. 2011, 20. https://doi.org/10.5402/2011/402647
1466	Wyszkowska, J., Borowik, A., Kucharski, M., Kucharski, J., 2013. Effect of cadmium, copper and zinc
1467	on plants, soil microorganisms and soil enzymes. J. Elem.
1468	https://doi.org/10.5601/jelem.2013.18.4.455
1469	Xu, J., Zheng, L., Xu, L., Wang, X., 2020. Uptake and allocation of selected metals by dominant
1470	vegetation in Poyang Lake wetland: From rhizosphere to plant tissues. Catena 189, 104477.
1471	https://doi.org/10.1016/j.catena.2020.104477
1472	Xu, J.M., Tang, C., Chen, Z.L., 2006. The role of plant residues in pH change of acid soils differing in
1473	initial pH. Soil Biol. Biochem. 38, 709–719. https://doi.org/10.1016/j.soilbio.2005.06.022
1474	Xu, Y., Feng, L., Jeffrey, P.D., Shi, Y., Morel, F.M.M., 2008. Structure and metal exchange in the
1475	cadmium carbonic anhydrase of marine diatoms. Nature 452, 56–61.
1476	https://doi.org/10.1038/nature06636
1477	Yang, C., Li, S., Liu, R., Sun, P., Liu, K., 2015. Effect of reductive dissolution of iron (hydr)oxides on
1478	arsenic behavior in a water-sediment system: First release, then adsorption. Ecol. Eng. 83, 176-
1479	183. https://doi.org/10.1016/j.ecoleng.2015.06.018
1480	Zhao, Y., Marriott, S., Rogers, J., Iwugo, K., 1999. A preliminary study of heavy metal distribution on
1481	the floodplain of the River Severn, UK by a single flood event. Sci. Total Environ. 243–244, 219–
1482	231. https://doi.org/10.1016/S0048-9697(99)00386-1
1/122	7hao V Marriott S.R. 2013 Dispersion and Remobilisation of Heavy Metals in the River Severn

1484	System, UK. Procedia Environ. Sci. 18, 167–173.
1485	https://doi.org/10.1016/J.PROENV.2013.04.022
1486	Zia, A., van den Berg, L., Ahmad, M.N., Riaz, M., Zia, D., Ashmore, M., 2018. Controls on
1487	accumulation and soil solution partitioning of heavy metals across upland sites in United
1488	Kingdom (UK). J. Environ. Manage. 222, 260–267.
1489	https://doi.org/10.1016/J.JENVMAN.2018.05.076
1490	
1491	
1492	
1493	