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ABSTRACT: The performance of the Met Office Global Seasonal Forecast System (GloSea5-GC2) for tropical cyclone

(TC) frequency for the western North Pacific (WNP) in July–October is evaluated, using 23 years of ensemble forecasts

(1993–2015). Compared to observations, GloSea5 overpredicts the climatological TC frequency in the eastern WNP and

underpredicts it in the western and northern WNP. These biases are associated with an El Niño–type bias in TC-related

environmental conditions (e.g., low-level convergence and steering flow), which encourages too many TCs to form

throughout the tropical Pacific and slows TC propagation speed. For interannual TC frequency variability, GloSea5

overestimates the observed negative TC–ENSO teleconnection in the western and northern WNP, associated with an

eastward shift in theENSOteleconnection to environmental conditions. Consequently,GloSea5 fails to predict interannual TC

variability in the northeast WNP (south of Japan); performance is higher in the southwest WNP (e.g., the South China Sea)

where the sign of the TC–ENSO teleconnection is correct. This study suggests the need to reduce biases in environmental

conditions and associated ENSO teleconnections in GloSea5 to improve the TC prediction performance in the NWP.

KEYWORDS: ENSO; Tropical cyclones; Seasonal forecasting; General circulation models; Model evaluation/perfor-

mance; Interannual variability

1. Introduction

As one of most destructive weather phenomena, tropical

cyclones (TCs) can have tremendous impacts over land, asso-

ciated with strong winds, heavy rainfall, and storm surges. The

western North Pacific (WNP) is the most active area for TC

activity, accounting for more than one-third of all TCs and the

globally accumulated cyclone energy (Gray 1968; Maue 2011).

WNP TCs usually form in a favorable region for convection (e.g.,

over the tropical oceans, where it is warm and moist). Their

movement is primarily modulated by the large-scale background

steering flow, along the southern side of the North Pacific sub-

tropical high (NPSH) in the tropics and on the western side of the

NPSH in the subtropics. Accurate prediction of WNP TC activity

up to several months ahead can provide an early warning service,

whichmay significantly reduceTCdamage in coastalWNP regions.

Seasonal predictions of TC activity are typically made with

statistical models or dynamical atmosphere–ocean general cir-

culation models (AOGCMs), or hybrid statistical–dynamical

approaches. The statistical and hybrid approaches use empirical

relationships between TC activity and slowly evolving large-

scale oceanic and atmospheric conditions, by assuming that

current or predicted large-scale conditions persist over the

forecast period, or that current or predicted conditions have a

lagged effect on TCs. We focus our discussion on AOGCMs, as

these are most relevant to our study. Until recently, AOGCMs

could not simulate TC dynamical features very well, due in part

to lowmodel resolution (Henderson-Sellers et al. 1998; Strachan

et al. 2013, and references therein). In recent years, increases in

computing capability and the development of high-resolution

AOGCMs have raised the potential to use AOGCMs to directly

predict seasonal TC activity. Recent studies have evaluated sea-

sonal prediction systems for WNP TC activity, including systems

from the European Centre for Medium-Range Weather Forecasts

(ECMWF; Vitart and Stockdale 2001; Manganello et al. 2016), the

Geophysical Fluid Dynamics Laboratory (GFDL; Chen and Lin

2013; Vecchi et al. 2014; Zhang et al. 2019), and the Met Office

(Camp et al. 2015). These systems perform reasonably well for

seasonal WNP TC activity; however, they struggle to skillfully

predict regional-scale TC activity (e.g., Zhang et al. 2019; Camp

et al. 2019), especially in the WNP marginal seas.

For the interannual variability of regional WNP TC activity,

sources of seasonal climate predictability include El Niño–
Southern Oscillation (ENSO) (e.g., Chan 1985; Camargo and
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Sobel 2005; Kim et al. 2011; Zhan et al. 2011; Li and Zhou 2012;

Bell et al. 2014; Patricola et al. 2018), the Pacific meridional mode

(Zhang et al. 2016), the North Pacific gyre oscillation (e.g., Zhang

et al. 2013), Pacific sea ice cover (e.g., Fan 2007), and the quasi-

biennial oscillation (e.g., Ho et al. 2009). Some studies also suggest

important transbasin teleconnections to WNP TC activity, in-

cluding those from the Indian Ocean climate state (e.g., Zhan

et al. 2011; Takaya et al. 2017), the tropical North Atlantic SST

(e.g., Yu et al. 2016; Gao et al. 2018), and the Atlantic multi-

decadal oscillation (e.g., Zhang et al. 2018). These interbasin and

transbasin large-scale phenomena control environmental condi-

tions (e.g., vertical wind shear, relative humidity, and steering

flow) relevant to TC genesis, intensity, and track. It is important to

understand the ability ofAOGCMs to predict the teleconnections

from large-scale phenomena to regional TC activity, and the ef-

fects of these teleconnections on prediction performance.

An older version of theMetOfficeGlobal Seasonal Forecast

System, version 5, using the Global Atmosphere 3.0 configura-

tion (GloSea5-GA3), showed some skill for basinwideWNPTC

frequency (Camp et al. 2015). Significant biases remained over

the basin, even for one-month lead time forecasts. A more re-

cent study reported that the latest version of GloSea5, using the

Global Coupled model 2.0 configuration (GloSea5-GC2), has

high skill for seasonal predictions of the NPSH index and asso-

ciated TC landfall in East Asia (Camp et al. 2019). Compared to

GloSea5-GA3, GloSea5-GC2 has an updated atmospheric dy-

namical core, as well as revisions to its convective parameteri-

zation (Williams et al. 2015). However, GloSea5-GC2 fails to

predict the interannual variability of total TCs influencing East

Asia, performing worse than GloSea5-GA3 (Camp et al. 2019).

Successful predictions of WNP TC activity require high perfor-

mance for predicting the regional-scale atmospheric circulation

(e.g., the NPSH), as well as for predicting environmental factors

relevant for TC genesis and development (e.g., SSTs, tropical

convection, and vertical wind shear). However, the representa-

tion of these environmental conditions in GloSea5 and their

possible impacts onWNPTCprediction are not well understood

and need to be addressed.

In this paper, we evaluate the ability ofGloSea5-GC2 topredict

the climatology and variability of regional WNP TC frequency,

including the effects of forecast lead time and ensemble size. We

link model performance for TC activity to performance for both

the local environmental factors and regional-scale circulations

relevant to WNP TCs. To understand performance for interan-

nual WNP TC variability (in track and genesis), we also investi-

gate the GloSea5 TC–ENSO teleconnection.

The paper is structured as follows. In section 2, GloSea5 and

the reforecast dataset are described, along with the verification

data and analysis methods. Section 3 first evaluates the perfor-

mance of GloSea5 in simulating the climatological WNP TC

frequency. The TC–ENSO teleconnection in GloSea5 is then

analyzed and compared with the teleconnection in observations

and reanalysis. The diagnosed biases in GloSea5 TC activity are

related to errors in the local environment and large-scale cir-

culation. Finally, in this section, we evaluate the performance of

GloSea5 for the interannual variability of regional TC frequency

in the WNP, including the effects of ensemble size and forecast

lead time. Conclusions are provided in section 4.

2. Model and methodology

a. Model

We evaluate the Met Office Global Seasonal Forecast System,

version 5 (GloSea5), in scientific configurationGlobal Coupled 2.0

(GloSea5-GC2; MacLachlan et al. 2015; Williams et al. 2015).

GloSea5 is basedon the coupledMetOfficeHadleyCentreGlobal

Environment Model, version 3 (HadGEM3), in which the Met

Office Unified Model Global Atmosphere model (version 6.0) is

coupled to the Nucleus for European Modeling of the Oceans

(NEMO) dynamical ocean model (version 3.0), the Joint U.K.

Land Environment Simulator (JULES), and the Los Alamos Sea

Ice Model (CICE). GloSea5 uses an N216 atmospheric horizontal

resolution (0.838 in longitude and 0.568 in latitude) with 85 vertical

levels, and the tripolar ORCA025 grid (approximately 0.258) with
75 vertical levels for the ocean. In GloSea5, the Stochastic Kinetic

EnergyBackscatter v2 (SKEB2;Bowler et al. 2009) scheme is used

to generate the forecast ensemble by perturbing atmospheric

physics tendencies; all ensemblemembers for a given start date are

initialized from the same atmospheric, oceanic, and land surface

conditions. The atmosphere and land surface are initialized from

ERA-Interim (Dee et al. 2011), while the ocean and sea ice are

initialized from the Forecast Ocean AssimilationModel (FOAM)

Ocean Analysis (Blockley et al. 2014). GloSea5 is described in

detail in MacLachlan et al. (2015) and Williams et al. (2015).

We analyze the full set of available GloSea5 seasonal refore-

casts, which span a 23-yr period from 1993 to 2015. We analyze

forecasts initialized in June, May, and April. These reforecasts

are used operationally for model calibration and to evaluate

model performance. There are four start dates in each month:

the 1st, 9th, 17th, and 25th. There are seven ensemble members

per start date; each member is a 7-month forecast. We combine

all ensemble members initialized each month into a 28-member

ensemble. We analyze forecasts for the 4-month season of July–

October (JASO) in which TCs are most active in theWNP basin

(08–608N, 1008–1808E). The effect of lead time is analyzed by

comparing the performance of forecasts initialized in June,May,

and April, which have a 1-, 2-, and 3-month lead time for the

JASO season, respectively. TC activity and environmental

conditions (e.g., SSTs, wind, geopotential height, and precipi-

tation) are extracted from GloSea5 without bias correction.

b. Observation and reanalysis data

ToverifyGloSea5TC forecasts, we use observedTC tracks from

the International Best Track Archive for Climate Stewardship

(IBTrACS; Knapp et al. 2010) and TC tracks obtained from the

ECMWF interim reanalysis (ERA-Interim), during 1993–2015. To

ensure a consistent comparison, we apply the same TC tracking

scheme [see section 2c(1)] to the atmospheric fields of GloSea5

forecasts and ERA-Interim. We also verified GloSea5 against TC

tracks from the fifth major global reanalysis produced by ECMWF

(ERA5; Hersbach and Dee 2016), with similar results to those for

verification against ERA-Interim.

ERA-Interim was produced using a spectral atmospheric

model at horizontal resolution of ;79 km and 4DVar data

assimilation. We also use ERA-Interim to verify various

GloSea5 atmospheric fields, such as winds and geopotential

height, as well as SSTs. Observed precipitation is obtained
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from the Global Precipitation Climatology Project (GPCP;

Adler et al. 2003). The ENSO conditions are defined by the

Niño-3.4 index, by which SSTs are averaged over the Niño-3.4
region (58N–58S, 1708–1208W).

c. Methods

1) TC TRACKING

TCs are identified and tracked in GloSea5 and ERA-Interim

from6-hourly data, using the samemethod as Feng et al. (2019) and

Hodges and Klingaman (2019) (see references therein for more

details). Thebasic trackinguses theTRACKscheme (Hodges 1994,

1995, 1999). In the first instance, all positive vorticity centers that

exceed 0.5 3 1025 s21 in the range 08–608N are tracked in the

spectrally filtered 850-hPa vorticity on the T42 horizontal grid for

GloSea5 and in the average vorticity (between 850 and 600hPa) on

the T63 horizontal grid for ERA-Interim as in Hodges et al. (2017)

where different reanalyses are compared. The T42 grid is used in

GloSea5 due to limited availability of levels. Following the tracking

the T63 vorticity maxima at additional levels up to 200hPa (850,

500, 300, and 200hPa) are added to the tracks using a search

within a 58 radius (geodesic) of the tracked center to facilitate a

warm core search. The TC tracks are identified by applying the

same criteria as used in Hodges et al. (2017), namely

1) the T63 relative vorticity at 850 hPa must attain a threshold

of at least 6 3 1025 s21;

2) the difference in vorticity between 850 and 200 hPa (at T63

spectral truncation) must be greater than 6 3 1025 s21, to

provide evidence of a warm core (via thermal wind balance);

3) the T63 vorticity center must exist at each level between 850

and 200 hPa for a coherent vertical structure;

4) criteria 1 to 3 must be jointly attained for a minimum of four

consecutive timesteps (1day)andonlyapplyover theoceans; and

5) tracksmust start within a latitudinal band (08–308N) and last

for at least 2 days.

Additionally, a further step is made to keep only the parts of

tracks from the first to the last points that satisfy theTC criteria, to

focus on the main TC life cycle stages and exclude the precursor

and post-extratropical transition stages. Tropical cyclogenesis is

defined as the first point of each identified TC track. The tracking

is performed over the full length of the forecasts and reanalysis.

2) ENSEMBLE FORECAST RESAMPLING

The 28 GloSea5 ensemble members from each month of start

dates are independent, because for each of the four start dates per

month the seven ensemble members are perturbed randomly and

continuouslyduring the forecastby stochastic physics (see section2a).

Because the order of ensemble members is arbitrary, a new 28-

member ensemble forecast dataset for 1993–2015 can be generated

by randomly reordering ensemble members without replacement

from each year in 1993–2015. Repeated many times, this creates a

large setof resampled forecasts that canbeused togenerate statistical

distributions of teleconnections and evaluate performance (Johnson

et al. 2017; Guo et al. 2020). We reorder the 28-member GloSea5

ensemble 2000 times to create 56000 (283 2000) 23-yr time series;

larger sizes do not substantially change the results. We refer to these

forecast time series as ‘‘resampled forecast members.’’

We also create sets of subsampled M-member ensembles, in

whichM is 1 to 27, for the 23-yr forecast time series. For each year

of forecasts in 1993–2015,Mmembers are randomly selected from

the original 28 members without replacement. This produces 28!/

(28 2 M)!M! possible unique selections for each year. The M-

member selection is made independently for each of the 23 years.

These M members are then concatenated across the 23 years to

create ensembles of synthetic 23-yr time series. This can produce

[28!/(28 2 M)!M!]23 possible unique ensembles. To reduce com-

putational cost, we randomly choose 2000M-member ensembles;

a sensitivity test shows that more ensembles do not substantially

change the results. We refer to these M-member ensembles as

‘‘sub-sampled ensembles,’’ which are used in section 3c to evalu-

ate the effect of ensemble size on the potential predictability and

prediction performance for TC activity.

The resampling process assumes that the four start dates share

the same features of uncertainty in their forecasts and that the 28

ensemble members of forecasts are randomly distributed around

the mean. These resampled datasets, and the relationships derived

from them, are valid only for the 28-member GloSea5 ensemble.

The relationships may be sensitive to the size of the GloSea5 en-

semble, because a larger or smaller ensemble may have a different

ensemble spread. The results from this statistical resampling may

not agree with, and are not a replacement for, results from model

sensitivity experiments that test variations in ensemble size.

3) SIGNAL-TO-NOISE RATIO

The interannual variability of the ensemble mean is the pre-

dictable signal in the model. In individual ensemble members,

this signal is embedded within the uncertainty of the modeling

system, due to, for example, imperfectly resolved physics and the

chaotic nature of the climate system. We use the signal-to-noise

ratio (SNR) to measure the potential predictability of external

variability (predictable signal) relative to internal variability

(unpredictable signal), as simulated byGloSea5. The calculation

of SNR is adopted from Mei et al. (2015):

SNR5s
f
/s

i
, (1)

where sf is the interannual standard deviation of the ensemble

mean (i.e., the forced external variability) and si is the standard

deviation of the anomaly departures from the ensemble mean in

all individual members (i.e., the random internal variability).

A high SNR indicates high potential predictability of an external

climate signal in GloSea5, while a low SNR value means that

GloSea5 is unable to consistently predict an external signal (i.e., due

to a divergence among model ensemble members). As the SNR is

only amodel estimate, it may not represent the behavior of the true

physical system. Further, a high SNR does not necessarily mean

high prediction performance.

3. Results

a. Climatology of TC track

1) BIAS OF TC TRACK DENSITY

TC track density is calculated at each grid point as the

number of TCs passing through an area defined by a 108 3 108
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box around the grid point per month in JASO. The 28-

member ensemble mean of GloSea5 TC track density aver-

aged over 1993–2015 is verified against the track density from

IBTrACS and ERA-Interim for the same period. There are

discrepancies in TC track density between these two verifi-

cation datasets (Figs. 1a,b). In the WNP, overall, there are

fewer TCs (0.2–0.4 TCs per month; hereafter, TCs month21)

identified in ERA-Interim than in IBTrACS. This could be

related to the model resolution in ERA-Interim, which is too

coarse to produce enough storms that satisfy the TC criteria

in the TRACK scheme [section 2c(1)]. In the central North

Pacific (408–608N), there are more TCs in ERA-Interim, due

to the extended life cycle identified by TRACK. Hodges and

Emerton (2015) and Hodges et al. (2017) discuss in more

detail the agreements and discrepancies between the ob-

served and reanalysis TCs. Because the same TC identifica-

tion scheme is applied to ERA-Interim and GloSea5, and

because ERA-Interim and GloSea5 have similar horizontal

resolutions, validating GloSea5 against ERA-Interim is fairer

than validating GloSea5 against IBTrACS from the per-

spective of model development. We are aware that IBTrACS

is widely used in verification of operational TC forecasts.

Therefore, in our analysis, we use both datasets to evaluate

the prediction performance of GloSea5 for WNP TCs.

In IBTrACS and ERA-Interim, WNP TC track density

varies between 0 to 2.0 TCs month21, with the highest density

east of the Philippines and a local minimum in the central

Pacific (Figs. 1a,b). In the ensemble mean of GloSea5 June

forecasts, the climatological TC track density is more zonally

oriented than in the verification datasets, without a local

minimum in the central Pacific (Fig. 1c). Verifying against

IBTrACS yields a positive bias of 0.5–1.0 TCs month21 in the

central-easternWNP (108–308N, 1308E–1808), whereas in other
regions (e.g., Japan, east of China, and southeast of the

Philippines) GloSea5 has a negative bias of 20.5 to 20.2 TCs

month21 (Fig. 2a). When verifying against ERA-Interim, the

positive bias of track density increases to up to 1.5 TCs

month21 in the central-eastern WNP, while the negative bias

reduces (Fig. 2d). The ensemble spread (standard deviation

across the 28-member ensemble) of TC track density between

GloSea5 members is less than 0.15 TCs month21 over most of

the basin (not shown). Thus, the positive biases in TC track

density in the June forecasts against the different verification

datasets are consistent across the ensemble members.

The GloSea5 WNP TC density biases are associated with the

misrepresentation of cyclogenesis and TC paths. In IBTrACS and

ERA-Interim, WNP TCs mostly originate in the western tropical

Pacific (08–208N, 1008–1608E), while in GloSea5 TCs form across

most of the tropical Pacific (Figs. 1d–f). In the western and central

tropical Pacific (1008E–1508W), GloSea5 June forecasts generate

more TCs than IBTrACS, with the largest bias in the central (.0.3

TCs month21) (Fig. 2g). Cyclogenesis biases against ERA-Interim

are slightly larger than those against IBTrACS (Fig. 2j), as there is

less cyclogenesis in the central tropical Pacific in ERA-Interim

(Fig. 1e). Figures 3a–c show TC translation velocity. In IBTrACS

and ERA-Interim, most low-latitude TCs travel northwest at

2–4ms21 along the southern edge of the NPSH, and recurve north

at 1208–1508E around the western edge of the NPSH. However, in

GloSea5 TCs travel too slowly in the tropics; the recurvature region

is shifted east (1208E–1808) relative to observations (1208–1508E).
The GloSea5 TC translation velocity has a cyclonic bias at low to

middle latitudes of 1–5ms21 (Figs. 3d–i), related to too many TCs

FIG. 1. (a)–(c) Climatology of TC track density in the IBTrACS, ERA-Interim, andGloSea5 June forecast ensemble mean, with contours

showing the values of 0.5, 1.0, and 2.0 TCsmonth21. (d)–(f) Climatology of TC genesis density in IBTrACS,ERA-Interim, andGloSea5 June

forecast ensemble mean, with contours showing the values of 0.3 TCs month21. TC density is calculated at each grid point as the number of

TCs or TC geneses over an area defined by a 108 3 108 box around the grid point, per month over JASO. The analysis period is 1993–2015.
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traveling into the open Pacific and too few reaching the south and

west. The cyclonic bias is larger when verifying against IBTrACS

than against ERA-Interim.

We analyze the effect of forecast lead time on mean TC

frequency prediction by analyzing GloSea5 forecasts initial-

ized in May and April. With lead time, TC track density biases

remain consistent in geographic pattern, but grow in amplitude

in the central-eastern WNP (Figs. 2a–f). Cyclogenesis biases

also grow with lead time (Figs. 2g–l). The track density bias

growth in the central-eastern WNP is also related to a slower

translation speed east of the Philippines (Figs. 3d–i).

2) BIASES OF TC ENVIRONMENTAL CONDITIONS

Environmental conditions for TC genesis and movement in

GloSea5 are analyzed to understand the TC frequency biases. At

low levels (1000hPa), the climatological wind in GloSea5 June

forecasts has a large-scale cyclonic bias in the North Pacific with

respect to ERA-Interim (Fig. 4a). The anomalous convergence as-

sociated with these biases is collocated with a positive precipitation

bias in the western and central tropical Pacific (08–208N, 1008E–

1508W), suggesting excessive convection andmoisture convergence.

Midlevel (e.g., 500hPa) relative humidity biases share the same

spatial pattern as precipitation (not shown), with the largest positive

bias (.10%) in the central tropical Pacific. This wetter condition

favorsTCgenesis in the central tropicalPacific, likely contributing to

the overestimated TC genesis (Figs. 2g,j). The precipitation and

surface wind biases are related to the misrepresentation of the in-

tertropical convergencezone (ITCZ),which is intensifiedand shifted

east in the tropical Pacific (1308E–1608W) relative toGPCP (see the

contour in Fig. 4a for observed climatology of precipitation).

The vertical wind shear (defined as the difference of wind flow

at 200 and 850 hPa), another key factor for TC formation and

development, is also biased in GloSea5 (Fig. 4b). Compared to

ERA-Interim, GloSea5 has stronger wind shear in the western

tropical Pacific (08–208N, 1008–1608E), with a bias of up to

12m s21 in the South China Sea (SCS) and east of the Maritime

Continent (MC). In contrast, in the eastern tropical Pacific (108–
208N, 1608E–1508W), the GloSea5 vertical wind shear is un-

derestimated by 2–10m s21, which may be responsible for the

overestimated TC activity. These errors cause the region of

FIG. 2. (a)–(c) Bias of TC track density in GloSea5 June, May, and April forecast ensemble means, against IBTrACS, with contours

showing the bias values of 0.5, 1.0, and 1.5 TCs month21. (d)–(f) As in (a)–(c), but for bias against ERA-Interim TCs. (g)–(i) Bias of TC

genesis density in GloSea5 June, May, and April forecast ensemble means, against IBTrACS, with contours showing the bias values of 0.3

TCs month21. (j)–(l) As in (g)–(i), but for bias against ERA-Interim TCs. Only biases larger than the ensemble spread are plotted. TC

density is calculated at each grid point as the number of TCs or TC geneses over an area defined by a 108 3 108 box around the grid point,

per month over JASO. The analysis period is 1993–2015.
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climatologically weak shear (contour in Fig. 4b) to shift east in

GloSea5. The errors are associated with an intensified, and

eastward shift of, the tropical overturning circulation (i.e., a

lower-tropospheric westerly bias and an upper-tropospheric

north-easterly cross-equatorial bias).

The GloSea5 SSTs in the June forecasts show a warm bias in

the eastern Pacific (08–308N, 1808–1208W) and a cold bias in the

Indo-Pacific warm pool (08–208N, 908–1508E) (Fig. 4c); the cold

bias reaches over 18C in the SCS and east of the Philippines. East

of the Philippines (58–108N, 1208–1508E), the cold SST and posi-

tive wind shear biases may be responsible for the slightly under-

estimated TC genesis (Figs. 2g,j). In the overall western tropical

Pacific (08–208N, 1008–1608E), although the SST and wind shear

biases are both unfavorable for TC formation (Figs. 4b,c),

GloSea5 still produces excessive TC genesis (Figs. 2g,j), perhaps

because the SSTs remain warm enough (.288C) for TC genesis.

The east Pacific warm SST bias extends the area of the Indo-

Pacific warm pool in GloSea5, whichmay weaken wind shear and

increase convection in the east. The cyclogenesis overestimation

in thewestern tropical Pacificmay also be related to remote biases

of excessive deep convection and warm SSTs in the central

tropical Pacific (08–208N, 1508E–1508W), which favor develop-

ment of TC precursor systems such as westward propagating

tropical depressions and equatorial waves.

The biases in the TC track density and translation velocity in

GloSea5 June forecasts (Figs. 2a,d and 3d,g) are also associated

with the misrepresentation of the large-scale steering flow.

Compared to ERA-Interim, the GloSea5 WNP steering flow

(500hPa) has a strong cyclonic bias (Fig. 4d), which matches the

TC propagation velocity bias (Figs. 3d,g) but has a larger mag-

nitude. The wind bias is accompanied by a weakened NPSH by

20–50m. Associated with the NPSH and steering flow biases,

GloSea5 TCs tend to move westward too slowly in the tropics

and recurve north farther east. This is associated with too many

TCs in the central Pacific and too few in the western WNP

(Figs. 2a,d). The weak NPSH bias is consistently found in a hi-

erarchy of Met Office Unified Model (MetUM) coupled and

atmosphere-only simulations (e.g., Feng et al. 2019), suggesting a

systematic error. The above diagnosed biases in TC environ-

mental factors are much larger than the ensemble spreads of

those factors, indicating the biases are robust.

Changes in TC environmental conditions at longer lead

times are shown in the online supplemental material (Figs. S1

and S2). Biases in environmental factors grow from the June to

the May forecasts: humidity in the central tropical Pacific in-

creases, wind shear and SST east of theMCweakens and cools,

respectively, and the NPSH weakens. The growth slows from

May to April forecasts, indicating possible saturation of the

biases. In short, GloSea5 exhibits a significant El Niño–type
bias in WNP environmental conditions that grows quickly and

may saturate after 2 months’ lead time. However, it is difficult

to diagnose which conditions are most responsible for the TC

FIG. 3. (a)–(c) Climatology of TC translation velocity in IBTrACS, ERA-Interim, and GloSea5 June forecast ensemble mean. (d)–(f)

Bias of TC translation velocity in GloSea5 June, May, and April forecast ensemble means, against IBTrACS. (g)–(i) As in (d)–(f), but for

bias against ERA-Interim TCs. TC translation velocity is calculated at each grid point as TC traveling speed averaged by all TCs that are

passing over an area defined by a 108 3 108 box around the grid point over JASO. The analysis period is 1993–2015.
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biases, because in a coupled system these environmental con-

ditions biases are closely associated. Further detailed sensi-

tivity experiments are required to address this challenge.

b. ENSO teleconnection

1) TELECONNECTION TO TC TRACK DENSITY

ENSO conditions are defined by the Niño-3.4 index. The

GloSea5 ensemble mean predicts well the observed Niño-3.4
index in JASO (Fig. 5), both for the variability and magnitude,

with r 5 0.94, 0.90, and 0.85 for the June, May, and April

forecast ensemble mean, respectively. The SNR of Niño-3.4 in
the ensemble forecasts is .3, indicating a small internal vari-

ability and a large external variability.

Figures 6a, 6b, 7a, and 7b show the regional TC frequency–

ENSOrelationships in the twoverificationdatasets.Both IBTrACS

and ERA-Interim show strong and positive TC frequency–ENSO

relationships (correlation coefficient r . 0.6; regression coefficient

b . 0.4 TCs month21 8C21) in the northeast WNP (e.g., southeast

of Japan) and the central and eastern tropical Pacific (08–208N,
1508E–1508W); there are weak and negative correlations (20.35,
r , 0; 20.2 TCs month21 8C21 , b , 0) in the southwest WNP

(e.g., the SCS, the southern China, and the Philippines).

For June forecasts, GloSea5 ensemble mean correctly re-

produces the strong positive correlations in the central and

eastern tropical Pacific (Fig. 6c). The GloSea5 correlations are

strongly negative in both the western and northern WNP

(r , 20.6), whereas in IBTrACS and ERA-Interim the cor-

relations are strongly positive in the northeast (e.g., south of

Japan) and weakly negative in the southwest (e.g., the SCS).

The regression coefficient b between ENSO and regional TC

frequency is over 50% smaller inGloSea5 ensemblemean than

in either IBTrACS or ERA-Interim in most regions, except for

the southwest WNP (e.g., the SCS) (Fig. 7c). We also analyzed

b by combining the 28 individual members, but the results

remain similar. This suggests that in GloSea5, the sensitivity of

TC frequency to ENSO is too weak in most of the WNP, even

though the TC–ENSO correlations are enhanced. At longer

lead times, the negative correlation in the north and west of the

basin intensifies and expands; the size of negative b values in

the west increases (Figs. 6c–e and 7c–e).

Ensemble averaging reduces model uncertainty, increasing

the contribution of external variability, for example, related to

ENSO. However, observations (and ERA-Interim) have only

one single ‘‘ensemble member’’. Thus, it is unfair to compare

the observed or ERA-Interim TC–ENSO teleconnection with

that in the GloSea5 ensemble mean. We analyzed the distri-

bution of the regional TC–ENSO teleconnection in the 56 000

‘‘resampled forecast member’’ time series for 1993–2015

[section 2c(2)].

FIG. 4. (a) GloSea5 1000-hPa wind (vectors) and precipitation (shaded) biases, (b) vertical wind shear bias,

(c) SST bias, and (d) 500-hPa wind (vectors) and geopotential height (GPH; shaded) biases, in June forecast

ensemble mean. Blue lines are the climatology of environmental conditions in observations or ERA-Interim, i.e.,

6mmday21 of GPCP precipitation, 8m s21 of vertical wind shear, 288C of SST, and 5870m of GPH from ERA-

Interim, respectively. Only biases larger than the ensemble spread are plotted. Precipitation is verified against

GPCP, while other fields are verified against ERA-Interim. The analysis period is 1993–2015.
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The distributions of the ENSO–TC teleconnection (r and b)

in the resampled forecast members with different lead times

are shown in Fig. 8. The spatial pattern of the median r

(Figs. 8a–c) is similar to the ensemble-mean r (Figs. 6c–e), but

the median r is much smaller (20.4 , r , 0.4) because en-

semble averaging strengthens the correlation. The dispersion

of r is nearly homogeneous over the North Pacific, indicating

the consistent variability in the simulated TC–ENSO telecon-

nection. The median of b has the same spatial pattern and

magnitude as the ensemble-mean teleconnection, while the

dispersion of b is larger in the WNP and smaller in the eastern

Pacific (Figs. 8d–f). By considering the dispersions of r and b in

the resampled forecast members, in the northern and eastern

WNP, the observed TC–ENSO teleconnection is outside the

range of median values plus or minus spread, confirming the

robustness of the negative bias in the teleconnection in

GloSea5.

2) TELECONNECTION TO TC ENVIRONMENTAL

CONDITIONS

The observed regional TC–ENSO relationships can be

interpreted using the ENSO teleconnections to the large-

scale atmospheric conditions in observations and ERA-

Interim (correlation coefficients for interannual variability

in Figs. 9a–d, regression coefficients in Fig. S3). In El Niño
years, a substantial cyclonic near-surface circulation de-

velops in the North Pacific, with strong westerly anomalies

in the central tropics (1508E–1508W) (Fig. 9a). These west-

erly anomalies bring moist and warm air from the warm pool

to the central tropics, where the upper ocean is also warm in

El Niño years (Fig. 9c). Moister air and an increased vertical

temperature gradient enhance convection in this region.

Vertical wind shear is significantly reduced in the eastern

tropical WNP (08–208N, 1208E–1808) during El Niño
(Fig. 9b), due to the eastward shifted zonal circulation. These

changes favor TC formation in the central tropical Pacific

(1508E–1508W) and suppress it in the west (1008–1508E)
(Figs. 6a,b).

In ERA-Interim, the El Niño–associated westerly steering

flow anomaly in the western tropical Pacific (08–108N, 1008E–
1808) slows TCs traveling west (Fig. 9d). Consequently, the

anomalous TC motion (translation velocity) is eastward in the

tropics (Fig. S4a). In the midlatitudes, because the westerly

steering flow anomaly is collocated with the reduced NPSH in

El Niño years, TCs begin to recurve farther east. The opposite-

signed patterns are found in La Niña years. These anomalies

lead to positive TC density–ENSO correlations in the northern

and eastern WNP (Figs. 6a,b). (Correlation coefficients for

FIG. 6. (a),(b) Correlation coefficient between TC track density and ENSO in IBTrACS and ERA-Interim. (c)–(e) Correlation co-

efficient between TC track density and ENSO in GloSea5 June, May, and April forecast ensemble means. Dotted areas are where

correlations pass significance test at the 90% confidence level. TC track density is calculated at each grid point as the number of TCs over

an area defined by a 108 3 108 box around the grid point, per month over JASO. The analysis period is 1993–2015.

FIG. 5. Niño-3.4 index from ERA-Interim SST (black), and

GloSea5 June (red), May (green), and April (blue) forecasts for

JASO. Solid line represents the ensemblemean, and shaded area is

for the ensemble spread.
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interannual variability are given in Figs. 9a–d, and regression

coefficients in Fig. S3.)

The GloSea5 errors in the TC–ENSO teleconnection in the

northern and western WNP are associated with errors in the

simulated environment–ENSO teleconnections. Figures 9e–h

show the correlations between ENSO and the environmental

conditions in the GloSea5 ensemble mean, for the June fore-

casts, with regression coefficients shown in Figs. S3e–h. In El

Niño years, GloSea5 produces significantly less rainfall in the

subtropical WNP (208–508N, 1008E–1808), whereas no such

signal is seen in GPCP (Figs. 9a,e). Equally, increased 500-hPa

relative humidity in the subtropical WNP is strongly associated

FIG. 7. (a),(b) Regression coefficient between TC track density and ENSO in IBTrACS and ERA-Interim. (c)–(e) Regression coef-

ficient between TC track density and ENSO in GloSea5 June, May, and April forecast ensemble means. Dotted areas are where cor-

relations pass significance test at the 90% confidence level. TC track density is calculated at each grid point as the number of TCs over an

area defined by a 108 3 108 box around the grid point, per month over JASO. The analysis period is 1993–2015.

FIG. 8. (a)–(c) Median of correlation coefficients between TC track density and ENSO in GloSea5 June, May, and April resampled

forecast members, with contours showing the standard deviation of correlation samples. (d)–(f) As in (a)–(c), but for regression coeffi-

cients between TC track density and ENSO. TC track density is calculated at each grid point as the number of TCs over an area defined by

a 108 3 108 box around the grid point, per month over JASO. The analysis period is 1993–2015.
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with El Niño events in GloSea5, which is again less clear in

ERA-Interim (not shown). The discrepancy could be related to

the ITCZ, which is shifted farther east in El Niño years in

GloSea5. The El Niño–related increase in vertical wind shear

in the western tropics (east of MC) and subtropics (208–408N)

of the Pacific is more robust and extensive in GloSea5 than in

ERA-Interim (Figs. 9b,f). In addition, the observed western

Pacific cold SST anomaly associated with El Niño is extended

farther west to the SCS and farther east to the central Pacific

(Figs. 9c,g). These conditions suppress TC activity in the

FIG. 9. (a) GPCP precipitation–ENSO correlation (shaded) and 1000-hPa wind–ENSO regression (vectors) in

ERA-Interim. (b) Vertical wind shear–ENSO correlation in ERA-Interim. (c) SST–ENSO correlation in ERA-

Interim. (d) 500-hPa GPH–ENSO correlation (shaded) and 500-hPa wind–ENSO regression (vectors) in ERA-

Interim. (e)–(h) As in (a)–(d), but for GloSea5 June forecast ensemble mean. Only correlations or regressions that

pass significance test at the 90% confidence level are plotted. The analysis period is 1993–2015.
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western WNP (1008–1508E) and encourage TC activity in the

eastern WNP (1508E–1808) during El Niño years, enhancing

the effect of ENSO on TC track density (Fig. 6c).

The ENSO teleconnection to the steering flow in GloSea5

also deviates from that in ERA-Interim (Figs. 9d,h; see also

Figs. S3d,h). In the tropics the westerly steering flow due to El

Niño is stronger than expected, while in the subtropics the

steering flow due to El Niño is weaker, related to the smaller

changes in the NPSH. Combined with the systematically weaker

steering flow in GloSea5 (Fig. 4d), the errors in the steering

flow–ENSO teleconnection slow TCs traveling from east to the

west in El Niño years, and cause TCs to begin to recurve farther

east than observed (Fig. S4b). In the end, toomanyTCs travel to

the eastern WNP and too few TCs travel to the north and west.

The environment–ENSO teleconnections (r and b) in the May

and April forecasts are provided in the supplemental material

(Figs. S5 and S6). At longer lead time, the teleconnections to the

NPSH and steering flow in the subtropical Pacific become even

weaker and shifted farther east, increasing the teleconnection

bias. This is consistent with the effect of lead time on the TC–

ENSO teleconnection for the WNP (Figs. 6 and 7).

c. Interannual variability of TC frequency

1) POTENTIAL PREDICTABILITY

The regional interannual variability of TC track density is

shown in Fig. 10. In ERA-Interim, the TC frequency variability

is largest east of the Philippines at.0.5 TCsmonth21 (Fig. 10a)

or 50% of climatology. In GloSea5 for the June forecasts, the

ensemble mean exhibits substantially weaker variability over

these regions (i.e., ,0.2 TCs month21; Fig. 10b). The internal

variability due to model uncertainty is large in the WNP

(Fig. 10c). The SNR of TC external variability is ,0.5 in re-

gions of the WNP, and .0.5 in the eastern Pacific (Fig. 10d);

the potential predictability is stronger in the eastern Pacific,

but weaker in the WNP. The weak potential predictability in

the WNP TC frequency is related to the weak potential pre-

dictability in the environmental conditions (Fig. S7).

In the ensemble forecasts, the external variability is isolated

through averaging the ensemble members. Efficient use of

computational resources requires understanding of the mini-

mum ensemble size to reliably represent external variability.

Here, we take the 28-member ensemble mean as the ‘‘true’’

external variability. For each subsampled ensemble size [1 to

27 members; described in section 2c(2)], the ensemble means

of the 2000 ‘‘sub-sampled ensembles’’ are then correlated with

the ‘‘true’’ external variability. The average results for TC

frequency in the WNP (08–608N, 1008E–1808) and the eastern

Pacific (08–608N, 1808–1208W) basins are shown in Fig. 11. In

the WNP, clearly, the external variability of TC frequency is

captured better in GloSea5 for larger ensemble sizes (Fig. 11a).

For small ensembles, potential prediction performance is

higher for shorter lead time forecasts, suggesting the potential

predictability increases faster with ensemble size at shorter

FIG. 10. (a) Interannual standard deviationofTC trackdensity inERA-Interim,with contours showing the values of

0.5 TCs month21. (b) Interannual standard deviation of external variability of TC track density in GloSea5 June

forecasts, with contours showing the values of 0.2 and 0.5 TCsmonth21. (c) Interannual standard deviation of internal

variability of TC track density in GloSea5 June forecasts, with contours showing the values of 0.5 TCs month21.

(d) SNR of interannual variability of TC track density in GloSea5 June forecasts, i.e., ratio of (b) to (c), with contours

showing the values of 0.5. TC trackdensity is calculated at each grid point as the number of TCs over an areadefined by

a 108 3 108 box around the grid point, per month over JASO. The analysis period is 1993–2015.
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lead times. In the eastern Pacific, the potential predictability

for external variability increases faster with small ensemble

size than in the WNP (Fig. 11b).

2) ACTUAL PREDICTABILITY

The interannual correlation for regional TC frequency anoma-

lies between GloSea5 and IBTrACS, measuring the actual pre-

dictability for TC frequency in GloSea5, is shown in Figs. 12a–c.

The value of r is 0.5–0.8 in the central and easternPacific,where the

TC–ENSO teleconnections are well represented (Figs. 6 and 7). In

the SCS and northern China, where the weak TC–ENSO tele-

connection is observed, r is 0.4–0.6. In the northeast WNP, where

GloSea5 TC–ENSO teleconnections have the largest errors, the

TC variability is negatively correlated with IBTrACS (r 5 20.4

to20.2). For the May and April forecasts, the performance is de-

graded in both the southwest and thenortheastWNP.Performance

is nearly identical when verified against ERA-Interim (Figs. 12d–f),

except in northern China and the northeast WNP (south of Japan)

where the performance degrades.

Prediction performance for basinwide TC frequency inter-

annual variability as a function of ensemble size and lead time

is shown in Figs. 13a and 13b. In the WNP, verified against

IBTrACS, prediction performance increases with ensemble

size, but is never significant at the 90% confidence level, with

the highest r5 0.23, 0.16, and 0.08 for the June, May, and April

forecasts, respectively. Verified against ERA-Interim TCs, the

performance of the June forecasts increases (highest r5 0.45),

but it remains poor for May and April forecasts. In contrast, in

the eastern Pacific, ensemble size has a very limited effect on

TC variability prediction performance; the overall perfor-

mance is r . 0.65 for all lead times, with a slightly better per-

formance against ERA-Interim than against IBTrACS. This is

related to a good representation of the strong TC–ENSO tel-

econnections over this basin. It is worth noting the large dis-

crepancies between the potential predictability (Fig. 11a) and

actual prediction performance (Fig. 13a) forWNPTC frequency

variability. This suggests further increasing actual performance

requires improving the underlying physical model in GloSea5,

not increasing ensemble size.

It is important to emphasize the SCS (08–258N, 1008–1208E),
as it is the region where GloSea5 performs best for TC fre-

quency variability in the marginal seas of the WNP (Fig. 12).

The good performance in the SCS is associated with the ac-

curate representation of the sign of the TC–ENSO telecon-

nection in GloSea5 (Figs. 6, 7). Figure 13c shows the prediction

performance for SCS TC frequency anomalies as a function of

lead time and ensemble size. The performance increases for

shorter lead times and larger ensemble sizes; performance

tends to saturate for ensemble sizes larger than 10. Verified

against ERA-Interim, the performance of the 28-member en-

semble mean for SCS TCs reaches r5 0.56, 0.47 (significant at

the 95% confidence), and 0.19 for the June, May, and April

forecasts, respectively. Verifying against IBTrACS increases

performance, with the largest r 5 0.63, 0.49 (significant at the

95% confidence), and 0.30 (significant at the 85% confidence)

for the June, May, and April forecasts, respectively. The good

performance of longer-lead-time forecasts in the SCS may be

useful for early warnings.

4. Conclusions and discussion

We evaluated the performance of the U.K. Met Office

GloSea5-GC2 global seasonal forecast system for predicting

WNP TC frequency in JASO (July–October), from ensemble

forecasts initialized in June, May, and April. Although GloSea5

captures the main features of the observed climatological TC

frequency in the WNP, considerable biases remain, with TCs

underpredicted in the western and northern WNP and sub-

stantially overpredicted in the east. WNP TC genesis and paths

are both biased. The TC frequency bias may be related to El

Niño–type biases in environmental conditions, such as mid-

tropospheric moisture, wind shear, and SSTs. The WNP anti-

cyclonic steering flow is also biased, collocated with a weakened

NPSH, causing TCs to move slower in the tropics and recurve

FIG. 11. (a) Average correlation coefficient for WNP TC frequency anomaly (08–608N, 1008E–1808) in JASO

between the 28-member ensemblemean andGloSea5 subsampled ensemblemean, as a function of subset ensemble

size, in June, May, and April forecasts. (b) As in (a), but for the eastern Pacific (EP; 08–608N, 1808–1208W). The

analysis period is 1993–2015.
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north farther east than observed. At longer lead times, the

GloSea5 TC frequency bias increases in the central-eastern

WNP, due to the bias growth both in cyclogenesis and in

TC paths.

The WNP TC–ENSO teleconnection is misrepresented in

GloSea5. A strong negative TC–ENSO correlation is simu-

lated by GloSea5 in the north and the west, whereas in ob-

servations or reanalysis the correlation is strongly positive in

the north and weakly negative in the southwest (e.g., the SCS).

Although ENSO is well predicted, the impact on the TC en-

vironmental conditions (e.g., midlevel relative humidity, wind

shear, and SST) expands too far zonally, which strengthens the

effect of El Niño to suppress tropical cyclogenesis in the

westernWNP and to encourage it in the east. In El Niño years,

too many TCs travel to the eastern WNP and too few TCs

travel to the north and west, likely due to the strong westerly

steering flow related to El Niño at the equatorial edge of

the NPSH.

In GloSea5, the regional performance for the interannual

TC frequency variability is strongly related to the representa-

tion of the regional TC–ENSO teleconnection. The best per-

formance is in the regions where the TC–ENSO teleconnection

is well represented; performance is moderate in the SCS, where

the sign of the TC–ENSO teleconnection is correct but the

magnitude is overestimated; performance is worst in the

northeast WNP, where GloSea5 misrepresents both the sign

and magnitude of the TC–ENSO teleconnection. In the WNP,

GloSea5 performance for TC frequency variability is strongly a

function of ensemble size, since the simulated TC–ENSO

teleconnection has high intraensemble variability. In contrast,

ensemble size has a very limited effect on performance in the

eastern Pacific, where the strong TC–ENSO teleconnection is

consistently represented across the ensemble members.

In GloSea5, the western tropical Pacific cyclogenesis bias

may not be associated solely with local environmental condi-

tions, but also with remote environmental conditions such as in

the central tropical Pacific, where TC precursors (e.g., equa-

torial waves and tropical depression disturbances) are proba-

bly too active in GloSea5. SST biases in other ocean basins,

such as the Atlantic and Indian Oceans, may also be relevant.

Future work should investigate the representation of these

precursors and remote conditions in GloSea5 and evaluate

their effects on WNP TC prediction performance (e.g., Vecchi

et al. 2019). Other modes of variability, such as the Indian

Ocean dipole, tropical North Atlantic SST, and quasi-biennial

oscillation, may also affect interannual WNP TC variability

and prediction performance. Evaluating representability of

teleconnections of these modes in GloSea5 is equally impor-

tant to understand WNP TC prediction performance.

Reasonably representing the TC environmental conditions

and their teleconnections is important for dynamical models to

accurately predict the interannual WNP TC variability. The

causes of GloSea5 biases in these fields are not immediately

clear; biases may be related to the convection scheme and its

sensitivity to moisture. Evaluating the genesis potential index

(GPI; Camargo et al. 2007a; Zuo et al. 2018) was initially

thought to be useful for understanding GloSea5 genesis biases.

However, GPI is of limited use for model validation, because

the globally fitted index does not well represent the mean or

interannual variability of TC genesis at regional scales (in-

cluding the WNP; e.g., Camargo et al. 2007a; Menkes et al.

2012), and also because the index was originally calibrated for

the observed relationships between TC genesis and environ-

mental factors, which may differ considerably in models (e.g.,

Camargo et al. 2007b). Hence, diagnosing the environmental

factors in terms of GPI that are most responsible for the biases

FIG. 12. (a)–(c) Correlation coefficient for TC track density between IBTrACS and GloSea5 June, May, and April forecast ensemble

means. (d)–(f)As in (a)–(c), but for correlation betweenERA-Interim andGloSea5 ensemblemeans.Dotted areas are where correlations

pass significance test at the 90% confidence level. TC track density is calculated at each grid point as the number of TCs over an area

defined by a 108 3 108 box around the grid point, per month over JASO. The analysis period is 1993–2015.
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is not considered here in our paper. Understanding the sources of

these errors remains challenging and an active area of research

that requires detailed sensitivity experiments. Additionally, in the

future, it will be worth comparing the regional performance of

GloSea5 for WNP TCs with that of other forecast systems, in-

cluding statistical and hybrid statistical–dynamical approaches.
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