
Effects of misspecified time-correlated 
model error in the (ensemble) Kalman 
Smoother 
Article 

Published Version 

Creative Commons: Attribution 4.0 (CC-BY) 

Open Access 

Ren, H., Amezcua, J. and Van Leeuwen, P. J. (2021) Effects of
misspecified time-correlated model error in the (ensemble) 
Kalman Smoother. Quarterly Journal of the Royal 
Meteorological Society, 147 (734). pp. 573-588. ISSN 1477-
870X doi: 10.1002/qj.3934 Available at 
https://centaur.reading.ac.uk/93018/ 

It is advisable to refer to the publisher’s version if you intend to cite from the 
work.  See Guidance on citing  .

To link to this article DOI: http://dx.doi.org/10.1002/qj.3934 

Publisher: Royal Meteorological Society 

All outputs in CentAUR are protected by Intellectual Property Rights law, 
including copyright law. Copyright and IPR is retained by the creators or other 
copyright holders. Terms and conditions for use of this material are defined in 
the End User Agreement  . 

www.reading.ac.uk/centaur   

http://centaur.reading.ac.uk/71187/10/CentAUR%20citing%20guide.pdf
http://www.reading.ac.uk/centaur
http://centaur.reading.ac.uk/licence


CentAUR 

Central Archive at the University of Reading 
Reading’s research outputs online



Received: 30 April 2020 Revised: 15 September 2020 Accepted: 18 September 2020 Published on: 2 November 2020

DOI: 10.1002/qj.3934

R E S E A R C H A R T I C L E

Effects of mis-specified time-correlated model error in the
(ensemble) Kalman Smoother

Haonan Ren1 Javier Amezcua1 Peter Jan van Leeuwen1,2

1Department of Meteorology, University
of Reading, Reading, UK
2Department of Atmospheric Science,
Colorado State University, Fort Collins,
Colorado

Correspondence
H. Ren, Department of Meteorology,
University of Reading, Reading RG6 6BB,
UK.
Email: h.ren@pgr.reading.ac.uk

Funding information
UK National Centre for Earth Observation
and the European Research Council via
the EU Horizon 2020 framework under
the CUNDA project with grant number
694509

Abstract
Data assimilation is often performed under the perfect model assumption.
Although there is an increasing amount of research accounting for model errors
in data assimilation, the impact of an incorrect specification of the model errors
on the data assimilation results has not been thoroughly assessed. We investi-
gate the effect that an inaccurate time correlation in the model error description
can have on data assimilation results, deriving analytical results using a Kalman
Smoother for a one-dimensional system. The analytical results are evaluated
numerically to generate useful illustrations. For a higher-dimensional system,
we use an ensemble Kalman Smoother. Strong dependence on observation
density is found. For a single observation at the end of the window, the pos-
terior variance is a concave function of the guessed decorrelation time-scale
used in the data assimilation process. This is due to an increasing prior vari-
ance with that time-scale, combined with a decreasing tendency from larger
observation influence. With an increasing number of observations, the posterior
variance decreases with increasing guessed decorrelation time-scale because the
prior variance effect becomes less important. On the other hand, the posterior
mean-square error has a convex shape as a function of the guessed time-scale
with a minimum where the guessed time-scale is equal to the real decorrela-
tion time-scale. With more observations, the impact of the difference between
two decorrelation time-scales on the posterior mean-square error reduces. Fur-
thermore, we show that the correct model error decorrelation time-scale can be
estimated over several time windows using state augmentation in the ensem-
ble Kalman Smoother. Since model errors are significant and significantly time
correlated in real geophysical systems such as the atmosphere, this contribution
opens up a next step in improving prediction of these systems.

K E Y W O R D S

data assimilation, linear model, model error, temporal auto-correlation

1 INTRODUCTION
Data assimilation is a mathematical discipline to estimate
the state of a system and its uncertainty by combining

information from our prior knowledge of that system
with observations of that system. From Bayes’ theorem
(Bayes, 1763), the general solution for the data assimilation

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the
original work is properly cited.
© 2020 The Authors. Quarterly Journal of the Royal Meteorological Society published by John Wiley & Sons Ltd on behalf of the Royal Meteorological Society.

Q J R Meteorol Soc. 2021;147:573–588. wileyonlinelibrary.com/journal/qj 573

https://orcid.org/0000-0003-4342-3305
https://orcid.org/0000-0002-4952-8354
https://orcid.org/0000-0003-2325-5340
http://creativecommons.org/licenses/by/4.0/


574 REN et al.

problem is given by:

p(x|y) = p(y|x)p(x)
p(y)

, (1)

where x represents the state of the system, and y denotes
the observations. The prior probability density function
(pdf), p(x), contains the background information of the
state variables, and the denominator p(y) is the marginal
pdf of the observations and independent from state vari-
ables, and indeed plays no active role in state estimation.
The conditional pdf p(y|x) contains the information from
the observations, and is the probability density of the
observations given the current state of the system. Lastly,
the conditional pdf p(x|y) is the posterior which represents
the probability of the state variable given the observations,
and obtaining it is the ultimate goal of data assimila-
tion. In the atmospheric and oceanic sciences, various
approximate data assimilation methods have been devel-
oped in the past few decades, typically originating in either
variational approaches (Courtier and Talagrand, 1987)
or (ensemble) Kalman Filter-based approaches (Evensen,
1994). Recently there has been a surge in hybrid methods
trying to combine the advantages of the variational and
KF-based methods, for instance using variational methods
to solve the ensemble problem (Zupanski, 2005).

In the past few decades, data assimilation methods like
four-dimensional variational method (4D-Var) have often
been performed under the assumption that the numer-
ical models are perfect, known as the strong-constraint
setting (discussion in e.g., Amezcua and Van Leeuwen,
2018). Typically, it is assumed that the model errors can
be neglected when compared with other error sources in
the systems, such as the errors in the initial condition
and observations (Trémolet, 2006). Since many dynami-
cal systems of interest are chaotic, which means they are
highly sensitive to the initial condition (Lorenz, 1963), a
lot of research has focused on the errors in the initial con-
dition in order to improve the accuracy of the weather
forecast.

There are cases, however, when errors not coming
from initial conditions become important in the accu-
racy of the forecasts and hence the data assimilation
process. In fact, there is ample evidence that this is the
case for most, if not all, geoscience disciplines (e.g., Bony
et al., 2015; Kuma et al., 2018; Muelmenstadt and Fein-
gold, 2018; Fox-Kemper et al., 2019; Fennel et al., 2019;
Fisher and Koven, 2020). These model errors are often
hard to estimate, which has hampered their inclusion in
the data assimilation process. However, there are many
reasons why a proper estimate of model errors needs to
be included, apart from the fact that they are there in
our prediction models. Jazwinski (1970) points out that,

in order to obtain an optimal estimate of the system, we
need a better understanding of the error covariance matri-
ces from all error sources. Furthermore, including random
model errors in smoothers for chaotic systems such as
the atmosphere and the ocean makes these system less
dependent on initial conditions, allowing for more effi-
cient optimisation and longer smoother windows. Indeed,
with better understanding of initial and observational
errors, and a strong reduction in the former, there has been
an increasing number of works taking model errors into
account in data assimilation process (e.g., Carrassi and
Vannitsem, 2010; Howes et al., 2017), resulting in so-called
weak-constraint data assimilation.

Model error is essentially the mismatch between the
true evolution of the system and the forecast produced
by the numerical model over one model time step. There
are various sources for model errors in numerical mod-
els, such as numerical discretization of the underlying
differential equations describing the system, incorrect
parametrizations, missing physical processes, etc. Some
works implement a random additive variable at any given
time step as model error (e.g., Evensen and Van Leeuwen,
1996), or insert a random multiplicative factor in the ten-
dencies of the model governing equations (Palmer et al.,
2009). For simplicity, model errors are often considered
Gaussian random variables with zero mean and no cor-
relation over time. Alternatively, the model error can be
considered to be fixed over the simulation period, result-
ing in a model bias. However, in operational systems, real
model errors will be complex in both spatial and temporal
behaviour, as can be inferred directly from the sources of
these errors.

In this paper we study the case in which the spatial
structure of the model error is known, but its temporal
structure is uncertain. In reality, both space and time struc-
ture are unknown, but we focus on the latter. We consider
that the nature run evolves with a true model error; that
is, a random model forcing with a certain decorrelation
time-scale𝜔r. We label this time-scale memory. The imper-
fect forecast model uses a guessed memory 𝜔g, which is
different from the real one.

This work has two main purposes. The first is to investi-
gate the effect of the incorrect time-correlated model error
on data assimilation results under different observational
frequencies, and different number of observations in an
assimilation window. More specifically, we aim to quantify
the change in performance of the Kalman Smoother when
the time statistics of the model error are mis-specified,
and the sensitivity of this change to different assimilation
parameters. These results are extended to the ensemble
case. The second objective is to use the data assimilation
process to diagnose the memory of the model error. This
is of great importance since it allows us to discriminate
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F I G U R E 1 Plots of the trajectories of the true state of the system (black), three posterior ensemble members (pink, randomly chosen
from 200 members), and the posterior ensemble mean (red). (a, c) show results for a true white-noise model error and an assumed bias model
error for two observation densities. Note that the posterior estimates are poor in both cases. (b, d) depict a bias true model error and an
assumed white-noise model error. The result with one observation is poor, while if many observations are present, the assimilation result is
consistent within the ensemble spread

between a bias and a completely time-independent model
error, and identify cases in between.

Before continuing, a simple illustration can illuminate
the issue. In Figure 1 we show results of a smoothing
process for a simple one-dimensional system over a time
window of 20 nature time steps. We use an ensemble
Kalman Smoother with two different observation densities
in time (the details are discussed in a later section). The
memories in the nature model and the forecasts models
do not coincide. We can see that with 𝜔r = 0.0, when the
actual model error is a white-in-time random variable, the
evolution of the true state of the system behaves rather ran-
domly with the present model settings. If we do not know
the memory and assume the model error is a bias in the
data assimilation process (𝜔g → ∞), the estimation made
by the data assimilation method is not even close to the
truth, even with very dense observations in the simulation
period, as shown in Figures 1a, c. On the other hand, if
the model error in the true model evolution behaves like
a bias, and we assume that the model error is white in

time in the data assimilation process, the results are quite
different with different observation frequencies. As shown
in Figures 1b, d, with very frequent observations, we can
see a fairly good performance of the data assimilation pro-
cess, but with a single observation the estimation is still not
accurate.

The general structure of this paper is as follows. In
section 2, we investigate the performance of the Kalman
Smoother on a linear model with time-correlated model
error analytically. When we are unable to find closed
expressions, we numerically evaluate the (open) ana-
lytical expressions when necessary. We determine the
behaviour of the posterior variance and mean-square error
for different values of true and guessed memory. Next,
a higher-dimensional system is explored in Section 3
via numerical experiments using the Ensemble Kalman
Smoother. In Section 4 we use state augmentation to try to
infer the memory time-scale from the assimilation process,
with satisfactory results. Section 5 contains a summary and
a discussion of the results.
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In this paper we follow the notation introduced by
Amezcua and Van Leeuwen (2018). Identifying different
attributes in a variable can be difficult in some expressions.
In general, superindices are used as time indices. If there
is a comma in the superindex, it is because we have also
added a label corresponding to the role in the data assim-
ilation process. For instance, the variable 𝜇

t,b
x would be

the background mean of x at time t. There are some cases
in which the function is clear, for instance a superscript
applied to a vector cannot mean exponentiation. In the
case where superscripts denote exponents, this is clearly
specified in the text. An example of more complicated uses
is: Kx,t

𝜔g
which refers to the Kalman gain evaluated in x space

at time t computed with the covariance matrix which uses
the guessed memory𝜔g. More complicated uses of the sub-
and superscripts are clearly identified in the text, and we
also recommend that the reader check Amezcua and Van
Leeuwen (2018) for clarity.

2 TIME- CORRELATED MODEL
ERROR IN THE KALMAN
SMOOTHER

Let us consider a simple linear model with the governing
equation over one model time step:

xt+1 = Mt→(t+1)xt + 𝝂
t+1, (2)

where Mt→(t+1) ∈ Nx×Nx represents the linear model oper-
ator and its size depends on the number of variables in the
system Nx, xt ∈ Nx is the state variable at given time step
t, and 𝝂t+1 ∈ Nx is an additive model error which con-
tains correlation in time and space. The initial condition of
the random variable, x0 ∈ Nx , is drawn from a multivari-
ate Gaussian distribution (MGD), x0 ∼  (𝝁0,b

x ,B), where
𝝁

0,b
x ∈ Nx is the mean of the random variable and B ∈

Nx×Nx is its covariance matrix.
The time-correlated model error at time t also comes

from a MGD, 𝝂t ∼  (0,Q), with zero mean and the covari-
ance matrix Q ∈ Nx×Nx . We also consider spatial corre-
lations for the model errors, hence Q is not diagonal. We
follow Amezcua and Van Leeuwen (2018) and assume that
the model errors are correlated in time as:

Cov(𝝂i, 𝝂j) = 𝜙(|i − j|, 𝜔)Q, (3)

where 𝜙(|i − j|, 𝜔) represents the memory of the model
errors, |i− j| is the absolute difference between time steps
i and j, and 𝜔 represents the characteristic memory
time-scale of the model error. The function 𝜙 decreases
monotonically to 0 as |i− j| increases, and the maximum
value of the 𝜙 is 1.0 as the absolute difference between

time steps i and j tends to 0. For simplicity, we choose an
exponentially decaying memory for the model error:

𝜙(|i − j|, 𝜔) = exp
(
−
|i − j|
𝜔

)
. (4)

When the correlation time-scale𝜔 tends to 0.0, which indi-
cates no temporal correlation in model errors, the 𝜙 func-
tion becomes a Kronecker delta function and the linear
model becomes a first-order Markov model:

𝜙(|i − j|, 𝜔) = {
1 if i = j,
0 otherwise.

(5)

In the other limit when 𝜔 tends to infinity, the memory of
the model errors becomes 1.0 and the model error is fixed
in time.

2.1 Formulation of the Kalman
Smoother

We start with the formulation of the Kalman Smoother as
described in Amezcua and Van Leeuwen (2018). It uses
an extended control variable, z0∶𝜏 ∈ (𝜏+1)×Nx over 𝜏 + 1
model time steps. This construction simplifies the repre-
sentation of the covariance matrix and the exposition of
the method. This extended variable can be written as the
initial state of the system x0 ∈ Nx , plus a collection of the
model errors over time, 𝝂1∶𝜏 ∈ 𝜏×Nx :

z0∶𝜏 =

[
x0

𝝂1∶𝜏

]
. (6)

The extended variables can be transformed back to state
space via:

xt = M0∶tz0∶t, (7)

where M0∶t ∈ (t+1)Nx×Nx is the extended model operator
and can be formulated as a block-matrix:

M0∶t =
[
M0→t,M1→t,M2→t,M3→t, … ,M(t−1)→t, I

]
. (8)

The extended form also follows a MGD z0∶𝜏 ∼
 (𝝁0∶𝜏,b

z ,D0∶𝜏), with mean 𝝁
0∶𝜏,b
z ∈ (𝜏+1)Nx :

𝝁
0∶𝜏,b
z =

[
𝝁

0,b
x

𝝁
1∶𝜏,b
v

]
=

[
𝝁

0,b
x

00∶𝜏

]
. (9)

In this case, the prior covariance matrix D0∶𝜏 ∈
(𝜏+1)Nx×(𝜏+1)Nx has a simple form, which can be written as
a block-matrix:
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D0∶𝜏 =

[
B 0
0 Q1∶𝜏

]
. (10)

The covariance matrix of the extended control variable has
two separate and independent parts: the part that comes
from the initial condition, B ∈ Nx×Nx , and the part that
originates purely from the correlated model errors, Q1∶𝜏 ∈
𝜏Nx×𝜏Nx . The covariance matrix Q1∶𝜏 is a block-matrix and
can be written as a Kronecker product of a Toeplitz matrix
and the spatial covariance matrix of the model error, Q:

Q1∶𝜏 = 𝚽1∶𝜏
⊗ Q, (11)

where the Toeplitz matrix 𝚽1∶𝜏 ∈ 𝜏×𝜏 contains all the
memory coefficients. This Toeplitz matrix, 𝚽1∶𝜏 , has dif-
ferent forms in different scenarios:

• When 𝜔 → 0, the Toeplitz matrix becomes an iden-
tity matrix, I ∈ 𝜏×𝜏 , and the Kronecker product Q1∶𝜏

becomes a block-diagonal matrix.
• When 𝜔 → ∞, the Toeplitz matrix 𝚽1∶𝜏 is a matrix of

ones and Q1∶𝜏 becomes a block-matrix, in which every
block element is the spatial covariance matrix Q.

To demonstrate the structure of the Kalman Smoother
solution, we consider only one single observation at time
step 𝜏. Details of the formulation with multiple observa-
tions can be found in Amezcua and Van Leeuwen (2018).
Then, the Kalman gain acting upon the whole simulation
period in extended-variable space, K0∶𝜏

z , can be computed
as:

K0∶𝜏
z = D0∶𝜏(M0∶𝜏)THT{HM0∶𝜏D0∶𝜏(HM0∶𝜏)T + R}−1.

(12)
With the Kalman Gain, we can update the extended con-
trol variable using the Kalman equation, assuming that the
state initial x0, the observation error 𝜼 and the model error
𝝂 are statistically independent of each other. Hence, the
analysis mean is:

z0∶𝜏,a = z0∶𝜏,a + K0∶𝜏
z d, (13)

where d is the innovation between observations and the
model output at observational time t, which can be calcu-
lated as:

d = y − HM0∶𝜏z0∶𝜏,a. (14)

The vector y represents the observations obtained from the
true evolution of the system by the observation operator,
H ∈ Ny×Nx , including the observational error:

yt = Hxt,r + 𝜼
t, (15)

where 𝜼t ∈ Ny is the observational error which follows
a zero-mean MGD 𝜼t ∼  (0,R) and its size depends on
the number of variables observed from the system Ny,
xt, r represents the real state of the system at time step t,
and R ∈ Ny×Ny represents the covariance matrix of the
observation errors. Note that the observational time can
be anywhere inside the assimilation window 0 ≤ t ≤ 𝜏.
Finally, the covariance matrix is updated via:

A0∶𝜏
z = (I − K0∶𝜏

z HM0∶𝜏)D0∶𝜏 . (16)

Considering more than one observation per assimilation
window does not yield simple expressions. Instead, it
can be done in two ways. First, we can consider modi-
fied expressions as in the appendix of Amezcua and Van
Leeuwen (2018). Second, the observations can be assim-
ilated serially one after the other. Since the observation
error covariance matrix is assumed diagonal, this is equiv-
alent to updating observations all-at-once.

2.2 Evaluating the performance of the
Kalman Smoother with time-correlated
model error

Amezcua and Van Leeuwen (2018) established a frame-
work to handle time-correlated model errors in the
Kalman Smoother and its ensemble implementation.
Nonetheless, they did not evaluate the performance of the
methods they discussed, and they did not study the con-
sequences (in this performance) of using wrong memory
of the model error in the forecast. This is one of the two
new contributions of this work, and it is detailed in this
section.

A data assimilation system should be able to produce
accurate estimations of the posterior density function of
the state variables. In practice, assuming a unimodal poste-
rior, it should at least be able to produce a mean trajectory
which remains “close" to the (unknown) truth, and pro-
vide an uncertainty measure corresponding to the true
uncertainty of the mean with respect to the truth.

One common approach is to compare the
root-mean-square error (RMSE) which is the true error
of the posterior mean, with the posterior standard devia-
tion, or spread, which is the error estimated by the data
assimilation method (Fortin et al., 2014). When the data
assimilation results give us the “best" estimation of the
system, the ratio of the RMSE and the spread should
approximately be equal to 1.0. To simplify the situation,
instead of comparing the RMSE with the spread, we use
the ratio of the mean-square error (MSE) and the variance
of the state variable.
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T A B L E 1 Expressions for the prior variance, prior covariance and prior correlation in different scenarios

𝜶 = 0.0 0 < 𝜶 < 1.0 𝜶 = 1.0

𝝎 = 0.0 Var(xn) q2 𝛼2nb2 + q2 𝛼2n−1
𝛼2−1

b2 + q2n

Cov(xn, xm) q2𝛿nm 𝛼m+nb2 + q2 𝛼m+n−𝛼m−n

𝛼2−1
b2 + q2n

Corr(xn, xm) 𝛿nm
Cov(xn ,xm)√

Var(xn)Var(xm)

√
b2+q2n
b2+q2m

𝝎 > 0.0, but finite Var(xn) q2 𝛼2n + q2 ∑n
i=1

∑n
j=1 𝛼

2n−i−je
−|i−j|
𝜔 b2 + q2 ∑n

i=1
∑n

j=1 e
−|i−j|
𝜔

Cov(xn, xm) q2e
−(m−n)

𝜔 𝛼m+n + q2 ∑n
i=1

∑m
j=1 𝛼

m+n−i−je
−|i−j|
𝜔 b2 + q2 ∑n

i=1
∑m

j=1 e
−|i−j|
𝜔

Corr(xn, xm) e
−(m−n)

𝜔
Cov(xn ,xm)√

Var(xn)Var(xm)
Cov(xn ,xm)√

Var(xn)Var(xm)

𝝎 → ∞ Var(xn) q2 𝛼2n + q2
(

𝛼n−1
𝛼−1

)2
b2 + q2n2

Cov(xn, xm) q2 𝛼m+nb2 + q2 (𝛼m−1)(𝛼n−1)
(𝛼−1)2

b2 + q2nm

Corr(xn, xm) 1 Cov(xn ,xm)√
Var(xn)Var(xm)

b2+q2nm√
(b2+q2n2)(b2+q2m2)

Before proceeding to actual experiments, we find the
analytical expressions for both the MSE of the back-
ground and analysis. We also analyse in detail the vari-
ance expressions shown in Amezcua and Van Leeuwen
(2018). To simplify calculations, we assume that the state
is one-dimensional and the model operator is a damping
coefficient, 𝛼. The model is pure noise if 𝛼 tends to 0.0, and
a random walk model when 𝛼 = 1.0. We choose a damp-
ing coefficient between 0.0 and 1.0 to ensure that the linear
model is stationary. This leads to a model equation:

xt+1 = 𝛼xt + 𝜈t+1. (17)

For the next subsections we work in the state variable
space, that is, our control variable is x0∶𝜏 , for two reasons:
the meaning of the expressions is more tractable, and the
implementation in the ensemble case is more straightfor-
ward. The general expressions are obtained as double sums
which are not easy to visualise. In some cases these dou-
ble sums can be evaluated, leading to expressions provided
in the Tables in the Appendix. In other cases we eval-
uate the expressions numerically and provide graphical
illustrations.

2.2.1 Posterior variance in the Kalman
Smoother

The prior variance at any time and covariance between two
different time steps in our scalar system have the following
expressions:

Var(xt,b) = 𝛼2tb2 + q2
t∑

i=1

t∑
j=1

𝛼2t−i−j𝜙(|i − j|, 𝜔), (18)

Cov(xt1,b, xt2,b) = 𝛼t1+t2 b2 + q2
t1∑

i=1

t2∑
j=1

𝛼t1+t2−i−j𝜙(|i − j|, 𝜔),
(18)

where b2 is the variance of the initial x0, the superscript
b denotes the prior, and q2 is the variance of the model
error. In (18), in the expressions involving the scalars 𝛼, b
and q, the exponent actually means the constant raised to
a power, as opposed to being a superscript.

According to (18), the prior covariance and variance
have two sources: the initial condition which is the first
term on the right-hand side (RHS), and the auto-correlated
model errors as the double sum term on the RHS. Of
course, (18) is only suitable for t > 0, t1 > 0, t2 > 0. As a spe-
cial case, since the initial condition x0,b is independent
from the model errors at any given time, its variance and
covariance are given by:

Var(x0,b) = b2,

Cov(x0,b, xt,b) = 𝛼tb2. (19)

Once more, the expression 𝛼t means the constant 𝛼 raised
to the power t. To obtain a feeling for (18), Table .1 con-
tains results on limiting cases for𝜔 and 𝛼 where the results
of the sums can be evaluated analytically. Figure 2 shows
that the prior variance is a monotonically increasing func-
tion of both 𝛼 and 𝜔g, and, not surprisingly, of time. The
prior variance is almost constant when 𝛼 < 0.5. For larger
values of 𝛼, the prior variance increases much faster with
𝜔g. The prior variance as function of 𝜔g shows the oppo-
site behaviour: when 𝜔g is between 0.0 and 10.0, the prior
variance increases significantly with increasing 𝜔g, but
for larger 𝜔g values the increase of the variance slows
down.
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F I G U R E 2 Prior variance as function of time in the window and (a) the damping coefficient 𝛼 with 𝜔g = 1.0, and (b) time-scale 𝜔g

with 𝛼 = 0.8. Note that the y-axis of (a) has a logarithmic scale

Since the posterior variance is the estimated error
resulting from the data assimilation scheme, and in linear
data assimilation the posterior variance is independent of
the actual value of the observations, the posterior variance
has no knowledge of the real decorrelation time-scale of
the model errors,𝜔r. The posterior variance at a given time
step, assuming that we have a single observation at time
step 𝜏, can be simplified as:

Var(xt,a) = Var(xt,b) − Kx,t
𝜔g

Cov(x𝜏,b, xt,b), (20)

where Kx,t
𝜔g

is the Kalman Gain formulated in the x-space
acting on the current time step t and in this scalar case can
be computed as:

Kx,t
𝜔g

= Cov(xt,b, x𝜏,b)
Var(x𝜏,b) + r2 , (21)

where r2 is the variance of the observation error, and
clearly the exponent means the second power. We can see
that the Kalman gain depends on the covariance between
the state at the present time and at the observational
time, the state variance at the observational time and the
observation error. These expressions correspond to the
state-space formulation in Amezcua and Van Leeuwen
(2018). We also compute some limiting cases on the poste-
rior variance with a single observation for 𝜔 and 𝛼 shown
in Table .2.

When more than one observation is present within an
assimilation window, it is difficult to find simple analytical
expressions and we refer to numerical evaluation. We start
our numerical experiments with a fixed damping coeffi-
cient 𝛼 = 0.8, but with different memories 𝜔. The results
are shown in Figure 3.

The first thing that strikes the eye is the low poste-
rior variance at observation times, which is as expected.
Another clear trend is the decrease of posterior error with
increasing𝜔g. This is directly related to the spread of obser-
vation information in the system: a larger 𝜔g gives more
memory in the system, and hence observations have a
larger influence over time. In some plots the posterior vari-
ance is decreasing towards the initial time, while in others
it is increasing. However, this is mainly due to the dif-
ferent colour scales in the plots; the posterior variance at
initial time is mainly set by the prior variance, although
observations do have an influence for larger decorrelation
time-scales. Finally, one can notice a decrease of the pos-
terior variance for 𝜔g close to zero. This behaviour has its
roots in the behaviour of the prior, which has minimal
variance for small 𝜔g.

To see this latter point better, we resort back to the
analytical treatment of the case of a single observation
at the end of the simulation period, at t = 𝜏. We focus
on the posterior variance at the initial time and at the
observational time as those times show most interesting
behaviour. As we have seen above, the initial variance and
the covariance between the initial state and the state at
any time is independent of the decorrelation time-scale,
so:

𝜕Cov(x0,b, xt,b)
𝜕𝜔g

= 𝜕Var(x0,b)
𝜕𝜔g

= 0. (22)

Using this, we find for the Kalman gain from (21) and
Figure 2:

𝜕Kx,0
𝜔g

𝜕𝜔g
= −𝜕Var(x𝜏,b)

𝜕𝜔g

Cov(x0,b, x𝜏,b)
(Var(x𝜏,b) + r2)2 < 0, (23)
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𝜶 = 0.0 0 < 𝜶 < 1.0 𝜶 = 1.0

𝝎 = 0.0 q2 − q4𝛿t𝜏
q2+r2 lim

𝜔→0.0
Var(xt, x𝜏 ) − Cov(xt ,x𝜏 )2

Var(x𝜏 )+r2 (b2 + q2t) − (b2+q2t)2

(b2+q2𝜏)+r2

0.0 < 𝝎 ≪ ∞ q2 − q4e
−2(t−𝜏)

𝜔

q2+r2 Var(xt, x𝜏 ) − Cov(xt ,x𝜏 )2

Var(x𝜏 )+r2 lim
𝛼→1.0

Var(xt, x𝜏 ) − Cov(xt ,x𝜏 )2

Var(x𝜏 )+r2

𝝎 → ∞ q2r2

q2+r2 lim
𝜔→∞

Var(xt, x𝜏 ) − Cov(xt ,x𝜏 )2

Var(x𝜏 )+r2 (b2 + q2t2) − (b2+q2t𝜏)2

b2+q2𝜏2+r2

T A B L E 2 Expressions of
the posterior variance in
different scenarios

F I G U R E 3 Posterior variance as function of time in the window and of 𝜔g, for two fixed damping coefficients (a, c, e) 𝛼 = 0.2 and
(b, d, f) 𝛼 = 0.8, using (a, b) one, (c, d) two, and (e, f) five observations in the simulation window. Note the different colour scales

and so the Kalman gain for initial time is a decreasing func-
tion of the decorrelation time-scale. Using this we find for
the posterior variance at initial time:

𝜕Var(x0,a)
𝜕𝜔g

= −
𝜕Kx,0

𝜔g

𝜕𝜔g
Cov(x0,b, x𝜏,b) > 0, (24)

which is an increasing function of the decorrelation
time-scale.

At the observational time we can do a similar deriva-
tion:

𝜕Kx,𝜏
𝜔g

𝜕𝜔g
= 𝜕Var(x𝜏,b)

𝜕𝜔g

r2

{Var(x𝜏,b) + r2}2 > 0, (25)

leading to:

𝜕Var(x𝜏,a)
𝜕𝜔g

= (1 − Kx,𝜏
𝜔g
)𝜕Var(x𝜏,b)

𝜕𝜔g
−

𝜕Kx,𝜏
𝜔g

𝜕𝜔g
Var(x𝜏,b)

= 𝜕Var(x𝜏,b)
𝜕𝜔g

r4

{Var(x𝜏,b) + r2}2 > 0. (26)

We thus find that both at initial and at observation times,
the posterior variance increases with 𝜔g. In fact, this
derivation shows that this is true for all values of 𝜔g, at ini-
tial and final times, not only for small 𝜔g values as Figure 3
might suggest.



REN et al. 581

2.2.2 Mean-square error (MSE) of the
posterior in the Kalman Smoother

Different from the posterior variance, for the MSE between
the analysis mean and the true state of the system differ-
ences between the real decorrelation time-scale and the
one assumed in the data assimilation are important. We
calculate the MSE of the prior as the difference between
the prior mean 𝜇t,b and the truth. The truth is a realization
of the true prior pdf at the initial time. The MSE at any time
t is defined as:

MSEt,b = ∫ (𝜇t,b − xt,r)2p(xt,r) dxt,r. (27)

When the statistics of the model error used in the data
assimilation is different from that of the truth, the prior pdf
used in the data assimilation will deviate from the pdf that
the truth is drawn from. Writing the pdf from which the
truth is drawn as xt,r ∈  (𝜈t,Bt), where 𝜈t is its mean at
time step t and Bt represents its variance, the MSE at time
t becomes:

MSEt,b = Ext,r[(𝜇t,b − xt,r)2] = Bt + (𝜇t,b − 𝜈t)2, (28)

in which the last term represents the bias in the prior.
Using this in a Kalman Smoother, we can compute the
posterior MSE as:

MSEt,a = Ext,b [(𝜇t,a − xt,b)2]

= Ext,b [(𝜇t,b − xt,r) + Kx,t
𝜔g (x

𝜏,r − 𝜇𝜏,b) + Kx,t
𝜔g (y

𝜏 − x𝜏,r)2]

= Bt + (𝜇t,r − 𝜈t)2 + (Kx,t
𝜔g )

2{B𝜏 + (𝜇𝜏,b − 𝜈𝜏 )2 + r2}

− 2Kx,t
𝜔g{Cov(xt,r, x𝜏,r) + (𝜇t,r − 𝜈t)(𝜇𝜏,b − 𝜈𝜏 )}. (29)

In the ideal case when 𝜔g = 𝜔r, the MSE of the poste-
rior can be simplified as:

MSEt,a = Bt + (Kx,t
𝜔g
)2(B𝜏 + r2) − 2Kx,t

𝜔g
Cov(xt,r, x𝜏,r)

= Bt − Kx,t
𝜔g

Cov(xt,r, x𝜏,r). (30)

As expected, the posterior MSE in the ideal case is the same
as the posterior variance shown in (20) because the statis-
tics of the prior and the truth are the same in this ideal
case. When more than one observation is present in the
time window, we can write the Kalman Smoother MSE as:

MSE0∶𝜏,a = Ex0∶𝜏,r[𝝁0∶𝜏,a − x0∶𝜏,r][𝝁0∶𝜏,a − x0∶𝜏,r]T

= Ex0∶𝜏,r

[
𝝁

0∶𝜏,b + Kx,0∶𝜏
𝜔g

(
H1∶Lx0∶𝜏,r

−H1∶L
𝝁

0∶𝜏,b + 𝜂0∶𝜏) − x0∶𝜏,r] [… ]T

= Ex0∶𝜏,r

[
(I − Kx,0∶𝜏

𝜔g
H1∶L)

(
𝝁

0∶𝜏,b

−x0∶𝜏,r) + Kx,0∶𝜏
𝜔g

𝜂0∶𝜏
]
[… ]T

= (I − Kx,0∶𝜏
𝜔g

H1∶L)B0∶𝜏
𝜔g

+ (I − Kx,0∶𝜏
𝜔g

H1∶L)(𝝁0∶𝜏,b − 𝝂
0∶𝜏)

× (𝝁0∶𝜏,b − 𝝂
0∶𝜏)T(I − Kx,0∶𝜏

𝜔g
H1∶L)T , (31)

where 𝝁0∶𝜏,a is the time-series of the posterior mean from
the Kalman Smoother, B0∶𝜏 represents the covariance
matrix derived from the true pdf, Kx,0∶𝜏

𝜔g
is the Kalman

Gain matrix calculated with 𝜔g, and 𝝁0∶𝜏,b is the prior
mean time-series. The observation operator H1 : L maps
L observations, from the state space into the observation
space. Written in this form it is relatively easy to under-
stand what the influence of a mis-specified model error is.
However, this is slightly deceiving in that the result is writ-
ten in terms of the true covariance and mean, which are
unknown in the real world, and the Kalman Gain using
the incorrect model error description. In the ideal scenario
the MSE can be simplified to:

MSE0∶𝜏,a = (I − Kx,0∶𝜏H1∶L) B0∶𝜏 , (32)

where Kx,0∶𝜏 is the optimal gain for the Kalman Smoother.
Equation (32) shows the exact solution for the posterior
covariance matrix shown in (16) in the variable space.

The behaviour of the posterior MSE when the mem-
ory in the prior differs with that of the true system, that
is, 𝜔g ≠ 𝜔r, is found from the numerical evaluation of the
analytical expressions shown in (29), and the results are
shown in Figure 4, which shows that, in general, the mag-
nitude of the posterior MSE decreases as the observation
frequency increases. This matches the results shown in
Figure 3 for the posterior variance. As we expected, the
posterior MSE reaches its minimum at the observational
time. From Figure 4a,b,c, we can see that, with a single
observation at the end of the simulation window, the MSE
is minimized when𝜔g = 𝜔r for the time steps that are away
from the observational time and initial state. However,
when the number of observations in the window increases,
the difference between 𝜔r and 𝜔g becomes less important:
the solid lines do not dominate large changes in MSE.

The Appendix contains derivations and analytical
results for the Ensemble Kalman Smoother, where we
specifically study the influence of sampling errors.

2.3 Evaluation of the Kalman
Smoother for a one-dimensional system

To evaluate the performance of the Kalman Smoother we
compute the ratio of the MSE over the variance of the pos-
terior averaged over the simulation window, with different
observational frequencies. Figure 5 shows the numerical
evaluation of analytical expressions which contain ratios
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F I G U R E 4 Posterior MSE as function of time in the window and of 𝜔g, for different fixed 𝜔r = (a, d, g) 0, (b, e, h) 5, and (c, f, i) 10, and
(a–c) one, (d–f) two and (g–i) five observations in the simulation window. The solid black line indicates where 𝜔g = 𝜔r Note the different
colour scales

of double sums and are hence difficult to visualise without
plotting them.

As we can see, the Kalman Smoother works well when
𝜔g = 𝜔r for all the cases, with the ratio of MSE over the
variance equal to 1.0. With relatively high observational
frequency (five observations or more in the simulation
window), the MSE is larger than the estimated posterior
variance when 𝜔g > 𝜔r, and vice versa. From the numeri-
cal results shown Figure 4, the mismatch between the two
time-scales 𝜔r and 𝜔g barely has any impact on the MSE.
The ratio is dominated by the posterior variance.

To understand the behaviour of the ratio in Figure 5
for small observation numbers, we refer to Figure 6, which
shows the time average posterior variance as function of
𝜔g for the case of one observation in the time window, as
the black line. The concave shape is due to a combination
of two effects. Firstly, the prior variance grows with 𝜔g as
a larger 𝜔g gives rise to a larger decorrelation time-scale,
so errors persist in the time window. This effect leads to
a growth in posterior variance with 𝜔g. Secondly, a larger
𝜔g reduces the posterior variance because the larger decor-
relation time-scale allows the observation information to
spread more over the time window. These two competing
effects lead to a maximum in posterior variance.

Figure 6 also shows the MSE for three different values
of 𝜔r. The MSE curves are all convex, with a minimum
when𝜔g = 𝜔r, as expected since the minimum value of the
MSE happens when the guess decorrelation time-scale is
equal to the real time-scale. The ratio the MSE to the pos-
terior variance is equal to one when their curves cross, and
we see immediately that the curves cross twice when the
position of the minimum of the MSE is different from that
of the maximum in the posterior variance. This is exactly
what Figure 5 shows for one observation, and the struc-
ture of that solution is fully determined by the position of
the peak in the posterior variance. For two observations,
we see qualitatively similar behaviour, with the peak in
the posterior variance shifting closer to zero. For 5 and 20
observations, the peak in the posterior variance shifts all
the way to zero because the influence of the observations
becomes more important than the prior, so the posterior
variance becomes a decreasing function of 𝜔g, as can also
be observed in Figure 3. This means that the MSE and pos-
terior variance curves only cross once, where 𝜔g = 𝜔r, as
Figure 5 indeed shows.

Ideally we would be able to show this behaviour explor-
ing the analytical expressions of (18), but the expres-
sions become rather complicated as we would have to
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F I G U R E 5 Ratio of MSE over the posterior variance for the one-dimensional system, calculated using numerical evaluation of the
exact analytical expressions, using (a) one, (b) two, (c) five, and (d) 20 observations

analytically evaluate ratios of integrals over double sums,
which we were unable to perform. Finally, it should be
noted that Figure 5 first calculates the MSE over posterior
variance ratio and then averages over time, while Figure 6
and the argument above first average over time and then
calculate the ratio. The results are qualitatively the same
because Figures 3 and 4 show a similar behaviour over
time.

3 TIME- CORRELATED MODEL
ERROR IN A HIGHER-
DIMENSIONAL SYSTEM

In this section we explore how the analytical results
from the one-dimensional system carry over to systems

with relatively higher dimensions. To this end we imple-
ment an Ensemble Kalman Smoother (EnKS; spici-
teEvensen2000ensemble) using perturbed model forecasts
(Van Leeuwen, 2020) with 200 ensemble members on a
ten-dimensional system in which the deterministic model
consists of a diagonal matrix with the damping coefficient
on the diagonal, and spatially and temporally correlated
model errors. This means that, although the elements
of the state are evolving independently over time, they
become more and more correlated due to the correlated
model error. The large ensemble size with respect to the
size of the state variable ensures that sample effects are
small. Four cases with four different observation frequen-
cies are discussed, similar to the experiments we do for the
one-dimensional system.
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F I G U R E 6 The time-averaged
posterior variance (black) and posterior
mean-square error with different 𝜔r

(red,blue,brown), as a function of 𝜔g,
using a fixed damping coefficient 𝛼 = 0.8

We generate the true trajectory of the system, x0∶𝜏,r

with𝜔r, and all the prior ensemble members are generated
using 𝜔g. The assimilation is run over 50 time windows, in
which the results from one window provide the prior for
the initial conditions for the next window (i.e., cycling).
There are 20 time steps (𝜏 = 20) in each time window.

We experiment with different combinations of 𝜔r and
𝜔g with the same range from 0.0 to 20.0, and the four
observation settings explored above. To evaluate the per-
formance on the EnKS, we calculate the ratio of the MSE
and the ensemble variance. The MSE at a given time step t
is computed as:

MSEt = (xt,r − xt,a)T(xt,r − xt,a)
Nx

, (33)

where xt,a is the mean of the posterior ensemble and xt, r is
the true state of the system.

After obtaining the MSE and the variance for each
time step, we calculate their ratio and the average of
this ratio over the whole simulation period, and the
results are shown in Figure 7. We find that the ratio
of MSE over the posterior variance matches with the
results for one-dimensional system shown in Figure 5. The
EnKS performs well with a correctly guessed decorrelation
time-scale (𝜔g = 𝜔r). With different observation frequen-
cies, the ratio shows a similar behaviour as the ratio of MSE
over the variance of the posterior in the one-dimensional
system, but the differences are about 10% larger in the
higher-dimensional case. For the higher-dimensional sys-
tem, it seems that the posterior ensemble spread is still
the main factor to the ratio, which has a non-monotonic
behaviour with 𝜔g and becomes monotonically decreasing
as 𝜔g increases.

4 ESTIMATION OF THE
MEMORY IN THE MODEL ERROR

In the previous sections we showed that using an incor-
rect memory time-scale in the model error can have a
significant impact on the data assimilation results. Unfor-
tunately, in many practical situations we do not know this
memory time-scale. However, it is possible to treat that cor-
relation time-scale as an unknown quantity and perform
parameter estimation along the state estimation.

Parameter estimation via state augmentation has been
used before, for example, with an extended Kalman Fil-
ter (Carrassi and Vannitsem, 2011), and even to determine
parameters in Lagrangian Data Assimilation (Kuznetsov
et al., 2003). Evensen (2009) used the EnKF to update the
state while performing the parameter estimation.

Even for the simple linear regressive model that
we used in the previous section, since the correlation
time-scale is deeply encoded inside the governing equation
of the system, parameter estimation becomes a nonlinear
problem. As an example of such a correlation time-scale
estimation problem, we will use state augmentation in an
EnKS, in which the time-scale is simply added to the state
vector.

Instead of the memory time-scale, 𝜔g, we use the log
scale of the memory time-scale to avoid negative mem-
ory estimates. The initial log-timescale values are drawn
from a normal distribution: ln𝜔gi ∈  (ln𝜔g, 1.0). Hence
we assume that the prior distribution of the memory
time-scale is log-normal distributed. The results are shown
in Figure 8. Figure 8a, b show experiments with only one
observation at the end of the window, in which either our
first estimate of the time-scale is larger or smaller than the
real time-scale. With an increasing number of windows,
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F I G U R E 7 Ratio of MSE over the variance of the posterior for a ten-dimensional system with (a) one, (b) two, (c) five, and (d) 20
observation frequencies in each simulation window. These plots come from numerical experiments with a 200-member EnKS. Note that the
results are qualitatively and also quantitatively very similar to those in Figure 5

we obtain better estimates, but the variance of the esti-
mate does not change. Also, the convergence is slow. We
experimented with different values for first guess and true
time-scales, and in some cases the solution did not con-
verge to the correct value. This is not surprising given the
highly nonlinear character of the parameter estimation
problem, especially with only one observation per window.

When we observe every time step, the convergence is
much faster, and the variance in the estimate decreases,
as shown in Figure 8c, d. In this case we always
found fast convergence with different first guess and
true time-scale combinations, demonstrating that more

observations bring us closer to the truth, and hence make
the parameter estimation problem more linear.

5 CONCLUSION

In this paper we have investigated the influence of a
mis-specified model error decorrelation time-scale in lin-
ear models, using an (Ensemble) Kalman Smoother, and
investigated estimation of that time-scale in an EnKS.

Using a Kalman Smoother, analytical results were
derived for the posterior variance and Mean-Squared Error
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F I G U R E 8 PDFs of the prior (blue) and posterior (reddish colours) estimated 𝜔g, using an increasing number of assimilation
windows. The different panels show results for different observation densities and prior mean (a, c) larger or (b, d) smaller than 𝜔r. The
vertical black line denotes the true value 𝜔r

(MSE) for a zero-dimensional model. We find that the
posterior variance, which only depends on the guessed
correlation time-scale 𝜔g, has different behaviour with
different observation frequencies. With a single observa-
tion, the posterior variance has a maximum at a certain
𝜔g value, and that maximum and the 𝜔g value decrease
over time. When we increase the number of observations,
the posterior variance becomes a monotonic decreasing
function of 𝜔g. Since the posterior variance represents the
error of the posterior estimated by the data assimilation
process, with more information from the observations the
estimated error becomes significantly smaller. The MSE,
which is the actual error of the posterior mean, decreases
as well when more observations are included. But, unlike
the posterior variance, the MSE of the posterior mean
does not only depend on 𝜔g, but also on the real memory
time-scale 𝜔r. The results for the posterior MSE with a sin-
gle observation show that it increases with both 𝜔r and the
mismatch between 𝜔g and 𝜔r. It means that, if we do not
have a fair estimate of the correlation time-scale, the actual
posterior error will be larger.

For a higher-dimensional model we used an EnKS.
The results agree with the results from the analytical and
numerical evaluations of the Kalman Smoother. For many
observations we found that the MSE is larger than the esti-
mated error for 𝜔g > 𝜔r, and vice versa. For a low number
of observations, a new regime appears where for very small
𝜔r the MSE is smaller than the estimated error, and vice
versa for very small 𝜔g. This behaviour is mainly dictated
by the behaviour of the estimated error.

Since the influence of an incorrect decorrelation
time-scale in the model error can be significant, we inves-
tigated the estimation of this time-scale within an EnKF.
We found that, when the observation density is high, state
augmentation is sufficient to obtain converging results.
However, with only one observation in a time window, the
problem becomes too nonlinear and the estimation pro-
cess is slow, or does not even converge. These results are
consistent with parameter estimation via state augmenta-
tion in the literature. The new element is that online esti-
mation is possible beyond a relatively simple bias estimate
of the model error.
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As a next step we will explore the influence of incor-
rectly specified model errors in nonlinear systems, with
the goal to come up with a robust estimation method for
time-correlated model errors.
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The Mean-Square Error in the finite ensemble and
scalar case

Let us start with the simplest case for the finite
ensemble member size with only one observation at t =
𝜏, with the ensemble members having the same dis-
tribution as the truth and hence the same model-error
memory. The ensemble size is Ne, and the ensemble
members {xt,b

1 , xt,b
2 , ..., xt,b

Ne
} and the truth are drawn from

 (𝜇t,b,Bt2). The sample mean, xt,b
Ne

, has the distribution
∼  (𝜇t,b,Bt2 ∕Ne), and the MSE of the prior sample mean
is given by:

Ext,r[(xt,b
Ne

− xt,r)2] = Ext,r[{(xt,b
Ne

− 𝜈t,b) − (xt,r − 𝜈t,b)}2]

= Ext,r[(xt,b
Ne

− 𝜈t,b)2] + Ext,r[(xt,r − 𝜈t,b)2]

= Bt2

Ne
+ Bt2

. (34)

As we can see, the prior MSE under the perfect assumption
is just the variance of the truth if Ne →∞. In this
case, the posterior MSE of the ensemble mean can be
computed as:

Ext,r[(xt,a
Ne

− xt,r)2] = Ext,r[{xt,b
Ne

+ Kx,t
𝜔r
(y − Hx𝜏,tNe

) − xt,r}2]

= Bt2 − Kx,t
𝜔r

Cov(xt,r, x𝜏,r) + Bt2

Ne

− Kx,t
𝜔r

Cov(xt,b
Ne
, x𝜏,bNe

). (35)

Even with the ideal assumptions, the posterior MSE
for the finite ensemble case is not as simple as the
prior MSE. The first two terms on the RHS repre-
sents the real MSE of the posterior, and the rest is the
sampling error. Note that the Kalman Gain is optimal
since 𝜔g = 𝜔r.

Now, let us take the different memory scales in the
model error into account. These lead to different vari-
ances of the prior ensemble mean and the truth: xt,b

Ne
∼

 (𝜇t,b, 𝛽 t2 ∕Ne), and xt,b ∼  (𝜇t,b,Bt2). Thus, we have a
slightly different expression for the prior MSE:

Ext,r[(xt,b
Ne

− xt,b)2] = 𝛽 t2

Ne
+ Bt2

. (36)

Comparing with the expression shown in (.34), if we
increase the ensemble size to infinity, the prior MSE is
the same; it is just the variance of the truth. But the sam-
pling error part is different. As for the posterior MSE in this
scenario:

Ext,r[(xt,a
Ne

− xt,r)2] = Ext,r[{xt,b
Ne

+ Kx,t
𝜔g
(y − Hx𝜏,rNe

) − xt,r}2]

= Bt2 + (Kx,t
𝜔g
)2(B𝜏2 + r2)

− 2Kx,t
𝜔g

Cov(xt,r, x𝜏,r)

+ 𝛽 t2

Ne
− Kx,t

𝜔g
Cov(xt,b

Ne
, x𝜏,bNe

) (37)

In this case the Kalman Gain Kx,t
𝜔g

is not optimal.
Lastly, let us consider the most different case, when

we have no knowledge of both the model error memory
and its mean. In this case, we also have a bias in the
mean of the prior ensemble members besides incorrect
variance: xt,b

Ne
∼  (𝜇̃t,b, 𝛽 t2∕Ne). Then, the prior MSE of

the ensemble mean has a similar expression as in (28):

Ext,r[(xt,b
Ne

− xt,r)2] = 𝛽 t2

Ne
+ Bt2 + (𝜇t,b − 𝜇̃t,b)2. (38)

In this scenario, extra errors come from the bias in the
mean. The posterior MSE becomes:

Ext,r[(xt,a
Ne

− xt,r)2]

= Ext,r[{xt,b
Ne

+ Kx,t
𝜔g
(y − Hx𝜏,tNe

) − xt,r}2]

= Bt2 + (Kx,t
𝜔g
)2(B𝜏2 + r2) − 2Kx,t

𝜔g
Cov(xt,r, x𝜏,r)

+ 𝛽 t2

Ne
− Kx,t

𝜔g
Cov(xt,b

Ne
, x𝜏,bNe

) + (Kx,t
𝜔g
)2(𝜈t − 𝜇̃t,b)2. (39)

The posterior MSE in this scenario contains the errors
that are introduced by the sampling error, incorrect
auto-correlation time-scale, and the bias term.


