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Abstract More than 40model groups worldwide are participating in the CoupledModel Intercomparison
Project Phase 6 (CMIP6), providing a new and rich source of information to better understand past,
present, and future climate change. Here, we use the Earth System Model Evaluation Tool (ESMValTool) to
assess the performance of the CMIP6 ensemble compared to the previous generations CMIP3 and CMIP5.
While CMIP5 models did not capture the observed pause in the increase in global mean surface temperature
between 1998 and 2013, the historical CMIP6 simulations agree well with the observed recent temperature
increase, but some models have difficulties in reproducing the observed global mean surface temperature
record of the second half of the twentieth century. While systematic biases in annual mean surface
temperature and precipitation remain in the CMIP6 multimodel mean, individual models and
high‐resolution versions of the models show significant reductions in many long‐standing biases. Some
improvements are also found in the vertical temperature, water vapor, and zonal wind speed distributions,
and root‐mean‐square errors for selected fields are generally smaller with reduced intermodel spread and
higher average skill in the correlation patterns relative to observations. An emerging property of the CMIP6
ensemble is a higher effective climate sensitivity with an increased range between 2.3 and 5.6 K. A possible
reason for this increase in some models is improvements in cloud representation resulting in stronger
shortwave cloud feedbacks than in their predecessor versions.

1. Introduction

Climate model simulations are coordinated as part of the World Climate Research Programme's (WCRP)
Coupled Model Intercomparison Project (CMIP) since the early 1990s (Eyring, Bony, et al., 2016; Meehl
et al., 1997, 2000, 2005, 2007; Taylor et al., 2012). The main objective of CMIP is to better understand past,
present, and future climate variability and change arising from natural, unforced variability and in response
to changes in radiative forcing in amultimodel context. Model simulations are defined and carried out by the
participating modeling groups under common forcings and forcing scenarios. CMIP defines not only com-
monmodel simulations but also aims at making a wide range of model output available to the research com-
munity in order to better learn from a large model ensemble. In this sense, CMIP3 marked a paradigm shift
in the climate science community by making model output from state‐of‐the‐art climate change simulations
broadly accessible (Meehl et al., 2007). CMIP model simulations and associated publications analyzing the
multimodel data set constitute the state of the climate science and thus have been assessed by the
Intergovernmental Panel on Climate Change (IPCC) Assessment Reports. CMIP3 supported the Fourth
Assessment Report (AR4) (Solomon et al., 2007).

The next phase of CMIP was CMIP5 with an integrated set of experiments (Taylor et al., 2012) and was used
in numerous peer‐reviewed studies as well as providing the basis for the IPCC Fifth Assessment Report
(AR5) (Stocker et al., 2013). Flato et al. (2013) pointed out that there were significant variations in skill across
the CMIP5 ensemble when measured against reanalyses and observations, and that some systematic biases
remained over several generations of CMIP model ensembles. The current phase of CMIP, CMIP6 (Eyring,
Bony, et al., 2016), therefore includes the quantification and understanding of systematic biases as one of its
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three central scientific questions. There are 23 CMIP6‐Endorsed Model Intercomparison Projects (MIPs)
that define an additional set of simulations targeting other specific scientific questions. For example, the
new High‐Resolution Model Intercomparison Project (HighResMIP, Haarsma et al., 2016) that we also eval-
uate here assesses the robustness of improvements in the representation of important climate processes
using weather‐resolving global model resolutions (∼25 km or finer).

An important question to answer is how these new simulations compare to previous generations of CMIP
ensembles, and whether systematic biases detected earlier are reduced or remain. A thorough assessment
of themodels' skill in reproducing observed past and present climate is also an essential prerequisite to assess
and interpret the results from model projections (Eyring et al., 2019). Known systematic biases include (i) a
too strong intertropical convergence zone (ITCZ) in the Southern Hemisphere (SH) which often persists
through the seasonal cycle; problems simulating the Walker circulation and the associated dry Amazon bias
also seen in many models; (ii) poor simulation of tropical and subtropical low‐level clouds, particularly the
persistent stratocumulus decks over the eastern parts of ocean basins, which are related to too warm sea sur-
face temperatures (SSTs); (iii) an overly deep tropical thermocline; (iv) the tendency to simulate land sur-
faces too warm and too dry during summertime, and (v) the northward shift in the position of the SH
atmospheric jet which leads to poor simulation of the surface wind stress over the Southern Ocean and to
errors in the vertical structure of the water masses in the Southern Ocean (Stouffer et al., 2017).

Even though not sufficient, a systematic evaluation of models results by comparisons with observations and
reanalysis data is commonly seen as an important prerequisite to building up confidence in the models'
future climate projections (Flato et al., 2013). This more general assessment of model performance is com-
plimented with approaches that use observations to constrain the uncertainty in multimodel projections
or feedbacks with observations (Eyring et al., 2019). This aspect is not covered here and requires further ana-
lysis on how the different generations of CMIP ensembles compare in this respect. Some initial studies exist,
for example, Schlund et al. (2020) compare emergent constraints on effective climate sensitivity (ECS)
between CMIP5 and CMIP6 and Tokarska et al. (2020) constrain future warming based on the ability of
the models to reproduce past temperature trends.

Many CMIP6 modeling groups already reported improvements in their model's ability to simulate past and
present‐day climate compared to their CMIP5 predecessor versions (Andrews et al., 2019; Danabasoglu
et al., 2020; Gettelman et al., 2019; Mulcahy et al., 2018; Swart et al., 2019). Typically, model developments
consist of including more detailed Earth system processes as well as improvements in existing parameteriza-
tions or higher horizontal and vertical resolution. However, a systematic assessment of the CMIP6 ensemble
in comparison to previous generations is still missing. In order to evaluate how well the models perform, we
compare the performance of the CMIP3, CMIP5, and CMIP6 ensemble by evaluating the historical simula-
tions forced by common boundary conditions in each phase with observations or reanalysis data. We apply
the Earth SystemModel Evaluation Tool (ESMValTool) Version 2 (Eyring et al., 2020; Righi et al., 2020) for a
consistent assessment of the CMIP ensemble across phases. The ESMValTool is a community‐developed
open‐source diagnostic and performance metrics tool to evaluate Earth systemmodels (ESMs) with observa-
tions and reanalysis data.

In section 2, the model ensembles and observations used in this study as well as the ESMValTool are
described. The surface temperature record of the three model ensembles CMIP3, CMIP5, and CMIP6 is dis-
cussed in section 3 and the multimodel mean biases of some important climate variables such as tempera-
ture, precipitation and selected meteorological variables such as zonal wind are compared across the
model ensembles in section 4. An overview on the general model performance in comparison with observa-
tions by applying performance metrics and pattern correlations are shown in section 5. In section 6 we dis-
cuss the high ECS in some CMIP6 models compared with results from previous phases of CMIP and close
with a summary in section 7.

2. Models and Observations

In this study we use model simulations from CMIP Phases 3, 5 and 6, organized by the WCRP CMIP Panel
under the auspices of the Working Group on Coupled Modelling (WGCM). The model data (see Tables 1–3)
fromCMIP3, CMIP5, and CMIP6 are freely available on servers of the Earth SystemGrid Federation (ESGF),
which is an international collaboration that manages the decentralized database of CMIP output. In order to
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Table 1
CMIP6 Models Used in This Study

Model(s) Institute Reference(s)

ACCESS‐CM2
ACCESS‐ESM 1‐5

Commonwealth Scientific and Industrial Research Organisation (CSIRO),
Australian Research Council Centre of Excellence for Climate System Science
(ARCCSS)

AWI‐CM‐1‐1‐MR
AWI‐ESM‐1‐1‐LR

Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research,
Germany

Rackow et al. (2018); Sidorenko et al. (2015)

BCC‐CSM2‐MR
BCC‐ESM 1

Beijing Climate Center, China
Meteorological Administration, China

Wu et al. (2019)

CAMS‐CSM1‐0 Chinese Academy of Meteorological Sciences, China Rong et al. (2018)
CanESM5
CanESM5‐CanOE

Canadian Center for Atmospheric Research, Canada Swart et al. (2019)

CESM2
CESM2‐FV2
CESM2‐WACCM
CESM2‐WACCM‐FV2

National Science Foundation (NSF), Department of Energy (DOE),
National Center for Atmospheric Research (NCAR), USA

CNRM‐CM6‐1
CNRM‐CM6‐HR
CNRM‐ESM 2‐1

Météo‐France/Centre National de Recherches Météorologiques (CNRM) and
Centre Européen de Recherches et de Formation Avancée en Calcul Scientifique
(CERFACS), France

Séférian et al. (2019); Voldoire et al. (2019)

E3SM‐1‐0
E3SM‐1‐1
E3SM‐1‐1‐ECA

E3SM‐Project, USA Golaz et al. (2019)

EC‐Earth3‐Veg EC‐Earth consortium, Europe Wyser et al. (2019)
FGOALS‐f3‐L
FGOALS‐g3

Chinese Academy of Meteorological Sciences, China

FIO‐ESM‐2‐0 First Institute of Oceanography, Ministry of Natural Resources,
China (FIO),
Qingdao National Laboratory for Marine Science and Technology, China
(QNLM)

Song et al. (2019)

GFDL‐CM4
GFDL‐ESM 4

National Oceanic and Atmospheric Administration
(NOAA) /Geophysical
Fluid Dynamics Laboratory (GFDL), USA

Dunne et al. (2019); Held et al. (2019)

GISS‐E2‐1‐G
GISS‐E2‐1‐G‐CC
GISS‐E2‐1‐H

National Aeronautics and Space Administration (NASA), Goddard Institute
for Space Studies (GISS), USA

HadGEM3‐GC31‐LL
HadGEM3‐GC31‐MM

Met Office Hadley Centre, UK Kuhlbrodt et al. (2018); Williams et al. (2018)

INM‐CM4‐8
INM‐CM5‐0

Institute for Numerical Mathematics, Russian Academy of Science, Russia Volodin et al. (2017a); Volodin et al. (2017b);
Volodin et al. (2018)

IPSL‐CM6A‐LR L'Institut Pierre‐Simon Laplace (IPSL), France Boucher et al. (2020)
KACE‐1‐0‐G National Institute of Meteorological Sciences/Korea Meteorological

Administration, Climate Research Division, Republic of Korea
Lee et al. (2019)

MCM‐UA‐1‐0 Department of Geosciences, University of Arizona, USA Delworth et al. (2002)
MIROC6
MIROC‐ES2L

Japan Agency for Marine‐Earth Science and Technology (JAMSTEC),
Atmosphere and Ocean Research Institute (AORI), University of Tokyo,
and National Institute for Environmental Studies (NIES), Japan

Hajima et al. (2020); Tatebe et al. (2019)

MPI‐ESM‐1‐2‐HAM HAMMOZ‐Consortium: ETH Zurich, Switzerland; Max Planck Institut fur
Meteorologie, Germany; Forschungszentrum Julich, Germany; University of
Oxford,
UK; FinnishMeteorological Institute, Finland; Leibniz Institute for Tropospheric
Research, Germany; Center for Climate Systems Modeling (C2SM) at ETH
Zurich, Switzerland

Neubauer et al. (2019)

MPI‐ESM 1‐2‐HR
MPI‐ESM 1‐2‐LR

Max Planck Institute, Germany Mauritsen et al. (2019); Muller et al. (2018)

MRI‐ESM 2‐0 Meteorological Research Institute (MRI), Japan Yukimoto et al. (2019)
NESM3 Nanjing University of Information Science and Technology, China Cao et al. (2018)
NorCPM1
NorESM2‐LM
NorESM2‐MM

NorESM Climate modeling Consortium, Norway Bentsen et al. (2013)

SAM0‐UNICON Seoul National University, Republic of Korea Park et al. (2019)
TaiESM1 Research Center for Environmental Changes, Academia Sinica, Taiwan
UKESM1‐0‐LL Met Office Hadley Centre, UK Sellar et al. (2019)
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Table 2
CMIP5 Models Used in This Study

Model(s) Institute Reference(s)

ACCESS1.0
ACCESS1.3

Australian Commonwealth Scientific and Industrial Research
Organization (CSIRO) Marine and Atmospheric Research, Bureau of
Meteorology (BoM), Australia

Bi et al. (2013)

BCC‐CSM1.1
BCC‐CSM1.1‐M

Beijing Climate Center, China
Meteorological Administration, China

Wu et al. (2013); Zhou et al. (2014)

BNU‐ESM Beijing Normal University (BNU), China Ji et al. (2014)
CanCM4
CanESM2

Canadian Center for Atmospheric Research, Canada Arora et al. (2011)

CCSM4 National Center for Atmospheric Research (NCAR), USA Gent et al. (2011)
CESM1‐BGC
CESM1‐CAM5
CESM1‐CAM5‐1‐FV2
CESM1‐FASTCHEM
CESM1‐WACCM

National Science Foundation (NSF), Department of Energy (DOE),
National Center for Atmospheric Research (NCAR), USA

Marsh et al. (2013); Meehl et al. (2013)

CMCC‐CESM
CMCC‐CM
CMCC‐CMS

Centro Euro‐Mediterraneo per I Cambiamenti Climatici (CMCC), Italy (Fogli et al., 2009)

CNRM‐CM5
CNRM‐CM5‐2

Météo‐France/Centre National de Recherches Météorologiques
(CNRM) and Centre Européen de Recherches et de Formation
Avancée en Calcul Scientifique (CERFACS), France

Voldoire et al. (2013)

CSIRO‐Mk3.6.0 Australian Commonwealth Scientific and Industrial Research
Organization (CSIRO) Marine and Atmospheric Research,
Queensland Climate Change Centre of Excellence
(QCCCE), Australia

Rotstayn et al. (2010)

EC‐EARTH EC‐Earth consortium, Europe Hazeleger et al. (2012)
FGOALS‐g2
FGOALS‐s2

National Key Laboratory of Numerical Modeling for Atmospheric
Sciences and Geophysical Fluid Dynamics (LASG) /Institute of
Atmospheric Physics, China

Li et al. (2013); http://www.lasg.ac.cn/FGOALS/CMIP5/

FIO‐ESM First Institute of Oceanography (FIO), State Oceanic Administration
(SOA), China

Zhou et al. (2014)

GFDL‐CM3
GFDL‐ESM 2G
GFDL‐ESM 2M
GFDL‐CM2p1

National Oceanic and Atmospheric Administration (NOAA)
/Geophysical Fluid Dynamics Laboratory (GFDL), USA

Donner et al. (2011); http://nomads.gfdl.noaa.gov/

GISS‐E2‐H
GISS‐E2‐H‐CC
GISS‐E2‐R
GISS‐E2‐R‐CC

National Aeronautics and Space Administration (NASA), Goddard
Institute for Space Studies (GISS), USA

Schmidt et al. (2006)

HadCM3
HadGEM2‐AO
HadGEM2‐CC
HadGEM2‐ES

Met Office Hadley Centre, UK W. J. Collins et al. (2011)

INM‐CM4 Institute for Numerical Mathematics (INM), Russia Volodin et al. (2010)
IPSL‐CM5A‐LR
IPSL‐CM5A‐MR
IPSL‐CM5B‐LR

L'Institut Pierre‐Simon Laplace (IPSL), France Dufresne et al. (2013); Hourdin et al. (2013)

MIROC‐ESM
MIROC‐ESM‐CHEM
MIROC4h
MIROC5

Japan Agency for Marine‐Earth Science and Technology (JAMSTEC),
Atmosphere and Ocean Research Institute (AORI), University of
Tokyo, and National Institute for Environmental Studies (NIES),
Japan

M. Watanabe et al. (2010); Watanabe et al. (2011)

MPI‐ESM‐LR
MPI‐ESM‐MR
MPI‐ESM‐P

Max Planck Institute, Germany Roeckner et al. (2006); Wetzel et al. (2006)

MRI‐CGCM3
MRI‐ESM 1

Meteorological Research Institute (MRI), Japan Yukimoto et al. (2012)

NorESM1‐M
NorESM1‐ME

Norwegian Climate Centre, Norway Bentsen et al. (2013)
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assess the models' improvements in reproducing observed climate parameters, we use several observational
data sets and reanalyses summarized in Table 5.

In CMIP5 most of the models had a higher spatial resolution with 0.5° to 4° for the atmosphere component
and 0.2° to 2° for the ocean component than the CMIP3 models (Taylor et al., 2012). In CMIP6 the spread of
the models' spatial resolutions shifts again to finer grids. For the first time, a new “input4MIPs” activity
(https://pcmdi.llnl.gov/mips/input4MIPs/) has been initiated in CMIP6 encourage adoption of common
data standards and to create an archive of the forcing data sets and boundary conditions needed for the
CMIP6 simulations available via ESGF. Many of the new forcing data sets are improved versions of the ones
used in CMIP5 (see summary available at http://goo.gl/r8up31).

2.1. CMIP6

CMIP6 consists of three main elements (Eyring, Bony, et al., 2016): (1) a set of common experiments, the
DECK (Diagnostic, Evaluation and Characterization of Klima) and CMIP historical simulations (1850 to
near present) that are used here to document the basic characteristics of the models across different phases
of CMIP; (2) common standards, coordination, infrastructure, and documentation that facilitates the distri-
bution of model output and the characterization of the model ensemble; and (3) an ensemble of
CMIP‐Endorsed MIPs that are specific to a particular phase of CMIP (now CMIP6) and that build on the
DECK and CMIP historical simulations to address a large range of specific scientific questions and help fill
the scientific gaps of previous CMIP phases. CMIP6 models have an increased degree of freedom by
including more processes and couplings, primarily aimed at being able to better simulate future feedbacks
(e.g., nitrogen effects of terrestrial carbon uptake or permafrost processes). In this study we use the
CMIP6 Carbon Dioxide (CO2) concentration driven historical simulations (historical) over the time period
1850–2014 (Table 1). Common forcing data sets are defined for the CMIP6 historical simulations are largely
based on observations and include: land‐use changes (Ma et al., 2019), emissions and concentrations of
long‐lived greenhouse gases (Meinshausen et al., 2017) and of short‐lived species (Hoesly et al., 2018), strato-
spheric aerosol from volcanoes (Zanchettin et al., 2016), biomass burning emissions (van Marle et al., 2017),
and solar forcing (Matthes et al., 2017). It should, however, be noted that forcings in the model simulations
can differ according to the complexity of the model. For example, some models are forced with a parameter-
ization of anthropogenic aerosol optical properties and an associated Twomey effect (Stevens et al., 2017),

Table 3
CMIP3 Models Used in This Study

Model(s) Institute Reference(s)

bccr_bcm2_0 Bjerknes Centre for Climate Research (BCCR), University of Bergen (UiB) http://bjerknes.uib.no
cccma_cgcm3_1
cccma_cgcm3_1_t63

Canadian Centre for Climate Modelling and Analysis, Canada Mcfarlane et al. (1992)

csiro_mk3_0 Australian Commonwealth Scientific and Industrial Research Organization
(CSIRO), Australia

H. B. Gordon et al. (2002)

gfdl_cm2_0
gfdl_cm2_1

National Oceanic and Atmospheric Administration (NOAA) /Geophysical
Fluid Dynamics Laboratory (GFDL), USA

(2004)

giss_aom
giss_model_e_h
giss_model_e_r

NASA Goddard Institute for Space Studies (GISS), USA Bleck (2002); Russell et al. (1995); Schmidt et al. (2006)

iap_fgoals1_0_g Institute of Atmospheric Physics (IAP), China Yu et al. (2004)
ingv_echam4 Instituto Nazionale di Geofisica e Vulcanologia, Italy
inmcm3_0 Institute for Numerical Mathematics (INM), Russia Alekseev et al. (1998); Galin et al. (2003)
ipsl_cm4 L'Institut Pierre‐Simon Laplace (IPSL), France Hourdin et al. (2006)
miroc3_2_hires
miroc3_2_medres

Center for Climate Research (University of Tokyo), Japan Agency for
Marine‐Earth Science and Technology (JAMSTEC), Japan

Hasumi and Emori (2004)

mpi_echam5 Max Planck Institute, Germany Roeckner et al. (2003)
mri_cgcm2_3_2a Meteorological Research Institute (MRI), Japan Yukimoto et al. (2006)
ncar_ccsm3_0
ncar_pcm1

National Center for Atmospheric Research (NCAR), USA Collins et al. (2006); Washington et al. (2000)

ukmo_hadcm3
ukmo_hadgem1

Hadley Centre for Climate Prediction and Research/Met Office, UK Gordon et al. (2000); Martin et al. (2006);
Pope et al. (2000)
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while others treat aerosols interactively and therefore prescribe emissions of aerosols and their precursors
instead (Hoesly et al., 2018). We only consider one ensemble member per model (“r1i1p1f1,” if available).
In order to calculate ECS, we also use the simulations forced by an abrupt quadrupling of CO2

(abrupt‐4 × CO2) and the preindustrial control simulations (piControl).

2.2. CMIP5

For CMIP5 (Taylor et al., 2012), we use the results from up to 48 models (Table 2) for the historical simula-
tions depending on data availability for a specific variable. The historical simulations are twentieth‐century
simulations covering the time period 1850–2005 and are performed using the then best available record of
natural and anthropogenic climate forcing (Cionni et al., 2011; Lamarque et al., 2010). In case there are mul-
tiple ensemblemembers available for a givenmodel, we only consider the first ensemble member “r1i1p1” in
our analysis. Again, we use the idealized abrupt four times CO2 and the preindustrial control simulations to
calculate ECS from the models.

2.3. CMIP3

The CMIP3 model simulations analyzed are the twentieth century runs (1860–1999) with natural and
anthropogenic forcings (20C3M experiments). Again, in case there are multiple ensemble members avail-
able for a given model, we only analyze the first ensemble member “run1.” In total, there are up to 22
CMIP3 models considered in our analyses depending on data availability for a specific variable (Table 3).

2.4. HighResMIP

The HighResMIP (Haarsma et al., 2016) applies, for the first time, a multimodel approach to systematically
investigate the impact of horizontal resolution on the results of global ESMs. A coordinated set of experi-
ments over the time period 1950–2014 has been designed to assess both, a standard and an enhanced hori-
zontal resolution simulation, in the atmosphere and ocean of each participating model (Table 4). To make
the highest‐resolution models computationally affordable, some compromises were necessary. The experi-
ment design incorporates only a short (30–50 year) spin‐up from 1950 initial conditions before control
and historic‐future simulations. Therefore, a direct comparison to the CMIP6 historical simulations that
start in 1850 is not always possible. In this study, we therefore compare the lower‐resolution and
high‐resolution model versions within HighResMIP, both starting in 1950, in order to assess possible
improvements due to higher horizontal model resolution. In HighResMIP, physical models with few ESM
components are used, and the aerosol optical properties are specified over time using the MACv2‐SP scheme
(Stevens et al., 2017).

2.5. Observations and Reanalysis Data

The observations and reanalysis data used for the model evaluation and assessment of the progress made
during the different phases of CMIP are summarized in Table 5 including the type of observation, variables
used, time period covered, and main reference(s). Where available, we use observational data sets from the

Table 4
HighResMIP Models Used in This Study

Model(s) Institute Reference(s)

CMCC‐CM2‐VHR4
CMCC‐CM2‐HR4

Centro Euro‐Mediterraneo per I Cambiamenti Climatici
(CMCC), Italy

Cherchi et al. (2019)

CNRM‐CM6‐1‐HR
CNRM‐CM6‐1

Météo‐France/Centre National de Recherches Météorologiques
(CNRM) and Centre Européen de Recherches et de Formation
Avancée en Calcul Scientifique (CERFACS), France

Voldoire et al. (2019)

ECMWF‐IFS‐HR
ECMWF‐IFS‐LR

European Centre for Medium‐Range Weather
Forecasting (ECMWF)

C. D. Roberts et al. (2018)

HadGEM3‐GC31‐HM
HadGEM3‐GC31‐LL

Met Office Hadley Centre, UK; University of Reading, UK;
Natural Environment Research Council (NERC), UK

M. J. Roberts et al. (2019)

MPI‐ESM 1‐2‐XR
MPI‐ESM 1‐2‐HR

Max Planck Institute, Germany Gutjahr et al. (2019)

Note. In each column the name of the high‐resolution version (first line) and the corresponding low‐resolution version
(second line) is given.
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observations for Model Intercomparison Projects (obs4MIPs; Ferraro et al., 2015; Waliser et al., 2020), which
can be downloaded freely from the ESGF and, because they are provided in the same file format including all
relevant meta data as the output from the CMIP6 models, and can be used directly with the ESMValTool.

2.6. ESMValTool

The ESMValTool is a community diagnostics and performancemetrics tool specifically developed for evalua-
tion of ESMs contributing to CMIP (Eyring et al., 2020; Righi et al., 2020). ESM results from single ormultiple
models can be compared with their predecessor versions and against observations. The diagnostics available
in the ESMValTool cover a wide range of scientific themes focusing on selected essential climate variables, a
range of known systematic biases common to ESMs, meteorology, clouds, tropospheric aerosols, ocean vari-
ables, land processes, etc. All diagnostics are grouped in sets of standard “recipes” for each scientific topic
reproducing diagnostics or performancemetrics that have demonstrated their importance in ESM evaluation
in the peer‐reviewed literature. Themain aim of the ESMValTool is to facilitate and improve ESM evaluation
beyond the state‐of‐the‐art and to support activities within CMIP and at individual modeling centers. This
includes provision of well‐documented diagnostics and source code as well as ensuring reproducibility and
traceability of the results (provenance). The ESMValTool is an open source project and can be found on
GitHub at https://github.com/ESMValGroup/ESMValTool with contributions from the community very
welcome. Contributions could include, but are not limited to, documentation improvements, bug reports,
new or improved diagnostic code, scientific and technical code reviews, infrastructure improvements, mail-
ing list and chat participation, community help/building, education, and outreach. For more information on
contributing to the ESMValTool, general guidelines, code style, etc., we refer to the ESMValTool user's guide
available at https://docs.esmvaltool.org website. A general overview on the ESMValTool is given by Eyring,
Righi, et al. (2016), technical details of the latest version (v2.0) can be found in Righi et al. (2020), diagnostics
and metrics newly added to v2.0 are described in three companion papers (Eyring et al., 2020; Lauer

Table 5
Observations and Reanalyses Used in This Study

Data set Type Variable Time period Reference

AIRS satellite specific humidity (hus)a 2003–2010 Susskind et al. (2006);
Tian et al. (2013)

CERES‐EBAF satellite TOA outgoing shortwave radiation (rsut)a,
TOA outgoing longwave radiation (rlut)a,
TOA shortwave cloud radiative effect
(swcre)a, TOA longwave cloud radiative
effect (lwcre)a

2001–2015 Loeb et al. (2012)

ERA5 reanalysis near‐surface temperature (tas) 1980–2014 Copernicus Climate Change
Service (C3S) (2017)

ERA‐Interim reanalysis specific humidity (hus)b, sea level pressure
(psl)b, temperature, eastward wind (ua)a,
northward wind (va)a, temperature (ta)a,
near‐surface air
temperature (tas)a,
geopotential height (zg)a

1980–2014 Dee et al. (2011)

ESACCI‐CLOUD satellite total cloud cover (clt)a 1982–2014 Stengel et al. (2017)
ESACCI‐SST satellite surface temperature (ts)a 1992–2010 Merchant et al. (2014)
GHCN ground precipitation (pr)b 1980–2014 Vose et al. (1992)
GPCP‐SG satellite and

rain gauge
precipitation (pr)a 1980–2014 Adler et al. (2003);

Huffman and
Bolvin (2012)

HadCRUT4 station near‐surface temperature (tas) 1980–2014 Morice et al. (2012)
HadISST station surface temperature (ts)b 1980–2014 Rayner et al. (2003)
JRA‐55 reanalysis sea level pressure (psl)a 1980–2014 Harada et al. (2016);

Kobayashi et al. (2015)
NCEP reanalysis temperature (ta)b, eastward wind (ua)b,

northward wind (va)b, near‐surface air temperature (tas)b,
geopotential height (zg)b

1980–2014 Kalnay et al. (1996)

PATMOS‐x satellite total cloud cover (clt)a 1982–2014 Heidinger et al. (2014)

aReference observational data sets for this variable in Figures 6 and 7. bAlternate observational data sets for this variable in Figures 6 and 7.
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et al., 2020; Weigel et al., 2020). The ESMValTool is fully integrated into the ESGF infrastructure at the
Deutsches Klimarechenzentrum (DKRZ) where all the model output and the observations are stored in a
local replica and the tool is run. All diagnostics used for this paper will be made available in the
ESMValTool after acceptance of this publication and the figures can be reproduced with the newly added
recipe “recipe_bock20jgr.yml.”

3. Surface Temperature Record

Figure 1 shows the time series of anomalies in annual global mean near‐surface temperature simulated by
CMIP3, CMIP5, and CMIP6 models. The time period 1850–1900 has been used as reference period to cal-
culate the temperature anomalies (1870–1900 for CMIP3 models starting in 1870). The reference data set
for comparison with the models is HadCRUT4 (Morice et al., 2012). In general, the models of all CMIP
phases are able to reproduce the observed temperature record reasonably well in a range of ±0.9°C show-
ing an increase in global‐averaged annual mean near‐surface temperature since the year 1850 including an
accelerated warming beginning in the 1970s and a temporary cooling that follows large volcanic eruptions
such as Krakatoa in 1883 or Agung in 1963. The temperature changes since the late nineteenth century are
driven by a number of factors, including increasing atmospheric greenhouse gas concentrations, changes
in aerosol amounts, changes in solar activity, volcanic eruptions, and changes in land use. Natural varia-
bility also plays an important role particularly on shorter timescales such as for the observed slowdown
(“hiatus”) in the observed increase in global surface temperature warming rates during the time period
1998–2013 (Meehl et al., 2014), although ocean heat content continued to increase over the same period
(Yin et al., 2018).

The CMIP3 multimodel mean already captured the observed surface temperature change quite well with a
warming for the years 1990 to 1999 in the range of 0.45°C to 0.73°C compared to 0.38°C to 0.74°C for the
observations. Even though there are some outliers leading to a rather large intermodel spread. A similarly
large spread exists in mean absolute temperatures simulated by CMIP3 models, and that spread persists in
CMIP5 and CMIP6 (see insets in Figure 1).

Figure 2 shows the intermodel spread of the three CMIP ensembles as ±1 standard deviation around the
multimodel means in comparison to the uncertainty estimates of the global temperature anomalies from
HadCRUT4. The observed uncertainty estimates are the 5% and 95% percentiles of the confidence interval
of the combined effects of uncertainties from measurement and sampling as well as bias and coverage
(Morice et al., 2012). All models have been sampled according to the temporal and spatial data availability
from HadCRUT4 and therefore include similar sampling and coverage uncertainties as the observations.
The intermodel spread for temperature anomalies, which are less uncertain in observations than absolute
values (P. D. Jones et al., 1999), are slightly reduced in CMIP5 and CMIP6 with standard deviations of
0.16°C and 0.17°C, respectively, after the reference period compared to 0.19°C for CMIP3. Particularly from
the second half of the twentieth century onward, the intermodel spreads in all CMIP enselbles are larger
than the HadCRUT4 uncertainty estimates and do not narrow down with time. This suggests that besides
natural variability, model uncertainty is an important contribution to the intermodel spread in all three
CMIP phases. Since the intermodel spread does not change substantially among the different CMIP phases,
this further suggests that model uncertainties remain to be important factors determining the intermodel
spread throughout the observed time period.

There were discussions focussing on the observed reduction in the rate of surface temperature warming dur-
ing the hiatus period which was apparently not reproduced by the CMIP5 models (Flato et al., 2013; Meehl
et al., 2014). It has subsequently been shown that the slowdown in the rate of global warming in the early
2000s likely predominantly due to internal variability from the negative phase of the Interdecadal Pacific
Oscillation (IPO) in the Pacific (England et al., 2014; Fyfe et al., 2016; Xie & Kosaka, 2017) with some con-
tributions from aerosol forcing from a collection of moderate sized volcanic eruptions (Santer et al., 2015)
and perhaps partly from anthropogenic aerosol forcing (D. M. Smith et al., 2016) though such a role for
anthropogenic aerosols is still being debated (Oudar et al., 2018). Thus, uninitialized climate models aver-
aged across multiple ensemble members to remove the effects of internal variability cannot be expected,
by definition, to reproduce, in such a multimodel mean, a phase of internal variability in the single realiza-
tion of the observations. However, a small number of CMIP5 model realizations were, by chance, able to
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simulate the internally generated slowdown that happened to occur at the same time as shown by the
observations, and those simulations also were characterized by a negative phase of the IPO (Meehl
et al., 2014). This strongly suggests that the models do indeed include the processes that can produce

Figure 1. Observed and simulated time series of the anomalies in annual and global mean surface temperature. For
CMIP3, CMIP5, and CMIP6, all anomalies are differences from the 1850–1900 time mean of each individual time
series. For the CMIP3 model simulations starting later than 1850 the reference period is defined as the available time
period between 1850 and 1900. The reference period is indicated by gray shading. The thin lines show individual climate
model simulations from (a) CMIP3, (b) CMIP5, and (c) CMIP6, the thick red lines show the multimodel means. The
observational data (thick black lines) are the Hadley Centre/Climatic Research Unit gridded surface temperature data set
Version 4 (HadCRUT4; Morice et al., 2012). All models have been subsampled using the HadCRUT4 observational data
mask (see Jones et al., 2013). Inset: The global mean surface temperature for the reference period 1850–1900 of the
subsampled fields. CMIP6 models, which are masked with an asterisk are either tuned to reproduce observed warming
directly, or indirectly by tuning equilibrium climate sensitivity.
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decadal slowdowns or accelerations, but this presents a challenge for
interpreting multimodel ensemble averages when comparing to observed
decadal‐timescale variability from the single realization of the observa-
tions. As the historical CMIP6 simulations extend beyond the hiatus per-
iod, we found that there is again a convergence between the time series of
the multimodel mean and the observed temperature record until the year
2014. But the CMIP6 multimodel mean tends to simulate reduced warm-
ing over the period 1950–1990 (with a mean bias of −0.07°C) which is
probably at least partly related to an overestimation of the cooling in
response to large increases in anthropogenic emissions of primary aerosol
and precursors in the 1950s in some models (Andrews et al., 2019; Dittus
et al., 2020; Flynn & Mauritsen, 2020; Hoesly et al., 2018). The lack of
simulated warming in that period (Figure 1) could be caused by a high
aerosol effective radiative forcing (ERF) in these models. Dittus
et al. (2020) supports that explanation by varying the strength of aerosol
ERF in the CMIP6 version of the HadGEM3 climate model. They find that
temperature trends over the period 1951–1980 are significantly more sen-
sitive to the strength of aerosol ERF than the 30 previous (1921–1950) and
following (1981–2010) years, when temperature trends where driven by
greenhouse gas increases. Aerosol ERF measures imbalances in the
Earth's energy budget due to anthropogenic aerosols, including

aerosol‐radiation interactions and aerosol‐cloud interactions and their rapid adjustments (Sherwood
et al., 2015). Several models reduced the strength of their simulated aerosol radiative forcing during their
development phase to ensure that total anthropogenic radiative forcing remained positive (Danabasoglu
et al., 2020; Mulcahy et al., 2018). Potentially as a result of overly sensitive aerosol‐cloud‐radiation coupling,
individual CMIP6 models may underestimate the observed global temperature anomalies in the 1960s to
1980s by up to 0.5°C, while being much closer to the observations during the rest of the historical period.

By correlating each model's aerosol ERF for 2014 (C. J. Smith et al., 2020) with its simulated warming trend
between 1945 to 1970, we find some evidence to support the hypothesis that CMIP6 models with particularly
strong negative aerosol forcing show a larger surface cooling trend in the midtwentieth to late twentieth cen-
tury, with this relationship most clear when temperature trends for the NH extratropics are considered. We
note that the C. J. Smith et al. (2020) aerosol ERF for 2014 is not always representative of the aerosol ERF
experienced bymodels over the time period 1945–1970 because models could have different aerosol ERF his-
tories. We do not, however, expect this to have a large impact on the strength or sign of the relation found
between aerosol ERF and temperature trend as preliminary results from the RFMIP piClim‐histaer simula-
tion suggest that the aerosol ERF values for midcentury and present‐day typically scale rather similarly
among the models. In addition to the forcing itself, details of how individual models respond to this negative
forcing also plays a role in determining their overall historical temperature record. The very high warming
rates in the last part of the twentieth century of somemodels such as CanESM5 and UK‐ESM, as well as their
strong cooling after volcanic eruptions, are reflected in very large climate sensitivity values (see further dis-
cussion in section 6).

When evaluating model simulations of historical temperature change, it is important to keep in mind that
good agreement with the long‐term twentieth century trend of observed surface temperature changes is
expected for models that are directly or indirectly tuned to reproduce observed twentieth‐century warming
(Hourdin et al., 2017; Mauritsen et al., 2012). Tuning itself means an objective process of parameter estima-
tion to fit a predefined set of observations (Hourdin et al., 2017). However, the tuning is not time‐dependent
so the decadal variability of the time evolution of global temperature relies on how the models respond to
external forcings such as volcanic eruptions, solar variability, and time‐evolving anthropogenic aerosols.
Thus, there is no significant difference in the multimodel mean anomaly time series of near‐surface tem-
perature obtained for models that have been tuned toward the observed warming rates or for models that
have not (not shown). The anomaly time series for surface temperature for the tuned models (marked with
asterisks in the legend of Figure 1) is too cold in the second half of the twentieth century, just like models
that are not tuned to twentieth century warming.

Figure 2. Observed and simulated time series of the anomalies in annual
and global mean surface temperature as in Figure 1; all anomalies are
calculated by subtracting the 1850–1900 time mean from the time series.
Displayed are the multimodel means of all three CMIP ensembles with
shaded range of the respective standard deviation. In black the HadCRUT4
data set (HadCRUT4; Morice et al., 2012). Gray shading shows the 5% to
95% confidence interval of the combined effects of all the uncertainties
described in the HadCRUT4 error model (measurement and sampling, bias,
and coverage uncertainties) (Morice et al., 2012).
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4. Systematic Biases

Climate models are known to exhibit a number of different and partly long‐standing biases in reproducing
observed climate (Stouffer et al., 2017). In order to be able to address one of the scientific key question in
CMIP6, “What are the origins and consequences of systematic model biases?” (Eyring, Bony, et al., 2016),
a first step is to identify which of the systematic model biases are still present in the CMIP6 historical simu-
lations. A second step is then to assess potential progress and improvements in the models' performance
compared with older model generations that contributed to CMIP3 and CMIP5 throughout the last two dec-
ades. Here, we are not specifically aiming at tracking the performance of individual models but rather the
performance of generations of climate models. We therefore compare multimodel means of CMIP Phases
3, 5, and 6 against observations and against each other in order to identify still existing biases and assess
potential progress in reproducing the observed climate state of the last decades.

4.1. Surface Temperature

One of the prognostic variables of climate models that is most commonly used and downloaded from the
CMIP archives is surface temperature. Figure 3a shows that the CMIP6 multimodel mean is able to simulate
the key characteristics of the observed global surface temperature pattern. The dominant feature of the cli-
matology (1995–2014) is the zonal gradient from high temperatures at the equator to low values at the poles.
High‐elevation regions like the Himalayas, the Andes or Antarctica are significantly cooler than the latitu-
dinal average temperature. Seasonal changes in temperatures are also generally well reproduced (Flato
et al., 2013).

All CMIP ensembles reproduce the large‐scale annual mean patterns from the reference reanalysis data set
ERA5 quite well (pattern correlations of 0.99 or larger for all CMIP models, see Figure 7). The global mean
bias improves from CMIP3 (−0.451°C) to values near zero for CMIP5 and CMIP6 (Figures 3b–3d). And also
the global mean root‐mean‐square difference (RMSD) decreases continously for the different CMIP ensem-
bles but in some regions there are some long‐standing biases (Figures 3b–3d). These biases include too high
surface temperatures in the upwelling regions of subtropical oceans of up to several °C. One possible reason
for this warm bias is an underestimation of the stratocumulus cloud fraction in these regions. Biases in the
high‐elevation regions are also still apparent in CMIP6 but typically somewhat smaller than in CMIP3. This
also applies to biases along the edge of the North Atlantic sea ice field. The positive temperature bias over the
Southern Ocean, however, seems to have gotten worse in time (Hyder et al., 2018) with the CMIP6 multimo-
del mean showing larger biases than in the two previous CMIP phases. Regional absolute biases in surface
temperature of up to 6°C as seen in CMIP5 and some pre‐CMIP6 models (Lauer et al., 2018) are still present
in CMIP6.

There are many different, model‐dependent causes for biases in modeled surface temperature. Common
causes include biases in downward shortwave radiation at the surface because of errors in simulated cloud
properties (Hyder et al., 2018; Lauer et al., 2018), errors in oceanic circulation (Kuhlbrodt et al., 2018), errors
in the simulation of trade winds (Lauer et al., 2018), and errors in surface albedo and moisture propagated
from the vegetation schemes (Séférian et al., 2016). Even though the multimodel mean of the surface tem-
perature bias shows only small improvements in CMIP6, some individual models made significant progress
(Danabasoglu et al., 2020).

It is noteworthy that some of the long‐standing biases seem to be related to horizontal model resolution.
After increasing the horizontal resolution, as done in HighResMIP (Figures 3e and 3f), some of the biases
were reduced or even disappeared compared to the mean bias of the corresponding lower‐resolution ver-
sions of the same models simulating the same time period. Both, the global mean bias and RMSD decrease
with higher horizontal resolution. There is a clear improvement in many of these regional biases, particu-
larly in the stratocumulus regions where typical biases found in the high‐resolution models of
HighResMIP are below 1°C compared to up to 3–4°C found in the multimodel mean of the low‐resolution
models of HighResMIP (M. J. Roberts et al., 2019). Improvements can be seen in the upwelling regions off
the west coasts of South America and Africa and also over the northern Atlantic (Caldwell et al., 2019;
Docquier et al., 2019). The cold bias along the equator in the Pacific Ocean with too cold SSTs extending
too far west (Lauer et al., 2018) disappeared in the high resolution versions (Roberts et al., 2018, 2019). A
notable exception to biases improvements from higher resolution is again the Southern Ocean, where
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biases increase at these eddy‐permitting ocean resolutions. It should, however, be noted that the most
models in the current group of HighResMIP models include a NEMO‐based ocean, so there is little ocean
model diversity. Also, because of the shorter simulation period starting from observed initial conditions in
1950 in HighResMIP, compared to starting in 1850 from a preindustrial spun‐up state for the CMIP6
historical simulations, better agreement of the HighResMIP simulations with observations can be
expected. Because of this, the performance of the HighResMIP simulations is not directly comparable to
the one of the CMIP6 historical simulations.

Figure 3. Annual mean near‐surface (2 m) air temperature (°C). (a) Multimodel (ensemble) mean constructed with one
realization of CMIP6 historical experiments for the period 1995–2014. Multimodel‐mean bias of (b) CMIP6
(1995–2014), (c) CMIP5 (1985–2004), (d) CMIP3 (1980–1999), (e) high‐resolution, and (f) low‐resolution simulations of
the HighResMIP ensemble (1995–2014) compared to the corresponding time period of the climatology from ERA5
(Copernicus Climate Change Service (C3S), 2017).
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4.2. Precipitation

The multimodel mean of the CMIP6 ensemble shows the well‐known large‐scale features of the global pre-
cipitation pattern (Figure 3a). Precipitation near the equator is high due to frequently occurring deep con-
vection connected with the Intertropical Convergence Zone (ITCZ). In the subtropical subsidence regions
precipitation rates are low and increase again in midlatitudes due to precipitation by frontal systems
(midlatitude storm tracks). The cold temperatures and the associated low water vapor saturation ratio at
the poles leads to a relatively low amount of precipitation in high latitudes. Pattern correlations between
the modeled and observed geographical distribution of annual mean precipitation range between 0.69 and
0.87 for CMIP3, 0.79 to 0.88 for CMIP5, and 0.80 and 0.92 for CMIP6 models (Figure 7).

Figure 4. Same as Figure 3 but for annual mean precipitation rate (mm day−1). Data from the Global Precipitation
Climatology Project (GPCP) Version 2.3 (Adler et al., 2003) are used as a reference.
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The comparison of the multimodel mean with the global precipitation data set from the Global Precipitation
Climatology Project (GPCP;Adler et al., 2003) shows that the globalmean climatology of theCMIP ensembles
is a bit too wet but the global RMSD decreases from CMIP3 to CMIP6 (Figures 4b–4d). But there are some
long‐standing systematicmodel biases throughout the different CMIP phases. The largest precipitation biases
of up to 3.5 mm day−1 are found in the tropics. They include the occurrence of a double ITCZ in the tropical
Pacific and a southward shifted ITCZ in the equatorial Atlantic with rather little progress from CMIP3 to
CMIP6. A double ITCZ is often driven by incorrect simulation of the meridional gradients in SST across
the equator (Oueslati & Bellon, 2015) and thus a complex problem of the coupled atmosphere‐ocean system.
In general, the amplitude and geographical pattern of the precipitation biases in CMIP6 are quite similar to
those from CMIP5. There is some improvement, however, in CMIP6 compared with CMIP3 and CMIP5 in
the overly intense Indian Ocean ITCZ and the too dry South American continent (excluding the Andes) by
about 1mmday−1. There have been also progressive improvements in the extratropical representation of pre-
cipitation fromCMIP3 to CMIP6. TheCMIP6models have an improved zonal tilt of theNorthAtlantic winter
storm track (Priestley et al., 2020), whichmayhave contributed to the decrease in the dry bias over that region.
Also, the equatorward and zonal mean bias in the SHmidlatitudes has been largely reduced. These improve-
ments have been attributed to model horizontal resolution in the NH and to model physics in the SH
(Priestley et al., 2020).

The multimodel mean bias of the high resolution versions in comparison to the multimodel mean bias of
their corresponding low resolution counterparts in HighResMIP (Figures. 4e and 4f) shows some improve-
ments. There is a strong decrease in the precipitation bias in the tropical Atlantic by about 1–2 mm day−1 as
well as a near disappearance of the dry bias in the equatorial Pacific. A possible explanation for this improve-
ment could be that, together with the improved SST biases (Figures 3e and 3f), the seasonal mean circulation
and ITCZ migration are better represented with higher horizontal resolution (Vannière et al., 2019) leading
to smaller biases.

4.3. Meteorology

Figure 5 shows climatological annual means of zonally averaged temperature, specific humidity and zonal
wind (u‐component) from theCMIPmultimodelmeans comparedwith data from theERA‐Interim reanalysis
(Dee et al., 2011). Prominent, well‐known biases in the simulated vertical temperature distribution through-
out all CMIP phases include a cold bias of several K in the extratropical upper troposphere at around 200 hPa
andawarmbias of about 1–2K in the tropics at about 100 hPa (John&Soden, 2007). The cold bias is somewhat
reduced frommaximumvalues of around 8K inCMIP3 to about 6K inCMIP6. Additionally, thewarmbias in
the upper tropical troposphere is reduced in its extent andmagnitude fromCMIP3 (up to 3K) to CMIP6 (up to
2 K). The same is true for the cold bias in the lower stratosphere in the tropics with a reduction from about 3 K
in CMIP3 to about 1 K in CMIP6. An improvement from CMIP5 to CMIP6 can also be seen in the cold bias
throughout most of the troposphere in the SH that is reduced from 1–2 K in CMIP5 to about 1 K in CMIP6.

The concentration of water vapor in the atmosphere spans several orders of magnitude. Therefore, Figure 5
shows relative biases of simulated specific humidity instead of absolute differences in order to facilitate
assessment of the performance of the CMIP multimodel means to reproduce the observationally based refer-
ence data set ERA‐Interim. Consistent with the cold bias in the extratropical upper troposphere at around
200 hPa in both hemispheres, water vapor is underestimated in the CMIP models. While there is little
change in this dry bias from CMIP3 to CMIP5, this bias is clearly improved in CMIP6 with bias values
now ranging between −10% and −30% down from −20% to more than −45%. Similarly, the wet bias in mid-
dle‐ and high‐latitude upper troposphere/lower stratosphere is improved from CMIP3 through CMIP5 to
CMIP6. Throughout most of the stratosphere, the CMIP3 multimodel mean shows a strong dry bias
(−40% to−130%). This bias has been reduced in CMIP5 with the dry bias now being mostly confined to high
latitudes and even further reduced in the CMIP6 multimodel mean with values now mostly below −20% to
−30% compared to ERA‐Interim (Figure 5, middle column).

The simulatedmultimodel mean zonal wind speed (u‐component) from CMIP6models shows a reduction in
the positive bias in stratosphere in midlatitudes in both hemispheres (bias up to 4–5 m s−1) compared to
CMIP3 (bias up to 9m s−1) and also compared to CMIP5 (bias up to 6m s−1). The negative bias in zonal wind
speed found above the tropical tropopause of up to several m s−1 in CMIP5 is also clearly reduced in the
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Figure 5. Multimodel mean of zonal averages for temperature (C°, left), specific humidity (10−6, middle) and zonal wind
(m s−1, right) from CMIP6 (1995–2004) (upper row). Also shown are the absolute (temperature and zonal wind) and
the relative (specific humidity) deviations from ERA‐Interim for (from top to bottom) CMIP6 (1995–2004), CMIP5
(1995–2004) and CMIP3 (1980–1999) multimodel means. Stippled areas show differences that are statistically significant
at a 95% confidence level.
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CMIP6 multimodel mean by about 0.1 m s−1. Reasons for that could be the increased vertical resolution in
the upper (tropical) troposphere and lower stratosphere and better resolved processes in the stratosphere, for
example, gravity wave parameterizations (Manzini et al., 2014). In addition, the better representation of
zonal mean specific humidity (Figure 5, middle column) might contribute to the improvement of the zonal
wind speed climatology in CMIP6.

5. Quantification of Model Performance Across the CMIP6 Ensemble and
CMIP Phases

In this section, the performance of the three different generations of climate models from CMIP3, CMIP5,
and CMIP6 is assessed across different variables using multiple diagnostic fields. For every diagnostic field
considered, model performance is compared to one or multiple observational reference data sets, and the
quality of the simulation is summarized in a single number such as correlation coefficient or a RMSD. The
general model improvements can then be quantified by simultaneously assessing a number of different per-
formance indices. The use of such performance metrics in the model development phase potentially intro-
duces the risk of tuning models to reproduce a set of metrics ignoring deficiencies elsewhere. This is why
such performance metrics should mostly be seen as a possible starting point for more in‐depth process‐
oriented evaluation that allows the identification of compensating errors (Eyring et al., 2005).

Performance metrics such as a portrait diagram shown in Figure 6 or a summary plot of the pattern correla-
tions for different variables as shown in Figure 7 offer the possibility to quickly get an overview onmodel per-
formance and can be either used as a starting point for more in‐depth evaluation of individual variables or
climate parameters with observations (Flato et al., 2013) or as one possible summary of overall model perfor-
mance. Figure 6 is an extended and updated version of Figure 9.7 of Flato et al. (2013) that is based on
Gleckler et al. (2008). It shows the normalized relative space‐time RMSD of the climatological seasonal cycle
from model simulations compared with observations for selected variables. Here, RMSD values are normal-
ized with the centered median RMSD, that is, by substracting the median RMSD from the RMSD of an indi-
vidual model and then dividing by the median RMSD. The median RMSD for each variable used for
normalization is calculated across all models from all CMIP phases tomake the grading of themodels directly
comparable across CMIP3, CMIP5, and CMIP6. Thus, positive and negative values are possible with positive
values indicating amodel performanceworse than themedianRMSDand negative values a performance bet-
ter than the median RMSD. Here, all RMSD values are averaged over the whole globe. Where available, the
model results are not only compared to one observational (ly based) reference data set but also to a second
alternative data set to get an estimate of the observational uncertainty. This is indicated by diagonally divided
boxes in Figure 6. All model data are masked according to data availability from the reference data sets and
averaged over the same years with observational data available.

Figure 6. Relative space‐time root‐mean‐square deviation (RMSD) calculated from the climatological seasonal cycle of the
CMIP3, CMIP5, and CMIP6 simulations (1980–1999) compared to observational data sets (Table 5). A relative
performance is displayed,with blue shading being better and red shadingworse than themedianRMSDof all model results
of all ensembles. A diagonal split of a grid square shows the relative error with respect to the reference data set (lower
right triangle) and the alternative data set (upper left triangle) which are marked in Table 5. White boxes are used when
data are not available for a given model and variable. Updated and expanded from Figure 9.7 of Flato et al. (2013).
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Figure 6 shows that model performance varies across the models and
across the variables, with no single model outperforming the other models
for all variables. Nevertheless, we see model families of which members
are performing quite similar, for example, the CMIP6 GFDL or CMIP6
GISS models. This is, however, not true for all model families with, for
example, CMIP6 models MIROC‐ES2L and MIROC6 showing quite dif-
ferent performances.

In general, there are clear improvements from CMIP3 to CMIP6 with the
majority of CMIP3 models showing on average more red (positive values)
boxes (CMIP3 ensemble median RMSD over all diagnostics = 0.127; 25%/
75% percentiles = 0.003/0.283) than CMIP5 (CMIP5 median
RMSD = 0.022; 25%/75% percentiles = −0.069/0.146) and the CMIP6
models showing the most blue (negative values) boxes (CMIP6 median
RMSD = −0.064; 25%/75% percentiles = −0.146/0.048). Radiation fields
have already shown improvements from CMIP3 to CMIP5 and this devel-
opment continues in CMIP6 as the models fit quite well to the
CERES‐EBAF observations. The same applies to total cloud cover (clt)
and precipitation (pr). The seasonal cycle of near‐surface air temperature
is not represented extremely well in CMIP3 (median RMSD = 0.191) but
there were a lot improvements through CMIP5 (median RMSD = 0.014)
to CMIP6 (median RMSD = −0.069). Moreover, the dynamical fields,
sea level pressure (psl) and the geopotential height at 500 hPa (zg500) show
improvements from CMIP3 (median RMSD for zg500 = 0.357) to CMIP6
(median RMSD for zg500 = −0.121) even though some individual models
still have problems in specific regions. Also, wind fields simulated by the
CMIP6 models are in better agreement with observations than those from
previous CMIP phases (see also section 4.3). The results for the tempera-

ture fields in 200 and 850 hPa show quite a large range in the RMSD for the different models in CMIP3
(median RMSD = 0.166), CMIP5 (median RMSD = 0.017) and also in CMIP6 (median RMSD = −0.050).

Using centered pattern correlations for selected fields (here: near‐surface air temperature; precipitation; out-
going top of the atmosphere, TOA; longwave radiation; TOA shortwave cloud radiative forcing; and sea level
pressure), Figure 7 shows significant improvements from the CMIP3 ensemble to the CMIP6 ensemble.
Little progress was found for fields that were already quite well simulated such as near‐surface air tempera-
ture and TOA outgoing longwave radiation. For precipitation, the intermodel spread is reduced from CMIP3
to CMIP5 and CMIP6, particularly because the worst performing models improved significantly.
Additionally, there is a continuous improvement of the pattern correlation from CMIP3 to CMIP6 in all vari-
ables. The short‐wave cloud radiative effect shows large improvements in CMIP6 regarding the correlation
and also themultimodel spread. In CMIP3 and CMIP5, shortwave cloud radiative effect was relatively poorly
simulated with a large intermodel spread. Concerning sea level pressure, there is an improvement from
CMIP5 to CMIP6 but the wide intermodel spread has not been reduced significantly.

6. Effective Climate Sensitivity

Since the release of the first CMIP6 simulations one of the most discussed topics is the higher ECS reported
in some of the models (Forster et al., 2019; Meehl et al., 2020). ECS is an important metric for assessing the
future warming sensitivity of the climate system to increasing concentrations of CO2, which is an important
constraint on the total amount of greenhouse gases, in particular CO2, that can be emitted before a given glo-
bal mean warming target is exceeded. ECS provides a single number, defined as the change in global mean
surface air temperature resulting from a doubling of atmospheric CO2 concentration compared to preindus-
trial conditions, once the climate has reached a new equilibrium (Gregory et al., 2004). For this study we
used the common assumption by the Gregory method of extrapolating the relationship between the changes
in near‐surface temperature and the changes in the net downward radiation flux at TOA (Gregory
et al., 2004). This method is unable to represent nonlinearities in the climate response and tends to

Figure 7. Centered pattern correlations between models and observations
for the annual mean climatology over the period 1980–1999. Results are
shown for individual CMIP3 (black), CMIP5 (blue), and CMIP6 (brown)
models as short lines, along with the corresponding ensemble averages
(long lines). The correlations are shown between the models and the
reference observational data set listed in Table 5. In addition, the
correlation between the reference and alternate observational data sets are
shown (solid gray circles, marked in Table 5). To ensure a fair
comparison across a range of model resolutions, the pattern correlations are
computed after regridding all data sets to a resolution of 2.5° in
longitude and 2.5° in latitude. Only one realization is used from each model
from the CMIP3, CMIP5, and CMIP6 historical simulations.
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underestimate the true ECS obtained from equilibrating the climate models (Rugenstein et al., 2020).
However, since only a small subset of the CMIP models provides the long‐running simulations necessary
for the calculation of the true ECS, we use the Gregory method for an approximate, yet consistent ECS
assessment for all climate models. The ESMValTool offers the flexibility to adjust the ECS calculation for
example by changing the first year and the length of the time period used for calculating the slope of the
Gregory relationship. This allows to repeat this study with different settings if needed.

The modeled range of ECS of 2.1 to 4.4 K in CMIP3, which was quite similar in CMIP5 (2.1 to 4.7 K), has
increased to 1.8 to 5.6 K in CMIP6 (Figure 8). Consistent with this, the ECS multimodel mean has also
increased from 3.2 K in CMIP3 and CMIP5 to almost 3.8 K in CMIP6. The increased range in ECS in
CMIP6 suggests an increased uncertainty in this metric compared to previous CMIP phases, which might
lead to reduced trust in the models' projections of future climate by some stakeholders and decision makers.
It is therefore critically important to understand the reasons for the increased span in ECS given by the latest
generation of CMIP models. In addition to Meehl et al. (2020), several modeling groups have already pub-
lished studies confirming higher ECS values in their CMIP6 models (Andrews et al., 2019; Gettelman
et al., 2019; Wyser et al., 2019).

Numerous improvements to the underpinning physical, chemical, and biological processes have been devel-
oped and implemented in the new CMIP6 models. These result in models that are capable to represent the
coupled climate system in more detail. Some of these improvements influence the ECS in the models
(Forster et al., 2019). Meehl et al. (2020) give possible explanations for the occurrence of high ECS values
in some of the models, with coupled cloud microphysical and aerosol developments potentially being a com-
mon factor. Besides cloud feedbacks, other main contributors to ECS are, for example, the water vapor—
lapse rate feedback and the snow/ice albedo feedback. Cloud feedbacks play a particularly important role
because (i) they remain the largest contributor to the spread of ECS across models (Flato et al., 2013;
Zelinka et al., 2020) and (ii) a number of models have specifically increased the degree of complexity/detail
with respect to mixed phase clouds (Bodas‐Salcedo et al., 2019; Gettelman et al., 2019; Mulcahy et al., 2020;
Williams et al., 2020). Further studies are required to better understand the higher ECSs in CMIP6 relative to
CMIP5.

Figure 8. Effective climate sensitivity (ECS) calculated for CMIP3 (blue), CMIP5 (orange), and CMIP6 (green) models using the method from Gregory
et al. (2004). The ensemble means are indicated by a darker shading of the corresponding bars.
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Improvements to the representation mixed phase clouds in some CMIP6 models reduces a long‐standing
model bias of too little supercooled liquid water (and conversely too large amount of ice crystals) in low‐
level, midlatitude clouds, particularly over the relatively pristine Southern Ocean (Bodas‐Salcedo et al., 2016;
McCoy et al., 2016). These developments also improve the representation of both cloud microphysical struc-
ture and cloud radiative impacts in these regions (Hyder et al., 2018; Kay et al., 2016). Earlier models, such as

Figure 9. Annual mean shortwave cloud radiative effect from CMIP3 (1980–1999), CMIP5 (1986–2005), and CMIP6
(1995–2014) compared against the Clouds and the Earth's Radiant Energy System (CERES) Energy Balanced and
Filled (EBAF) Version 2.7 data set (Loeb et al., 2012). Left column: Geographical distributions of the differences between
the multimodel means and CERES‐EBAF (bias). Right column: Zonal averages from the individual models (gray
lines), the multimodel‐mean (red lines) and the observational data set (black lines).
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in CMIP5 and CMIP3, exhibited a large negative SW cloud feedback over the Southern Ocean as
predominantly ice clouds melted to become liquid clouds as the simulated climate warmed (McCoy
et al., 2015). For a given water content, a cloud consisting of (physically smaller) liquid droplets will be
more reflective to solar radiation than the “same” cloud composed of (larger) ice crystals. Furthermore, a
predominantly liquid cloud will also tend to precipitate less than a cloud composed of both ice and liquid,
resulting in more water staying in the liquid cloud. Earlier (CMIP3/CMIP5) models exhibited a
widespread (erroneous) tendency over the Southern Ocean to go from predominantly ice clouds in the
present‐day period to liquid clouds in the future. This cloud phase change provided a relatively strong

Figure 10. Cloud (a) net, (c) shortwave, and (e) longwave feedback parameter for CMIP6 (multimodel mean) and the differences to the CMIP5 multimodel mean
for cloud (b) net, (d) shortwave, and (f) longwave cloud feedback.
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negative shortwave feedback on warming (through a reduction in cloud reflectivity in the simulated future).
This negative feedback is removed (or significantly reduced) in those CMIP6 models that simulate predomi-
nantly liquid clouds for the present day over the Southern Ocean. This negative SW cloud feedback acts to
balance other (mainly tropical and subtropical) positive cloud feedbacks, reducing the overall global net
cloud feedback (Zelinka et al., 2016). The size of this negative (cloud phase change) feedback has long been
questioned due to the known systematic cloud phase bias seen in many models (McCoy et al., 2015; Tan
et al., 2016). Improving the microphysical structure of mixed‐phase clouds acts to reduce this negative SW
feedback as the climate warms, increasing the net global cloud feedback (Bodas‐Salcedo et al., 2019; Tan
et al., 2016) and the resulting ECS in those models (Andrews et al., 2019; Gettelman et al., 2019).

Figure 9 shows that in CMIP6, the simulated TOA shortwave cloud radiative effect agrees better with obser-
vations than in previous CMIP phases (Figure 9). The main improvement in CMIP6 compared with previous
phases of CMIP is a reduced (less negative) bias in the tropics and over the Southern Ocean. The latter col-
located with the aforementioned cloud phase negative shortwave feedback.

The geographical distribution of the net cloud feedback parameter, defined as changes in the sum of short-
wave and longwave cloud radiative effect per degree of surface warming is dominated inmany regions by the
shortwave component (Figures 10a and 10c). The sign change at around 60°S seen in the shortwave cloud
feedback is indicative of where models are switching, in their preindustrial and present‐day experiments,
from simulating clouds almost totally composed of liquid droplets to clouds with an increasing ice compo-
nent. With increasing latitude there is an increasing ice component in model clouds that will support a nega-
tive shortwave feedback on warming.

Figure 10d supports the results of Zelinka et al. (2020) that there is an increase in the shortwave cloud feed-
back parameter over the Southern Ocean in CMIP6 compared with CMIP5 (in many regions understood as a
decrease, or even sign change, in the size of a negative shortwave cloud feedback). Zelinka et al. (2020) found
that the distribution of net cloud feedback is shifted toward larger positive values in CMIP6 due to a stronger
positive (reduced negative) low‐level cloud feedback, mainly in the extratropics. The CMIP6 models show
weaker increases in extratropical low‐level cloud cover and associated liquid water content with increasing
surface temperature than previous model generations. This primarily arises from an increase in the liquid
condensate fraction (LFC) simulated in these clouds for the preindustrial and present‐day periods
(Zelinka et al., 2020), leading to the aforementioned reduction in cloud phase change on warming. A higher
cloud feedback contributes to an increase in climate sensitivity and could be one possible explanation for the
high climate sensitivity values of some CMIP6 models.

7. Summary

In this study, we evaluated multimodel ensembles from three different phases of CMIP, namely CMIP3,
CMIP5 and CMIP6. Improvements or changes in model performance from one CMIP phase to the next
are typically a combination of different factors such as an increasing spatial and vertical resolution, a more
complete and also a more detailed representation of individual ESM components and the inclusion of addi-
tional Earth system processes that could be added in recent years as increasing computing power became
available. In addition, also input data including prescribed emissions and forcings were continuously refined
and further developed (Eyring, Bony, et al., 2016; Taylor et al., 2012). These changes in combination with
modifications of the experiment design over time make a direct one by one comparison of the model results
among different CMIP phases difficult if not impossible. We therefore focused on ensemble average results
as one possible representation of the state‐of‐the‐art climate modeling at the time of a particular CMIP phase
in order to assess the general progress in the field over the last two decades. For this we compared the model
results from CMIP3, 5 and 6 for present‐day climate with observations that serve as one possible benchmark
for the overall model performance. Themain aimwas to assess the different generations of climate models as
a whole instead of tracking the progress made by individual models. For this, we analyzed data from the his-
torical CMIP6 simulations published to the ESGF in comparison with observations and reanalyses as well as
with results from CMIP3 and CMIP5. Additionally, we evaluated some results from HighResMIP to assess
the potential improvements achieved by increasing the horizontal model resolution.

To analyze how the performance of different generations of CMIP models compared to observations has
changed relative to each other, we have used the ESMValTool for the production of all figures in this
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study. It enables a comprehensive evaluation of the models and ensures as an open source software prove-
nance and traceability. One of the topics widely discussed even outside of the climate science community
was the apparent “failure” of the CMIP5 models to reproduce the warming hiatus seen in observations of
the global mean warming rates from 1998 to 2013. Because of the high attention this topic received, there
were even potential implications on the public perception of the trustworthyness of climate models and cli-
mate projections in general. It has been shown that the hiatus was likely predominantly a result of internal
climate variability with the phase of the IPO playing an important role. The uninitialized historical CMIP5
model runs cannot be expected to reproduce the exact timing of effects caused by internal variability as seen
in observations. In fact, a small number of CMIP5 model simulations were, by chance, in a negative IPO
phase at the right time and able to simulate the observed pause of the increase in global warming rates.
Now, CMIP6 models show the observed accelerated temperature increase in recent years and agree quite
well with the observed mean global warming in the 2010s. Some CMIP6 models, however, also show a cool-
ing in the second half of the twentieth century and a too large increase in near‐surface temperatures in the
last years which might be related to a too strong aerosol‐related ERF. This needs to be further investigated in
order to fully understand the driving mechanisms of this potentially overestimated sensitivity to the pre-
scribed aerosol emissions.

The CMIP6 results currently available show that the latest generation of CMIPmodels have a similar or even
slightly higher skill in reproducing observed large‐scale mean surface temperature and precipitation pat-
terns as their CMIP3 and CMIP5 predecessors. CMIP6 models have an increased degree of freedom by
including more processes and couplings, primarily aimed at being able to better simulate future feedbacks
(e.g., nitrogen effects of terrestrial carbon uptake or permafrost processes). All these additions make the
models better “fit for purpose,” if the purpose is simulating future global change. But the increased degree
of freedom has the potential to increase model biases. A reduction of some of the long‐standing systematic
model biases for instance over high‐elevated regions, the North Atlantic and Southern Ocean, and upwelling
regions is found particularly in the high horizontal resolution models contributing to HighResMIP. Other
biases however, notably in Southern Ocean, seem to bemore stubborn. Vertical distributions of key variables
such as temperature, water vapor and zonal wind speed also show improvements throughout the three dif-
ferent CMIP phases. While most of the long‐standing model biases are still present in CMIP6, their ampli-
tude is often smaller than in CMIP3 and CMIP5.

The performance metrics (portrait diagram) and the correlation patterns of some important fields such as
TOA radiative fluxes, temperature, precipitation, and sea level pressure show some overall improvements
across the different CMIP ensembles with a reduced intermodel spread and higher average skill of the
CMIP6 ensemble (RMSD, pattern correlation).

A maybe surprising result from CMIP6 is the high ECS in some of the models resulting in an even larger
spread in ECS than the large range of values obtained from previous generations of climate models. This
has been already discussed in first studies and the exact probably model‐specific reasons need to be under-
stood in detail as the increased spread in ECS potentially shows an increased uncertainty in this important
climate metric. First studies suggest that the causes might be improvements in the representation of
mixed‐phased clouds, which leads to changes in cloud feedbacks and in the shortwave component of the
cloud feedback in particular. It is noteworthy that cloud‐radiation interactions and in particular the short-
wave cloud radiative effect in CMIP6 models are closer to observations than in previous generations of cli-
mate models. As ECS depends on numerous and interacting feedbacks, improvements in one specific
variable or physical process can potentially lead to less error compensation and thus more spread in such
complex quantities as ECS. A realistic representation of clouds, however, remains a challenge in current cli-
mate modeling. Here, further model improvements, stemming from higher resolution (Palmer &
Stevens, 2019) or completely novel approaches to parameterize clouds and convection in climate models
such as, for instance, machine learning based cloud parametrizations (Gentine et al., 2018; Rasp et al., 2018)
are required to make further progress toward more realistic simulations of clouds with climate models.

Data Availability Statement

CMIP model data are available freely and publicly from the Earth System Grid Federation (ESGF, https://
esgf.llnl.gov) and listed in Tables 1–3. Observations used in the evaluation are detailed in Table 5 of the
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manuscript. Observational data sets available through the observations for Model Intercomparisons Project
(obs4MIPs, https://esgf‐node.llnl.gov/projects/obs4mips/) can be downloaded freely from the ESGF and
used directly with the ESMValTool. For all other observational data sets, the ESMValTool provides a collec-
tion of scripts (NCL and Python) with downloading and processing instructions to recreate the data sets used
in this publication.
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