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Abstract: Uniaxial Compressive Strength (UCS) is the most important parameter that quantifies the rock 
strength. However, determination of the UCS in the laboratory is very expensive and time-consuming. 
Therefore, common index tests like point load (Is-50), ultrasonic velocity test (VP), block punch index (BPI) 
test, rebound hardness (SRH) test, physical properties, etc., have been used to predict the UCS. All these 
properties can be determined in both fields as well as in the laboratory. The computational intelligence 
methods are promising techniques, which have proven to be very reliable in the recent years. Hence, the 
objective of this work is to develop a predictive model using a multiobjective heterogeneous flexible neural 
tree (HFNTM) that can estimate the UCS with high accuracy and assess the effectiveness of different index 
tests in predicting the UCS of rock materials. UCS and indices such as BPI, Is-50, SRH, VP, effective porosity 
and density were determined for the granite, schist, and sandstone. The predictive performance of the 
developed HFNTM model was examined through correlation coefficient, coefficient of determination, and 
RMSE. On the basis of statistical parameters, it can be said that the constructed model efficiently predicted 
the UCS based on the knowledge gathered from the experimental data in a very quick time (9 seconds). The 
developed HFNTM model was also used to assess the effectiveness of different index tests in predicting UCS 
with the help of feature selection rate 𝑅𝑅 and predictability score 𝑃𝑃. From 𝑅𝑅 and 𝑃𝑃 values of the individual 
index test results, it is found that destructive mechanical rock indices BPI and Is-50 are the best index tests 
to estimate the UCS. 
 
Keywords: Uniaxial compressive strength; index tests; rock materials; heterogeneous flexible neural tree; 
feature analysis. 

 

1 Introduction 

Uniaxial compressive strength (UCS) is the most familiar parameters used in rock engineering projects. In 
rock mass rating (RMR), proposed by Bieniawski [1], UCS is the only parameter to assess the strength of 
rock material. However, high quality machined specimens are required for determining UCS in the 
laboratory [2-3]. This makes the test expensive and time-consuming. Therefore, different empirical 
predictive models are being used to estimate the UCS of rock materials indirectly from the index tests, 
which require little or no specimen preparation and are less expensive than the uniaxial compression test. 
Amongst different predictive models, regression analyses are the most commonly used. Lists of such 
relationships between the index tests and UCS obtained by different researchers have been given in [20]. 

In the last decade, however, the use of computational intelligence (CI) methods to establish predictive 
models has gained much interest in the areas of rock mechanics. A comprehensive list of such works are 
presented in Table 1. These research works indicate the requirement of improvement in the CI methods to 
estimate UCS from the index test results and to assess the effectiveness of individual index tests for 
predicting the UCS of rock materials.  
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Although several predictive models have been proposed to estimate the UCS from index tests, the influence 
of various index tests in predicting UCS is not entirely understood. More specifically, so far, to the best of 
our literature survey, no study has been done on assessing the effectiveness of different index tests. 
Moreover, it is always advantageous if development time and effort of the predictive modeling can be 
reduced. To achieve these goals, the use of the neural network (NN) or similar CI methods on a limited set 
of experimental data for predictive modeling can be a great benefit. Hence, the aim of this work is to develop 
a predictive model that can estimate the UCS with a high accuracy and assess the effectiveness of different 
index tests in predicting UCS of rock materials.  

The multiobjective heterogeneous flexible neural tree (HFNTM) produces a tree-like model, where the 
nodes of the tree are similar to the NN nodes was used in this study [7]. Interestingly, HFNTM differs from 
NN [4] in its structural configuration, and it differs from the commonly used regression tree [5] in its node 
type. Moreover, the tree-like structure in the HFNTM is created by using multiobjective genetic 
programming (MOGP) [6-7]. Therefore, the primary advantages of using HFNTM over other CI techniques 
lie in its ability of the automatic adaptation into the structure and the input feature selection. 
 
Such an ability like HFNTM is necessary and has been successfully used in several real life applications 
[32]. However, this method has not been exploited in estimating the UCS from index tests. In this work, 
index tests namely block punch index (BPI), point load strength (Is-50), Schmidt rebound hardness (SRH), 
ultrasonic P-wave velocity (VP)], and physical properties namely effective porosity (ηe) and density (ρ)] 
are determined and used for estimating the UCS of granite, schist, and sandstone. An improved CI 
technique, HFNTM, was employed for this purpose and it was used to determine the effectiveness of index 
tests BPI, Is-50, SRH, Vp, ηe, and ρ in the prediction of UCS of three rocks. Such kind of individual test 
effectiveness assessment using HFNTM has not been studied in the past, and it is the noble contribution of 
this research along with the predictive modeling. The evaluation of individual tests provides a detailed 
insight of UCS prediction of rock materials. 

2 Materials and Methodology 
Three completely different rock types, granite, schist, and sandstone were consciously investigated in the 
laboratory to capture a broad scenario in evaluating UCS. Core samples of granite, schist, and sandstone 
were collected from Malanjkhand Copper Project Malanjkhand; UCIL mine at Jaduguda; and SCCL, 
Kothagudem respectively. Each core sample (20 from each rock type) was cut into four pieces as required 
for uniaxial compression, point load, block punch, and Schmidt rebound hardness tests (as per [2-3]). 
Results of the entire laboratory investigation were taken from [25]. During the point load and block punch 
tests, few granite and sandstone specimens failed in invalid failure modes. For these specimens, BPI and 
Is-50 were indirectly calculated using simple regression equations (developed from same rock types of the 
same locality as this study) presented in [20]. A total 60 samples (20 from each rock types) were used for 
the predictive modeling. 

3 Predictive Models 
3.1 Computational Intelligence Techniques 
Discovering knowledge contained in data and developing predictive models are vital tasks performed by 
the CI methods. Moreover, predictive modeling identifies the underlying relationship between an input 
variable 𝑿𝑿 = {𝐱𝐱1,𝐱𝐱2, … , 𝐱𝐱N} and an output variable 𝒅𝒅 = {𝑑𝑑1,𝑑𝑑2, … ,𝑑𝑑𝑁𝑁} through the learning parameter 𝐰𝐰, 
which defines the said relationship. A CI method finds the learning parameter 𝐰𝐰 by usually reducing the 
root mean square error (RMSE) 𝑒𝑒  between the predicted output 𝒚𝒚 = {𝑦𝑦1 ,𝑦𝑦2, … ,𝑦𝑦𝑁𝑁}  and the desired 
output 𝒅𝒅. Hence, the learning of a CI method indicate the search for a proper learning parameter 𝐰𝐰. In this 
study, the RMSE was evaluated as: 
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Table 1: Previous studies on the use of computational intelligence techniques in estimating UCS and other rock 
engineering parameters from index tests. 

Ref. Rock Types Inputs Output/s CI model/s r/r2 

[8] Sandstone;  
Granodiorite 

Equotip Hardness; Density; 
Porosty; Grain size 

UCS ANN r =0.96 

[9] Sandstone; Limestone; 
Dolomite; Granite; 
Granodiorite 

Equotip Hardness; 
Density; Porosity 

UCS FIS (TSK)  

[10] Quartzite schist; Chlorite 
Schist; Quartz mica 
schist; Biotite schist 

Mineral composition; Grain size; 
Area weighing; Aspect ratio 
Form factor; orientation 

UCS; Tensile strength; 
Is(50) 

ANN r =0.76 

[11] Greywacke VP; Is-50; BPI;  
Tensile strength 

UCS; Elastic Modulus FIS 
(Mamdani) 

r = 0.8 

[12] Sandstone Compressive strength; Density; 
SRH; Quartz %; Feldspar %; 
Iron oxide % 

P-wave velocity ANN r2= 0.94 

[13] Greywacke; 
Agglomerate 

UCS; Unit weight Elastic Modulus ANN r = 0.82 

[14] Sandstone; Limestone; 
Coal;  Mudstone; Grit 

Cone indenter hardness; Shore 
hardness; dry density 

UCS; Elastic Modulus ANN r = 0.71 

[15] Sandstone Packing Density; Concavity-
convexity; Quartz % 

UCS ANN r = 0.87 

[16] Granite Porosity; VP; UCS Weathering grade ANN, 
FIS 

r = 0.96 
r= 0.93 

[17] Gypsum Water content; Is-50; VP UCS; Elastic Modulus ANN 
ANFIS 

r2= 0.88 
r2= 0.94 

[18] Travertine VP; Is-50; SRH; Porosity UCS; Elastic Modulus ANN r2= 0.64 

[19] Sandstone; Shale; 
Limestone 

Total porosity; Bulk density; 
Water saturation 

UCS ANN r = 0.91 

[20] Granite; Schist; 
Sandstone 

BPI; Is-50; SRH; VP UCS FIS 
(Mamdani) 

r = 0.99 

[21] Granite Tensile strength; BPI; 
Is(50); VP 

UCS ANN 
ANFIS 

r =0.6 
r =0.69 

[22] Granite Quartz %; Plagioclase %; 
Orthoclase % 

UCS ANFIS r = 0.87 

[23] Shale Dry density; Is-50; BTS; VP; 
SRH 

Internal friction angle; 
interlocking 

PSO-ANN r = 0.94 

[24] Granite Dry density, VP; Qtz content; 
Plg content 

UCS; Elastic Modulus MRA 
ANN 

r = 0.54 
r = 0.91 

[25] Granite; Schist; 
Sandstone 

BPI; Is-50; SRH; VP UCS FIS (TSK) 
ANN 

r = 0.98 
r = 0.94 

ANN – Artificial Neural Network; FIS – Fuzzy Inference System; ANFIS - Adoptive Neuro-Fuzzy Inference System; PSO ANN – 
Particle Swamp Optimization based Artificial Neural Network; RT - Regression trees; BPI – Block Punch Index; Is-50 – Pointload 
Strength; SRH – Rebound Hardness; VP– Ultrasonic P-wave Velocity. 
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where 𝑁𝑁 denotes the total training/test samples. Additionally, correlation coefficient 𝑟𝑟 was also used in this 
study. The correlation coefficient 𝑟𝑟  computes the correlation between the predicted output 𝒚𝒚  and the 
desired output 𝒅𝒅, which is written as: 

𝑟𝑟 =  ∑ (𝑦𝑦𝑖𝑖−𝐲𝐲� )(𝑑𝑑𝑖𝑖−𝒅𝒅� )𝑁𝑁
𝑖𝑖=1  

�∑ (𝑦𝑦𝑖𝑖−𝐲𝐲�)𝑁𝑁
 𝑖𝑖=1

2
∑ �𝑑𝑑𝑖𝑖−𝒅𝒅��

2𝑁𝑁
𝑖𝑖=1

     (2) 

where 𝒚𝒚� and  𝒅𝒅 �  are the average of predicted and desired outputs. The correlation coefficient ranges from 
−1 to 1, where a value 1 indicates strongest correlation (the best performance).  

In this study, CI methods such as fuzzy inference system (FIS), multilayer perceptron (MLP), and adaptive 
neuro-fuzzy inference system (ANFIS) were considered apart from the proposed HFNTM

. The FIS, MLP, 
and ANFIS are most widely used CI methods for modeling industrial and engineering problems [26]. The 
brief introduction to the mentioned CI methods are as follow:  

• An FIS is a rule-based system, where a set of IF-THEN rules are designed from the given input 
variables. Subsequently, the rules are inferred (conclusion drawn from the rules set) to predict the 
output of the system for any given input [27].  

• An MLP is an NN model, which is an imitation of human-like learning. An MLP is layered 
network of neural nodes (computational node) arranged in a layered structure. The nodes in an 
MLP are connected with synaptic links. The primary form of MLP training for a given dataset is 
the discovery of appropriate values for the synaptic links [4].  

• An ANFIS is a combination both FIS and NN-based systems, where an FIS is designed as an NN-
like model. ANFIS is typically a six-layered system in which the layers indicate the IF and THEN 
parts of an FIS [28]. 

3.2 Multiobjective Heterogeneous Flexible Neural Tree (HFNTM) 
An HFNTM similar to any other CI methods tries to minimize the error 𝑒𝑒 (often RMSE is used) for the 
given dataset by optimizing its parameter using some learning algorithms (HFNTM employ multiobjective 
genetic programming and differential evolution for this purpose). The structure of HFNTM is a tree-like 
that has internal nodes as the computational nodes (analogous to MLP neurons), branches (similar to MLP 
synaptic links), and leaf nodes (to represent input variables).  

Mathematically, an HFNTM, denoted as 𝐺𝐺, is a union of internal node 𝑉𝑉 and the leaf node 𝑇𝑇. The internal 
node 𝑉𝑉 is a set of internal (computational) nodes and, the leaf node 𝑇𝑇 is a set of inputs [7]. Hence, an 
HFNTM 𝐺𝐺 can be expressed as: 

𝐺𝐺 = 𝑉𝑉 ∪  𝑇𝑇 = �𝑣𝑣2
𝑈𝑈(𝑘𝑘), 𝑣𝑣3

𝑈𝑈(𝑘𝑘), … , 𝑣𝑣𝑡𝑡𝑡𝑡
𝑈𝑈(𝑘𝑘)�  ∪ {𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑑𝑑}   (3) 

where  𝑣𝑣𝑖𝑖
𝑈𝑈(𝑘𝑘)  ( 𝑖𝑖 ∈ {2, 3, … , 𝑡𝑡𝑡𝑡 }) indicates an internal (computational) node that takes two or more 

arguments; whereas, the leaf node takes no argument. The function 𝑈𝑈(𝑘𝑘) randomly invoke an activation 
function at a computational node from a set of activation function. In this study, the set of activation 
functions contained Gaussian, tangent hyperbolic, bipolar sigmoidal, unipolar sigmoidal, and Fermi. 
HFNTM training has two aspects. Firstly, discovering appropriate tree structure and secondly, the 
optimization of tree parameters. These two HFNTM training parts are performed in two phases:  

• Phase 1: Tree structure training using multiobjective genetic programming (MOGP). 
• Phase 2: Tree parameter training using differential evolution (DE).  
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3.2.1 Structure Optimization Phase 
Tree structure training of HFNTM takes place by employing MOGP, which is a population-based 
evolutionary-inspired algorithm. MOGP iteratively finds a suitable tree-structure through a vast topological 
search space by applying two operators: crossover and mutation [29]. During the search, MOGP satisfies 
two objectives: reduction of tree size (model complexity) and reduction of RMSE (approximation error) 
and hence called multiobjective genetic programming. From a population of trees, two trees are randomly 
selected for crossover operation, and their selected subtrees are swapped between them. On the contrary, 
in a mutation operation, one tree is chosen from a population of trees, and its randomly selected subtree is 
either replaced by another randomly created subtree, or deleted entirely, or some other form of mutation 
operators can be used:  

• Changing one leaf node with a new leaf node; 
• Changing all leaf nodes with new leaf nodes; 
• Expanding a randomly selected tree by appending a new subtree to it; 
• Changing an internal node with a leaf node. 

The advantage of employing MOGP, which is an evolutionary algorithm inspired by the dynamics of 
natural selection that it allows only the best inputs to be selected into the obtained tree structure (inputs 
with the best prediction ability). 

3.2.2 Parameter Optimization Phase 
The DE is a population-based algorithm applied for optimizing the parameters of a function. Here, it is the 
parameters of the tree structure. DE employ an evolutionary-inspired operator that iteratively searches 
through a vast search space to optimize a parameter vector that represents a model/function [30-31].  

Given a population 𝐻𝐻 of the tree's parameter vectors, DE attempts to search an optimal parameter vector 
𝐡𝐡∗ by employing the operators such as selection, crossover, mutation, and recombination. The selection 
operator of DE selects three random vectors 𝐫𝐫1, 𝐫𝐫2, and 𝐫𝐫3 from the population 𝐻𝐻 such that 𝐫𝐫1 ≠ 𝐫𝐫2  ≠  𝐫𝐫3. 
Additionally, a vector 𝐠𝐠 indicating the best solution in the population 𝐻𝐻 is selected. Thereafter, a new 
parameter vector 𝐡𝐡𝑡𝑡𝑛𝑛𝑛𝑛 is created as: 

𝐡𝐡𝑡𝑡𝑛𝑛𝑛𝑛 = � 𝐫𝐫1 + F × (𝐫𝐫1 − 𝐠𝐠) +  F × (𝐫𝐫2 − 𝐫𝐫3), if    𝐮𝐮 < C
 𝐫𝐫1                                                                                    , if    𝐮𝐮 ≥ C   (4) 

where 𝐮𝐮 is a random vector uniformly distribution between 0 and 1, C is the crossover probability, and F is 
the mutation factor. Eq. (4) is the imitation of crossover and mutation operations and the condition 𝐮𝐮 < C 
indicates that the operation will be performed if a random value 𝑢𝑢𝑖𝑖 ∈ 𝐮𝐮 is less than crossover probability C. 
This DE iterations is repeated until 𝐡𝐡∗ is found or a maximum iteration reached. A general HFNTM 
optimization algorithm is summarized in Fig. 1 that indicates the mentioned optimization phases. 

Predictive modeling for UCS estimation with the HFNTM and other CI methods was performed as follow: 
Firstly, the obtained dataset was randomly partitioned into training (75%) and test (25%) sets as it was 
carried out in [25]. The models were trained for the training samples and the tested for the test samples. 
Accordingly, the results were collected. For HFNTM, this process was repeated for 20 times (specifically 
for the feature analysis purpose), and at each time, 75% training and 25% test samples were randomly 
obtained. For other CI methods (i.e., FIS, MLP, and ANFIS), the results were collected from [25]. 

During HFNTM training the collected dataset was normalized features-wise by applying a min-max 
normalization method. Subsequently, for computing the model's output, the obtained output was de-
normalized. Table 2 lists the underlying parameters chosen during HFNTM models development. The 



6 
 

performance of the developed model using the proposed HFNTM and other CI methods were evaluated and 
compared by using the following four performance indicators: RMSE defined as Eq. (1), correlation 
coefficient 𝑟𝑟 defined as Eq. (2), coefficient of determination 𝑟𝑟2, and the model's complexity (i.e., the total 
number of parameters in the models).  

Table 2: Parameters settings and the values chosen during HFNTM training. 
# Parameter Name Definition/Purpose Value 
1 Tree height The maximum levels of a tree. 5 
2 Tree arity Maximum siblings of a node in a tree. 4 
3 Tree node type Type of activation function used at nodes. Random  

4 GP population Total candidates in a GP population. 20 

5 Mutation probability The frequency of mutation operation. 0.2 

6 Crossover probability The frequency of crossover operation. 0.8 

8 Tournament size Total candidates for a tournament. 10 

9 DE population The initial size of the DE population. 50 

10 Range of node search  The lower and upper bound of activation function arguments. [0,1] 

11 Range of edge search The lower and upper bound of tree edges. [-1.0,1.0] 

13 Structure training Maximum generations of GP training. 100 

14 Parameter training Maximum evaluations of parameter training. 10 00 

15 Number of objectives Tree size (complexity) and RMSE 2 

3.3 Input Feature Analysis 
Feature analysis was conducted to assess the effectiveness of different index tests in predicting UCS of 
rock materials. To perform such feature analysis, 20 HFNTM models were created. Each HFNTM models 
provided information selected inputs and models prediction strength (in terms of RMSE). Hence, a list of 
20 models with the account of their selected inputs and RMSE was prepared.  

To analyze the selected input features and their predictability, two performance indicators feature selection 
rate 𝑅𝑅 and predictability score 𝑃𝑃 were used [31]. Feature selection rate 𝑅𝑅 is the measure of the total number 
of times a specific set of input feature was occurred in the prepared list 𝑀𝑀 = [𝑚𝑚1, … ,𝑚𝑚20] of 20 models. 
Here, |𝑀𝑀| indicating the size of the list was 20. Therefore, the input-feature selection rate is computed as: 

𝑅𝑅𝑗𝑗 =  1
|𝑀𝑀|

∑ 𝕀𝕀�𝑚𝑚𝑖𝑖 = 𝐴𝐴𝑗𝑗�
|𝑀𝑀|
𝑖𝑖=1      (5) 

where 𝑅𝑅𝑗𝑗 is the selection rate of 𝑗𝑗-th input feature set 𝐴𝐴𝑗𝑗 ∈  𝒫𝒫({BPI, Is − 50, SRH, V𝑃𝑃, η𝑛𝑛 , ρ }), and function 
𝕀𝕀�𝑚𝑚𝑖𝑖 = 𝐴𝐴𝑗𝑗� is a function that returns "1" if 𝑗𝑗-th input-feature set 𝐴𝐴𝑗𝑗  is selected by the 𝑖𝑖-th model 𝑚𝑚𝑖𝑖 , 
otherwise, it returns "0." Feature selection rate 𝑅𝑅𝑗𝑗 = 1 is the highest (i.e., all the models selected the input-
feature set 𝐴𝐴𝑗𝑗) and 𝑅𝑅𝑗𝑗 = 0 is the lowest (i.e., no model selected the input-feature set 𝐴𝐴𝑗𝑗). 

The predictability score 𝑃𝑃𝑗𝑗 of an input feature set 𝐴𝐴𝑗𝑗 is on the other hand is necessary to determine along 
with the selection rate  𝑅𝑅𝑗𝑗  because the models in the list may not be equal in their performances. To 
determine the predictability score 𝑃𝑃𝑗𝑗 of 𝑗𝑗-th input-feature set 𝐴𝐴𝑗𝑗, the performance 𝐹𝐹𝑗𝑗  (typically the RMSE) 
of the corresponding input-feature set 𝐴𝐴𝑗𝑗 was at first computed as [31]: 



7 
 

𝐹𝐹𝑗𝑗 = �
∑ 𝑒𝑒𝑖𝑖  ×  𝕀𝕀�𝑚𝑚𝑖𝑖 = 𝐴𝐴𝑗𝑗�

|𝑀𝑀|
𝑖𝑖=1 ,                                       if  |Aj| = 1

∑ 𝑒𝑒𝑖𝑖  ×  𝕀𝕀�𝑚𝑚𝑖𝑖 = 𝐴𝐴𝑗𝑗�
|𝑀𝑀|
𝑖𝑖=1 / ∑  𝕀𝕀�𝑚𝑚𝑖𝑖 = 𝐴𝐴𝑗𝑗�

|𝑀𝑀|
𝑖𝑖=1 , if  �Aj� > 1

              (6) 

where 𝑒𝑒𝑖𝑖 indicates the RMSE of 𝑖𝑖-th model. The performance 𝐹𝐹𝑗𝑗 for �𝐴𝐴𝑗𝑗� = 1 is the sum of RMSEs and  𝐹𝐹𝑗𝑗 
for �𝐴𝐴𝑗𝑗� > 1 is the average RMSEs of all models that selected a subset 𝐴𝐴𝑗𝑗. Accordingly, the predictability 
score 𝑃𝑃𝑗𝑗  corresponding to an input-feature set 𝐴𝐴𝑗𝑗  was computed by normalizing the performance as [31]: 

𝑃𝑃𝑗𝑗 =
𝐹𝐹𝑗𝑗

max
𝑗𝑗=1 𝑡𝑡𝑡𝑡 𝑧𝑧

(𝐹𝐹𝑗𝑗)
      (7) 

where function max(.) evaluate the maximum performance value among all 𝐹𝐹𝑗𝑗. Analogous to the selection 
rate 𝑅𝑅𝑗𝑗 , the predictability score  𝑃𝑃𝑗𝑗 = 1 for an input-feature set  𝐴𝐴𝑗𝑗 describes the heights impact on the 
model's predictability and the score 𝑃𝑃𝑗𝑗 = 0 describes the least impact on the model's predictability. 

4 Result and Discussion 
4.1 Models Prediction 

The developed best model by HFNTM is shown in Fig. 1, where the leaf nodes indicate the input features 
and the root node gives the predicted output UCS of the model. UCS values were predicted from BPI, Is-
50, SRH, VP, ηe and ρ (Table 2) by using HFNTM model developed in this study. UCS values estimated 
from the model are plotted against their corresponding experimentally determined UCS values both for 
training (Fig. 2a) and test (Fig. 2b) data. The predictive performance of the developed model was examined 
through 𝑒𝑒, 𝑟𝑟, 𝑟𝑟2, and complexity. The 𝑒𝑒, 𝑟𝑟, 𝑟𝑟2, and complexity obtained in this study was compared with 
the 𝑒𝑒, 𝑟𝑟, 𝑟𝑟2, and complexity obtained from FIS (TSK), MLP and ANFIS models as presented in [25] for 
the same data set and the results are presented in Table 3. 

 
Fig. 1: Developed multiobjective heterogeneous flexible neural tree. 

Table 3: Performance results of the models by statistical analysis for the training and test dataset. 

 FISa MLPa  ANFISa  HFNTM 
Train Test  Train Test  Trainc Testc 

RMSE 9.54 14.33 16.9  7.87 13.72  10.92 5.87 

𝑟𝑟2 0.97 0.92 0.89  0.98 0.94  0.97 0.99 
𝑟𝑟 0.98 0.96 0.94  0.99 0.97  0.98 0.99 
Complexity 5800b 25  44b  11 

Note: a results of FIS, ANN, and ANFIS were taken from [25]; b approximate calculation; c results of the proposed method. 
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From the Fig. 2 and Table 3, it can be said that correlation coefficient of the developed HFNTM model is 
similar to that of the FIS (TSK), MLP and ANFIS models. However, based on the RMSE of test data, it 
can be said that the HFNTM model is better than other models. Besides the statistical parameters, 
computational time of the developed model was 9 seconds, and the complexity was 11 parameters for such 
a wide range of data obtained for three completely different rock types. Considering all these factors, 
RMSE, 𝑟𝑟, 𝑟𝑟2, and computation time, it can be said the HFNTM is a very effective tool for determining the 
UCS from index tests. Additionally, the HFNTM is a less complex model than the other CI model. As shown 
in Table 3, the total parameters  in the HFNTM were smaller than the other CI models. Hence, HFNTM is a 
better model in both implementation and computational points of view. 

  
Fig. 2 Estimated UCS plotted against measured UCS: (a) training (b) test. 

4.2 Feature Analysis Results 

A total 20 models were created using HFNTM for feature analysis. Since the models were created by 
employing an evolutionary algorithm, the inputs that contributed most towards UCS prediction were 
primarily selected. Hence, a list of selected inputs by each model was prepared with the account of their 
RMSEs. Afterward, a comprehensive feature analysis of all 6 input features was performed. For the input 
feature analysis, two performance indicators, feature selection rate 𝑅𝑅 as defined in Eq. (5) and feature 
predictability score 𝑃𝑃 as defined in Eq. (7), were adopted. 

The effectiveness of individual index tests BPI, Is-50, SRH, VP, ηe and ρ in estimating the UCS were 
examined through 𝑅𝑅 and 𝑃𝑃. Table 4 presents the results of feature analysis carried out for the all 6 individual 
inputs. The input features BPI and Is-50 represent the destructive mechanical indices; whereas, SRH and 
VP represent the non-destructive rock indices. Effective porosity (ηe) and density (ρ) are the determined 
physical properties of the concerned rocks. It can be observed that 𝑅𝑅 and 𝑃𝑃 of destructive mechanical 
indices BPI and Is-50 were much higher than that of 𝑅𝑅 and 𝑃𝑃 values of non-destructive and physical rock 
indices.  

Table 4: Significance of individual input features. 
# Input Features  Selection Rate (𝑹𝑹) Predictability Score (𝑷𝑷) 
1 𝐴𝐴1 = {BPI} 0.862 0.899 
2 𝐴𝐴2 = {Is-50} 0.959 1 
3 𝐴𝐴3 = {SRH} 0.525 0.547 
4 𝐴𝐴4 = {VP} 0.147 0.154 
5 𝐴𝐴5 = {ɳe} 0.339 0.354 
6 𝐴𝐴6 = {ρ} 0.574 0.599 

Among the individual input features, 𝑅𝑅 and 𝑃𝑃 of Is-50 are 0.959 and 1 respectively. Next in the list is BPI 
with 𝑅𝑅 and 𝑃𝑃 of 0.862 and 0.899 respectively. From the performed feature analysis, it can be said that Is-
50 is the best index to predict the UCS of rock materials. Since BPI also has significantly high 𝑅𝑅 and 𝑃𝑃, we 
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can say that destructive mechanical rock indices are the best proxy for estimating the UCS of the rock 
material. This finding is also in accordance with the experimental findings of [33]. 

5 Conclusions 
The experimental program included the determination UCS, BPI, Is-50, SRH, VP, porosity and density of 
three different rock types (granite, schist, and sandstone). To estimate the UCS from the index tests, a 
multiobjective heterogeneous flexible neural tree (HFNTM) model was proposed. HFNTM uses learning 
algorithms like multiobjective genetic programming and differential evolution to adapt its structure and 
parameters. Such adaptation was carried out by optimizing the constituents of the tree-like structure: 
internal nodes (computational nodes), branches (weights) and leaf nodes (input nodes). The inputs and 
outputs for the developed HFNTM model were used from the experimental results. The constructed model 
efficiently estimated the UCS based on the information gathered from the experimental data in a very quick 
time (9 seconds). Additionally, the HFNTM was a less complex model than the other CI model. Therefore, 
this model can be effectively used in estimating the UCS. Developed HFNTM can also assess the 
effectiveness of different index tests in predicting UCS of rock materials with the help of feature selection 
rate 𝑅𝑅 and predictability score 𝑃𝑃. From 𝑅𝑅 and 𝑃𝑃 values of the individual input features (index test results), 
it is found that Is-50 is the best proxy for the UCS. Among the different types of index tests destructive 
indices, non-destructive indices, and physical properties the destructive mechanical rock indices BPI and 
Is-50 are found to be the best index tests to estimate the UCS. 
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