
Neuro-fuzzy risk prediction model for 
computational grids 
Conference or Workshop Item 

Accepted Version 

Abdelwahab, S., Ojha, V. ORCID: https://orcid.org/0000-0002-
9256-1192 and Abraham, A. (2016) Neuro-fuzzy risk prediction
model for computational grids. In: Proceedings of the Second 
International Afro-European Conference for Industrial 
Advancement AECIA 2015, Sep 9, 2015 - Sep 11, 2015, Paris 
- Villejuif, France, pp. 127-136. doi: 
https://doi.org/10.1007/978-3-319-29504-6_13 Available at 
https://centaur.reading.ac.uk/93558/ 

It is advisable to refer to the publisher’s version if you intend to cite from the 
work.  See Guidance on citing  .
Published version at: http://dx.doi.org/10.1007/978-3-319-29504-6_13 
To link to this article DOI: http://dx.doi.org/10.1007/978-3-319-29504-6_13 

Publisher: Springer Science \mathplus Business Media 

All outputs in CentAUR are protected by Intellectual Property Rights law, 
including copyright law. Copyright and IPR is retained by the creators or other 
copyright holders. Terms and conditions for use of this material are defined in 
the End User Agreement  . 

www.reading.ac.uk/centaur   

http://centaur.reading.ac.uk/71187/10/CentAUR%20citing%20guide.pdf
http://www.reading.ac.uk/centaur
http://centaur.reading.ac.uk/licence


CentAUR 

Central Archive at the University of Reading 
Reading’s research outputs online



Neuro-Fuzzy Risk Prediction Model for Computational 

Grids 

Sara Abdelwahab1,2, Varun Kumar Ojha3
, Ajith Abraham3,4 

1Faculty of Computer Science & Information Technology, Sudan University of Science and 

Technology, Khartoum, Sudan 
2 Computer Science & Information college, princess Norah BintAbddulrahmanUniversity, 

Riyadh, Saudi Arabia 

saraabdelghani@gmail.com,saabdelghani@pnu.edu.sa 
3IT4 Innovations - Center of excellence, VSB -Technical University of Ostrava, Czech 

Republic 
4Machine Intelligence Research Labs (MIR Labs), Washington, USA 
varun.kumar.ojha@vsb.cz,ajith.abraham@ieee.org 

Abstract. Prediction of risk assessment is demanding because it is one of the 

most important contributory factors towards grid computing. Hence, researchers 

were motivated for developing and deploying grids on diverse computers, which 

is responsible for spreading resources across administrative domains so that 

resource sharing becomes effective. Risk assessment in grid computing can 

analyze possible risks, that is, the risk of growing computational requirements of 

an organization. Thus, risk assessment helps in determining these risks. In this, 

we present an adaptive neuro-fuzzy inference system that can predict the risk 

environment. The main goal of this paper is to obtain empirical results with an 

illustration of high performance and accurate results. We used data mining tools 

to determine the contributing attributes to obtain the risk prediction accurately.  
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1    Introduction 

Many risk factors are associated with grid computing that threatens security measures 

[1]. In this work, we applied a hybrid approach to model risk in the computational grid. 

We used an adaptive neuro-fuzzy inference system (ANFIS) for modelling risk 

prediction in a computational grid environment. ANFIS is a fuzzy inference system 

learned using neural network type learning methods. Using a hybrid learning procedure, 

ANFIS can construct an input-output mapping based on both human-knowledge as 

fuzzy ‘if-then rules and approximate membership functions from the stipulated input-

output data pairs. ANFIS learning employs a hybrid method consisting of back-

propagation for tuning the parameters associated with input membership and least-

squares-estimation for tuning the parameters associated with the output membership 

functions [2]. 



Researchers excessively used ANFIS in many significant research problems, such 

as industry, financial, weather-prediction, health, etc. Beghdad et al.[3] used 

combination of ANFIS and clustering process applied on the CPU Load time series to 

predict values of CPU load. Their proposed model achieves significant improvement 

and outperforms the existing CPU load prediction models reported in the literature. In 

[4], ANFIS was used to predict average air temperature, while authors in [2] used 

ANFIS to predict roughness surface in ball-end milling aluminium.  

The primary contributions of our research work are to conduct a pre-study based 

on ANFIS that can provide an insight of predicting the risk environment. We organize 

this paper as follows: Section 2 provides reviews on previous and related work; Section 

3 presents the proposed methodology; the illustration of experimental results and 

discussion of the work presents in Section 4; Section 5 provides discussion followed by 

conclusions in Section 6. 

2 Related Research 

Many hybrid approaches have been applied to predict the risk assessment of grid 

computing and achieved acceptable results. Risk assessment in grid computing was 

presented at two layers - resource provider (RP) and Broker by a project of AssessGrid 

(AGP) [5]. In the beginning, the risk modelling of the AGP project was conceded at RP 

considering the probabilistic as well as the possibility approaches. The risk assessment 

at the RP level in AGP was accomplished by the Bayesian model and provided the 

values of risk at the node level. This approach followed the same context as that of the 

node as the work proposed in [6]. Zadeh [7] proposed the possibility modelling, which 

Broker level was intended to present a Broker. The Broker was introduced to facilitate 

the end-user to communicate as well as negotiate with RP. Also, the level was designed 

so that it can make a selection of the relevant RP among others [8, 9].  

In this paper, we do not focus on Broker level work in the AGP. The risk modelling 

is accountable in AGP at the node level rather than the component level. In addition, 

the risk models of AGP do not reflect any insight into the grid failure data. In [10], the 

authors used various reliability models to assess and evaluate on the basis of assuming 

Weibull distribution as the best-fit model. However, their work suffered a limitation of 

the requirement of aggregation at both the levels of component and node level. Further, 

this concept was enhanced to improve reliability within the grids using a stochastic 

model that extracted grid-trace logs and thus enhanced the job resubmission strategy. 

Moreover, these works do not address the component-level risk assessment in grids, 

where the components could be either the disks, CPU, computer software, computer 

memory, etc. The types of grids are also not classified based on risk assessment, 

whether the grids are replaceable or repairable. In [11], authors address the problem of 

risk assessment in computational grid considering security aspect, while most of the 

earlier proposed model addressed risk assessment in grid considering resource failure 

aspect. In this work, we extend the work provided in [11] by using a hybrid ANFIS 

method to predict risk in the computational grid environment. 



3 Proposed Methodology 

We divided our work into five phases. The description of these phases as follows: 

3.1 Phase One – ANFIS Structure 

The fuzzy inference system uses fuzzy logic for formulating a nonlinear mapping from 

input to output, where this system has three parts. (a) A rule-base containing fuzzy rules 

are selected. (b) Database, which defines membership functions applied for the fuzzy 

rules. (c) A logical system performing the way of inference based on the rules and facts 

[2]. 

The ANFIS network contains five layers, where each layer contains several nodes 

described by the node function. In the first layer, every node is an adaptive node with a 

node function such as a trapezoidal membership function or a Gaussian membership 

function. In the second layer, each node multiplies incoming signals, and the output is 

the product of all the incoming signals, where each node output represents the firing 

strength of a rule. In the third layer, each node calculates the ratio of the rules firing 

strength to the sum of all rules firing strengths. The normalized firing strengths are the 

output from this layer. In the fourth layer, each node calculates the contribution of the 

rule to the overall output. In the fifth (final) layer, the single node calculates the final 

output as the summation of all input signals [4]. 

3.2 Phase Two –Dataset Selection 

In this phase, the dataset is obtained by simulating the grid-computing environment and 

select the risk factors that threaten the grid-computing environment [11]. The dataset 

consists of 20 risk factors, and 1951 instances are used to predict the risk output for the 

grid computing environment (Table 1).  

3.3 Phase Three – Selection of the best input model variables 

Feature selection is a preprocessing step that reduces dimensionality from a dataset to 

improve prediction performance. Feature selection can be viewed as a search problem, 

where searching of a subset from the search space in which each state represents a 

subset of the possible features. To avoid the high computational cost and enhance the 

prediction accuracy, irrelevant input features are reduced from the dataset before 

constructing the prediction model. We used a correlation feature selection (CFS) subset 

evaluator feature selection algorithm to search for the best-input model variables [12]. 

In this research, CFS was used along with the ANFIS to evaluate the merit of feature 

subsets. 

 

 

 



Table 1. Grid Risk Assessment Factors 

 

Risk Factor Definition Ref. 
Services Level 

Agreement 

Violation (SLAV) 

SLA represents an agreement between a service user and a 
provider in the context of a particular service provider.  

[13] 

Cross Domain 

Attack (CDA) 

CDA in which the attacker compromises one site and can 

then spread his attack easily to the other federated sites. 
[14] 

Job Starvation 

(JS) 

In JS, stranger job scheduled on the host uses local (host) 

resources. 
[15] 

Resource Failure 
(RF) 

It is a failure if: (i) resource stops because of resource crash; 

(ii) available resources do not meet the minimum levels of 

QoS. 

[16] 

Resource Attacks 
(RA) 

It is illegal to use host resources by an attacker. [17] 

Privilege Attack 

(PA) 

User may gain the excess privilege of accessing the 

command shell. If grid computing allows access to command 
shell using predefined scripts. 

[17] 

Confidentiality 

Breaches (CB) 

Unauthorized, unanticipated, or unintentional disclosure 

could result in loss of public confidence or legal action 
against the organization. 

[18] 

Integrity Violation 
(IV) 

Integrity refers to the trustworthiness of data or resources, 

and it is usually phrased in terms of preventing improper or 

unauthorized change 

[18] 

Distributed Denial 

of Services 

(DDoS) 

DoS attacks involve sending a large number of packets to a 

destination to prevent legitimate users from accessing 

information or services. 

[19] 

Data Attack (DA) 
In grid security, DA is a scheme in which malicious code is 
embedded in innocuous-looking data, which (when executed 

by a program) plays out the intended destructive results. 

[17] 

Data Exposure 

(DE) 

DE is another side of widespread connectivity in which 
(while improving productivity) makes it easier to obtain 

unauthorized to sensitive data 

[17] 

Credential 

Violation (CV) 

Credentials are tickets or tokens used to identify, authorize, 

or authenticate a user. Comprise CV causes theft of user 
credentials. 

[18] 

Man in the Middle 

Attack (MMA) 

MMA is an attack where the attacker secretly relays and 

possibly alters the communication between two parties. 
[15] 

Privacy Violation 
(PV) 

PV is the interference of a person’s right to privacy by 
various means, such as showing photos in public. 

[20] 

Sybil Attack (SA) 
In Sybil attacks, few entities fake multiple identities. So it is 

a concern for the systems that rely upon implicit certification. 
[15] 

Hosting Illegal 

Content (HIC) 
This can be done by exploiting the leased nodes. [17] 

Stealing Input or 

Output (SIO) 

It is a way to steal the data received by the system or to steal 

data sent from it. 
[17] 

Shared Use 
Threats (ShUTh) 

Incompatibility between the attributes of grid users and 

conventional users causes ShUTh. Hence, no strict separation 

between participants. 

[17] 

Stealing or 
altering the 

Software (SS) 

SS is caused by unauthorized means of entering or altering 
data, false data, unauthorized data, or unauthorized 

instruction to a system. 

[17] 

Policy Mapping  
(PM) 

Multiple administrative domains with multiple policies cause 
difficulty to users to map different policies across the grid 

[18] 

 



3.4 Phase Four – Investigation of the effectiveness of data splitting 

The fourth phase is partitioning data to investigate the effectiveness of data splitting. 

We randomly split our dataset into training and testing set as follows: 

A: Split 60 % training, 40% testing 

B: Split 70 % training, 30% testing  

C: Split 80 % training, 20% testing  

D: Split 90 % training, 10% testing  

3.5 Phase Five - development and configuration of ANFIS 

In this phase, the ANFIS model was constructed using grid partitioning, and the 

membership function and consequent parameters were tuned using a hybrid learning 

process for 100 epochs. We used different membership functions to represent each 

input variable [21]. In this work, we used: 

Trapezoidal membership function (Trapmf): Trapezoidal curve is a function of a vector 

x and depends on four parameters a, b, c, and d, as given by:  

 

𝑓(𝑥, 𝑎, 𝑏, 𝑐, 𝑑) = max⁡ (min (
x − a

b − a
, 1,

d − x

d − c
) , o) 

 

Parameter a and parameter d locate the “feet” of the trapezoid, and parameters b and c 

locate the “shoulder.” 

 

Triangular membership function (Trimf): The triangular curve is a function of a vector 

x and depends on three scalar parameters, a, b, and c, given by: 

 

𝑓(𝑥, 𝑎, 𝑏, 𝑐) = max⁡ (min (
x − a

b − a
,
c − x

c − b
) , o) 

 

Parameter a and parameter c locate the “feet” of the triangle, and parameter b locates 

the peak. 

 

Generalized bell function (Gbell): Depends on three scalar parameters, a, b, and c, 

given by: 

𝑓(𝑥, 𝑎, 𝑏, 𝑐) =
1

1 + |
𝑥 − 𝑐
𝑎

|
2𝑏 

Where parameter b is usually positive, and parameter c locates the centre of the curve. 

Gaussian membership function (Gaussmf): The symmetric Gaussian function depends 

on two parameters σ and c as given by: 

 

𝑓(𝑥, 𝜎, 𝑐) = 𝑒
−⁡
(𝑥−𝑐)

2𝜎2  

 



4 Experimental Dataset and Empirical Design 

Using different feature selection technique, eight different sub-datasets were obtained 

[11]. These datasets were generated from our original dataset that has 20 risk factors 

attributes. Table 2 illustrates the number of attributes in each dataset and summarizes 

the search method. 

Table 2.Attributes Selection Methods 

Dataset Evaluator Search method Selected Attributes Total 

Original 

dataset 

  SLAV, CDA, JS, RF, RA, PA, CB, IV, 

DDoS, DA, DE, CV, MMA, PV, SA, HIC, 

SIO, ShUTh, SS, PM 

20 

1 RelifF 

Attribute 

Evaluation 

Ranker DDoS, PM, DE, SA, ShUTh, HIC, CV, 

RA, SIO, CDA, RF, SLAV, JS, MMA, SS, 

PA, PV, IV, CB, DA 

20 

 

2 

Reliff 

Attribute 

Evaluation 

Ranker DDoS, PM, DE, SA, ShUTh, HIC, CV, 

RA, SIO, CDA, RF, SLAV, JS, MMA, SS, 

PA, PV, IV 

18 

3 Reliff 

Attribute 

Evaluation 

Ranker DDoS, PM, DE, SA, ShUTh, HIC, CV, 

RA, SIO, CDA, RF, SLAV, JS, MMA, SS 

15 

 

4 

Reliff 

Attribute 

Evaluation 

Ranker DDoS, PM, DE, SA, ShUTh, HIC, CV, 

RA, SIO, CDA, RF, SLAV 

12 

5 

Reliff 

Attribute 

Evaluation 

Ranker 
DDoS, PM, DE, SA, ShUTh, HIC, CV, 

RA, SIO 
9 

6 CFS Subset 

Eval 

Evolutionary 

Search 

SLAV, JS, RA, CV, HIC, SIO 6 

7 CFS Subset 

Eval 

Best first search 

backward 

CV, HIC, SIO 3 

8 CFS Subset 

Eval 

Exhaustive 

search 

RA, CV, HIC 3 

 

 

 

In this study, we extended the work reported in [11], which includes three 

attributes. The empirical result shows that the prediction algorithm required the least 

number of attributes (3 attributes only out of 20 attributes) to achieve high performance. 

In this work, to verify the efficiency of the proposed method, we used three features: 

CV, HIC, and SIO. 



5 Result and Discussion 

Different ANFIS parameters were tested as training parameters to maximize the 

prediction accuracy to achieve the experimental result. Figure 1 illustrates the 

membership function (TriMF) as input functions. 

 

 

 

Fig. 1. Triangular-shaped membership function for the input variables 

 

Total 64 fuzzy ‘if-then rules’ were used to build the fuzzy inference system, and some 

of the if-then rules are illustrated below. 

 

1. If (CV is VL) and (HIC is VL) and (SIO is VL), then (RO is VL) (1)  

2. If (CV is VL) and (HIC is VL) and (SIO is Low), then (RO is VL) (1)  

3. If (CV is VL) and (HIC is VL) and (SIO is M), then (RO is VL) (1)  

4. If (CV is VL) and (HIC is VL) and (SIO is High), then (RO is VL) (1) 

17. If (CV is Low) and (HIC is VL) and (SIO is VL), then (RO is Low) (1)  

18. If (CV is Low) and (HIC is VL) and (SIO is Low), then (RO is Low) (1)  

37. If (CV is Medium) and (HIC is Low) and (SIO is VL), then (RO is Medium) (1)  

38. If (CV is Medium) and (HIC is Low) and (SIO is Low), then (RO is Medium) (1)  

63. If (CV is High) and (HIC is High) and (SIO is Medium), then (RO is High) (1)  

64. If (CV is High) and (HIC is High) and (SIO is High), then (RO is High) (1)  

 

Table 3 provides the obtained results, and the lowest average testing error was obtained 

using trimf membership functions with dataset A. 

Table 3.Evaluation of various MF with different data splits 

Data Trimf Gbellmf Gaussmf Trapmf 

Train Test Train Test Train Test Train Test 

A 0.0139 0.0146 0.0177 0.0195 0.0202 0.0217 0.0290 0.0279 

B 0.0143 0.0137 0.0189 0.0197 0.0216 0.0221 0.0455 0.0453 

C 0.0143 0.0141 0.0188 0.0198 0.0201 0.0214 0.0451 0.0472 



D 0.0144 0.0143 0.0184 0.0252 0.0188 0.0233 0.0276 0.0255 

 

6 Conclusion 

Predicting risk assessment is a complex issue because many factors affect grid 

computing directly and indirectly. In this paper, we used 3 risk factors, and the ANFIS 

model was selected based on the minimum value of root mean square error, which is 

constructed using four triangular-shaped membership function for each input variable 

and linear membership function for output. Hence we have developed a risk prediction 

model for computational grid environment using ANFIS. 
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