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Summary

The effects of plants on the biosphere, atmosphere, and geosphere are key determinants of
terrestrial ecosystem functioning. However, despite substantial progress made regarding plant
belowground components, we are still only beginning to explore the complex relationships
between root traits and functions. Drawing on literature in plant physiology, ecophysiology,
ecology, agronomy and soil science, we review 24 aspects of plant and ecosystem functioning
and their relationships with a number of traits of root systems, including aspects of architecture,
physiology, morphology, anatomy, chemistry, biomechanics and biotic interactions. Based on
this assessment, we critically evaluate the current strengths and gaps in our knowledge, and
identify future research challenges in the field of root ecology. Most importantly, we found that
below-ground traits with widest importance in plant and ecosystem functioning are not those
most commonly measured. Also, the fair estimation of trait relative importance for functioning
requires us to consider a more comprehensive range of functionally-relevant traits from a
diverse range of species, across environments and over time series. We also advocate that
establishing causal hierarchical links among root traits will provide a hypothesis-based
framework to identify the most parsimonious sets of traits with strongest influence on the

functions, and to link genotypes to plant and ecosystem functioning.



Keywords: below-ground ecology; ecosystem properties and processes; environmental
gradients; plant functions; root traits; spatial and temporal scales; trait covariation; trait causal

relationships



1. Introduction

Plants are powerful ecosystem engineers. Extending both above- and below-ground, sometimes
to a great height and depth, they shape the biosphere and its interactions with the uppermost
lithosphere, the hydrosphere and the atmosphere (de Kroon & Visser, 2003; Schenk & Jackson,
2005). Taken together, the effects of plants on the biosphere, atmosphere, and geosphere are
key determinants of terrestrial ecosystem functioning. Below-ground, plant roots and their
symbionts are central to the maintenance of multiple ecosystem functions (Bardgett ez al., 2014;
Freschet & Roumet, 2017): roots play key roles in the transformation and circulation of
elements and mineral/organic compounds across the spheres (Prieto et al., 2012; Freschet et al.,
2018b), and particularly in the formation, maintenance and stabilisation of soils (Daynes et al.,
2013; Dignac et al., 2017). Thus, an advanced mechanistic understanding of the effects of root
systems on ecosystem functions has numerous potential applications, such as designing plant
mixtures for nutrient retention in agrosystems, for stabilization of hillslopes, etc. (Stokes et al.,
2009; Lavorel et al., 2013; Martin & Isaac, 2015).

Root systems, among other plant parts, show a tremendous diversity of forms and
properties (Kutschera, 1960; Robinson et al., 2003; Bodner et al., 2013; Iversen et al., 2017).
In recent decades, parallel developments in many areas of root research (e.g. morphology,
physiology, architecture, biomechanics and anatomy, among others) have brought considerable
advances in our understanding of the diversity in root traits and their contribution to plant and
ecosystem functioning (Freschet er al., 2020). Such advances are key to strengthening the
foundations of current dominating theoretical frameworks, often built on data from the same
few easily-measurable traits (McGill ef al., 2006; Reich et al., 2014). For example, recent
attempts to assemble a diverse set of trait data from a range of disciplines in root science
permitted researchers to move from a single root economics spectrum (Reich et al., 2014;
Roumet et al., 2016) that only poorly explained root trait variation and its impact on plant
performance (Weemstra et al., 2016), towards a multidimensional ‘root economics space’ that
further integrates aspects of symbiotic associations and is supported by traits closely related to
functioning (Bergmann et al., 2020). However, despite major progress, numerous gaps remain
in our understanding of trait-functioning relationships and we still lack a comprehensive
overview of available knowledge that bridges research fields.

Here, sharing expertise from a range of fields in root research, we first synthesise recent
advances in our understanding of demonstrated relationships between root traits and plant or

ecosystem functioning (section-II, see Tables 1 & 2 and Fig. 1 for an overview of this broad
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assessment). Additionally, two examples are more comprehensively assessed in order to
illustrate the multiple direct and indirect roles of root traits as drivers of i) plant functioning,
with an investigation of the relationships between root traits and plant nitrogen (N) uptake
capacity, and ii) ecosystem functioning, by examining the linkages between root traits and soil
reinforcement against shallow landslides (see Tables 3 & 4 and Fig. 2 for an overview of these
comprehensive assessments). Based on this two-step assessment, we critically evaluate the
current strengths and gaps in our knowledge, and identify research challenges for the future.
Specifically, we address three main research avenues that offer potential to improve our
understanding of trait-function relationships. First, we consider the importance of using an
informed selection of traits for exploring root trait-functioning relationships and discuss how
sets of currently understudied traits may provide more insights than common, easy-to-measure
traits (section-III). We then discuss how our understanding of trait-trait relationships and
hierarchies among traits can help us to advance our knowledge of the synergistic or antagonistic
effects of different traits on plant and ecosystem functioning, and lead us one step further in
linking genotypes to function (section-IV). Next, we address the opportunities and pitfalls when
generalising trait-functioning patterns across plant species, growth forms, environmental
contexts, and temporal and spatial scales (section-V). Our two examples of plant and ecosystem

functioning are woven through the remainder of this paper to illustrate our purpose.

II. An overview of trait-functioning relationships: rationale and limitations

To explore relationships between root traits and functions, we performed a broad,
multidisciplinary assessment of empirical and demonstrated links between below-ground traits
and plant and ecosystem functioning (Tables 1 & 2). To do so, we first identified 15 key plant
functions (Table 1) and nine ecosystem processes and properties (Table 2) based on their
relevance to the functioning of natural and managed ecosystems. Drawing on literature in the
fields of plant physiology, ecophysiology, ecology and soil science, we considered reviews and
empirical studies where both root traits and functions were measured or conceptualised. We
considered traits relevant for 16 research fields (as distinguished in Freschet ez al., 2020; Fig.
1d), taking in aspects of root system architecture, physiology, morphology, anatomy, chemistry,
biomechanics and biotic interactions. For each function we report: i) the root trait measured and
its relationship to a function (positive or negative); ii) below-ground plant entities (e.g. root

type, see Freschet er al., 2020) on which the trait would be most relevant to measure; and iii)



contextual information explaining the rationale for and degree of confidence in the relationship
(Tables 1 & 2).

Trait selection was motivated by both the presence of a defined mechanistic relationship
and empirical observations under controlled conditions or in situ. However, Tables 1 & 2 are
not consolidated accounts of demonstrated evidence. Most studies reported here cover only a
handful of species; as such, they may rely on fortuitous relationships resulting from interactions
among traits (as discussed in section-III) and on context-dependent observations that may not
be widely generalizable across multiple species and biomes (see section-1V). In addition, we
stress that Tables 1 & 2 represent neither an exhaustive list of important traits nor all relevant
references, but rather a broad overview of current knowledge where most relationships await
confirmation. Highlighted key studies are provided to guide the audience to further reading.

Due to the limited, often contradictory state of current knowledge of root trait-functioning
relationships, we do not attempt to estimate the importance of the relationship but merely
indicate current evidence for its existence (i.e. a single trait impacts a specific function). Our
understanding of results from past studies is particularly limited by a range of methodological
issues. This includes the absence of purposeful selection of complementary traits and root
entities (see section-III), the lack of accounting for trait covariation and hierarchy (see section-
IV), or the lack of knowledge on the influence of genetic diversity, environmental variation and
scaling across temporal and spatial scales (see section-V).

Despite these limitations, Tables 1 & 2 are useful because they provide an indication of
the range of empirical and theoretical relationships between below-ground traits and plant and
ecosystem functioning across research fields; link these relationships to selected references and
standardized trait measurement protocols (as described in the handbook of root traits, see

Freschet et al., 2020); and highlight a number of rarely considered traits in order to connect
different fields.

III. Trait selection

1. Measuring a complementary range of traits: are we focusing on the right ones?

Recent decades have seen the rise of approaches using a few easily measurable traits to capture
plant and ecosystem functioning. Given the difficulties associated with specialized
measurements of some key physiological, anatomical or chemical traits, most local-scale

studies, which later feed global-scale analyses, make use of ‘soft’ traits (i.e. easily measurable



traits, often vaguely related to a single or a number of functions) only, rather than a range of
soft and ‘hard’ traits (i.e. those difficult to measure, but often more closely related to a precise
function) selected on the basis of a comprehensive review of potentially relevant mechanisms
or processes (but see for instance Maire et al., 2009; Belluau & Shipley, 2018; Freschet et al.,
2018a; Ros et al., 2018). For example, at the time of this survey, the FRED database (the most
extensive fine-root trait database to date; Iversen et al., 2017) comprises a large number of
observations for the five traits most easily measured (~5000 entries for root N concentration
and classical morphological traits such as root diameter and specific root length, ~3200 for root
tissue density), whereas only ~320 entries for indicators of root N uptake (e.g. net ion uptake
rate, maximum net ion uptake rate) and ~220 observations for indicators of root exudation (e.g.
acid phosphatase activity, carbon exudation rate). Here, we stress that if a trait is widely
measured, it does not necessarily mean that it is of key functional importance. During the
construction of Tables 1 & 2, many trait-functioning relationships appeared indirect, vaguely
justified and/or poorly tested and led us to question the broad relevance of those traits most
commonly measured for plant and ecosystem functioning. Moreover, Tables 1 & 2 and Fig. |
underscore that most ecosystem functions are likely influenced by a wider range of traits than
typically assumed (McCormack et al., 2017; Freschet et al., 2020). In this respect, our review
strengthens the idea that the search for simplified and generalizable patterns should not be at
the expense of the mechanistic understanding of trait-functioning relationships (Shipley et al.,
2016; Belluau & Shipley, 2018). As such, we hope that Tables 1 & 2 will stimulate a debate on
the merits of the classical notion that we must, by necessity, choose between studying few traits
with a clear ‘functional importance’ or many easily measured traits (Belluau & Shipley, 2018;
Freschet et al., 2018a).

Root N concentration, one of the most frequently measured root traits, provides a good
illustration of the common discrepancy between the frequency of trait measurements and their
functional importance. Clearly important for ecosystem N cycling, root N is often measured for
its presumed role in determining the overall metabolic activity (Reich et al., 2008; Roumet et
al., 2016) and, by extension, may be assumed to scale up proportionally with specific root
uptake activities (e.g. Grassein et al., 2018). For example, above-ground we know that leaf N
concentration is indeed strongly linked to leaf photosynthetic capacity, with more than 60% of
leaf N contained in leaf photosynthetic compartments (Evans & Seemann, 1989). However,
although root N concentration is a good predictor of specific root respiration (Reich ez al., 2008,
67 species, R’ = 0.69; Roumet et al., 2016, 73 species, R° = 0.25) (Fig. 2), the multiple

functional roles of root N (including nutrient uptake and assimilation, but also transport,
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defence compounds and stored N) imply that its use as an indicator of specific activities may
remain highly speculative (Table 1, Fig. 2a).

Specific root length (SRL) serves as another example of a very commonly measured but
little understood ‘soft’ trait. It is typically interpreted as a large root surface (i.e. equivalent to
specific root area) at a low cost of root construction, and is therefore assumed to mirror specific
leaf area (Reich, 2014) and act as a gauge for soil resource uptake efficiency (Ostonen ef al.,
2007). However, while this description is true, it is strongly reductive. First, it is not so much
the surface of roots that would matter for below-ground resource uptake, but rather the volume
of soil under influence by the root (e.g. the nitrate depletion zone around the root, or the
frequency of root encounters during the flow of solutes in the soil), which depends more
strongly on the length of roots deployed rather than its surface. Specific root length may thus
be better referred to as a proxy for the volume of soil under influence by the root, and will most
often be more closely related to soil resource uptake efficiency than specific root area. Second,
it is rarely considered that cheaply constructed roots may have a much shorter lifespan (Ryser,
1996), and therefore, as a system, may have limited ability for long-term resource uptake, unless
this trait is combined with a high root turnover rate. Third, SRL is a composite trait determined
by the variation in root diameter and root tissue density (Fig. 2) and hence under control of
complex internal plant construction trade-offs (Kong et al., 2014; Poorter & Ryser, 2015).
Fourth, it remains poorly understood to what extent SRL trades-off with root mass fraction
(Freschet et al., 2015a; Weemstra et al., 2020, Fig. 2) and mycorrhizal colonization
(McCormack & lIversen, 2019; Bergmann et al., 2020), and acts in synergy with root hairs
(Forde & Lorenzo, 2001) and root branching density (Eissenstat et al., 2015) to change the
volume of soil explored or exploited by roots (sensu Lambers et al., 2008; Freschet & Roumet,
2017). A close inspection of these aspects is needed to resolve why SRL has been sometimes
found to positively correlate with N uptake rates across species (Reich et al., 1998; Larson &
Funk, 2016; Grassein et al., 2018; Hong et al., 2018, 30 species), but not in other cases
(Grassein ef al., 2015; Bowsher et al., 2016; Ravenek et al., 2016; Freschet et al., 2018a; Ma et
al., 2018, 48 species).

Root N concentration and SRL are just two examples of traits where a more correct,
mechanistic framing is key to truly understanding the link between traits and plant and
ecosystem functioning. This issue may be inherent to below-ground plant ecology, where the
relevance of many ‘soft’ traits was presumed based on the mechanistic understanding of their
above-ground counterparts, but with little scrutiny of their actual functional significance below-

ground. Ultimately, the identification of key traits for plant and ecosystem functioning needs to
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come from larger sets of measurements in future studies that include both ‘soft’ and ‘hard’

traits.

2. Estimating the relative importance of traits

Furthering our mechanistic knowledge of trait-functioning relationships requires not only the
identification of traits that are relevant for a function (see Tables 1 & 2), but also a consideration
of the relative importance of these traits for the function. The relative importance of traits
identified in Tables 1 & 2 is sometimes not known and often assumed, but rarely tested. To
complicate the picture further, there is ample evidence from case studies that environmental
conditions interact to shuffle the relative importance of traits for individual functions, possibly
due to variations in costs and benefits of a given plant strategy. For example, the relative
importance of a plant’s ability to fix N> in symbiosis with microbes strongly increases as soil
N availability decreases, while in turn N fixation becomes increasingly constrained as soil P
availability decreases (Batterman et al., 2013b). In a second example at the ecosystem level,
efficient root hydraulic conductance can rapidly dry wet soil in climates with discontinuous rain
events (e.g. Boldrin et al., 2017), and therefore help protect against shallow landslides.
However, in climates with prolonged rainy seasons and with soils that are close to saturation
for long periods of time, the efficiency of this trait is lost and the mechanical traits become more
efficient at reinforcing soil (Kim ez al., 2017). Also, there can be distinct thresholds in the ability
of traits to serve functions. For example, along a gradient of soil P availability, the dominant
plant species strategy tend to shift from the reliance on thin roots at high P levels, towards
increasing reliance on high root hair density and mycorrhizal symbiosis at low P levels, and
eventually towards the use of highly specialized structures such as cluster roots on severely P-
impoverished soils (Lambers et al., 2008).

In summary, few studies to date have quantified comprehensive sets of relevant root traits
across a range of species with contrasting ability to perform a function, or replicated such setups
along environmental gradients (but see first attempts by Belluau & Shipley, 2018; Freschet et
al.,2018a; Ros et al., 2018; Henneron ef al., 2020). Moreover, most studies do not measure the
actual function of interest, but more easily measurable proxies for the function (e.g. ‘long-term
N accumulation in plants’ rather than ‘long-term uptake rate’; ‘centrifuge model estimate’

instead of ‘in-situ measurement’ of soil shear reinforcement; see Tables 3 & 4). Although

12



measuring the actual function often proves challenging, additional efforts may be needed to

improve the relatedness of our proxies to the functions.

3. Considering multiple root types

To fully appreciate and understand the impact of root traits on plant or ecosystem functioning,
consideration of what portion of the root system and root types are involved is needed
(McCormack et al., 2015a; KlimeSova et al., 2018). Different parts of a root system may be
important for distinct aspects of plant and soil functioning (Freschet & Roumet, 2017). For
example, when studying the contribution of vegetation to soil reinforcement against shallow
landslides, studying the entire root system is key to capturing the distribution of root diameters
that cross the multiple potential shear (rupture) surfaces along a slope (Stokes et al., 2009).
Thick structural roots act like soil nails, preventing soil collapse due to their mass, bending
strength and stiffness. Thin and fine roots anchor plants to deeper soil layers (beneath the shear
surface) and need to be strong when held under tension. Although several geotechnical models
have considered the contribution of roots, irrespective of root types, to the reinforcement of
potential shear planes that lie parallel to the soil surface (Table 4), these models generally
overestimate slope stability, highlighting the need to better differentiate between the effects of
distinct root types (Schwarz et al., 2010; Mao et al., 2014).

With respect to N uptake by wheat (Triticum aestivum), average rates of uptake per unit
length of root may be only a small proportion of predicted uptake rates (Robinson et al., 1991),
probably due to a combination of physiological differences between individual roots and spatial
clustering of root distribution. Using ion-selective microelectrode techniques, the most rapid N
uptake was indeed found between 0 and 40 mm behind the root tip, decreasing between 40 and
60 mm (Plassard et al., 2002; Miller & Cramer, 2004). However, this longitudinal decrease may
represent only a 2- to 3-fold difference in uptake rate, with transporter gene expression studies
suggesting that mature parts of the root remain significant sites of uptake (Miller & Cramer,
2004; Hawkins et al., 2014). In maize (Zea mays), a non-destructive method was developed to
fit small chambers around short root segments in hydroponics in order to measure starting and
ending nitrate concentration to calculate net influx, which allowed simultaneous measurements
of several root types and positions along the roots. By comparing 15-day and 20-day old plants,
this study showed that maximum uptake rate may increase as the plant N demand increases,
and that variation for this rate exists among lateral roots, basal roots, and shoot-borne roots

(York et al., 2016). Overall, despite growing knowledge on how root anatomy differs across
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root orders, much remains uncertain about how N uptake varies, and how this might differ
among herbaceous and woody species (e.g. Hawkins ef al., 2014) and across environments
(Gessler et al., 2005).

These examples illustrate that much effort is required to further our knowledge of how
various plant parts relate to specific functions. The spatial distribution of specific type of roots
in the soil, and their ability to perform their function, is clearly dependent on the attributes of
the rest of the root system. Focusing on trait-functioning relationships of a single root type may

provide an incomplete picture of plant functioning and effects on ecosystem functions.

4. Towards widespread consideration of other types of traits

Our overview of root trait-functioning relationships (Tables 1 & 2), and the visual illustration
of their interconnections (Fig. 1), suggests that many understudied traits may be crucial for a
range of plant functions and ecosystem properties and processes. Three categories of traits are
frequently highlighted (Fig. 1d): those associated with mycorrhizal associations, belowground
allocation and the spatial distribution of roots. More specifically, among other traits,
mycorrhizal association type and colonization intensity, root length density and root mass
fraction, root branching density, root hair length and density, vertical root distribution index
and maximum rooting depth are particularly represented in our synthesis of trait-functioning
relationships (Fig. la-c). Described below, these traits can impact plant and ecosystem
functioning in several ways:

i) The reliance of plants on different ‘types of mycorrhizal fungi’ (e.g. Read & Perez-
Moreno, 2003; Phillips e al., 2013) and the ‘intensity of root colonization’ serve as excellent
indicators of the degree to which a plant makes the trade-off between relying on its own
functional capability or on symbioses with fungal partners (Kong et al., 2019; McCormack &
Iversen, 2019; Bergmann et al., 2020). Such critical determinants of plant resource acquisition
and conservation strategies are also increasingly recognized as key drivers of a range of
ecosystem properties and processes (Soudzilovskaia et al., 2019).

ii) ‘Root mass fraction’ (or fine-root mass fraction, rhizome mass fraction, etc.) depicts
the relative investment of biomass to specific belowground parts and therefore is a key trait in
determining plant performance (Wilson, 1988; Poorter et al., 2012). In association with SRL

and total plant biomass, fine-root mass fraction determines total plant investment in fine-root
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length, which is a key determinant of the potential biophysical interactions between plants and
the soil matrix.

iii) ‘Root branching density’ is increasingly recognized as a key determinant of root
system architecture, with high branching density being typical of more clustered root systems
favouring soil particle enmeshment and localised soil resource mining, and pre-emption against
competitors (Forde & Lorenzo, 2001; Hodge, 2004). Low branching density, on the other hand,
favours soil exploration (Eissenstat et al., 2015) and may thus be most effective for the uptake
of very mobile soil resources such as nitrate and water (e.g. Pedersen et al., 2010).

iv) Maintaining high ‘root hair length and density’ is a very efficient way for plants to
maintain root contact with soil particles (Carminati et al., 2017), facilitate root anchorage and
penetration into dense soils (Haling ez al., 2013; Choi & Cho, 2019), as well as reinforcing root
interactions with the soil matrix (e.g. for resource uptake, exudation, connection to N>-fixing
symbionts, Holz et al., 2018).

v) “Vertical root distribution index’ and ‘maximum rooting depth’ are additional
descriptors of plant strategies to occupy soil volume and explore different horizons of soil
(Freschet et al., 2020). The localization of roots in soil has straightforward implications for the
interactions between plants and soil and the transfer of elements, impacting plant resource
acquisition and the recycling or sequestration of organic compounds along the soil profile
(Jobbagy & Jackson, 2000; Poirier et al., 2018; Mackay et al., 2019).

While this set of traits merits further attention, the primary purpose of drawing up this
subjective and non-exhaustive list is to emphasize that many dimensions of root effects on plant
and ecosystem functioning require further consideration. Several ‘hard’ traits important for a
range of functions (including some of the above-mentioned traits) present methodological
challenges that limit their use (e.g. their study is labour-intensive, is not feasible in the field,
requires complex equipment or implies known measurement inaccuracies). These challenges
hinder conceptual formalization and testing of trait-functioning relationships, particularly in
connection to other traits. Some of these important, but particularly challenging traits include
physiological traits such as i) root exudation rate, ii) root exudate composition, iii) root
respiration, iv) root enzymatic activities, v) root nutrient absorption (and the synergistic role of
mycorrhizal fungi) and vi) root nutrient resorption processes, which are important determinants
of nutrient uptake and cycling, chemical and anatomical aspects of vii) root resistance to
pathogens and viii) root resistance to mechanical stresses, and aspects of ix) root persistence
and turnover in soils that further impact soil nutrient and ecosystem carbon cycling. While an

exhaustive review of recent advances in the measurement of these ‘hard’ traits is beyond the
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scope of this synthesis, we emphasize that a range of studies are already bringing improvements
that facilitate such challenging measurements (see for instance Phillips et al., 2008 for soluble
root exudates; Lak et al., 2020, for specific root respiration; Griffiths et al., 2020, for multiple

ion-uptake phenotyping; Arnaud et al., 2019, for in-situ root imaging)

IV. Trait-trait relationships

1. Considering trait inter-relations

The individual effects of root traits on plant and ecosystem functioning are not easy to single
out (Lavorel & Garnier, 2002; Lavorel et al., 2013) (Fig. 1, 2). The range of trade-offs and
synergies typically observed among traits (Poorter ez al., 2013; Roumet et al., 2016; Weemstra
et al., 2016) suggests that plant internal (construction or evolutionary) constraints are likely to
limit the number of possible adaptations of plants to environmental conditions. Figure 2
provides a range of examples where causal relationships between traits during tissue
construction leads to trade-offs (e.g. mycorrhizal colonization intensity typically covaries
negatively with SRL owing to the opposite effects of root cortex area fraction on the two traits)
or synergies (e.g. root bending resistance and root elastic modulus typically covary positively
owing to the strong positive influence of lignin and cellulose concentrations on these two traits).
The result of these constraints can be seen at both the intra-species and inter-species level.
Therefore, a change in the expression of one trait may have several direct consequences for the
expression of other traits. This network of inter-relations, as depicted in Fig. 2a and b by causal
relationships and trait covariation connectors, is often very complex.

In addition, any trait that helps alleviate a limitation or adapt to a stress, changes the
strength of the limitation/stress signal, which may reduce the need for other trait adjustments
(Freschet et al., 2018a). As an example of this, Freschet et al. (2015a) showed that in a given
environment most plant species tend to achieve similar levels of root length per mass of plant
by developing either high SRL or high root mass fraction (depicted as causal links in Fig. 2a).
This observation holds across several levels of soil N availability (Freschet ez al., 2015b). In
this context, it appears reasonable to assume that under non-extreme resource limitation or
stress conditions, different combinations of root trait values (e.g. high SRL and root hair length

and density versus high root mass fraction and mycorrhizal colonization intensity) may result
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in a similar outcome with regard to plant function (e.g. N uptake capacity) (Marks &
Lechowicz, 2006; Weemstra et al., 2020).

The variability of plant growth strategies also implies a range of interactions between root
traits, with non-additive effects on plant and ecosystem functioning. For example, a species
with a deep root system, high reliance on mycorrhiza and low litter decomposability may have
a strong positive effect on soil organic carbon stock via deep soil carbon sequestration, whereas
a similar species with shallow rooting may have only a marginal effect on soil carbon (e.g.
Clemmensen et al., 2013). Similarly, although a deep rooting species may improve resistance
to landslides and water uptake at depth, its effect will be noticeable only if a substantial amount
of roots is found at depth (e.g. if it has a high index of vertical root distribution) (Stokes et al.,
2009).

Overall, it remains largely unknown whether syndromes of traits (i.e. consistent patterns
of trait combinations; Bergmann et al., 2020) or syndromes of plastic trait adjustments (i.e.
consistent patterns of plastic changes; Freschet et al., 2018) occur along well-characterized
resource limitation, stress or disturbance gradients, or whether observed trends are mostly
context-dependent (e.g. species-specific, community-specific). The identification of such
syndromes may eventually help us summarize the covariation of trait values and their
(antagonistic, additive, or synergistic) effects on plant and ecosystem function (Lavorel &
Grigulis, 2012; Herben et al., 2018). It would also help us discriminate between mechanistic
and fortuitous trait-functioning relationships. Much remains to be done to evaluate the existence
and consistency of such inter-relations. First, only a few causal relationships and indirect
covariations (as depicted by black and orange connectors, respectively, in Fig. 2) between root
traits have been identified (and even less so across traits from the entire plant). Second, our
knowledge is biased towards the aforementioned set of widely studied root traits (Fig. 2). Third,
in complex natural environments, plants are subjected to many co-occurring environmental
factors whose interaction is likely to drive trait expression in multiple directions simultaneously
(e.g. Kumordzi et al., 2019; Zhou et al., 2019). This may limit the value of our knowledge of
syndromes of traits and plastic trait adjustments recorded across single environmental gradients.
Indeed, these trait and environment integrations significantly influence function and fitness
landscapes in multidimensional space (York ef al., 2013), but more data are required to fully

appreciate the complex relationships that are in place.

2. Accounting for causal relationships among traits
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The functional or categorical grouping of individual root traits as illustrated by the horizontal
dimension of Fig. 2 is useful to enhancing our understanding of plant and ecosystem function
(McCormack et al., 2017). At the same time, it is important to consider the causal relationships
(or hierarchy) among traits, as represented by the vertical dimension of the same Figure (Fig.
2: vertical dimension, Rogers & Benfey, 2015). Many traits, referred to as composite traits, can
be broken down into component (i.e. underlying) traits. For example, SRL emerges from the
interaction between root diameter and root tissue density, which are themselves influenced by
root cortex thickness and stele diameter (Fig. 2a). Root tissue density is further determined by
the cortex and stele anatomical and chemical traits (Kong et al., 2019). Composite traits are
particularly used because they are seen as concise indicators of plant functioning and often have
the most direct influence (i.e. mechanistic link) on ecosystem functioning (see Fig. 2). The
drawback is that composite traits are under the influence of several component traits that do not
necessarily vary in synchrony (e.g. Poorter & Ryser, 2015), and adjustments to even simple
environmental gradients may therefore often be unpredictable. Specific root length is one key
example of a trait that may be important for N uptake, but whose response to changes in N
availability is highly variable (e.g. Poorter & Ryser, 2015; Freschet et al., 2018a), owing to
contrasting responses of its component traits to N availability.

An understanding of causal links (or more generally, hierarchical organisation) between
root traits is useful for the following three purposes. First, it provides a mechanistic basis (i.e.
the hypothesis-based framework) to interpret the outcome of statistical model selection
procedures (i.e. the set of variables retained in multivariate models linking traits to functions)
or structural equation models. As such, an understanding of trait hierarchical organisation will
hold the key to the identification of the most parsimonious sets of traits with strongest influence
on the functions. As an example, for defining root N uptake capacity, root diameter is mostly
important due to its effect on SRL and its covariation with cortex area fraction (Fig. 2). Second,
knowledge of hierarchical relationships aids the identification of component traits whose
influence spans several composite traits. With respect to plant N uptake capacity, cortex
thickness is one such trait. It was shown to enhance the potential for roots to host mycorrhizal
fungi, which is beneficial for root-fungi associations (Kong et al., 2017; Kong et al., 2019).
Cortex thickness also influences root diameter and root tissue density, which together determine
SRL (Fig. 2). Therefore, despite being rarely measured, root cortex thickness underlies two of
the most widely studied and measured morphological root traits and is of critical importance
for the capacity to develop mycorrhizal symbiosis. Third, another key aspect of identifying

component traits is the likelihood of being directly linked to plant genes. A better understanding
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of the component traits’ genetics—and its regulation under given environmental conditions—
will not only provide an evolutionary explanation of key (composite) traits and their selection,
but may also foster breeding for root traits beneficial to a specific plant function. In this context,
it would be useful to further differentiate between “genuine” composite traits, that are composed
by traits with different (sets of) quantitative-trait loci (QTLs) responsible for each different
component trait, from “integrated” composite traits where the underlying component traits are
varying in a coordinated way as determined by pleiotropic, highly-linked QTLs or tight

hormonal control—with nuances between those two extremes.

V. Generalizing across scales

1. Generalizing across species, plant growth forms and biomes

Our review of conceptual, experimental and observational studies of 24 aspects of plant and
ecosystem functioning (Tables 1 & 2), and two detailed examples (Fig. 2a,b; Tables 3 & 4),
emphasizes that the current knowledge of trait-functioning relationships relies on highly
variable numbers of observations covering the range of traits and functions. The majority of
these relationships are based on relatively few species from a narrow range of plant growth
forms and most have not been replicated along environmental gradients or across contrasting
climates and soil types. Some trait-functioning relationships have been established in the field,
while others come from pot monoculture or common-garden experiments. In this context,
generalising these relationships is hazardous. As discussed above, different sets of species or
growth forms may display different syndromes of traits, which further vary along gradients,
and may therefore display different trait-function relationships. With respect to direct
measurements of soil reinforcement to protect against landslides, only two studies could be
found that consider more than three species, and virtually all studies consider only one growth
form in one location (Table 4). Regarding N uptake capacity, most studies target herbaceous
species at the same growth stage and often grown in hydroponics or pot conditions (Table 3),
which questions whether knowledge gained from these highly simplified systems can be
generalized to natural systems.

Overall, large differences have been observed across contrasting environmental contexts,
such as across biomes. With regard to plant N uptake, we know for example that the importance
of N-fixation strongly decreases from early successional to late successional forests of the

temperate biome, whereas its importance remains high along similar gradients in the tropics
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(Batterman et al., 2013a). Mycorrhizal effects on N uptake also vary strongly across biomes,
with ectomycorrhizal fungi transferring less N to their hosts in biomes at higher latitudes than
in tropical forests (Mayor et al., 2015). Such examples illustrate that results gained in one
system are unlikely to be directly generalizable to other systems.

Generally, further research bridging species from different plant growth forms and
growing in contrasting environmental contexts is strongly needed to better inform our

knowledge of trait-function relationships.

2. Meeting the challenge of up-scaling

Understanding the linkages between functional traits and plant and ecosystem functioning is
often most critical at large spatial scales (e.g. entire agroecosystems or natural ecosystems,
Suding et al., 2008; Martin & Isaac, 2015). Several functional trait-based up-scaling approaches
have been proposed to link plant traits to ecosystem functioning, including the community-
weighted-mean trait approach (Lavorel & Garnier, 2002; Violle et al., 2007) and the pooled-
species approach (Klumpp & Soussana, 2009; Prieto et al., 2016). In the former, species are
individually sampled (or non-destructively analysed), plant traits are measured at the level of
individual species and a community trait value is calculated by weighting the trait values
measured by the proportion that each species represents in the community (e.g., in terms of
biomass or ground area cover). In the latter, pools of plants are sampled (or non-destructively
analysed) over given ground area or soil volume and a community trait value is directly
measured. In both instances, appropriate sampling resolution is key to capture a mix of plant
organs representative of the community (see for example Ottaviani et al., 2020), as biotic and
abiotic variations occur at multiple spatial scales, (e.g. changing spatial trophic networks, soil
properties, Tscharntke ez al., 2005).

Whether in the community-weighted-mean trait approach or pooled-species trait
approach, effects on ecosystem functioning are typically assumed to be proportional to
abundance (which can be expressed per unit root biomass, length or surface) to determine the
functioning of the whole system (Grime, 1998; Garnier et al., 2004). However, there are
multiple reasons why such an approach can only capture parts of the plant community and
ecosystem functioning. Depending on the system: (i) diversity eftects, including competition,
complementarity and facilitation, can add to the effect of species taken individually (e.g. Hodge,

2003; Santonja ef al., 2017; Mahaut et al., 2019); (ii) some subordinate species can produce
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disproportionate effects on ecosystem functioning (Mariotte, 2014); (iii) interactions across
multiple trophic levels can drive plant community and ecosystem function (Lavorel et al.,
2013); (iv) the relative importance of traits shifts depending on the environmental context (e.g.
Lambers et al., 2008); (v) small to large scale heterogeneity in ecosystem composition and
function can maintain substantial levels of ecosystem function across all scales (Tscharntke et
al., 2005); and (vi) feedbacks between biotic and abiotic components, critical for ecosystem
functioning and stability (Veldhuis ef al., 2018), are not apparent by considering the biotic
components alone. For these reasons, scaling up from species traits or pooled-species traits to
ecosystem-level functioning must be done with caution, and especially so in natural and semi-
natural systems where biotic and abiotic interactions are even more complex than in low-
diversity agricultural fields.

Nonetheless, the endeavour of up-scaling from traits to community and ecosystem yields
multiple benefits. Most importantly, it provides a mechanistic framework (using or generating
causal hypotheses for observed relationships) to test the contributions of traits (from species or
pooled-species) to community and ecosystem functioning (Lavorel & Grigulis, 2012). Up-
scaling also has the potential to fill in the gap between the small-scale mechanistic
understanding of reduced systems and large-scale integrative, but mostly descriptive
assessments. In that respect, the community-weighted-mean trait and pooled-species trait
approaches represent complementary approaches to tackle the problem at different levels of
reductionism. Both approaches have advantages and drawbacks. Clearly, the pooled-species
approach is far less time consuming when studying roots and limits the biases associated with
estimations of root abundance (Ottaviani et al., 2020) and root species identification. As such,
this approach would generally help integrating aspects of both spatial and temporal variation in
community trait — ecosystem functioning relationships (as discussed below), especially in
ecosystems with large numbers of dominant and subordinate species. However, with respect to
ecological modelling, since plant community composition varies across geographical location
and time, such measurements of community traits are unlikely to be reused to predict ecosystem
functioning from the crossing of community traits with species composition databases; as such,
species-level traits might be preferred.

So far, few studies have tested to what extent the knowledge gained on the linkages
between single species or pooled-species functional traits and plant and ecosystem functioning
can be used to infer such relationships in complex ecosystems (Garnier et al., 2004; Vile et al.,
2006; Hales, 2018; De Long et al., 2019). Taking the example of root trait effects on plant N

uptake, empirical studies most often measure the physiological ability of distinct species to take
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up N under controlled conditions (hydroponics or pot experiments, e.g. Maire et al., 2009;
Grassein et al., 2015), or quantify community-wide N uptake based on the budgeting approach
(e.g. Finzi et al., 2007), >N labelling (Hong et al., 2018) or even molecular approaches
quantifying gene expression (e.g. Kraiser ef al., 2011). However, between these two extremes,
few studies have attempted to explicitly relate ecosystem-scale measurements to individual
species trait values (but see Gessler et al., 1998; Craine ef al., 2002; Soussana et al., 2005, 2012
for attempts with planted grass and tree species).

Interestingly, the reverse approach of down-scaling has sometimes been used
successfully, starting from the observation of major differences in functioning between systems,
and tracking back the causes to individual root traits. As an example, ectomycorrhizal versus
arbuscular mycorrhizal dominated forests give rise to differences in coupled carbon-nitrogen
cycling (see Phillips et al., 2013; Wurzburger & Brookshire, 2017; Zhu et al., 2018).
Nonetheless, a species-level approach of root trait-soil function relationships would be useful
to further identify the set of mechanistic linkages involved (Wurzburger & Clemmensen, 2018).

Another major challenge of up-scaling lies in the adequate characterization of plant
community or ecosystem functioning at large scales. For example, soil reinforcement by roots
at small scales (e.g. soil cores) is often used to predict resistance to landslides at the hillslope-
scale, using geotechnical slope-scale models (e.g. Genet et al., 2010), but validation of models
in the field is usually limited. Although it is possible to perform controlled, slope-scale
experimental tests (e.g. Schwarz et al., 2010), and to physically model scaled-slopes in the
laboratory (that reproduce the stress-distribution obtained in large-scale slopes, Sonnenberg et
al., 2010; Liang et al., 2017), the logistical problems involved render these tests extremely
complex to carry out. Nonetheless, whilst these field and laboratory experiments are useful for
testing realistic slopes to ultimate-failure, not all important processes or failure mechanisms
that operate in the field may be captured. For that reason, future studies need to take particular
care to consider the best possible proxies for up-scaling and understanding ecosystem
functioning.

Another way to consider scaling belowground trait data within an ecosystem or globally
is to improve the representation of root form and function in terrestrial biosphere models
(Warren et al., 2015). Simulation modelling translates mechanistic understanding to
mathematical relations that can be explored in silico (Marshall-Colon et al., 2017). Such models
range from the simulation of explicit three-dimensional root architecture and surrounding soil
matrix (Dunbabin et al., 2013), to more simple models scaling up trait measurements to the

whole plant (Weemstra et al., 2020), agricultural systems (Rosenzweig et al., 2013) or the globe
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(Warren et al., 2015). In recent years, several syntheses have called for an appropriate
conceptualization of roots and their role in ecosystem functioning in terrestrial biosphere
models (Smithwick ez al., 2014; Iversen et al., 2015; McCormack et al., 2015b). This approach,
sometimes referred to as ‘model-experiment’ integration (or Mod-Ex) combines current
empirical understanding with model conceptualization, parameterization, and validation in an
iterative process to improve model representation of the natural world. While much work
remains to be done, empirical input into the ways in which models aggregate or generalize
across root functional types or plant species, and the way in which models implicitly or
explicitly represent root function, can have large impacts on our understanding of ecosystem
processes (Zhu et al., 2016; McCormack et al., 2017). In the context of crop breeding, for
example, many combinations of root traits can be considered in various environments with
regard to their effect on a particular function. These combinations can be validated across a
restrained set of real-cases, and being used for prioritizing future research directions, similar to
the use of digital prototyping in manufacturing (York, 2019). In global biosphere and climate
studies, simulation models can also aid the prioritization of research through sensitivity
analyses, for example by identifying key traits whose variation have large consequences for the
function of interest (McCormack ez al., 2015b). But, most importantly, when tested against
empirical data, the results of simulations can discriminate between diverse theoretical models,
or reveal (structural or context-dependent) gaps in our mechanistic representation of trait-

functioning relationships (Song et al., 2017).

3. Considering spatial and temporal variation

A range of methodologies have been developed above-ground, such as eddy covariance towers
or remote sensing, that provide large amounts of data on certain plant traits and ecosystem
functions at an ecosystem scale and across space and time. However, such approaches have low
resolution regarding aspects of spatial variability in functioning and are unlikely to extend to
belowground traits. Generally, there is growing evidence of strong small-scale variability in
root traits (Defrenne et al., 2019; Kumordzi et al., 2019) that may lead to substantial small-
scale variability in functioning. Given the overarching importance of soil properties and biotic
(e.g. plant-plant; plant-microbes) interactions, and their typically high heterogeneity at small
spatial scales (Jackson & Caldwell, 1993; Ettema & Wardle, 2002), root trait-function

relationships might differ strongly over short distances (e.g. centimetres or metres). To date, it
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remains unclear how the spatial assemblage of species and root traits at small scales might relate
to the effects estimated by species averages. Spatially aggregated data may contain little
information on the range of trait values occurring within the plant community, the relative
abundance of each value, or the existence of several groups of contrasting trait values (e.g.
bimodal distributions of trait values), which hampers our ability to understand their
consequences for the functioning of ecosystems (e.g., Valencia et al., 2015; Violle et al., 2017).

Likewise, soil properties vary with depth (especially when contrasting soil horizons
occur) and characterizing the relative importance of roots and root traits at different depths is
therefore necessary to accurately link them to plant and soil functioning (Germon et al., 2016;
Fort et al., 2017; Chitra-Tarak et al., 2019). For example, the capacity for N acquisition
generally decreases with soil depth due to a decline in the availability of soil N (Wiesler &
Horst, 1994; Tiickmantel et al., 2017). These patterns can differ across soil types and plant
species: in alpine grasslands on Cambisol, the uptake of N was found to decline sharply from
67% in the top 5 cm of soil to 33% in the 5—15 cm layer below (Schleuss ef al., 2015), whereas
it was only 44% in the top 30 cm, 32% at 30-60 cm and 24% in the 60-120 cm layer for maize
in an agricultural field on Luvisol (Wiesler & Horst, 1994). Additionally, changes in trait values
typically occur across contrasting soil horizons (McCormack et al., 2017; Trocha et al., 2017),
including, for example, the typical patterns of declining root density (Jackson et al., 1996) and
physiological activity (Goransson et al., 2008; Tiickmantel et al., 2017) with depth. As a
consequence, most ecologists assume that (physiological, morphological, etc.) trait
measurements made on roots from the topsoil are likely to adequately estimate plant N uptake
capacity when N resource is concentrated in the topsoil. However, there are many reasons why
such an approximation may be inadequate. First, strong competition for N in the topsoil might
make root investment in deeper horizons more profitable, as sometimes observed in biodiversity
studies (e.g. Mueller et al., 2013), resulting in more evenly distributed resource uptake across
the soil profile. Second, soil N availability interacts with other soil resources, particularly water.
Seasonal fluctuations of soil water availability across the soil profile following, for example,
changes in water table level and precipitation patterns may reverse the N availability gradient
along the profile (Prieto et al., 2012). As such, a good characterization of spatial variations in
soil properties (vertically, but also sometimes horizontally; Bfezina ef al., 2019), integrated
over long periods of time, might be needed to guide a sound root sampling design (and the
measure of e.g., physiological and morphological traits) from the range of soil layers that matter

for N uptake. Also, architectural traits or traits representing (vertical and horizontal) root

24



distribution may be important predictors of the match between root presence and N availability
(Freschet er al., 2020).

There is also growing evidence that, in parallel to seasonal changes in environmental
conditions, such as soil resource availability (Chitra-Tarak et al., 2018; Bfezina et al., 2019) or
soil organism community composition and activity (Bardgett ez al., 2005), root trait values vary
temporally at both the species and community levels (e.g. Picon-Cochard et al., 2012;
Zadworny et al., 2015). For example, seasonal changes in carbohydrate concentration of below-
ground organs affects plant resprouting ability during some parts of the growing season in
temperate regions, a feature often used to improve the efficiency of mechanical control of weeds
(Sosnova et al., 2014). Many root traits are also dependent on the stage of root system
development (e.g. architectural traits such as root branching density, coarse to fine root ratio;
Freschet et al., 2020) and root age (e.g. Volder ez al., 2005). Within a single root axis of maize,
for example, tensile strength can vary by about 1.5 orders of magnitude, being greatest in the
older root tissue far from the root apex (Loades et al., 2015). This phenomenon is particularly
true for woody species, whose architecture and size can change dramatically during their life,
with many consequences for trait values and their impact on ecosystem functioning. The
importance of ontogenetic stage however also applies to herbaceous species (both annual and
perennial) even after reaching maturity, for example due to changes in resource accumulation
in roots or rhizomes. Additionally, root phenology differs strongly among species (McCormack
et al., 2014), growth forms (Blume-Werry et al., 2016) and biomes (Abramoff & Finzi, 2014).
In extreme cases, some species may display no or few absorptive roots at specific times of the
year, with periodic flushes of new relatively short-lived fine roots at times of resource
availability, as seen in arid climate (Liu ez al., 2016). In cold climate with short growing season,
however, species with long-lived overwintering root systems may be more successful than
species with fall-senescing root systems that are produced for each growing season anew
(Courchesne et al., 2020). Similarly, long-lived roots and rhizomes may contribute better to soil
reinforcement against landslides than ephemeral roots by providing a more consistent
contribution to improve soil strength.

A Dbetter understanding of root phenology is therefore key to the meaningful measurement
ofroot trait values (in relation to the focal function) and our understanding of temporal variation
in root trait effects on plant and ecosystem functioning. The timing of root sampling must be
carefully considered, so as to match the period when the focal function is most relevant. For
example, in ecosystems defined by high seasonality, measuring root traits at the peak of plant

productivity (sometimes halfway between the seasonal increase and reduction in growth
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activities) may be a reasonable benchmark for approximating the relationship between root
traits and plant nutrient uptake capacity. However, the timing of nutrient uptake is rarely
examined (but see Trinder ez al., 2012; Jesch et al., 2018; Dovrat & Sheffer, 2019) and may not
be directly proportional to plant growth rate. Further, some studies suggest that N can be taken
up as soon as it is available (Jackson et al., 2008), suggesting that a good match between plant
uptake capacity and the temporality of N fluxes is of critical importance for N uptake (e.g.
Edwards & Jefferies, 2010). Regarding the capacity of plants to provide resistance against
landslides, it would be best to measure root traits at the time of the year when landslides are
most frequent, e.g., when soil is saturated, during the rainy season (in tropical systems) or
during snow melt (Stokes et al., 2009), or to differentiate between relationships measured at
different times of the year.

Another consideration relates to the temporal variation in species composition within
ecosystems, for example during succession or in response to changes in land use. Plant effects
on ecosystem functioning can last for long periods after changes in plant community
composition have occurred (Fraterrigo et al., 2005) and mismatches between traits and function
are therefore likely to be observed in rapidly changing ecosystems (Foster ez al., 2003). In the
same way, plant species, and their root systems, that established first at a location may not only
influence the rooting patterns of other species, but also disproportionately drive the observed
relationships between traits and functioning (Delory et al., 2019).

In summary, knowledge of spatial and temporal variation in root traits and their effects,
over different spatial and temporal scales, is especially needed to allow more informed
recommendation on the location and timing of measurements. Hierarchical spatial sampling
and sequential sampling would provide invaluable information on the spatial and temporal

fluctuation of root traits and their impact on ecosystem functioning.

4. Ofintra- versus interspecific variation and the use of databases

Ecologists have identified and measured phenotypic traits in a wide variety of species, either
under laboratory conditions or in the field. Various attempts have been made to include these
data into comprehensive/inclusive databases considering plant traits per se (Kleyer et al., 2008;
Iversen et al., 2017; Kattge et al., 2020) as well as the plant symbiotic relationships with
mycorrhizal fungi (Soudzilovskaia et al., 2020) and with N-fixing bacteria (Tedersoo et al.,

2018). Although below-ground traits are still strongly underrepresented in global compilations,
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especially regarding organs other than fine roots (KlimeSova et al., 2018), such databases
represent a large amount of trait data that can be related to vegetation composition (Bruelheide
et al., 2019) and climate and soil maps. Consequently, relationships between root traits and
ecosystem functioning can now be addressed at global scales (e.g. See et al., 2019). However,
in global analyses, one trait value per species is generally considered and averaged over all
available data, under the assumption that the average will be a good reflection of the ‘inherent’
trait for a given species. This generalisation is made even though trait expression is adjusted to
the specific environmental condition that plants experience (Valladares et al., 2006). Root trait
values can strongly differ between plants grown in laboratory versus field experiments (Poorter
et al., 2016), for instance as a consequence of different environmental conditions (Li et al.,
2017; Kumordzi et al., 2019), along gradients of plant diversity or density with different types
of plant-plant interactions (Salahuddin e al., 2018), or with changing interactions between
trophic levels (Huber ef al., 2016). Ostonen et al. (2007) showed for example that intraspecific
variation of SRL can be as high as 10-fold across a large environmental gradient. Not
accounting for such differences between sites may be one of the key reasons for low
predictability of trait-functioning relationships in functional ecology (Shipley et al., 2016).
Due to the potential for large differences between traits and their level of intraspecific
variability, getting a clearer view on which traits are most variable or invariant would be critical
for data reuse in syntheses of trait-functioning relationships (Funk et al., 2017; McCormack et
al., 2017). For above-ground traits, intraspecific variation has only recently begun to be
properly addressed across large numbers of species (e.g. Siefert et al., 2015). For root traits, it
may be some time before we have a good insight into the contribution of genetic and
environmental factors to trait variation (KlimeSova et al., 2017). The complexity of the issue is
increased further when one considers the importance of genotype-genotype interactions of
plants and root-microbial symbionts, which can also have substantial effects on trait expression
and key functions (Johnson et al., 2012). Overall, while the characterisation of trait intraspecific
variability is critical, it must be stressed that a good characterisation of phenotypic traits also
depends on a good characterisation of environmental conditions experienced by plants. This is
especially true below-ground where the small-scale heterogeneity of soils limits the value of

large-scale databases (Freschet et al., 2017).

VI. Conclusion and perspectives

Our overview of root trait-functioning relationships has raised seven main insights:
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1) Below-ground traits with the widest importance in plant and ecosystem functioning are not
necessarily those that are the most commonly measured. Meanwhile, the relevance of
commonly measured (soft) traits to plant and ecosystem functioning is often indirect and

insubstantial, or requiring further testing.

2) Assessing the relative importance of traits for functioning requires quantifying a
comprehensive range of functionally relevant traits (on different root entities), including hard
traits, from a diverse range of species, as well as replication across environmental gradients or

contrasting environmental contexts.

3) Establishing causal links between root traits provides a mechanistic basis (i.e. the hypothesis-
based framework) to interpret the outcome of statistical model selection procedure (i.e. the set
of variables retained in multivariate models linking traits to functions) or structural equation
models. As such, it holds the key to identifying the most parsimonious sets of traits with

strongest influence on the functions.

4) Accounting for causal relationships among traits is key to identifying the component traits
that link most strongly with a limited set of genes on the one hand, and plant or ecosystem
functioning on the other, and therefore to inform us of potential linkages between genotypes

and functioning.

5) Investigating syndromes of traits and syndromes of trait plastic adjustments will help us
identify the linkages between ‘soft” and ‘hard’ traits, in order to demonstrate when and to what

extent ‘soft’ traits can confidently be used as proxies for ‘hard’ traits.

6) Our ability to scale-up from root, to plant, to species, to community and ecosystem
functioning requires more critical investigation and comprehensive experimental/empirical
tests, and, in some cases, the incorporation of spatio-temporal variation as well as belowground

process conceptualization and testing within the framework of terrestrial biosphere models.

7) Accounting for (the often large) intra-specific variation in trait-functioning relationships in
global models requires databases with well contextualized data (e.g. locally measured soil

parameters).
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Another major contribution of this synthesis lies in the broad overview of root trait-function
relationships gathered within Tables 1 & 2. These Tables give an overview of both the range of
effects that root traits can have on ecosystem functioning and the range of traits potentially
required to adequately capture the effects of roots on most plant functions and ecosystem
properties and processes. They provide key references on multiple topics, which should benefit
to all who want to broaden their view of root ecology. These Tables further highlight several
functionally important, but rarely considered traits from various research fields.

Overall, this synthesis represents a close companion to the recent description of
standardized measurement protocols for a substantial set of root traits (Freschet ef al., 2020).
These two syntheses elucidate connections between the multiple and at times secluded fields of
root ecological research and, as such, are meant to inspire novel multidisciplinary approaches.
They should encourage researchers more familiar with above-ground aspects of plant ecology
to integrate below-ground concepts into their vision of trait-functioning relationships. While
we purposely limited our review to below-ground aspects only, we cannot stress enough that
these relationships should be considered for entire plants, whenever possible, since plant
impacts on (plant and ecosystem) functioning often rely on the integration of both above- and
below-ground traits.

Finally, this synthesis brings a range of arguments that call for the design of more
comprehensive studies. Studies tackling some, if not all of the above recommendations can be
designed that limit the fortuitous, indirect and context-dependent nature of gathered results (as
opposed to studies measuring few traits on few species in one single context). We believe that
such a set of recommendations will be instrumental in moving towards an integrated,
mechanistic knowledge of trait-functioning relationships and open the way to safe applications
for ecosystem and agroecosystem management. Achieving a more mechanistic understanding
of multivariate trait-functioning relationships will further help us strengthen (or reconsider) the
foundations of current dominating theoretical frameworks, often built on data from few soft

traits.
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Notes S1. Full list of references for papers cited in Tables 1, 2, 3 & 4.

Tables

Table 1. Broad, multidisciplinary assessment of theoretical and demonstrated links between
below-ground traits and 15 aspects of plant functioning. CC: colour code, in dark blue: trait of
prime importance for performing the plant function in at least some environmental conditions;
medium blue: trait of secondary importance in at least some environmental conditions; light
blue: trait of potential but unknown importance due to missing or low experimental evidence.
* refers to traits whose measurement protocols are described in Freschet et al. (2020). (+) versus
(-) refers to the positive or negative effect of one trait on the function, respectively. (explorative)
versus (exploitative) refers to traits that increase the overall volume of soil explored or improve
the exploitation of a more limited volume of soil, respectively. ‘Entity of interest’ refers to a
range of plant belowground parts as described in Freschet er al. (2020). The full list of
references is available as Supplementary Notes S1.

PLANT FUNCTIONS

CC |Belowground traits

|Entity of interest

References (examples of)

Rationale

Soil space occupancy (from explorative to exploitative strategies)

This function includes both exploration and exploitation strategies
(whose traits generally trade-off).

Maximum rooting depth*
(explorative)

hole root system

Thorup-Kristensen, 2001;
Maeght et al., 2013; Fan
etal, 2017

Reflects the potential range of soil layers colonized by roots.

Lateral rooting extent*
(explorative)

hole root system

Schenk & Jackson, 2002a

Reflects the potential area of ground colonized by roots.

Horizontal* and vertical root
distribution index*
(explorative)

hole root system,
fine-roots

Gale & Gringal, 1987;
Jackson et al., 1996

A homogeneous distribution below the soil surface and across
depths is typical of an explorative rather than an exploitative
strategy.

Root length density*
(exploitative)

Whole root system,
fine-roots

Eissenstat, 1992;
Robinson et al., 1994;
Reich et al., 1998;
Ravenek et al., 2016

Increases the spatial coverage of a given soil volume.

Root mass fraction*
(exploitative)

\Whole root system,
fine-roots

Poorter et al.,, 2012;
Freschet et al.,, 2015

Increases the proportional investment of plants towards the root
system or specific parts of the root system.
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Specific root length*
(explorative or exploitative)

\Whole root system,
fine-roots

Bauhus & Messier, 1999;
Ostonen et al.,, 2007

Increases the length of root exploring or exploiting the soil per unit
root mass invested.

Root branching density*
(exploitative)

\Whole root system,
absorptive roots

Wiersum, 1958; Fitter &
Stickland 1991;
Larigauderie & Richards,
1994; Eissenstat et al.,
2015; Zhao et al., 2018 ;
Lynch et al., 2019

Typically increases with soil resource patchiness as very thin roots
tend to proliferate (strong increase in root branching density) in
nutrient-rich hotspots. While higher branching density increases
local soil exploitation, lower branching might enable larger soil
volume exploration.

Root elongation rate*
(explorative or exploitative)

First-order roots

Forde & Lorenzo 2001;
Rewald & Leuschner,
2009; Eissenstat et al.,
2015

On pioneer roots, measures the capacity of root systems to send
roots to depth (explorative). On absorptive roots, characterizes
the capacity of root systems to respond to fluctuating resource
availability (exploitative).

Time of root growth initiation*

First-order roots

Langlois et al., 1983;
Eissenstat & Caldwell,
1988

Measures the capacity of root systems to pre-occupy soil patches
before competitors.

Root branching angle*
(explorative)

Highest order roots

Trachsel et al., 2013;
Lynch, 2013; Miguel et al.,
2015

Larger (i.e. steeper) root branching angles promote exploration of
deep soil and increase soil volume explored in conditions of
competition with neighbouring plants.

Persistence of connection
between ramets* (explorative)

Rhizomes, stolons,
shoot-bearing roots

Jonsdéttir & Watson,
1997; Weiser et al., 2016;
KlimeSova et al., 2018

Longer lifespan of rhizomes and shoot bearing roots enables
sharing of resources among ramets in a clone over longer period
and larger area and enables also longer on-spot occupancy. Longer
persistence of connections is also generally related to longer root
lifespan.

Lateral spread* (explorative)

Rhizomes, stolons,
shoot-bearing roots

Weiser & Smycka, 2015;
KlimeSova et al., 2018

The longer lateral spread by clonal growth organ (stolon, rhizome)
the farther away (from older roots) new roots must be
established.

Plan

t N acquisition

See traits associated to "Soil
space occupancy” (+)

Whole root system,
absorptive roots

Maire et al., 2009; Simon
et al., 2017; Freschet et
al, 2018

Most “Soil space occupancy” traits can be important for thig
function as they determine the temporal and spatial localisation off
roots in soil and the efficiency of soil exploration and exploitation.

Net N uptake rate* (+)

\Whole root system,
absorptive roots

Garnier, 1991; Poorter et
al, 1991; Garnier et al.,
1998

When measured on short time periods (from hours to days), this
measure primarily represents plant N uptake. Over longer periods
(days to months) this measure also takes into account N loss due
to leaching, herbivory and senescence.

Michaelis-Menten constant
(Km)* (+)

Whole root system,
absorptive roots

Robinson et al., 1994;
Miller et al., 2007;
Grassein et al., 2015

The Km is a measure of the affinity of a transport system for its
substrate; the lower the Km the faster nutrients can be taken up
at low availability.

Ability to fix N* (+) Nodules Sprent, 2009; Afkhami et |Provides N to the plant from atmospheric source N3 via microbial
al., 2018; Tedersoo et al., |root symbionts.
2018

Nitrogen fixation rate* (+) Nodules Carlsson & Huss-Danell,  |Increases the rate of atmospheric N acquisition.

2003; Batterman et al.,
2013a; Yelenik et al.,
2013; Ament et al., 2018

Mycorrhizal association type*

IAbsorptive roots

Read & Perez Moreno,
2003; Read et al., 2004;
Lambers et al., 2009;
Phillips et al., 2013; Liese
et al., 2018; Pellitier &
Zak, 2018

Different mycorrhizal types have different enzymatic capacities
and ability to explore soil volumes and thereby different abilities
to take up N. Also, AM, ECM, and ERM fungi represent a gradient
from limited saprotrophic capabilities and greater reliance on
inorganic N as primary N source to the ability to produce
extracellular enzymes and greater use of increasingly complex
organic N forms.

Root hair length* and density*
(+)

Absorptive roots

Robinson & Rorison,
1987; Freschet et al.,
2018

Root hairs increase the absorptive surface area of non-woody
roots, which is important for N uptake as well as uptake of other

nutrients.
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Ratio of absorptive to transport
roots* (+/-)

Fine-roots

Schneider et al., 2017;
Zadworny et al., 2017

Increases N uptake rate. However, root cortical senescence can
also increase N reallocation from senescing tissue and reduce root
respiration and root N requirements.

Mycorrhizal colonization
intensity* (+)

IAbsorptive roots

Miller et al., 1995; Hodge
et al., 2003; Treseder,
2013

Mycorrhizal fungi are physiologically and morphologically well
adapted to acquire N from soil. The colonization intensity provides
a first approximation of the association between the plant and
mycorrhizal partner. However, it should be noted that there is still
significant variation in the potential benefit provided by the fungi
based on the fungi identity, the total hyphal production and the
local environmental context.

Root cortical aerenchyma (+/-)

IAbsorptive roots

Postma & Lynch, 2011;
Schneider et al., 2017

Decreases radial N transport but increases nutrient uptake
efficiency by decreasing metabolic costs.

Maximum net uptake capacity
(Imax)* (+)

Absorptive roots

Robinson et al., 1994;
Garnier et al., 1998;
Grassein et al., 2018

Imax represents a potential rate at non-limiting substrate
availability that might, however, not be fully expressed under in situ
conditions.

Mycorrhizal hyphal length (+)

IAbsorptive roots

Miller et al., 1995; Chen
et al., 2016; McCormack
& lversen, 2019

The hyphal length associated with a colonized root provides a
closer approximation of both the potential benefit and cost of the
mycorrhizal symbiosis than colonization intensity alone.

Specific root respiration* (+)

IAbsorptive roots

Poorter et al., 1991; Reich
et al., 1998; Rewald et al.,
2016

Root respiration is related simultaneously to maintenance, growth
and nutrient uptake of roots and is therefore inconsistently linked
to nutrient uptake. It also varies with N form.

Root N concentration (+)

IAbsorptive roots

Loqué & von Wirén, 2004;
Grassein et al., 2015;
Grassein et al., 2018

Root nitrogen is involved in all metabolic processes related to N
uptake but is also stored in roots and included in root defence
compounds and is therefore inconsistently linked to nutrient]
uptake.

Plant P acquisition

See traits associated to "Soil
space occupancy” (+)

Whole root system,
absorptive roots

Lynch et al., 2011;
Laliberté et al., 2015; Ros
etal, 2018

Most “Soil space occupancy” traits can be important for thig
function.

Net P uptake rate* (+)

Whole root system,
absorptive roots

Itoh, 1987; Fohse et al.,
1988

\When measured on short time periods (from hours to days), this|
measure primarily represents plant P uptake. Over longer periods
(days to months) this measure also takes into account P loss due to
leaching, herbivory and senescence.

Mycorrhizal association type*

IAbsorptive roots

Read, 1991; Read &
Perez-Moreno, 2003;
Philipps et al., 2013;
Lambers et al., 2009

Distinct mycorrhizal types have differing capacity to extract P from
soils. AM fungi have greater influence on plant P acquisition
(representing up to 90% of plant P uptake) than ECM fungi (up to
70%). AM fungal extramatrical mycelia express specific
transporters to take up P; from the periarbuscular space (i.e., they
bypass roots). ECM and ERM fungi can access organic forms of P
that are not available to AM fungi.

Ability to grow cluster and
dauciform roots (+)

First-order roots

Neumann & Martinoia,
2002; Shane et al., 2006

Cluster and dauciform roots are specialized organs efficient in
mining P from nutrient-impoverished soils.

Root hair length* and density*
(+)

Absorptive roots

Wissuwa & Ae, 2001;
Brown et al., 2013;
Haling et al., 2013

Root hairs can be more effective than mycorrhiza in facilitating P
acquisition.

Ratio of absorptive to
transport roots* (+/-)

Fine-roots

Schneider et al., 2017;
Zadworny et al., 2017

Increases P uptake rate. However, root cortical senescence can
also increase P reallocation from senescing tissue and reduce root
respiration and root P requirements.

Rhizospheric phytase and
phosphatase activity (+)

First-order roots

Spohn & Kuzyakov, 2013;
Meier et al.,, 2015

Roots can release (acid) phosphatases (sometimes phytases)
directly or exude organic substances that act as substrate fo
microorganisms which in turn produce phytases and (acid o

alkaline) phosphatases.
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Mycorrhizal colonization
intensity* (+)

IAbsorptive roots

Treseder, 2013; Elumeeva
etal, 2018

Mycorrhizal fungi are physiologically and morphologically better
adapted than roots to extract P from soils thereby increasing host
plant nutrient concentrations.

Mycorrhizal genetic diversity*

(+)

Absorptive roots

Plassard & Dell, 2010;
Plassard et al., 2011;
Kohler et al., 2018

P uptake efficiency increases with increasing ECM fungi species
richness and diversity. Increased ECM fungi diversity is associated
with greater variability in soil exploration types among ECM fungi
species, which increases the explored soil volume for P.

Root cortical aerenchyma (+/-)

Absorptive roots

Hu et al., 2014; Schneider
etal., 2017

Decreases radial P transport but increases nutrient uptake
efficiency by decreasing metabolic costs.

Root exudation rate* (+)

Absorptive roots

Lopez-Bucio et al., 2000;
Lambers et al., 2012;
Ryan et al., 2014; Zhang
etal, 2016

Excretion of acidifying/chelating compounds (e.g., citric acid, malig
acid) enhances the solubility of inorganic P, although evidence]
exists mostly for Proteaceae and crops.

Mycorrhizal hyphal length (+)

Absorptive roots

Miller et al., 1995;
Laliberté et al., 2015;
Chenetal., 2016;
McCormack & Iversen,
2019

The amount of hyphal length associated with a colonized root
provides a closer approximation of both the potential benefit and
cost of the mycorrhizal symbiosis than colonization intensity
alone.

Michaelis-Menten constant
(Km)* (+)

Whole root system,
absorptive roots

Itoh, 1987; Lambers et al.,
2006

The Km is a measure of the affinity of a transport system for its
substrate; the lower the Km the faster nutrients can be taken up
at low availability. However, the diffusion of inorganic phosphate
in soil is the key limiting factor for P uptake so that kinetic
parameters of the P-uptake system may have only small effects on
the overall uptake capacity of plants.

Plan

t water acquisition

See traits associated to "Soil
space occupancy” (+)

Whole root system,
absorptive roots

Fort et al., 2017; Chitra-
Tarak et al., 2019

Most “Soil space occupancy” traits can be important for this
function, especially in soils with heterogeneous water distribution,|

Root hair length* and density*
(+)

Absorptive roots

Segal et al., 2008;
Carminati et al., 2017

Improve the contact of roots with water films of soil particles.

Cortical thickness™* (-)

Absorptive roots

Huang & Eissenstat, 2000;
Comas et al., 2012

Thinner cortex resulting in less impedance to water movement
towards the stele.

Fraction of passage cells in
exodermis* (+)

Absorptive roots

Enstone & Peterson,
1992; Peterson &
Enstone, 1996; Huang et
al., 1995; Peterson &
Waite, 1996

Higher density of passage cells enhances water movement
towards the stele.

Mycorrhizal colonization
intensity* (+)

Absorptive roots

Augé et al., 2001;
Querejeta et al., 2003;
Querejeta et al., 2012;
Prieto et al., 2016

Allows water transfer to the plant and improves root contact
with the soil.

Hydraulic conductance* (+)

Whole root system,
fine-roots

Muhsin & Zwiazek, 2002;
Eldhuset et al., 2013;
Zadworny et al., 2018

Increases the potential flow of water from the roots to upper parts
of the plant.

Vulnerability to embolism (-)

Whole root system

Domec et al., 2006

Occurrence of embolism limits the potential flow of water from
roots to upper parts of the plant

Type and frequency of root
entities

Whole root system

North, 2004; Draye et al.,
2010; Rewald et al., 2011,
2012; Ahmed et al., 2018

Distribution of the root hydraulic properties between root entities
determines root system hydraulic architecture.

See traits associated to “Soil
water holding capacity” (+)

Fine-roots

Feddes et al., 2001

Soil water holding capacity acts as a buffer against periodic rainfall
events, particularly in places where rainfall evens are irregular.

Suberin concentration (-)

Whole root system

Steudle & Peterson, 1998;
Schreiber et al., 2005;
Gambetta et al,, 2013

Not only deposition of suberin lamellae but also chemical
composition of suberin would affect radial water flow from cell to
cell (i.e. decrease root hydraulic conductivity).
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Xylem lumen area (+)

Whole root system,
fine-roots

Hummel et al.,, 2007;
Valenzuela-Estrada et al.,
2008; Long et al., 2013;
Kong et al., 2014

Greater conduit lumen area may exhibit enhanced hydraulic
conductance.

guaporin expression (+)

Absorptive roots

Johnson et al., 2014

Facilitates radial, symplastic conductance of water.

Lignin concentration™® (-)

Absorptive roots

Ranathunge et al., 2003,
2004; Naseer et al., 2012

Lignins may act as apoplastic barriers limiting radial water
transport across roots.

Root penetration of soil

Root growth pressure (+)

First-order roots

Dexter, 1987; Clark &
Barraclough, 1999

Root growth pressure is essential to root penetration, although
there is limited evidence of its variation as a trait.

Mean root diameter* (+)

First-order roots

Materechera et al., 1992

Thicker roots are generally better at penetrating hard soils to
greater depth.

Number of main root axes (+)

Whole root system

Jakobson & Dexter, 1987;
Landl et al., 2017

In structured soils containing many cracks and biopores, plants
with many main axes may penetrate more effectively.

Root buckling resistance (+)

First-order roots

Clark et al., 2008; Burr-
Hersey et al., 2017

Species and genotypes differ substantially in their ability to
penetrate hard soils without buckling or altering their growth
trajectory.

Root cap friction coefficient (-)

First-order roots

Bengough & McKenzie,
1997; lijima et al., 2003

Sloughing of root border cells and root exudate production
decreases the mechanical resistance to root growth and aids root
penetration.

Plan

t nutrient and C conservation

Lifespan* (+)

Whole root system,
rhizomes

McCormack et al., 2012;
Liu et al., 2016; KlimeSova
etal, 2018

Decreases losses associated to root turnover.

Root resorption efficiency and
proficiency (+)

Whole root system,
absorptive roots

Gordon & Jackson, 2000;
Freschet et al., 2010

Decreases losses associated to root senescence.

Specific respiration rate* (-)

Whole root system

Walk et al., 2006; Rewald
etal., 2014, 2016

Respiration is a major driver of C loss.

Ratio of absorptive to
transport roots* (-)

Fine-roots

Lynch, 2019; Schneider et
al.,, 2017

Root cortical senescence reduces metabolic maintenance costs.

See traits associated to “Plant
protection against pathogens
and herbivory” (+)

Whole root system

Kaplan et al., 2008;
Moore & Johnson, 2017

Traits providing “Plant protection against pathogens and
herbivory” are important for this function.

Root tissue density* (+)

Whole root system

Ryser, 1996; Liu et al.,
2016; Bumb et al., 2018;
Lynch, 2019

Increases root lifespan, plant mechanical resistance and decreases
plant palatability. Evidence gathered aboveground for leaf tissue
density (e.g. leaf dry matter content) theoretically applies
belowground. However, reduced tissue density due to
aerenchyma formation, increase in cortical cell sizes or decrease
in cortical cell numbers may also reduce metabolic costs.

Plan

t storage

Ability to produce storage
structures (+)

Tubers, rhizomes,
tap roots, corms,
bulbs

KlimeSova et al., 2018;
Pausas et al., 2018

Substantially improves the overall capacity of plants to store C and
nutrients.

Total belowground
carbohydrate storage* (+)

Tubers, rhizomes,
tap roots, corms,
bulbs

Janecek & Klimesova,
2014; Martinez-Vilalta et
al., 2016

Storage in specialized organs represents the largest part of C
storage and, in contrast to storage in other types of roots,
represents an active storage strategy rather than passive

accumulation due to limitation of growth (e.g. by nutrients, cold).
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Plan

t regeneration

Bud bank size* (+)

\Whole root system,
rhizomes

KlimeSova & Klimes, 2007;
Ottetal, 2019

Belowground bud bank allows afte

aboveground disturbance

plant regeneration

Depth of buds in bud bank (+)

hole root system,
rhizomes

Lubbe & Henry, 2019; Ott
etal, 2019

Deeper buds are more resistant to disturbance like fire o
ploughing. On the other hand, deeper buds require more resource
storage and time to produce new aboveground shoots.

See traits associated to "Plant
storage" (+)

Tubers, rhizomes,
tap roots, corms,
bulbs

de Moraes et al., 2016

Most “Plant storage” traits can be important for this function)
Storage organs support regrowth of new aboveground parts.

Ability to produce adventitious
shoots on roots (+)

hole root system

KlimeSova et al.,, 2017a

[Adaptation of plants to soil disturbance (numerous perennial
weeds of arable land possess ability to resprout from roots). Some
species may produce adventitious shoots spontaneously, some]
only in response to disturbance.

Plan

t lateral spread and belowground dispersal

Ability to produce rhizomes (+)

Rhizomes

Groff & Kaplan, 1988

Rhizomes (belowground stems with adventitious roots) allow the
colonization of new ground while relying to some extent on
resources from well-established ramets.

Lateral spread* (explorative)

Rhizomes, stolons,
shoot-bearing roots

Weiser & Smycka, 2015;
KlimeSova et al., 2018

The longer lateral spread by clonal growth organ (stolon, rhizome)
the farther away (from older roots) new roots must be established

Ability to produce adventitious
roots (+)

hole root system,
rhizomes

Groff & Kaplan, 1988

Facilitates establishment of new rooted areas along belowground
(rhizomes) or aboveground (stolons, decumbent shoots) stems and
splitting a clone to physically independent parts.

Lateral rooting extent*
(explorative)

\Whole root system

Schenk & Jackson, 2002a

Reflects the potential area of ground colonized by roots.

Ability to produce adventitious
shoots on roots (+)

Shoot-bearing roots

Groff & Kaplan, 1988;
KlimeSova et al., 2017a

Common among species of dry and disturbed areas to extend plant
spread and to overcome bud bank limitation.

See traits associated to "Plant
storage" (+)

Tubers, rhizomes,
tap roots, corms,
bulbs

de Moraes et al., 2016;
KlimeSova et al., 2017b

Most “Plant storage” traits can be important for this function as
they often serve both functions.

See traits associated to “Root
penetration force in soil” (+)

Root and rhizome
apices

KlimeSova et al., 2012

Facilitates movement of roots and rhizomes into new areas.

Persistence of connection
between ramets* (+)

Rhizomes, shoot
bearing roots

Jonsdottir & Watson,
1997

Longer lifespan of rhizomes and shoot bearing roots enables
sharing of resources among ramets in a clone over a longer period|
and larger area and enables longer on-spot occupancy.

Initiation and establishment of mycorrhizal symbioses

This function refers to mycorrhizal fungi as well as pathogenid
hyphae.

Root cortex thickness* (+)

Absorptive roots

Brundrett, 2002; Comas
et al., 2012; Zadworny et
al., 2016; Kong et al.,
2017

Larger parenchyma cortex enhances associations with mycorrhizal
colonization by providing larger space for mycorrhizal fungal
hyphae and arbuscules.

See traits associated to "Plant P
acquisition” (-)

Absorptive roots

Oldroyd, 2013; Raven et
al., 2018

Most “Plant P acquisition” traits can be important for this function.
Plants with higher P acquisition capacities and therefore higher P
status are less likely to establish symbioses.

Root cortex area fraction™ (+)

Absorptive roots

Comas etal.,, 2012;
Burton et al., 2013; Gu et
al., 2014; Valverde-
Barrantes et al., 2016

A large cortex area fraction theoretically implies a higher
possibility for connection to symbionts by providing larger space
for mycorrhizal fungal hyphae and arbuscules.
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Fraction of passage cells in
exodermis* (+)

Absorptive roots

Kamula et al., 1994;
Peterson & Enstone,
1996; Sharda & Koide,
2008; Zadworny &
Eissenstat, 2011

Exodermal passage cells provide the major penetration sites for
the colonization of mycorrhizal and pathogenic hyphae.

Concentration of compounds
controlling the degree of
colonization: e.g. lignin,
suberin, phenolic compounds,
phytohormones, ‘reactive
oxygen species’, branching
factors (-)

Absorptive roots

Nicholson &
Hammerschmidt, 1992;
Matern et al., 1995;
Fester & Hause 2005;
Lépez-Réez et al., 2010

Roots contain and produce anti-fungal compounds (i.e. lignin
deposition, suberization, high tannin content and ‘reactive oxygen
species’) that control fungi (pathogenic and mycorrhizal) entry and
development.

Carbon translocation to
symbionts (+)

Whole root system

Tuomi et al.,, 2001;
Hogberg & Hogberg,
2002; Hobbie, 2006;
Nehls et al., 2010

Symbiosis establishment require plant resources such ag
photosynthetically assimilated carbon; the symbiosis affects the
rate of photosynthesis and influences the carbon assimilation and
allocation

Plan

t protection against pathogens and herbivory

Secondary metabolites
(alkaloids, glucosinolates,
phenolics, terpenoids,
furanocoumarins,
cardenolides) (+)

Whole root system,
absorptive roots

Zangerl & Rutledge, 1996;
Bezemer et al., 2004;
Kaplan et al., 2008;
Rasmann et al., 2009;
Moore & Johnson, 2018

Decreases plant palatability.

Mycorrhizal colonization
intensity* (+)

Absorptive roots

Newsham et al., 1995;
Jungetal., 2012;
Babikova et al., 2014

Provides protection against some herbivores and pathogens.

Fraction of passage cells in
exodermis* (-)

Absorptive roots

Kamula et al., 1994

Exodermal passage cells provide the major penetration sites for
the colonization of pathogenic fungi.

See traits associated to "Plant
resistance to uprooting" (+)

Whole root system

Ennos, 2000; Burylo et al.,
2009

Prevents uprooting during grazing by aboveground herbivores and
total root system disruption during grazing by belowground
herbivores.

Root lignin concentration* (+)

Whole root system,
absorptive roots

Johnson et al., 2010

Lignin concentration and composition contribute to root

toughness acting as an effective barrier to root herbivory.

Root silica and calcium oxalate
content (+)

Absorptive roots

Korth et al.,, 2006; Park et
al., 2009; Moore &
Johnson, 2017

These deposits are hard and can abrade insect mouthparts and
reduce the digestibility of food via a physical action.

Root tissue density* (+)

Whole root system,
absorptive roots

Bumb et al., 2018

Decreases plant palatability. Evidence gathered aboveground for
leaf tissue density (e.g. leaf dry matter content) theoretically
applies belowground.

Root N concentration* (-)

Whole root system,
absorptive roots

Brown & Gange, 1990;
Dawson et al., 2002;
Agrawal et al., 2006

Low levels of N limit the nutritional value of the root tissue, as
evidenced aboveground.

Root hair length* and density*
(+)

Absorptive roots

Johnson et al., 2016;
Moore & Johnson, 2017

Root hairs offer some protection by preventing very small
herbivores from reaching and penetrating the root epidermis or
by providing refuge for natural enemies of herbivores such as
entomopathogenic nematodes.

Plan

t resistance to vertical uprooting

This applies particularly to herbaceous species (e.g. under
conditions of large herbivore grazing).

Root length density* (+) \Whole root system |Ennos, 1989. Particularly important across a range of soil horizons. Increasing
root length augments the pull-out resistance up to a critical root
axis length, above which roots will break in tension instead of
slipping out of the soil.

Root mass fraction* (+) \Whole root system |Ennos, 1993 Low investment in belowground parts increases chances of

uprooting.
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Root branching density* (+)

\Whole root system

Dupuy et al., 20053;
Devkota et al., 2006;
Burylo et al., 2009

The tensile force required to uproot whole plants is positively
related to the root branching density and number of root tips per
unit volume of soil.

Tensile strength* (+)

hole root system

Ennos & Pellerin, 2000;
Chimungu et al., 2015;
Mao et al.,, 2018

An estimation of total anchorage strength can be obtained by
summing the basal tensile strengths of all the roots.

Modulus of elasticity* (-)

\Whole root system

Mao et al., 2018

If a root has a small elastic modulus, it will be able to deform
further without failing under a given load, thus improving plant
anchorage.

Ability to produce rhizomes (+)

Rhizomes

Bankhead et al., 2017

The force required to cause rhizome failure can be high, thus
improving overall plant anchorage.

Lateral rooting extent* (+)

hole root system

Ennos, 1989; Mickovski et
al., 2005

Lateral roots increase the weight of the root-soil plate enmeshed
by roots. Increasing root length augments the pull-out resistance
up to a critical root axis length, above which roots will break in
tension instead of slipping out of the soil.

Specific root length (+)

hole root system

Ennos, 1993; Edmaier et
al., 2015

High specific root length often implies more numerous thinner
roots improving anchorage whereas low specific root length
implies less but thicker roots.

Plan

t resistance to overturning

This function applies particularly to tree species (e.g. under
conditions of lateral wind loading).

Root area ratio (+)

hole root system

Dupuy et al., 2005b

The greater the root area ratio of coarse and fine roots (althoughl
roots > 2 cm in diameter contribute less) crossing the potential
failure zone (edges of soil-root plate), the more the soil shea
strength is increased around the root-soil plate.

ertical root length distribution
index* (+)

\Whole root system

Bruce et al., 2006;
Fourcaud et al., 2008

Deeper root systems are better anchored because the anchorage
force provided by roots is proportional to their length up to a
critical length, beyond which roots will break before more distal
regions are stretched.

Root length density* (+)

\Whole root system

Danquechin Dorval et al.,
2016

The higher the density of roots, either tap, sinker or lateral roots,
the greater the resistance to overturning.

Root mass fraction™* (+)

\Whole root system

Danquechin Dorval et al.,
2016

Proportionally low investment in below-ground parts increases
chances of overturning.

Root bending strength (+)

Lateral roots, sinker
roots

Nicoll & Ray, 1996; Stokes
& Mattheck, 1996

Increases resistance to failure due to root bending during lateral
sway.

Presence of sinker roots along
lateral roots (+)

Lateral roots

Danjon et al., 2005

Sinker roots capture a mass of soil and so increase the weight of
the root-soil plate. During lateral sway, a heavier root-soil plate
will improve resistance to overturning.

Presence of a taproot (+)

Taproot

Ennos, 1993; Fourcaud et
al., 2008; Burylo et al.,
2010; Yang et al.,, 2017

If shallow lateral roots are growing horizontally from the taproot,
then the taproot constitutes the main root element that
contributes to anchorage rigidity. Longer taproots anchor the
plant better in soil.

Plan

t tolerance to waterlogging

Presence of aerenchyma tissue

(+)

Absorptive roots,
adventitious roots,
rhizomes

Kohl et al., 1996; Colmer,
2003; Colmer &
Voesenek, 2009; Abiko et
al, 2012; Sauter, 2013

Improves root tissue oxygenation by conducting air along the
roots (and rhizomes).

Presence of pneumatophores

(+)

Pneumatophores

Purnobasuki & Suzuki,
2005; Zhang et al., 2015;
da Ponte et al., 2019

Pneumatophores (i.e. aerial roots) are morpho-anatomical
adaptations of roots with negative geotropism that emerge above
the water surface to take up oxygen.
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Root tissue porosity (+)

Whole root system

Gibberd et al., 2001;
Purnobasuki & Suzuki,
2004; Ding et al., 2017;
Striker & Colmer, 2017

Enhances the internal movements of gases and increases root
oxygenation in anaerobic soils.

Tolerance to high ethanol
concentration (+)

Whole root system

Jackson et al., 1982;
Boamfa et al., 2005;
Maricle et al., 2014

Ethanol toxicity is a prime cause of the injury and death of flooded
plants.

Fine root regrowth rate (+)

Whole root system

Vidoz et al., 2010; Luo et
al., 2011; Sauter 2013;
Dawood et al.,, 2014

Adventitious roots functionally replace primary root systems that
may deteriorate during flooding due to oxygen deficiency.

Specific root respiration™ (-)

Whole root system

Moog & Brugemann,
1998; Nakamura &
Nakamura, 2016

Reduces root oxygen requirements.

Plan

t resistance to and avoidance of drought

Critical tension for conduit
collapse* (+)

Whole root system

Hacke et al., 2001

Decrease the risk of conduit collapse during drought.

See traits associated to "Plant
water acquisition” (+)

Whole root system,
absorptive roots

Brunner et al., 2015

Most “plant water acquisition” traits, including “soil space
occupancy” traits, are important for plant resistance to drought.

See traits associated to "Plant
regeneration” (+)

Whole root system,
tubers, rhizomes,
tap roots, corms,
bulbs

Qianetal., 2017

Plant regeneration capacity provides plants with the ability to
survive intense drought periods despite the loss of aboveground
biomass.

See traits associated to "Plant
storage" (+)

Tubers, rhizomes,
tap roots, corms,
bulbs

de Moraes et al., 2016

Most “Plant storage” traits can be important for this function.
Storage organs support regrowth of new aboveground parts.
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Table 2. Broad, multidisciplinary assessment of theoretical and demonstrated links between
below-ground traits and nine aspects of ecosystem functioning. CC: colour code, in dark blue:
trait of prime importance for performing the ecosystem process or property in at least some
environmental conditions; medium blue: trait of secondary importance in at least some
environmental conditions; light blue: trait of potential but unknown importance due to missing
or low experimental evidence. * refers to traits whose measurement protocols are described in
Freschet et al. (2020). (+) versus (-) refers to the positive or negative effect of one trait on the
function, respectively. ‘Entity of interest’ refers to a range of plant belowground parts as
described in Freschet et al. (2020). The full list of references is available as Supplementary

Notes S1.

ECOSYSTEM PROCESSES AND PROPERTIES

CC |Belowground traits

Entity of interest

References (examples of)

Rationale

Ecosystem C cycling

This process includes C inputs, losses, retention and
transformation. Its complexity may not be meaningfully simplified
into traits that accelerate versus decelerate the element cycling.

See traits associated to “Soil
space occupancy”

Whole root system,
absorptive roots,
rhizomes

Jastrow et al.,, 1998;
Jobbagy & Jackson, 2000;
Rasse et al., 2005; De
Deyn et al., 2008; Wang
et al., 2010; Clemmensen
etal., 2013; Pérés et al.,
2013; Cornelissen et al.,
2014; Liao et al., 2014,
Gould et al., 2016; Poirier
etal, 2018

Most “Soil space occupancy” traits can be important for this
process because they determine the location (i.e. biotic and abiotid
conditions) of root effects on soil, influences the amount of contact]
surface between roots and soil (e.g. physical enmeshment of soil
aggregates), influences the amount of root-derived C inputs to soil
(e.g. litter, exudates), soil moisture and nutrient availability.

Mycorrhizal association type*

Absorptive roots

Langley et al., 2006;
Phillips et al., 2013;
Averill et al., 2014;
Soudzilovskaia et al.,
2015, 2019

Ecosystems dominated by arbuscular mycorrhizal, ericoid
mycorrhizal and ectomycorrhizal fungi plants are characterized by
different carbon and mineral nutrient cycles due to the different
enzymatic capacities of the symbionts. Ecosystems dominated by
plants in symbiosis with ectomycorrhizal fungi store 70% more C
in soils than ecosystems dominated by arbuscular mycorrhizal-
associated plants.

Specific root respiration*

Absorptive roots

Bond-Lamberty et al.,
2004; Reich et al., 2008;
Bardgett et al., 2014

The contribution of root respiration represents on average 40-50%
of the total soil CO, efflux but varies strongly among species.

Mycorrhizal colonization
intensity*

Absorptive roots

Rillig et al., 2001; Gleixner
et al., 2002; Kogel-
Knabner, 2002; Allen et
al., 2003; Langley &
Hungate, 2003;
Fernandez et al., 2016;
Poirier et al., 2018

Mycorrhizal fungi synthesize hydrophobic and recalcitrant
compounds, such as chitin and melanin, respectively, which are
discussed to be less biodegradable and to accumulate in soils (at
least in ecosystems experiencing cold climates).

Root lifespan* and turnover*

Whole root system,
fine-roots

Jackson et al., 1997; Fan
& Guo, 2010; McCormack
et al., 2015; KlimeSova et
al., 2018

Root lifespan regulates the quantity and quality of root-derived
organic matter transferred into the soil organic matter pool. Fine-
roots and low-order roots, which have a short lifespan and
turnover rapidly, represent a substantial input of C into the soil.

Root litter mass loss rate*

Whole root system,
fine-roots

Silver & Miya, 2001;
Zhang & Wang, 2015; See

etal., 2019

Determines the rate at which C from litters is released into the
atmosphere or enters the soil in the form of particulate organig

matter or dissolved organic matter.
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Root exudation rate*

Fine-roots

Tisdall & Oades, 1982;
Kuzyakov, 2010; Phillips
et al., 2011; Keiluweit et
al., 2015; Tuckmantel et
al, 2017; Henneron et al.,
2020

Enhanced root exudation increases the microbial activity and
accelerates the breakdown of soil organic matter in the
rhizosphere (priming effect). Meanwhile root exudates can act as
binding agents to stabilize soil aggregates and thus enhance the
stabilization of occluded soil organic matter.

Root hair length and density*

First-order roots

Gould et al., 2016; Poirier
etal, 2018

Root hairs can physically attach soil particles and contribute to
the formation of stable soil aggregates enriched in C.

Mycorrhizal hyphal length

Absorptive roots

Miller & Jastrow, 1990;
Degens, 1997; Wilson et
al,, 2009; Wu et al., 2014

Increased hyphal length leads to greater enmeshment of soil
particles and increases soil aggregate stability and soil organic C
stabilisation.

Ability to fix N*

Nodules

Cole et al., 1995; Binkley,
2005; Kaye et al., 2000;
Fornara & Tilman, 2008;
De Deyn et al., 2011

The biological fixation of N, by N,-fixing root symbiotic bacteria
generally increases the plant belowground and aboveground
primary productivity. The presence of N,-fixing species also tends
to increase soil organic C accumulation.

Root branching density*

Absorptive roots

Poirier et al.,, 2018

A high branching density contributes to stabilizing soil
aggregates through enmeshment of soil particles and higher
production of exudates by root tips.

See traits associated to
“Hydraulic redistribution” (+)

Domec et al., 2010

Affects topsoil organic matter and litter decomposition.

Ecosystem N cycling

This process includes N inputs, losses, retention and
transformation. Its complexity may not be meaningfully simplified
into traits that accelerate versus decelerate the element cycling.

See traits associated to “Soil
space occupancy”

Whole root system,
absorptive roots

Fornaraetal., 2011;
Abalos et al.,, 2014; De
Vries et al., 2016

Most “Soil space occupancy” traits can be important for thig
process. The density and distribution of roots determines thel
location of root exudates, litter inputs and nutrient uptake.

See traits associated to “Plant
N acquisition”

Whole root system,
absorptive roots

van der Krift & Berendse,
2001; Scherer-Lorenzen
et al., 2003; Personeni &
Loiseau, 2005; Batterman
etal., 2013b; Leroux et
al.,, 2013; Moreau et al.,
2019

Most traits associated to “Plant N acquisition” can be important fo
this process. The capacity of plants to acquire N from soil, and
compete with microorganisms, across a range of locations in the
soil influences N cycling.

Root lifespan* and turnover*

Whole root system,
fine-roots

Jackson et al., 1997; Fan
& Guo, 2010; McCormack
etal, 2015

Influences the input of litter (and N-containing compounds) into
the sail.

Root litter nutrient release
rate*

Whole root system,
fine-roots

Parton et al., 2007

Determines the rate at which N is transferred from litter to soil.

Root N concentration*

Whole root system,
absorptive roots

Hobbie et al., 2006;
Parton et al., 2007; Legay
et al., 2014; Cantarel et
al.,, 2015; Thion et al.,
2016

Root N is positively related to litter N release rate (lower N
immobilization rate), N mineralisation and nitrification (e.g.
archaeal ammonia oxidisers are more abundant in the rhizosphere
of high N roots than low N roots).

Mycorrhizal association type*

Absorptive roots

Phillips et al., 2013; Lin et
al., 2017; Wurzburger &
Brookshire, 2017; Zhu et
al., 2018

Ecosystems dominated by AM, ERM and ECM plants are
characterized by different C and mineral nutrient cycles due to the
different enzymatic capacities of the symbionts. AM, ECM, and
ERM fungi represent a gradient from limited saprotrophic
capabilities and greater reliance on inorganic N as primary N
source to the ability to produce extracellular enzymes and greater
use of increasingly complex organic N forms.

Root exudation rate*

Fine-roots

Phillips et al., 2011; Meier
et al.,, 2017; Moreau et
al., 2019

Enhanced root exudation increases soil microbial activity and
accelerates the breakdown of (fast-cycling) organic N forms in the
rhizosphere. Roots can exude/secrete nitrification and
denitrification inhibitors.
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Ecosystem P cycling

See traits associated to “Plant P
acquisition”

Whole root system,
absorptive roots

Lambers et al., 2008; Ros
etal, 2018

Most traits associated to “Plant P acquisition”, including traits
associated to “Soil space occupancy”, can be important for this
process. The capacity of plants to acquire P from soil, with or
without mycorrhizal symbiosis, across a range of locations in the
soil influences P cycling.

Root lifespan* and turnover*

Whole root system,
fine-roots

Jackson et al., 1997; Fan
& Guo, 2010; McCormack
etal, 2015

Influences the input of litter (and P-containing compounds) into
the sail.

Root litter nutrient release
rate*

Whole root system,
fine-roots

Fujii & Takeda, 2010

Determines the rate at which P is transferred from litter to soil.

Root P concentration*

Whole root system,

Seastedt, 1988; McGrath

Can be a major driver of soil P availability in P-limited soils.

fine-roots et al., 2000; Manzoni et
al., 2010
Soil water holding capacity
See traits associated to “ Fine-roots Rillig & Mummey, 2006; |Root and mycorrhizal traits favouring C accumulation in soil and
Ecosystem C cycling” Poirier et al., 2018 improving soil aggregate stability, improve soil water holding
capacity.
Root mass and length density* |Fine-roots Noguchi et al., 1997 After death and decay, roots leave empty galleries and pores
(+) favourable to water retention. Roots also contribute to organic
matter accumulation, which increases soil water holding capacity.
Root turnover* (+) Fine-roots Noguchi et al., 1997; After death and decay, roots leave empty galleries and pores

Perillo et al., 1999

favourable to water retention. Roots also contribute to organic
matter accumulation, which increases soil water holding capacity.

Mean root diameter*

First-order roots

Norton et al.,, 2004;
Ghestem et al., 2011;
Soto-Gomez et al., 2018

Larger roots leave larger pores that, depending on the context,
may be favourable or detrimental to water retention.

Bedrock weathering

Root exudation rate* (+)

Fine-roots

Ochs et al., 1993;
Hinsinger, 1998; Phillips
et al, 2009; He et al.,
2012; Houben & Sonnet,
2012

Exudation of organic acids and enzymes by roots enhance
bedrock weathering. Additionally, C flux to the rhizosphere
stimulates the weathering activity of root microbiome.

Maximum rooting depth* (+)

Whole root system

Richter & Markewitz,
1995; Schwinning, 2010;
Maeght et al., 2013

Deep-rooted species are most likely to reach bedrock.

Root mass and length density*

(+)

Hinsinger et al., 1992

Increases root overall impact on bedrock.

See traits associated to “Root
penetration of soil” (+)

Whole root system

Bengough, 2012; Kolb et
al, 2012

Root growth pressures may help to extend cracks in weathering
bedrock. Root elongation within a rock crack depends on the
balance of axial and radial pressures.

Mycorrhizal association type* | Fine-roots Taylor et al., 2009; Pawlik | There is stronger evidence for bedrock weathering from ECM
etal, 2016 activity than this of AM.
Mycorrhizal fungi identity* Fine-roots Jongmans et al., 1997, Due to differences in rates of chemical exudation, hyphal

Hoffland et al., 2004;
Schwinning, 2010.

production, and exploration distances among species of
mycorrhizal fungi, species identity is likely to be an important
determinant for faster or slower weathering rates.
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Root secondary growth (+)

Whole root
system

Misra et al., 1986; Richter
& Markewitz, 1995

The radial force widening a crack is the product of the radial
pressure and the contact area of root surface in the crack.

Hydraulic redistribution

Diverse root growth angles*

(+)

Whole root system

Hultine et al., 20033;
Hultine et al., 2003b
Scholz et al., 2008;
Siqueira et al., 2008

Extensive distribution of roots in higher and lower soil horizons
allows connection between wet and drier soil layers.

Maximum rooting depth* (+)

Whole root system

Burgess et al., 1998;
Burgess, 2000; Scholz et
al., 2008; Maeght et al.,
2013

Presence of roots at depth allows access to wetter soil layers in
soils experiencing drying of the upper horizons, which is critical for
hydraulic lift.

See traits associated to “Plant
resistance and survival to
drought” (+)

hole root system,
absorptive roots

Domec et al., 2004;
McElrone et al., 2007;
Warren et al., 2008; Grigg
et al., 2010; Prieto et al.,
2012a ;Prieto et al., 2014

Most traits favouring “Plant resistance to drought”, including traits
favouring “Plant water acquisition”, will contribute to maintaining
a functional root system during periods of soil drying and
therefore allow hydraulic redistribution.

See traits associated to “Plant
water acquisition” (+)

\Whole root system,
absorptive roots

Egerton-Warburton et al.,
2008; Prieto et al., 2012b

Root and mycorrhizal traits favouring “plant water acquisition”
increase water flow through the root system.

Vertical root mass distribution
index* (+)

Whole root system

Schenk & Jackson, 20023,
2002b

High proportion of roots in deeper soil horizons may reinforce
hydraulic lift.

Root turnover* (+)

JAbsorptive roots

Espeleta et al., 2004

Determines the presence of active roots in soil layers that absorb
and redistribute water.

See traits associated to “Plant
lateral spread and belowground
dispersal” (+)

\Whole root system

Jonsdottir & Watson,
1997; Stuefer, 1998

Redistribution of water can occur in the horizontal plane via plant
clonal connectors.

Ecosystem evapotranspiration

See traits associated to “Plant
water acquisition” (+)

Whole root system,
absorptive roots

Nepstad et al., 1994;
Augé et al., 2008; Fort et
al., 2017

Most traits associated to “Plant water acquisition” facilitate the
transfer of water from the soil to the plant and favour
evapotranspiration.

See traits associated to
“Hydraulic redistribution” (+)

Domec et al., 2010

Facilitates the transfer of water from deep soils to shallower soil
horizons.

Soil i

nter-particle cohesion

This property relates to soil surficial erosion.

See traits associated to “Soil

Whole root system,

Angers & Caron, 1998;

Most traits increasing “Soil space occupancy” contribute to

Baumert et al., 2018;
Poirier et al., 2018

space occupancy” (+) fine-roots Gould et al., 2016; stabilizing soil macroaggregates through entanglement of soil
Poirier et al., 2018 particles, production of exudates, binding and compressing soil

particles, and root-induced wetting and drying cycles.
Root exudation rate* (+) Fine-roots Carminati et al., 2016; Exudates (especially polysaccharides and cations) act as binding

agents to initiate microaggregate formation and stabilize
macroaggregates. Exudates also clog aggregate pores and induce
water repellency.

Mycorrhizal colonisation
intensity* (+)

Absorptive roots

Rillig et al., 2015; Poirier
etal, 2018

Mycorrhizal fungi produce exopolymers and proteins that glue and
bind soil particles. The release of hydrophaobins by ECM increases
aggregate hydrophobicity. In addition, hypha enmesh soil fine
particles within micro and macro aggregates.

Root hemicellulose content (+)

Whole root
system

Poirier et al., 2018

Hemicellulose contains pentoses and uronics acids that stabilize
soil aggregates.
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Root suberin content (+) Whole root Bachman et al., 2008; Suberin increases aggregate hydrophobicity and soil water
system Poirier et al., 2018 repellency.
See traits associated to “Plant | Whole root Czarnes et al., 2000 Soil inter-particle cohesion is affected by wetting-drying cycles

water acquisition” (+)

system, absorptive
roots

that increase the strength of organic binding agents.

Soil reinforcement against shallow landslides

Maximum rooting depth* (+)

Whole root system

van Beek et al., 2005

Deep growing roots are more likely to cross the potential soil shear
surface (zone within the soil where failure initiates), which
enhances soil reinforcement.

Vertical root length
distribution index* (+)

Whole root system

Ghestem et al., 2014

A greater number of branched roots below the shear plane will
enhance root anchorage and so improve soil shear resistance.

Root area ratio (+)

Whole root system

Wu, 1976; Bischetti et al.,
2005; Mao et al., 2012

The greater the root area ratio of coarse and fine-roots (although
roots > 2 cm in diameter contribute less) crossing the potential
failure zone, the more the soil shear strength is increased, thus
improving soil reinforcement.

Root length density* (+)

Whole root system

Ennos, 1993; Stokes et
al., 2009

Increasing root length augments the pull-out resistance up to a
critical length, from which roots will break in tension instead of
slipping out of the soil.

Root branching angle* (+)

Tap and sinker roots

Ghestem et al., 2014

Vertically oriented roots increase soil shear resistance.

Tensile strength* (+)

Whole root system

Chimungu et al., 2015;
Giadrossich et al., 2017,
2019; Mao et al., 2018

A higher tensile strength will enable a root to mobilise its full
strength as it is pulled out of soil, thereby increasing soil shear
strength.

Modulus of elasticity* (+)

Whole root system

Cohen et al., 2009; Mao
etal, 2018

Roots with large elastic modulus can remain anchored in soil, even
after soil failure has occurred, thus holding vegetation in place and
retarding or preventing mass substrate failure.

Root bending resistance (+)

Tap, sinker and
lateral roots

Goodman et al., 2001

During landslide, thick structural roots act like soil nails that bend,
preventing soil collapse, before breaking.

See traits associated to “Plant
water acquisition”

Whole root
system, absorptive
roots

Boldrin et al., 2017

Rapid water acquisition will maintain soil in a drier state that offers
greater resistance to deformation.
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Figure captions

Figure 1. Plant and ecosystem functioning typically relate to a wide range of root traits (a, b,
¢) from a wide range of fields of root ecology (d). Meanwhile, some traits play multiple roles
in a range of functions, as illustrated by a subset of functions associated to (a) resource
acquisition and (b) resource protection and use by plants, and the (c) cycling of elements in
ecosystems; as well as a (d) compilation of the relative occurrence of traits from several sub-
disciplines of root ecology in these three examples. Traits with an * refer to traits whose
measurement protocols are described in Freschet et al. (2020). Traits connected to at least two
functions are shown in bold font and those highly represented across all three panels (a, b and
c) are further highlighted in green font. Colours of lines and text boxes are only for visual

effects.

Figure 2. Direct, indirect and hierarchical relationships between the (non-exhaustive) range of
root traits that have been linked to (a) long- and short-term N uptake and (b) soil reinforcement
against shallow landslides. Black arrows represent causal relationships. + and - represent the
direction of the relationship. Trait position along the vertical axis depicts trait hierarchical
relationships, with lower levels representing 'composite' traits and upper levels representing
'underlying' traits (see main text). Major trait covariations are also shown with orange dotted
arrows. The ease of trait measurement is approximated by colour ranging from blue ('hard'
traits) to green (‘soft' traits). * 'Enzymes' refers to the range of enzymes related to N uptake,
assimilation and transport in roots. Imax stands for ‘root maximum net ion uptake rate’ and Km

for ‘root Michaelis-Menten constant’.
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(d) Representation of different fields of root ecology (as presented in Freschet et al., 2020) across this subset
of 14 plant and ecosystem functions. The thicker the line the higher the trait occurrence.
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Figure 2.

Traits related to the amount and location of Traits related Traits related to N absorption and Traits related to
roots to mycorrhiza diffusion through the root nodulation

Uptake capacity is greatest when the soil volume is efficiently explored and/or exploited, and when the root is metabolically active towards N absorption or promote
active resource exchange via symbiotic associations.

(b)

Traits related to the amount and location of Traits related to the mechanical Traits related to the root-soil mechanical
roots resistance of roots interaction and soil drying

Reinforcement is greatest when a number of roots cross a potential shear plane, when the root tissue is mechanically strong and with a large elastic modulus, and when
roots are strongly bonded to the soil and dry the soil rapidly.
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