
Reconstructing regime-dependent causal 
relationships from observational time 
series 
Article 

Published Version 

Creative Commons: Attribution 4.0 (CC-BY) 

Open Access 

Saggioro, E. ORCID: https://orcid.org/0000-0002-9543-6338, 
de Wiljes, J., Kretschmer, M. ORCID: https://orcid.org/0000-
0002-2756-9526 and Runge, J. (2020) Reconstructing regime-
dependent causal relationships from observational time series.
Chaos: An Interdisciplinary Journal of Nonlinear Science, 30 
(11). 113115. ISSN 1089-7682 doi: 10.1063/5.0020538 
Available at https://centaur.reading.ac.uk/93821/ 

It is advisable to refer to the publisher’s version if you intend to cite from the 
work.  See Guidance on citing  .

To link to this article DOI: http://dx.doi.org/10.1063/5.0020538 

Publisher: American Institute of Physics 

All outputs in CentAUR are protected by Intellectual Property Rights law, 
including copyright law. Copyright and IPR is retained by the creators or other 
copyright holders. Terms and conditions for use of this material are defined in 
the End User Agreement  . 

www.reading.ac.uk/centaur   

http://centaur.reading.ac.uk/71187/10/CentAUR%20citing%20guide.pdf
http://www.reading.ac.uk/centaur
http://centaur.reading.ac.uk/licence


CentAUR 

Central Archive at the University of Reading 
Reading’s research outputs online



Chaos 30, 113115 (2020); https://doi.org/10.1063/5.0020538 30, 113115

© 2020 Author(s).

Reconstructing regime-dependent causal
relationships from observational time series
Cite as: Chaos 30, 113115 (2020); https://doi.org/10.1063/5.0020538
Submitted: 01 July 2020 . Accepted: 19 October 2020 . Published Online: 06 November 2020

 Elena Saggioro,  Jana de Wiljes,  Marlene Kretschmer, and  Jakob Runge

ARTICLES YOU MAY BE INTERESTED IN

Modeling the second wave of COVID-19 infections in France and Italy via a stochastic SEIR
model
Chaos: An Interdisciplinary Journal of Nonlinear Science 30, 111101 (2020); https://
doi.org/10.1063/5.0015943

Rare events in complex systems: Understanding and prediction
Chaos: An Interdisciplinary Journal of Nonlinear Science 30, 090401 (2020); https://
doi.org/10.1063/5.0024145

COVID-19 in the United States: Trajectories and second surge behavior
Chaos: An Interdisciplinary Journal of Nonlinear Science 30, 091102 (2020); https://
doi.org/10.1063/5.0024204

https://images.scitation.org/redirect.spark?MID=176720&plid=1167511&setID=405123&channelID=0&CID=390544&banID=519902572&PID=0&textadID=0&tc=1&type=tclick&mt=1&hc=a9441bd671bc98189ea3c063ec4e9d14a9b86aef&location=
https://doi.org/10.1063/5.0020538
https://doi.org/10.1063/5.0020538
http://orcid.org/0000-0002-9543-6338
https://aip.scitation.org/author/Saggioro%2C+Elena
http://orcid.org/0000-0002-9636-1147
https://aip.scitation.org/author/de+Wiljes%2C+Jana
http://orcid.org/0000-0002-2756-9526
https://aip.scitation.org/author/Kretschmer%2C+Marlene
http://orcid.org/0000-0002-0629-1772
https://aip.scitation.org/author/Runge%2C+Jakob
https://doi.org/10.1063/5.0020538
https://aip.scitation.org/action/showCitFormats?type=show&doi=10.1063/5.0020538
http://crossmark.crossref.org/dialog/?doi=10.1063%2F5.0020538&domain=aip.scitation.org&date_stamp=2020-11-06
https://aip.scitation.org/doi/10.1063/5.0015943
https://aip.scitation.org/doi/10.1063/5.0015943
https://doi.org/10.1063/5.0015943
https://doi.org/10.1063/5.0015943
https://aip.scitation.org/doi/10.1063/5.0024145
https://doi.org/10.1063/5.0024145
https://doi.org/10.1063/5.0024145
https://aip.scitation.org/doi/10.1063/5.0024204
https://doi.org/10.1063/5.0024204
https://doi.org/10.1063/5.0024204


Chaos ARTICLE scitation.org/journal/cha

Reconstructing regime-dependent causal
relationships from observational time series

Cite as: Chaos 30, 113115 (2020); doi: 10.1063/5.0020538

Submitted: 1 July 2020 · Accepted: 19 October 2020 ·
Published Online: 6 November 2020 View Online Export Citation CrossMark

Elena Saggioro,1,a) Jana de Wiljes,2,b) Marlene Kretschmer,3,c) and Jakob Runge4,d)

AFFILIATIONS
1Department of Mathematics and Statistics, University of Reading, Reading RG6 6AX, United Kingdom
2Institute for Mathematics, University of Potsdam, D-14476 Potsdam, Germany
3Department of Meteorology, University of Reading, Reading RG6 6AX, United Kingdom
4German Aerospace Center, Institute of Data Science, 07745 Jena, Germany

a)Author to whom correspondence should be addressed: e.saggioro@pgr.reading.ac.uk
b)wiljes@uni-potsdam.de
c)m.j.a.kretschmer@reading.ac.uk
d)Jakob.Runge@dlr.de

ABSTRACT

Inferring causal relations from observational time series data is a key problem across science and engineering whenever experimental inter-
ventions are infeasible or unethical. Increasing data availability over the past few decades has spurred the development of a plethora of causal
discovery methods, each addressing particular challenges of this difficult task. In this paper, we focus on an important challenge that is at
the core of time series causal discovery: regime-dependent causal relations. Often dynamical systems feature transitions depending on some,
often persistent, unobserved background regime, and different regimes may exhibit different causal relations. Here, we assume a persis-
tent and discrete regime variable leading to a finite number of regimes within which we may assume stationary causal relations. To detect
regime-dependent causal relations, we combine the conditional independence-based PCMCI method [based on a condition-selection step
(PC) followed by the momentary conditional independence (MCI) test] with a regime learning optimization approach. PCMCI allows for
causal discovery from high-dimensional and highly correlated time series. Our method, Regime-PCMCI, is evaluated on a number of numer-
ical experiments demonstrating that it can distinguish regimes with different causal directions, time lags, and sign of causal links, as well
as changes in the variables’ autocorrelation. Furthermore, Regime-PCMCI is employed to observations of El Niño Southern Oscillation and
Indian rainfall, demonstrating skill also in real-world datasets.

© 2020 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0020538

Regime-dependent non-stationarity is a ubiquitous feature of
physical systems, especially prominent in atmospheric sciences.
This dependence can be looked at as an intermittent change in
relationships defining the dynamics of a multivariate system,
each of which can be described as a time series causal network.
In this work, we develop a novel algorithm to detect regime-
dependent causal relations that combines the constrained-based
causal discovery algorithm PCMCI with a regime assigning linear
optimization algorithm. Our method, Regime-PCMCI, is evalu-
ated on a number of numerical experiments and demonstrates
high performance in detecting a variety of regime-dependent fea-
tures. Finally, Regime-PCMCI is applied to observations of El
Niño Southern Oscillation and Indian rainfall, demonstrating

skill in detecting well-known seasonal regimes in a real-world
dataset.

I. INTRODUCTION

Understanding causal relationships1,2 among different pro-
cesses is a ubiquitous task in many scientific disciplines as
well as engineering (e.g., in the context of climate research,3–8

econometrics,9,10 molecular,11 and animal group12 dynamics). Yet,
the common approach to gaining causal knowledge by conducting
experiments is often infeasible or unethical, for example, in Earth
sciences. All that is often given is a set of time series describing these
processes with no specific knowledge about the direction and form
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of their causal relationships available. The challenge, termed causal
discovery, is then to reconstruct the underlying graph of causal rela-
tionships from time series data.8 Based on that graph, the processes
that generated the data can be modeled in the framework of struc-
tural causal models (SCMs)1 to further understand causal relations,
predict the effect of interventions, and for forecasting.

Today’s ever-growing abundance of time series datasets
promises many application scenarios for the now numerous data-
driven causal discovery methods. But many challenges emerging
from the dynamic nature of such datasets have not yet been met.
Furthermore, causal knowledge cannot be gained from data alone
and each method comes with its particular set of assumptions2 about
properties of the underlying processes and the observed data. Runge
et al.8 recently provided an overview of current methodological
frameworks, their application scenarios, and open challenges.

One such issue is posed by time-varying causal relation-
ships, a frequent feature of both natural and artificial systems.
In Earth sciences, for example, the dominant causal relationship
between soil moisture and air temperature periodically reverses
due to land-atmosphere feedbacks;13 in animal group dynamics, the
leader–follower role of an individual often mutates in time;14 and in
econometrics, the direction of influence between stock markets and
macroeconomic variables is often dynamical.15

A feature commonly observed in non-stationary dynamical
systems is regime dependence. Regime dependence means that the
causal relationships between the considered processes vary depend-
ing on some prevailing background regime that may be modeled as
switching between different states. Furthermore, often such regimes
have strong persistence, that is, they operate and affect causal rela-
tions on much longer timescales than the causal relations among
the individual processes. In the climate system, for instance, sev-
eral cases of such regime dependencies exist. For example, rainfall in
India in summer is known to be influenced by the so-called El Niño
Southern Oscillation (ENSO), an important mode of variability in
the tropical Pacific affecting the large-scale atmospheric circulation
and thereby weather patterns around the globe.16,17 It is, however,
generally assumed that ENSO does only marginally affect Indian
rainfall in winter.18 Thus, the causal relationships between ENSO
and rainfall over India change dependent on the season that here
defines the background regime and operates on a longer timescale
(several months) than the causal relations among ENSO and Indian
rainfall (several weeks).

A. Existing work

Causal discovery has seen a steep rise with a plethora of
novel approaches and methods in recent years. Each approach
has different underlying assumptions and targets different real-
world challenges as discussed in Runge et al.8 In general,
causal (graph) discovery methods can be classified into classi-
cal Granger causality approaches,9,19 constraint-based causal net-
work learning algorithms,2 score-based Bayesian network learning
methods,20,21 structural causal models,22,23 and state-space recon-
struction methods.24,25

Here, we focus on the constraint-based framework, which has
the advantage that it can flexibly account for linear and nonlinear
causal relations and different data types (continuous and categorical,

univariate and multivariate). In particular, we adopt the PCMCI
algorithm26 [based on a condition-selection step (PC) followed by
the momentary conditional independence (MCI) test] to reconstruct
time series causal graphs. PCMCI is an adaptation of the constraint-
based PC algorithm (named after its inventors Peter Spirtes and
Clark Glymour2) that addresses autocorrelation of time series via
the use of a momentary conditional independence (MCI) test.
PCMCI yields high detection power also in high-dimensional and
strongly autocorrelated time series settings (see Sec. III A and Runge
et al.26 for more details). However, one of the general assumptions
of PCMCI (as well as of other causal discovery algorithms) is sta-
tionarity, i.e., that the existence or absence of a causal link does
not change over the considered time series segment.27 While known
changes in the background signal can be accounted for by restrict-
ing the time series to the stationary regimes, PCMCI cannot handle
unknown background regimes that constitute a particular case of
latent confounding.

Some recent work addresses causal discovery in the presence of
non-stationarity. Malinsky and Spirtes28 model non-stationarity in
the form of (continuous) stochastic trends in a linear autoregressive
framework. Zhang et al.29 account for non-stationarity in the more
general constraint-based framework. However, both address the
case of a (smoothly) varying continuous background variable that
continuously changes causal relations among the observed variables.
This means that these methods will not output regime-dependent
causal graphs, but a “summary” graph that accounts for regimes
modeled as latent drivers. Peters, Bühlmann, and Meinshausen30

and Christiansen and Peters31 assumed that known non-stationary
regimes are exploited to estimate causal relations also in the presence
of general latent confounders. Furthermore, in the context of con-
tinuously varying causality, methods based on information transfer
metrics have been proposed. In the field of animal group dynamics,
for instance, detection of time-varying leader–follower relationships
is achieved with the use of a time dependent transfer entropy.23,32,33

Applied to non-stationary climate systems, Hagan et al.34 proposed
a Kalman filter estimate of the time-varying parameters for the
Liang–Kleeman information flow. Benefits of these methods are the
treatment of non-linearity32 and the identification of both timing
and frequency of interactions.34 However, in these approaches, only
bivariate influences are modeled, i.e., the effect of a third variable
Z on the estimated effect of X onto Y cannot be accounted for.
The practical extension to high-dimensional systems and short time
series also remains hard to address.

Currently, few methods exist that address the case of a dis-
crete regime variable leading to distinct causal regimes that may
be physically interpreted. For example, in the climate science con-
text, regime-dependent autoregressive models (RAMs) were intro-
duced already in 1990.35 These can yield physically well inter-
pretable results that, however, require well-chosen ancillary vari-
ables and a seasonal index that are not learned from data. Thus,
RAM requires a priori knowledge of the regimes, which one often
aims to learn rather than enforce. In the context of discrete state
spaces, regime-dependent causal discovery has been considered
in Gerber and Horenko11 for Boolean variables. Non-stationary
Boolean network models have also been considered in Porfiri and
Marin23—specifically, the approach is to fit an appropriate param-
eterization of associate transition probabilities. Another approach
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that has been proposed to model time dependent Granger (non-)
causality is based on a Markov Switching VAR ansatz with an
economics application in mind.10 Specifically, the regime assign-
ments are computed by sampling from a Markov chain. Further
methods have been proposed to obtain time step specific bivari-
ate Granger Causality from partitioning the time-series into regular
time windows.36,37

A more general framework to handle discrete regimes is the
Markov-switching ansatz of de Wiljes et al.,38 which flexibly models
regime dependence utilizing the assumption of a finite number of
regimes and a level of persistence in the transitions between different
regimes. This ansatz has been successfully realized in combination
with many different model assumptions (e.g., see Refs. 39 and 40).
Here, we want to explore it for causal networks by combining it with
PCMCI,26 a constraint-based time series causal discovery method.2

We call our method Regime-PCMCI.
The remainder of the paper is structured as follows: In Sec. II,

the underlying mathematical problem, concepts, and key assump-
tions are formalized, and a motivating example is discussed to
provide some intuition. Our novel method Regime-PCMCI is then
presented in Sec. III. These theoretical and algorithmic parts are
complemented by a thorough numerical investigation of the pro-
posed method in various artificial settings in Sec. IV. Finally, in
Sec. V, Regime-PCMCI is applied to a real-world dataset from cli-
mate science, addressing the changing relationships of ENSO and
rainfall over India.

II. PROBLEM SETTING

Let {Xt}t∈Z be a sequence of real-valued NX dimensional ran-
dom variables Xt ∈ R

NX , where t is associated with time. A realiza-
tion over the time interval [0, T] of this stochastic process is denoted
{xt}t∈[0,T], and we assume that it is possible to obtain observations of

these realizations. We assume that the underlying process is mod-
eled by a regime-stationary discrete-time structural causal model
(SCM),

X
j
t = g

j
t(P

j
t, η

j
t) with j = 1, . . . , NX. (1)

Here, the measurable functions g
j
t depend non-trivially on all

their arguments, the noise variables η
j
t are jointly independent and

are assumed to be stationary, i.e., η
j
t ∼ D

j for all t for some distribu-

tion D
j, and the sets P

j
t ⊂ (Xt−1, Xt−2, . . .) define the causal parents

of X
j
t. Note that we assume lagged causal relationships, but this is not

a necessity since there exist causal discovery algorithms that can deal
with contemporaneous causal links41 and also hidden confounders.

In contrast to approaches assuming stationarity, both g
j
t and P

j
t

are allowed to depend on regimes in time as further formalized in
Assumption 1 (Sec. II B).

The problem setting considered in this manuscript is of the
nature of the following inverse problem:

xt = Ĝt

(
xt−1, . . . , xt−τmax ; 2t

)
, (2)

with Ĝt = [̂g1
t , . . . , ĝ

NX
t ], where ĝ

j
t belongs to an appropriate function

space for each t and j. τmax is the maximum considered time lag. In
other words, the aim is to fit a set of unknown parameters 2t on
the basis of an observed time series {xt}t∈[0,T]. In Sec. II A, we will
discuss the particular structure of the parameters 2t we are inter-
ested in. Please refer to Table I for a summary of the notation used
throughout the text.

A. Causal graphs

Representing causal relations between different processes as
graphs (also referred to as networks) is common practice in the
context of causal inference and causal discovery.1,2 For time series,
we use the concept of time series graphs. The nodes in the time

TABLE I. Notation used throughout the paper.

List of notations Model Parameters

{Xt}t∈[0,T] Stochastic process NX Dimension of stochastic process

η
j
t Noise variable of component X

j
t T Time length of stochastic process

D
j Stationary noise distribution NK Number of regimes

g
j
t Structural causal model function NC Max switches for each regime

P
j
t Causal parents of Xj, time dependent NM Regime average persistence

xt Realization of Xt τmax Maximum causal time lag

Ĝt Operator in inverse problem CI test Conditional independence test

ĝ
j
t Components of operator Ĝt αPC Significance level for PC1 step

2 t Unknown parameter in inverse problem α Link significance level
L(0, P, 8) Cost functional NQ Number of optimization iterations
0(t) Regime-assigning process NA Number of annealings
8t Linear link coefficients, time dependent NR Number of realizations for a toy example

γ k(t) Regime-assigning process for regime k N(0, {σ 2}ref
) Ground-truth Gaussian noise distribution

8
j

k(i, τ) Linear link coefficient in regime k {8j

k(i, τ)}ref
Ground-truth linear link coefficient

P
j

k Causal parents of Xj in regime k Npara Number of model parameters
ϒk Collection of time steps associated with regime k x̂k,t Reconstructed time-series for regime k
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series graph associated with the SCM (1) are the individual time-

dependent variables X
j
t with j = 1, . . . , NX at each time t ∈ Z. Vari-

ables Xi
t−τ and X

j
t for a time lag τ > 0 and a given t are connected

by a lag-specific directed link, denoted Xi
t−τ → X

j
t, when Xi

t−τ ∈P
j
t

for a particular t. If a SCM is not given, another way to define links

is that Xi
t−τ is not conditionally independent of X

j
t given the past

of all variables, defined by Xi
t−τ ��⊥⊥X

j
t |X−t \{Xi

t−τ }, with ��⊥⊥ denot-
ing the absence of a (conditional) independence.27 Widely used in
constraint-based methods, note that this definition cannot be used
to define directed contemporaneous links. We denote the maximum

ground-truth time lag of any parent as τP
max. For a more detailed

introduction, the reader is referred to Runge et al.26 In the following,
we will use graphs and networks interchangeably.

The collection of parent sets for all components at time t is

denoted Pt = {P1
t , . . . , P

NX
t }. This set of parents is part of the

unknown parameters we want to infer. Note that their dimen-
sionality is assumed finite, but not known a priori. The other
quantity of interest is the functional form of the causal rela-

tions g
j
t(P

j
t, η

j
t) in SCM (1) corresponding to these links. We will

assume a known function class Ĝt(. . . ; 8t) of unknown coefficients
8t = {81

t , . . . , 8
NX
t } that are going to be inferred via

xt = Ĝt(Pt; 8t). (3)

In other words, for a given time series, xt ∈ R
NX with t ∈ [0, T] and

known function class Ĝt the aim is to find the unknown parameters
2t = [Pt, 8t].

Note that we will specifically focus on linear function classes, as
discussed in Sec. III.

B. Persistence

As mentioned above, in many application areas, non-
stationarity may be modeled not in the form of abrupt or continuous
changes, but via piece-wise stationary regimes.11,42,43 These regimes
will further exhibit a certain persistent behavior. In order to cap-
ture non-stationary systems with these properties, we will restrict
our inference to regime-dependent persistent dynamics.

Assumption 1. Denote the causal parents and functional

dependency of a given variable j for a regime k as P
j
t =P

j

k and

g
j
t(P

j
t, η

j
t) = g

j

k(P
j

k, η
j
t). We call a regime (NM, NK)-persistent if the

parents and functional dependencies are stationary for an average
of NM consecutive time steps t and that there is a finite number of
regimes on the whole time domain, i.e., k ∈ {1, . . . , NK}.

The persistency enters here via the regime average persis-
tence NM, which also naturally implies a finite number of regimes
NK ≤ T/NM.

Under Assumption 1, the considered inverse problem (3)
reduces to finding the unknown parameters 2t = [0(t), P, 8]
comprising (1) a set of regimes’ network parameters

P, 8 = {P1, . . . , PNK
, 81, . . . , 8NK

}

and, to encode their time dependence, (2) the change points between
the regimes given by the regime-assigning process

0(t) = [γ1(t), . . . , γNK
(t)],

with 0(t) ∈ [0, 1]NK×T. For example, component k of the regime-
assigning process can be of the form γk = (0, 1, 1, . . . 0, 1) ∈ [0, 1]T,
indicating that regime k is active for all time steps for which
γk(t) = 1.

C. Optimization problem

Finally, in order to solve the inverse problem (3) under the
persistency Assumption 1, we can define a cost functional

L(0, P, 8) =
T∑

t=0

NK∑

k=1

γk(t)d(xt − Ĝt(Pk; 8k)) (4)

subject to constraints

NK∑

k=1

γk(t) = 1 ∀ t, with γk(t) ∈ [0, 1] (5)

and
T−1∑

t=1

|γk(t+ 1)− γk(t)| ≤ NC ∀k, (6)

where d is a distance measure such as the squared Euclidean distance
‖ · ‖22 and γk(t) can be regarded as the weight of the k regime-specific
network at each time t.

This learning approach is based on the ideas first proposed
in Horenko39 and later extended to many different models.38 The
format of L(0, P, 8) relies on the assumption that the system asso-
ciated with the considered data exhibits metastability in time (see
Assumption 1 that translates in the summation over k, controlled
by the regime number NK). The desired level of persistence enters
the functional in the form of a regularization [see Constraint (6),
controlled by parameter NC]. An alternative option is to add a reg-
ularization term that enforces some form of smoothness of 0 (e.g.,
Tikhonov regularization44).

The tuning parameter NC is related to the average regime
duration of NM time steps of Assumption 1 as follows: an average
regime duration of NM in all NK regimes is implemented by choos-
ing NC ≈ T/(NMNK). Importantly, note that the regularization (6)
ensures an average persistence on each regime without imposing
that individual regime durations are a constant; in fact, they can
be fully irregular within the bound of performing at maximum
NC switches. This regime learning method thus provides a simple,
flexible, and computationally tractable strategy to go beyond the
assumption of fixed length for each regime duration often employed
in previous methods (e.g., Refs. 37 and 33).

Note that, in practice, it is reasonable to assume that an esti-
mate of the average regime switching time NM is available, consistent
with a typical timescale of the application domain. The choice of
parameters NK and NC(NM) will be discussed in Sec. III D.

D. Motivating example

Before we introduce our novel regime detecting the causal dis-
covery algorithm, we illustrate the underlying challenges of causal
discovery in the face of regime dependence by giving a simple exam-
ple. Consider the case of two background regimes and two time
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FIG. 1. Motivating example. (a) Regime-dependent ground truth: regime-assigning process and regime-dependent networks. The links are labeled with the associated linear

coefficient 8
j

k(i, τ) and lag τ . The sign of the coefficient is highlighted by the color (red for positive, blue for negative). (b) Network reconstruction with PCMCI estimated
from the whole time series, i.e., if links are wrongly assumed to be stationary.

series X1 and X2 and the associated causal graphs as shown in
Fig. 1(a). Variable X1 linearly influences X2 but the sign changes in
time, alternating between a positive (during regime 1) and a negative
(during regime 2) influence. Here, the two regimes alternate equidis-
tantly in time. The cross correlation of X1 and X2 over the whole time
period is zero because the opposite sign effects cancel each other out
in the linear regression. Thus, any linear causal discovery method
would fail in detecting the influence of X1 on X2 when no a pri-
ori knowledge on the two background regimes exists. For example,
applying a linear version of PCMCI on the whole time sample would
give a network of disconnected variables [Fig. 1(b)].

In contrast, if the regimes are known and PCMCI is applied
to samples from both regimes separately, the positive and negative
links are correctly detected (not shown). To deal with such problems
automatically, our algorithm needs to learn both the regimes and the
regime-dependent causal relations.

III. METHOD

The proposed approach, Regime-PCMCI, is designed to solve
the optimization problem (4) by alternating between learning the
regimes and learning the causal graphs for each regime in an itera-
tive fashion. In principle, any causal discovery method that yields
a causal graph can be used. Here, we chose PCMCI26 as a well-
tested method that adapts the constraint-based causal discovery
framework to the time series case.

In the following, we focus on a pure linear setting, which is a
reasonable assumption in many application areas.45,46 This implies
that the function class Ĝt(Pt; 8t) in the inverse problem (3) is
assumed to be linear in the parents’ variables with linear coefficients
8t.

A. Causal discovery

The constraint-based framework has the advantage that it can
flexibly account for various functional causal relations and different
data types (continuous and categorical, univariate and multivariate)
since it is based on discovering causal links by means of conditional
independence (see link definition in Sec. II A). Two variables X and
Y are conditionally independent given a (potentially multivariate)
variable Z, denoted X⊥⊥Y|Z, if

p(x, y|z) = p(x|z)p(y|z), (7)

where p denotes the associated probability density functions.
To practically test this relationship, there exist a large variety

of conditional independence tests; see Runge et al.26,27 for a discus-
sion. If relationships are assumed linear, as is the case of the present
work, partial correlation can be used such that it can be shown that
X��⊥⊥Y|Z if the partial correlation between X and Y conditioned on Z
is significantly different from 0.

As mentioned in Sec. I A, PCMCI is based on the constraint-
based PC algorithm2 combined with the momentary conditional
independence (MCI) test. It consists of two stages. (1) At first, the

Chaos 30, 113115 (2020); doi: 10.1063/5.0020538 30, 113115-5

© Author(s) 2020

https://aip.scitation.org/journal/cha


Chaos ARTICLE scitation.org/journal/cha

PC1 condition pre-selection method is run to identify relevant con-

ditions B̂
j

t for all time series variables X
j
t. More specifically, PC1 is a

Markov set discovery algorithm based on the PC-stable algorithm47

that removes irrelevant conditions for each of the NX variables by
iterative independence testing. (2) Then, the MCI test is performed,

to confirm whether Xi
t−τ → X

j
t by means of testing

MCI: Xi
t−τ ��⊥⊥X

j
t | B̂

j

t \ {Xi
t−τ }, B̂

i

t−τ . (8)

Thus, MCI conditions on both the (potential) parents of X
j
t and the

time-shifted parents of Xi
t−τ . These two stages serve the following

purposes. PC1 acts as a filter to remove irrelevant lagged condi-
tions (up to some τmax) for each variable. A liberal significance level
αPC in the tests lets PC1 adaptively converge to typically only few
relevant conditions that include the causal parents with high proba-
bility but might also include some false positives. The MCI test then
addresses false positive control for the highly interdependent time
series case, which is why we chose it here. More precisely, while the

conditioning on the parents of X
j
t (the potential effect) is sufficient

to establish conditional independence in the infinite sample limit
(Markov property), the additional condition on the lagged parents
(parents of Xi

t−τ , the potential cause) leads to a test that is better
suited for autocorrelated data.

A causal interpretation of the relationships estimated with
PCMCI comes from the standard assumptions in the constraint-
based framework,2,26,27 namely, causal sufficiency, the causal Markov
condition, faithfulness, non-contemporaneous effects, and station-
arity within the regimes as further discussed below. As demonstrated
in Runge et al.,26 PCMCI has high detection power and controlled
false positives also in high-dimensional and strongly autocorrelated
time series settings.

The main free parameters of PCMCI are the chosen conditional
independence test, the maximum time lag τmax, and the signifi-
cance levels α in MCI and αPC in PC1. We discuss the selection
of these parameters in Sec. III D. In terms of conditional indepen-
dence test, note that PCMCI can be used in combination with linear
or nonlinear tests and can therefore extract also non-linear causal
relationships. In this work, we focus on linear systems and thus use
PCMCI in conjunction with partial correlation.

In each iterative step of our approach, PCMCI is applied to
the sample subset of the time series pertaining to the estimated k
regime. Given a significance level α, the output of PCMCI is the set

of parents Pk = {P1
k, . . . , P

NX
k } for all time series variables for that

regime,

P
j

k = {Xi
t−τ : p valuek,MCI(X

i
t−τ , X

j
t) ≤ α} ∀k, j. (9)

Based on these parents and associated causal links, causal effects 8k

that quantify the strength of a link can be estimated. Details of the
regime-specific PCMCI fit are found in Sec. III B 1.

B. Regime-dependent causal discovery

The Regime-PCMCI algorithm iterates over two major esti-
mation steps: (step 1) causal discovery to obtain Pk and fit the
coefficients 8k and (step 2) regime learning to update the regime
variable 0.

To find good estimates of the parameters and the regime vari-
able optimizing the cost functional (4), this two-step procedure is
necessary. In fact, there are generally no analytic solutions to the
problem available due to the complexity of the cost functional. Fix-
ing one variable to estimate the other allows in both cases to solve the
individual optimization step via linear programming. In Theorem
2.1 of Ref. 39 and Sec. II B in Ref. 48 it is shown that these types
of algorithms monotonously decrease the value of L. It is important
to note, however, that due to the non-convexity of the underlying
problem the algorithm can be caught in regions of local minima.
This issue is addressed via additional simulated annealing steps as
discussed in more detail in Sec. III B 2.

In the following, q indicates the current iteration. The super-
script (q) is added combined with brackets to the variables updated
in each loop. The details of the consecutive subroutines are laid out
below.

1. Step 1: Causal discovery and model estimation

The first step is to estimate a set of parents {Pk}(q) and coef-
ficients {8k}(q) with k ∈ {1, . . . , NK} on the basis of a fixed {0(t)}(q)
obtained in step 2 of the previous iteration (first and second bullets
in q-loop of of Algorithm 1). In the first iteration, the regimes are
assigned randomly. {Pk}(q) and {8k}(q) are estimated on the basis of
a subset of the time series xt with

t ∈ {ϒk}(q) :=
{
t : {γk(t)}(q) ≥ 0.5

}
(10)

for each regime k. The regime-dependent parents {Pk}(q) are esti-
mated via PCMCI.

As stated at the beginning of Sec. III, to solve Eq. (3), we assume
a linear functional relationship that relates each variable to its par-
ents Pk. It implies that coefficients 8k can be estimated from the
following regression model for each fixed k:

x
j
t =

∑

Xi
t−τ ∈P

j,(q)
k

{8j

k(i, τ)}(q)xi
t−τ + η

j
t (11)

for t ∈ {ϒk}(q). In other words for every k ∈ {1, . . . , NK}, the follow-
ing optimization has to be solved:

{8j

k(i, τ)}(q) = arg min
∥∥∥x

j
t −

∑

Xi
t−τ ∈P

j,(q)
k

{8j

k(i, τ)}xi
t−τ

∥∥∥
2

2
(12)

for t ∈ {ϒk}(q). Note that the coefficients not indicated as relevant
via the parent set are defined to be zero, i.e., 8

j

k(i, τ) := 0 for Xi
t−τ /∈

P
j,(q)

k .

2. Step 2: Regime learning

Step 2 is to determine an optimal regime-assigning pro-
cess {0t}(q+1) ∈ [0, 1]NK×T given the current estimates {Pk}(q) for
the parents and {8k}(q) coefficients (see third bullet in q-loop of
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Algorithm 1). In agreement with the cost functional (4), the follow-
ing optimization problem needs to be solved: find

{0t}(q+1) = arg min

NK∑

k=1

T∑

t=1

γk(t)
∥∥∥xt − {x̂k,t}(q)

∥∥∥
2

2
(13)

subject to the constraints (5) and (6), and where for each k ∈
{1, . . . , NK}

x̂
j

k,t =
∑

Xi
t−τ ∈P

j
k

8
j

k(i, τ)xi
k,t−τ for t ∈ {1, . . . , T}. (14)

Since the first τmax time steps cannot be predicted, we choose to set

those to x̂
j

k,t = x
j

k,t and to not consider this portion of the time series
in the algorithm evaluation. This step can be solved with standard
optimization linear programming routines.

In order to search for the global minimum of this non-convex
problem, the algorithm is run for a number NA of different initial-
izations of {0}(0) (annealing). The annealing run with the lowest
cost functional objective is chosen as an optimal fit. Note that the
individual annealing steps are embarrassingly parallelizable.

C. Reconstruction of time series

A single prediction from Eq. (14) can be derived as the weighted
sum over k

x̂
∗j
t =

NK∑

k=1

dγk(t)ex̂j

k,t for t ∈ {1, . . . , T}. (15)

But note this is never used in the code [only (14) via its presence in
(13) is used].

D. Parameter selection

Regime-PCMCI involves a number of parameters that need
to be chosen. They can be separated into parameters of the causal
discovery method PCMCI and those of the regime learning part.

The main free parameters of PCMCI are the chosen conditional
independence test, the maximum time lag τmax, and the significance
levels α in MCI and αPC in PC1. αPC should be regarded as a hyper-
parameter and can be chosen based on model-selection criteria such
as the Akaike information criterion (AIC)49 or cross-validation. τmax

could be incorporated into this model selection. But since PCMCI
is not very sensitive to this parameter26 (as opposed to, e.g., Granger
causality), its choice can be based on lagged correlation functions,
see Runge et al.26 for a discussion. The choice of conditional inde-
pendence test is a modeling assumption guided by the assumed
nonlinearity of the underlying process and also finite sample con-
siderations. Finally, α is chosen based on the desired level of false
positives.

The two free parameters in the regime learning step are the
bound on the number of switches NC and the number of regimes
NK. Usually, NC can be reasonably inferred from the application and
given the number of regimes, as explained in Sec. II C. Here, we
assume that NC is known. Note that since NC bounds the maximum
number of switches between regimes, i.e., the optimal reconstructed
number can be lower, and does not constrain the individual regime

Algorithm 1. Regime-PCMCI.

Input:
• Time series xt ∈ R

NX with t ∈ {1, . . . , T}
• Parameters:
• Number of assumed regimes NK

• Maximum number of transitions within a single regime NC

• Maximum time lag τmax

• Functional model Ĝ, here linear
• Conditional independence test according to Ĝ, here partial

correlation
• Significance level α (and αPC for PC1 step)

• Annealing steps NA

• Number of optimization iterations NQ

for a = 0 : NA do
Initialize random {0}(0) ∈ [0, 1]NK×T

for q = 0 : NQ do
Causal discovery and model estimation:

• Infer parents {Pk}(q) by means of PCMCI run on subset
{
xt :

t ∈ {ϒk}(q)
}

for each k

• Fit model coefficients {8k}(q) via Eq. (12) for each k and use
them to generate k reconstructed time series {x̂k,t}(q) defined for
every t ∈ {1, . . . , T} according to Eq. (14).

Fit regime-assigning process:
• Update {0}(q+1) solving Eq. (13).

Break if {0}(q+1) = {0}(q) (a local or global minimum is
reached)

end for
end for

Output:
• 0 = [γ1(t), . . . , γNK

(t)]† ∈ [0, 1]NK×T

• Causal parents Pk and causal effects 8k for every k ∈
{1, . . . , NK}

durations, its choice can account for a degree of error. Yet deter-
mining a suitable choice of the unknown number of regimes NK

is a difficult task. In particular, it is hard to find the right balance
between avoiding to overfit and to choose appropriately complex
models to describe a specific dataset and thus the underlying dynam-
ics well. One way to assess this balance heuristically is to employ an
information criterion (IC),50 which has been derived in the context
of regression models and since been adapted to various other model
scenarios including graphs.51

An IC is designed to capture the goodness of fit penalized by the
number of parameters in order to prefer models with as few parame-
ters as possibles to avoid overfitting (parsimony). Here, the number
of parameters is defined as

Npara = (NK − 1)NC +
NK∑

k=1

NX∑

j=1

|Pj

k|. (16)
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The first term in Eq. (16) relates to the number of parameters
required to describe 0, which can be fully determined via the change
points. The second term in Eq. (16) counts the number of relevant

parents, or equivalently the non-zero coefficients 8
j

k(i, τ). Here, we
use the corrected Akaike information criterion (AICc) first pro-
posed in Hurvich and Tsai52 to estimate NK, assuming known NC.
Note that we use the corrected version of the original AIC49 to
correct for small samples sizes relative to the number of parameters

AICc = −2 log(L)+ 2Npara +
2Npara(Npara + 1)

T− Npara − 1
, (17)

where L is the maximum value of the likelihood function for the
model one assumes for the residuals (see Metzner et al.48 for a more
detailed discussion). Note that the AICc also depends on NC (as it
enters the number of parameters Npara) and it is in general possi-
ble to simultaneously estimate NK and NC.38,40 The choice of NK is
numerically investigated in Sec. IV C.

The number of iteration steps NQ should be chosen to ensure
that the optimization process converges. In our experiments, we
found with exploratory testings that NQ shows convergence after
about 10–20 iterations for all examples investigated. The number
of annealing steps NA should be chosen to ensure spanning a large
number of local solutions to this non-convex optimization prob-
lem [Eq. (4)]. Computational time will set a limit to a too high
parameter. Note, however, that the annealing part is embarrassingly
parallelizable.

IV. NUMERICAL INVESTIGATION

In the following, we investigate the performance of Regime-
PCMCI by means of several toy examples. The artificial data are
designed to test the methods robustness and accuracy with respect
to various potential scenarios that could occur in real applications.
At first, low dimensional (NX = 2) causal relations are studied as
the results can be interpreted more easily. Next, we also consider

higher dimensional settings (NX = 10). The reference time series are
generated with the following linear SCM time series model:

x
j
t =

NK∑

k=1

{γk(t)}ref
∑

Xi
t−τ ∈P

j
k

{8j

k(i, τ)}ref
xi

t−τ + η
j
t,

η
j
t ∼ N(0, {σ 2}ref

) (18)

with predefined {0(t)}ref, {8k}ref, and {σ 2}ref
. Note that here we

numerically investigate equally distributed noises for all variables

(η
j
t ∼ D∀j), but we refer the interested reader to Appendix A for

a treatment of heterogeneous noise distributions. Note that the
reference set of parents is specified by the non-zero coefficients

{8j

k(i, τ)}ref
.

A. Low dimensional data with two underlying
regimes

First, we focus on a simple setting of two regimes, i.e., {NK}ref

= 2, and a two dimensional underlying process Xt ∈ R
2 (i.e., NX

= 2). Our aim is to test the performance of Regime-PCMCI
for different elemental features that can change between regimes.

For brevity, links Xi
t−τ → X

j
t will be called auto-links or auto-

dependencies for i = j and cross-links for i 6= j. We consider the
following scenarios as summarized in Table II: sign change of coef-
ficient (in auto-link and cross-variables link), lag change (in cross-
link), coefficient change (in auto-link), and child–parent inversion
defined via an assortment of linear functions and associated coeffi-
cients. In all examples, each variable is also auto-linked at lag 1 (lin-
ear coefficient 0.2), which is a realistic yet challenging assumption
for many algorithms.

1. Experiment settings

We design five toy models, in network terms, correspond-

TABLE II. Artificial model configurations for different low dimensional experiments with NK= 2 underlying regimes.

Example k= 1 k= 2 {8j
1(i, τ)}ref {8j

2(i, τ)}ref

Arrow direction X1→X2 X1←X2 {82
1(1, 1)}ref = 0.8 {81

2(2, 1)}ref = 0.8

{81
1(1, 1)}ref = 0.2 {81

2(1, 1)}ref = 0.2

{82
1(2, 1)}ref = 0.2 {82

2(2, 1)}ref = 0.2

Causal effect X1 |a|−→ X1 X1 |b|−→ X1 {81
1(1, 1)}ref = 0.8 {81

2(1, 1)}ref = 0.1

{82
1(2, 1)}ref = 0.4 {82

2(2, 1)}ref = 0.4

Lag X1 τ=1−−→ X2 X1 τ=2−−→ X2 {82
1(1, 1)}ref = 0.8 {82

2(1, 2)}ref = 0.8

{81
1(1, 1)}ref = 0.2 {81

2(1, 1)}ref = 0.2

{82
1(2, 1)}ref = 0.2 {82

2(2, 1)}ref = 0.2

Sign X1 X1 |a|−→ X1 X1 −|a|−−→ X1 {81
1(1, 1)}ref = 0.8 {81

2(1, 1)}ref = −0.8

{82
1(2, 1)}ref = 0.2 {82

2(2, 1)}ref = 0.2

Sign X1X2 X1 |a|−→ X2 X1 −|a|−−→ X2 {82
1(1, 1)}ref = 0.8 {82

2(1, 1)}ref = −0.8

{81
1(1, 1)}ref = 0.2 {81

2(1, 1)}ref = 0.2

{82
1(2, 1)}ref = 0.2 {82

2(2, 1)}ref = 0.2
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TABLE III. Method parameters for low dimensional examples with NK= 2 underlying

regimes.

CI test τmax α αPC NK NC NQ NA

ParCorr 3 0.01 0.2 2 40 20 50

ing to different sets of parents defined via the reference parame-

ters {8j

k(i, τ)}ref
given in columns 4–5 of Table II. Furthermore,

synthetic regime-assigning processes {0(t)}ref are generated for all

examples. More specifically, {γ1(t)}ref is designed to consist of
41 alternating windows, i.e., {NC}ref = 40 regime transitions. The
length of these windows is randomly selected to be between 70 and

100 and the constraint (5) imposes {γ2(t)}ref = 1− {γ1(t)}ref. The
final length of the time series is capped at T = 3000 to ensure equally
long regime assignment time series.

Then, an artificial time series xt via (18) with {σ 2}ref = 1 is
generated. Note that the stochastic process (18) can be exactly

FIG. 2. Example caseSign X1X2. (a) The ground-truth regime-assigning process, {γ }ref (top), the Regime-PCMCI reconstructed process, {γ }reco. (middle), and the difference
between the two, 1γ (bottom). (b) The ground-truth networks for each regime (top), the Regime-PCMCI reconstructed networks (middle), and the difference between the

two (bottom). The links are labeled with the associated linear coefficient 8
j

k(i, τ) and the lag τ . The sign of the coefficient is highlighted by the color (red for positive, blue
for negative).
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FIG. 3. Example case Sign X1. See description in Fig. 2.

reconstructed via the coefficients {8j

k(i, τ)}ref
, their activation

{0(t)}ref, and a specific realization of the innovation term η
j
t.

The PCMCI parameters are chosen as follows: partial corre-
lation as a conditional independence test, α = 0.01, αPC = 0.2 as
recommended in Runge et al.53 τmax = 3, and masking type “y”
(see the documentation of tigramite for the definition of masking
types). The number of regimes was set to NK = 2, and the maximum
number of regime transitions is NC = 40, i.e., correct guess on num-
ber of regimes and switches (model selection for NK is investigated
in Sec. IV C). The number of iterations is NQ = 20, and the number
of annealings is NA = 50. A summary of the parameters is shown
in Table III. We generate NR = 100 time series realizations for each
example.

2. Results

The ability of the proposed method to recover the networks and
the regimes on the basis of the artificially designed time series are
presented in the following. Figures 2–6 present results for each case
in Table II, focusing on one of the NR synthetic datasets. Table IV
and Fig. 7 show summary statistics over all NR runs.

The case sign X1X2 is discussed in detail. The ground-truth
regime evolution and networks are shown in the top part of pan-
els a and b in Fig. 2; in the middle part of both panels, their
Regime-PCMCI reconstruction is shown; and in the bottom part,
the difference between reconstructed and true regimes is presented
to visually inspect the accuracy. The reconstructed regime-assigning
process for each regime matches the truth in 98.6% of time steps
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FIG. 4. Example case Arrow direction. See description in Fig. 2.

(97% average value over NR, see Table IV). The corresponding
networks have all and only the correct links (TPR = 0.99 and
FPR = 0.01 average value over NR); their linear causal effect is also
well estimated with each link correct up to±0.02 [NR-averaged error
per link is 0.028 (9%)].

The other four cases are presented in Figs. 3–6. The case
causal effect, and to a lesser extent lag change, are hardest to detect.
This is because the difference between the individual regimes and
a mixed state of the two is not very large and thus the detection
is more challenging. This adds to the general challenge of non-
convexity of the functional we are optimizing, which we mitigate
by the annealing steps as mentioned in Sec. III D. A similar chal-
lenge is found for some high-dimensional runs for which we refer to
Sec. IV D.

The average accuracy of Regime-PCMCI is estimated from
NR=100 synthetic datasets per each example and is presented in
Fig. 7 and Table IV.

For a compact overview of the results and to facilitate the
comparison between examples, Fig. 7 focuses on two key statis-
tics: the precision of the reconstructed regime-assigning process
(lightblue box plot, 1γ %) and the precision of the reconstructed
links’ causal effects (pink box blot, 18%). 1γ % is the average per-
centage of wrongly estimated time steps per regime (the lower the
better, note that this value is the same for k = 1, 2, by construc-
tion). 18% is the average difference between the reconstructed
linear coefficient and the reference values of the ground-truth links
expressed as percentage, i.e., each difference is weighted by the abso-
lute value of the ground-truth coefficient. The precise definition of
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FIG. 5. Example case Lag. See description in Fig. 2.

the statistics can be found in Appendix B. These quantities pro-
vide a summary of the reconstructed regimes’ accuracy, previously
shown in the bottom parts of Figs. 2–6, and are presented for
all NR runs. The examples are ranked in the order of decreasing
performance.

As already seen from inspection of single runs, change of arrow
direction and of causal effect are the hardest to detect (the high-
est error in Fig. 7). It is also clear that a worsening performance
in regime detection results in a higher network error. Except for
causal effect, regime error 1γ % is between 1% and 7% and net-
work error 18% is between 1% and 10%. Note that the average
18% (dark pink cross) is very close to 18ref% (black dot), error
for PCMCI runs with the ground-truth regime variable known (but
causal structures unknown). This reference value sets the optimal

baseline to which compare Regime-PCMCI performance and is met
by our algorithm in all but one example.

Table IV shows a more detailed summary of the results over
the NR realizations. The estimation errors are presented in terms
of the regime-assigning process (the second column), the network
structure (third to sixth columns), the causal effects of links (sev-
enth to tenth columns) and the overall reconstructed time series (the
last column). The second column is 1γ %, the average percentage
of wrongly estimated time steps per regime, introduced above. In
terms of networks, the link detection performance is evaluated via
the true positive (TPR) and false positive rates (FPR). Furthermore,
we compare these with the reference FPR and TPR (superscript ref )
if PCMCI is run with the ground-truth regime variable known (but
causal structure unknown). The accuracy in links’ causal effects is
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FIG. 6. Example case Causal effect. See description in Fig. 2.

assessed via 18, the average difference between the reconstructed
linear coefficient and the reference values of the ground truth links,
and in the percentage version (18%, see above). The last column,
ε̂, is the expected prediction error per variable and per time step and
is computed as ε̂ =

√
L/(NXT) with L defined in Eq. (4) and NX and

T referring to the number of variables, here two, and the length of
the time series, respectively. The precise definition of all the above
statistics can be found in Appendix B.

In summary, Table IV shows that

• 1γ %: on average, the regime-assigning process is reconstructed
correctly in ∼94% of the time steps for all cases except causal
effect. The causal effect and lag examples are the hardest to infer,

with the causal effect being particularly deficient. In these exam-
ples, a mixed-regime state (e.g., arising from assigning a consid-
erable fraction of wrong time steps to a regime) is still quite close
to any of the true regimes. Therefore, the algorithm struggles to
decide which time steps belong to which regime since they could
fit both to some degree. Yet, also for causal effect there are seven
instances where 1γ < 15% (one presented in Fig. 6) and those,
as expected from PCMCI, give a very good network fit. We notice
that these runs do not correspond to the lowest objective values
of the NR set (i.e., better fit), which shows that runs that end up
in mixed states can still fit the data quite well. Also, we notice
that the causal effect setup reaches local minima in 16% of the
100 runs, thus in 84% of the runs the algorithm cannot easily
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FIG. 7. A summary of the general performance of the Regime-PCMCI for the examples described in Sec. IV A. The performance skill is separated in regime error (defined
as the average percentage of wrongly estimated time steps1γ%, lightblue box plot) and network error (defined as the relative percentage difference between reconstructed
and reference links’ coefficients 18%, pink box plot). Box plots summarize the distribution of NR = 100 runs (boxes between 25 and 75 percentiles and whiskers between
5 and 95 percentiles), and the mean is marked with a cross. The optimal baseline for the network fit, 18ref%, is marked with a black dot (see definition in the text). Note the
symlog scale on the y-axes. Synthetic datasets are generated according to Table II for NR = 100 random ground-truth regime-assigning processes.

find a stable solution which points at a weaker confidence in the
output.

• TPR: despite some errors in reconstructing the regime-assigning
process, the TPR is always very close to 1. This can indicate that
the true signals, dynamicwise, are strong enough to be detectable.

• FPR: Ideally, the false positive rate should be upper-bounded by
α = 0.01. This is also the case if we assume the correct regimes
(see column FPRref). However, if the regimes are learned, in most
of the examples the FPR value is higher due to errors in learning
the regimes. If a wrong regime is learned, then both false positives
and false negatives can occur. False negatives, i.e., missing links in
the PC1 step of PCMCI, can lead to false positives in the MCI step.

• 18%: Errors in parents’ detection [either due to false positives
(FPR) or to false negatives (missed links, FNR = 1−TPR)] surely
impact the estimation of link effects. Since the TPR and FPR are
good, except for the causal effects case, we expect to obtain also
good results for the linear coefficients. This is indeed the case, as
the difference is of order 10−2, implying a relative error of about
10%. Also, this matches very closely the optimal baseline for the
network fit 18ref%.

B. Low dimensional data with three underlying
regimes

To illustrate how Regime-PCMCI deals with more than two
regimes, we also considered a toy time series based on three dif-
ferent causal regimes. It is, of course, possible to consider the case

NK > 3, yet in applications it is often desirable to infer a few promi-
nent and relevant regimes rather than having too many that are not
interpretable anymore. In other words, the aim is to avoid overfitting
and to increase the information gain by reducing the complexity of
the assumed model (parsimony).

The artificial time series is generated via a regime-dependent
causal graph that is designed by combining two of the regimes set-
tings presented in Sec. IV A, namely, sign X1X2 change and arrow
inversion (for details, see Table V). The regime-assigning reference
process {0}ref is generated by randomly choosing between different
persistence lengths of 60, 70, and 80 time steps and iterating for 20
times. The algorithm is run with free parameters in Table VI.

Figure 8 shows the results. There are only minimal deviations
from the true reference values, which confirms that the proposed
method is capable to deal with NK > 2. This also holds for the sum-
mary results over NR = 100 runs presented in Table VII. Yet, it is
important to note that we chose a combination of causal graphs that
performed well for NK = 2, i.e., causal effect changes would also be
difficult to detect for NK = 3.

C. Regime parameter selection

We investigate how parameter selection of the number of
regimes affects the results by means of the AICc scores defined in
(17). We investigate two test scenarios of {NK}ref = 2, 3 for a selec-
tion of the examples defined in Secs. IV A and IV B. The PCMCI
parameters are as in Secs. IV A and IV B, while NR = 29, NQ = 20

TABLE IV. Results for NK= 2 experiments averaged over NR= 100 realizations generated for each example described in Table II.

Example 1γ % TPRall TPRref
all FPRall FPRref

all 18 18ref 18 % 18ref % ε̂

Arrow direction 3.0 1.0 1.0 0.02 0.01 0.021 0.020 7.0 7.0 0.76
Causal effect 43.0 0.81 0.98 0.11 0.01 0.286 0.020 120.0 10.0 0.68
Lag 6.0 0.98 1.0 0.04 0.01 0.027 0.018 11.0 8.0 0.68
Sign X1 4.0 0.98 1.0 0.03 0.01 0.033 0.016 10.0 6.0 0.65
Sign X1X2 3.0 0.99 1.0 0.01 0.01 0.028 0.019 9.0 7.0 0.75
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TABLE V. Artificial model configuration for a low dimensional example with NK= 3 underlying regimes.

Example k= 1 k= 2 k= 3 8
j
1(i, τ)ref {8j

2(i, τ)}ref {8j
3(i, τ)}ref

Sign X1X2and arrowdirection X1 |a|−→ X2 X1 −|a|−−→ X2 X2 |a|−→ X1 {82
1(1, 1)}ref = 0.8 {82

2(1, 1)}ref = −0.8 {81
3(2, 1)}ref = 0.8

{81
1(1, 1)}ref = 0.2 {81

2(1, 1)}ref = 0.2 {81
3(1, 1)}ref = 0.2

{82
1(2, 1)}ref = 0.2 {82

2(2, 1)}ref = 0.2 {82
3(2, 1)}ref = 0.2

and NA = 20. The resulting AICc values are displayed in Fig. 9. The
NC value is changed adaptively for each NK to ensure a similar NM

value for the different number of regimes, i.e.,

NC(NK) = {Nref
C }{NK}ref/NK (19)

for NK > {NK}ref. The choice of NC is based on NM which in real
life application can be chosen according to the considered processes
and data as a good estimate of the timescale of regime changes is
often available. Nevertheless, it is also possible to chose NC via an
information criterion simultaneously with NK (e.g., in the context of
regime-dependent clustering Falkena et al.40 or regime-dependent
Markov regression de Wiljes et al.38) The reference value for the
number of switches is on average (due to randomization of {0}ref)
{Nref

C } = 40 for both {NK}ref = 2, 3.
We note that the lowest NK at which the AICc plateaus is the

ground-truth one. The plateau itself occurs due to the fact that only
the links with non-zero causal effect values are counted toward the
number of parameters. Thus, a higher number of regimes NK does
not necessarily result in an increase of the total number of parame-
ters. In other words, the penalization is not becoming stronger with
higher values of NK. Concluding, it is clearly visible that no signifi-
cant improvement is gained by increasing the number of NK beyond
the reference number of regimes. Since the entry point to the plateau
reveals the reference number of regimes, it seems possible to face
scenarios where the true number of regimes is unknown.

D. High-dimensional linear network

In this section, the algorithm is evaluated on high-dimensional
datasets, with each dataset consisting of NX = 10 interacting vari-
ables. The background regimes are generated with two regular alter-
nating regimes of 300 time steps each, for a total length T = 15 000.
The network structures are randomly generated from a family of lin-
ear networks defined via the parameters shown in Table VIII, where
L is the number of randomly drawn cross-variable links with ran-
dom coefficients from the third column. Note that each variable is
also auto-linked at lag 1 with coefficient randomly drawn from the
fourth column. The time series xt ∈ R10 are generated with model

TABLEVI. Method parameters for a low dimensional example withNK= 3 underlying

regimes.

CI test τmax α αPC NK NC NQ NA

ParCorr 3 0.01 0.2 3 40 20 50

(18) and for NR = 70 realizations. Regime-PCMCI is then run with
the settings shown in Table IX.

The results are shown in Table X, which is structured like
Table IV except for TPR and FPR being estimated for the cross-
variables links thus focusing on the connections between variables.
All links are considered in 18. Regime-PCMCI performs very well
even in this challenging setting. Notably, individual runs can per-
form extremely well, with 1γ reaching as low as 0.02%, and a total
of 53 runs below total average of 1γ = 11.7% (the second row in
Table X). The other seven runs are responsible for most of the devia-
tion of the average statistics from the reference values (the first row).

As in the causal effect case, there is a mismatch between runs
with the lowest prediction errors ε̂ and the lowest error on the
regime-assigning process 1γ , meaning that we cannot use a filtering
on ε̂ to find the best performing runs. This behavior can be explained
from the tendency of the algorithm to still over-fit when too many
degrees of freedom are available, as well as from the complex-
ity of distinguishing different causal effects (a challenge already
manifested in the causal effect case).

E. Computational complexity

Table XI shows some indicators of the performance of the
method: the fraction of NR runs that correspond to a (local) minima,
the average number of q-iterations needed to reach a local minima
and the runtime for the whole NR set of runs (the code run parallel
over the NA annealings and using 4–6 CPUs per job).

Most of the examples reach local minima in more than 50% of
the NR runs, while the percentage is very low for the causal effect
(the second column). We note that examples with a high percent-
age of local minima correspond also to quick convergence in terms
of iteration steps (the third column). They are also associated with
better regimes reconstruction (see Tables IV, VII, and X), confirm-
ing that a clear cost functional minimum (as shown from the second
and third columns) is linked to better detection. Finally, the run-
time is quite fast: the low dimensional examples take between 10 and
20 min for NK = 2 and 45 min for NK = 3 to complete 100 runs. The
high-dimensional example takes just below 3 h for 70 runs.

V. A REAL-WORLD EXAMPLE: THE EFFECT OF EL
NIÑO SOUTHERN OSCILLATION ON INDIAN RAINFALL

We finally test the performance of Regime-PCMCI on real-
world data and apply it to address the non-stationary relationship
of El Niño Southern Oscillation (ENSO) and all-India rainfall (AIR)
mentioned in Sec. I between the winter and summer months, i.e.,
the background regimes, and to detect a reported link from ENSO
to AIR during summer.
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FIG. 8. Example with Nk = 3 regimes for the case Sign X1X2 and arrow direction. See description in Fig. 2 but with three regimes.

This example can be considered a difficult case since the
expected signal from ENSO to AIR is likely small compared to natu-
ral variability.16 Furthermore, climate data are typically very noisy
with causal relationships being diluted by other, often unknown
processes given a complex coupled climate system.43

Our input data consist of monthly observations of ENSO and
AIR, for the years 1871–2016, resulting in two time series consisting

of 1740 monthly values each. More precisely, ENSO is represented
by the so-called relative Nino3.4 index provided by the National
Oceanic and Atmospheric Administration (NOAA).54,55 Data for
AIR anomalies (with the climatology subtracted) are provided by the
Indian Institute of Tropical Meteorology (IITM).56,57

We choose the following parameters of Regime-PCMCI: for the
regime part, we set NK = 2 and NC = 292, which is equivalent to
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FIG. 9. Numerical investigation of AICc values for runs with different NK and (a)

{NK}ref = 2 for three network examples (sign X1X2, arrow, and lag change) and

(b) {NK}ref = 3 for the sign X1X2 and arrow change example. In each example,
individual dots represent the value attained by the NR = 29 runs, and the dashed
line goes through the mean values of each set. The vertical gray bar highlights

the ground-truth number of regimes {NK}ref.

TABLE VII. Results for NK= 3 experiments averaged over NR= 100 realizations

generated for each example described in Table V.

1γ % TPRall TPRref
all FPRall FPRref

all 18 18ref 18 % 18ref % ε̂

4.0 0.98 1.0 0.05 0.01 0.033 0.020 10.0 7.0 0.5

TABLE VIII. High-dimensional network parameters.

NX L 8
j

k(i, τ) 8i
k(i, τ) max lag

10 30 [−0.4, 0.4] [ 0.2, 0.5, 0.9] 3

assuming two seasons per year. For the PCMCI settings, we use a
significance level α = 0.01 (αPC = 0.2). Furthermore, we use a max-
imum time lag of 2 months, i.e., τmax = 2. The optimization is run
NA = 100 annealing times, to span many local minima, with each
annealing allowed for up to NQ = 100 iteration steps to converge.

Among the annealing steps, which correspond to different ran-
dom initial guesses on the regime-assigning process 0, some clearly
performed better in terms of fitting the data. We estimate the aver-
age prediction error associated with each annealing, ε̂ (B 4), and
Fig. 10(a) shows it for all annealings (ranked according to ε̂). A red
box highlights the top performing cluster (13 runs).

All of the top 13 annealings find a link from ENSO to AIR dur-
ing one of their two regimes only (for simplicity hereafter called
regime 1). In the following, we present results averaged over these
annealings and plot links that surpass a strength of 0.1.

The causal link from ENSO to AIR in regime 1 has an aver-
age standardized linear effect of −0.4, meaning that a one standard
deviation increase in ENSO results in a reduction of 0.4 standard
deviations in AIR [Fig. 10(c)]. This negative dependence is well doc-
umented in the literature.16 During regime 2, in contrast, ENSO and
AIR are, on average, almost independent, with only a very weak
link (−0.05, not shown) detected from AIR to ENSO. More impor-
tantly, our results indicate a clear seasonal dependence. Figure 10(d)
shows the number of months assigned to each regime (normalized
by the number one would expect on the hypothesis of no season-
ality, see the figure caption). A clear peak in summer months is
found for regime 1. More precisely, most of the months between
June and September are assigned to regime 1 (70%). These are
the months in which the Indian summer Monsoon is active and
for which a robust influence from ENSO has been shown. In con-
trast, months assigned to regime 2 are predominantly winter months
(60% of all December to March months). Thus, despite the rela-
tively weak mean causal effect of ENSO on AIR during summer, and
the large inter-annual variability, our algorithm successfully recon-
structed this well-documented relationship given all-year time series
of ENSO and AIR.

A method to detect long-term changes of this summer telecon-
nection has recently been proposed by Bódai et al.58 using ensemble
climate models. The additional dimension provided by the ensem-
ble members’ allows to compute year-dependent correlations to
infer inter-annual changes. In contrast, our method uses a single
realization of the dynamics (e.g., observations) to still obtain time-
dependent statistics (networks), although in a finite number (NK).
Note that long-term changes may still be detectable with Regime-
PCMCI either as long-term changes to the persistence/start of a
regime each year or with the emergence of a regime in a specific
time period.

Overall, these results are promising and show the potential of
Regime-PCMCI to detect regime-dependent causal structures in a

TABLE IX. Method parameters for high-dimensional experiments with two underlying

regimes.

CI test τmax α αPC NK NC NQ NA

ParCorr 4 0.05 0.2 2 49 30 50
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TABLE X. Results for high-dimensional experiments over NR= 70 realizations generated for each example described in Table VIII.

Selection 1γ % TPRcros TPRref
cros FPRcros FPRref

cros 18 18ref 18 % 18ref % ε̂ no. of runs

All 11.7 0.94 1.0 0.18 0.08 0.059 0.005 16.0 1.5 0.85 70
1γ < 11.7% 0.19 1.0 1.0 0.08 0.07 0.006 0.005 1.8 1.5 0.70 53

FIG. 10. Climate example. (a) Prediction error for each annealing step in the ascending order, lowest 13 annealings highlighted in red box. All the other panels refer to
this selection. (b) Regime learning: regime-assigning process corresponding to the best annealing (rank 0) (top) and departure from this estimate of the remaining best 12
annealings (in percentage difference). (c) Network learning: mean networks per regime, each causal effect is the mean of the corresponding coefficient in the individual 13
annealings. (d) Seasonality of the regimes: Number of years per month m assigned to each regime (Nk

m), normalized by N
∗
m, which refers to the expected number of months

assigned to a given regime if one assumes equal probability 1/NK of assigning a month to one of the two regimes. Thus, here, N
∗
m = 13 · T/(12 ∗ NK).
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TABLE XI. Summary performance statistics of all examples. The third column is the

average value over the respective NR.

Example
No. of local

minima/NR (%)
Iterations to

minima Runtime (s)

Arrow direction 92 7 600
Causal effect 16 13 970
Lag 60 11 1130
Sign X1 52 12 970
Sign X1X2 70 9 700
Sign X1X2 and arrow 56 10 2670
High dimensional 92 6 10 780

system as complex as the climate system. On the other hand, it also
shows that domain knowledge is required to assure a suitable choice
of parameters (NC and NK) and an interpretation of the results. This
is yet a common caveat to many data-driven approaches, which we
nevertheless want to stress strongly.

VI. DISCUSSION AND CONCLUSIONS

Causal discovery is emerging as an important framework across
many disciplines in science and engineering, but each discipline has
particular challenges that novel methods need to address.4 We intro-
duced a novel method, Regime-PCMCI, to learn regime-dependent
causal relations, overcoming one of the key drawbacks of current
causal recovery methods. The performance of Regime-PCMCI was
analyzed for many different artificially generated causal scenarios
and for varying regimes showing that the method covers a wide
range of settings (see Figs. 2–5, 7 and Table IV). The performance of
the algorithm is maintained also for high-dimensional settings with
10 variables (see Table X) as well as for more than two regimes (see
Fig. 8 and Table VII). We found limitations of the method for the
case where only the causal effect strength of a link changes between
regimes (see Fig. 6), which seems to be hard to detect with our opti-
mization scheme and requires further investigation. Furthermore,
the capability of Regime-PCMCI was verified by means of a well-
documented climate example using real data of ENSO and Indian
rainfall (see Fig. 10). Overall, the proposed method presents itself as
a promising approach in the context of non-stationary causal links
manifested in regime changes in time.

Note that a causal interpretation of estimated links in our
observational causal discovery framework still assumes causal suffi-
ciency, that is, no unobserved common causes. However, estimated
non-causality (zero coefficients) does not require this assumption27

and can be interpreted as an absence of a causal relation already
under the weaker faithfulness assumption.26 While for PCMCI
asymptotic consistency was shown,26 this is a more difficult task for
Regime-PCMCI and deferred to further research.

There are several interesting aspects that could be explored in
the future, building on the present work. These extensions can build
on other causal discovery algorithms or extensions of PCMCI in
the causal discovery step of our method. For example, the PCMCI
algorithm allows for nonlinear causal links26 and thus a nonlinear
extension of the Regime-PCMCI is a logical next step, e.g., Gaussian

processes are used to estimate g
j

k, then the Gaussian Process Dis-
tance Correlation (GPDC) test (see Runge et al.26) could potentially
be used. In that, yet the Regime-PCMCI version would require a dif-
ferent cost functional and optimization approach. Recent extensions
of PCMCI to the case of not only lagged, but also contemporaneous
causal relations can also be integrated.41 Moreover, potentially it is
also possible to better capture the causal effect case and it might be
possible to learn a regime dependence of the noise term.

With respect to applications in climate science, it would be
interesting to utilize the proposed method to study other links in
the climate system that are likely regime dependent, but less under-
stood than the presented El Niño-Indian rainfall example. Since
Regime-PCMCI is formulated in general terms that are not only spe-
cific to climate datasets, problems of causal non-stationarity in other
application areas could be explored.
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NOMENCLATURE

AIC Akaike information criterion)
AICc Corrected Akaike information criterion
ENSO El Niño Southern Oscillation
FPR False positive rate
MCI Momentary conditional independence
PCMCI Causal discovery method26

RAM Regime-dependent autoregressive model
SCM Structural causal model
TPR True positive rate

APPENDIX A: HETEROGENEOUS NOISE

In the general framework laid out in Eq. (1), the noise variables

η
j
t are only assumed to be jointly independent and stationary, each

distributed according to a distribution D
j. Given that the primary

focus of this work is to detect regime-dependent causal structures
rather than noise structures, the effective choice for noise distri-
butions used to generate the data is a Gaussian with unit variance

η
j
t ∼ N(0, 1) for all variables j (Sec. IV).
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TABLE XII. Results, for example, sign X1X2 averaged over NR= 100 realizations, for each noise variances combination described in Appendix A 1.

Case 1γ % TPRall TPRref
all FPRall FPRref

all 18 18ref 18 % 18ref %

σ 2= 0.25 0.3 1.0 1.0 0.01 0.01 0.010 0.010 5.2 5.2
σ 2= 0.5 0.8 1.0 1.0 0.02 0.01 0.013 0.013 5.3 5.2
σ 2= 2.0 24.0 0.85 1.0 0.02 0.01 0.16 0.03 36.0 9.0

Yet, this simplification does not necessarily represent the vari-
ability of processes in real-world scenarios. Here, the performance
of the proposed Regime-PCMCI is exemplified for Gaussian noises

with variable-specific variances η
j
t ∼ N(0, σ 2

j ) (see Appendix A 1)

and noises from two different distributions, Gaussian and uniform
(see Appendix A 2).

1. Gaussian noises with variable-specific variances

The data are generated from model (18) with example sign
change X1X2 coefficients. The noise terms ηj are Gaussian dis-

tributed with a fixed variance for variable X1, D
1 = N(0, 1), and

three different cases for variable X2, D
2 = N(0, σ 2

2 ) with σ2 = 0.25,
σ2 = 0.5, and σ2 = 2.0. The Regime-PCMCI results, averaged over
100 different realizations of the regime-assigning processes, are pre-
sented in Table XII. The algorithm performs very well in the first
two cases (average regime detection error 1γ ≤ 1%). This is to be
expected since a smaller noise in X2 allows for a better fit of the data.
The latter case is harder to infer since the noise on X2 is very large
compared to the deterministic signal (here 1γ ' 25%).

2. Different noise distributions

The data are generated from model (18) with example sign
change X1X2 coefficients. The noise terms ηj are set to follow com-
pletely different distributions: variable X1 is associated with a unit
variance Gaussian noise, D

1 = N(0, 1), and variable X2 with uni-
formly distributed noise between ±1.5, D

2 = U(−1.5, 1.5). The
Regime-PCMCI results, averaged over 100 different realizations of
the regime-assigning processes, are presented in Table XIII. This
scenario gives results comparable to the ones presented in the paper
for the same example, i.e., 1γ ' 3%.

To summarize, the results show that Regime-PCMCI can deal
with specific heterogeneous noise distributions, even belonging to
different families of distributions. Since the optimization method
acts on regression residuals, we can speculate that we expect good
performance as long as the noise terms are not too large in their
magnitude and are not too skewed. An elaborate study of these con-
clusions and an investigation of the potential for generalization of
the method to more extreme noise distributions is an interesting
research aspect for the future.

APPENDIX B: DEFINITION OF RESULT STATISTICS

The definitions for the statistics presented in Tables IV, VII,
and X are outlined as follows:

1. Regime-assigning process

1γ (%) =
∑T

t=τmax
|{γk(t)}reco. − {γk(t)}ref|

T− τmax

× 100.

2. Link detection

TPR

TPR = TPX

PX

.

Over the cross-variables links (in Table X):

TPcros = |{(i, j, τ) : {8j

k(i, τ)}reco. 6= 0 &

{8j

k(i, τ)}ref 6= 0 & i 6= j}|,

Pcros = |{(i, j, τ) : {8j

k(i, τ)}ref 6= 0 & i 6= j}|.

And over all links (in Tables IV and VII):

TPall = |{(i, j, τ) : {8j

k(i, τ)}reco. 6= 0 &

{8j

k(i, τ)}ref 6= 0}|,

Pall = |{(i, j, τ) : {8j

k(i, τ)}ref 6= 0}|.

FPR

FPR = FPX

NX

.

Over the cross-variables links (in Table X):

FPcros = |{(i, j, τ) : {8j

k(i, τ)}reco. 6= 0 &

{8j

k(i, τ)}ref = 0 & i 6= j}|,

Ncros = |{(i, j, τ) : {8j

k(i, τ)}ref = 0 & i 6= j}|.

TABLE XIII. Results, for example, sign X1X2 averaged over NR= 100 realizations, for different noise distributions described in Appendix A 2.

Case 1γ % TPRall TPRref
all FPRall FPRref

all 18 18ref 18 % 18ref %

Gauss, Unif 3 1.0 1.0 0.01 0.01 0.025 0.019 8.0 7.0
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And over all links (in Tables IV and VII):

FPall = |{(i, j, τ) : {8j

k(i, τ)}reco. 6= 0 &

{8j

k(i, τ)}ref = 0}|,

Nall = |{(i, j, τ) : {8j

k(i, τ)}ref = 0}|.

3. Link coefficients

18 = 1

NK

NK∑

k=1

∑
j

∑
Xi

t−τ ∈P
j
k

| {8j

k(i, τ)}reco. − {8j

k(i, τ)}ref |
∑

j |P
j

k|
,

can also be computed as average percentage error per regime,

18(%) = 1

NK

NK∑

k=1

∑
j

∑
Xi

t−τ ∈P
j
k

|{8j
k
(i,τ)}

reco.
−{8j

k
(i,τ)}

ref
|

{8j
k
(i,τ)}

ref

∑
j |P

j

k|
× 100.

4. Prediction error

ε̂ ≡ 1

NXT

∑

t

∑

j

|{xj(t)}ref − {xj(t)}reco.| ≈
√

L

NX · T
,

with L defined in Eq. (4).

DATA AVAILABILITY

The data that support the analysis of the first four sections
of this study have been synthetically generated by the authors
and can be fully reproduced using the equations and parameters
described in the article. The data that support the findings of the
last section of this study are openly available in the KNMI Cli-
mate Explorer at https://climexp.knmi.nl/, Refs. 55 and 57. PCMCI
is part of the open-source Python package tigramite available at
https://github.com/jakobrunge/tigramite, Ref. 59.
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