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Abstract

Satellite nowcasting potentially provides a vital opportunity to mitigate against
the risks of severe weather in tropical Africa, where population growth and cli-
mate change are exposing an ever growing number of people to weather haz-
ards. Numerical weather prediction demonstrates limited skill for much of
Africa and weather radars are rare. However, geostationary satellites provide
excellent spatial and temporal coverage of the often long-lasting convective
storms that deliver heavy rain, lightning and strong winds, presenting a valu-
able opportunity for satellite nowcasting. Here, we evaluate the skill of satellite
nowcasting products for tropical Africa: these products are routinely gener-
ated, but to our best knowledge never routinely used in tropical Africa before
the Global Challenges Research Fund African SWIFT (Science for Weather
Information and Forecasting Techniques) project. Focusing in particular on
convective rainfall rate (CRR) and rapidly developing thunderstorm convec-
tion warning (RDT-CW) products, we demonstrate that both are useful
nowecasting tools. The CRR product produces very different rainfall climatol-
ogies for day and night in tropical Africa. This is associated with greater skill
of the product during daytime, particularly for heavier rain rates. The RDT-
CW product is able to identify around 60% of heavy (>5 mm-hr™") rainfall
events with the fraction detected increasing with increasing rainfall rate. For
both products, extrapolation forwards in time (up to 90 and 60 min, respec-
tively) maintains useful skill in tropical Africa, motivating work to develop
longer lead-time nowcasts. We conclude that widespread uptake of satellite
nowcasting could provide new skilful weather predictions on short time-scales

in much of tropical Africa.
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1 | INTRODUCTION

As population growth and climate change increase expo-
sure to weather hazards across much of the tropics, there is
an urgent need to improve weather prediction and disaster
early warning systems (U UNISDR, 2015; Kendon et al.,
2019). Despite the continual improvements in numerical
weather prediction (NWP) capabilities, extrapolation of
precipitation observations still provides higher skill at the
shortest time-scales (0-4 hr, Sun et al., 2014; 0-2 hr,
Simonin et al., 2017). These extrapolation techniques could
be of particular use in tropical Africa, where convective
events can be long-lived and have severe impacts
(Di Baldassarre et al., 2010; Webster, 2013) yet NWP skill
remains poor, particularly at smaller spatial scales (Vogel
et al., 2018; Kniffka et al., 2020) even for high-resolution
convection-permitting models (Woodhams et al., 2018).

Rainfall radar observations provide accurate rainfall
estimates at high temporal and spatial resolution and are
usually the primary observation source for nowcasting
(e.g., Browning and Collier, 1989; Wilson et al., 1998; Sun
et al., 2014). While numerous studies have demonstrated
the use of rainfall radar for research in Africa (e.g., de
Coning et al., 2010; Lothon et al., 2011; Koffi et al., 2014),
there are very few operational rainfall radar in tropical
Africa. Consequently, nowcasting products must rely on
satellite observations, with larger uncertainties. Such sat-
ellite observations are provided to African meteorological
services through the Preparation for the Use of MeteoSat
in Africa (PUMA) project. Yet nowcasting products are
seldom if ever used by meteorological services in tropical
Africa and it remains to be seen how skilful satellite-
based nowcasting methods are in this region.

The European Organisation for the Exploitation of
Meteorological Satellites (EUMETSAT) Nowcasting Satel-
lite Applications Facility (NWCSAF) has developed a
number of nowcasting products based on satellite mea-
surements. These products were developed for use over
Europe, with European imagery accessible through the
NWCSAF website (http://www.nwcsaf.org/). However,
the software is freely available to run in other regions
such as tropical Africa. The Global Challenges Research
Fund (GCRF) African Science for Weather Information
and Forecasting Techniques (SWIFT; https://africanswift.
org) project, which aims to develop sustained improve-
ments in forecasting capabilities in tropical Africa, is
investigating the use of NWCSAF products over tropical
Africa in order to improve local nowcasting capabilities.

In April-May 2019, SWIFT held a 2 week, 24 hr-day
forecasting and nowecasting testbed in Nairobi, Kenya.
This testbed introduced forecasters and researchers to
new products in a quasi-operational, collaborative envi-
ronment. The testbed was designed to test these new

products with an aim toward eventually bringing them
into operation for the many contributing operational cen-
tres, which included those from Kenya, Senegal, Ghana
and Nigeria. One of the key products introduced in the
testbed was the NWCSAF suite of products.

Feedback from this forecasting testbed highlighted the
potential usefulness of these products in tropical Africa.
NWCSAF products are being generated by the SWIFT
team in the UK and shared publicly online (https://sci.
ncas.ac.uk/swift/), and African groups are working to set
up their own systems (with some success). Coincidentally,
EUMETSAT has recently made some of the NWCSAF
products available through EUMETCast-Africa for the
entire earth disc centred at Null Island (0 ° N, 0 ° E); thus,
NWCSAF products over the entire African continent are
now available for any African forecasting centre to use.

Based on documented feedback from participants in
this forecasting testbed, the two products that have been
identified as most useful to forecasters are the convective
rain rate (CRR) and rapidly developing thunderstorm con-
vection warning (RDT-CW). The CRR aims to provide esti-
mates of surface convective precipitation rates at the
observation time; further extrapolated rain rates can be esti-
mated every 15 min. While newer and more sophisticated
rainfall algorithms than the CRR exist (e.g., Sorooshian
et al., 2000; Labo, 2012), it is worth highlighting again that
the CRR software is available for free and runs in near real-
time, which is crucial for nowcasting purposes. The RDT-
CW product aims to identify, monitor, track and character-
ize convective events, thereby providing the forecaster with
additional guidance on the occurrence and potential devel-
opment of storms. Both these products are now distributed
by NWCSAF and GCRF African SWIFT for the whole of
Africa, although for NWCSAF this does not include extrap-
olated CRR estimates.

In order to use these newly available products appro-
priately, it is crucial that forecasters understand their
errors and uncertainties. However, the products were
developed for the mid-latitudes (i.e., Europe) and to our
knowledge their evaluation is currently limited to Europe
(Autones, 2016b; Marcos, 2016) and South Africa
(de Coning et al., 2015; Gijben and de Coning, 2017).
Consequently there is an urgent need for additional infor-
mation on the performance of these products in tropical
Africa, which is the primary aim of the present study.

The present study aims to provide an initial estimate
of the performance of the CRR and RDT-CW products in
tropical Africa, using global precipitation measurement
(GPM) (Hou et al, 2014) Integrated Multisatellite
Retrievals for GPM (IMERG) (Huffman et al., 2020) as
“truth.” The layout of the paper is as follows. In the next
section we introduce the NWCSAF and IMERG datasets
that are used the present study. In Section 3.1, we analyse
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the CRR dataset and compare it to IMERG, first from a
climatological perspective and then examining the skill
of both the CRR retrieval and extrapolated CRR predic-
tions. Subsequently, in Section 3.2, we consider the con-
vective phase and severity attributes generated by the
RDT-CW product and investigate how they relate to
IMERG precipitation. Finally, we summarize the main
findings of this analysis and discuss their implications for
use of these nowcasting products in tropical Africa.

2 | METHODS

2.1 | Nowcasting products

Since March 2019, nowcasting products have been pro-
duced for three regions in tropical Africa (Figure 1) as
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part of the African SWIFT project. We call these regions
Senegal (5.8 ° N-20.7 ° N, 23.9 ©° W-7.5 ° W), Guinea
coast (0.4 ° N-20.1° N, 12.0 ° W-17.6 ° E) and Kenya (6.4 °
S-8.5 ° N, 28.8 ° E-50.4 ° E). The products are generated
using the 2016 version of the NWCSAF software and are
based on spinning enhanced visible and infrared imager
(SEVIRI) measurements combined with NWP data from
the National Centers for Environmental Prediction Global
Forecast System (GFS). Once generated, the products are
viewable at https://sci.ncas.ac.uk/swift/. While the
NWCSAF software can generate a wide range of products,
in the present study we specifically focus on the two prod-
ucts that were identified by forecasters as most useful
(i.e., CRR and RDT-CW). Both products are evaluated
against microwave-based rainfall retrievals from the GPM
IMERG product. The evaluation focuses on the period
between March 1, 2019 (when these products were first

Sehedal

FIGURE 1 Example images for

(a) NWCSAF convective rainfall intensity 18Z 1/4/2019

::__Guinéé{'oast “

the two Nowcasting Satellite
Applications Facility (NWCSAF)
products considered in this paper.
Both are for 1800 UTC on April

1, 2019. (a) The convective rain rate
(CRR) for all three regions. (b) The
rapidly developing thunderstorm

0.0 0.2 1.0

convection warning (RDT-CW)
product for the Guinea coast region.
Here each closed contour denotes a
RDT-CW cell. The colour of the
contour denotes the development
phase of the cell (see key), and the
thickness of the contour denotes the
severity of the cell, with “not
defined” being the thinnest, low
being the next thinnest and thicker
contours corresponding to increasing
severity. The black lines indicate the
predicted location of the centre of
gravity of the cell over the next

60 min. See the description of the
RDT-CW product for further details
regarding these storm attributes

2.0

3.0 5.0 7.0 10.0 15.0 20.0 30.0 50.0

Convective rainfall intensity (mm hr')

(b) NWCSAF rapidly developing thunderstorms 18Z 1/4/2019

Triggering
Triggering from split
—— Growing
—— Mature
—— Decaying
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made available through GCRF African SWIFT) and July
31, 2019 (based on availability of GPM IMERG final
product data at the time of writing). In the interests of
conciseness, the present study focuses specifically on
the Guinea coast region. As the largest of the three
regions, statistical sampling errors are smallest in the
Guinea coast. The performance of the RDT and CRR
products for the other two regions is very similar and
the corresponding figures for these regions are available
in Appendix S1.

2.1.1 | Convective rain rate

The CRR (Marcos and Rodriguez, 2016; Figurela) is esti-
mated using SEVIRI measurements in the 10.8 pm (infra-
red, IR), 6.2 pm (water vapour, WV) and (for solar zenith
angles less than 80°) 0.6 pm (visible) channels. For night
pixels (zenith > 80°), the CRR is determined as a func-
tion of the IR brightness temperature (BT) and the IR -
WV BT difference, which predicts increasing CRR for
lower IR BTs and smaller IR - WV BT absolute differ-
ences. For day pixels (zenith < 80°) the night time func-
tion (with different coefficients) is combined with an
additional dependence on the normalised visible reflec-
tance, which represents increasing CRR for more reflec-
tive clouds. These day-night differences are investigated
as part of our evaluation of the CRR. The coefficients for
both daytime and night time functions were obtained
based on comparison with radar rainfall observations in
Europe.

Once these initial CRR calculations are complete, a
number of further corrections are applied. First, in order
to eliminate stratiform precipitation, the CRR value
obtained for any pixel from these functions is set to zero
if all the pixels in a square of length 7 pixels centred on
that pixel have a CRR lower than 3 mm-hr~!. Next, fur-
ther corrections for humidity, evolution, gradient, paral-
lax and orography are applied. The humidity correction
increases (decreases) the CRR for pixels that correspond
to a very moist (dry) atmosphere according to the NWP
model. The evolution correction factor reduces the CRR
for pixels that have warmer BTs than in the previous
image. If the previous image is not available, the gradient
correction factor is applied instead and reduces the CRR
for pixels that do not correspond to a local minimum in
BT. The parallax correction factor corrects for the loca-
tion of cloudy pixels that are far from nadir, where the
viewing geometry makes higher cloud appear to be fur-
ther away. Finally, the orography correction factor
increases (decreases) the CRR for pixels where the sur-
face gradient following the 850 hPa NWP wind is increas-
ing (decreasing). Note that since the humidity, evolution,

gradient, parallax and orography corrections are applied
after removal of “stratiform” precipitation it is possible
for the final product to have large areas of non-zero CRR
less than 3 mm-hr ™.

Extrapolated rain rates are calculated in 15 min incre-
ments by combining the analysed CRRs with the high
resolution wind product, which estimates atmospheric
motion vectors based on displacement of features
between subsequent satellite images. For the CRR extrap-
olation, only high-level (above 400 hPa) winds are used.
For the SWIFT products, to test the limits of the extrapo-
lation capabilities, the extrapolation is run beyond the
60 min limit recommended by the NWCSAF developers
to 90 min. Further details regarding the specifics of the
CRR and extrapolation algorithms are available from
Marcos and Rodriguez (2016) and ZAMG (2017),
respectively.

2.1.2 | Rapidly developing thunderstorm
convection warning

The RDT-CW product (Autones, 2016a) is developed by
Meteo France. It uses an object oriented approach to add
value to satellite imagery by characterizing the develop-
ment of individual convective objects.

The first step of the RDT-CW algorithm is the identifi-
cation of cloud pixels, based on the NWCSAF cloud type
product. Within the cloud pixels, individual cloud towers
(referred to as cells) are then identified based on the 10.8
pm BT and an adaptive BT threshold. Once the RDT-CW
cells have been detected, they are tracked backwards in
time based on overlap between cells in successive images.
This generates a history and an estimate of the move-
ment speed for each cell. The next step is the discrimina-
tion of convective cells, based on statistical models that
use both NWP data and satellite measurements and are
tuned against historical lightning data over Europe.

The RDT-CW algorithm determines a large number
of attributes for each RDT-CW cell (e.g., cell area, cell
advection, BT changes and difference in BT between
channels), far too many for a forecaster to consider each
attribute for each cell. To make the forecaster's task eas-
ier, many of these attributes are synthesized in new
“phase of development” and “severity” attributes. The
phase of development is determined from a combination
of the cell's history, vertical extent, cooling rate, expan-
sion rate, and overshooting top detection. The possible
development phases are triggering, triggering from split,
growing, mature and decaying. The severity attribute is
based on one or more of the CRR, expansion rate or
cooling rate exceeding specific thresholds or the presence
of an overshooting top and is labelled as low, moderate,
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high, very high or not defined. The not defined category
corresponds to cells for which there are no overshooting
tops and the other variables are unavailable. The identifi-
cation of overshooting tops is primarily based on a pixel
being 5 K colder than the tropopause, where the tropo-
pause temperature is based on NWP data. When a pixel is
only a little colder than the tropopause, additional criteria
are applied, including visible reflectivity, BT differences
between the 6.3 and 10.8 pm channels, and differences
between a pixel and cell average temperature. Note that
lightning data can also be used in the derivation of the
phase and severity and results in an improved RDT-CW
product (Gijben and de Coning, 2017). However, opera-
tional lightning data are not freely available in tropical
Africa and thus cannot be used in the generation of
NWCSAF products in this region. Further details on the
RDT-CW algorithm are available from Autones (2016a).

There are numerous ways to visualize the RDT-CW
product. For the African SWIFT project, the RDT-CW
imagery is provided in the same format as the European
imagery available through the NWCSAF website. An
example is given in Figure 1(b). Each coloured contour
denotes a distinct cell. The colour of the contour indicates
the phase of development of the cell. The thickness of the
contour indicates the severity of the cell. The straight
black lines indicate the predicted location of the centre of
gravity of the cell over the next 60 min.

As the RDT-CW algorithm tracks cells through
time, missing data (e.g., due to problems retrieving the
SEVIRI data) not only mean that the RDT-CW infor-
mation for that point in time will be unavailable, but
will affect subsequent times. In general, our analysis
includes all RDT-CW data, irrespective of whether or
not they may have been affected by missing data, the
exception being for our analysis of changes in phase
and severity between subsequent points in time, for
which we exclude cells that are affected by
missing data.

2.2 | Integrated multisatellite retrievals
for global precipitation measurement

For evaluation of the NWCSAF products we use version
6 of the GPM (Hou et al., 2014) IMERG (Huffman et al.,
2020). The IMERG dataset provides rainfall estimates
every 30 min on a fixed latitude-longitude grid with a
resolution of 0.1°.

For this study we use only the high quality measure-
ments from this dataset, which are based solely on
microwave observations. These are derived by taking
microwave measurements from multiple imagers on mul-
tiple satellites (known as the GPM constellation), which
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are calibrated against coincident measurements from the
microwave imager on the GPM core observatory. Tan
et al. (2016) showed that these high quality IMERG esti-
mates perform better than those based on other sources
of information. Moreover, since they do not use SEVIRI
measurements they are completely independent of the
NWCSAF products. However, restricting the comparison
to these high quality measurements means that we lose
approximately two-thirds of the datapoints in the full
GPM IMERG dataset, resulting in around 52 million
comparable datapoints.

In order to provide some context for the NWCSAF
CRR skill, climatological skill is derived from the GPM
IMERG high quality data from previous years
(i.e., 2000-2018). For each 0.1° and half hour window
during the evaluation period, we take the climatological
forecast as a random sample from a 7 day window
centred on that forecast day from previous years’ GPM
IMERG high quality data at the exact same location and
point in the diurnal cycle.

3 | RESULTS

3.1 | Evaluation of convective rain rate
For the purpose of these comparisons, the NWCSAF
CRR is averaged to half hourly temporal and 0.1° spatial
scales to match the IMERG temporal and spatial resolu-
tions. Points for which either the high quality IMERG
rainfall estimates or any of the CRR estimates are
unavailable are excluded from the comparison.

Figure 2 compares the IMERG and CRR estimates
from a climatological perspective. Rain is more frequent
in the IMERG than in the CRR (Figure 2a), which is to
be expected because the CRR algorithm removes “strati-
form” rain and is unlikely to detect warm rain
(i.e., produced by clouds with are entirely warmer than
0°C), particularly at night. Moreover, Figure 2a confirms
that the increased detection of rain in IMERG is due to
increased detection of low rain rates; the CRR detects
rain rates higher than ~3.5 mm-hr™' more frequently
than IMERG. IMERG detects rain more frequently dur-
ing the night than during the day (defined here based on
the use of short wave information in the NWCSAF CRR
algorithm), but the distributions of non-zero rain rates
are almost identical. The CRR also detects more rain dur-
ing the night than during the day, but the CRR day and
night time rainfall rate distributions are rather different:
during the day, the CRR detects higher rain rates more
frequently and lower rain rates less frequently. This dif-
ference can be explained by the use of the 0.6 pm channel
in the CRR algorithm during the day, which facilitates
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(a) Rain rate distributions

(b) 7 day running mean
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better identification of optically thick clouds which are
more likely to be associated with higher rainfall rates.
The increased frequency of higher rainfall rates estimated
by the CRR algorithm relative to IMERG results in mean
rainfall over the region (0.38 mm-hr™") that is more than
twice that of IMERG (0.15 mm-hr™'). The increased fre-
quency of heavier rain rates during the day in the CRR
retrieval leads to quite a large difference between the day-
time and night time CRR mean rainfall (means of 0.43
and 0.35 mm-hr™", respectively).

The domain mean CRR is higher than that from
IMERG throughout the period considered, but there is a
notable reduction in the bias for June-July (Figure 2b).
We hypothesize that this is due to a change in the
domain mean diurnal cycle caused by the monsoon pro-
gression. As the monsoon progresses from the coast to
further inland in June-July (e.g., Fink et al., 2017), mean
rainfall over land increases (and the mean rainfall over

ocean decreases). The domain mean diurnal cycle
changes accordingly, with less of the total rainfall occur-
ring during the day and more during the night
(e.g., Figure 2e and Appendix S1). Since the CRR bias is
larger during the day (Figure 2a), as daytime rainfall con-
tributes less to total rainfall during June-July, the total
rainfall bias compared to IMERG is reduced in this
period.

The geographical distribution of rainfall is fairly simi-
lar in CRR and IMERG (Figure 2c and d, respectively).
Both show their largest mean rainfall rates over the
oceans, with regional maxima off the coasts of Liberia,
Nigeria and Cameroon. IMERG rainfall is lower than the
CRR throughout the region. Although the ratio and dif-
ference between the two estimates vary spatially, this
appears to be simply sampling noise.

Over land, IMERG are consistent with the well-
documented diurnal cycle of convection in the tropics
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(Nesbitt and Zipser, 2003) with a peak in the evening and
a minimum in the morning (Figure 2e). The amplitude of
the diurnal cycle in IMERG is much smaller over the
whole domain than it is over land, as although ocean
accounts for only 18.6% of points in the comparison they
account for 41.9% of the total IMERG precipitation
(cf. Figure 2d).

The CRR mean rainfall is higher than IMERG
throughout the day. The diurnal cycle for the CRR is
dominated by a rapid increase around 1200 UTC, both
over land and for all points. The amplitude of the diurnal
cycle is larger for CRR than IMERG, but after normaliz-
ing to correct for the differences in mean rain rates (not
shown) the amplitudes are reasonably similar. The mean
90 min forecast CRR values are higher than the mean
instantaneous values throughout the diurnal cycle. This
is true over both land and sea and all extrapolation times.

Science and Technology for Weather and Climate

The CRR mean values increase with increasing forecast
range. Since the extrapolation simply advects existing
precipitating systems, one might expect the extrapolated
CRR values to lag behind the diurnal cycle of the instan-
taneous CRR; however, there is little evidence of this.

Comparing coincident rainfall estimates from the two
products (Figure 2f), we see that, for IMERG rain rates
<3 mm-hr™!, the most common CRR category is no rain,
which is consistent with the way “stratiform” rain is
removed by the CRR algorithm. Similarly, for CRR rain
rates <3 mm-hr™' the most common IMERG category is
no rain. For higher rain rates there does appear to be
some skill, although CRR tends to overestimate the
IMERG rain rate as might be expected based on their rel-
ative rain rate distributions.

Figure 3 evaluates the skill of the CRR rainfall esti-
mates in terms of hit rates (the proportion of IMERG

— CRR == CRR30 === CRR60 CRR90 — - persist90 == s Clim
FIGURE 3 Hit rates and false (a) Hit rate in rainfall space (b) False alarm ratio in rainfall space
alarm ratios for the Nowcasting 1.01
Satellite Applications Facility o
(NWCSAF) convective rain rate ©0.8-
(CRR) versus the global precipitation %
measurement (GPM) Integrated © 0.6
Multisatellite Retrievals for GPM b
(IMERG) high quality rainfall rates. N = 0.4
CRR corresponds to the CRR 004 *™csmmssmmssmmenm
retrieval; CRR30, CRR60 and CRR90 0 10 20 40 0 10 20 30 40

correspond to the 30, 60 and 90 min

Rainfall rate threshold (mm hr™?)

Rainfall rate threshold (mm hr?)

extrapolated CRR, respectively, as (c) Hit rate in percentile space (d) False alarm ratio in percentile space
explained in Section 2.1.1. The 0.6 1.0
persist90 lines correspond to 90 min o
persistence of the CRR retrieval and e b=
the Clim lines correspond to the 9 041 E 0.81
IMERG climatology as described in E s
Section 2.2. The left column (a), (c), T 0.2 1 ; 0.6
(e) shows hit rates and the right o
column (b), (d), (f) shows false alarm
0.0+ 0.4 1

ratios. The top row (a), (b) shows
how the skill of the retrievals varies

Rainfall rate percentile threshold (%)

with differing rainfall rate thresholds.
The second row (c), (d) shows how

(e) Diurnal cycle 99.70-th percentile

96 98 100
Rainfall rate percentile threshold (%)

(f) Diurnal cycle 99.70-th percentile

the skill of the retrievals varies for 0.8 1.0 -"-f;-'"l""";
differing rainfall rate percentile 2094 : ~ ' .
thresholds. The bottom row (e), (f) o 0.61 & ;

shows how the skill varies with the E 0.44 % 0.8 1

diurnal cycle for the 99.7th rainfall = <074

rate percentile, which corresponds to 0.2 8

10.25 mm-hr™" for the IMERG data, ] £ 0.6 1

19.52 mm-hr™! for the CRR retrieval 0.0 1 . : vy . " . 0.5, . . .

and 23.62 mm-hr~" for the CRR 0000 0600 1200 1800 0000 0600 1200 1800

90 min forecast Time Time



Meteorological Applications o

HILL ET AL.

pen Acc
‘Science and Technology for Weather and Climate

rainfall events which are successfully forecast) and false
alarm ratios (the proportion of rainfall event forecasts
which are incorrect). Focusing first on the skill for the
CRR retrieval (labelled CRR), Figure 3a shows a maxi-
mum hit rate for the 5 mm-hr™ threshold, with the hit
rate decreasing for higher thresholds. Nevertheless, the
hit rate remains much larger than that for the climatol-
ogy. The false alarm ratio is smallest for a threshold of
0 mm-hr™' and increases with increasing rain rate, but
remains smaller than that from the IMERG climatology.

Figure 3c,d shows how the hit rate and false alarm
ratio change with different percentile thresholds. The
impact of conducting the comparisons in percentile space
can be largely explained by the biases in the CRR distri-
bution. Since the CRR over-predicts rainfall rates greater
than 3 mm-hr™', which corresponds to approximately the
98.5th percentile for IMERG, both the hit rates and false
alarm ratios are reduced above the 98.5th percentile
threshold relative to those for a threshold of 3 mm-hr=},
whereas below these thresholds both the hit rate and false
alarm ratio are increased. There is no obvious increase in
overall skill simply by accounting for the difference in
rainfall rate distributions between CRR and IMERG.

Figure 3e,f shows the hourly mean hit rate and false
alarm ratio for the 99.7th percentile, which corresponds
to approximately 10 mm-hr' for IMERG and
19 mm-hr~! for the CRR retrieval. The hit rate is much
larger during the day, while the false alarm ratio is also a
little larger during the day. This is largely due to the
increased frequency of CRR rainfall above this threshold
during the day. It is also partly due to a real increase in
the ability to detect heavy rainfall due to the use of short
wave measurements: when separate 99.7th percentiles
are applied to day and night, the daytime hit rate remains
higher than that for the night (e.g., Figure S2, Appen-
dix S1).

The skill for the extrapolated CRRs (CRR30, CRR60
and CRR90, as measured against IMERG) follows a very
similar pattern to that for the CRR retrieval. The hit rate
decreases and the false alarm ratio increases with
increasing extrapolation time, but both remain much bet-
ter than those calculated from the IMERG climatology
(Figure 3a-d). The hourly mean hit rate for the 90 min
extrapolated CRR appears to lag that for the CRR
retrieval (Figure 3e,f) and as a result the 90 min extrapo-
lated CRR has larger hit rates than the CRR retrieval
around 1800 UTC. Again this is due to a combination of
the over-prediction of heavy rain rates during the day
and better identification of heavy precipitation due to the
use of the short wave measurements.

Errors in the extrapolated CRR product can be caused
by errors in the initial retrieval or errors in the extrapola-
tion. Remarkably, persisting with the CRR retrieval for

90 min (labelled persist90 in Figure 3) provides more skill
then the 90 min extrapolation, particularly in percentile
space, which suggests that the extrapolation causes a
reduction in skill. However, this is only true when evalu-
ating against the IMERG rainfall as shown in Figure 3. If
the extrapolation and persistence forecasts are evaluated
against the CRR retrieval (Figure 4) then extrapolation
results in higher hit rates and lower false alarm ratios
than persistence, both in rainfall space and percentile
space. Consequently, improvements to the CRR retrieval
would also lead to significantly increased skill for the
extrapolated rainfall estimates.

The improved skill of persistence relative to extrapo-
lation when using IMERG as truth is thought to be cau-
sed by the increased bias (over-prediction of rainfall,
cf. Figure 2e) for extrapolation combined with fortuitous
cancellation of retrieval errors in the persistence esti-
mate. In particular, based on analysis of individual
images (not shown), CRR hits are often surrounded by
broader areas of false alarms. This is because the algo-
rithm struggles to separate precipitating and non-
precipitating clouds and over-predicts rainfall occurrence
(e.g., Figure 2a). As a precipitating system is advected,
the precipitating part of the system will often coincide
with areas which were previously non-precipitating
cloud. Since these were erroneously identified as precipi-
tation by the CRR algorithm, this will result in a hit for
persistence.

3.2 | Interpretation of rapidly developing
thunderstorm cells

Since the severity and phase information provided by
RDT-CW are not well-defined measures that can be
observed through other methods, the analysis of RDT-
CW focuses on interpretation rather than evaluation. In
particular, the aim is to understand how RDT-CW cells
of different phase and severity relate to coincident and
future heavy precipitation.

Figure 5 shows climatological properties of the RDT-
CW cells. The cell phase (left hand column) appears to
contain some useful information about the future life-
cycle of the cell, with a higher proportion of decaying
cells ceasing to exist on the subsequent time-step than
the other phase types (Figure 5a). Moreover, the peak in
area fraction (the total area of all cells of a given phase
divided by the total area of the domain; Figure 5e) for
growing cells precedes that for mature cells, which pre-
cedes that for decaying cells. Having said this, a large
number of cells only persist for one time-step as indi-
cated by the large number of cells with “none” as
previous phase (Figure 5a). Most cells are also small.
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This prevalence of small short-lived cells is consistent
with previous studies of the convective lifecycle in tropi-
cal Africa (e.g., Taylor, 2017; Crook et al., 2019). Never-
theless, user feedback within the African SWIFT project
suggests that the number of small short-lived cells pro-
duced by the RDT-CW product can be rather over-
whelming for users of the product.

The cell severity appears to be less useful for under-
standing the likely future of the cell, not least because
the most common severity type is “not defined”
(Figure 5b). Interestingly, the size distributions for high
and very high severity cells are bi-modal. In addition
to the maximum occurrence for cells with an area
between 100 and 1,000 km? common to all severities,
high and very high severity cells show a second local
maximum for cells with an area of ~10,000 km?. This
seems likely to be a consequence of the way the sever-
ity is determined, as described in Section 3, as larger
cells have more pixels giving them a greater chance to
meet one of the criteria that correspond to higher
severity. While the severity may not be that useful for
predicting the future of a cell, the diurnal cycle of cell
severity area fractions (Figure 5f) suggests that the
severity of the cell may be useful for identifying the
amount of precipitation, with the diurnal phase for
high and very high severity cells matching that for pre-
cipitation, whereas the maximum occurrence of low
severity cells precedes this.

Rainfall rate percentile threshold (%)

Figure 6 shows how RDT-CW cells relate to IMERG
rain rates. Since the RDT-CW cells and their phases and
strengths are discrete variables that cannot be meaning-
fully averaged, this analysis is based on identifying
whether any RDT-CW cells overlap with each IMERG
pixel. In many cases, an IMERG pixel may coincide with
multiple RDT-CW cells. If these cells have differing
values for the phase or strength then they are included in
a “multiple” cell category, and the fractional occurrence
of each phase or strength is used to accumulate the fre-
quency of different phase and strength values within this
multiple cell category.

The RDT software may change some of the attributes
of a cell as it is extrapolated forwards in time based on
the observed trends in these attributes. However, since
the imagery provided only indicates the current phase
and strength, we use these original values for the evalua-
tion of the extrapolated cells.

Figure 6a shows that more than 60% of heavy rainfall
rates (i.e., exceeding 5 mm-hr™") coincide with an RDT-
CW cell, with this fraction increasing as the rainfall rate
increases. The most common phase for these cells is
mature and the fraction that are labelled as mature also
increases with increasing rain rate. Similarly, the most
common severity for heavy rain rates is very high (Figure
6b) and the fraction that are identified as very high sever-
ity also increase with increasing rain rate. For the 60 min
extrapolated RDT-CW cells, we see similar behaviour



10 of 14

Meteorological Applications o

HILL ET AL.

‘Science and Technology for Weather and Climate

N Mod.
Severity frequency

FIGURE 5 Climatology of the
occurrence of rapidly developing
thunderstorm (RDT) cells of different

Low Hm High
V. high

I Not a cell split HEE mature B Not a cell
trigger EEN grow WM decay Not def.
(a) Phase frequency (b)
200000 A
> 150000 4 >
v v
@ g
> 100000 4 =]
o o
2 2
* 50000 -
0 4
> & X N e &
FF L & B
&° & T 9 &

Previous Storm Phase

Previous Storm Severity

Severity size distribution

phase and severity, from March

1, 2019 to July 31, 2019. The left
column is for lifecycle phase and the
right column is for severity. The
upper row (a), (b) shows the number
of cells of each phase/severity and

their phase and severity in the
subsequent image. For these two
panels, cells that were affected by
missing data were excluded. The
middle row (c), (d) shows the size
distribution of cells of each phase/

severity. The bottom row (e), (f)
shows the hourly area fraction of the
domain for storms of each phase/
severity. The legends are
representative for their respective
columns

(c) Phase size distribution (d) .
1044
9 9
c 103 3 c 103 4
g g
o 102 4 o
o o
- 101 4 L 10 -
100 E T T T T
102 103 104 102
Area (km2)
(e) )

Phase area diurnal cycle

10° 104
Area (km2)

Severity area diurnal cycle

1.5
1.0
0.5 _\___\5_—51’/////‘\\~\‘

g

0.0 A 0

Area fraction of domain(%)
Area fraction of domain (%)

0000 0600 1200 1800 0000

Time

(Figure 6¢,d), but a larger fraction of the rainfall events
are missed. Nevertheless, more than half the heavy rain
rates coincide with 60 min extrapolated RDT-CW cells.

Considering the diurnal cycle of rainfall (Figure 6e,f),
there is a slight increase in the fraction of heavy rainfall
events that coincide with RDT-CW cells between 1730
and 0030, which coincide with an increase in the number
that are identified as high severity. This contrasts with
the CRR product which produces fewer heavy rain events
during the night.

4 | SUMMARY AND OUTLOOK

There is an urgent need to improve weather predictions
across time-scales in Africa to increase resilience to
extreme weather, including extreme rainfall, which is
expected to increase with climate change (Kendon et al.,
2019). We have investigated the properties and ability to

0600 1200 1800

Time

detect rainfall in tropical Africa for two satellite-based
nowcasting products, the rapidly developing thunder-
storm convection warning (RDT-CW) and the convective
rain rate (CRR). We have focused on a broad region
centred on the Guinea coast, but analysis over other
regions in tropical Africa shows similar results (see
Appendix S1), which is encouraging for possible future
widespread uptake of these products across tropical
Africa. Both products show useful skill in identifying
heavy rainfall events both at the retrieval time and when
extrapolated forward in time. This is consistent with sub-
jective conclusions based on trial use of these products by
forecasters within the African Science for Weather Infor-
mation and Forecasting Techniques (SWIFT) project.
While both products have useful skill, they also have
a number of weaknesses. One of the main problems we
identified with the CRR product is the difference between
day and night retrievals. Day and night rainfall rate dis-
tributions are quite different, with heavy rainfall rates
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being more likely during the day. While the night time
retrieval could be applied during the day, this would
result in a reduction in skill, as the daytime retrieval
has higher hit rates, even after differences in the rain-
fall rate distributions are considered. Ideally these
issues would be addressed by retuning the algorithm
for tropical Africa, yet a lack of high quality observa-
tions makes this difficult. As things stand, given the
large differences between day and night retrievals, the
CRR imagery should indicate which algorithm has been
applied.

Fundamentally the skill of any rainfall estimate based
on geostationary satellite observations will be limited by
the fact that the measurements are not directly sensitive
to rainfall. Nevertheless, we have demonstrated that the
CRR is skilful in tropical Africa. There are a number of
alternative products that derive rainfall estimates from

geostationary satellite data at the high temporal resolu-
tions required for nowcasting (e.g., precipitation estima-
tion from remotely sensed information using artificial
neural networks, PERSIANN; Sorooshian et al., 2000),
which may be able to achieve even higher skill. Of partic-
ular interest are techniques that use microwave observa-
tions to perform continual local “calibration” of the
geostationary satellite precipitation retrieval (e.g., Hong
et al., 2005). These techniques address the issue of tuning
rainfall estimates for tropical Africa. Moreover,
nowcasting rainfall products using these techniques
already exist through the EUMETSAT Support to Opera-
tional Hydrology and Water Management Satellite Appli-
cations Facility (H-SAF). While it is beyond the scope of
the African SWIFT project, the use of other rainfall prod-
ucts for nowcasting in tropical Africa is certainly worth
investigating.
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Since the RDT-CW algorithm uses the CRR product,
improvements to the CRR should feed into improve-
ments in RDT-CW. Feedback within the African SWIFT
project suggests that the large number of small short
duration cells identified by the RDT-CW product can be
rather overwhelming for forecasters. It would be useful to
consolidate some of this information, either by retuning
the product for the tropics to produce fewer small short-
lived cells, or by changing the way the product is
displayed.

Since both products maintain skill at the 90 min limit
of the extrapolation times tested here, it would also be
valuable to extrapolate both further forward in time. In
this context it would also be worth considering how skill
varies with spatial scales, particularly for the extrapolated
products, which may suffer from the well-known (Mass
et al., 2002) “double penalty” problem, where a small
error in the location or timing of an event results in both
a miss and a false alarm and thus can result in lower
apparent skill then failing to forecast the event at all.

Many leading weather forecasting centres now have
nowecasting systems that seamlessly blend extrapolated
observations with numerical weather prediction (NWP)
output, with an increasing dependence on the latter for
longer lead times (Sun et al., 2014; Kotsuki et al., 2019;
Nerini et al., 2019). A direct comparison between NWP
and nowcasting skill for tropical Africa would be useful
not only in this context but also for forecasters who need
to try to combine both these sources of information
optimally.

This study has demonstrated that the Nowcasting Sat-
ellite Applications Facility (NWCSAF) products can pro-
vide skilful weather predictions on short time-scales for
tropical Africa. As such, widespread uptake of these
nowecasting products could provide improved short-range
forecasts in tropical Africa. The NWCSAF products will
continue to be investigated and developed within the
Global Challenges Research Fund African SWIFT project.
In particular, future work will aim to evaluate both
retrieved and extrapolated data from both the CRR and
RDT-CW products against rain gauge data, investigate
how well the RDT-CW cells relate to lightning observa-
tions, and provide longer lead-time predictions.
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