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ABSTRACT: We present a simple, physically consistent stochastic boundary layer scheme implemented in the Met

Office’sUnifiedModel. It is expressed as temporally correlatedmultiplicative Poisson noise with a distribution that depends

on physical scales. The distribution can be highly skewed at convection-permitting scales (horizontal grid lengths around

1 km) when temporal correlation is far more important than spatial. The scheme is evaluated using small ensemble forecasts

of two case studies of severe convective storms over the United Kingdom. Perturbations are temporally correlated over an

eddy-turnover time scale, and may be similar in magnitude to or larger than the mean boundary layer forcing. However, their

mean is zero and hence they, in practice, they have very little impact on the energetics of the forecast, so overall domain-averaged

precipitation, for example, is essentially unchanged. Differences between ensemble members grow; after around 12 h they

appear to be roughly saturated; this represents the time scale to achieve a balance between addition of new perturbations,

perturbation growth, and dissipation, not just saturation of initial perturbations. The scheme takes into account the area chosen

to average over, and results are insensitive to this area at least where this remains within an order ofmagnitude of the grid scale.

KEYWORDS: Boundary layer; Ensembles; Numerical weather prediction/forecasting; Parameterization; Stochastic

models; Subgrid-scale processes

1. Introduction

In recent years, there has been a rapid growth in the de-

velopment and use of so-called convective-scale numerical

weather prediction (NWP) systems using ‘‘convection-permitting

models’’ (CPMs) (Clark et al. 2016). In building quantitative

NWP systems, it is widely recognized that a number of aspects of

the system are only known with some degree of uncertainty.

Ensemble-prediction systems (hereafter ensembles) are designed

to translate our understanding of uncertainty into reliable prob-

abilistic forecasts, in particular of hazardous weather events. The

uncertainty can come from many areas including model uncer-

tainty and initial and boundary condition uncertainty, all of which

have been studied at the convective scale (e.g., Leoncini et al.

2010, 2013; Keil et al. 2014; Kühnlein et al. 2014). It is essential

that these uncertainties are represented accurately.

All forms of uncertainty may have an important role in a

forecast as errors, particularly at the convective scale, can, and

do, generally grow quickly within forecasts (e.g., Lorenz 1969;

Hohenegger and Schär 2007). The consensus in convective-scale
studies is that errors grow primarily as a result of the processes

occurring within convection (Zhang et al. 2003; Hohenegger

et al. 2006). Initial studies considered the growth from initial

conditions and indicated that not only was error growth faster

than in larger-scale models that use parameterized convection

(Hohenegger and Schär 2007) but that forecasts could be im-

proved in certain situations through better specification of the

initial conditions (e.g., Melhauser and Zhang 2012). As ex-

pected, the predominant impact of the error growth from initial

condition uncertainty occurred at the start of the forecast (Keil

et al. 2014; Kühnlein et al. 2014), though of course this uncertainty
will have some impact downstream. On the other hand, due to

their regular refreshing, the boundary condition uncertainty led to

consistent error growth throughout the forecasts (Keil et al. 2014;

Kühnlein et al. 2014). Uncertainty also arises, for many reasons,

from the representation of physical processes within the model.

Investigations of error growth from simulated model physics

variations in CPMs suggest that they have the greatest impact

when initiated within the boundary layer (Lean 2006) and during

the initiation and development of convective events (Leoncini

et al. 2010; Keil et al. 2014). However, it is clear that all forms of

uncertainty need to be represented in themodel to allow for some

form of variability on all scales from the start of the run, despite

the different interactions and impacts of the error growth in the

different convective situations (e.g., Raynaud and Bouttier 2016).

Uncertainty in the boundary layer can, itself, arise from a

number of sources. The first is ‘‘model error’’ due to the fact

that model parameterizations are not perfect. Put more pre-

cisely, it is important to recognize that, in the case of the

boundary layer, boundary layer schemes (including shallow

convection) are designed to predict the ensemble mean of re-

alizations of a turbulent boundary layer in quasi-equilibrium.
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(It must be emphasized that the ensemble here is purely conceptual

and nothing to do with ensemble-based NWP.) With given

boundary conditions and forcing, we assume that there is a unique

ensemble-mean solution, but no scheme always reproduces this

perfectly. Schemes tend to have systematic errors; in an ideal

world these would be correctable via a bias-correction scheme,

leaving an unbiased error, but in many cases this has only been

done through a form of assessment and manual tuning. Taking

account of this has led to the use of ‘‘multiphysics’’ or ‘‘poor-man’s’’

ensembles, e.g., Ebert (2001). While undoubtedly important, this

source of error is conceptually difficult as it is not based upon

physics, but rather the inadequacies of our modeling of physics.

As Ebert (2001) shows, it is essential that the performance of each

model is properly taken into account before an optimal ensemble is

designed. If not approachedvery carefully, it can lead to the artificial

enhancement of ensemble spread to meet quantitatively desirable

criteria by deliberately introducing less accurate parameterizations.

Physically based uncertainty arises from the heterogeneity

of the boundary layer. In CPMs we want a space–time mean

over a finite domain, not the ensemble mean, but we have no

direct methods to establish how to parameterize this. Even a

boundary layer with horizontally homogeneous forcing results

in a highly inhomogeneous instantaneous turbulent flow. We

assume that the stationary system is ergodic, i.e., that suffi-

ciently long (wide) time (space) averages tend to the ensemble

mean. However, as we look at increasingly small space and

time periods, our ability to predict flux divergences is limited

by the inherent variability of the turbulent flow.

Heterogeneity can also be introduced by the surface-

exchange process. Many surface schemes, including that in

the Met Office Unified Model (MetUM), account for surface

inhomogeneity using techniques based upon the concept of

blending height (e.g., Mason 1988) which accounts for inho-

mogeneity on scales of a few hundred meters; theory tells us

that the boundary layer then ‘‘sees’’ an effective surface. The

key point is that this heterogeneity is on a smaller scale than the

convective-overturning scale considered in our scheme, so as a

source of variability this should be less important. Heterogeneity

at the model grid scale and larger is explicit in the model (though,

of course, many questions surround whether the surface forcing

should be smoothed for numerical reasons). Nevertheless, there is

probably a range of scales in between where surface heteroge-

neity, if it exists, contributes to boundary layer variability.

In addition, there is uncertainty associated with surface char-

acteristics. This may be essentially fixed or slowly varying (e.g.,

exactly how tall are the trees and hence what is their roughness

length, or what is their leaf area index). This may be of very

practical importance but is not a problem of physics but of in-

formation that can, in principle and, increasingly, in practice, be

acquired. However, some variables, notably soil moisture, may

have uncertainty that is impractical to reduce by measurement.

A number of studies exist concerning the impact of boundary

layer uncertainty. One technique that has been used in atmo-

spheric models when examining the predictability of convective

events lumps small-scale stochastic variations in the boundary

layer due to all unresolved turbulent processes into relatively

arbitrary stochastic perturbation fields in the form of Gaussian

‘‘bumps’’ (e.g., Done et al. 2012; Leoncini et al. 2013; Flack

et al. 2018). While used as the only form of uncertainty repre-

sented in the model it has not produced large spread at the

kilometer scale (Flack et al. 2018). However, the representation

of the processes has been useful for determining different po-

sitions and magnitudes of scattered showers and convection in

general. Here we go beyond this to develop a stochastic boundary

layer perturbation scheme that specifically takes into account

variation due to sampling the turbulent processes. The ideas be-

low take this as a starting point, assuming that our ensemble-mean

parameterization of the system is correct and that our task is to

estimate the ‘‘sampling error’’ or noise that arises from averaging

the system over a smaller time period and area than would be

required for the average to be sufficiently converged to equal the

ensemble mean. We do not take account of heterogeneity of

the surface or model error, though the scheme is designed to

be compatible with any boundary layer scheme.

It should be noted that the objective is to gain reasonable

physically based estimates of the sampling uncertainty as a

function of model resolution, as it must increase as resolution

decreases. At current CPM scales, the studies cited above lead

us to expect that mesoscale uncertainty in initial and boundary

conditions is the primary contributor to ensemble spread.

The methodology discussed in this paper is inspired by Plant

and Craig (2008) but can be traced back to the idea of shot-noise

decomposition of turbulence, that is briefly reviewed in section 2.

The new scheme is described in section 3. We first introduce a

simple bulk parameterization of the convective boundary layer

(CBL) in order to introduce scaling, but also as a means to illus-

trate the approach in a simple framework. Section 4 outlines im-

plementation of the scheme in theMetUM. Similar schemes have

been implemented by others (e.g., A. Lock 2016, personal com-

munication; Kober and Craig 2016, hereafter KC) and we com-

pare our scheme with these in section 5.

We then test the scheme. This testing evaluates the impact of

the scheme on its own; it is not expected that this source of

uncertainty can account for the whole of forecast error, so

evaluation is restricted in Part I of this paper to impact on en-

semble spread and not onoverall forecast reliability. The latter is

addressed in Flack et al. (2021, hereafter Part II). The testing (in

Part II) compares forecast uncertainty due to initial and

boundary condition uncertainty with the uncertainty resulting

from the scheme running continuously. It relies on the existence

of realistic initial and boundary condition perturbations from the

Met Office Global and Regional Ensemble Prediction System

(MOGREPS) scheme; this only has one boundary layer scheme

in operational use. At present it is therefore not feasible to test

cleanly with another boundary layer scheme (though its design

would make this straightforward in a model with multiple

schemes). To test the scheme, diagnostics designed to test

convective-scale ensemble rainfall forecasts have been used;

these are described in section 6 and applied to case studies in

section 7 and in Part II. Finally, we summarize our conclusions

regarding the scheme’s characteristic behavior in section 8.

2. Shot-noise decomposition

The primary objective is to represent the variability that

arises on space and time scales somewhat larger than the
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characteristic scales of boundary layer eddies.We do not wish

to describe the detailed behavior of these eddies, but, rather,

to capture the consequences of their intermittent and chaotic

occurrence. Our starting point is to assume that eddies occur

randomly and independently. This is a restriction that shall be

discussed below. The idea of modeling a turbulent process

as a superposition of random events was first proposed by

Lumley (1967), and a particular methodology was described

by Moin and Moser (1989). By analogy with the electronic

noise that occurs due to the carrying of current by indepen-

dent, random electrons, this approach is known as ‘‘shot-

noise’’ decomposition.

We assume that eddies occur as independent, random

events, that one might term eddies. Suppose we consider just

temperature, the warming provided by ‘‘unit eddy’’ is

characterized by a function f(z, x, t) with x and t relative to

some reference point in the eddy. Thus, f includes length

and time scales over which this warming is spread. Note that

we have included a z dependence but this, at least when

averaged horizontally, must equal that of the mean field.

Eddies occur randomly in space and time, at a set of points

{xi, ti} and amplitudes {ai}, where ai is an independent ran-

dom variable with a given pdf. We can think of a function F

made up of delta functions with these amplitudes and

locations,

F(x, t)5 �
i5‘

i52‘
a
i
d(x2 x

i
, t2 t

i
): (1)

The probability of an event occurring in the infinitesimal inter-

val dxdydt is pdxdydt follows Poisson statistics. Then the field

of increments applied to the model state, denoted S, can be

constructed convolving this with f:

S(z, x, y, t)5F * f

5 �
i5‘

i52‘
a
i
f(z, x2 x

i
, y2 y

i
, t2 t

i
). (2)

It is then straightforward to show that the autocorrelation

function of S (in time and/or space) is just that off. An important

parameter of the autocorrelation function, the integral time scale

for the process, tf, is obtained by integrating the autocorrelation

function over time. Equivalent results exist for spatial auto-

correlation functions and integral length scales, ‘xf and ‘yf.

We assume, without proof, that successive regions in space

become uncorrelated if we average over a distance longer than

the integral length scale. Similarly, if we average over areas

greater than the product of integral length scales in x and y,

successive regions in space become uncorrelated. We can then

think of F as the source of a quantity such as temperature

provided by the stochastic process. We assume that each

‘‘delivers’’ ai over an average time scale tf and area

At 5 ‘xf‘yf. Under these circumstances, the variability of the

space/time averaged field is solely determined by the vari-

ability in ai and the number of events. This may be illus-

trated by a simple example using a bulk parameterization of

the CBL. This will help motivate the final scheme but also

facilitate a discussion of relevant space and time scales

compared with model resolution and time steps.

3. A bulk parameterization

a. Ensemble-mean parameterization

We take as a starting point a bulk model of the CBL (e.g.,

Carson 1973). To illustrate our approach, we shall ignore

moisture and assume that the top of the boundary layer is a

rigid, impermeable lid. Including these is straightforward but

adds nothing to the insights gained with our simplified model.

The key parameters are thus the boundary layer depth h and

the surface buoyancy flux (expressed as a heat flux), given by

H5 rC
p
hw0u0i

0
, (3)

where r is the density of air, Cp is the specific heat capacity of

air at constant pressure, and hw0u0i0 is the ensemble mean of

the covariance of fluctuations of vertical velocity and potential

temperature at the surface.

From these we can derive the convective velocity scale w*,

and thence the scale for temperature fluctuations, u* [see, e.g.,

Garratt (1994), though our notation differs slightly]:

w*5

 
gHh

rC
p
hui

!1/3

(4)

and, requiring hw0u0i0 5w*u*,

u*5
H

rC
p
w*

. (5)

Here, hui is the vertical average of the ensemble-mean u and g

is the acceleration due to gravity. Note that the boundary layer

literature often uses the opposite sign convention, but it is

conceptually easier here to drop this sign convention as we are

primarily considering CBLs. In a well-mixed box model with

an impermeable lid the heat flux profile is

H(z)5H
�
12

z

h

�
. (6)

The rate of change of potential temperature is given by

rC
p

dhui
dt

52
›H

›z
, (7)

which implies (ignoring the change of boundary layer depth)

dhui
dt

5
H

rC
p
h
5

w*u*
h

5
u*
t*

, (8)

where we have introduced an ‘‘eddy-turnover time scale,’’

t*5h/w*.

As a numerical example, ifH5 400Wm22 and h5 1000m,

w*’ 2:2m s21, and u*’ 0:2K. The eddy-turnover time scale

t* is about 460 s or nearly 8min.

b. A simple ‘‘shot-noise’’ version of the bulk CBL

We adopt a very similar approach to that of Plant and

Craig (2008) in dealing with deep convection. We assume

the following:
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1) The mean heating is actually delivered to the boundary

layer through a set of discrete thermals.

2) Our space–time averaging is on a scale at least the size of

one thermal. (Spatial correlation will be discussed in a little

more depth in section 5.)

3) The key source of variability is the number of thermals, in a

given area, averaged over andwe do not need to consider, in

detail, the structure of a thermal.

A difference from Plant and Craig (2008) is that they also

assume a distribution of thermal (i.e., cloud) properties based

on statistical–mechanical arguments. We could, no doubt,

extend our argument similarly, but for the present we shall

concentrate on the number variability. It should be noted that

this approach is the natural counterpart of the idea that the

problem with the ‘‘gray zone’’ is that we are no longer aver-

aging over a ‘‘large’’ number of clouds (as assumed by the

pioneers of ‘‘mass flux’’–based convection schemes; Arakawa

and Schubert 1974).

Each thermal ‘‘event’’ delivers heating such that an area At

is warmed (throughout the depth of the boundary layer) by ut
by the thermal, in time scale tt; the total heat delivered per

thermal is thusQt 5 rCputAth. Note thatAt is the average area

occupied by one thermal; it includes the upward motion (e.g.,

a convective thermal) and downward motion (i.e., the whole

region influenced by the thermal). It makes sense to assume

that At } h2; the result is that we can express the relative var-

iability in boundary layer heating entirely in terms of h and w*
or, equivalently, h and t*.

We assume that thermals occur entirely at random (inde-

pendently) with probability p per unit area and time. The

probability that a thermal occurs in an infinitesimal time dt in a

given (small) area dA is pdAdt. The number of thermals that

occur in finite time Dt and finite area DA is thus given by a

Poisson distribution. The mean number is n(DA, Dt)5pDADt,
so the number of thermals (n) has the distribution

Pr(n)5
ln

n!
e2l , (9)

with n5 l5 pDADt.

The total heat delivered isQ5 pDADtQt so the average rate

of change of mean potential temperature is this divided by

DAhDtrCp; i.e.,

dhui
dt

5pu
t
A

t
, (10)

which implies

p5
1

u
t
A

t

dhui
dt

. (11)

Note that, in a Poisson distribution, the variance in the

number of events equals the mean, so the variance in the heat

supplied to volume DAh in Dt is

var(Q)5pDADtQ2
t , (12)

and the standard deviation in the heating rate is given by

s _u
5

var(Q)
1/2

DAhDtrC
p

[n21/2 dhui
dt

. (13)

If we apply this to the box model above, from Eqs. (8) and

(11), we can write

p5
1

u
t
A

t

w*u*
h

. (14)

If we assume ut 5 u*, (which makes sense to within a constant,

which we shall assume is subsumed into the definitions of

thermal area), then

p5
1

A
t
t*

, (15)

and the Poisson distribution [Eq. (9)] has

n5 l[
DADt

A
t
t*

: (16)

The standard deviation of the heating can be written as

s _u
5

�
DADt

A
t
t*

�21/2
dhui
dt

.

Thus, the relative standard deviation of the heating is propor-

tional to the inverse square root of the averaging area and time.

This makes clear the intuitive simplicity of this model. If l5
1 the average number of thermals in area DA and time Dt is 1.
The actual heating rate over this area is

dhui
dt stochastic

5
n

l

dhui
dt average

5
n

l

u*
t*

. (17)

As stated above, the variability in heating is purely due to

variability in n; if we had included a distribution of thermal

characteristics, that would appear as an additional factor here.

Thus, the stochastic forcing is best considered as multipli-

cative noise. It can, however, be written as additive, which

helps comparison with other schemes. We can write

dhui
dt stochastic

5
dhui
dt average

1
�n
l
2 1
�dhui

dt average
, (18)

or, in terms of the boundary layer scales,

dhui
dt stochastic

5
dhui
dt average

1
�n
l
2 1
�u*
t*

. (19)

In practice, numerical models work with discrete time steps,

and model parameterization schemes produce an increment

per time step Du. Over time step dt the stochastically perturbed

increment can be written as

Du
stochastic

5Du
average

1 «
P
Du

average
, (20)

or, in terms of boundary layer scales,

Du
stochastic

5Du
average

1 «
P

dt

t*
u* . (21)
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where «p 5 n/l 2 1 is a random number and the subscript is a

reminder that this originates from a Poisson process, so a new

value of «p arises only at intervals Dt (assumed, for simplicity,

an integral multiple of dt). It has properties

E(«
P
)5 0, (22)

E(«2P)5 l21 . (23)

Furthermore, as l increases, the Poisson distribution tends to a

normal distribution, so «p tends to a normal variate with mean

zero and variance l21.

The factor (dt/t*)u* is just the average increment per model

time step Duaverage. The factor dt/t* is the average number of

thermals per model time step at a point or, alternatively, since,

in practice, dt, t*, the average fraction of a thermal in amodel

time step at a point, as t*/dt is the average number of model

time steps a thermal lasts at a point.

The variance of the stochastic increment, Duinc 5 «pDuaverage,
is thus

E(Du2inc)5
A

t

DA

dt2

Dtt*
u2* . (24)

Recalling that n is the number of thermals occurring in time Dt
(and area DA), Eqs. (21) and (24) can be applied in two dif-

ferent ways. If Dt 5 dt, so we apply all the heating from a

thermal in a model time step, the standard deviation of the

stochastic increment gets smaller with smaller model time step,

but only as the square root of the model time step, as the rel-

ative sampling noise increases.

If, instead of the model time step, we choose an averaging

time Dt5 t*, i.e., apply the same increment over a time period

equal to the correlation time scale, then this becomes

E(Du2inc)5
A

t

DA

dt2

t2
*
u2* , (25)

so it is evident that we are merely spreading the overall in-

crement over the number of time steps in t*, and the remaining

factor depends just on the number of thermals in area DA at

any one time. The convective boundary layer depth, h, is typ-

ically 1 km, so a model with a horizontal averaging length scale

of around 1 km will have DA ’ At and standard deviation in

temperature increment (added over t*) of u*.

In practice, the scales actually represented well by a model

are several (at least five or six) grid lengths (Skamarock et al.

2014). Thus, DA’m2Dx2 . At, wherem is about 5 or 6. Thus,

in practice, the averaging area represents several thermals in

models with horizontal grid length 1 km or larger, and the as-

sumption of lack of horizontal correlation seems very reason-

able. Hence, for models with grid length greater than around

100–200m, there seems no need to impose a horizontal corre-

lation or structure to the stochastic increments.

On the other hand, the time step of numerical models de-

pends on factors such as the Courant number (uDt/Dx, where u
is the maximum horizontal wind speed). The MetUM has a

semi-implicit, semi-Lagrangian dynamical core that is not re-

stricted by the Courant number in terms of stability, but still

uses a time step with maximum Courant number a small inte-

ger (typically 5) to maintain accuracy. The operational 1.5 km

UKV uses a 60 s time step. Many other models, such as WRF

(Skamarock et al. 2008), are more restricted in time step. In the

typical example in section 3a, t*5 460 s. This tends to vary less

than surface buoyancy flux and boundary layer depth as a large

surface buoyancy flux (and hence large w*) tends to produce a

deep boundary layer depth. Thus, Dt/t* is often less than, or

even much less than, 1 in many convection-permitting models

with resolution of a few km. This suggests that we do need

to take into account the correlation of time perturbations.

Nevertheless, since we are averaging over the horizontal

structure, there seems little justification in treating the tem-

poral correlation in detail. We have chosen to include time

correlation simply via a first-order autoregressive process with

autocorrelation time scale determined by the characteristic

eddy turnover time, t*.

c. Temporally correlated Poisson perturbations as a

first-order autoregressive process

Let us introduce a more general stochastic process hi, taken

to be the rate of change of state variables in time step i. For

simplicity, as above, we shall just consider u, so

Du
i
5h

i
dt . (26)

We model hi as a (stationary) first-order autoregressive

stochastic process, in which we assume that a portion mhi21 of

the heating comes from thermals that ‘‘fired’’ in previous time

steps, and a portion niq comes from ni new thermals in time

step i and delivering q heating rate. Thus,

h
i
5mh

i21
1 n

i
q . (27)

Herem2 [0, 1), and the number of new thermals (ni) is assumed

to follow the Poisson process.

Taking expected values (i.e., ensemble mean) of this first-

order autoregressive stochastic process leads to

E(h
i
)5 h5

lq

12m
, (28)

with l5n; hence,

q5
(12m)h

l
. (29)

As above, this may be rearranged as an additive stochastic

process; thus,

Du
i
5hdt1

�
h
i

h
2 1

�
hdt . (30)

If we write

f
i
[

h
i

h
2 1, (31)

then

Du
stochastic

5Du
average

1 f
i
Du

average
. (32)
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This is the same stochastic model as Eq. (20), except instead

of simple multiplicative noise we have a multiplicative sto-

chastic process with

f
i
5mf

i21
1 (12m)«

i
, (33)

where

«
i
[
n
i

l
2 1: (34)

This has the properties

E(«
i
)5E( f

i
)5 0, (35)

E(«2i )5 l21 , (36)

E( f 2i )5
12m

11m
E(«2i )5

12m

11m
l21 , (37)

and

E( f
i
f
i1m

)5E( f 2i )m
jmj . (38)

Note that the variance of the correlated factors is less than that

of the uncorrelated noise because the same heating is delivered

over a longer time determined by m. We need to parameterize

m. The ‘‘integral time scale’’ for this process is given by

�
m50,‘

mmdt5
1

12m
dt . (39)

We assume that this is proportional to t*; i.e.,

1

12m
dt5at*, (40)

where a is a tuning parameter of order one. Clearly, negative

m makes no physical sense, so we can write

m5max

�
0, 12

dt

at*

�
. (41)

If m 5 0 perturbations are uncorrelated in time and are as-

sumed to occur entirely in one time step dt. The option to

assume uncorrelated perturbations everywhere has been

implemented but, in the following, time-correlated pertur-

bations are always used.

From Eq. (29),

q5
h

l

dt

at*
5

A
t

aDA
h . (42)

Note that a single thermal delivers total heating (summed over

all time steps) given by

Du
thermal

5 q �
m50,‘

mmdt5
A

t

DA
u*, (43)

as expected.

We can write the autocorrelation function in exponen-

tial form:

mjmj 5 e2jmjdt/te , (44)

so the exponential correlation time scale is te 5 2dt/lnm. For

small dt/at*, lnm’2dt/at* so te ’at*. Thus, for small dt/at*
the scheme approximates to an exponential decay of the

heating from each thermal. However, the parameterization of

m in terms of t*, Eq. (41), gives us a natural cutoff. If dt$at*
then we revert to an ‘‘uncorrelated’’ formulation without any

‘‘memory,’’ with E(f 2i ) naturally tending to l21 as in the

uncorrelated case.

4. Implementation in the MetUM

a. Procedure

As noted above, in practice, the scales actually represented

well by amodel are several (at least five or six) grid lengths. It is

thus unlikely that variability on the grid scale will couple effi-

ciently with the dynamics of themodel.We take the area DA to

be the area covered by ng 3 ng grid boxes and so assume that

each area DA is spatially uncorrelated. The integer ng is an

adjustable parameter of the scheme. Over each area we obtain

an average l [using Eq. (16)] and m [using Eq. (41)] with

DA5 n2
gDx

2, Dt the model time step, At 5 h2, t*5h/wm, and

w
m
5max[0:4, (u3

*1 0:25w3

*)
1/3
]. (45)

This is taken directly from the MetUM boundary layer scheme

(Lock et al. 2000) and represents a generalized boundary layer

time scale that includes the effect of wind shear through the

friction velocity u* as well as the convective velocity scale. The

latter is given by

w3

*5hw0b0, (46)

with w0b0 the surface buoyancy flux, essentially Eq. (4) in-

cluding the effect of moisture. The form of this essentially

comes from surface layer similarity and was first proposed by

Panofsky et al. (1977) and is discussed in Holtslag and Boville

(1993), though they use a value 0.6 rather than 0.25; the choice

of constant 0.25 is as in the Lock et al. (2000) scheme, though its

origin is not entirely clear. This extends the use of the scheme

to both neutral and (noting that a negative surface buoyancy

flux reduces wm) stable conditions, though the minimum value

of 0.4m s21, used for consistency with the boundary layer

scheme, may override this in practice. This minimum has little

impact in practice, as the scheme produces very small pertur-

bations in stable or even very weakly convective conditions,

but it does serve to ensure that extremely short correlation

time scales do not occur.

Note that it would probably be more consistent to average

the surface buoyancy flux, friction velocity and boundary layer

depth over the ng 3 ng grid boxes to derive l and m but our

approach was adopted to be more efficient on a parallel com-

puter and has little practical impact in relatively homogeneous

terrain. Furthermore, because of differences in land use, the

surface buoyancy flux can vary substantially from grid box to

grid box, while l tends to vary less. As discussed above, this

heterogeneity due to differences in land use is an explicit and
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deterministic source of small-scale variability. The multipli-

cative nature of the scheme means that this heterogeneity

carries through to the stochastic forcing.

For each of the grid boxes on the reduced two-dimensional

grid (i.e., each box is ng 3 ng model grid boxes) a random in-

teger ni, drawn from a Poisson distribution, is generated. Note

that with l substantially less than 1, as is often the case, this

distribution is highly skewed, with 0 occurring frequently. The

random factor fi is then generated using Eqs. (34) and (33). The

latter reduces to fi 5 «i if m 5 0, i.e., uncorrelated perturba-

tions. Finally, a perturbation fi times the boundary layer in-

crement is added to the model physics forcing. The option is

implemented to apply this selectively to the potential tem-

perature, moisture, or wind fields; in practice we have applied it

to all. The scheme has been implemented outside the boundary

layer scheme as an additional, stochastic forcing scheme.

Ideally, it should be moved inside the scheme and the sto-

chastic increments applied to the surface exchange as well, in

order to conserve energy. Currently, energy is only conserved

to the extent that the ensemble average of the stochastic in-

crements is zero.

The scheme can be summarized thus:

Df
stochastic

5Df
average

1 f
i
Df

average
, (47)

where f represents the model u, y, u and qy. If Dt,at*, fi is a

first-order autoregressive stochastic process, randomly forced

by the Poisson-related variable «i [Eq. (34)] and with auto-

correlation time scale at*. Since «i has zero mean and variance

l21, fi has zero mean and variance, given by Eq. (37). Thus,

inclusion of time correlation greatly reduces the dependency of

the noise on time step, especially when Dt � at*, as it often is

at resolutions O(1) km.

A time step dependence is, of course, present as we have

multiplied the increment in a time step by this noise factor. In a

bulk model of the CBL our scheme reduces to

Du
stochastic

5Du
average

1 f
i

dt

t*
u* . (48)

The variance of the stochastic increment Duinc 5 Dustochastic 2
Duaverage is thus

E(Du2inc)5
a21

22
dt

at*

A
t

DA

�
dt

t*
u*

�2

. (49)

Note that the area factor At/DA in Eq. (49), can be written

(h/ngDx)
2 so the standard deviation of the noise will depend

on h/(ngDx).

b. Key features

The scheme outlined has the following physically sensible

features:

1) The key parameter is n [Eq. (16)], the average number of

thermals triggered in the selected area DA in time Dt.
2) The stochastic increments have zero mean on average (in a

steady system).

3) The stochastic increments have an amplitude proportional

to the mean increments times l21/2. Thus, more thermals

means smaller stochastic increments.

4) The stochastic increments have time correlation (via an

AR1 process) related to the turnover-time. If this is less

than the time step, stochastic increments are uncorrelated

from time step to time step.

5. Comparison with other schemes

The implemented scheme uses the parameterized incre-

ments [using the boundary layer parameterization described by

Lock et al. (2000)]. However, in a CBL and cumulus-capped

CBL, the results broadly resemble the bulk scheme described

above, so we shall use this as a basis for comparison.

A relatively simple stochastic scheme has already been

implemented byA. Lock (2016, personal communication) with

more recent details in Beare et al. (2019). This assumes

Du
stochastic

5Du
average

1 g
i

dt

dt
0

u* . (50)

Here gi can be either a uniformly distributed variable «U in

the range [21, 1] or a temporally correlated variable with

g
i11

5m
L
g
i
1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12m2

L

q
«
U
. (51)

The factor mL here is given by

m
L
5 exp(2dt/t), (52)

with t a fixed autocorrelation time scale, usually taken to be

10min. Thus, the temporal correlation is very similar to our

scheme, apart from the fixed choice of time scale instead of the

time scale varying with conditions. In practice, the fixed time

scale of 10min is quite representative of the values of t* found

in the CBL.

The factor dt/dt0 scales the increment with time step, with

dt0 5 60 s the time step of the UKVmodel the scheme was first

implemented in. Both gi and «U have variance 1/3 so the vari-

ance of the u increment is

E(Du2inc)5
1

3

�
dt

dt
0

u*

�2

. (53)

This may be compared with the variance of the stochastic in-

crement in our scheme applied to a bulk CBL [Eq. (49)]. The

dependence on u* is essentially the same. The scheme is im-

plemented with a singles value gi for each box of a ‘‘supergrid’’

of ng 3 ng points similar to our scheme but the dependence on

ratio of eddy area to averaging area is absent in the Lock

scheme, meaning that the same amplitude of noise is applied

irrespective of the averaging area. As discussed in section 4a,

our scheme reduces the standard deviation by a factor roughly

h/(ngDx). The time step dependence is the same, but normal-

ized by dt0 rather than t*. These differ by an order of magni-

tude. The remaining factors, about 1/2 [Eq. (49)] compared

with 1/3 [Eq. (53)], are a consequence of different assumed

probability density functions. Overall, in conditions with
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h ’ Dx and t*’ 10min, the Lock scheme will produce sto-

chastic increments about a factor 6ng larger than our scheme.

KC describe a scheme designed to address similar issues. A

stochastic field is added to the model physics tendencies [KC

Eq. (1)]; thus,

�
›F

›t

�stoch

5
›F

›t
1a

sh
hhF2i1/2, (54)

where ash is a constant, h is a Gaussian random number field

and hF2i1/2 is the variance of variables given by the turbulence

scheme in their model. The scheme is applied to variables

temperatureT, vertical velocityw, and specific humidity q. The

Gaussian random number field contains spatial and temporal

correlations. The temporal correlation arises from holding the

field fixed for 10min, then generating a new field. The 10min

represents the eddy turnover time. Spatial correlation in h is

provided by convolving a set of random numbers drawn from a

Gaussian distributionwith a horizontal two-dimensionalGaussian

with standard deviation 2.5 grid points, representing a correlation

length scale of 5Dx (in our notation). The resulting field is nor-

malized to have mean 0 and variance E(h2) 5 1.

This has similarities with our scheme; in our scheme, we

choose a fixed area in space, generally larger than the expected

horizontal correlation length scale, on the grounds that the

horizontal scales well represented by the model are much

larger than the spatial correlation scale. However, we explicitly

represent the temporal correlation, on the grounds that the

time step is shorter than the temporal correlation scale. Thus,

the spatial pattern is stepped (or ‘‘checkerboarded’’) but the

temporal pattern varies relatively smoothly from time step to

time step. The KC scheme does the reverse, representing

smooth correlations explicitly in space on scales roughly the

smallest that are well-represented by the model, but with a

stepped time profile, each fixed period given by an equal 10min

with no correlation between 10-min periods. Thus, the physical

idea behind temporal correlation is consistent with our scheme

but the implementation does not adapt to different conditions

in the same way.

Note that a revised version of the KC scheme has been

published more recently (after first submission of this paper)

in Hirt et al. (2019); this, among other changes, implements

an autoregressive temporal correlation scheme similar to

that of the Lock scheme discussed above. The scheme is

implemented as in Eq. (33), with « a spatially correlated

‘‘Gaussian bump’’ field and the same fixed correlation time

as used in KC. Though the end result is very similar, we

regard a key difference in our scheme as the link to the

Poisson process expressed in the starting-point equation,

Eq. (27), which provides a self-consistent scale adaptivity,

as well as the physically based correlation.

The ‘‘checkerboard’’ in space in our scheme is necessary as

the amplitude and correlation time scale vary in space (and

time). No doubt some smoothing could be applied to the spa-

tial pattern of parameters, if necessary, but in practice the in-

crements in a time step are so small that this structure does not

seem to have any significant impact. Both schemes assume

vertically coherent perturbations.

According to KC, the parameter ash is given by

a
sh
5a

sh,F

l
‘

5Dx

1

dt
, (55)

where l‘ is the asymptotic mixing length describing the average

size of an eddy assumed in the turbulence parameterization, dt

is equal to the ‘‘temporal resolution of the model,’’ 25 s, and

ash,F is a tunable parameter set equal to 2 for all variables. This

does not seem to make physical sense. The stochastic incre-

ment in each time step dt over the 10min that a choice of

h applies, is thus

DF5a
sh
hhF2i1/2dt5a

sh,F

l
‘

5Dx
hhF2i1/2 dt

dt
, (56)

i.e., independent of dt if dt[ dt. This means that if one were to

halve the model time step, twice the total increment would be

applied in the 10-min period h applies for. Given the time step

of 25 s quoted, this would also lead to a very large increment.

Equation (56) only makes physical sense if dt is a fixed time

scale independent of the time step. Indeed, the revised scheme

described in the appendix of Rasp et al. (2018) replaces this

with teddy. The tuning parameter was also changed (to 7.2 from

2). This partly offsets the change in time scale from 25 to 600 s,

but clearly a change from 2 to 48 would be required to com-

pletely offset the change in time scale. The authors state that

the ‘‘tuning factor was chosen so that the effects of the PSP

schemewere noticeable but reasonable’’; we understand this to

mean the samemethodology as KCwas applied to optimize the

amount and onset time of domain integrated precipitation for a

strongly nonequilibrium case followed by a check that the same

choice of tuning constant gave a similar improvement in other

nonequilibrium cases, and while leaving the total precipitation

largely unchanged in equilibrium cases. Whatever it means,

clearly the size of perturbations applied in the revised scheme

should be a factor of around 7 smaller than in the KC scheme.

The scheme reported by Hirt et al. (2019) also uses teddy.

If we denote the revised scheme of Rasp et al. (2018) KCR,

considering temperatureT, the incrementDTKCR in a time step

dt is given by

DT
KC

5a
sh
hhT2i1/2dt (57)

and so has variance

E(DT2
KC)5a2

sh,T

�
l
‘

5Dx

�2

E(h2)hT2i dt2

t2eddy
, (58)

with E(h2) 5 1

Thismay be comparedwith Eq. (25). Overall, the ratio of the

KC scheme standard deviation in temperature increment per

time step to that in our scheme is

n
g

5

a
sh,T

l
‘

h

hT2i1/2
u*

t*
t
eddy

: (59)

Clearly t*; teddy, the only difference being that in our

scheme the local value is used rather than a global constant.

The first three terms highlight the key physics in the scheme:
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the horizontal-averaging length scale (ng), the length scale

of turbulent eddies, and the variability in temperature due

to turbulent eddies. The averaging scale is based upon a very

similar premise and differs only in being more (hopefully

realistically) physically flexible in our scheme (i.e., if we

choose a larger averaging scale, we get smaller variability).

A key difference in formulation is that we take the length

scale as the length scale occupied, on average, by one eddy,

rather than the mixing length in a diffusion approach, which

is assumed to be the scale of the eddy itself. Thus l‘, typically

150 m, is much smaller than h (and, indeed, in some schemes

is taken to be 0.15h). However, including the factor of

ash,T 5 7.2 in this term means ash,Tl‘/h ’ 1.

Garratt (1994) suggests T2/u2* ranging from about 1.85 in the

middle of the boundary layer to 10 or more near the top and

bottom. Thus, in practice, the KCR scheme applies perhaps 3

or 4 times larger perturbations near the top and bottom of the

boundary layer than our scheme. While perhaps of practical

value, we would argue that this is physically inconsistent as the

turbulent length scale clearly decreases in these regions. For

example, Kaimal et al. (1976) (Fig. 5) show smaller length

scales lower in the boundary layer where hu2i is larger. Thus, if
the local variance from the turbulence scheme is used at a given

height, it would seemmore appropriate to use a height-varying

length scale. The effect would be to at least partially cancel the

variability in each.

We have focused primarily on amplitude of perturbations,

and particularly on temperature. The recent enhancements of

the KC scheme by Hirt et al. (2019) focus on a nondivergent

wind perturbation which is found to force the vertical velocity

more effectively. This seems to be a useful innovation; Hirt

et al. (2019) emphasize that this enhances coupling with the

resolved scales as less of the perturbation projects onto sound

waves, so comparing magnitudes may not give a true reflection

of impact. Whether this is physically important at the scales we

are applying perturbations at (several km) may be question-

able, but the approach may become more important as models

move more into the subkilometer ‘‘turbulence gray zone.’’ We

did not pursue this in this initial implementation, in part, be-

cause the MetUM already has a kinetic energy backscatter

scheme and, in part, to maintain simplicity. It is certainly likely

that small-scale vertical motions at the top of the boundary

layer play a crucial role in coupling to shallow cumulus, but this

is likely to be at a scale much smaller than those we are con-

sidering, and future work will focus on extending the scheme to

include parameterized coupling with unresolved vertical mo-

tion in the cumulus scheme along with the backscatter scheme.

In summary, at least when considering the magnitude of

temperature fluctuations, the schemes are broadly similar in

both magnitude and dependencies. The two schemes will

produce different vertical profiles of perturbation; ours is

simple and follows the parameterization profile. The KC

scheme has a profile dependent on the profile of variability, but

seems slightly flawed in not including the compensating profile

of turbulence length scale. Our scheme seems better justified

when considering the relative sizes of grid box and time step

compared with spatial and, in particular, temporal correlation

scales, respectively. Furthermore, the Poisson-based stochastic

process is properly scale adaptive (at least as far as the as-

sumptions go), so naturally gives higher amplitudes when run

at smaller scales that average to the consistent amplitudes at

larger scales. However, in practice, the manner in which cor-

relations are applied probably makes little difference (as dis-

cussed further below), and the main difference is that temporal

correlation in our scheme depends explicitly on the local

boundary layer properties, and our random function is likely to

be substantially more skewed.

Overall, despite their apparent differences in formulation,

the schemes are notable more for their similarity than their

differences, the main key difference being the nondivergent

increments in the later Hirt et al. (2019) variant.

6. Diagnostics

a. Introduction to diagnostics

Diagnostics for testing the scheme have been chosen to al-

low examination of both the changes in magnitude induced by

the scheme and the spatial differences. As the scheme is writ-

ten for convective-scale models, careful interpretation of more

‘‘traditional’’ techniques is required. To combat the differences

between interpretation of diagnostics on the convection-

permitting compared to convection-parameterizing scales ei-

ther the metrics have been adapted (as discussed below) or cell

statistics have been used. All of the diagnostics have been

calculated over the analysis boxes shown in Fig. 1.

b. Mean square difference

The mean square difference (MSD) is a simple measure of

the difference ofmagnitude between two forecasts, and is more

frequently used in its square root form (e.g., Hohenegger and

Schär 2007; Clark et al. 2009; Johnson et al. 2014). Here,

however, we use it in the squared form as in Leoncini et al.

(2010, 2013) and, like Flack et al. (2018), we define theMSD as

MSD5
1

SP2
c

S(P
p
2P

c
)2 , (60)

where Pp is the hourly accumulation of precipitation in the

perturbed forecast, and Pc is the hourly accumulation of pre-

cipitation in the control forecast. The normalization factor

implies that theMSDwill not be altered by the total amount of

precipitation in the forecast and so multiple cases with differ-

ent precipitation amounts can be compared fairly.

The MSD is kept in its square form so that, when con-

sidering precipitation forecasts, it can be broken down into

the MSD arising from precipitating points only in the con-

trol forecast, those points only in the perturbed forecast and

those points that have precipitation in the same location in

both the perturbed and the control (common points).

Considering only the common points (MSDcommon) between

both forecasts removes the ‘‘double penalty’’ problem faced

by all gridpoint diagnostics at the convective scale. By re-

moving the ‘‘double penalty’’ problem the interpretation

of this diagnostic at the convective scale reverts to its tra-

ditional interpretation of magnitude differences as op-

posed to a mixture of magnitude and spatial differences.
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The threshold for the precipitation used within this study is

an hourly accumulation of 1 mm.

c. Fraction of common points

The fraction of common points (Fcommon) is a useful concept

alongside MSDcommon as it helps determine the fraction of the

precipitating points used within the calculation of MSDcommon.

The fraction is defined by the total number of precipitating

points in common between two forecasts (above an arbitrary

threshold: in this case hourly precipitation accumulations ex-

ceeding 1mm) divided by the worst case scenario of precipi-

tating points (i.e., when both forecasts have all the rainfall in

different locations); i.e.,

F
common

5
N

p,c

N
p
1N

c
2N

p,c

. (61)

Here, N is the number of precipitating points above the

threshold and the subscripts p and c refer to the forecasts being

compared (perturbed and control forecast, respectively). As

with the MSD, this diagnostic has been used in Leoncini et al.

(2010), and here we take the normalization of Flack et al.

(2018) so that Fcommon ranges between 0 and unity, where unity

represents a forecast where all of the precipitation is in the

same location, and 0 represents a forecast where none of the

precipitation is in the same location. Had the subtraction of

Np,c not occurred in the denominator then the fraction would

range between 0.0 and 0.5.

As in Flack et al. (2018), the Fcommon values are compared to

the fraction of common points that would be yielded from a

random relocation of precipitating cells, based upon the

number of cells in the control forecast (Fchance). A value of

Fcommon smaller than or close to Fchance implies that the spatial

forecasts of the events are near to a random forecast.

d. Cell statistics

The precipitation field from each forecast comprises discrete

areas, or cells, of rain. To determine the distribution of size and

strength of these cells, the cells are first identified using a

tracking algorithm described in Hanley et al. (2015). Each

identified cell is then described as having an area-equivalent

diameter and a mean rain rate; area-equivalent diameter is

defined as the diameter a circle with the equivalent area would

have. Area and rain rate thresholds are applied to the precip-

itation fields so that only cells with a specified minimum size

and rain rate are considered in the evaluation. In this study, a

minimum area of 2Dx3 2Dx is used and rain rate thresholds of

1 and 4mmh21 are imposed, representing light and heavy rain,

respectively. After thresholds have been imposed, distribu-

tions of cell size andmagnitude can be produced, in the form of

histograms.

7. Testing the scheme

a. Test cases

While the scheme has been applied to a number of convec-

tive cases during its development, two test cases from summer

2017 are presented here. These cases exhibit very different

convective behavior and have been chosen to show how the

scheme behaves in a situation that is more stochastic in nature

(scattered showers) compared to one that is not [a mesoscale

convective system (MCS)]. The convective adjustment time

scale (e.g., Done et al. 2006) is used to show how different these

cases are by considering their placement in the spectrum of

convective regimes (e.g., Flack et al. 2018). The cases have also

been named after the areas in which either there was flooding

or was the most dynamically active.

1) COVERACK CASE: 18 JULY 2017

This case is highlighted by a flash flood that swept through

the village of Coverack in southern Cornwall (Cornwall

Council 2017). The convective event formed off the coast of

Brittany at approximately 1200 UTC and progressed north-

ward, reaching Coverack at around 1400 UTC. Part of the

event anchored over Coverack and produced intense rainfall

FIG. 1. Met Office analysis charts valid at (a) 0000UTC 18 Jul (Coverack case) and (b) 0000UTC 5Aug 2017 (Kent

case). Both show the model domain (black rectangle) and analysis domain (black dashed rectangle).
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in the area for approximately 3 h, the main part of the system

continued past Coverack and into the surrounding moorland.

The event formed as a result of a surface trough (Fig. 1a), and

this forcing continued with the event, with it eventually form-

ing into an MCS. This rapidly decayed and later in the day

another MCS formed over France, which then moved into

southeast England causing surface-water flooding in Reading

(Davies 2017). The convective adjustment time scale for this

case begins at 4.2 h and reduces to 0.4 h by the end of the

convection. Therefore, it sits somewhere in the middle of the

regimes for the United Kingdom (cf. with Flack et al. 2016).

Using the time scale’s value and combining it with the

knowledge that local forcing existed to keeping the storm an-

chored places this case more toward the nonequilibrium end of

the spectrum (despite the marginal time scale).

2) KENT CASE: 5 AUGUST 2017

A high pressure center was located over continental Europe

and the United Kingdom was dominated by westerly flow

(Fig. 1b). This led to showers forming in the lee of the Welsh

mountains which were then advected by the flow across

England. As the showers formed, they intensified as a result of

localized forcing from a surface trough. This surface trough

then tracked with the showers and they eventually organized

into squall lines over central England. These lines then pro-

gressed eastward into East Anglia, the Thames estuary, and

North Kent. During the event, one of the authors (D. L. A.

Flack) was in North Kent. Along with the intense precipitation

associated with this convective line, at the southern end of the

line (over the North Kent coast) he observed a mesocyclone

and three funnel clouds from 1502 to 1534UTC. This case has a

low convective adjustment time scale throughout the convec-

tive life cycle varying between 1.1 and 0.1 h. These low values

imply that the case is closer toward the convective quasi-

equilibrium end of the spectrum of convective regimes.

b. Model setup

The scheme has been tested in the 1.5 km resolution, UKV

configuration of the MetUM at version 10.6 with the Even

Newer Dynamics for General Atmospheric Modeling of the

Environment (ENDGAME) dynamical core (Wood et al.

2014). The model domain is shown in Fig. 1. This configuration

uses the Lock et al. (2000) boundary layer scheme, the Wilson

and Ballard (1999) microphysics scheme, the Edwards and

Slingo (1996) radiation scheme and the Porson et al. (2010)

surface-exchange scheme. The two cases considered here are

run such that the most intense convection of the case studies

occurs at approximately 24h into the simulation. The Coverack

case is initiated at 1500 UTC 17 July 2017 and the Kent case is

initiated at 1500 UTC 4 August 2017. These times are chosen to

allow time for the perturbations to spin up so that they can in-

fluence the forecast of the convective events.

c. Effect of the scheme

This section illustrates how the introduction of the stochastic

scheme described in sections 3 and 4 influences the forecast in

the MetUM using the diagnostics introduced in section 6. As

described in section 4, the area DA over which we are considering

the thermals is covered by ng 3 ng grid boxes. The perturbations

to the field are calculated on a reduced two-dimensional grid (with

each horizontal dimension reduced by ng), with each original grid

box within an ng 3 ng gridbox area using identical random per-

turbations. For each grid box in the original grid, the associated

perturbation from the reduced grid is then multiplied by the

perturbation to the field due to the boundary layer scheme in that

grid box to obtain the resulting perturbation to be used in the

scheme. This method is applied to potential temperature, mois-

ture and horizontal wind fields as described inEq. (48). A value of

ng5 8has been chosen so as to be close to the 5or 6Dx required to
resolve features on a grid and yet not too large so that the sto-

chastic perturbations are negligible. Sensitivity to this choice is

tested in section 7d.

For each case, the MetUM was initially run without the

addition of any stochastic perturbations, to produce a control

run. The model run was then repeated five times with the

scheme included, each time with a different random seed, to

produce five ensemblemembers. This gives an indication of the

spread of the forecasts when using the scheme. Figure 2 shows

that in both cases the overall domain-averaged rainfall was

quite well forecast but certainly not perfectly. Initiation was

(perhaps unusually) more gradual in the model than in radar

rainfall in theCoverack case. The initiation time of the convection

FIG. 2. Domain-averaged rain rate for (a) Coverack and (b) Kent cases.
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is not significantly changed comparing the control run and any of

the ensemble members. Furthermore, during the first 6 h after the

convection is initiated, the domain-averaged rain rate is almost

identical. The largest differences appear later into the run;

although the peaks and troughs in the precipitation are similar, the

magnitude varies by up to 10% or 20%. There is a qualitative

impression that the growth of differences between members has

saturated well before the end of the forecast—this is discussed

more quantitatively below.

This variation is also evident in instantaneous precipitation

fields in Fig. 3 for Coverack and Fig. 4 for Kent. In both cases

the forecasts, while having larger-scale structure in common

with the radar rainfall, have substantial errors at the cloud-

cluster scale. The ensemble members show similar larger re-

gions of precipitation (cloud clusters) but differ in the finer

detail (cloud scale).

FIG. 3. Coverack: (top left) Radar and precipitation fields at

1400 UTC from (top right) control model run, (second row) en-

semble members with different seeds, (third row) ensemble

member 1 with different ng as described in section 4a and (bottom)

different values of Ampfactor, as described in section 7e.

FIG. 4. Kent: (top left) Radar and precipitation fields at

1200 UTC from (top right) control run, (second row) ensemble

members with different seeds, (third row) ensemblemember 1 with

different ng as described in section 4a and (bottom) different values

of Ampfactor, as described in section 7e.
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The fraction of common points between the control forecast

and the ensemble member forecasts (using an hourly accu-

mulation threshold of 1mm) can be seen in Fig. 5, with the

mean of all ensemble members shown as the solid line and the

dashed lines indicating 61 standard deviation from the mean.

When the convection is fully developed in the domain, at a lead

time of around 18 h, the fraction of common points generally

has a value between 0.4 and 0.8, with a decreasing trend toward

the lower end of the range. This supports observations that,

while the location of the main regions of precipitation are su-

perficially the same, the details in location and/or timing of the

heaviest rain differ between forecasts.

The increases in Fcommon are associated with (i) the forma-

tion of new cells collocated in the ensemble members, (ii)

enlargement/intensification of cells to encompass other smaller

cells in the othermembers, or (iii) cells coming into the analysis

domain from the boundaries, as the boundary conditions remain

unchanged throughout each ensemblemember. Subsequent falls

in the diagnostic are expected as the forecasts begin to diverge

from one another.

In the Coverack case, the entry of the MCS into the domain

is preceded by the formation of small and very scattered

shower cells, which develop in random locations in each

ensemble member roughly 13 h into the forecast. The large

area of organized precipitation then moves into the domain

accompanied by smaller cells (again, in different locations

depending on the ensemble member) and an increase in

Fcommon. It is fully in the domain by 1500 UTC (T1 24 h) when

Fcommon starts to increase again. By 1700 UTC, there are fewer

small cells and then the organized system moves out of the

domain. It would seem that the increases in Fcommon coincide

with the decrease in the number of smaller cells.

The sharp drop at T 1 26 h in Fig. 5 in the Kent case, is

associated with the squall lines leaving the analysis domain and

so reflects different timings alongside a drop in the number of

precipitating cells, as indicated by the drop in Fchance.

The difference inmagnitude for the common points between

the control and the ensemble forecasts is shown in Fig. 6, where

the mean square difference of common points between the

control and each ensemble member, is less than 0.5 for all runs.

For the Coverack case, the ensemble-averaged MSDcommon

remains fairly constant over time (though with a peak at T 1
18 h). This is probably because the forecast was dominated by

the MCS. The Kent case shows more temporal variations that

can be associated with the development of the showers and

merger into squall lines.

FIG. 5. F common for (a) Coverack and (b) Kent cases showing mean (solid line), 61 standard deviation (dashed

lines), and F chance (dotted line) for all ensemble members.

FIG. 6. The MSD over common points for (a) Coverack and (b) Kent cases showing the average MSD (solid line),

and 61 standard deviation (dashed lines).
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Cell statistics in Fig. 7 (for Coverack) and Fig. 8 (for Kent)

show that the distribution of cell size and magnitude is largely

similar for each ensemble member. Overall, the total number

of precipitation cells (.1mmh21 threshold) appears to in-

crease when the scheme is used and there is a hint that there are

more larger cells in the Coverack case, although in general, the

distribution of size and magnitude of precipitation cells are

similar for the control and each ensemble member. Together

with theMSD and Fcommon plots, we can conclude that the cells

have similar characteristics for the control and each ensemble

member but appear in different locations at any particular time

(with evidence that there may be more of the larger cells with

1mmh21 threshold). On the other hand, the Kent case shows a

general reduction in the total number of precipitation cells and

is likely to be linked to slightly stronger upper-level forcing in

this case compared to the Coverack case.

d. Sensitivity to number of grid boxes, ng

As described in section 4, the area DA in the scheme is de-

fined using ng grid boxes. This adjustable parameter deter-

mines how the stochastic perturbations vary spatially. A value

of 8 is chosen by default for reasons described previously.

However, it is still possible to use a smaller (or larger) value of

ng and this section explores the sensitivity of the scheme to

the value of ng in model runs for the cases described above.

Specifically, values for ng of 2 and 4 are compared with the

ng 5 8 runs already described.

The key features in section 4 highlight that a smaller areaDA
would hold fewer thermals and thus the stochastic increments

would be larger in a physically consistent way. This is con-

firmed in the distributions of the instantaneous perturbations

shown in Fig. 9 for both cases. Note that the instantaneous

perturbations are those added in a time step; as discussed in

section 7c, the total perturbation amplitude delivered by

temporally correlated perturbations is of order t*/Dt, typically
an order of magnitude, larger.

There are some differences in the distributions between the

cases though. Specifically, in the Kent case with increased ng,

the distribution shows greater frequency of points with a per-

turbation value of zero, and there is also a narrowing of the

distribution (cf. ng 5 8 and ng 5 2; Fig. 9b), whereas for the

Coverack case (cf. ng 5 8 and ng 5 4; Fig. 9a), the distribution

FIG. 7. Coverack: Cell statistics for radar, the control run, and all ensemble members, using the stochastic BL

scheme with ng 5 8 (as described in section 4a) and different seeds. Rain-rate and area thresholds are indicated in

the title of each subplot.

740 JOURNAL OF THE ATMOSPHER IC SC IENCES VOLUME 78

Unauthenticated | Downloaded 07/22/21 03:10 PM UTC



only becomes narrower and there is no change in the frequency

of points with a perturbation size of zero. These changes in the

distribution are linked to the more numerous convection, and

hence perturbation occurrence, in the Kent case, compared to

the more locationally restricted perturbations (mainly around

the MCS) in the Coverack case.

The sensitivity of the forecast to a change in value of ng is

shown by the time series of average rain rate in Figs. 10a and 10b

FIG. 8. Kent:Cell statistics for radar, the control run, and all ensemblemembers, using the stochasticBL schemewithng5
8 (as described in section 4a) and different seeds. Rain-rate and area thresholds are indicated in the title of each subplot.

FIG. 9. Distribution of amplitude of perturbations for model with different values of ng (as described in section

4a) and amplitude factor (as described in section 7e). The black line is the baseline run (ng 5 8, Ampfactor 5 1).

(a) Coverack and (b) Kent case.
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in the Coverack and Kent cases, respectively. This shows that

using a lower value of ng does not significantly change the pre-

cipitation amount; the rainfall rate using these lower values of ng
actually fall within the range of values from the ensemble

member forecasts (not shown here). Instantaneous rain rate

plots over the Coverack area at the time when the precipitation

was anchored over the village (third row of Fig. 3—and equiv-

alent Fig. 4 for Kent), also show that the main regions of heavy

precipitation are very similar in all ensemble members and

runs with lower value of ng although, again, the finer detail is

different. Cell statistics (see Figs. 13a and 13b for Coverack and

Kent, respectively) show that the distribution of the cell size

and intensity are not sensitive to the value of ng.

The number of common points between the control (no

scheme) forecast and those with the scheme but varying values

of ng are largely similar for both cases. Small changes in

Fcommon are observed with smaller perturbation areas (see

Figs. 11a and 11b for Coverack and Kent, respectively). This is

echoed in the mean square difference of the common points

(see Figs. 12a and 12b for Coverack and Kent, respectively).

This may reflect the idea that it is the variability at the scales

resolvable that matters and the scheme is designed to produce

similar variability on this scale even if a small scale is used in

the scheme.

e. Sensitivity to amplitude

The magnitude of the perturbations at each time step pro-

duced by this scheme are of order 20 times smaller than those

from the (A. Lock 2016, personal communication) scheme

described in section 5. It was demonstrated in the previous

section that changing the seed in the calculation of the per-

turbations or the area over which the perturbations change did

not significantly change the overall forecast compared with a

forecast without the scheme (though substantial differences

develop at small scales). This section considers the effect of the

magnitude of the perturbation on the results. This is achieved

by multiplying the second term on the right-hand side of

Eq. (48) by a factor (hereafter referred to as Ampfactor) thus

increasing the perturbations by that factor. We use Ampfactor

values of 2 and 10. These values of Ampfactor are used purely

for these sensitivity tests, they do not have any physical basis.

This lack of physical basis implies that the results would be less

FIG. 10. Average rain rate for radar and model with different values of ng (as described in section 4a) and

amplitude factor (as described in section 7e). The black line is the baseline run (ng 5 8, Ampfactor 5 1).

(a) Coverack and (b) Kent.

FIG. 11. F common for model with different values of ng (as described in section 4a) andAmpfactor (as described

in section 7e) with associated F chance in the lower lines. The black line is the baseline run (ng5 8, Ampfactor5 1).

(a) Coverack and (b) Kent.
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scientifically justified for use within a forecast. Distributions of

instantaneous perturbations for the experiments are shown

in Fig. 9.

Once again, there are no obvious differences in the larger-

scale structure of precipitation fields or distribution of cell size

with the larger perturbation. These larger perturbations do not

appear to significantly affect the average rain rate (see Fig. 10)

and the area of precipitation is largely similar with differences

only in the detail (see bottom row in Figs. 3 and 4).

The detail can be studied through the other diagnostics.

Differences between Ampfactor 1 and Ampfactor 2 simula-

tions, in comparison with the control and ensemble spread, are

minimal. Larger differences occur for multiplying the pertur-

bations by an Ampfactor of 10. There is a consistent decrease

in Fcommon, particularly for the Kent case, during the mature

stages of the convective events (Fig. 11b). The ensemble-

averaged MSDcommon (Fig. 12) shows similar behavior for

Ampfactor 1 and 2 simulations, and even the Ampfactor 10

results show a similar spread in the ensemble, though again

with some suggestion of more impact in the Kent case.

Similarly, the size andmagnitude of the cells, shown in Figs 13a

and 13b (for Coverack and Kent, respectively), do not change

significantly with perturbation size.

8. Conclusions

A physically consistent but simple stochastic boundary layer

scheme has been developed that takes a form most naturally

expressed as multiplicative noise. The noise is Poisson in

character and, consideration of magnitudes shows that the

distribution can be highly skewed at convection-permitting

scales. The scheme has been derived via a very different route

but has been shown to have much in common with the KC

scheme, though with the advantage that some parameters are

more physically based.

Quantitative investigation of the scheme shows that with

horizontal grid lengths around 1 km temporal correlation is far

more important than spatial. Above all, however, it is notable

that the size of perturbations is very small (overall heating, for

example, generally less than 0.01K in temperature delivered

over a correlation time of around 10min); at least an order of

magnitude smaller than in some more ad hoc schemes. As a

result, they have very little impact on the energetics of the

forecast, so overall domain-averaged precipitation, for exam-

ple, is essentially unchanged.

Differences between ensemble members initialized from the

control do grow to produce significant differences between en-

semble members at the scale of individual convective cells. Thus,

they can plausibly account for lack of predictability at this scale.

After around 12h they appear to be roughly saturated. However,

it must be emphasized that perturbations are continuously added

to the system, so this represents the time scale to achieve a balance

between addition of new perturbations, perturbation growth and

dissipation, not just saturation of initial perturbations. On these

time scales there is no strong evidence for substantial growth of

ensemble spread at larger scales. However, it is likely that, in

addition to this being limited by the domain size, the cases chosen

have a finite lifetime of very active convection.

The results of the scheme are not sensitive to the choice of

averaging area the perturbations are chosen to represent, at

least where this remains within an order of magnitude of the

grid scale. This was the intention behind the design of the

scheme and is consistent with the idea that the greater ampli-

tude of perturbations when applied closer to the grid scale do

not couple with the dynamics, and only those at well-resolved

scales are effective. However, we have not proven this by

looking at the initial perturbation growth, as it seems clear that

the scheme has impact through the longer-term saturation of

the continuously applied perturbations.

Some sensitivity to magnitude in difference diagnostics

compared to no scheme is evident, which suggests that the

amplitude of perturbations at resolved scales does have some

effect, but the sensitivity is not strong. A factor-of-2 increase in

magnitude produces results that are within the ensemble

spread produced by the scheme but an order of magnitude

increase in magnitude does lead to ensemble spread that is

somewhat more rapid, and generally marginally more spatial

spread when considering the Kent case.

FIG. 12. Ensemble-averagedMSD common for model with different values of ng (as described in section 4a) and

Ampfactor (as described in section 7e). The black line is the baseline run (ng 5 8, Ampfactor 5 1). (a) Coverack

and (b) Kent.
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The scheme represents only the variability due to boundary

layer turbulence in a horizontally homogeneous system. Other

sources of boundary layer variability undoubtedly exist, such as

small-scale heterogeneity in land surface and soil moisture. More

ad hoc schemes may well represent actual boundary layer vari-

ability more quantitatively, but at the cost of having less basis in

physical processes. Nevertheless, the scheme has been shown to

be sufficient to produce substantial differences in forecasts at the

scale of convective cells; in Part II of this paper, the differences

between ensemble members is compared with that resulting from

mesoscale differences in the initial and boundary conditions.
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