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ABSTRACT: The East African precipitation seasonal cycle is of significant societal importance, and yet the current

generation of coupled global climate models fails to correctly capture this seasonality. The use of convective parameteri-

zation schemes is a known source of precipitation bias in such models. Recently, a high-resolution regional model was used

to produce the first pan-African climate change simulation that explicitly models convection. Here, this is compared with a

corresponding parameterized-convection simulation to explore the effect of the parameterization on representation of East

Africa precipitation seasonality. Both models capture current seasonality, although an overestimate in September–October

in the parameterized simulation leads to an early bias in the onset of the boreal autumn short rains, associated with higher

convective instability and near-surface moist static energy. This bias is removed in the explicit model. Under future climate

change both models show the short rains getting later and wetter. For the boreal spring long rains, the explicit convection

simulation shows the onset advancing but the parameterized simulation shows little change. Over Uganda and western

Kenya both simulations show rainfall increases in the January–February dry season and large increases in boreal summer

and autumn rainfall, particularly in the explicit convection model, changing the shape of the seasonal cycle, with potential

for pronounced socioeconomic impacts. Interannual variability is similar in both models. Results imply that parameteri-

zation of convection may be a source of uncertainty for projections of changes in seasonal timing from global models and

that potentially impactful changes in seasonality should be highlighted to users.

KEYWORDS: Africa; Precipitation; Climate change; Convective parameterization; Seasonal cycle

1. Introduction

Recent extreme wet seasons over East Africa have had a

range of serious socioeconomic consequences; the successive

failure of the 2018 short rains (October–December) and the

2019 long rains (March–May) led to drought and decreased

food security in Kenya in mid-2019. Conversely, above average

rainfall was experienced during the 2018 long rains (Kilavi

et al. 2018; Finney et al. 2020b) and 2019 short rains, with many

locations receiving more than double the climatological rain-

fall during October–December 2019 (Wainwright et al. 2020).

The anomalously wet short rains in 2019 led to flooding and

landslides, with an estimated 2.8 million people affected across

East Africa. This was followed by a wet 2020 long rains leading

to a large and rapid rise in the level of Lake Victoria in early

2020 to record-breaking levels, with more floods and people

displaced.

Precipitation seasonality is of significant socioeconomic

importance for East Africa, as it impacts agricultural produc-

tivity and food security; late onset and drier than average wet

seasons lead to crop failure and decreased food security. The

timing of onset is particularly important for the initial stages of

crop development. Conversely, very wet seasons can adversely

affect crops such as tomatoes. Seasonal rainfall also affects

replenishment of water in reservoirs for hydroelectric energy

generation, and the prevalence of vectors that transmit dis-

eases such as malaria. Recent declines in the long rains, due to

later onset and earlier cessation of the season, have had det-

rimental consequences over East Africa (Wainwright et al.

2019). Understanding and preparing for possible changes in the

timing and amount of seasonal rainfall is crucial for successful

adaptation to future climate change.

The use of climate model projections of future climate

change over East Africa is often perceived as problematic

given that coupled climate models fail to correctly represent

the present-day seasonal cycle, with the long rains under-

estimated and too late, and the short rains overestimated
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(Tierney et al. 2015; Yang et al. 2015b; Dunning et al. 2017;

Ongoma et al. 2019; Ayugi et al. 2020; Mumo and Yu 2020).

Yang et al. (2015b) found that atmosphere-only models do

reproduce the biannual seasonal cycle but overestimate the

rainfall in all months except April and May. This overestimate

in October–December (short rains) is such that the short rains

are almost comparable with the long rains (Yang et al. 2015b).

This is larger in the coupled simulations, which show more

rainfall in the short rains than the long rains (Tierney et al.

2015), opposite to that observed in reality. The role of these

biases on future projections is unknown; notably for seasonal

prediction the bias is largest during the short rains, but the skill

is also highest for the short rains (Walker et al. 2019).

The atmosphere-only and coupled climate model simula-

tions produced as part of phase 5 of the Coupled Model

Intercomparison Project (CMIP5; Taylor et al. 2012) and the

Coordinated Regional Climate Downscaling Experiment

(CORDEX; Giorgi et al. 2009) all use parameterization

schemes to represent the average effects of convection. The

parameterization of convection in climate models is a known

source of model error, resulting in biases in timing of the di-

urnal cycle of precipitation and biases in rainfall amount, with

an underestimation of hourly precipitation intensities and too

many low-precipitation events on daily time scales (Prein et al.

2015). In the tropics, parameterization of convection can mean

models are unable to correctly represent organized propagat-

ing systems (Kendon et al. 2019; Crook et al. 2019), which are a

key part of some tropical climates (Vellinga et al. 2016). Biases

in the cloud and rainfall model fields, resulting from the use of

parameterized convection, interact and influence other fields,

including radiation, and can lead to a range of consequences,

including upscale effects on larger scales, such as monsoons

(Marsham et al. 2013; Taylor et al. 2013; Birch et al. 2014a;

Willetts et al. 2017; Finney et al. 2019). Differences in the

simulated strength of entrainment into convection have also

been linked to the uncertainty in climate sensitivity (Sherwood

et al. 2014).

Models with high spatial resolution (,4 km) can represent

convection explicitly without the need for a convection

scheme; such models are termed ‘‘convection-permitting’’

(Prein et al. 2015). Convection-permitting models (CPMs) are

used operationally for forecasting across the world and have

led to a large improvement in the skill of short-range precipi-

tation forecasts (Clark et al. 2016). CPMs have been found to

better represent extreme precipitation on hourly time scales

and the diurnal cycle of precipitation, lead to improved rep-

resentation of precipitation structures (Prein et al. 2015), and

resolve mesoscale convective organization (Stratton et al.

2018). However, the high computational demand of CPMs

limits the length of simulations available.

As part of the Future Climate for Africa (FCFA) Improving

Model Processes for African Climate (IMPALA) project, two

10-yr simulations of the Met Office Unified Model (MetUM)

were performed at convection-permitting (4.5 km) resolution

for a pan-Africa domain (CP4A; Stratton et al. 2018; Kendon

et al. 2019). One simulation is for the present climate (1997–

2007) and one is for an idealized future climate (circa 2100

under a high-emissions scenario). This is the first time that

climate-length convection-permitting simulations have been

completed for the African continent (Stratton et al. 2018;

Kendon et al. 2019). Two comparable simulations were also

completed at 25-km resolution with parameterized convection

(P25). By comparing these simulations, the impact of convec-

tive parameterization on African climate variability and cli-

mate change can be explored. While previous studies have

examined the impact of CPMs on short time scales over Africa,

these simulations enable us to examine the impact of CPMs on

longer time scales.

Stratton et al. (2018) analyzed the first five years of the

present-climate CP4A (hereinafter simply CP4) simulations

and found notable improvements in the representation of bo-

real summer rainfall compared with P25, with a reduction in

the persistent dry bias in West Africa, found in many versions

of the MetUM (Williams et al. 2015; Walters et al. 2017).

Berthou et al. (2019b) found that CP4 gave an improved rep-

resentation of the mature phase of the West African monsoon

and better distribution of precipitation rates, resulting in better

representation of wet and dry spells. They also found an im-

provement in the diurnal cycle of rainfall, a well-documented

expected improvement from using CPMs (Prein et al. 2015).

Kendon et al. (2019) (see also Berthou et al. 2019a; Finney

et al. 2020a; Fitzpatrick et al. 2020) explored the climate

change signal in CP4 and P25, and found that the convection-

permitting model contained increases in dry spell length during

the wet season, not found in P25. CP4 also exhibited greater

increases in extreme 3-hourly precipitation than P25, leading

to the conclusion that projected changes in both wet and dry

extremes over Africa may bemore severe than previous results

from parameterized convection models indicated.

The main improvements of using CPMs are found when

deep convection is a dominant process and in regions with

strong spatial heterogeneities (Prein et al. 2015). As is typical

of the tropics, convective systems contribute most to annual

rainfall totals over East Africa, and orography ranges from

coastal regions adjacent to the Indian Ocean to mountainous

regions within the East African Rift Valley, with elevations

greater than 4000m (Dinku et al. 2007). Thus, over East Africa

it would be expected that the use of CPMs would yield sub-

stantial improvements. When examining short-range forecasts

over East Africa, Woodhams et al. (2018) found that a

convection-permitting model had the greatest skill improve-

ment relative to a global model over land in East Africa.

Finney et al. (2019) provided an evaluation of rainfall in the

present-day CP4 and P25 simulations, with a specific focus on

the Lake Victoria Basin. They showed an improvement in

contribution of extreme rain rates to total rainfall and the di-

urnal rainfall cycle in CP4 compared to P25. Finney et al.

(2019) carried out a simple seasonal analysis (based on month

groupings) of total rainfall. In this regard there were no sub-

stantial improvements upon the P25 simulation; however, the

onset and cessation of the rainy seasons were not considered

and the effect of differences in season timing was not ac-

counted for in analysis of the variability and changes. Similar

results were found on the broader African continent scale by

Kendon et al. (2019), but again the onset and cessation dates

were not analyzed. In the future climate change simulations,

1368 JOURNAL OF CL IMATE VOLUME 34

Unauthenticated | Downloaded 01/22/21 03:34 PM UTC



Finney et al. (2020a) find that P25 fails to capture the wide-

spread increases in rainfall extremes shown by the convection-

permitting simulation across EastAfrica. Furthermore, although

the P25 simulation captures the changes in the sea-breeze cir-

culation under future climate change found in the CP4 simula-

tion, it does not capture the rainfall response to these changes.

Overall, these studies suggest important improvements from

using convection-permitting simulations over East Africa, and

differences in the future projections (Finney et al. 2020a).

High dependence upon rain-fed agriculture makes the sea-

sonal rainfall across East Africa of significant societal impor-

tance; recent declines in the long rains, due to shorter seasons,

have had adverse impacts on food security (Rowell et al. 2015;

Wainwright et al. 2019). It is therefore important to understand

how wet seasons may change under future climate change,

but current model limitations, including the poor model

representation of seasonality in both atmosphere-only and

coupled CMIP5 models (Yang et al. 2015b), may limit the use

of future projections of seasonality. Furthermore, the ap-

parent discrepancy between recent observed declines in the

long rains and projected future increases in the long rains

limits the use of climate information in adaptation planning

(Rowell et al. 2015; Wainwright et al. 2019; Ongoma et al.

2018; Dosio et al. 2019; Gebrechorkos et al. 2019). Dunning

et al. (2018) produced projections of changes in seasonal

timing and rainfall totals under future climate change over

East Africa using CMIP5 models; they found the short rains

are projected to start and end later, with an increase in short

rains rainfall. The long rains are projected to end earlier, but

there was no multimodel consensus on changes in long rains

rainfall totals.

Given the wider-scale improvements in the representation

of East African climate from using convection-permitting

models (Finney et al. 2019; Kendon et al. 2019), and the high

socioeconomic importance of precipitation seasonality, here

we aim to explore the representation of precipitation season-

ality over East Africa in both the CP4 and P25 simulations. For

the future use of these simulations, and to inform future sim-

ulation design, it is important to understand how models cap-

ture the seasonality, changing seasonality under future climate

change, and the interannual variability when models are run in

an atmosphere-only configuration, with shared sea surface

temperatures and atmospheric boundary conditions. First we

explore the interannual variability in both simulations; inter-

annual variability is often understood in terms of tele-

connections, whereby a remote driver influences local rainfall

over land, via an atmospheric pathway. In simulations such as

those used in this study that remote driver will generally be

external to the regional model, but the regional model can

affect the local response of convection and it is known that in

the tropics that explicit convection can have upscale effects to

mean state.

In their studies Finney et al. (2019) and Kendon et al. (2019)

take a simple approach to seasonality and focus on the mean

state and extremes. Here we extend this by calculating onset

and cessation dates for both East African wet seasons and

comparing with satellite-based precipitation datasets to de-

termine whether the use of convective parameterization

adversely affects the representation of seasonality in the

model. Onset and cessation dates are compared for the pres-

ent- and future-climate simulations, to determine if the pro-

jections of changing seasonality under future climate change

are consistent with the CMIP5 projections, and whether they

are affected by the representation of convection. To further

explore the identified differences between CP4 and P25, the

differences and changes in the annual cycles of moist static

energy and convective instability are presented. Finally,

changes in the shape of the seasonal cycle are explored, with

the high horizontal resolution in CP4 and P25 enabling us to

explore changing seasonality over small regions with distinct

seasonal regimes.

2. Models, methods, and data

a. Model simulations

We analyze four model simulations produced using regional

climate models based on the Met Office Unified Model

(MetUM) over an African domain (458S–398N, 258W–568E).
All simulations are run for 10 years and 2 months (starting on

1 January); to have full calendar years for analysis, here just the

first 10 years are used. The key results are not for January or

February, so it was decided that using the first two months

would have minimal impact. Two simulations are run for a

present climate (January 1997–February 2007) and two are run

for an idealized future climate. For both the present and future

climates, one simulation is run with explicit convection (CP4)

and one with parameterized convection (P25). Here we use

daily precipitation data, and monthly temperature (1.5m and

700 hPa), specific humidity (1.5m), and geopotential height

(700 hPa). Full details of themodel specifications and setup can

be found in Stratton et al. (2018) and Kendon et al. (2019); a

brief overview is given here.

1) GLOBAL MODEL, COMMON SETUP, AND

DRIVING DATA

Both the CP4 and P25 models are one-way nested within a

MetUM Global Atmosphere/Land, version 7.0 (GA7/GL7;

Walters et al. 2019), simulation run at N512 horizontal reso-

lution (;26 km in latitude by 39 km in longitude over Africa),

with 85 levels in the vertical direction and an upper boundary

at 85 km. The global model provides lateral boundary condi-

tions to the regional model and includes convective parame-

terization. The Joint U.K. Land Environment Simulator

(JULES) land surface scheme is used to calculate fluxes of

energy, water, and momentum into the atmosphere from the

land surface. Sandy soils are used uniformly across the domain

to avoid differences in precipitation due to unrealistic small-

scale variations in soil type (De Kauwe et al. 2013).

For the two present climate simulations, the global model is

driven using analyses of observed sea surface temperature

(SST) over 1997–2007 (Reynolds et al. 2007). For the future

climate simulations, SSTs are the sum of Reynolds SST ana-

lyses over 1997–2007 and the climatological average SST

change from 1975–2005 to 2085–2115 from a HadGEM2-ES

simulation, using the RCP8.5 scenario (high emissions; van
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Vuuren et al. 2011). SST changes were calculated for each

month, then interpolated both spatially and temporally, and

added to the daily varying SST analysis forcing data (Reynolds

et al. 2007) on the various model grids. The increase in SST

corresponds to a global mean SST increase of just under 4K

and a global mean 1.5-m air temperature change of 5.2K. This

approach means that the present-climate and future-climate

(and CP4 and P25) simulations share much of the same SST

variability. For the present-climate simulation greenhouse gas

(GHG)massmixing ratios vary annually, withCO2 varying from

5.516 79 3 1024 kg kg21 for 1997 to 5.814 883 1024 kgkg21 for

2006. For the future-climate simulation,GHGvalues were taken

from the RCP8.5 scenario for 2100 (Kendon et al. 2019). The

same aerosol and ozone climatologies are used in both present-

and future-climate simulations.

2) CONVECTION-PERMITTING MODEL (CP4)

The CP4 regional model is based upon the Met Office UKV

regional model, which is used to produce weather forecasts for

the United Kingdom (Stratton et al. 2018). Importantly, it does

not include convective parameterization, and depends onmodel

dynamics to explicitly represent convective processes. It covers

the entirety of continental Africa, with horizontal grid spacing

ranging from 3.2 km at 458S to 4.5 km at 08S. The horizontal

resolution was chosen to balance the domain size and compu-

tational cost; thus, while it will partially resolve deep convection

it will not resolve smaller-scale congestus or shallow convection

(Stratton et al. 2018). Orography is applied at the regional

model’s raw resolution; thus, this is better resolved by the CP4

model than the P25model. TheCP4 regionalmodel has 80 levels

in the vertical direction with the model top at 38.5 km; it has

more levels in the upper troposphere than the UKV in order to

better resolve convection and the tropical troposphere.Moisture

conservation schemes are employed in this model (and the

global driving model); in the CP4 model this has the effect of

reducing the mean precipitation values everywhere, bringing

them closer to observations, and reducing the frequency of very

high unrealistic precipitation rates (Stratton et al. 2018). For all

analysis in this study, the CP4 data have been regridded to the

N512 horizontal grid (first-order conservative remapping).

3) PARAMETERIZED CONVECTION MODEL (P25)

The P25 regional model has the same physics configuration as

the global model (GA7/GL7), including convective parameteri-

zation. It is run at N512 resolution and has 63 levels in the vertical

direction with a model lid at 41km. The P25 regional model has

the same domain, land surface, and aerosol climatologies as CP4.

Unlike CP4 and the global driving model, P25 does not include

moisture conservation. There are also some differences in the

boundary layer and cloud schemes [as described by Stratton et al.

(2018)]. However, the explicit convection and higher resolution

are expected to dominate the differences in seasonality. Indeed,

Berthou et al. (2019b) compared their results with results from

Cascade project studies (Pearson et al. 2010, 2014; Birch et al.

2014a), where they did not have differences in the cloud scheme,

and found them to be similar, and thus concluded that majority of

differences between CP4 and P25 are due to the representation of

convection and resolution.

b. Rainfall observations

Because of the limited availability of rain gaugeobservations over

East Africa, two satellite-based precipitation datasets are used as

rainfall observations. The Tropical Rainfall Measuring Mission

(TRMM) Multisatellite Precipitation Analysis 3B42, version 7,

uses a combination of thermal infrared imagery, visible imagery,

passive microwave imagery, radar, and rain gauge observations to

produce 3-hourly precipitation estimates, and is available from1998;

here we have used daily rainfall estimates for 1998–2007 (Huffman

et al. 2007). TAMSAT (TropicalApplications ofMeteorology using

Satellite data and ground-based observations) rainfall estimates

were also used for comparison; estimates are available from 1983,

and therefore it covers the entire CP4/P25 simulation period

(Maidment et al. 2017). Because they cover the same period,

TAMSAT, version 3 (TAMSATv3), data are used for statistical

tests. Thermal infrared imagery, calibrated against observations

from rain gauges, is used to produce daily rainfall estimates.

TAMSATv3 daily rainfall data were used for 1997–2006. Both

rainfall estimates have been regridded to the N512 grid (first-order

conservative remapping).

c. Onset/cessation

To examine the representation of precipitation seasonality

in the CP4 and P25 simulations, we quantify the seasonal cycle

by calculating onset and cessation dates for one/two annual wet

seasons. The methodology of anomalous accumulation is used

to calculate onset and cessation dates; it is based on themethod

of Liebmann et al. (2012) and is fully described in Dunning

et al. (2016). A brief overview is given here.

The first step is to determine which regions have one wet season

per year (annual regime) and which regions have two wet seasons

per year (biannual regime). Harmonic analysis is used to categorize

annual and biannual seasonal regimes; at each grid point the ratio of

the amplitude of the second harmonic to the amplitude of the first

harmonic was computed. If the ratio is greater than 1, then the

amplitude of the second harmonic is greater, and the grid point is

classified as having a biannual seasonal regime. If the ratio is less

than 1 then the grid point classified as an annual seasonal regime.

Onset and cessation dates were computed using themethod based

oncumulative rainfall anomalies (Liebmannet al. 2012;Dunninget al.

2016). This method works by identifying minima and maxima in the

cumulative daily rainfall anomaly. The periods of the year when the

wet seasons occur on average are found by identifying minima and

maxima in the climatological cumulative daily rainfall anomaly; one

season is identified for annual regimes and two seasons are identified

for biannual regimes. These periods are termed the ‘‘climatological

wet seasons.’’ For each year and season, the period from20or 50 days

(for the biannual and annual regimes, respectively; seeDunning et al.

2016) before the start of the climatological wet season to 20 or 50 days

(again for thebiannual andannual regimes, respectively) after the end

of the climatological wet season is extracted, and the cumulative daily

rainfall anomaly is calculated for this period. The minima in the cu-

mulative daily rainfall anomaly are defined as the onsets, and the

maxima (after the minima) are defined as the cessations.

A secondmethod for determining onset dates was also proposed

by Liebmann et al. (2012) based on the cumulative daily rainfall

anomaly; in this method, for each day within the onset search
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interval (from 20 or 50 days prior to the start of the climatological

wet season to 20 or 50 days after the end of the climatological wet

season), the number of days until the cumulative daily rainfall

anomaly dips below the value on that reference day is counted. The

day with the largest count is defined as the onset. Throughout this

analysis both methodologies have been used to ensure robustness;

results were consistent for both methodologies and are only shown

for the first methodology (minima/maxima).

FUTURE CHANGES

Both methods used for calculating onset/cessation depend on

the ‘‘cumulative daily rainfall anomaly,’’ a quantity calculated by

subtracting the annualmean daily rainfall from the daily rainfall,

and then summing these anomalies. Both methods work by

looking for minimum values in this quantity. Thus the onset and

cessation are affected by the value of the mean daily rainfall.

Future climate projections from CMIP5 exhibit a greater

increase in rainfall totals during short rains when compared

with the long rains (Rowell et al. 2015; Dunning et al. 2018).

Figure 1a shows an example; the red line (for the future)

shows a large increase in the short rains, while there is only a

small increase in the long rains. This leads to an increase in the

daily mean rainfall (red dotted line versus blue dotted line).

This change in thedailymean rainfall results in a changeof sign of

the rainfall anomaly at the beginning and end of the long rains;

rainfall at the beginning and endof the season that previously gave a

positive anomaly now gives a negative anomaly. Thus, the minima

occur later and the maxima occur earlier (Fig. 1b); the onset has

gotten later and cessation has gotten earlier despite little change in

rainfall in the long rains.

This may be a problem when analyzing future changes: onset/

cessation dates for the long rains may alter due to large increases in

the amount of rainfall occurring during the short rains. To account

for this, in this analysis the mean daily rainfall from the present cli-

mate simulation (at each grid point) is used to compute future onset

and cessation dates. While this may also have some limitations, a

consistent algorithm is applied to all model simulations and obser-

vations, so onset and cessation dates, and projections, are compa-

rable, and effects of explicit convection can be identified.

d. Moist static energy

Yang et al. (2015a) analyzed the convective instability over East

Africa and proposed that the precipitation annual cycle over East

Africa is modulated by the near-surfacemoist static energy (MSE).

Furthermore, when investigating the bias in the East African pre-

cipitation annual cycle in coupled models, as compared with

atmosphere-onlymodels, Yang et al. (2015b) found that the rainfall

bias can be explained by the bias in convective instability, which is

dominated by the bias in the near-surfacemoist static energy. These

metrics are also computed here to explore the differences between

the CP4 and P25 simulations. MSE is defined as

h5 c
p
T1Lq1 gz , (1)

where cp is the specific heat capacity at constant pressure, T is the

temperature (K),L is the latent heat of evaporation, q is the specific

humidity, g is the gravity acceleration, and z is the height above the

surface. The conditional instability can be defined as the difference

between the surface MSE (hs) and the saturated MSE at 700hPa

(h*
700hPa

), as defined in Yang et al. (2015a). Monthly 1.5-m tem-

perature and specific humidity were used to calculate surfaceMSE.

Monthly 700-hPa temperature and geopotential height were used

to compute saturated MSE at 700hPa; however, pressure-level di-

agnostics were not enabled for the first 6 months of the 4-km

present-climate simulation, and therefore h*
700hPa

is not calculated

for January–June 1997 for this simulation.

e. Statistical tests

Because the P25 and CP4 simulations have the same boundary

conditions, and are driven by the same global model simulation, it

FIG. 1. This figure demonstrates the need to use present daily mean rainfall when computing

future onset and cessation dates: (a) two example seasonal cycles (solid lines) and daily mean

rainfall (dashed lines) (blue is for present, and red is for future), and (b) the cumulative daily

rainfall anomaly for the same seasonal cycles; crosses mark the minima and maxima.
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would be incorrect to assume independence when comparing the

P25 and CP4 simulations. Therefore, we cannot use a t test to

establish the statistical significance of these differences (von

Storch and Zwiers 1999, and elsewhere). Here, the paired differ-

ence test has been used; this works by computing the difference

fields and testing the null hypothesis that themean difference is 0.

Full details can be found in von Storch andZwiers (1999).All tests

are done using a 90% confidence level.

3. Results

a. Interannual variability

The overall aim of this paper is to explore the effects of

convective parameterization on the representation of precipi-

tation seasonality over East Africa under present and future

climates; this will be achieved by comparing the CP4 and P25

simulations described in section 2. First, it is helpful to explore

the role of remote versus internal drivers and the sensitivity of

this to convective representation (CP4 vs P25). Understanding

the drivers of interannual variability (utilizing the fact that

these two simulations have identically varying boundary con-

ditions) is an important precursor for both understanding and

testing the sensitivity of the 10-yr mean seasonality to con-

vective representation. Information on the sensitivity of in-

terannual variability to local versus remote drivers, and to a

model’s representation of convection, is also important in its

own right for further improving its modeling and prediction.

Here we examine the interannual variability in both the pres-

ent- and future-climate simulations and compare CP4 with

P25, and both models with rainfall observations.

Figure 2 shows the precipitation time series from the CP4

and P25 simulations (and TAMSATv3 observations) for 1997–

2006 averaged over an East Africa region. This region is used

to define the part of East Africa that experiences a biannual

FIG. 2. Time series of rainfall over East Africa (the region shown on the inset map): (a) Observed rainfall (TAMSATv3) and rainfall fromCP4

and P25 present-climate simulation for 1997–2006. (b) Rainfall from CP4 and P25 present- and future-climate simulations. (c) Future2 present

difference for CP4 and P25. All time series were smoothed using a 31-day moving average. (d),(e) Monthly correlations between the time series;

different colors and lines indicate different pairings of model and observation time series. The value on the y axis is the Pearson correlation

coefficient. Correlation coefficients greater than 0.55 indicate statistical significance at the 90% confidence interval.
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rainfall regime and is used throughout the paper; it is the same

region as is used inWainwright et al. (2019) and is similar to the

region used in Rowell et al. (2015). Correlations were com-

puted for each month; the results are shown in Figs. 2d and 2e.

Figure 2a demonstrates that the interannual variability is very

similar in the CP4 and P25 simulations; monthly correlations

between the two (CP4 and P25) present-climate simulations

are generally high, with values for wet season months (March,

April, May, October, November, and December) ranging be-

tween 0.66 and 0.96 (all significant at 90% confidence interval;

Fig. 2d). Correlations are lower in the boreal summer dry

season months (especially July and August), but above 0.75 in

January and February. These high CP4/P25 correlation values

demonstrate that the interannual variability is primarily con-

trolled from the SSTs and atmospheric boundary conditions,

and only marginally influenced by the representation of con-

vection and factors within the regional domain. This is true of

both wet seasons; while we would expect the interannual var-

iability in the short rains to be driven by larger-scale factors,

from outside the regional domain [such as El Niño–Southern
Oscillation (ENSO) and the Indian Ocean dipole (IOD);

Nicholson 2017], these results confirm that in these simulations

the interannual variability in the long rains is also largely

controlled by the combination of the SSTs and atmospheric

boundary conditions (known to be important for the long rains;

Vellinga and Milton 2018). Lower correlations during the bo-

real summermonthsmay be related to low rain rates or the role

of local processes. Overall, this confirms that compared with

comparing two coupled global models for 10 years, the role of

internal variability in affecting the difference in mean state

between the two models is massively reduced, as the interan-

nual variability is so constrained by SSTs and boundary

conditions.

When comparing the two (CP4 and P25) future-climate

simulations, monthly correlations for wet season months range

between 0.77 and 0.95 (significant at 90% confidence interval),

again demonstrating the similarity in the interannual vari-

ability (Figs. 2b,d). Monthly correlations for the future-present

change in CP4 and P25 are also high in wet seasonmonths, with

values ranging between 0.69 and 0.91 (significant at 90% con-

fidence interval; Figs. 2c,d). The future–present climate dif-

ference looks very similar in CP4 and P25 (Fig. 2c). However,

when comparing the CP4 (and P25) present-climate and

future-climate simulations, correlations are high in November

(0.8 and 0.71 respectively), but are much lower in other months

(Fig. 2e, dashed lines). This is due to the fact that the boundary

conditions differ between the present- and future-climate

simulations; the extent of the impact of this depends on the

consistency of the global climate response to common inter-

annual SST anomalies. The experiment design (wherein future

SST is formed of SST analyses plus average SST change;

section 2) means that ENSO and IOD years are the same in the

present and future scenarios. This explains the high correlation

between present and future scenarios in the peak of the short

rains (November), known to respond strongly to such events

(Nicholson 2017), but in other months there is a different

tropics-wide atmospheric response to the SSTs leading to dif-

ferent interannual variability in East African precipitation.

Correlations with observations (TAMSATv3) are weaker

than the CP4/P25 correlations for most months (Fig. 2e), al-

though correlation coefficients of 0.77 and 0.84 (CP4 and P25)

for November indicate that the simulations are able to capture

the observed interannual variability in the peak of the short

rains. Correlation values for the long rains are lower (ranging

from20.2 to 0.52). This is related to the differing nature of the

long and short rains; observational studies have found tele-

connections between SSTs and the short rains, while correla-

tions between the long rains and SSTs are much weaker (e.g.,

Walker et al. 2019). Vellinga and Milton (2018) found the

seasonal amplitude of the Madden–Julian oscillation was as-

sociated with the interannual variability of the long rains (via

changes in subsidence over East Africa). The high correlation

between CP4 and P25 during the long rains indicates that

March–May rainfall in the simulations is linked to their com-

mon boundary conditions, but this large-scale response to

global SSTs differs in the real world due to random internal

atmospheric variability, and hence the model and observation

rainfall correlations are lower during the long rains. The high

correlations during the short rains are likely to be the conse-

quence of both model and observed rainfall being linked to

specific SST patterns, such as the IOD, and consistent atmo-

spheric responses to these SSTs and impact thereof on East

Africa, which models are known to capture well.

b. Seasonal cycle: Present-day evaluation

Having determined that the interannual variability is similar

in CP4 and P25 under present and future climates, in this

section the representation of the 10-yr mean precipitation

seasonality under present-climate conditions is explored.

Figures 3 and 4 show the mean annual cycle of precipitation

over East Africa, and the mean onset and cessation dates over

the region for both the present- and future-climate simulations.

Onset and cessation dates were calculated using the method of

anomalous accumulation (see section 2c; Liebmann et al. 2012;

Dunning et al. 2016; Fig. S1 in the online supplemental mate-

rial). Both simulations correctly capture the biannual seasonal

cycle, with wet seasons in March–May (long rains) and

October–December (short rains; Fig. 3a). However, there are

differences between CP4/P25 and the observations (TRMM

and TAMSATv3).

Both simulations overestimate the duration of the long rains,

with the onset of the long rains too early and the end of the long

rains too late (Figs. 3a and 4). This overestimate is more pro-

nounced in P25; the stars in Fig. 4 demonstrate that the long-

rains onset/cessation dates in P25 are statistically significantly

different (paired difference test) from the long-rains onset/

cessation dates in TAMSATv3. The rainfall peak in April is

also higher in P25 than in TRMM, TAMSATv3, and CP4.

However, inMay the overestimate is slightly more pronounced

in CP4 than in P25.

P25 also overestimates rainfall in September–October

(Fig. 3a), and thus the onset of the short rains is too early

in P25 (Fig. 4). The difference between the short-rains onset

in P25 and TAMSATv3 is statistically significantly different

(shown by the star). For the short rains, CP4 shows much

better agreement with observations. This difference in the
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representation of the onset of the short rains is the largest

difference between CP4 and P25 for the present-climate

simulations.

In both CP4 and P25 rainfall is higher in the long rains than

the short rains, in agreement with observations, while Yang

et al. (2015b) found large overestimates in the short rains in the

AMIP models such that short rains rainfall was comparable

with long rains rainfall. The better balance in rainfall amounts

in CP4 and P25 may be related to the updated model versions

[GA7/GL7 is the input for CMIP6, whereas Yang et al. (2015b)

analyzed CMIP5 models] or the higher model resolution, or it

may not be present in theMetUM [Hadley Centremodels were

not included in Yang et al.’s (2015b) analysis]. Dunning et al.

(2017) found that the AMIP models overestimated the long

rains (onset too early and cessation too late) and had too-late

end of the short rains. The overestimate in the long rains was

also found in both CP4 and P25, but CP4 had a much better

representation of the short rains. This therefore suggests that

CP4 has a better representation of the seasonal cycle, espe-

cially for the short rains, over East Africa than the AMIP

models produced as part of the CMIP5 process. P25 offers

some improvement, in that it correctly shows the long rains

wetter than the short rains but has timing biases for both the

long and short rains.

Overall, the main difference between CP4 and P25 in terms

of present-climate seasonal cycles relates to the overestimate

of rainfall in P25 in September–October, and the early onset of

the short rains. This will be explored further in section 3d. Both

simulations have smaller overestimates of the long rains with

onset too early and cessation too late.

c. Seasonal cycle: Future change

Existing future projections of changing seasonality over East

Africa have previously been produced using the CMIP5

models (e.g., Dunning et al. 2018), which do not correctly

represent the current observed seasonal cycle over East Africa

(Yang et al. 2015b). Therefore, having shown that CP4 and P25

capture the current seasonal cycle over East Africa better than

the CMIP5models, here we investigate the changing seasonality

FIG. 3.Mean annual cycle of precipitation over EastAfrica (region shown onmap to left): (a) Observed precipitationmean annual cycle

(TAMSATv3 and TRMM) and mean annual cycle from present-climate simulations from CP4 and P25. (b) Mean annual cycle from

present- and future-climate CP4 and P25 simulations (future-climate simulations are shown with dashed lines). Mean annual cycles were

smoothed using a 31-day moving average. The shaded bars at the bottom show themean period of the wet season, with circles and squares

showing themean onset and cessation dates, respectively; gray is for TAMSATv3, orange is for CP4, and blue is for P25. For (b) the darker

bars are for the future-climate simulation.

FIG. 4. Mean period of the wet season in observations

(TAMSATv3 and TRMM), and the present- and future-climate

CP4 and P25 simulations. The circles and squares respectively show

the mean onset and cessation of the wet season averaged over 10

years and over the East African region shown in Fig. 2; the shaded

bar shows the period of the wet season. For CP4 and P25 the darker

bars show the future-climate simulations. Stars indicate statistically

significant differences. On the present-climate (lighter) bars, the

stars indicate if the onset/cessation is statistically significantly dif-

ferent from the onset/cessation from TAMSATv3. On the future-

climate (darker) bars the stars indicate if the onset/cessation is

statistically significantly different from the onset/cessation in the

corresponding present-climate simulation. The paired difference

test was used to establish statistical significance; see section 3e.
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signals in the CP4 and P25 models under future climate change,

to establish if they agree with projections from CMIP5 simula-

tions and whether explicit convection affects the climate change

in the seasonal cycle. Furthermore, projections from the CP4

and P25 simulations are compared to establish the role of ex-

plicit convection on future projections of seasonality.

Figure 3b compares the seasonal cycle of precipitation under

present and future climates. Both projections show a large increase

in rainfall during the short rains, and a smaller increase in rainfall

during the long rains. Given the role of remote drivers found above,

the large increase in short rains rainfall may be linked to its strong

association with SSTs, although the possibility of a consistent (year-

to-year) role of processes within the East African region is also

plausible [cf. Rowell and Chadwick’s (2018) decomposition]. The

peak of the short rains increases from 2.5–3 to;6mmday21. In the

dry seasons, no increase is found in either simulation during the

boreal summer, but small increases are seen in boreal winter; this is

discussed further in section 3e. In terms of timing, there is an ap-

parent shift in the timing of the peak of the short rains, occurring

later in the future-climate simulation.

Figure 4 shows the timing of the onset and cessation of the

long and short rains under both present and future climate;

the darker bars are for the future-climate simulation. This

confirms a change in the timing of the short rains; both P25 and

CP4 project the onset and cessation of the short rains getting

later under future climate change, with the change in cessation

larger than the change in onset date, and thus a lengthening of

the season. The stars indicate that the changes in onset/

cessation of the short rains are statistically significant. For

the long rains the changes in onset/cessation are much smaller;

Fig. 4 shows that the only statistically significant change is the

onset of the long rains getting earlier in the CP4 simulation.

Figure 5 and Fig. S2 in the online supplemental material

depict the spatial pattern of the mean future-climate minus

FIG. 5. Future-climate minus present-climate change in onset/cessation dates for the (top) and (bottom) long rains and (middle) short

rains for (a)–(f) CP4 and (g)–(i) P25. Stippling indicates where the change is significant at the 10% significance level. Gray regions have

one wet season per year.
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present-climate changes in onset/cessation for the region that

experiences a biannual regime; stippling indicates statistically

significant changes. For the short rains, Figs. 5d–f and Fig. S2

show that the later onset and cessation and increase in seasonal

rainfall are universal across the part of East Africa that

experiences a biannual regime; the only differences are found

over parts ofUgandawhere the short rains onset gets earlier; this

will be discussed further in section 3e. These projections agree

with the projections from the CMIP5 models (Dunning et al.

2018), which showed later onset and cessation of the short rains,

and an increase in short rains rainfall (which was, for the ITCZ

as a whole, linked to its slower retreat and a deepening of the

Saharan heat low). For the short rains the projections in CP4 and

P25 are very similar, suggesting that this response is not affected

by the representation of convection.

For the long rains, Fig. 4 shows that CP4 projects the onset of the

long rains getting earlier, whereas P25 shows little change in the

timing of the long rains. Figure 5a shows the onset of the long rains

inCP4 advancing bymore than 10 days in some locationswhile P25

only contains small changes in the onset of the long rains under

future climate change (Fig. 5g). The change in long rains onset in

CP4 is statistically significant across much of the region (Fig. 5a),

while there is no statistically significant change in P25. This earlier

onset signal is a consequence of the rainfall increase in February

and early March in CP4, shown in Fig. 3b. P25 does not show a

rainfall increase in early March. For the cessation of the long rains,

neither CP4 nor P25 shows a consistent signal; averaged across the

region, changes are small, although there is a coherent picture of

later long rains cessation in both models in Uganda. Both models

showan increase in long rains rainfall (as inFig. 3b), but this ismuch

more widespread in CP4 than P25 (Fig. 5); the P25 increase is

largest over the region north of Lake Victoria. Figs. 5c and 5i both

show rainfall decreases along the coastline of the Horn of Africa,

particularly in CP4, linking to the inland shift of sea breeze con-

vergence described by Finney et al. (2020a).

Dunning et al. (2018) found that CMIP5models projected the

cessation of the long rains getting earlier, although fewer than

50%of themodels used showed a statistically significant change.

For the onset of the long rains and long rains rainfall Dunning

et al. (2018) did not find strong model agreement; Rowell et al.

(2015) also found that CMIP5models do not agree on the sign of

future rainfall change inMarch,April, andMay. Therefore, both

CP4 and P25 projections are within the range of CMIP5 pro-

jections. These results suggest that for the long rains the repre-

sentation of convection does affect the projections of changing

seasonality under future climate change, and this is potentially

an additional source of uncertainty, not considered in projec-

tions based on CMIP/CORDEX alone.

Parts of western Kenya and Uganda are not included in

Fig. 5; this is because harmonic analysis suggests that either in

the present- or future-climate simulation these regions expe-

rience one wet season per year. The changing seasonality over

these regions is explored in section 3e.

d. Toward an understanding of current seasonality

differences and future seasonality changes

Results in section 3b show that both simulations correctly

capture the biannual seasonal cycle over East Africa, with

higher rainfall totals in the long rains than the short rains. In

section 3c it was found that both simulations show the onset

and cessation of the short rains getting later under future cli-

mate change, with an increase in short rains rainfall, as found in

the CMIP5 projections (Dunning et al. 2018). In addition, two

differences between the CP4 and P25 simulations have been

identified in terms of seasonality of rainfall over East Africa:

1) P25 overestimates the rainfall in September–October,

leading to an early onset of the short rains (under present

climate), and

2) projections fromCP4 show an earlier onset of the long rains

under future climate change, whereas P25 shows little

change in the onset of the long rains.

The precipitation annual cycle over East Africa has previ-

ously been associated with the convective instability (CI), and

in particular, the annual cycle of near-surface moist static en-

ergy (MSE; Yang et al. 2015a). Furthermore, differences in the

precipitation annual cycle in different model simulations could

be explained by the bias in CI (Yang et al. 2015b). Therefore, in

order to explore these differences between CP4 and P25, the

annual cycle of CI is calculated for each simulation (see

section 2d). The difference between the MSE of a rising parcel

and the saturated MSE at a given height is proportional to the

parcel’s buoyancy (Cook and Seager 2013); therefore, smaller

negative values of CI imply greater buoyancy and less stability

and more convective rainfall.

Figure 6 shows the annual cycle in CI over East Africa,

calculated as the difference (dotted line) between the surface

MSE (hs; solid line in Fig. 6a) and the saturatedMSE at 700 hPa

(h*
700hPa

; dash–dotted line in Fig. 6a), as defined in Yang et al.

(2015a). As found in Yang et al. (2015a), the annual cycle of CI

closely follows the annual cycle of rainfall, with peaks in April–

May and October–November, and the annual cycle in CI is

dominated by the surface MSE (which is then dominated by

the surface specific humidity; Fig. S3 in the online supple-

mental material).

Previously, Yang et al. (2015b) found that the differences

in the annual cycle of rainfall over East Africa between

atmosphere-only and coupled models produced as part of

CMIP5 could be explained by the bias in CI (dominated by the

near-surface MSE). Figure 6b shows the present-climate CP4–

P25 difference in hs, h*700hPa, CI, and precipitation; blue shading

indicates CI is higher in P25, and orange indicates CI is higher

in CP4. CI is higher in P25 than in CP4 in April and June–

October and rainfall is higher in P25 than in CP4 for April and

mid-June–December (Figs. 3 and 6b). Therefore, Fig. 6b shows

that periods with higher CI in P25 mostly agree with periods of

higher rainfall in P25. This higher CI in P25 is mostly due to

higher surface MSE; surface MSE is higher in P25 than in CP4

forMarch–December. This must be because although the SSTs

in the models are identical, the models differ in their circula-

tion and surface energy balance, affecting the low-level MSE

(Finney et al. 2019). In May, while hs is higher in P25 than in

CP4, h*
700hPa

is much lower in CP4, leading to higher CI in CP4,

consistent with more precipitation in May in CP4 than in P25.

The largest differences in hs are in April and September–

October; P25 has more than 2mmday21 more rainfall than
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CP4 in April and September–October. Therefore, the rainfall

overestimate and early onset of the short rains in P25 appear to

be related to higher CI and higher surface MSE, again likely

related to the differences in circulation and surface energy

balance between the models.

The difference in monthly rainfall, surface MSE, tempera-

ture, and specific humidity for September and October are

shown in Fig. 7. The higher rainfall totals in P25 are located

over the central Horn of Africa; in other areas CP4 has higher

rainfall (e.g., over the northern Ethiopian Highlands;

Figs. 7a,b). This region of higher rainfall in P25 is collocated

with the region of higher surface MSE, particularly in October

(Figs. 7c,d). Breaking surface MSE into its components of

temperature and specific humidity, Figs. 7e and 7f show op-

posite and small temperature differences across the Horn of

Africa in September and October. On the other hand, Figs. 7g

and 7h show higher specific humidity in P25 over the central

Horn of Africa, over the same region that has higher MSE and

rainfall. Thus, this suggests that the higher rainfall in P25 may

be linked to higher surface MSE, and higher specific humidity.

Furthermore, Fig. S3 in the online supplemental material

shows differences in Lyq between CP4 and P25 of similar

magnitude to the differences in surface MSE, while the dif-

ferences in cpT are of much smaller magnitude. This supports

the proposal that the difference in surface MSE is linked to

differences in specific humidity. However, this higher specific

humidity (and MSE) could be a consequence of the higher

rainfall. Further analysis is required to investigate causality.

Initial analysis of the differences in vertically integrated

moisture flux between CP4 and P25 showed only small differ-

ences (result not shown).

Figure 6 also shows the change in CI andMSE for the future

climate simulation (Figs. 6c,d). Under increasing greenhouse

gas concentrations and rising temperatures, CI decreases in

May–October and increases in November–February, consis-

tent with the signal of the onset of the short rains getting later

and more rainfall during the short rains and January (Figs. 3

and 4). Figure 6d shows the future-climate minus present-

climate change in hs and h*
700hPa

. From June to October the

increase in h*
700hPa

is greater than the increase in hs; therefore,

the CI decreases and there is no increase in boreal summer

rainfall, and rainfall decreases in September–early October

(Fig. 6c). There is a particularly pronounced increase in h*
700hPa

in September. In November–January the increase in hs is

FIG. 6. (a) Annual cycle of surface MSE (hs; solid lines and left axis), saturated MSE at 700 hPa (h*
700hPa

; dash–

dotted lines and left axis), and convective instability (hs 2h*
700hPa

; dotted line and right axis) in CP4 and P25 over

East Africa (region shown in gray in Figs. 2 and 3) under present-climate. (b) CP42 P25 present-climate difference

in hs, h*700hPa, and precipitation. The shading shows the difference in CI; blue shading indicates that CI is higher in

P25 and orange/red indicates that CI is higher in CP4. (c) Future-climate minus present-climate change in con-

vective instability in P25 and CP4 (shading) and precipitation (dashed line). (d) Future-climate minus present-

climate change in surface MSE (solid line) and saturated MSE at 700 hPa (dash–dotted line) for CP4 and P25.
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FIG. 7.Monthly differences betweenCP4 and P25 for (left) September and (right)October in

(a),(b) rainfall; (c),(d) surface MSE; (e),(f) temperature; and (g),(h) specific humidity. The

dashed black contour marks the East Africa region used in this study.
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greater than the increase in h*
700hPa

, and there are correspond-

ing rainfall increases.

In section 3c it was found that future-climate projections from

CP4 show the onset of the long rains getting earlier, while pro-

jections from P25 do not (Figs. 4 and 5). Figure 6c shows a slight

increase in CI in CP4 in January–April, whereas in P25 there is

an increase in January–February only. Correspondingly, Fig. 6d

shows the increase in hs is marginally higher than the increase in

h*
700hPa

for CP4 duringMarch–April, while the increases in hs and

h*
700hPa

are very similar in P25 during March–April. This larger

increase in hs than in h*
700hPa

is consistent with larger rainfall

increases in CP4 than in P25, and the earlier onset. CP4 also

contains a larger increase in surface specific humidity in March

and April than in P25 (not shown). However, the increase in CI

in CP4 in March–April is small; the difference in onset projec-

tions may be related to the convective response to the envi-

ronment change and ability of the model to trigger convection;

the convection-permitting model UM has triggering more cou-

pled to mesoscale convergence (Birch et al. 2014b), which may

lead to an increase in rainfall in March that leads to an earlier

onset. Furtherwork is required to explore this difference further,

as changes in the CI may not fully explain precipitation changes.

e. Local changes in seasonality

In section 3c the focus was on changes in the timing and

totals of wet season rainfall across East Africa under future

climate change. This does not however address larger but more

local changes in the shape of the seasonal cycle, which may

have large socioeconomic consequences. In addition, the

analysis in section 3c excluded regions, such as parts of western

Kenya and Uganda, that do not experience a well-defined bi-

annual seasonal cycle with two equinoctial rainy seasons. Both

P25 and CP4 have much higher horizontal resolution than the

majority of climate model simulations, which enables us to

explore small regions with specific seasonal regimes, and pos-

sible changes in these regimes under future climate change.

Therefore, in this section we explore changes in the shape of

the seasonal cycle. The results are split into two sections:

changes in the January–February dry season and changes in

boreal summer/autumn rainfall.

1) RAINFALL INCREASES IN THE JANUARY–FEBRUARY

DRY SEASON

Figure 6 shows increases in the CI and rainfall in January–

February (JF). Rowell et al. (2015) and IPCC projections

(Collins et al. 2013) both found increases in JF rainfall across

theHorn ofAfrica. Recently, above average rainfall in January

2020 over Kenya, following an above average short rains, had

significant impacts (Wainwright et al. 2020). Therefore here we

explore the projected changes in the JF dry season.

Figures 8a and 8b show the ratio of the mean daily rainfall in

JF to the mean daily rainfall in November (the peak month of

the short rains) in CP4 under present climate (Fig. 8a) and

future climate (Fig. 8b). Figure S4 in the online supplemental

material is the corresponding plot for P25 and shows similar

results. The pink colors across much of East Africa (excluding

Tanzania) show that currently the mean daily rainfall is lower

in JF than in November (Fig. 8a). Figure 8b shows that we

expect JF to remain drier than November under future climate

change, and Fig. 8c confirms that the difference in ratios is

small. However, Fig. 8d shows that increases in JF rainfall

mean that acrossmuch ofKenya and central Ethiopia themean

daily rainfall in JF in the future will be greater than, or com-

parable to, the mean daily rainfall in present-climate peak of

the short rains (November). The mean annual cycles in Figs. 8e

and 8f demonstrate this; over the region in Fig. 8e (Fig. 8f) the

mean daily rainfall in JF under future climate will be around

1mmday21 (4mmday21), whereas under present climate the

mean daily rainfall in November is also around 1mmday21

(4mmday21). CP4 and P25 both show increases in JF rainfall

across East Africa (Fig. S5 in the online supplemental mate-

rial). Over parts of southern Kenya (Fig. 8f) it could be in-

terpreted that the seasonal cycle is changing from a biannual

regime with two wet seasons per year to an annual regime with

one long austral summer wet season with a midseason quasi-

dry period in JF, which is still much wetter than the annual dry

season of June to September. Further analysis of mechanisms

and changes in CP4, P25, and CMIP5/6 models should be

completed to further explore changes in the JF dry season.

2) INCREASES IN BOREAL SUMMER/AUTUMN RAINFALL

While the Horn of Africa experiences two equinoctial wet

seasons per year (long rains and short rains) the seasonal cycle

over western Kenya and Uganda is different. These regions do

experience rainfall during March–May and October–

December, but they also experience rainfall during the bo-

real summer (Fig. 9). Finney et al. (2020b) find that a westerly

moisture flux over East Africa enhances rainfall during the

boreal summer. Currently, western Kenya experiences a pro-

nounced long rains wet season in March–May (MAM), and

then wet conditions through to November, followed by a dry

season in December–January (Figs. 9a,b, solid lines). Over

Uganda the wet season starts in March and persists until

November, with a midseason drier period from June to August

(Fig. 9c, solid lines). Under future climate change both regions

and simulations show rainfall increases throughout the year,

with especially large increases during October–November,

particularly in CP4, which may be related to the higher-

resolution topography in CP4 (dashed lines in Fig. 9). The in-

creases in June–September rainfall are also much higher in

CP4 than in P25. Figure S6 in the online supplemental material

shows the CP4–P25 difference in future projections of mean

daily rainfall in each month; in most months CP4 shows larger

rainfall increases over western Kenya and Uganda than P25.

Over western Kenya, rainfall totals during the short rains are

currently lower than during the boreal summer season; how-

ever, Fig. 9a suggests that under future climate change the

short rains could be much wetter than the boreal summer

wet season.

To examine the spatial extent of these changes, the ratio of

the mean rainfall in June–September (JJAS) to the mean

rainfall in October–December (OND) and MAM, and the

ratio of the mean rainfall in MAM to the mean rainfall in

OND, were computed for CP4 and P25 in present and future

climates, and the ratios were compared (Fig. 10 and Fig. S7 in

the online supplemental material). Across most of East Africa
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FIG. 8. Changes in the January–February (JF) dry season: the ratio of mean daily rainfall in

JF to mean daily rainfall in November in CP4 under (a) present climate and (b) future climate,

(c) the change in ratio from present- to future-climate for CP4 [(b) minus (a)], (d) the ratio of

mean rainfall in JF in the future-climate simulation to mean rainfall in November in the

present-climate simulation for CP4, and (e),(f) the mean annual cycle in precipitation over two

regions in western and southern Kenya [the regions outlined in (c) and (d)] for the present- and

future-climate simulations for CP4 and P25, and observations from TAMSATv3.
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the mean rainfall is lower in JJAS than in MAM (Fig. 10a), and

this is expected to persist under future climate change (Fig. 10b);

Fig. 10c shows little change in the JJAS/MAM ratio. The results

are similar in P25 (Figs. S7a–c). Currently most of East Africa

experiences highermean rainfall duringOND than during JJAS;

however, the green colors in Fig. 10d indicate that western

Kenya and Uganda experience higher mean rainfall in JJAS

than in OND. In Fig. 10e the green region has contracted and

Fig. 10f shows a decrease in the JJAS:OND ratio over western

Kenya and Uganda, and to the north over Ethiopia. This indi-

cates that under future climate change over these regions the

increase in OND rainfall is greater than the increase in JJAS

rainfall, and over some regions the balance of rainfall in these

seasons will change (as seen in Figs. 9a,b). In P25 (Fig. S7) a

decrease in the ratio is still present but smaller than in CP4,

consistent with the smaller increases in P25 shown in Fig. 9.

Figure 10 also shows the change in the MAM:OND ratio; cur-

rently rainfall totals are higher during the long rains than during the

short rains, however, the decreasing ratio across East Africa shows

that increases during the short rains will be greater than during the

long rains, with the short rains becoming wetter than the long rains

in some regions (as seen in Fig. 3, also found in P25: Figs. S7g–i).

This change in the dominant season from the long rains to the short

rains along the Somali coastwas also foundbyKendon et al. (2019).

The changing seasonality identified here needs to be considered

in adaptation planning and flood management, as wetter ‘‘dry

seasons’’ and heavy rainfall at the end of a prolonged wet season

may lead to more runoff and flooding events.

4. Conclusions

In this study we investigated the role of explicit versus pa-

rameterized convection on the representation of precipitation

seasonality over East Africa under present climatic conditions

and on projections of changing seasonality under future cli-

mate change. This was achieved using new high-resolution

FIG. 9. Mean annual cycle in precipitation over three regions in Uganda/western Kenya

(regions shown in the map at the top left) for the present- and future-climate simulations for

CP4 and P25, and observations from TAMSATv3.
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regional model simulations, including the first pan-African

climate change simulations that explicitly model convection,

produced as part of the FCFA IMPALA project.

First, it is shown that the interannual variability in the two

(CP4 and P25) present-climate and two future-climate

simulations is very similar, with high monthly rainfall cor-

relations in the wet season months (March, April, May,

October, November, and December) and in January–

February. This indicates that the modeled interannual var-

iability in these simulations is primarily controlled by the

boundary conditions from the global driving model (in-

cluding SSTs), and only marginally influenced by the rep-

resentation of convection and factors within the regional

domain, and that modeling observed regional interannual

variability is not significantly improved by explicit convec-

tion over an African domain.

Second, analysis of the present-climate simulations shows

that CP4 and P25 both capture the biannual seasonal cycle over

East Africa better than is typically the case for global climate

models, with higher rainfall totals in the long rains than the

short rains. However, both overestimate the long rains, and

P25 overestimates rainfall in September and October, giving a

too early start to the short rains. In contrast, the onset of the

short rains in CP4 shows good agreement with observations.

This difference in the representation of the onset of the short

rains is the main difference between CP4 and P25 for the

present-climate simulations. The overestimate in P25 is asso-

ciated with higher convective instability and surface moist

static energy in September–October. Spatially, the regions

with higher rainfall in P25 in September and October also

exhibit higher surface MSE and higher specific humidity, al-

though further work is required to establish causality.

FIG. 10. Ratio of the mean daily rainfall in different seasons for CP4 under (left) present and (center) future climate, and (right) the

future minus present change, showing (a)–(c) the ratio of mean rainfall in June–September (JJAS) to mean rainfall in March–May

(MAM), (d)–(f) the ratio of mean rainfall in JJAS to mean rainfall in October–December (OND), and (g)–(i) the ratio of mean rainfall in

MAM to mean rainfall in OND.

1382 JOURNAL OF CL IMATE VOLUME 34

Unauthenticated | Downloaded 01/22/21 03:34 PM UTC



Under future climate change CP4 and P25 show the onset

and cessation of the short rains getting later under future cli-

mate change, with a large increase in short rains rainfall, in

agreement with the multimodel mean projections from the

CMIP5 models (Dunning et al. 2018). Convective instability

decreases in September–October and increases in November–

December, consistent with the short rains getting later and

increasing short rains rainfall.

For the long rains, CP4 shows the onset of the long rains getting

earlier, while P25 shows little change in the onset of the long rains

over East Africa; also, CP4 shows larger rainfall increases in

February–April. CP4 shows a slight increase in CI in January–April

whileP25 shows an increase in January–Februaryonly; however, the

CI increase in CP4 is small and further work is required to explore

this. Both models show a later long rains cessation to the north of

Lake Victoria, but this change is not seen across the rest of the East

African region.This studyhas shownthatwhile the representationof

convection does not affect themore robust short rains projections, it

does affect the more variable long rains projections in these simu-

lations. This is an important result as understanding recent trends

and future projections of the long rains over East Africa remains a

significant challenge (Rowell et al. 2015; Wainwright et al. 2019).

These results are consistent with the strong role of SST forcing

during the short rains, andmore subtle convective processes such as

the Madden–Julian oscillation during the long rains (Vellinga and

Milton 2018; Finney et al. 2020b).

Unlike the rest of East Africa, western Kenya and Uganda do

not exhibit a biannual seasonal regime with two equinoctial wet

seasons. Under present climate, rainfall starts in March and con-

tinues throughout the boreal summer to November, followed by a

dry season inDecember–January. Currentlymean rainfall is higher

during the boreal summer (JJAS) than during the short rains

(OND). Under future climate change proportionally larger in-

creases in short rains rainfall lead to changes in the shape of the

seasonal cycle, with the currently drier short rains becoming wetter

than the boreal summer wet season. These changes in the shape of

the seasonal cycle are more pronounced in CP4 than in P25. In

other regions, increases in January–February rainfall are found,

such that mean rainfall in January–February under the future cli-

mate is higher thanmean rainfall during the peak of the short rains

under the present climate. These changes in the shape of the sea-

sonal cycle have the potential for large socioeconomic impacts. The

convection-permitting model (CP4) shows much larger changes,

which would have significant societal impacts. The increases in P25

are much smaller over these parts of western Kenya and Uganda.

However, it should be noted that these are the results from a single

model; othermodels shouldbeexamined toestablish the robustness

of these conclusions. Further work also is required to ascertain the

drivers behind the difference in the projections over this region.

The CP4 and P25 simulations are the first pan-African climate

change simulations that explicitly model convection, and thus

comprise an invaluable dataset for exploring the impacts of con-

vective parameterization on model representation of African

weather. High computational cost restricted the length of the sim-

ulations to 10 years. While this is sufficient for initial analysis of the

seasonality, a longer dataset (or additional ensemble members)

would enable more robust statistical testing of differences between

the models. The two models showed differences in the projections

of the long rains, but also contained differences in the long rains

interannual variability under present- and future-climates, which

may impact the projections. Longer simulations would reduce the

impact of thediffering interannual variability andmaygive a clearer

climate change signal for the long rains, an important outcome,

given the high socioeconomic importance of the long rains, and

current uncertainty in future projections (Rowell et al. 2015).

Longer simulations would also enable investigation of changing

year-to-year variability in seasonality.

We also identified changes in the shape of the seasonal cycle

over western Kenya and Uganda, and differences in the pro-

jections from the two models. Further work should explore this

result in more detail and investigate the drivers and robustness

of such changes using an ensemble of models. Changes in the

shape of the seasonal cycle and increasing year-to-year vari-

ability in seasonality have high potential for detrimental socio-

economic consequences, as agricultural practices are strongly

tied to the seasonal cycle of rainfall. Further exploration of such

changes will provide important information for successful ad-

aptation to future changes in climate over East Africa. It is also

notable that many climate studies present changes in rainfall in

fixed months or seasons, and do not relate the changes in dif-

ferent seasons to explain the changing seasonality. For many

users changing seasonality will be critical, and presentations of

possible future climate changes for such users should be

designed to show this. It is important to note that all the pro-

jections presented here are based on output from a single cou-

pled model (HadGEM2-ES) that has been shown to have high

transient climate response compared to other CMIP5 models

(Senior et al. 2016) (although less high relative to the updated

CMIP6 ensemble; Tokarska et al. 2020), and, along with other

CMIP5 models, fails to correctly capture the current seasonal

cycle over East Africa (Dike et al. 2015); further work with an

ensemble ofmodels froma range ofmodeling centers is required

to establish the robustness of these potentially important results.
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