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Abstract

Reliable information on the likelihood of drought is of crucial importance in

agricultural planning and humanitarian decision-making. Acting based upon

probabilistic forecasts of drought, rather than responding to prevailing drought

conditions, has the potential to save lives, livelihoods and resources, but is

accompanied by the risk of acting in vain. The suitability of a novel forecasting

tool is assessed in the present paper in terms of its ability to provide skilful

information of the likelihood of drought impacts on crops and pasture within

a timeframe that allows for anticipatory action. The Tropical Applications of

Meteorology using SATellite data—AgriculturaL Early waRning sysTem

(TAMSAT-ALERT) tool provides forecasts of seasonal mean soil moisture and

the water requirement satisfaction index (WRSI). TAMSAT-ALERT metrics

were found to be strongly correlated with pasture availability and maize yield

in Kenya and provided skilful forecasts early in key seasons, allowing sufficient

time for preparatory actions. Incorporating TAMSAT-ALERT forecasts in a

layered approach, with actions triggered by spatiotemporally varying triggers

and fundamentally informed by humanitarian actors, will provide reliable

information on the likelihood of drought, ultimately mitigating food

insecurity.
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1 | INTRODUCTION

For millions of farmers across Africa, accurate and timely
information on the likelihood of drought is of crucial
importance for farming decisions. The need for such
information is exacerbated given that irrigation across

the continent is limited (You et al., 2011; Burney
et al., 2013; Nakawuka et al., 2018), such that farmers rely
heavily on seasonal rainfall to support crop and pasture
production. Reliable information on drought can, there-
fore, inform decisions about when to prepare land, plant
and harvest, which variety of seeds to plant, how best to
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manage grazing resources, and post-harvest decisions
regarding selling and storage.

Drought information is also of high priority for
humanitarian aid organizations, as droughts often result
in losses to livelihoods and food insecurity for vulnerable
communities. At the same time, it is increasingly recog-
nized that humanitarian actions made in anticipation of
drought more effectively reduce the impacts, protecting
lives and livelihoods whilst sparing limited resources
(Braman et al., 2013). To that end, many humanitarian
organizations are moving towards anticipatory risk-
management approaches to drought: Rather than acting
in response to ensuing drought conditions, actions are
taken based upon probabilistic forecasts of drought.

Anticipatory drought-management approaches define
triggers that are used to activate early actions before a
drought event occurs and the impacts are realized. These
approaches make use of existing risk information col-
lected by drought early warning systems (DEWS) and
integrate forecasts of drought-relevant metrics such that
early warnings are not based solely on observations, but
consider the potential future evolution of drought risk
and impact. Actions are, therefore, anticipatory, with an
emphasis on mitigating risks.

The Red Cross Climate Centre recently outlined a
suite of anticipatory actions to mitigate the impacts of
drought (Heinrich and Bailey, 2020). For example, cash
transfers to individuals, households or communities
allow those at risk to purchase food items, rehabilitate
water storage facilities or avoid adopting negative coping
strategies such as destocking; the distribution of water
storage equipment, rehabilitation of boreholes and sensi-
tization around good water-management practices can
alleviate strain on limited water supplies; since some dis-
eases are closely linked to drought, the distribution of
health services (such as vaccinations for people and live-
stock, water-purification tablets and awareness raising)
can reduce the spread of disease; and actions directly
targeting food insecurity might include the distribution
of livestock fodder, fertilizer and farming equipment, or
the provision of drought-tolerant seeds. Each possible
action has an associated timeframe in which its deploy-
ment will be most effective (Coughlan De Perez
et al., 2015). Distribution of drought-tolerant seeds, for
example, is only effective if actioned ahead of the season,
before farmers begin to plant. Other actions, including
cash transfers, health services and distribution of fodder,
remain effective if issued part way through the growing
season.

Anticipatory approaches to drought management are
currently receiving considerable investment given their
potential to improve food security, safeguard human
well-being and stabilize economies (Cabot Venton

et al., 2012; Hillier and Dempsey, 2012; Coughlan De
Perez et al., 2015; UNICEF and WFP, 2015). Some initia-
tives currently underway include the Red Cross's
Forecast-Based Action Early Action Protocols
(IFRC, 2020), the World Food Programme's
FoodSECuRE approach (WFP, 2018), the Food and Agri-
culture Organization's Early-Warning Early-Action pro-
gramme (FAO, 2016), the START Network's Drought
Financing Facility (START Network, 2017), and the
World Bank's Famine Action Mechanism (The World
Bank, 2020). However, major challenges remain in devel-
oping operational drought forecasts that reliably predict
the location, magnitude and impacts of drought.

In order to support an anticipatory approach to drought
management successfully, operational drought forecasts
must: (1) forecast a metric relevant to the impacts of
drought; (2) provide skilful predictions of drought within a
timeframe that allows actions to take place; and (3) include
skill information on drought forecasts to build users’ confi-
dence and encourage a long-term perspective (Cash
et al., 2003; Lemos et al., 2012; Coughlan De Perez
et al., 2015). Anticipatory systems also need to factor in the
slow evolution of drought, and the need for different actions
and responses as drought develops.

Several approaches have already been developed.
Shukla et al. (2014) describe the forecasting system used
by the Famine Early Warning Systems Network
(FEWSNET) to assess seasonal agricultural production in
East Africa. The system uses meteorological variables to
drive the variable infiltration capacity (VIC) hydrological
model, providing an ensemble forecast of soil moisture.
The ensemble is then weighted using the Climate Fore-
casts System Version 2 precipitation forecast. Manatsa
et al. (2011) use the FAO's AgrometShell software, con-
taining an agrometeorological water-balance model, to
estimate seasonal crop water requirement satisfaction
and yield. Similarly, Hansen et al. (2004) combine a
global circulation model-based seasonal rainfall forecast
with a wheat-simulation model to provide probabilistic
regional wheat yield forecasts for Queensland, Australia.

Here, we assess the suitability of a complementary
drought-forecasting tool to provide a trigger for anticipa-
tory drought management in Sub-Saharan Africa. The
Tropical Applications of Meteorology using SATellite
data—AgriculturaL Early waRning sysTem (TAMSAT-
ALERT) (abbreviated to T-A) is a decision-support tool
that aims to provide early warnings of drought by exploi-
ting the expected persistence of root-zone soil moisture
anomalies (Brown et al., 2017).

Soil moisture is directly relevant to agricultural drought,
a major precursor of food insecurity (Panu and
Sharma, 2002; Baik et al., 2019). Whilst obviously relevant,
soil moisture information is limited. Field observations of
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soil moisture across Sub-Saharan Africa are inadequate for
operational purposes (Myeni et al., 2019). In addition,
modelling approaches to estimate soil moisture exhibit large
sensitivities to land-surface properties, parameterizations
and meteorological forcing data (Brocca et al., 2017). The
T-A system uses components from a land-surface model
driven by observed rainfall and forced with the meteorologi-
cal forecast. The ability of T-A to model soil moisture accu-
rately therefore warrants the validation carried out in the
present study.

T-A provides daily estimates of soil moisture and the
water requirement satisfaction index (WRSI) (Doorenbos
and Pruitt, 1977). The WRSI is the ratio of cumulative
actual crop evapotranspiration to the cumulative poten-
tial evapotranspiration over a certain growing period
(Senay and Verdin, 2003). It describes how much water is
available for plants to grow without water stress, and its
value ranges from 0 to 100, where 100 indicates no water
stress and 0 indicates complete dryness. The WRSI is cal-
culated using:

WRSI =

Pt
t=1ETtPt
t=1PETt

 !
× 100

where t is the time period; ETt is the actual evapotranspira-
tion of the crop for time t; and PETt is the potential evapo-
transpiration of the crop for time t. T-A soil moisture and
WRSI are available for all Africa at a 0.25� resolution. The
historic data sets begin in 1983, when the TAMSAT rainfall
archive began (Maidment et al., 2017). Alongside the his-
toric data set, T-A importantly includes a forecasting system
to predict soil moisture and the WRSI for a region and
period of interest (Asfaw et al., 2018). In principle, T-A esti-
mates of the WRSI and soil moisture can be updated
throughout the season, and continually updated bulletins
based on T-A forecasts are already operational in several
regions of West and East Africa.

The T-A forecasting system presents promise for use in
anticipatory drought-management protocols. In comparison
with rainfall, soil moisture is more directly relevant to agri-
cultural drought and is therefore more likely to relate to the
impacts of drought, including crop yield and pasture avail-
ability, and ultimately food security outcomes (Enenkel
et al., 2015). Moreover, T-A soil moisture and WRSI data
can be produced in near real time, making them suitable
for operational purposes. However, two important aspects
of T-A must be assessed to determine its suitability for antic-
ipatory drought management, which are addressed in the
present paper:

• The relationship between T-A soil moisture/WRSI and
independent drought-impact metrics must be

established. For example, in recent surveys conducted
by the Kenyan Red Cross, participants identified water
scarcity, reduced crop yield and lack of pasture as the
primary impacts of drought. Given that crop yield and
pasture availability directly underpin food security and
are, at least in part, determined by water scarcity, we
decided to use measures of crop yield and pasture
availability to evaluate the relevance of T-A for
drought management.

• In order to provide useful early warnings, T-A must be
able to anticipate drought reliably with enough lead-
time to allow appropriate early actions to take place. A
sufficient lead-time should allow for stakeholders
involved in drought management to release funds,
identify priority areas and implement actions. Consid-
eration must be given to the timeframe in which
actions are most effective, and the time required to
implement different types of actions, which in part
depends on the operational capacity of the institutions
involved. To address this, we generated T-A hindcasts
at a range of lead-times and examined their skill in
predicting the seasonal soil moisture, WRSI and
drought-impacts.

Results are discussed in relation to anticipatory
drought-management approaches, and suggestions are
made for realizing the use of T-A forecasts to mitigate the
impacts of drought.

1.1 | Study region

The study focuses on maize cultivation and pasture avail-
ability in Kenya, where maize provides a staple source of
food for a large proportion of the population (Djurfeldt
and Wambugu, 2011). In addition, Kenya has a large pas-
toral community (Kratli and Swift, 2014; FAO, 2018) that
depends on the available pasture to support livestock.
Agricultural systems in Kenya are predominantly rainfed,
and so crop and pasture production are largely con-
strained to the rainy seasons (Figure 1).

T-A soil moisture and WRSI estimates and forecasts
were evaluated for the two key growing seasons in
Kenya: the long rains (March–May) and the short rains
(October–December) (Figure 1). Whilst drought threatens
the livelihoods and lives of communities across Africa,
we chose to focus the study on Kenya, where efforts are
already underway to establish anticipatory drought-
management protocols. Comparing the two growing sea-
sons in Kenya will provide a useful insight into the suit-
ability of T-A for drought management in a range of
situations. Across most of Kenya, the March–May long
rains are considered the major growing season, but in
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semi-arid and arid regions, both seasons (March–May
and October–December) contribute near equally to
annual maize production (Hassan, 1996). The seasonal
predictability of rainfall varies between the March–May
and October–December seasons, with predictability in
March–May low compared with the October–December
short rains, potentially limiting the possibilities for antici-
patory action in the March–May season (Young
et al., 2020). Although less maize is produced during the
short rainy season on a national scale, several of the most
vulnerable arid counties in Kenya depend on this grow-
ing season. These counties would benefit greatly from the
anticipatory action enabled by skilful seasonal and
monthly forecasts.

2 | METHODS AND DATA

This section begins by describing the methodology for the
modelling of soil moisture and the WRSI, then explains
the T-A approach to forecasting. It then describes the

crop yield and pasture availability data used to evaluate
the suitability of T-A for anticipatory drought-risk man-
agement, and finally explains the analysis used to address
the two points above in the Introduction.

2.1 | General methodology for modelling
soil moisture

The soil moisture modelling approach adopted in the pre-
sent study is based on that used in the Joint UK Land
Environment Simulator (JULES), which is based on the
Met Office Surface Exchange Scheme (MOSES). JULES is
a land-surface model incorporating vegetative, soil,
hydrological, radiative and energy balance components
of the land surface. The model is driven with meteorolog-
ical forcing data and outputs soil and vegetative proper-
ties. The JULES/MOSES methodology is fully described
by Cox et al. (1999), Best et al. (2009, 2011), and Clark
et al. (2011) and is summarized in Appendix S1 in the
supplemental data online. In order to speed up

FIGURE 1 Distribution of rainfall in space and time. In Kenya, rainfall is largely restricted to two wet seasons: The March–May “long
rains” and the October–December “short rains” (shaded blue areas on the time series). The climatology time series represents a national

average based on the 1983–2019 historic period. Mean total annual rainfall (1983–2019) is widely < 800 mm, with the exception of western

counties and the central highlands. Rainfall data from Tropical Applications of Meteorology using SATellite Data (TAMSAT), v. 3.0

(Maidment et al., 2017). On the maps, grey shaded areas mask surrounding countries; and a white area indicates the Indian Ocean
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computation, and hence to allow the system to be
implemented over large regions, several adaptations have
been made to the JULES method. Unlike JULES, the
model does not include full photosynthesis or radiation
schemes, resulting in differences to the way that potential
evapotranspiration and stomatal conductance are
derived. Furthermore, in order to adapt JULES for the
computation of the WRSI for a growing crop, the JULES
soil moisture scheme was combined with a growing
degree-day model that allows rooting depth, leaf area
index and canopy height to be varied according to crop
development stage (for a full description of these
methods, see Appendix S1 online).

As a result of the modifications listed above, the
model requires different driving data to JULES. Specifi-
cally, rather than long and short wave radiative fluxes,
skin temperature is prescribed. The meteorological driv-
ing data required to run the model at the daily scale are
thus: 2 m daily mean air temperature, 2 m maximum air
temperature, 2 m minimum air temperature, skin tem-
perature, surface pressure, 10 m wind speed, 2 m surface
humidity and precipitation. The model is run at an
hourly time step using the JULES methods for dis-
aggregating the daily driving data to the hourly scale. In
the present study, all variables are extracted from the
National Centers for Environmental Predictions (NCEP)
reanalysis (Kalnay et al., 1996), other than precipitation,
for which TAMSAT v. 3.0 daily data are used (Maidment
et al., 2017). The NCEP reanalysis data were chosen
because, unlike other reanalyses, the data are freely avail-
able with a latency of only 2–3 days. All driving data are
regridded to a common 0.25� scale, representing a bal-
ance between meaningful subnational variation and com-
putational expense. Calculations are performed for land
points only.

The model has the capability to represent variable
soil texture, but in the present study, uniform soil tex-
tures were prescribed, primarily because we found
using variable soil texture maps introduced spurious
spatial step changes in soil moisture which would
cause confusion for users. In future we plan to explore
the latest soil texture maps including Africa Soil Infor-
mation Service products (Hengl et al., 2015). Key vari-
ability in soil textures was nonetheless incorporated.
Specifically, for pasture availability runs, the soil tex-
ture was set to silt loam (sand 20%; silt 65%; clay 15%)
and for the crop runs, the soil texture was set to sandy
loam (sand 65%; silt 25%; clay 10%). We altered the soil
texture between pasture and crop runs because it is
reported that farmers tend to plant maize in faster
draining more sandy soils (where they are available),
even though the dominant soil texture in our regions is
more fine-grained.

In the model, vegetation properties are prescribed in
a similar way to JULES, except that there is no capability
to tile vegetation or to vary plant function types over a
grid. For the purposes of the study, natural vegetation is
assumed to be a uniform, shallow rooting C3 grass.
Rooting depth, leaf area index and canopy height are
held constant throughout the season. The treatment of
crops is described below.

2.2 | Modelling soil moisture in regions
of crop cultivation: Deriving the WRSI

The soil moisture model used in the present study was
adapted for crops by allowing the leaf area index (LAI),
plant height (h) and rooting depth (rd) to vary in both
space and time. The variables LAI, h and rd are based on
a growing degree-day (GDD) model, for which the plant
development stage and hence the LAI, h and rd depend
on prescribed crop-specific GDD. Within a region, these
stages will be reached on different dates, depending on
the temperature (for a further explanation, see Miller
et al., 2001). For the study, planting date was assumed to
be uniform over the whole region, and the GDD-based
development stages were based on climatological temper-
atures, rather than being allowed to vary interannually.

The WRSI is defined as the ratio of cumulative actual
crop evapotranspiration to the cumulative potential
evapotranspiration, calculated from planting to harvest.
The full method for calculating the WRSI, and its rela-
tionship to soil moisture, is described in Appendix S1 in
the supplemental data online and in Asfaw (2019) (based
on McNally et al., 2015). In the present study, we com-
pare the WRSI with the observed crop yield, testing the
assumption that in Africa (where crops are rain fed), the
primary limit on yield is the availability of water.

Here, when referring to the WRSI for the March–May
(October–December) season, we consider the WRSI for
the full growing period of maize planted in March
(October). A variable harvesting date is allowed, based on
the climatological GDD model described above.

2.3 | Forecasting of seasonal mean soil
moisture and the WRSI

In the present study, the T-A forecasting method
described by Asfaw et al. (2018) is used to produce spa-
tially variable probabilistic forecasts of soil moisture. This
method is summarized as follows.

The T-A system aggregates meteorological metrics
(such as precipitation) over user-defined periods, which
can include both the past and future. Land-surface
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metrics, such as soil moisture, and agricultural metrics,
such as crop yield, can be derived by driving impact/
land-surface models with the aggregated meteorological
time series. The conceptual framework of T-A is shown
in Figure 2. Time series of meteorological variables are
generated by splicing together historical data (observa-
tions or reanalysis) with an ensemble of possible weather
futures. The future weather ensemble is the weather that
has occurred at the locality in question in the past, where
each ensemble member represents the weather during a
historical year.

In effect, T-A is an ensemble forecasting system, with
ensemble members based on possible weather futures,
derived from the climatology. Predictions of seasonal
metrics are derived by statistically analysing the ensem-
ble (Figure 3). T-A can thus be used to monitor and

predict any metric that can be derived from environmen-
tal time-series data. It should be noted that T-A can be
run without recourse to any proprietary data.

In its default state, T-A treats all possible weather
futures as equally likely. Meteorological forecast infor-
mation can be integrated by weighting the ensemble,
using information from forecasts to judge the likeli-
hood of each ensemble member. Therefore, if it is
predicted that there is a 20% chance of upper tercile
March–May rainfall, ensemble members for which
March–May rainfall is in the upper tercile are down-
weighted accordingly. This method of weighting
implicitly accounts for the inevitable mismatch
between the forecast variable (e.g. March–May precipi-
tation) and the metric of risk (e.g. crop yield). If the
metric and forecast variable are not closely associated,

FIGURE 2 The Tropical Applications of Meteorology using SATellite data—AgriculturaL Early waRning sysTem (TAMSAT-ALERT)

framework. Historical: Historical meteorological variables are used to drive the land-surface model to produce a historical time series of

land-surface variables. The historical time series of land-surface metrics provides a climatology of land-surface metrics for the period of

interest. Forecast: Historical meteorological variables are used to construct the climatological ensemble of meteorological variables. The

initial conditions of the land-surface model are estimated from the historical run. Using each of the climatological ensembles of

meteorological variables, the land-surface model is driven forward in time to produce an ensemble time series of future land-surface

conditions. Combining the historical time series and ensemble of future land-surface variables, an ensemble of the land-surface metric of

interest can be derived for the whole period (incorporating the historic or observed period and the forecast period). The ensemble can be

weighted based on a related meteorological forecast. Considering both the historical and ensemble time series, the likelihood of an adverse

event can be estimated
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the effect of the weighting is just to randomly weight
some ensemble members more strongly than others.
The effect on the risk assessment will be minimal.

Here we assess the impact of weighting the T-A
ensemble using meteorological reforecasts of seasonal
(three month), two-monthly (two month) and monthly
(one month) total precipitation, expressed as tercile
probabilities, from the European Centre for Medium
Range Weather Forecasts’ (ECMWF) seasonal fore-
casting system (SEAS5) (Johnson et al., 2019). The
SEAS5 hindcasts (reforecasts) were provided by the
Copernicus Climate Change Service (C3S) Climate
Data Store (Raoult et al., 2017) and have 25 ensemble
members, a horizontal resolution of 1� and cover the
24 year period of 1993–2016. We use hindcasts initial-
ized on the first day of the season/month of interest
(zero month lead). Grid-point tercile probabilities are
computed from the SEAS5 ensemble of total

precipitation, using tercile boundaries derived from
the hindcast climatology with the year of interest
removed. T-A is then weighted using the areal mean
tercile probabilities derived from all grid-points over
Kenya. T-A is weighted to SEAS5 tercile probabilities
corresponding to three month total rainfall during the
first month of a three month season, two month total
rainfall during month 2, and one month total rainfall
during month 3.

In essence, T-A provides a quantitative answer to the
question: Given the rainfall forecast, the climatology, the
stage of the growing season, the state of the land surface,
the weather so far in the season of interest and the mete-
orological forecast, what is the likelihood of some adverse
event?

T-A is a general framework that can incorporate any
impact or land-surface model, which is driven with mete-
orological data. In this application, T-A will be run using

FIGURE 3 Example of the production of a

probabilistic assessment of soil moisture using

the Tropical Applications of Meteorology using

SATellite data—AgriculturaL Early waRning

sysTem (TAMSAT-ALERT). In this example, the

forecast is issued on May 1, 2013, assessing soil

moisture for the 2013 March–May season in

Kitale, Kenya. (a) Time series of soil moisture.

The period of interest is delineated by the

vertical lines; the historical estimates until the

forecast date are shown by the black bold line;

the shaded polygon encloses the 10th–90th
percentiles of the forecast soil moisture; and the

other lines are the climatological percentiles of

soil moisture for the region and day of the year

under consideration. (b) Probability that the

seasonal soil moisture will fall into each of the

quintile categories from very low to very high
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the WRSI/soil moisture modelling approach described
above.

2.4 | Validation data: Pasture and yield
indices

2.4.1 | Pasture availability

Historic measures of pasture availability were obtained
from the Global Inventory Monitoring and Modelling
System (GIMMS) project's normalized difference vegeta-
tion index (NDVI). The NDVI correlates closely with
ground-based measures of vegetation dynamics including
biomass, net primary productivity and leaf area index
(Tucker et al., 1985; Reed et al., 1994; Pettorelli
et al., 2005).

Specifically, we used the NDVI3g.v1 data set, which
extends from July 1981 to December 2015 and provides
the bimonthly NDVI measures at an 8 km resolution,
globally (Pinzon and Tucker, 2014).

We spatially and temporally aggregated NDVI3g.v1
data to obtain the mean seasonal NDVI at 0.25� resolu-
tion (to match the resolution of soil moisture data). We
excluded NDVI data outside of key pastoral zones. Pasto-
ral zones were determined using livelihood zone defini-
tions provided by FEWSNET (2011). The mean seasonal
NDVI from pastoral zones was subsequently used to cal-
culate the vegetation condition index (VCI) using the
methods of Yang et al. (2011). The VCI compares the
NDVI recorded in a given year to that observed over
the same period in other years. It is expressed as a per-
centage, with 0% and 100% representing the lowest and
highest observations of the NDVI, respectively. Here, the
VCI was calculated for the season of interest with a
15 day lag in season start and end in order to account for
the known lag between soil moisture and vegetation
growth. The VCI has been shown to be a good indicator
of drought (Liu and Kogan, 1996) and is already used by
Kenya's National Drought Management Authority (2018)
as an indicator of vegetation condition and pasture
availability.

2.4.2 | Maize production

Data on maize production were obtained from the Food
and Agriculture Organization's (FAO) statistics database
(FAO, 2020a). The database contains annual production
data (expressed as area harvested, production quantity
and yield) for primary crops in all 194 member nations
from 1961 to 2018. Data are largely provided by govern-
ments in response to the FAO's annual production

questionnaires and through national publications. Where
these data are unavailable, data may be obtained from
unofficial sources or imputed.

For national-level comparison, we used maize total
production quantity data (equal to yield per hectare mul-
tiplied by area harvested) to account for both the amount
of land under maize production and the yield obtained
from that land (both expected to increase in wetter
years). In the 1983–2018 study period, all production data
for Kenya were collated from official sources. However,
the FAO notes that the quality of these data cannot be
guaranteed. Data are collected through annual produc-
tion questionnaires, national publications and official
websites, but the original source of data and the method-
ology used to collect them are not currently documented,
and so reliability may vary (FAO, 2020b). This should be
kept in mind when interpreting the results.

Given the spatial variability of drought conditions, we
also considered maize production at the county level. We
obtained maize yield data for 45 counties of Kenya from
FEWSNET covering the period from 1981 to 2014. The
data provide an annual yield for the calendar year. At the
county level, we considered yield per hectare, rather than
total production (as for national-level comparisons), to
allow for a comparison across counties of different areas.
As with the national-level FAO production data, county-
level FEWSNET yield information does not provide an
indication of reliability, and it is possible that methods of
data collection vary between counties and over time.

2.5 | Analysis

2.5.1 | Historic validation of T-A soil
moisture and WRSI

The mean seasonal soil moisture estimates for Kenya's
March–May and October–December seasons were com-
pared with the mean seasonal VCI using Pearson's corre-
lation co-efficient (r; p < 0.05 is deemed significant). The
correlation was assessed for Kenya as a whole and on a
gridded basis to understand how this relationship varies
spatially. It should be noted that we are validating one
proxy (T-A soil moisture) against another (VCI). We are
therefore assuming that the VCI provides a “true” picture
of pasture availability. Whilst this is not an ideal assump-
tion, given the lack of empirical data, we felt that this
was a suitable course of action.

The mean seasonal WRSI estimates were similarly
compared with annual maize yield at a national level. In
addition, the correlation between annual county maize
yield and the gridded WRSI was also computed to under-
stand the spatial variations in their relationship.
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However, for both the country- and county-level maize
yield data, annual yield totals were not divided between
Kenya's two rainy seasons. The March–May long rains
represent the major growing season across Kenya, and
hence we assessed the relationship between national-
level maize yield and the WRSI only for the March–May
season. However, maize and some other crops are also
grown in the October–December short rains, mostly in
northern and eastern regions. Therefore, we assessed the
county-level relationship between the WRSI and maize
yield for both seasons.

In order to clarify the value of soil moisture and the
WRSI in predicting the VCI and maize yield, the seasonal
VCI and annual maize yield totals were also compared to
confirm that the VCI does not provide a more direct
means of monitoring crop production.

2.5.2 | Assessing the skill of soil
moisture and WRSI forecasts

The T-A forecasting system was used to generate
hindcasts of seasonal mean soil moisture and the WRSI
for each year in the climatological period. We chose to
use a relatively short 15 year climatological period
(2003–2017) because of the interdecadal variability in the
region.

Hindcasts were generated every week from the
beginning to the end of the season to assess the influ-
ence of lead time on forecast skill. Here, we use lead
time to refer to the number of days before the end of
the season rainy season (May 31 and December 31 for
the March–May and October–December seasons,
respectively). The resulting soil moisture ensemble
forecasts were compared with historic simulations of
mean seasonal soil moisture and the VCI, and the
WRSI ensemble forecasts were compared with historic
simulations of the WRSI and maize yield using
Pearson's correlation co-efficient (r).

Ensemble forecasts were also used to calculate the
probability of seasonal mean soil moisture and the WRSI
being < 20th percentile. Years in which soil moisture or
the WRSI falls to < 20th percentile represent extreme
drought years or a one-in-five year drought event. This
return period represents a trade-off between acting on
events that cause food insecurity and balancing financial
restraints. Comparison of the forecast probability with
observed classifications was used to calculate the true-
positive and false-positive rates, indicating the ratio of
hits, misses, false-alarms and correct rejections
(Coughlan De Perez et al., 2015). The true-positive and
false-positive rates were subsequently used to generate
the receiver operating characteristic area under the curve

(ROC-AUC) scores (Mason and Graham, 2002). The
ROC-AUC scores are generated by plotting the true-
positive rate against the false-positive rate over a range of
probability thresholds and calculating the area under the
resulting curve. The scores are used to determine how
well a probabilistic forecast can delineate a particular
event, in this case, for example, soil moisture < 20th per-
centile and soil moisture > 20th percentile. The ROC-
AUC scores range from 0 to 1, with values representing
the following:

• ROC-AUC < 0.5: the forecast can delineate events, but
events are mislabelled.

• ROC-AUC = 0.5: the forecast has no delineation skill,
or a random chance of correctly delineating events.

• ROC-AUC > 0.5 to < 1: the forecast has a better than
random chance of correctly delineating events.

• ROC-AUC = 1: the forecast can perfectly delineate
events.

Here we deemed any ROC-AUC > 0.8 as representing
a skilful forecast. This threshold in determining a suffi-
ciently skilful forecast is demonstrative in this case, but
can be altered to account for the varying implications of
incorrectly delineating an event. For instance, actions
that have a higher cost of acting in vain should only be
triggered by highly skilful forecasts (high ROC-AUC
scores), whilst low-regret actions may be based on fore-
casts with lower ROC-AUC scores. This concept is
addressed in more detail in Section 4.

We generated ROC-AUC scores from hindcasts at a
range of lead-times throughout the season to assess the
skill of T-A forecasts in identifying years in which soil
moisture, the WRSI, the VCI and yield were < 20th per-
centile. In order to demonstrate the added value of the
meteorological forecasts, we compared the probabilistic
soil moisture, VCI and WRSI forecasts that incorporate
meteorological forecasts with forecasts based purely on
observations.

3 | RESULTS

3.1 | Historic validation of T-A soil
moisture and WRSI

3.1.1 | Soil moisture: VCI

For both rainy seasons, soil moisture correlates strongly
with the VCI at national and seasonal scales (Figure 4).
This relationship is stronger in Kenya's October–
December season (Figure 4b; r = 0.89) than for March–
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May (Figure 4a; r = 0.68), but both show good
agreement.

Also important to anticipatory drought-management
applications is that soil moisture correctly identifies an
anomalously low seasonal VCI given that the VCI is a
proxy for pasture availability. Indeed, in both seasons,
the lowest VCIs are correctly accompanied by low soil
moistures. This suggests there are no instances in which
T-A soil moisture “missed” the anomalously low VCI
conditions, at least on the national scale.

However, there are a few cases where soil moisture
anomalies are low compared with the VCI, suggesting a
“false-alarm” would have been issued. This is clear dur-
ing the March–May seasons of 1993, 1999, 2000 and
2001, and in the 1998 October–December season.

Spatially, soil moisture and the VCI climatologies fol-
low largely similar patterns in both rainy seasons
(Figure 5) and are broadly similar to rainfall climatol-
ogies presented in Figure 1. Soil moisture is generally
highest in western counties surrounding Lake Victoria.
These wetter soil conditions extend further east during
the March–May long rains when compared with the
October–December short rains (Figure 5a, d). The VCI
shows a similar spatial pattern, but is also high in
Kenya's central highlands and along the Indian Ocean
coast.

The correlation between seasonal soil moisture and
the VCI varies across Kenya and is generally more
strongly positive in areas where the VCI climatology is
low (Figure 5c, f). For instance, weaker correlations occur

in Kenya's western counties, and correlations along the
coastal region, where the VCI is climatologically high,
are insignificant (p > 0.05). In addition, the correlation
between mean seasonal soil moisture and the VCI is gen-
erally stronger in the October–December short rains
when compared with the March–May long rains.

3.1.2 | VCI: Yield

We compared the mean seasonal VCI with national-level
maize yield to determine whether the VCI, already com-
monly used by drought-management stakeholders, pro-
vided a better proxy of yield than the WRSI. Whilst the
VCI does capture some of the maize failure years in the
time series for Kenya, the comparison of the seasonal
VCI with maize yield was statistically insignificant
(Figure 6).

3.1.3 | WRSI: Yield

Although not as strongly positive as the correlation
between soil moisture and the VCI, the correlation
between the national-level WRSI and maize yield is sta-
tistically significant (p < 0.05), and fair given the myriad
of factors beyond the WRSI that influence maize yield
(Figure 7; r = 0.43). Moreover, the correlation between
the WRSI and yield is stronger that that between the VCI
and yield (Figure 6) and between rainfall (TAMSAT v.
3.0) and yield (r = 0.38, p < 0.05) (see Figure S1 in the
supplemental data online).

However, when considering the ability of the WRSI to
identify the worst maize yield years, the WRSI “missed”
low yield in the 1984, 1997, 1998 and 2008 March–May
seasons. In terms of “false-alarms”, anomalously low
WRSIs were not met with low yield in Kenya's 1994 and
2017 March–May seasons.

At the county level, the correlation between inter-
annual variations in the WRSI and maize yield varies
across Kenya and between seasons. Figure 8a, c shows
the gridded correlation between the seasonal mean WRSI
and annual county yield. For both the March–May and
October–December seasons, correlations are largely posi-
tive, but in some cases are negative. Looking in more
detail, Figure 8b, d shows interannual variation in the
WRSI, county maize yield and the NDVI for Isiolo
county. This demonstrates the disconnect between bio-
physical metrics (WRSI and NDVI) and county-level
maize yield. In this example, the variability of yield seems
to reduce in later parts of the time series, possibly relating
to changing management practices not captured by the
WRSI. Furthermore, interannual variation in yield is

FIGURE 4 Interannual variation of national-level soil

moisture (circles) estimates compared with the vegetation condition

index (VCI) (triangles). Both metrics represent mean seasonal

values. Soil moisture anomalies are standardized. Pearson's

correlation co-efficients (r) are presented above each plot. For both

seasons, soil moisture and the VCI are significantly (p < 0.05) and

positively correlated
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inconsistent across counties, with poor correlations
between counties (see Figure S2 in the supplemental data
online). There are, moreover, stark differences in the
WRSI/county yield correlation from one county to
another. For example, in Kenya March–May (Figure 8a),
Makueni county is negatively correlated, whilst neigh-
bouring Kitui county is consistently positively correlated.

These inconsistencies point to inhomogeneities and qual-
ity issues with the county yield data. As mentioned in
Section 2.4, full details on the data-collection methodol-
ogy, both over time and across counties, are not currently
available, making it difficult to assess the reliability of
maize yield data fully.

FIGURE 5 Comparison of soil moisture (β) and the vegetation condition index (VCI) (%) climatologies across Kenya for each wet

season. Pearson's correlation co-efficient (r) is presented in the third column and indicates the relationship between interannual variation in

seasonal mean soil moisture and the VCI. Darker blue colours show a strong positive correlation; and red shows a negative correlation. Grey

areas are masked to exclude surrounding countries and regions where pastoralism is not a major livelihood. White areas indicate the Indian

Ocean. Stippling indicates statistical significance (p < 0.05)

FIGURE 6 Interannual comparison of the seasonal mean

vegetation condition index (VCI) (triangles) compared with annual

maize yield (crosses). Yield anomalies have been standardized.

Pearson's correlation co-efficients (r) are presented above the plot.

At the national level, the relationship between the VCI and yield is

not statistically significant (p > 0.05)

FIGURE 7 Interannual comparison of seasonal mean water

requirement satisfaction index (WRSI) (diamonds) and annual

maize yield (crosses). Yield anomalies are standardized. Pearson's

correlation co-efficients are presented above the plot. At the

national level, there is a statistically significant (p < 0.05)

relationship between the WRSI and yield
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Kenya has two rainy seasons, which complicates the
comparison of the seasonal mean WRSI with annual
maize yield. The annual yields provide no information on
the planting and harvest dates. It is likely that in some
counties maize is planted in October; in others, maize is
planted in March; and in some, maize is planted in both
growing seasons. The contribution of each season to
annual maize yields is not available at the national or
county level. Figure 8 shows that for most counties the
WRSI based on a March planting date correlates more
strongly with yield. However, in other counties, the
October seasonal WRSI has a higher correlation with
yield.

Considering the spatial correlation between the
WRSI and county-level maize yield, we see that
counties with a climatologically higher WRSI also have
climatologically higher maize yield (March–May:
r = 0.78, October–December: r = 0.76, p < 0.05)
(Figure 9). In individual years, the spatial correlation
between the county WRSI and maize yield can be high,
although it also exhibits some interannual variability
(March–May: mean 0.67 ± SD 0.11, October–
December: mean 0.61 ± SD 0.12) (Figure 9d). This sug-
gests that in some years it is possible to identify
counties particularly at risk of low yield.

3.2 | Forecast skill

The analysis of hindcasts to identify the lead-time at
which T-A soil moisture and WRSI forecasts can reliably
and skilfully predict observed values revealed that, for
both seasons, soil moisture, the WRSI, the VCI and maize
yield can be forecast with some accuracy ahead of the
end of the season.

3.2.1 | Influence of lead time on skill

Soil moisture
The soil moisture ensemble forecast mean correlates
strongly (r > 0.8) with observed March–May values by
the end of April (up to 35 days before end of season)
(Figure 10a) and can skilfully (ROC-AUC > 0.8) identify
one in five year drought events (< 20th percentile) by
early April (up to 56 days before the end of the season)
(Figure 10b).

Whilst early season correlation and skill is lower in
the October–December than the March–May season
(Figure 10), the correlation between the soil moisture
forecast and observed October–December values
increases rapidly through October and correlates strongly

FIGURE 8 Interannual correlations (Pearson's r) between county maize yield and the seasonal mean water requirement satisfaction

index (WRSI) vary across Kenya and between the March–May and October–December seasons (a, c). Isiolo county is highlighted in red. The

time series shows interannual variation in county maize yield (crosses), the mean seasonal WRSI (diamonds) and normalized difference

vegetation index (NDVI) (triangles) for Isiolo county as an example (b, d)
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by early November (56 day lead time). Moreover, the
ability for the soil moisture forecast to identify drought
years (< 20th percentile) is skilful by the end of October
(63 day lead time).

VCI
The soil moisture ensemble forecast mean also correlates
well with the observed seasonal VCI in both March–May
and October–December seasons, with the r-value nearing
0.8 by mid-April (Figure 10a) and surpassing 0.8 by late
November (Figure 10c), respectively. The ensemble fore-
cast also shows consistent and reasonable skill through-
out both seasons in identifying the years where the
seasonal VCI is < 20th percentile (Figure 10b, d),
although the forecasts are generally more skilful in the
October–December season.

WRSI
We assessed the WRSI forecasts for the March–May sea-
son only, since, at the national level, March–May contrib-
utes more substantially to annual maize yield than
October–December. From the very beginning of the
March–May season, the WRSI forecast correlates strongly
with observed values (Figure 10a), with a slight decline
mid-season, possibly related to shifts in meteorological
regimes as the season progresses. In addition, the WRSI

forecasts skilfully identify years with a seasonal WRSI
< 20th percentile just three weeks into the March–May
season (Figure 10b).

Yield
The WRSI ensemble forecast mean does not correlate
well with maize yield early in the March–May season,
but steadily increases throughout (Figure 10a). The abil-
ity of the WRSI ensemble forecast to identify years with
maize yield < 20th percentile is, however, better and can
be skilfully predicted by early May (21 days before the
end of the season) (Figure 10b).

3.2.2 | Incorporating meteorological
forecasts

In all cases, when seasonal rainfall tercile forecasts from
the SEAS5 are incorporated into the soil moisture and
WRSI forecasts, both correlations between forecasts and
observed values, and the skill of the forecast in its ability
to identify drought years, is improved (Figure 10, dashed
lines). For both the March–May and October–December
seasons, the greatest improvements in the soil moisture
and WRSI forecast skill are seen in the first half of the
season. Improvements are also much more significant in

FIGURE 9 County seasonal water requirement satisfaction index (WRSI) climatology (March–May: a; October–December: b) and

annual yield (c) long-term mean compared spatially. Overall, there is a strong positive relationship between the climatological WRSI and the

long-term mean yield of a county, so that counties with a higher climatological WRSI have a higher mean yield. This holds for both seasons.

However, the spatial correlation between the WRSI and yield varies interannually (d)
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the October–December season compared with March–
May, most likely because the SEAS5 rainfall forecasts
have greater predictive skill during this season (Young
et al., 2020).

The increasing skill of soil moisture and the WRSI
forecasts is also shown in Figure 11. With a 63 day lead
time (late March and October for March–May and
October–December, respectively), the soil moisture and
WRSI ensemble forecasts already show some signal
which matches the observed soil moisture, VCI, WRSI
and yields reasonably well. With a 35 day lead time (late
April and November for March–May and October–

December, respectively), the signal in the ensemble fore-
casts further improves and the uncertainty in the fore-
casts narrows.

3.2.3 | Spatial variation in skill

In addition to considering variation in forecast skill at a
range of lead times, we also considered how forecast skill
varies spatially. Figure 12 shows ROC-AUC scores calcu-
lated at a range of lead times for each 0.25� grid cell.
Again, ROC-AUC scores measure the ability of the soil

FIGURE 10 Skill of Tropical Applications of Meteorology using SATellite Data—AgriculturaL Early waRning sysTem (TAMSAT-

ALERT) soil moisture forecasts as the season progresses. The first column shows the correlation (r) between mean seasonal soil moisture

(circles), water requirement satisfaction index (WRSI) (diamonds), vegetation condition index (VCI) (triangles) and yield (crosses) against

the forecast soil moisture or the WRSI ensemble mean. The second column shows the receiver operating characteristic area under the curve

(ROC-AUC) scores of the ensemble mean for identifying the < 20th percentile seasonal soil moisture, WRSI, VCI and yield, at a range of

lead times. Dashed lines show the skill of the respective ensemble forecasts when weighted with the meteorological tercile forecast. The

beginning of each month is indicated by vertical lines. The dashed horizontal lines indicate r = 0.8 and ROC-AUC = 0.8, here used to

represent “high” correlations and skill. This is for demonstration purposes only, and in designing triggers for anticipatory drought-risk

management, could be adjusted to account for the varying costs of acting in vain associated with different actions (for a further explanations,

see Section 4. Discussion)
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moisture forecast to identify years in which seasonal soil
moisture and the VCI are below their respective 20th
percentiles.

Soil moisture
Th ROC-AUC scores calculated for soil moisture indicate
that in both March–May and October–December seasons,
the skill of soil moisture forecasts generally increases
across Kenya (Figure 12) as the season progresses. How-
ever, the ROC-AUC scores do vary spatially. In March–
May, the coastal and western regions show a lagged
improvement in skill when compared with the rest of
Kenya. For October–December, it is rather the Rift Valley
region, particularly along Kenya's southern border with
Tanzania, that shows lower skill. However, in agreement

with Figure 10, the ROC-AUC scores for both seasons are
generally high (> 0.8) across Kenya more than a month
before the end of the season.

VCI
For the VCI, spatial variation in the ROC-AUC scores is
noisier than for soil moisture, but again shows a general
improvement nationwide as the season progresses
(Figure 12). For March–May, again the coastal region
stands out as having lower skill than the rest of the coun-
try, particularly in the early and late parts of the season.
In October–December, southern Kenya tends to have
lower skill than elsewhere. In general, for both seasons,
skill is higher in the arid and semi-arid northern
counties.

FIGURE 11 Convergence of Tropical Applications of Meteorology using SATellite data—AgriculturaL Early waRning sysTem

(TAMSAT-ALERT) soil moisture and water requirement satisfaction index (WRSI) ensemble forecasts (incorporating the seasonal

meteorological forecast) throughout the season. As the lead time decreases, the ensemble standard deviation narrows, and the signal in the

forecasts become clearer and more closely represents estimates
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4 | DISCUSSION

4.1 | Suitability of T-A for anticipatory
drought management

Analysis of T-A soil moisture and WRSI has confirmed
that T-A can provide drought-impact-relevant metrics
within a timeframe to allow for anticipatory actions.

4.1.1 | Relevance to drought impacts

Historic T-A estimates of soil moisture and the WRSI are
positively correlated with measures of pasture availability
(VCI) and maize yield in Kenya (Figures 4 and 7). Whilst
the correlation between soil moisture and the VCI is
stronger than the relationship between the WRSI and
maize yield, this is likely because yield is influenced by
several additional factors not considered here
(e.g. agronomic practices, the economic and political
environments). Moreover, the WRSI correlates more
closely with yield than other widely used proxies includ-
ing both the VCI (Figure 6) and rainfall (see Figure S1 in
the supplemental data online). It is notable that the cor-
relation between the VCI and yield is low, suggesting that
whilst the VCI represents the pasture condition accu-
rately, the additional detail of the crop calendar and deep
soil processes encapsulated within the WRSI improves
the prediction of crop yields. It is also likely that limita-
tions in the yield data, namely the accumulation of sea-
sonal yields into an annual total, constrain the

correlation with the WRSI and VCI as it cannot account
for differences in cropping seasons across Kenya.

The relationship between soil moisture and the VCI
is stronger in October–December compared with
March–May (Figure 4). It is possible this is because
October–December brings the first rainfall after
4–5 months of dry conditions (Figure 1). Pasture vegeta-
tion responds rapidly to this rainfall. In March–May,
however, pasture availability is influenced not only by
March–May rainfall but also by rain experienced in the
preceding October–December season, and hence is less
correlated with March–May soil moisture. This is con-
sistent with the finding that the WRSI forecasts corre-
late positively (if weakly) with observed maize yield
from the beginning of the March–May season
(Figure 10), supporting that notion that antecedent con-
ditions are more important in March–May than in
October–December.

Spatially, it makes sense that where the soil moisture
and VCI conditions are climatologically low, they are
more closely tied to one another. Across Kenya, correla-
tions between soil moisture and the VCI are highest in
the semi-arid and arid counties in the north and east
(Figure 5). In these regions, pasture availability is likely
to be limited by soil moisture, and so any increase in soil
moisture results in an increase in the VCI. Where corre-
lations are lower, it is possible that factors other than soil
moisture limit pasture production. Alternatively, particu-
larly in the coastal region, insignificant correlations could
be associated with the accuracy of the driving rainfall
data; rainfall originating from shallower clouds, often

FIGURE 12 Receiver operating characteristic area under the curve (ROC-AUC) scores for identifying < 20th percentile soil moisture

and vegetation condition index (VCI) using the Tropical Applications of Meteorology using SATellite data—AgriculturaL Early waRning

sysTem (TAMSAT-ALERT) soil moisture ensemble forecast (incorporating the meteorological forecast) at a range of lead times for both

seasons. Grey areas are masked to exclude surrounding countries and regions where pastoralism is not a major livelihood. The white area

indicates the Indian Ocean
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recorded in the coastal region, is not as well captured by
TAMSAT (Dinku et al., 2018).

Aside from a general agreement in the interannual
variation between soil moisture and the WRSI, and pas-
ture availability and maize yield, respectively, there were
instances in which the WRSI was unable to identify poor
yield correctly. Some of these “misses” can be explained.
For instance, the discrepancy between the WRSI and
yield in Kenya's 1998 March–May season is likely
explained by the positive Indian Ocean Dipole (IOD+)
and El Niño, which occurred in late 1997 (Black
et al., 2003; Black, 2005). The heavy rainfall associated
with these events resulted in flooding and waterlogging
of the soils, causing low crop yield (Amissah-Arthur
et al., 2002). It is also possible that political unrest in late
2007 and early 2008 caused changes to normal planting
regimes (Harneit-Sievers and Peters, 2008), explaining
the discrepancy in the WRSI and yield in March–
May 2008.

In addition, some of the “false-alarms”, in which soil
moisture and the WRSI suggested poor pasture and crop
production, which was not realized, can be explained.
The “false-alarm” for the VCI in October–December 1998
in Kenya likely resulted because the vegetation's condi-
tion remained high following the heavy October–
December 1997 rains, which limited the overexploitation
and degradation of pasture usually associated with the
below-average soil moisture conditions experienced
throughout 1998.

Other “misses” and “false-alarms” are not so easily
explained. Further investigation into soil moisture and
the WRSI values at key points during the growing season
(rather than seasonal means) could aid an explanation,
but was beyond the scope of the study.

The occurrence of some “misses” and “false-alarms”
in the historic data set is to be expected as other factors
aside from soil moisture and the WRSI impact vegetation
productivity. That some discrepancies are explained by
the heavy rainfall event that occurred across East Africa
in October–December 1997 suggests that decision-makers
should be wary in using T-A soil moisture and WRSI
forecasts in extremely wet periods. However, that
instances of the low VCI and maize yield are mostly cap-
tured by the low soil moisture and WRSI values provides
strong support for the use of T-A soil moisture and WRSI
in identifying the impacts of drought.

County-level maize yield
Whilst at the national scale annual maize yield seems at
least partially captured by the WRSI (Figure 7), there
remains a question over the utility of national-level yield
estimates in drought management. For this reason, we
also investigated the ability of the WRSI to capture maize

yield at the county level. The results varied, with some
counties having strong correlations, and others not
(Figure 8). Interannually, it is likely that factors other
than meteorology influence the yield records. The low
correlation between county-level yield and the NDVI sug-
gests that the dominant reason for the poor correlations
is change in production area and, possibly, the dominant
growing season.

However, the WRSI was broadly able to capture spa-
tial variation in county-level maize yield (Figure 9), with
positive correlations, suggesting that counties with a low
WRSI also experienced low yield. However, this relation-
ship varies annually, with no clear indication of factors
leading to stronger or weaker correlations.

These results should be interpreted conservatively
since data-collection methodologies were unavailable
and it was therefore impossible to assess the reliability of
county-level yield estimates across counties and
over time.

4.1.2 | Lead time to allow for action

Alongside the clear relevance of T-A soil moisture and
WRSI for identifying the impacts of drought, T-A metrics
can also be forecast with significant skill ahead of the
end of both seasons, suggesting that within-season fore-
casts can support preparatory actions. This mirrors the
results of existing drought-impact forecasting systems
that demonstrate notable post-planting skill (Hansen
et al., 2004; Manatsa et al., 2011; Shukla et al., 2014).

The correlations between the soil moisture ensemble
forecast and historic simulations of soil moisture and the
VCI, and the WRSI ensemble forecast with the observed
WRSI and maize yield, increase throughout both seasons.
At the beginning of the season, correlations between the
forecasts and estimates are generally low (r ≤ 0.2), with
the exception of soil moisture and the WRSI in Kenya's
March–May season (Figure 10). However, by mid-season,
correlation co-efficients have greatly improved for soil
moisture, the WRSI and the VCI. Correlations between
the forecast and yield are poorer but expected, given the
historic relationship between the WRSI and maize yield
(Figure 7).

Moreover, the ability of forecasts to identify “drought
years” correctly (those in which soil moisture, the WRSI,
the VCI and yield are below their respective 20th percen-
tiles) also improves throughout the season. Again, by
mid-season, there is at least some skill (ROC-AUC > 0.6)
in forecasting low (< 20th percentile) soil moisture,
WRSI, VCI and yield conditions (Figure 10).

Improving forecast skill at a country level is generally
consistent at the sub-country level too for both soil
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moisture and VCI forecasts (Figure 12). However, some
regions show a lagged response in establishing a good
forecast skill. In March–May, the coastal region shows
lower soil moisture and a VCI forecast skill than the rest
of the country (again, possibly due to the accuracy of
driving rainfall data in the region), whilst in October–
December, the south of the country lags behind. How-
ever, in both seasons, these regions do improve and by
the end of the season match the skill seen elsewhere.

The spatial variation in soil moisture forecast skill
likely reflects differing rainfall regimes across Kenya, par-
ticularly in the Rift Valley and coastal regions which
experience slightly different seasonality when compared
with the rest of the country (Figure 1). The variation in
the VCI forecast skill may be similarly explained or could
be due to differences in vegetation type.

Incorporating rainfall seasonal forecasts
Incorporation of the SEAS5 tercile rainfall forecasts
improves the skill of T-A soil moisture and WRSI fore-
casts. The skill gained by incorporating the SEAS5 fore-
casts is greater for the October–December season,
suggesting that whilst the March–May season is strongly
influenced by antecedent conditions (indicated by high
ROC scores early in the season without incorporating the
meteorological forecast), the inclusion of skilful seasonal
forecasts in October–December creates an opportunity to
act at the beginning of the rainy season, if there is a like-
lihood of drought. This extends the timeframe in which
actions could be confidently triggered, therefore increas-
ing the range of actions available for anticipatory drought
management and the potential to mitigate the impacts of
drought. The limited improvement in forecast skill in
March–May agrees with existing research that demon-
strates low predictability of the East African “long rains”
(MacLeod, 2019). Incorporating seasonal forecasts in this
way provides a coherent picture of drought risk, which
accounts for rainfall predictions as well as the evolving
condition of the land surface.

Importantly, soil moisture and the WRSI can be
skilfully anticipated well in advance of the end of the sea-
son when incorporating the seasonal meteorological fore-
cast. For March–May, low soil moisture and the WRSI
(< 20th percentile) can be reliably forecast from late
March and early March, respectively (Figure 10). In
October–December, low soil moisture can be predicted
from the beginning of the season.

Drought conditions (soil moisture and the WRSI
< 20th percentile) can therefore be reliably anticipated at
least two months in advance of the end of the rainy sea-
son. T-A soil moisture and WRSI forecasts are therefore
able to support reliably the anticipatory drought-
management decisions made during the rainy season.

4.2 | Integrating T-A into anticipatory
drought-management protocols

4.2.1 | Considerations for anticipatory
action based on T-A

In order to support anticipatory drought management
successfully, operational drought forecasts must (1) fore-
cast a metric relevant to the impacts of drought, (2) pro-
vide skilful predictions of drought within a timeframe
that allows actions to take place and (3) include skill
information on drought forecasts to build users’ confi-
dence and encourage a long-term perspective (Cash
et al., 2003; Lemos et al., 2012; Coughlan De Perez
et al., 2015).

The study supports the use of T-A soil moisture and
WRSI forecasts in anticipatory drought-management pro-
tocols in Kenya. The soil moisture and WRSI estimates
relate closely with the impacts of drought, namely
reduced pasture availability (VCI) and poor maize pro-
duction, and as such are likely to align closely with food
insecurity events that require humanitarian action. Fur-
thermore, T-A forecasts are reliable ahead of the end of
the season, allowing anticipatory actions to take place.

It must be noted, however, that some caution is
required when designing anticipatory drought-manage-
ment protocols based upon T-A soil moisture and WRSI
forecasts. First, the relationship between soil moisture
and pasture availability (VCI) is stronger than that of the
WRSI and maize yield. Whilst not unexpected, decision-
makers should be aware that the WRSI does not capture
all low yield events and other factors (including pests,
disease, agronomic practices and political decisions)
should also be monitored to identify probable low yield
events.

Second, the skill of T-A forecasts is reduced in the
early season and does not extend before the season com-
mences. However, the skill improves throughout the sea-
son and T-A forecasts become highly skilful by mid-
season, although the exact timing varies between regions
and seasons. Incorporating rainfall forecasts from the
SEAS5 to weight the T-A ensemble improves the reliabil-
ity of T-A forecasts earlier in the season, extending the
period in which T-A forecasts can be considered skilful.

In addition, the skill of T-A forecasts varies spatially.
For instance, soil moisture is a poor predictor of pasture
availability (VCI) in Kenya's coastal region.

Temporal and spatial variation in the skill of T-A
forecasts is not, however, a reason to dismiss the use of
T-A forecasts to trigger anticipatory drought management
for some low skill time periods or locations. Rather, skill
information on T-A should be used when designing
actions and triggers in drought management.
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This requires a recognition that different actions each
come with their own associated cost, time required for
preparation and efficacy in mitigating drought impacts
(Coughlan De Perez et al., 2015; Heinrich and
Bailey, 2020). Consideration must also be made of the
cost of “acting in vain” should the forecasted drought not
materialize (Coughlan De Perez et al., 2015). To that end,
different actions may be triggered by differing probabili-
ties of drought and forecast skill. For instance, high-
regret actions (those which incur a large cost if acting in
vain) should not be triggered based upon a small increase
in drought likelihood or on unskilled forecasts. On the
other hand, actions that can withstand acting in vain
could be triggered based upon a small increase in the
probability of drought without incurring a great cost if
the forecasted drought does not materialize.

Therefore, we recommend a layered approach to
anticipatory drought action triggers, with different
actions given different trigger thresholds at different
points in the season.

In this vein, T-A soil moisture and WRSI forecasts
should only be used to support potential high-regret
actions from the mid-season onwards, when forecast skill
is high. Nonetheless, T-A forecasts could still be used to
trigger actions before, and early in, the season, so long as
these actions are low risk should the forecasted drought
not materialize. This may mean costly actions, such as
distributing livestock food supplements and giving cash
vouchers, are triggered only when forecast skill is high
during the latter half of the season. Low-risk actions,
however, such as sensitization around water-
conservation practices and post-harvest management,
could be triggered by less skilful forecasts earlier in the
season. This layered approach allows action in anticipa-
tion of drought whilst minimizing potential regret should
the forecasted drought not happen.

Along these same lines, triggers and actions will vary
spatially based on the skill of the forecast. It may be that
in some areas, such as coastal Kenya, soil moisture and
the WRSI are not suitable for triggering high-regret
actions at any point in the season. In such instances, T-A
forecasts could be layered with alternative metrics that
better represent the drought impacts in these locations.
For example, efforts are currently underway to establish
anticipatory drought-management triggers based on the
VCI for irrigated farmland in Pakistan which does not
directly respond to T-A WRSI. In other areas, however,
such as the arid counties in the northwest which are par-
ticularly vulnerable to drought, skilful T-A forecasts early
in the season present a real opportunity for triggering
high-risk actions.

Realizing the full potential of this approach will
require input from humanitarian actors (see below).

4.2.2 | From research to operations

Based on the findings of the study, efforts can now be
made to integrate T-A forecasts into anticipatory
drought-management protocols. Care must be taken to
ensure that actions are thoughtfully matched with the
forecasts and that triggers are systematically defined, con-
sidering forecast skill over space and time, and the rela-
tionship between forecast metrics and drought impacts.
This will necessarily be a collaborative effort involving
both forecasting scientists and humanitarian actors.

Defining appropriate actions will require humanitar-
ian agencies to classify actions based on the costs
involved, the time needed to prepare, the potential bene-
fits of acting and the implications of acting in vain. With
the constraints of T-A forecasts in mind, the appropriate
actions and triggers can then be identified.

It is likely that this will be an iterative process. The
present study analysed the skill of T-A forecasts in identi-
fying events in which soil moisture, the WRSI, the VCI
and yield fell to < 20th percentile. The 20th percentile
was used to identify extreme droughts, or those with a
one-in-five year return period. However, it may be that
some anticipatory actions should be taken more often
and for less severe events. The skill of T-A forecasts at a
range of thresholds will need to be analysed in response
to the needs of humanitarian actors. Moreover, to use the
limited resources of humanitarian organizations most
effectively, forecasts of biophysical drought indicators
should be combined with vulnerability information to
ensure that those at most risk of drought are supported.

5 | CONCLUSIONS

The study has shown that Tropical Applications of Mete-
orology using SATellite data—AgriculturaL Early waRn-
ing sysTem (TAMSAT-ALERT) (T-A) soil moisture and
water requirement satisfaction index (WRSI) forecasts
can reliably form a key component of anticipatory
drought-management protocols in Kenya. Supplemented
by input from humanitarian actors and layered with
additional forecasting products, T-A can support humani-
tarian decision-making, mitigate the worst impacts of
drought and ultimately improve food security. Expanding
the analysis undertaken here will also allow anticipatory
drought-management protocols to be scaled up to sup-
port more vulnerable populations across Africa.
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