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Abstract—We propose a novel deep learning based denoising
filter selection algorithm for noisy Electrocardiograph (ECG)
signal preprocessing. ECG signals measured under clinical con-
ditions, such as those acquired using skin contact devices in
hospitals, often contain baseline signal disturbances and un-
wanted artefacts; indeed for signals obtained outside of a clinical
environment, such as heart rate signatures recorded using non-
contact radar systems, the measurements contain greater levels
of noise than those acquired under clinical conditions. In this
paper we focus on heart rate signals acquired using non-contact
radar systems for use in assisted living environments. Such signals
contain more nose than those measured under clinical conditions,
and thus require a novel signal noise removal method capable of
adaptive determining filters. Currently the most common method
of removing noise from such a waveform is through the use of
filters; the most popular filtering method amongst which is the
wavelet filter. There are, however, circumstances in which using
a different filtering method may result in higher signal-to-noise-
ratios (SNR) for a waveform; in this paper, we investigate the
wavelet and elliptical filtering methods for the task of reducing
noise in ECG signals acquired using assistive technologies. Our
proposed convolutional neural network architecture classifies
(with 92.8% accuracy) the optimum filtering method for noisy
signal based on its expected SNR value.

Index Terms—Deep learning, ECG signals, adaptive filtering,
noise reduction, machine learning, signal processing.

I. INTRODUCTION

With the emergence of embedded devices capable of ar-
tificial intelligence and learning abilities, there remains the
problem of effective data processing, which has been a task
for engineers and data analysts alike since the development
of embedded systems entirely [1]. Acquiring (in the form of
signals) and analysing (signal processing) information from
the natural phenomena that occurs in the real-world comes
with various difficulties; none more so prevalent than the
task of differentiating between information that is important
for analysis, from that which is not. Signals acquired using
assistive technologies from applications outside of a laboratory
setting are inherently subjected to greater levels of signal
fluctuations from the recording environment. These fluctua-
tions, also considered as noise, are often detrimental to the
analysis of the objective event. The role of a digital signal
processor, for the majority of the data used in modern appli-
cations is considered electronically, is to adequately remove
unwanted artefacts or disturbances from the recorded signals

that represent some target real-world event. We propose a
Deep Neural Network (DNN) architecture to recognise minute
variations of an objective signal and classify the optimum
method for removing noise from the waveform. The objective
application of this study is to outline an effective and automatic
denoising method for Electrocardiograph (ECG) signals mea-
sured using ultra-wideband (UWB) radar systems to be used
in assisted living environments. Measurements made using
UWB radar systems use micro-Doppler signatures to identify
subtle movements from an individual’s body, such as heart
rate and respiration rate. Due to the unobtrusive method of
data acquisition, recorded signals are often contaminated with
varying levels of noise from different sources that need to be
removed in order to analyse the vital signs effectively [2],
we propose an automated method of removing noise from
inherently noisy ECG signal recordings.

Oftentimes the disparity between studies carried out under
clinical environments and the technology being used in real-
world applications stem from the attention paid to the data
being considered, or there is a lack of for the later condition.
Classical machine learning models and more recently, deep
learning models, have already made significant strides in
recognising important information from noisy and often weak
signals [3], [4]. The need for an automated model to recognise
random, seemingly unpredictable variances in the environment
is therefore needed to understand how best to process raw
signals. For this study, the signals considered as the base
ECG waveforms are from the MIT-BIH normal sinus rhythm
database [5]. In this paper, we propose a model to predict the
best method for removing unwanted artefacts from a noisy
ECG waveform. In regular applications, disturbances in a
recorded waveform are removed using various signal process-
ing techniques; methods primarily based around filtering-out
unwanted noise and retaining the important features from the
signal. The task of filtering a raw signal involves determining
the optimum filter, along with other hyperparameters, such that
the filter effectively removes the noise present in the signal.
This requires careful consideration and analysis of the data
at hand, often in the frequency domain. Furthermore, static
methods of filtering, where the system function does not adapt
in behaviour to changes in the input, are at risk of attenuating
important features from the waveform, or equally, being unable



to sufficiently remove certain aspects of noise, both of which
may affect further analysis of the evaluated signal [6].

Signals measured outside of a laboratory, such as assisted
living spaces where environmental factors are seldom con-
trolled, the acquired waveforms are intrinsically noisy and
irregular, thus such signals require a filtering method that is
able to adapt to these variances. Haykin details the process of
adaptive filtering [7] where an optimisation algorithm is used
to determine the adjustable filter parameters, however, such
a method is still frequently inadequate in dealing with subtle
deviations in noise signal, particularly where the noise in a
signal varies regularly, requiring a more stochastic approach
to filtering noise [8]. Deep learning models in contrast, have
the innate capacity for recognising detailed patterns, and such,
make them ideal for differentiating signals by recognising
minute differences between the waveforms. The intended real-
world application for such a model; being used in assistive
technologies used to remotely monitor the cardiac health of
individuals in an environment, introduces a constraint of signal
windowing in order to reduce the number of elements to
be considered at a given time, such that the signals may
be analysed in real-time. This constraint consequently also
reduces computational complexity of the overall process [9].

In section IV, we detail how commonalities can be found
between different signals that result in higher SNR values for
a given filter, thus also outlining the training process of the
proposed model. The architecture outlined in this study is that
of a binary classifier intended to predict an optimum filtering
method, between wavelet filtering and elliptical filtering, for
a noisy input signal. The Elliptical filter was chosen as an
alternative to the wavelet filter due to its narrow transition
response at the cut-off frequency, respective to other similar
finite impulse response (FIR) filter functions, such as the
Chebyshev and Butterworth filters [6]. After classifying the
optimum filter, a newly presented waveform is filtered using
the filter label and predefined filter coefficients, which are
determined during the model training process.

The paper is organised as follows: Section II contains a
review of relevant techniques and methods explored in this
paper, section III outlines a definition of the signals used III-A,
model training algorithm III-B, classification model parame-
ters III-B, feature reduction techniques used III-D and finally
the experimental set-up III-E. This is followed by the results
and discussions section IV, which details the experimental
results IV-A and a discussion of the results IV-B. Finally,
concluding remarks on the study carried out and possible
future avenues of research are presented in V.

II. RELATED WORK

Physiological signals have been recorded and studied exten-
sively for many years and none more so than ECG signals.
The analysis of ECG signals is vital in diagnosing, and
often treating, the cardiac health of a person; this has until
recently, been a task carried out by medical professionals
exclusively [10]. With the power of modern machine learning
tools and the availability of assistive technologies to monitor,

process and analyse ECG signals remotely and in real-time,
the task of detecting and predicting cardiac abnormalities have
become a task for medical professionals and machine learning
engineers alike [11]. We focus on the noise present within
ECG signals, which varies from one segment of the signal to
another and is often unable to be removed effectively with
standard filtering methods [9]. For such instances, machine
learning and deep learning networks have been applied to
remove noise in ECG signals [12], [13].

With instances of vital signs monitoring using UWB radar
system-based assisitive technologies, various investigations
have been carried out into ECG signal denoising and clas-
sification tasks [14], [15]. The studies described go as far as
providing a holistic overview of the data acquisition process
and demonstrating various signal processing techniques to
extrapolate vital signs form radar signatures. Similar to ECG
detection, Liang et al. [16] proposed a method of detecting
respiration signs using a frequency accumulation algorithm
followed discrete short-time-Fourier transform to suppress
random signal harmonics and products of heartbeat and respi-
ration signals combined. A model proposed by Shikhsarmasr
et al. [17] makes use of the wavelet packet decomposition
method to suppress random noise in the signal, subsequently
makes use of a vital sign estimation model on a defined
region of interest, to improve the overall system efficiency.
The wavelet transform has shown to be used in many similar
studies [18], [19], whereby a thresholding method is used to
attenuate certain frequency amplitudes of the signal noise.

There exist studies using deep learning and machine learn-
ing algorithms in various forms to carry out the task of ECG
signal denoising. Antczak [12], proposed using synthetic data
to train a deep algorithm for signal denoising and fine-tuning
the network parameters to learn higher-level features using real
data. More recently, a layer-by-layer denoising neural network
has been developed based on factor analysis [20], where the
model attempts to learn Gaussian noise present in the signal,
thus being able to remove it. A similar study has been carried
out for an audio equalisation task by Pepe et al. [21], in
which, given a noisy signal, the FIR filter coefficients are
predicted using a DNN architecture. Indeed, various attempts
have been made into developing learning models capable of
determining optimum filtering coefficients for reducing noise
in ECG signals [19], [22]. To the best of our knowledge
through a review of relevant literature we for the first time
propose a novel study detailing the use of machine learning
techniques for the task filter selection in ECG signal denoising.

III. DENOISING FILTER CLASSIFICATION MODELLING

The primary application for the model proposed in this study
is to find the best method of attenuating unwanted artefacts
from a noisy ECG signal acquired using an UWB radar
system. To simulate additional noise to the signals, as would
be expected from radar readings of this nature [23], Gaussian
noise was added to the original dataset. The new signals were
then processed using a wavelet filter and a low-pass elliptical
filter to determine the optimum method for reducing the noise



in a signal. Finally, a classification model was trained and
tested using the labelled dataset for the purpose of predicting
the filtering method which results in the highest SNR value.

A. ECG Signal Definition

A raw ECG signal, being a continuous-time signal, can be
viewed, through sampling as a discrete time signal x(k) as per
the following definition:

x(k) , x(t) | t = kT , (1)

where k = {1, . . . ,K} and represents the number of discrete
data points in the waveform. The parameter T being the sam-
pling period of the discrete-time signal and thus the sampling
frequency is given as νs = 1/T . The raw is represented by
x(k), however, having been originally recorded under clinical
conditions, can be regarded as the optimum ECG waveform for
this investigation. This primary aim of this study is to improve
the signal quality of ECG signals recorded using UWB radar
systems, which exhibit greater levels of noise than the raw
signal used in this study.

To modify the raw signal in order to make it more noisy, ar-
tificial noise g(k) is generated using the Gaussian distribution
function as per:

g(k) =
1

σ
√

2π
e−

(r(k)−µ)2

2σ2 , (2)

where r(k) is a random value between 0 and 1 and µ and σ, are
the mean and standard deviation of the signal x(k). The noise
being modelled on the characteristics of the original signal
itself. The waveform to be considered by the classifier is z(k),
being a noisy ECG signal which is generated by applying the
original signal x(k) with the generated Gaussian distributed
noise g(k):

z(k) = x(k) + g(k). (3)

The objective of the classification model is to determine the
optimum method to reduce the noise g(k), from the noisy
signal z(k).

B. Filter Label Identification Algorithm

The resultant signal z(k) is firstly normalised using min-
max normalisation and subsequently processed through an
SNR optimisation function Ω(·) that returns signal label y
defined as a composition of the filter label, α; maximum SNR
value, β; and the chosen filter variable value δ, as shown in (6).
We reshape the clean signal x(k) and noisy signal z(k) of
lengths K into a M ×N shaped matrices as follows:

X ∈ QM×N ,Z ∈ QM×N | QM×N ← Q1×K , (4)

where X = [x1, x2, . . . , xM ]T and Z = [z1, z2, . . . , zM ]T

are the clean and noisy signals reshaped into a matrix of
windowed signals. The reshaping parameters M and N are
non-zero natural numbers defined as M = K/λ and N = λ,
where λ is the chosen window period. The variables m and
n are the matrix indices and are natural numbers, such that

m = {1, 2, . . . ,M} and n = {1, 2, . . . , N}. This process is
carried out to reshape the original signal of length K into M
windowed signals of length N , an example for Z is shown in
the following form:

Z =


z1
z2
...

zM

 ≡


z11 z12 . . . z1N
z21 z22 . . . z2N
...

...
. . .

...
zM1 zM2 . . . zMN

 , (5)

where the windowed noisy signal is written as zm =
(zm1 , z

m
2 , . . . , z

m
N ) and equally the windowed clean signal can

be given as xm = (xm1 , x
m
2 , . . . , x

m
N ). The function Ω(·)

being applied to the resultant windowed signals returns the
corresponding filter labels ym given as:

ym = (αm, βm, δm) = Ω(xm, zm, θf ), (6)

where θf is the maximum value of the filter boundary param-
eter and f is the filter label. We assign f = 0 for elliptical
filter and f = 1 for wavelet filter. The variable θf depends
on the filter being used, since the elliptical and wavelet
filters have different parameters types. When considering the
elliptical filter, θ0 represents the maximum cut off frequency
for a low pass filter. As for the wavelet filter, θ1 represents
the maximum number of wavelets to be investigated and
must satisfy θ ≤ Θ, where Θ is the maximum number of
wavelets available. The clean signal xm, is used within the
SNR optimisation function for calculating the individual SNR
values of the filtered signals.

The maximum SNR value βm
f , as shown in (7), and opti-

mum filter variable δmf that returns βm
f , given by (8), for a

given filter f and windowed signal index m is obtained by:

βm
f = max[SNR(xm, rmf )] (7)

δmf = argmax
ωc

[SNR(xm, rmf )], (8)

where rmf is a signal obtained though a function Rf (zm, ωc)
for a filter f and windowed signal with index m. The
filtered signal rmf carries the same length as zm, such that
rmf = (rmf,1, r

m
f,2, . . . , r

m
f,N ). The critical filter variable is

ωc ∈ N and θf,0 ≥ ωc > θf , where the term θf,0 holds the
initialising value of ωc. As the elliptical and wavelet filters
accept different function parameters, the values of ωc and θf,0
carry different representations for each filter. For the elliptical
filter, where f = 0, the value θ0,0 is the lowest frequency to
be tested, which is chosen to be 1Hz. Given the condition
where f = 1, the value of θ1,0 is the first element from
an ordered set containing numerically encoded wavelets, such
that each element from the set can be decoded to retrieve
its corresponding wavelet type. The function Rf (zm, ωc) is
defined as:

rmf = Rf (zm, ωc) = T−1
f [Hf (ωc) · ẑm], (9)

where T−1
f is the general inverse transform operator, given as

the inverse fast Fourier transform (FFT) when f = 0, and is the



inverse discrete wavelet transform (DWT) when f = 1. This
transformation is applied to a convolution of the filter function
Hf (ωc) and ẑm, being the windowed signal zm transformed
in the Fourier domain given f = 0 and in the wavelet domain
given f = 1 and ωc.

When using the elliptical filter function H0(ωc), the Nyquist
theorem must be satisfied before applying the filter, as shown:

H0(ωc) = {Ψp(ω, ω0) | ω0 =
ωc

0.5 νs
)} , (10)

Ψp(ω, ω0) =
1√

1 + ε2R2
p(ξ, ω

ω0
)

(11)

where ω0 is the cut-off frequency, ω is the angular frequency
given as 2πν (where ν is the ordinary frequency in Hz), ε is
the ripple factor and ξ is the selectivity factor. The p-th-order
elliptical filter is indicated by Ψp(ω, ω0), and the function
Rp referred to as a Chebyshev rational function that controls
the stopband ripple response. The ripple factor specifies the
passband ripple, whereas the stopband ripple is given by the
combination of the ripple factor and selectivity factor.

Similarly, an example function H1(ωc) representing a
wavelet filer is used (as mentioned in pywt1 library). When
we use the wavelet filtering method, we apply DWT using
a wavelet, denoted by ωc, that results in a transformed signal
ẑm. Following this, we apply thresholding to the wavelet detail
coefficients u using a soft threshold û, defined in [24], as per:

u =

{
[sgn(u)](|u| − û) |u| ≥ û
0 |u| < û

(12)

û = σ
√

2 logN , (13)

where N and σ are the length and standard deviation of the
input signal zm respectively. The noise present in the signal is
then attenuated using a thresholding function, given by (13),
before reconstructing the original signal using the inverse of
DWT given by (9).

From (7) the value of βm
f is given as the maximum SNR

value achieved for a windowed signal m being processed
through filter f and it can be seen from (8) that δmf takes
the value of ωc for which βm

f is achieved. The standard SNR
function used in both (7) and (8) is given by:

SNR(xm, zm) = 10 log10


N∑

n=1
[xmn ]2

N∑
n=1

[xmn − zmn ]2

 , (14)

where xm is the clean signal and zm is the signal to be
compared. The root-mean-square error (RMSE) calculation is
used in Section IV-B to compare the average power difference
between noisy signals and their corresponding clean signals,
as given by (15). The definition of RMSE being the standard

1https://pywavelets.readthedocs.io/en/latest/

deviation of the residuals (predicted errors) between two given
signals xm and zm, given by:

RMSE(xm, zm) =

√√√√ 1

N

N∑
n=1

(xmn − zmn )2 . (15)

The equivalent values of the window label ym, being the
filter label αm, the maximum SNR value βm, and the optimum
filter variable δm, are given as per:

αm =

{
0 if βm

0 ≥ βm
1

1 if βm
0 < βm

1
(16)

βm = max{βm
0 , β

m
1 }. (17)

Here the filter label αm and the maximum SNR value βm are
shown by (16) and (17) respectively. Note that the individual
signal filter labels are assigned using (16), depending on which
maximum SNR value for a given filter βm

f resulted in the
highest overall SNR value when comparing signals xm with
rmf according to (7).

The values of δm are given by (18) and show that for
instances where αm = 0, the value of δ0 is assigned to δm

conversely, where α = 1 the value of δm is given as δ1.

δm =

{
δ0 if αm = 0

δ1 if αm = 1
(18)

δ0 =
1

M

M∑
m=1

(δm0 ) (19)

δ1 = mode(δm1 ) ∀m . (20)

Equation (18) and (19) show that δm is equal to δ0, being
the average value of δm0 for all values of m, and it can be
seen from (18) and (20) that δm is is equal to δ1, being
the modified mode function mode(δm1 ) that returns the most
frequent element of δm1 for all values of m. Given the condition
where multiple values appear equally as frequently in δm1 , the
mode(δm1 ) function returns a randomly selected δm1 from the
subset of most frequent appearing values. For the case where
all values of δm1 appear equally as frequently, signifying that
M ≤ Θ, the modified mode function returns an randomly
chosen value of δm1 .

Indeed in subsection III-B, for convenience, the labelling
algorithm details operations for one signal z(k) of length K
reshaped into a matrix of M windowed signals of length N ,
however, it should be understood that the complete model
is trained on multiple noisy signals reshaped into windowed
waveforms, further details are presented in section III-E.

C. Classification Algorithms

The task of identifying the optimum filtering method be-
tween a low-pass elliptical filter and a wavelet filter can
be formulated as a binary classification problem. As such,
various machine learning models, including DNN models,
can be applied to this problem. In this paper, we propose a
convolution neural network (CNN) classification model for the



given task. The CNN model is chosen due to its ability to learn
unknown variations in the input distribution in the input data
[25], such as noise. This model is compared against other
machine learning models, such as support vector machines
(SVM), logistic regression, K-nearest neighbours (KNN) and
a DNN.

The hyperparameters for DNN is be shown in Fig. 1, which
details the number of layers, activation functions, pooling
layers and flattening layers used. To summarise, a 128 dense
layer, followed by a max-pooling layer of size 2 with an
equal stride value with a stride value, and a 64 dense layer
were added, the dense layer using rectified linear unit (ReLu)
activation functions. This is followed by a 32 dense layer
and a flattened 16 layer, all using the ReLu activation. The
ReLu activation function was chosen based on fine tuning of
the model on the training dataset. The final layer consisted
of 2 dense layers using a SoftMax activation function. This
model was configured with a kernel size of 3. The optimisation
function chosen for this model was Adam: a method for
stochastic optimization [26] with parameters: learning rate =
0.001, β1 = 0.9, β2 = 0.999, ε = 1e−07. A categorical cross-
entropy function was used to calculate loss and the model was
trained for 20 epochs of time and a batch size of 16 was used.

D. Feature Reduction Techniques

Two different feature reduction techniques, principal com-
ponents analysis (PCA) and independent analysis (ICA), were
used for the models evaluated for this task. Reducing the
dimensions of the data being considered, particularly using
techniques that retain any significant information from the data
such as PCA and ICA, have shown to be effective in improving
classification accuracies in tasks involving ECG signal analysis
[28].

When applying PCA, the dimension of the data was reduced
by 95% such that only the top 5% of the principal components
were used. For ICA, 36 independent components were used,
being 10% of the initial signal length. These parameters for
PCA and ICA were chosen to retain the most important
features whilst reducing the length of the data, thus improving
the performance of the classification models.

E. Experimental Set-up

For the classification task at hand only the filter labels αm

from ym for a windowed noisy signal zm are required for
the filter classification model. The parameter δm is used for
selecting the data being applied to the models and βm is
used to assign the optimum filter with an appropriate filter
parameter. Particularly when calculating δm, the complete
dataset of windowed signals should be used after construction,
such that the value of M used for (19) and (20) is replaced
by the total number of windowed signals for all full signals,
shown in (21).

Using the elliptical filter, given by (10) and (11), requires
the presetting of parameters such as the filter order, passband
ripple and stopband ripple. For this study, a 7-th-order filter

with a 3 dB passband and 4 dB stopband was chosen. These
parameters control the elliptical filter response characteristics
and were chosen based on prior testing of signals that returned
the best average performance by the filter.

The value of βm for a windowed signal is used to remove
any signal anomalies; there are cases where clean signals from
the dataset are corrupted, such that the original waveform
shows zero-amplitude and in some cases the clean signal itself
exhibits noise. We require an ideal, clean signals in order to
control the variables of the study, thus we choose remove
signals where the underlying waveforms are distorted. It was
observed, from prior analysis of the training data, that in-
stances where signals are corrupted have a βm value less than
−3.00 dB approximately, thus signals where βm ≤ −3.00 dB
are removed from the dataset being used on the models.

Detailed in III-B, the signal reshaping and labeling method
is specified for one noisy signal z(k) reshaped into a matrix
Z of windowed signals. The proposed models are trained and
tested on multiple noisy signals zl(k), generated from multiple
different clean signals xl(k), where l = {1, 2, . . . , 358} and
the resultant noisy windowed waveforms are given as per:

Ztotal = [{Z1, yT
1 }, {Z2, yT2 }, . . . , {Z358, yT358}] . (21)

A λ value of 360 was chosen, thus M and N values in (4) are
10 and 360 respectively. For all 358 signals in our dataset, the
total training sets of signal matrix Z is given in (21) which adds
up to 3580 labelled waveforms (examples of noisy signals. For
our classification models, we split the data into training and
test sets respectively of sizes 67% and 33%, which gives us
2399 windowed waveforms in training set and 1181 windowed
waveforms in the test set.

IV. RESULTS AND DISCUSSIONS

Table I lists the performance (classification accuracies) of
classifiers. It can be seen from Fig. 2 that SVM, logistic regres-
sion and DNN showed an improved model performance using
only the principal components, compared to using the full data
or independent components only. The CNN model achieved
the highest classification accuracy for all three forms of input
data; regular signal, principal components and independent
components.

A. Experimental Results

The results of a test signal za, representing a noisy signal
with an arbitrary index a, such that a ∈ m and is applied to
both the wavelet filter and elliptical filters; this can be observed
from Table II along with their corresponding waveforms in
Fig. 3. Comparatively, the filter responses for a signal zb,
where b is an arbitrary signal index such that b ∈ m and
a 6= b, is shown in Fig. 4 with its corresponding data displayed
in Table II. It should be noted that the two signals considered,
za and zb, both result in differing optimum filtering methods.
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Fig. 1: The DNN was configured with the following parameters in sequential order: a 128 dense layers, a maximum pooling
layer with pooling size of 2, a 64 dense layers, a 32 dense layers and a 16 dense layers, all using ReLu activation functions.
A unit dropout rate of 25% was used after the 128 dense layer and 64 dense layer, followed by a 50% rate after the flattened
16 dense layer, this was applied in order to avoid overfitting [27]. An stochastic gradient decent (SGD) optimizer using back
propagation was used for the learning method and the model was trained for 20 epochs.

B. Discussion

It can be observed from Table II where the SNR and RMSE
values, given by (14) and (15), for noisy signals za and zb
are presented with their corresponding filtered signals. The
signals ra0 = R0(za, δ0) and ra1 = R1(za, δ1) are the elliptical
and wavelet filtered responses respectively for the noisy signal
za. Whereas the signals rb0 = R0(zb, δ0) and rb1 = R1(zb, δ1)
represent the elliptical and wavelet filtered signals respectively
for noisy signal zb.

For noisy signal za, the lowest RMSE and highest SNR
values were obtained using the elliptical filter response ra0 .
Contrastingly, given the noisy signal zb, the lowest RMSE
and highest SNR values were given by the filtered signal rb1,
being the wavelet filter response. This proves that for a noisy
signal, the successful classification of an optimum filter would
indeed result in a response with a higher SNR value and lower
RMSE value compared to the alternative filtering method. The
results for which presented in Table II and thus reaffirm the
understanding that different windowed noisy signals ultimately
result in differing optimum filtering methods, this can be
further noticed from Figure. 3 and Figure. 4. Such a finding
can be attributed to various signal characteristics; the two
waveforms presented show differences in noise levels, baseline

characteristics and average signal power, which all show to
affect the optimum filtering method used for the signal.

From Table I it can be found that feature reduction methods,
such as PCA and ICA, do not necessarily result in the
highest classification accuracy for all models. This is evident
particularly for the proposed CNN model, where the best clas-
sification performance was obtained with the original dataset,
without having applied any feature reduction methods. Reduc-
tion of the dataset dimension should be dismissed entirely, as
the DNN model performance in Fig. 2 shows that PCA being
used as the input data resulted in the highest classification
accuracy for that model. As stated by [21], tasks involving
signals with high levels of noise, where filter parameters are
to be determined by a learning model, require fine tuning and
experimentation. The findings in this paper show that it is
possible to develop a DNN model to recognise noisy signals
based on their optimum predicted filtering method.

This investigation is an exploratory venture into developing
and applying deep learning techniques to tasks involving
digital signal processing, specifically for the selection of
digital filtering methods. For the task of removing noise from
ECG signals we investigate the wavelet filter, as proposed by
various studies carried out for similar applications [17]–[19],



TABLE I: Classification accuracies of filter selection classifier.
Models tested include SVM, logistic regression, KNN, DNN
and CNN. Learning models were applied to the regular dataset
and dataset after having applied feature reduction techniques
such as PCA and ICA, see III-D.

Classification model Classification accuracy (%)

SVM 89.77
Logistic regression 84.20
KNN 82.06
DNN 89.82
CNN 92.80

SVM (PCA) 89.89
Logistic regression (PCA) 84.62
KNN (PCA) 82.23
DNN (PCA) 90.05
CNN (PCA) 92.27

SVM (ICA) 89.78
Logistic regression (ICA) 84.20
KNN (ICA) 84.46
DNN (ICA) 89.81
CNN (ICA) 91.56

KNN LR SVM DNN CNN
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Fig. 2: Classification accuracies of SVM, KNN, logistic regres-
sion, DNN and CNN for the task of classifying the optimum
filtering method for a given windowed signal.

[24], and an elliptical filter, due to its frequency response at
the defined cut-off frequency [7], [9]. Consequently, various
avenues of research are yet to be explored, such as using novel
complex networks capable of processing complex signals and
developing graphical representations of signals to be used is
conjunction with machine learning models.

V. CONCLUSIONS

We propose a deep convolutional neural network (CNN)
architecture for classifying an optimum signal denoising filter
for a given noisy ECG signal. Moreover, we introduce an
algorithm for labelling of signal waveforms with the optimum
denoising filters (elliptical filter and wavelet filter). Our three

TABLE II: Comparing the wavelet filter and elliptical filter on
two signals: xa and xb. Where the signals ra0 and rb0 represent
the elliptical filtered responses for za and zb respectively.
The filtered signals ra1 and rb1 represent the wavelet filtered
responses of za and zb respectively. Showing the SNR and
RMSE values of the noisy signal, signal filtered by wavelets
and signal filtered through elliptical filtering.

Signal RMSE SNR (dB)

xa - -
za 0.154 6.846
ra0 0.122 8.505
ra1 0.138 7.809

xb - -

zb 0.125 8.914

rb0 0.122 9.591

rb1 0.112 10.024
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Fig. 3: Signals shown where the optimum filter is determined
to be the elliptical filter (αa = 0). Showing the clean signal
xa (a), the signal with additive Gaussian noise applied to it za
(b), the noisy signal after having been processed through an
optimum elliptical filter ra0 (c), and finally the noisy signal
after having been filtered by an optimum wavelet filter ra1
(d). Outlined in black are the target waveforms and the green
dotted lines represent the RMS values of each signal.

versions of labelled datasets (full features dataset and reduced
features datasets based on principal component analysis and
independent component analysis) was fed to various classifiers
such as, support vector machine, K-nearest neighbour, logistic
regression and deep neural network and CNN. Our CNN
model was able to classify the optimum filter with an accuracy
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Fig. 4: Signals shown where the optimum filter is determined
to be the wavelet filter (αb = 1). Showing the clean signal xb

(a), the signal with additive Gaussian noise applied to it zb
(b), the noisy signal after having been processed through an
optimum elliptical filter rb0 (c), and finally the noisy signal
after having been filtered by an optimum wavelet filter rb1
(d). Outlined in black are the target waveforms and the green
dotted lines represent the RMS values of each signal.

of 92.8% when using the full feature dataset. Such a high
classification accuracy for determining the optimum denoising
filter enables us to effectively remove noise from a signal
without affecting the underlying signal characteristics. We
show that when presented with different windowed signals,
the optimum filter can be either the elliptical filter (shown in
Figure. 3) or the wavelet filter (shown in Figure 4).

REFERENCES

[1] S. Khokhar, A. A. B. M. Zin], A. S. B. Mokhtar, and M. Pesaran, “A
comprehensive overview on signal processing and artificial intelligence
techniques applications in classification of power quality disturbances,”
Renewable and Sustainable Energy Reviews, vol. 51, pp. 1650 – 1663,
2015.

[2] C. N. Paulson, J. T. Chang, C. E. Romero, J. W. M.D., F. J. Pearce,
and N. L. M.D., “Ultra-wideband radar methods and techniques of
medical sensing and imaging,” in Smart Medical and Biomedical Sensor
Technology III, B. M. Cullum and J. C. Carter, Eds., vol. 6007,
International Society for Optics and Photonics. SPIE, 2005, pp. 96
– 107.

[3] A. B. Nassif, I. Shahin, I. Attili, M. Azzeh, and K. Shaalan, “Speech
recognition using deep neural networks: A systematic review,” IEEE
Access, vol. 7, pp. 19 143–19 165, 2019.

[4] K. R. Foster, R. Koprowski, and J. D. Skufca, “Machine learning,
medical diagnosis, and biomedical engineering research - commentary,”
BioMedical Engineering OnLine, vol. 13, pp. 94 – 94, 2014.

[5] G. B. Moody and R. G. Mark, “The impact of the MIT-BIH arrhyth-
mia database,” IEEE Engineering in Medicine and Biology Magazine,
vol. 20, no. 3, pp. 45–50, 2001.

[6] J. Proakis and D. Manolakis, Digital Signal Processing. Pearson
Prentice Hall, 2007.

[7] S. Haykin, Adaptive Filter Theory (3rd Ed.). USA: Prentice-Hall, Inc.,
1996.
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